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Abstract—Self-supervised learning has shown value for uncovering informative movement features for human activity recognition.
However, there has been minimal exploration of this approach for affect recognition where availability of large labelled datasets is
particularly limited. In this paper, we propose a P-STEMR (Parallel Space-Time Encoding Movement Representation) architecture with
the aim of addressing this gap and specifically leveraging the higher availability of human activity recognition datasets for pain-level
classification. We evaluated and analyzed the architecture using three different datasets across four sets of experiments. We found
statistically significant increase in average F1 score to 0.84 for pain level classification with two classes based on the architecture
compared with the use of hand-crafted features. This suggests that it is capable of learning movement representations and transferring
these from activity recognition based on data captured in lab settings to classification of pain levels with messier real-world data. We
further found that the efficacy of transfer between datasets can be undermined by dissimilarities in population groups due to
impairments that affect movement behaviour and in motion primitives (e.g. rotation versus flexion). Future work should investigate how
the effect of these differences could be minimized so that data from healthy people can be more valuable for transfer learning.

Index Terms—Activity recognition, affect recognition, body movement, chronic pain, representation learning, transfer learning.
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1 INTRODUCTION

HUMAN movement modelling is an important topic
relevant across several disciplines and pivotal for

a wide variety of applications [1]. While areas such as
action/activity recognition have benefited from extensive
interest and a large number of (open) datasets, higher order
problems like affect recognition lag behind [1]. For auto-
matic recognition of affective experience from movement,
this is despite consistent findings and discussions on the
role of the body in experience and expression [2], [3]. In this
paper, we explored the possibility of leveraging the larger
number of datasets available for movement modelling prob-
lems like action/activity recognition in pushing the bounds
on affect recognition. We focused on the context of chronic
pain, a prevalent condition where pain experience signif-
icantly affects engagement in harmless everyday physical
activities of value, e.g. activities at home [4].

Findings from human-computer interaction studies
highlight the possibility of using technology to support
physical rehabilitation and self-management of chronic pain
[4], [5]. For example, pain-aware technology could help peo-
ple with the condition incorporate helpful breaks between
activities on lower level pain days when they are more likely
to overdo physical activity [4]. This can be valuable as it
is important to gradually build capability rather than be
caught in a cycle between overdoing and underdoing [4],
[6]. The problem of pain level classification during everyday
physical activities of people with chronic pain still remains
a challenge [7]. Movement in such settings is complex, e.g.
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with no clear demarcation between actions (e.g. reaching
forward and walking) or activities (e.g. washing up dishes
and tidying up the kitchen). So, we investigate move-
ment representation learning as an approach to addressing
the challenge in pain level classification leveraging well-
resourced tasks like action/activity recognition. Representa-
tion learning enables harnessing of datasets (including those
without pain labels) for modelling unspecified features of
movement that are informative for unseen types of labels.

While there have been a number of studies on movement
representation learning as will be discussed in the next
section, there is limited application to the recognition of
affect. Further, the majority of previous work in the area
of activity recognition where it has usually been employed
focus on datasets captured from healthy population groups
to the exclusion of people with movement disorders or con-
ditions that can affect movement behaviour during physical
activity. Findings in [8] point to the need to understand
the influence of differences in population groups on trans-
fer of representation between datasets. The authors found
deterioration by 20% in activity recognition performance
when data from healthy people was used to train the model
evaluated on data from people with Parkinson’s disease.
The study in [7] similarly showed considerable deterioration
in recognition performance for two activity types when data
for healthy people was included in training and test data
compared with when only data for people with chronic pain
was used. Thus, in the work presented in this paper, we
investigated movement representation learning and transfer
to movements of people with chronic pain during everyday
physical activity, with a threefold contribution:

1) We propose a Parallel Space-Time Encoding Movement
Representation (P-STEMR) neural network architec-
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ture that leverages self-supervision at latent lay-
ers as well as action recognition for representation
learning from body movement data. Beyond the
wide availability of open datasets, action recogni-
tion represents a fundamental movement percep-
tion task [31] and so, it is expected that representa-
tions learnt based on action recognition can inform
higher order tasks such as pain level recognition.
We adapted the model to motion capture data in
its evaluation reported in this paper. However, the
architecture can easily be extended to other types of
movement data, e.g. acceleration, angular velocity.

2) We report our exploration of the performance of
the P-STEMR model for action recognition based on
end-to-end supervised learning to understand the
efficacy of the architecture on this transfer source
task. We evaluated performance for two different
datasets, one from healthy people and another from
people with chronic pain. We additionally analyzed
the model to understand the value of our parallel
spatio-temporal encoding approach. Further, we ex-
amined the effect of two model input types and two
model output formats on performance.

3) Finally, we present a rigorous study of the efficacy of
the P-STEMR model for movement representation
learning. First, we evaluated transfer between dif-
ferent population groups (healthy and chronic pain)
for the same task (action recognition) to understand
how differences in population groups affects per-
formance. Second, we evaluated transfer between
different tasks (action recognition and pain level
classification) and settings (lab settings and real
world) but for the same population group (people
with chronic pain). For further insight into how well
representations transferred in the latter case, we
also qualitatively analyzed the action recognition
performance for the target dataset.

2 RELATED STUDIES

2.1 Pain Level Classification
While other modalities like facial expression have been
explored for pain level recognition [9], body movement is
of particular relevance in physical functioning contexts [10].
Indeed, there have been several studies on pain level classifi-
cation based on movement behaviour of people with chronic
musculoskeletal pain. However, they have all been based
on datasets captured in instructed or exercise movements
in lab settings [11]. For example, the multilevel hierarchical
approach in [12] was evaluated on the EmoPain dataset
[13] that was captured during exercise movements (e.g.
sit-to-stand, reaching forward) performed in the lab. They
obtained 0.79 average F1 score based on hold-out validation
with unseen subjects for two pain classes. In [7] where
baseline detection based on messy, real world data was
investigated, performance was average F1 score of 0.62 for
two-level pain classification based on cross-validation with
unseen activity instances. The lower performance on the real
world data is due to the typical challenges in such settings
where dimensions (e.g. number of wearable sensor units)
and size (number of data instances) available for modelling

are minimal. Further, in addition to the complexity of move-
ments in real life physical functioning, the EmoPain@Home
dataset used in [7] has differences between homes that result
in differences in the execution of the same activities and the
strategies used to deal with increase in pain intensity. In our
paper, we explored the use of representation learning for
addressing this challenge of such real world data.

