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Investigating Intensity Normalisation for PET
Reconstruction with Supervised Deep Learning

Imraj Singh, Alexander Denker, Bangti Jin, Kris Thielemans, Simon Arridge

Abstract—Deep learning methods have shown great promise in
the field of Positron Emission Tomography (PET) reconstruction,
but the successful application of these methods depends heavily
on the intensity scale of the images. Normalisation is a crucial
step that aims to adjust the intensity of network inputs to make
them more uniform and comparable across samples, acquisition
times, and activity levels. In this work, we study the influence
of different linear intensity normalisation approaches. We fo-
cus on two popular deep learning based image reconstruction
methods: an unrolled algorithm (Learned Primal-Dual) and a
post-processing method (OSEMConvNet). Results on the out-of-
distribution test dataset demonstrate that the choice of intensity
normalisation significantly impacts on generalisability of these
methods. Normalisation using the mean of acquisition data or
corrected acquisition data led to improved peak-signal-to-noise-
ratio (PSNR) and data-consistency (KLDIV). Through evaluation
of lesion-specific metrics of contrast recovery coefficients (CRC)
and standard deviation (STD) an increase in CRC and STD is
observed. These findings highlight the importance of carefully
selecting an appropriate normalisation method for supervised
deep learning-based PET reconstruction applications.

Index Terms—Image reconstruction, deep learning, positron
emission tomography, intensity normalisation

I. INTRODUCTION

POSITRON Emission Tomography (PET) reconstruction
is a particularly challenging inverse problem due to the

Poisson noise and the complexity of the forward model, typ-
ically includes projection, attenuation, resolution, sensitivity,
scatter and randoms. Given an image x, the estimate of the
mean ȳ is given by ȳ = Ax + b, where the forward model
is affine and comprises of a system matrix A and background
b. The PET acquisition data y is corrupted by Poisson noise
and hence the noise is dependent on intensity-scale and varies
with scan times and activity.

In recent years supervised deep learning methods for PET
reconstruction have shown promising results [1]. In this work
we investigate data-specific intensity normalisation for PET
reconstruction with supervised deep learning methods, and
show that normalisation can improve generalisability to out-
of-distribution samples and noise levels.
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Fig. 1. Reconstruction for LPD with a noise level of 2.5 counts per volume
with no normalisation and normalisation by MeanCY.

II. METHODS

Given a supervised dataset {yi, xt,i}Ni=1 of N samples, the
training loss is given by:

min
θ

N∑
i=1

∥M−1
i Rθ(Miyi)− xt,i∥22,

where Rθ is the neural network with trainable parameters
θ, and Mi the sample-dependent intensity normalisation. Our
goal is to normalise the inputs of the supervised deep learning
method. To this end, we normalise acquisition data yi (and/or
OSEM reconstructions) to have a similar scale. By normalising
yi, we stabilise the variation of the inputs to the network. For
a Gaussian noise model, this corresponds to pre-whitening. In
this work we test four normalisation methods and Mi = I , i.e.
no normalisation (No Norm), as a baseline. Here, MeanY and
MeanCY are based on the acquisition data yi and MeanOSEM
and MaxOSEM are based on an OSEM reconstruction x̂i.

MeanY MeanCY MeanOSEM MaxOSEM
Mi diag[ 1

Mean(yi)
] diag[ 1

Mean(yi−bi)
] diag[ 1

Mean(x̂i)
] diag[ 1

max(x̂i)
]

A. Deep Learning Methods

We use two well-established deep learning methods for
inverse problems in medical imaging, namely, FBPConvNet
[2] and Learned Primal Dual (LPD) [3]. These methods
were subsequently adapted for PET reconstruction. The FBP-
ConvNet input was changed from a filtered-back-projection
to an OSEM reconstruction after 1 epoch with 34 subsets.
This post-processing method is referred to as OSEMConvNet.
The LPD was adapted by using the OSEM reconstruction
as initialisation of primal channels, and by including an
affine forward operator with sample-specific multiplicative
and additive factors. These sample-specific factors are not
included in previous LPD implementations for PET [4]. To
reduce computational time a total of 3 unrolled iterations were
used. For both methods the network architectures used were
changed minimally from DivαL [5]. OSEMConvNet used a
UNet architecture with 1,783,249 trainable parameters, and
the LPD used a set of convolutional filters at each iteration
with 132,300 trainable parameters. Both networks were trained
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using a joint dataset corresponding to 5, 10, 50 true counts per
volume. The code for the experiments is publically available1.