2.2 Representation Learning of Human Movement
based on Wearable Sensor or Motion Capture Data

Representation learning of human movement beyond com-
puter vision is a relatively recent research area paved by
works like Saeed et al.’s [14]. The authors proposed a self-
supervised architecture where multiple transformations of
movement data are learnt. They explored eight types of
transformation across both spatial and temporal dimensions
(e.g. scaling, time reversal, subsegment resampling, channel
shuffling), with a multilayer perceptron (MLP) decoder for
each transformation. The encoder for the learner architec-
ture was based on a convolutional neural network (CNN)
and the trained encoder was reused (with the weights of the
first two of three layers frozen) with a new MLP for human
activity recognition (HAR). Evaluation of their model on
six datasets based on angular velocity and acceleration
data captured in everyday movement settings, e.g. sitting,
walking, showed performance better than representation
learning using an autoencoder. Further analysis showed that
using multitask learning based on all proposed transforma-
tions led to better performance than single task learning
with only one transformation at a time even if there were
differences in the individual efficacy of each transformation
type.

Several studies have since built on this work including
the work of Tang et al. [15] who first carefully selected a
subset of training data to use for the representation learning.
As the target task was to be HAR, they used a model trained
for this task in a normal supervised manner to auto-label
the unlabelled training data and selected the subset for
which there was good HAR prediction confidence. Their
representation learning architecture was similar to that of
Saeed et al. [14] except that it included an additional task for
HAR. Across seven out of eight datasets, the performance
obtained with their proposed model was better than perfor-
mance using the model of Saeed et al. [14] whether or not
the data for the representation learning and final HAR mod-
elling came from the same dataset. In Khaertdinov et al. [16],
contrastive learning was used to learn the transformations,
where different transformations of the same data instance
would be a positive pair while transformations of different
data instances would be a negative pair. Their model led to
better HAR performance than the model of [14].

A number of studies have further extended the model of
Khaertdinov et al. [16]. For example, Liu et al. [17] explored
transformations in both time and frequency domains. Their
transformations in the frequency domain included phase
shifts and filtering of high frequencies. Also, in place of the
typical CNN encoder, they employed a short-term Fourier
CNN (based on convolution of short-term fast Fourier trans-
forms at different timescales) that led to better performance
than the vanilla CNN. Unlike in Saeed et al. [14], individual
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transformations performed very well across datasets. In Gao
et al. [18], investigation was done on full-body 3D joint posi-
tions data rather than the angular velocity and acceleration
data focused on in prior studies. They applied rotation and
translation transformations only, based on rotation matrices.
Using a ResNet [19] encoder, they obtained performance
better than feature engineering methods, such as skeletal
quads [20], histogram of oriented principal components
[21], on the NTU RGB+D dataset [22]. The model proposed
by Zhang et al. [23] is similarly based on motion capture
data although they differently used a graph convolutional
network encoder (with convolution done on both spatial
and temporal dimensions in serial order) instead of the
ResNet. In addition, they applied time cropping together
with the rotation transformation technique used by Gao et
al. [18]. Further, their network used a twin-branch architec-
ture where two different but identical encoding submodules
process two transformations respectively and the branch for
one transformation is frozen during training. Their model
performed better than both fully supervised and other self-
supervised (such as generative adversarial network, autoen-
coders, and contrastive learners) methods based on two
datasets including the NTU RGB+D.

2.3 Leveraging Related Datasets for Affect Recognition
The studies reviewed in the previous section highlight the
possibility of learning movement representations that can
be transferred between tasks or datasets [1]. Studies such
as [24], [25] further demonstrate advantage in applying
representation learning to leverage related datasets for affect
recognition tasks in particular.

In [24], a speech dataset annotated for speaker recog-
nition tasks (source dataset) was explored to improve af-
fect recognition performance for a different speech dataset
(target dataset). In particular, they compared three different
applications of a model trained on the source dataset for
the target task. Simply using the source model (with the
output layer removed) to extract features for the target task
did not achieve better affect recognition performance than
learning features based on the target task only. Finetuning
the source model for the target task instead also did not
improve performance. However, combining feature learning
based on the target task together with features extracted
using the source model led to considerable increase in
performance for one target dataset explored and a slight
increase in performance for another. In similar work in [25]
where the input data was face images, one of the trained
object recognition models that is widely used in computer
vision tasks was explored for affect recognition. Their find-
ings showed significant improvement in performance on a
different target dataset whether the source model was used
simply for feature extraction or if finetuned to the target
task. However, unlike in [24], finetuning to the target task
considerably led to the best performance.

There is limited exploration of such methods in affective
movement recognition despite the large number of move-
ment datasets that exist for secondary use [1]. In our work in
this paper, we address this gap by exploring movement rep-
resentation learning for pain level classification. Unlike [24],
[25] where the target datasets were acted, captured in con-
trolled lab settings or based on movies and TV shows, our

target dataset is messy real-world data (EmoPain@Home
[11]) captured from people with chronic pain while they
performed everyday physical activities, e.g. changing bed-
sheets, in their homes. As discussed in the introduction, this
is a relevant problem that remains challenging.

3 P-STEMR: PARALLEL SPACE-TIME ENCODING
MOVEMENT REPRESENTATION ARCHITECTURE

The P-STEMR model that we propose is illustrated in Figure
1. This movement representation learning model is made
up of: a) an encoder network that processes the spatial
and temporal dimensions of the input movement data in
parallel (rather than the traditional serial order); b) an
action/activity recognition network that is used to train the
encoder network; and c) a comparison network that regular-
izes the model by requiring similarity in the latent output
(embeddings) obtained for the input movement data and
a transformation. All three networks are trained together
end to end in the P-STEMR architecture. Each is described
below, and the code for the architecture is available at
https://github.com/EnTimeMent/pstemr.

3.1 Parallel Space-Time Encoder Network

The input to the network is a sequence of 3D joint angles
[θdj1 , θ

d
j2
, · · · , θdjτ ,∀j ∈ J, ∀d ∈ D] where J is the set of joints,

D is the set of axes (xy, yz, and xz), and τ is the length of
the sequence. Unlike joint positions data, joint angles data
enables combination of and/or transfer between datasets
captured using different types of motion capture sensors,
which would have different reference points underlying the
3D position information that they provide. For uniformity,
a custom function could be used to compute the 3D joint
angles, instead of using sensor-specific angular data. The
3D joint angles input is first passed through a batch normal-
ization layer before being processed in parallel by the spatial
and temporal encoding networks.

We use a graph convolutional network (GCN) [26] as the
spatial encoder based on studies such as [23], [27]. The ad-
vantage of the GCN is that it leverages the graph structure of
the joints in a skeleton. While [23], [27] used joint positions
as input for their GCN, similar to [7] we used joint angles
instead. Figure 2 shows an example graph input structure
based on joint angles data for our GCN. Our time encoder is
a long short-term memory neural network (LSTMNN) [28],
[29]. The outputs of the spatial and temporal encoders are
combined using a dot product.

The encoder network further includes a transformation
layer. The rationale for the transformation layer is based on
the comparison network discussed in Section 3.3. The layer
computes a transformation of the input data after batch nor-
malization. This transformation is also processed through
the GCN, LSTMNN, and dot product of the network, similar
to the twin-branch approach used in [23] although with a
few striking differences. In [23], one of the two network
branches that process two different transformations respec-
tively is frozen while training the network. In our model,
both the transformation and the original input contribute to
the training loss. Further, unlike in [23] where two different
(but identical) encoding submodules are used on their two

https://github.com/EnTimeMent/pstemr
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Fig. 1. Our proposed Parallel Space-Time Encoding Movement Representation (P-STEMR) architecture

Fig. 2. Illustration of the graph structure for our GCN based on angles
input. The graph on the right shows the nodes and edges for our 4-joint
angles data, based on position data for 6 joints shown to the left.

transformations, the same encoding submodule is shared
by the input and its transformation in our model. The role
of the transformation in our P-STEMR model is discussed
below with the comparison network. We used a simple
scaling (by multiplying with a scalar value) and translation
(by adding a scalar value) transformation.

3.2 Activity Recognition Network
The Activity Recognition Network is a MLP that takes in as
input the output of the encoder network described above
and outputs action labels ŷ = {âic,∀c ∈ C,∀i ∈ n} where C
is the set of action classes, n is the set of movement instances
in the given batch, and âic is the predicted proportion of
action class c in data instance i. A loss function la is applied
on this output. We used a weighted mean square error
(MSE) loss that multiplies the MSE by a weight wi:

wi =

C∑
c=1

((1−
∑n

i=1 a
i
c∑C

c=1

∑n
i=1 a

i
c

) + γ)βaic (1)

which penalises shorter and less frequent actions in
y less than longer or more frequent ones. The∑n

i=1 a
i
c/

∑C
c=1

∑n
i=1 a

i
c term in the equation computes the

proportional frequency and duration of aic in y. We use
two parameters γ and β to control the penalty weighting.
γ = 1 ensures that the penalty term is greater than 1 so that
increasing β, β > 1 will give a stronger weighting.

3.3 Comparison Network
The rationale behind including the Comparison Network in
the architecture is that f(ϕ) should be equal to f(ϕ′) for
movement data ϕ and its transformation ϕ′ = g(ϕ) if g(.)
is a function that preserves high level movement character-
istics. The comparison network thus takes in as input f(ϕ)
and f(ϕ′), which represent the embedding output of the
encoder network for the joint angle input and its transfor-
mation (through the transformation layer) respectively. The
network then performs a subtraction operation to compare
the two, with output ∆f = f(ϕ) − f(ϕ′). A mean absolute
error loss lc between ∆f and 0 is used such that the full
P-STEMR model is trained end to end with loss l = la + lc.

4 EXPERIMENTS

Here, we describe parameter settings for the P-STEMR
model in our experiments and datasets used. Details about
the experiments are reported in Section 5 with the results.

4.1 P-STEMR Model Parameters
For the scaling transformation layer, we used a random
number in the range [-2, 2] for our experiments. We then
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applied translation by adding a random number in the
range [-0.5, 0.5]. These two ranges were chosen arbitrarily
for data normalized to zero mean and unit standard devia-
tion in the batch normalization layer of the P-STEMR model.
Both scaling and translation were applied uniformly to all
dimensions, i.e. to the xy, yz, and xz axes.

We used a single GCN with 3 layers each of 20 units and
a 1-layer LSTMNN in the encoder network. For the action
recognition network, we used a 3-layer MLP. We trained the
model with an Adam optimizer with no learning rate decay.

4.2 Datasets
We used 3 datasets. The primary target was the
EmoPain@Home dataset [11] while the primary source was
the EmoPain dataset [13]. We additionally explored the NTU
RGB+D dataset [22] as either source or target. Their use for
this study was approved by our research ethics committee
(ref. 5095/001). All 3 consist of 3D motion capture data but
were captured in different settings, from different partici-
pants, and with different types of sensors. The datasets and
the rationale for selecting them are described below.

4.2.1 EmoPain@Home
The EmoPain@Home was selected as our primary target
dataset as it is the only dataset on body movement of people
with chronic pain during everyday physical activities. It
captures the complexity of real world settings where pain
level classification is challenging due to high variations in
movement strategies between people as well as the differ-
ences in home settings for different participants that can
further increase variation in movement strategies.

The dataset was captured from 9 people with chronic
pain and 9 healthy people during everyday functioning
around the home, e.g. washing up, over multiple days to
maximize variability in physical and emotional experience.
However, we only used the data for people with chronic
pain since our primary interest is in the classification of
the pain levels in this group. The dataset was captured
using low-cost wearable sensors and is made up of joint
positions for the mid spine, hip, right knee, right ankle, right
elbow, and right wrist (see Figure 2-Left). A minimal set of
sensors was used to minimize the burden on participants.
It is representative of real world use of sensors where it
is impractical and may be challenging for users to attach
multiple individual sensor units [11].

The dataset includes self-reports of pain, worry, and
confidence for every activity instance where the researcher
was present remotely to record the verbal self-report. We
focus on activity instances with self-reports in this paper
and as a first step, we investigated classification of pain
only. Pain intensity was reported on a 0-to-10 scale every
minute during each activity. As pain intensities were pro-
vided at roughly every minute of each activity instance, we
segmented these instances into segments of 2,400 frames
(sampling rate = 40Hz). This led to N = 226 instances.
In our experiments, the label for each segment was the
pain level computed from the pain intensity reported at the
end of the given segment. Due to the limited number of
instances per intensity on the pain scale, we focused on two
levels of pain, low level pain for intensity less than 5 and high
level pain for intensity greater than or equal to 5.

4.2.2 EmoPain

We chose the EmoPain dataset as the primary source dataset
as it is the only other dataset on body movement of people
with chronic pain, the same population group as the pri-
mary target (EmoPain@Home), and it includes action labels
which are needed for the use of our P-STEMR model. Thus,
this dataset enables investigation of the influence of differ-
ences in population group and task on the representation
learning transfer between datasets.

The dataset was captured from both people with chronic
low back pain and healthy people while they performed
exercise movements, e.g. sit-to-stand, in lab settings. It also
includes sitting or standing still, which can be also challeng-
ing for people with low back pain. In our experiments, we
only used the data for participants with chronic pain for a
similar population group with the primary target dataset.
We used data from 18 participants with chronic pain.