B. BrainWeb Dataset and pyParallelProj

The BrainWeb dataset of 20 anatomical phantoms [6] com-
prised the test (subject 04) and training sets (other subjects).
These high resolution (2 mm3) phantoms defined ground truth
PET and CT volumes. Furthermore, the PET training ground
truths were perturbed to give three realisations per-patient
[7]. Axial slices of ground-truth data were used to simulate
PET acquisition data. The test set included ground-truths with
simulated hot elliptical lesions, and associated background
Region Of Interest (ROI). True counts were projected using
a true forward model defined by pyParallelProj [8]. The true
model used a single crystal ring GE Discovery MI acquisition
geometry with count-based projector, and resolution, attenua-
tion and sensitivity models were included. The noise level was
set by re-scaling the true data to ensure a prescribed true count
per emission voxel. For supervised training data the prescribed
true counts per emission voxel were 5, 10, 50 , and for test
data it was 2.5. After scaling, a constant background based
on the mean true counts was added before applying Poisson
corruption. The approximate forward model for reconstruction
was modelled with low resolution images (8 mm3) to avoid
an inverse crime.

C. Quality metrics

We evaluate the trained models on test data with simulated
lesions. In addition to the peak-signal-to-noise value (PSNR),
we evaluate two PET specific quality scores computed over a
Region of Interest (ROI) that are important for medical use: the
contrast recovery coefficient (CRC) and the standard deviation
(STD). The CRC measures the ability to reconstruct small
differences in tracer concentration between different ROIs. We
compute the CRC between lesion L and background B ROIs.
Given an ROI Z, we denote the average over the elements of
the ROI as Z̄r = 1

Nb

∑NZ

k=1 Zr,k, and average over realisation
is Z̄k = 1

R

∑R
k=1 Zr,k. The CRC is defined:

CRC :=
1

R

R∑
r=1

(
L̄r

B̄r
− 1

)
/

(
Lt

Bt
− 1

)
, (1)

where Lt

Bt
is the true lesion-to-background contrast. We eval-

uate the normalised STD on background ROI across realisa-
tions, and then averaged over ROI voxels:

STD :=
1

NB

NB∑
k=1

√√√√ 1

R− 1

R∑
r=1

(Br,k − B̄k)2

B̄k
(2)

For our evaluation we used R = 10 noise realisations of
the acquisition data. In addition, we computed the Kullback-
Leibler divergence (KLDIV) between the true measurements
y and estimated measurements ȳ as a the metric of data
consistency, and peak signal-to-noise ratio (PSNR) between
ground-truth and reconstructed images.

1https://github.com/Imraj-Singh/pet supervised normalisation

TABLE I
OSEMCONVNET: MEAN (STANDARD ERROR) OF THE QUALITY

METRICS ON 80 SAMPLE TEST SET

No Norm MeanY MeanCY MeanOSEM MaxOSEM

CRC (↑) 0.749 0.805*** 0.788*** 0.803*** 0.758***

(0.014) (0.015) (0.014) (0.015) (0.017)

STD (↓) 0.216 0.248 0.244 0.247 0.264
(0.005) (0.007) (0.007) (0.008) (0.008)

PSNR (↑) 27.55 27.93*** 27.94*** 27.94*** 27.08*

(0.38) (0.40) (0.40) (0.39) (0.43)

KLDIV (↓) 68128 63068*** 63115*** 63069*** 63667***

(127) (246) (245) (246) (268)

***p < 0.01, **p < 0.05, *p < 0.1

TABLE II
LEARNED PRIMAL-DUAL: MEAN (STANDARD ERROR) OF THE

QUALITY METRICS ON 80 SAMPLE TEST SET

No Norm MeanY MeanCY MeanOSEM MaxOSEM

CRC (↑) 0.749 0.876*** 0.862*** 0.893*** 0.874***

(0.016) (0.013) (0.013) (0.011) (0.011)

STD (↓) 0.163 0.230 0.227 0.278 0.250
(0.005) (0.008) (0.008) (0.006) (0.008)

PSNR (↑) 27.94 28.38*** 28.50*** 27.89* 28.00**

(0.44) (0.44) (0.44) (0.41) (0.43)

KLDIV (↓) 63925 63153*** 63027*** 62958*** 63089***

(239) (225) (243) (238) (249)

***p < 0.01, **p < 0.05, *p < 0.1

III. RESULTS AND DISCUSSION

We show results for out-of-distribution test data (2.5 true
counts per volume with lesions) in Tables I and II for
OSEMConvNet and LPD respectively. In addition, Figure
1 gives a qualitative comparison of sample with No Norm
and MeanCY. We find that models with normalisation benefit
from higher CRCs and lower KLDIV. The STD is higher
with normalisation, meaning reconstructions are more sensitive
to perturbations in noise, and is a result of being more
data-consistent. Normalisation based on OSEM images shows
instability with regards to PSNR and can under-perform as
compared with No Norm. More work is needed to conclusively
establish the best normalisation practice. We leave non-linear
normalisation techniques, and mixed/weighted loss functions
for further work.
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