The dataset consists of full-body joint positions and EMG
data, but we used joints positions data alone and only for
the same 6 joints of the primary target (instead of the 26
available joints). The data was captured using a high-fidelity
sensor system based on gyroscopes. Of the annotations in
the dataset, we focused on the action labels, provided per
frame, which was necessary to train the P-STEMR model.
We collapsed the 8 action types in the dataset into 6. First,
we combined forward reach and bend labels given that the
two movements are similar and are often combined in
some form in real world activities. In addition, there are
more variants of the forward reach and bend movements in
real life than are represented in the EmoPain dataset and
learning the two types of EmoPain movements together
might benefit recognition of such variants in the more in-
the-wild physical activity. The dataset was then segmented
into instances of 240 frames (4 seconds for the EmoPain
dataset) with no overlaps. 240 was chosen as a factor of the
segment length for the target pain level classification based
on the EmoPain@Home dataset. Next, since the primary
target dataset was captured from only one side of the body
and the standing on one leg in the EmoPain dataset is a
laterally unsymmetrical movement, we did not use data
segments with majority frames having this label, and we
also did not include the label in our experiments.

The dataset contains movement sections in which the
participant took very short breaks between the instructed
action types or transitioned between the end pose for one
action type into the start pose for the next. Such transition
periods were not labelled with the actual actions that the
participants performed but were rather all simply given
the label transition. As such labelling is not of benefit for
action recognition in the real world and can actually be
confusing for the machine learning model since it covers
several different types of action, we did not use data seg-
ments with majority frames having this label. This led to
N = 2, 022 instances in total. The label for each segment
was the proportion of frames of each of 6 action types.

4.2.3 NTU RGB+D

We selected the NTU RGB+D as the dataset of healthy
people because of its large size and similarity with the
EmoPain in actions representative of everyday functioning.
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Further, it has been widely used (over 2,000 citations as of
early 2023) in action recognition studies, e.g. [18], [23].

The dataset was captured from healthy participants
while they performed 60 actions, e.g. drinking water,
putting on a pair of glasses, in lab settings. For our exper-
iments, we removed action classes 50 to 60 which include
actions that involve a second person (such as ’shaking
hands’) and action classes 41 to 49 that include acted medi-
cal events (e.g. coughing). We focused on the first 27 action
classes which further excludes those that are challenging to
represent with the 6 joints captured in the primary target
dataset alone (e.g. rubbing two hands, shaking the head).

The dataset includes full-body joint positions (25 joints).
As with the EmoPain dataset, we only used the same 6 joints
available in the EmoPain@Home dataset that is the primary
target. The data was captured using a markerless system
based on RGB and depth cameras. Each data instance in
this dataset is a single action instance. We trimmed each
instance to 240 frames (the segmentation window used
for the EmoPain dataset) and padded shorter instances by
looping the sequence. We obtained N = 26, 398 instances.

Fig. 3. F1 scores for end-to-end action classification in the NTU RGB+D
dataset (based on data from 6 joints only).

Fig. 4. Confusion matrix for end-to-end action classification in the NTU
RGB+D dataset (based on data from 6 joints only). Due to space
constraints, alternate action labels are shown on the x and y axes, i.e.
action class 1 = ’drink water’, action class 2 = ’eat meal’, etc.

5 RESULTS

We present here results for 4 sets of experiments. The first
set evaluates the performance of the P-STEMR model for
the transfer source task (action recognition). The second set
further analyzes the model to understand the value of our
parallel spatio-temporal encoding approach as well as the
effect of alternative input and output formats. The third
set of experiments explores the efficacy of the P-STEMR
model for representation learning, with both transfer across
population groups and tasks investigated. The fourth set
of experiments qualitatively evaluates transfer between the
primary source and target datasets.

5.1 End-to-End Action Classification with the P-STEMR
This evaluation was done using both the EmoPain and
NTU RGB+D datasets. Although the input and output of
the model were proportion of each action type, we used
majority voting to obtain a single action class per instance
for the performance metrics.

5.1.1 Action Classification for the NTU RGB+D Dataset
The results reported in this section are based on hold-out
validation due to the large size of the NTU RGB+D dataset.

The results are shown in Figure 3. Performance is well
above chance level (F1 score = 0.04) with average F1 score
of 0.50 across 27 classes. It should be noted that this per-
formance is despite the limited input information, i.e. data
from 6 anatomical joints from one side of the body alone.
Pickup, Sit down, and Stand up are the best recognized with
F1 score above 0.70. This finding is not surprising given that
these movement types primarily involve trunk movement
which is well captured in the input data. The movement
types with the worst performance, Eat meal, Reading, Writing,
Tear up paper, Put on glasses, and Put on a hat/cap, either
involve minimal motion or mainly require the use of an arm.
In the input data, only one arm is captured, and there are
occasions where the actor may have used their other arm
instead of the one tracked. The confusion matrix (Figure
4) shows that Reading, Writing, and Tear up paper are often
confused with one another. Still, performance in recognizing
these activities is much higher than chance level.

5.1.2 Action Classification for the EmoPain Dataset
The results reported here are based on leave one-subject-out
cross-validation to test generalization to unseen subjects.

We obtained average F1 score of 0.91 over the 6 classes.
As can be seen in the confusion matrix (Figure 5), the worst
performance is for Sit-to-stand (F1 score = 0.83) which is
sometimes confused with Stand-to-sit, Walking, and Standing.
The confusion with these three is not unexpected since the
four movement types have standing in common between
them. Also unsurprising is the absence of confusion between
Standing and Sitting which both involve little motion and
have very distinct hip and knee angle signatures.

We additionally explored the approach used in the
MiMT architecture of Olugbade et al. [30] where two dif-
ferent timescales of a label are learnt in parallel using a
multitask approach. We modelled both the proportion of
the action classes (segment timescale) as well as the frame
level action label (frame timescale). We used a MSE loss
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Fig. 5. Confusion matrix (showing proportions across respective rows)
for end-to-end action recognition on the EmoPain dataset (with data
from 6 joints only) based on the proposed P-STEMR model.

for the frame timescale. We found only marginal increase
in (segment action classification) performance, average F1
score of 0.92, although the increase seen supports potential
in incorporating multi-timescale learning in the P-STEMR.
Higher gain could perhaps be found by also addressing the
imbalance in action classes at the frame timescale.

5.2 Ablation Study on the P-STEMR

5.2.1 The Value of Parallel Spatio-Temporal Encoding in
the P-STEMR

Serial order spatio-temporal encoding, i.e. encoding struc-
tures where spatial encoding is done in succession to tem-
poral encoding or vice-versa, is the traditional approach.
Thus, it was important to understand if our approach of
instead parallelizing these two structures contributed to the
high action recognition performance obtained in Section 5.1
and whether this method outperforms the state of the art.
We compared our proposed P-STEMR model with a variant
with serial order spatio-temporal encoding (STEMR model).
Our evaluation was done on the EmoPain dataset only as
this is our primary source dataset for the representation
learning experiments (Section 5.3).

The results are shown in Table 1. As can be seen in
the table, parallel encoding of the spatial and temporal
dimensions has higher F1 score for all 6 action types in the
EmoPain dataset, considerably higher for Walking especially
(0.12 increase in F1 score).

5.2.2 Effect of the Label Form for the Action Recognition
Network of the P-STEMR

We aimed to understand if learning a simpler action out-
put format would improve action recognition performance.
So, we further compared the STEMR model with a vari-
ant (STEMR-vote) where the model was trained on action
classes based on the majority action type in a given data
instance rather than the proportion of action types used in
our P-STEMR architecture. For this STEMR-vote model, we

TABLE 1
F1 scores for end-to-end action classification on the EmoPain dataset

(with data from 6 joints only) comparing serial and parallel
spatial-temporal encoding, i.e. the STEMR and P-STEMR models

Encoding
F1 score

Sitting Reach-
ing

Sit-to-
stand

Stand-
to-sit

Stand-
ing

Walk-
ing

Serial
(STEMR)

0.96 0.84 0.78 0.83 0.90 0.77

Parallel (P-
STEMR)

0.97 0.89 0.83 0.88 0.97 0.89

TABLE 2
F1 scores for end-to-end action classification on the EmoPain dataset

(with data from 6 joints only), comparing action label forms, i.e. the
STEMR-vote and STEMR models

Label form
F1 score

Sitting Reach-
ing

Sit-to-
stand

Stand-
to-sit

Stand-
ing

Walk-
ing

Majority
action
(STEMR-
vote)

0.93 0.72 0.74 0.77 0.83 0.52

Proportion
of actions
(STEMR)

0.96 0.84 0.78 0.83 0.90 0.77

TABLE 3
F1 scores for end-to-end action classification on the EmoPain dataset

(with data from 6 joints only), comparing input types based on the
STEMR-vote model

Input
F1 score

Sitting Reach-
ing

Sit-to-
stand

Stand-
to-sit

Stand-
ing

Walk-
ing

Positions 0.91 0.64 0.71 0.77 0.81 0.64
Angles 0.93 0.72 0.74 0.77 0.83 0.52

used a categorical cross-entropy loss weighted to address
imbalance across the action classes.

The results are shown in Table 2. Use of the proportion
labels showed better recognition for all action types with the
highest gain occurring for Walking with 0.25 increase (16%)
in F1 score and also a gain of 0.12 F1 score for Reaching.

5.2.3 Effect of the Input Type of the P-STEMR

Unlike previous related studies in [23], [27], [33], we used
joint angles input instead joint positions for our GCN en-
coder. While we had previously explored this GCN input
type in [7], we had not evaluated if use of joint angles is
superior for action recognition. So, we here compared joint
positions and joint angles using the STEMR-vote model.

The results are shown in Table 3. As can be seen, use
of joint angles improves recognition of 4 of the 6 action
types (Sitting, Standing, Sit-to-stand, and Reaching). However,
it considerably lowers recognition of Walking. This effect for
Walking is not surprising given that it is the action that most
involves translation: position information is more revealing
for translatory movement types. The confusion matrices
(not shown here due to space constraints) show that it is
confused with Standing and this gets worse with angles data.
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5.3 Representation Learning with the P-STEMR

To evaluate the performance of the P-STEMR for movement
representation learning, it was trained on the EmoPain
dataset (source dataset), and the ‘Embedding output layer’
branch of the trained model was then used as a feature
extraction function (referred to as the P-STEMR latent feature
extraction model for the sake of convenience) for target
tasks. We first explored the P-STEMR latent feature extraction
model in action classification in the NTU RGB+D dataset
as target. We then evaluated the same model in pain level
classification in the EmoPain@Home dataset, which are our
primary target task and dataset respectively.

5.3.1 Representation Learning for Action Classification in
the NTU RGB+D Dataset

We used the P-STEMR latent feature extraction model to ex-
tract embeddings from NTU RGB+D joint angles (computed
from the joint positions data available in the dataset). A 3-
layer MLP (with 20 units in each hidden layer) was then
trained for action classification based on these embeddings
as input. We used hold-out validation to evaluate this action
classification model similar to Section 5.1.1.

The results are shown in Figure 6. As can be seen in
the figure, although recognition is still better than chance
level performance, it is much lower than based on end-
to-end classification using the P-STEMR, with average F1
score of 0.10. The 5 classes for which performance was
below (or about or only marginally better than) chance
level classification are: Reading, Writing, Tearing up paper,
Taking off glasses, and Waving. The poor performance for
these classes is not unexpected. The first 3 (Reading, Writing,
Tearing up paper) were similarly among the classes with
the worst performance in the results for end-to-end action
classification in Section 5.1.1. Tearing up paper, Taking off
glasses, and Waving further commonly involve the arms
primarily and they involve arm movements that are not at
all represented in the EmoPain dataset classes which only
capture flexion/extension movements of the arm.

Fig. 6. F1 scores for action classification on NTU RGB+D dataset (with
data from 6 joints only) based on the P-STEMR latent feature extraction
model trained using the EmoPain dataset. In yellow are performances
below (or only marginally better than) chance level recognition.

TABLE 4
F1 scores for pain level classification in the EmoPain@Home dataset

comparing hand-crafted features with features based on
representations learnt using the P-STEMR model and EmoPain dataset

Features Pain
classifier

F1 score
Low level pain High level pain

Hand-crafted Bagging 0.63 0.61
Hand-crafted MLP 0.68 0.74
P-STEMR MLP 0.83 0.85
P-STEMR &
Hand-crafted

MLP 0.81 0.83

P-STEMR
(action output)
& Hand-crafted

MLP 0.61 0.69

5.3.2 Representation Learning for Pain Level Classification
in the EmoPain@Home Dataset
We used the same P-STEMR latent feature extraction model
(trained on the EmoPain dataset) to extract embeddings for
the EmoPain@Home data. As the input size of the P-STEMR
trained on the EmoPain dataset was 240 frames while each
EmoPain@Home data instance in our experiments had 2,400
frames, we extracted a sequence of 10 embedding vectors
per EmoPain@Home data instance. We concatenated these
vectors and used the resulting feature vector as input to
a 3-layer MLP (with 10 and 5 units in each hidden layer
respectively) for pain level classification. Similar to our work
in [7], [11] on the EmoPain@Home dataset, we used leave-
one-activity-instance-out cross-validation to evaluate this
pain classification model. Results are shown in Table 4.

As can be seen in the table, the use of the P-STEMR latent
feature extraction (third row of results in the table) resulted
in much better performance than the use of hand-crafted
features (second row of results), with average F1 score of
0.84 (increase by 18%). A Wilcoxon Signed-Rank Test com-
puted based on accuracy per cross-validation fold showed
statistically significant difference, Z = 2.24, p = 0.025. We
used the same hand-crafted features used in [7] based on
joint angles, i.e. speed, jerk, energy, amount of movement,
and range of motion over segment and activity timescales.
The hand-crafted features with the MLP classifier is a fairer
comparison with the P-STEMR latent feature extraction &
MLP pain level classification. However, for the sake of
completeness, we also include results of the hand-crafted
features with the Bagging algorithm used in [7] (first row).

Combining both the P-STEMR based features and the
hand-crafted features (fourth row of result in the table) did
not improve performance beyond this suggesting that the
P-STEMR based features cover the important movement
characteristics captured by the crafted features. We also
experimented with combination of the hand-crafted features
with the action output of the trained P-STEMR model (in-
stead of its latent output) as input to the MLP to evaluate
the difference in richness of movement information between
the action and latent outputs of the P-STEMR model. As
the fifth row in the table shows, performance in this case is
worse than using the hand-crafted features alone.

Lastly, we evaluated a separate P-STEMR model trained
on the NTU RGB+D dataset for feature extraction, to under-
stand the influence of similarities/differences in population
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group between target and source datasets on transfer effi-
cacy. The result with the latent output of the NTU RGB+D
trained P-STEMR was average F1 score of 0.57, which is only
marginally better than chance-level performance and worse
than use of the hand-crafted features.

5.4 Qualitative Analysis of Action Labelling of the
EmoPain@Home Dataset based on the P-STEMR
We further explored the performance of the P-STEMR model
trained on the EmoPain dataset for action labelling of the
EmoPain@Home dataset to gain more insight into its effi-
cacy. As the EmoPain@Home dataset does not have ground
truth action annotations (it instead has activity labels, e.g.
vacuuming, which are of a higher level of abstraction than
the action labels in the EmoPain dataset), our evaluation
here was purely qualitative. In this analysis, we visually
explored a video of plot (see supplementary material) of the
half-body joint positions in the EmoPain@Home dataset and
the predicted action labels. Although the EmoPain@Home
dataset exists as 3D joint positions, the plots were in 2D
as this was found to be better for visualization. We also
normalized the joint positions to [-1, 1] to aid exploration.

While the movement data and automatic annotations
are best explored in video, we include below still images
as examples of accurate and inaccurate predictions. Each
image shows 6 equally sampled frames from the given data
instance together with the predicted action class distribution
as well as the larger activity (ground truth) that the instance
is a part of.

5.4.1 True Reaching and Sitting Positives with Confusions
Due to Missing Context
Reaching movements are valuable to recognize for technol-
ogy that aims to provide support for people with chronic
pain particularly low back pain that is the most preva-
lent. This is because people with this condition typically
find reaching challenging. Our analysis shows that the
EmoPain-trained P-STEMR model is able to recognize reach
movements in the EmoPain@Home dataset. This is despite
differences in reach types between the two datasets. For
instance, the model is able recognize EmoPain@Home reach
movements in poses not present in the EmoPain dataset,
e.g. where the subject is both reaching downward and
kneeling in a yoga pose (Figure 7-left). Another example is
the upward reaching in Figure 7-right (the EmoPain dataset
only has instances of forward and downward reaching).

Sitting postures/actions are also valuable to detect. First,
sitting may represent a strategy for coping with challenge
in completing an activity. For example, during the capture
of the EmoPain@Home dataset, there was a participant who
started off washing up dishes at the sink in standing posture
but interrupted the activity to sit on a stool to complete
washing up. Second, sitting may highlight periods of rest
within an activity or between activities. Sit actions were
well-detected in the EmoPain@Home dataset and the model
was further able to detect transitions between standing and
sitting. Figure 8 includes a few examples. In Figure 8-left,
the subject is seated on a high stool (or perched at the edge
of a seat); in Figure 8-right, the subject is fully seated.

However, the model sometimes confuses reaching with
sitting. One example is in Figure 9-left where the subject

is squatting. This is an understandable confusion that even
a human could make when limited to joint positions in-
formation, i.e. without visual background that shows the
absence of a seat. Further, such squat actions are limited
in the EmoPain dataset used to train the model. A second
example (Figure 9-right) is when the trunk is fully flexed
such that the hip angle is around right angle. As the action
recognition model is based on angles data, it has little way
of realizing that the trunk, rather than the upper leg, is at a
plane parallel to the floor.

5.4.2 The Problem in Identifying Standing and Walking in
Real-Life Physical Activity
We found that the model was able to identify standing
and walking actions in the EmoPain@Home dataset, both
when they were obvious (such as walking actions during
outdoor walking in exercise) and also a number of times
when they occurred as brief transitions between two actions
or overlapping with another action.

Instances of the latter case led to us to reflect on the
consequence of standing and walking not only being stan-
dalone actions in themselves but also commonly being part
of other actions. Most activities not done seated or lying
down are done standing, i.e. upright. Many activities also
involve locomotion, e.g. the body moving from one point
in a room to another in vacuuming, movement from the
sink to the dish drainer that is slightly too awkward to
reach without moving the feet during washing up. These
make standing and walking especially challenging to label
in everyday activities. For example, when should a very
minimal forward reaching (such as in washing up) become
classified as ‘Standing’ rather than ‘Reaching’? Or when is
a point with the feet on the ground in the stance phase of
a walk ‘Standing’ rather than ‘Walking’? Does one separate
the walk out from the reaching forward done at the same
time during vacuuming? These questions are relevant not
just at the point of automatic labelling but would also be
critical during human annotation, moreso if the latter will
be used as ground truth to train an automatic system.

6 DISCUSSION

With the aim of gaining insight into the possibility of move-
ment representation learning that enables improvement in
pain level classification, we explored a novel machine learn-
ing architecture (P-STEMR) in four sets of experiments.
In this section, we bring together the findings from these
experiments to highlight the main implications.

6.1 Possibility of Learning Movement Representations
that Capture Abstraction Beyond Actions/Activities

The finding of average F1 score of 0.84 for pain level
classification compared with 0.71 using hand-crafted fea-
tures suggests that movement representation learning can
indeed improve performance for tasks beyond HAR. This
outcome is significant for the field of affective computing
where capture of large sets of annotated training data in
the wild is not trivial. Our findings are based on transfer of
representations learnt from data captured in lab settings to
data recorded in real-world activities in homes highlighting
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Fig. 7. Example recognition of Reaching actions in the EmoPain@Home dataset. Each still image shows 6 frames that represent the start of each
successive second of a 6-second window of movement. As shown in Figure 2-Left, there are two connected groups of joints in the skeletons: the
wrist is connected to the elbow; and the mid-spine is connected to the hip (this connection is shown with a black line), which is connected to the
knee that is in turn connected to the ankle.

Fig. 8. Example recognition of seated actions in the EmoPain@Home dataset. Each still image shows 6 frames that represent the start of each
successive second of a 6-second window of movement. As shown in Figure 2-Left, there are two connected groups of joints in the skeletons: the
wrist is connected to the elbow; and the mid-spine is connected to the hip (this connection is shown with a black line), which is connected to the
knee that is in turn connected to the ankle.

Fig. 9. Example cases of confusion between sitting and reaching actions
in the EmoPain@Home dataset. Each still image shows 6 frames that
represent the start of each successive second of a 6-second window of
movement. As shown in Figure 2-Left, there are two connected groups
of joints in the skeletons: the wrist is connected to the elbow; and the
mid-spine is connected to the hip (connection shown in black), which is
connected to the knee that is in turn connected to the ankle.

possibility of leveraging data captured in more controlled
environment for modelling messier real world movement.
The considerable improvement in performance using data
of relatively small size and limited number of action types

further underlines value in employing representation learn-
ing for affective movement recognition.

Unlike the state of the art solely based on self-supervised
learning [18], [23], our approach combines supervised learn-
ing (where learning is supervised for a task other than
the target) with self-supervised regularization for the latent
representations. The rationale for the use of supervised
learning was to explore the possibility of taking advantage
of the large number of HAR datasets available for reuse in
the research community [1]. The close link between affect
assessment and action categorization [31], [32] in movement
perception and understanding provides support for this
approach. The regularization included in the model was
aimed at forcing the model to learn generalized movement
representations at the lower layers. Indeed, findings from
comparing the latent and action outputs of the P-STEMR
for pain level classification (together with hand-crafted fea-
tures), average F1 scores of 0.82 and 0.65 respectively, show
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that the latent outputs contain information beyond what is
specific to action recognition. Qualitative findings, in the
action labelling of the EmoPain@Home dataset, that the P-
STEMR model is able to recognize actions in unseen move-
ment configurations further highlight the generalization
power at the level of the action recognition specific output
itself. End-to-end action classification performance with the
NTURGB+D dataset showing ability to recognize subtle
differences between actions (e.g. putting on and taking off
shoes, putting on a hat/cap and putting on glasses, etc) with
limited input information additionally showcases the level
of detail encapsulated in the representations.

Results of our ablation studies highlight value in paral-
lelizing spatial and temporal encoding to capture such rich
movement representation. We do not fully understand the
reason for the superiority of the parallel encoding but it
perhaps characterizes the widely evidenced (e.g. in [33]])
higher status of model-level fusion of multimodal informa-
tion compared to feature level fusion. In this fusion analogy,
temporal and spatial information can be considered separate
but interconnected modalities. Comparison of the perfor-
mance of our P-STEMR in end-to-end action classification in
the EmoPain dataset with previous work [27] on the same
dataset (although based on a different set of action classes)
further demonstrates the merit of the ‘model-level fusion’
approach to spatial and temporal encoding. In the earlier
study [27], the authors obtained average F1 score = 0.76 for
6 action classes (compared to 0.91 for 6 classes in our work)
based on a model where a GCN for spatial encoding and
an LSTMNN for temporal encoding are connected in serial
order. Their model used position data from 7 joints as input.

6.2 Factors to Consider for Preparing Source Datasets

Additional findings in our work highlight factors that may
need to be considered to maximize learning of representa-
tions that transfer to a given target dataset. Our results par-
ticularly highlight differences in population groups which
have implication for movement behaviour as a significant
factor. Despite the relatively larger size and higher variety
in action types of the NTU RGB+D dataset, movement
representations learnt based on its data generalized poorly
to the EmoPain@Home dataset. This is in stark contrast to
the performance obtained with the EmoPain as the source
dataset. Similarly, representation learning did not transfer
well to the NTU RGB+D from the EmoPain. Evidence points
to differences between movements of people with chronic
pain and those without the condition, including in range of
trunk movement [4], coordination between body parts [34],
and gait qualities [35]. These findings suggest that, for max-
imal performance, the subjects from the source and target
datasets need to come from similar population groups espe-
cially with respect to characteristics that can have marked
effect on movement execution, e.g. a movement disorder.

Major differences in movement types between the NTU
RGB+D and EmoPain datasets, particularly in arm motions,
may have further undermined transfer of representations
between the two datasets. The arm movements captured
in the EmoPain (source dataset) are mainly elbow flex-
ion/extension movements unlike the NTU RGB+D actions
that include abduction/adduction and rotation. The signif-

icance of this difference is evident in the not-better-than-
chance recognition, in the target dataset (NTU RGB+D), of
all action types where the arm is the primary actor (except
for ‘brushing of the hair’ and ‘throwing’). Conversely, the
model is able to better recognize other action types which
share movement attributes with actions in the source dataset
including ‘hopping’, ‘jumping’, ‘putting on a shoe’ which
are not action instances themselves present in the source
dataset. These findings suggest that it will be of benefit
to maximize the types of low-level motion primitives, e.g.
flexion/extension, rotation, and lateral movement of given
joints, shared between source and target dataset. In so doing,
differences in higher-level descriptions such as the types of
actions will have limited effect on transfer performance.

Findings of notably good performance in transfer be-
tween EmoPain and EmoPain@Home datasets suggest that
other differences such as motion capture sensor type or
capture settings have minimal effect on transfer efficacy. We
used angles data as input to address any effect of sensor type
difference. However, comparison of this input type with
joint positions input in our experiments showed disadvan-
tages for recognition of walking. Transfer between settings
that our findings show to be effective is a critical capability
since it enables data captured in constrained and artificial
settings to be useful for the real world where movements
are messier and emotional expressions are associated with
more significant implications for the subjects.

7 CONCLUSION

We have shown the possibility of leveraging movement rep-
resentation learning from other tasks for affect recognition.
As far as we know, this is the first study to investigate
this for affective movement recognition. We propose the
use of a novel P-STEMR model that takes advantage of
availability of HAR datasets and leads to increase in pain
level classification (from average F1 score of 0.71 to 0.84)
based on representation learning. The model also shows
very good performance in its source task, action recognition:
average F1 scores of 0.91 for 6 classes and 0.50 for 27 classes
in the EmoPain and NTU RGB+D datasets respectively. Our
experiments and analyses highlight differences in popula-
tion group and motion primitives between source and target
datasets as factors that may affect transfer performance. Al-
though several questions still remain, our work is a valuable
first step in this area. In future work, we will explore ways
of minimizing the effects of differences between source and
target datasets on transfer performance. This is an active
area of research for machine learning in general and could
facilitate a more fine-grained classification of pain level, or
even regression on the 0-to-10 pain scale.
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calera, and G. Anbarjafari. 2018. Survey on emotional body gesture
recognition. IEEE Trans. Affect. Comput. 12(2), pp. 505-523.

[4] T. Olugbade, A. Singh, N. Bianchi-Berthouze, N. Marquardt, H.
Aung, and A. de C. Williams. 2019. How can affect be detected and
represented in technological support for physical rehabilitation?.
ACM Trans. Comput.-Hum. Interact. 26(1), pp. 1-29.

[5] A. Singh, N. Bianchi-Berthouze, and A. C. de C. Williams. 2017.
Supporting everyday function in chronic pain using wearable tech-
nology. Proc CHI Conf. Hum. Factor. Comput. Syst., pp. 3903-3915.

[6] A. Singh, A. Klapper, J. Jia et al. 2014. Motivating people with
chronic pain to do physical activity: opportunities for technology
design. Proc CHI Conf. Hum. Factor. Comput. Syst., pp. 2803-2812.

[7] T. Olugbade, R. Buono, K. Potapov et al. 2023. The EmoPain@Home
Dataset: Capturing Pain Level and Activity Recognition for People
with Chronic Pain in Their Homes. TechRxiv preprint.

[8] M. Albert, S. Toledo, M. Shapiro, and K. Kording. 2012. Using
mobile phones for activity recognition in Parkinson’s patients.
Front. Neurol. 3, p.158.

[9] P. Werner, D. Lopez-Martinez, S. Walter, A. Al-Hamadi, S. Gruss,
and R. Picard. 2019. Automatic recognition methods supporting
pain assessment: A survey. IEEE Trans. Affect. Comput. 13(1), pp.
530-552.

[10] M. Sullivan, P. Thibault, A. Savard, R. Catchlove, J. Kozey, and W.
Stanish. 2006. The influence of communication goals and physical
demands on different dimensions of pain behavior. Pain 125(3), pp.
270-277.

[11] T. Olugbade, R. Buono, A. de C. Williams et al. 2022. EmoPain
(at) Home: Dataset and Automatic Assessment within Functional
Activity for Chronic Pain Rehabilitation. Proc. Int. Conf. Affect.
Comput. Intell. Interact., pp. 1-8.

[12] M. Uddin and S. Canavan. 2020. Multimodal multilevel fusion
for sequential protective behavior detection and pain estimation.
Proceedings of IEEE International Conference on Automatic Face
and Gesture Recognition and Workshops, pp. 844-848.

[13] M. Aung, S. Kaltwang, B. Romera-Paredes et al. 2016. The auto-
matic detection of chronic pain-related expression: requirements,
challenges and the multimodal EmoPain dataset. IEEE Trans. Af-
fect. Comput. 7(4), pp. 435-451.

[14] A. Saeed, T. Ozcelebi, J. and Lukkien. 2019. Multi-task self-
supervised learning for human activity detection. Proc. ACM Conf.
Interact Mob. Wearable Ubiquitous Technol. 3(2), pp.1-30.

[15] I. Tang, I. Perez-Pozuelo, D. Spathis, S. Brage, N. Wareham, and
C. Mascolo. 2021. Selfhar: Improving human activity recognition
through self-training with unlabeled data. Proc. ACM Conf. Interact
Mob. Wearable Ubiquitous Technol. 5(1), pp. 1-30.

[16] B. Khaertdinov, E. Ghaleb, and S. Asteriadis. 2021. Contrastive
self-supervised learning for sensor-based human activity recogni-
tion. Proc. IEEE Int. Joint Conf. Biometrics, pp. 1-8.

[17] D. Liu, T. Wang, S. Liu, R. Wang, S. Yao, and T. Abdelzaher. 2021.
Contrastive self-supervised representation learning for sensing sig-
nals from the time-frequency perspective. Proc. Int. Conf. Comp.
Commun. Netw., pp. 1-10.

[18] X. Gao, Y. Yang, and S. Du. 2021. Contrastive self-supervised
learning for skeleton action recognition. Proceedings of the NeurIPS
2020 Workshop on Pre-registration in Machine Learning, pp. 51-61.

[19] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning
for image recognition. Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778.

[20] G. Evangelidis, G. Singh, and R. Horaud. 2014. Skeletal quads:
Human action recognition using joint quadruples. Proceedings of
the International Conference on Pattern Recognition, pp. 4513–4518.

[21] H. Rahmani, A. Mahmood, D. Huynh, and A. Mian. 2014. HOPC:
Histogram of oriented principal components of 3d pointclouds for
action recognition. Proceedings of the European Conference on
Computer Vision, pp. 742–757.

[22] A. Shahroudy, J. Liu, T. Ng, and G. Wang. 2016. NTU RGB+D: A
large scale dataset for 3d human activity analysis. Proc. IEEE conf.
Comput. Vis. Pattern Recognit., pp. 1010–1019.

[23] H. Zhang, Y. Hou, W. Zhang, and W. Li. 2022. Contrastive Positive
Mining for Unsupervised 3D Action Representation Learning. Proc.
European Conf. Comput. Vis., pp. 36-51.

[24] Y. Xi, P. Li, Y. Song, Y. Jiang, and L. Dai. 2019. Speaker to
emotion: Domain adaptation for speech emotion recognition with

residual adapters. Proc. Asia-Pacific Signal Information Processing
Association Annual Summit Conf., pp. 513-518.

[25] M. Akhand, S. Roy, N. Siddique, M. Kamal, and T. Shimamura.
2021. Facial emotion recognition using transfer learning in the deep
CNN. Electronics 10(9).

[26] T. Kipf, and M. Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint:1609.02907.

[27] C. Wang, Y. Gao, A. Mathur, A. de C. Williams, N. D. Lane, and N.
Bianchi-Berthouze. 2021. Leveraging activity recognition to enable
protective behavior detection in continuous data. Proc. ACM Conf.
Interact Mob. Wearable Ubiquitous Technol. 5(2), pp. 1-27.

[28] S. Hochreiter, J. Schmidhuber. 1997. Long short-term memory.
Neural computation 9(8), pp. 1735-1780.

[29] F. Gers, J. Schmidhuber, and F. Cummins. 2000. Learning to forget:
Continual prediction with LSTM. Neural Comput. 12(10), pp. 2451–
71.

[30] T. Olugbade, N. Gold, A. de C. Williams, and N. Bianchi-
Berthouze. 2020. A Movement in Multiple Time Neural Network
for Automatic Detection of Pain Behaviour. Companion Publication
Int. Conf. Multimodal Interact., pp. 442-445. 2020.

[31] M. Iacoboni, I. Molnar-Szakacs, V. Gallese, G. Buccino, J. Mazz-
iotta, and G. Rizzolatti. 2005. Grasping the intentions of others with
one’s own mirror neuron system. PLoS biology 3(3): e79.

[32] V. Gallese. 2007. Before and below ‘theory of mind’: embodied
simulation and the neural correlates of social cognition. Philos.
Trans. R. Soc. B: Biol. Sci. 362(1480), 659-669.

[33] G. Cen, C. Wang, T. Olugbade, A. de C. Williams, and N. Bianchi-
Berthouze. 2022. Exploring Multimodal Fusion for Continuous Pro-
tective Behavior Detection. Proc. Int. Conf. Affect. Comput. Intell.
Interact., pp. 1-8.

[34] M. Shafizadeh. 2016. Movement coordination during sit-to-stand
in low back pain people. Human Movement 17(2), pp.107-111.
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