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Aberrant DNAmethylation (DNAm) is known to be associated with the aetiology of
cancer, including colorectal cancer (CRC). In the past, the availability of open
access data has been the main driver of innovative method development and
research training. However, this is increasingly being eroded by the move to
controlled access, particularly of medical data, including cancer DNAm data. To
rejuvenate this valuable tradition, we leveraged DNAm data from 1,845 samples
(535 CRC tumours, 522 normal colon tissues adjacent to tumours, 72 colorectal
adenomas, and 716 normal colon tissues from healthy individuals) from 14 open
access studies deposited in NCBI GEO and ArrayExpress. We calculated each
sample’s epigenetic age (EA) using eleven epigenetic clockmodels and derived the
corresponding epigenetic age acceleration (EAA). For EA, we observed that most
first- and second-generation epigenetic clocks reflect the chronological age in
normal tissues adjacent to tumours and healthy individuals [e.g., Horvath (r = 0.77
and 0.79), Zhang elastic net (EN) (r = 0.70 and 0.73)] unlike the epigenetic mitotic
clocks (EpiTOC, HypoClock, MiAge) (r < 0.3). For EAA, we used PhenoAge, Wu, and
the above mitotic clocks and found them to have distinct distributions in different
tissue types, particularly between normal colon tissues adjacent to tumours and
cancerous tumours, as well as between normal colon tissues adjacent to tumours
and normal colon tissue from healthy individuals. Finally, we harnessed these
associations to develop a classifier using elastic net regression (with lasso and
ridge regularisations) that predicts CRC diagnosis based on a patient’s sex and
EAAs calculated from histologically normal controls (i.e., normal colon tissues
adjacent to tumours and normal colon tissue from healthy individuals). The
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classifier demonstrated good diagnostic potential with ROC-AUC = 0.886, which
suggests that an EAA-based classifier trained on relevant data could become a tool
to support diagnostic/prognostic decisions in CRC for clinical professionals. Our
study also reemphasises the importance of open access clinical data for method
development and training of young scientists. Obtaining the required approvals for
controlled access data would not have been possible in the timeframe of this study.

KEYWORDS

epigenetic age, colorectal cancer, CRC, epigenetic clock, epigenetic age acceleration,
colon tissue methylation

1 Introduction

Colorectal cancer (CRC) is the third most common cancer in the
world, with around 1.93 million new cases worldwide in 2020 (Sung
et al., 2021). One of the main risk factors of CRC is ageing (Dekker
et al., 2019). Here, ageing is not solely referred to as an increase in
chronological age (CA), but is also viewed as a gradual decline in
biological function (biological ageing) (Gems, 2015). One of the
hallmarks of ageing is epigenetic alteration, which includes changes
in DNA methylation (DNAm) patterns, abnormal histone

modifications, and irregular chromatin remodelling (López-Otín
et al., 2013). Epigenetic alteration is one of the hallmarks of cancer,
including CRC (Dekker et al., 2019; Hanahan, 2022). CRC arises due
to the accumulation of genetic and epigenetic alterations in the colon
mucosa. Abnormal changes in DNAm patterns are a common form
of epigenetic change in CRC. They contribute to the initiation of
abnormal stem cell growth of the intestine, this is often followed by
the appearance of adenomas and, later, progression to carcinoma
(Dekker et al., 2019; Schmitt and Greten, 2021). Interestingly,
DNAm alteration was not only observed in cancerous tissues but

TABLE 1 Summary of the epigenetic clocks. Abbreviations: CA - Chronological age, DNAm - DNA methylation, CpG - cytosine phosphate guanine, EN - Elastic net,
PCGT - Polycomb group target, TCGA - The Cancer Genome Atlas.

Category Clocks (reference) Description

First-generation clocks Horvath (Horvath, 2013) Developed on DNAm of various tissue samples. Used penalised
regression model to regress CA onto 353 CpG sites [which are
previously selected by elastic net (EN) regression model]

Hannum (Hannum et al., 2013) Developed by regressing CA onto blood DNAm data using EN
regression model, which resulted in selected 71 CpG sites as the
accurate CA predictor

Second-generation clocks PhenoAge (Levine et al., 2018) Developed through two-step process: determination of
“phenotypic age”metric and regression of blood DNAm data onto
phenotypic age, resulting in selected 513 CpG sites to estimate
final phenotypic age

Skin and Blood (Horvath et al., 2018) This clock uses 391 CpGs to estimate epigenetic age. These CpGs
were obtained from EN regression of CA onto blood DNAm,
saliva, fibroblasts, keratinocytes, buccal cells, and endothelial cells

Pediatric-Buccal-Epigenetic (PedBE) (McEwen et al., 2020) This clock uses 94 CpG sites to predict epigenetic age. Elastic net
regression on pediatric buccal DNAm data was used to select these
CpG sites

Wu (Wu et al., 2019) Trained on paediatric blood DNAm from 11 datasets. Elastic net
approach used in this model resulted in selected 111 CpG sites to
estimate child-specific biological age

Zhang BLUP (Zhang et al., 2019) Trained on blood and saliva DNAm. Uses 319,607 CpG probes
[obtained using Best Linear Unbiased Prediction (BLUP)
approach] to estimate epigenetic age

Zhang EN (Zhang et al., 2019) Trained on blood and saliva DNAm. Uses 514 CpG sites (selected
using EN regression) to estimate epigenetic age

Epigenetic mitotic clocks EpiTOC (Yang et al., 2016) This clock uses average DNAm level of 385 CpGs from PCGT
promoters that are generally unmethylated in 11 foetal tissue types
to predict mitotic age

HypoClock (Teschendorff, 2020) This clock uses average DNAm level of 678 solo-WCGW sites

MiAge (Youn and Wang, 2018) Trained on 4,020 cancer and adjacent normal tissue DNAm from
8 TCGA cancer data, and tested on 5 other TCGA cancer data. Used
the panel of selected 268 hypermethylated CpGs to estimatemitotic age
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also in normal colon tissue, indicating the early occurrence of
DNAm changes in CRC tumour development or the field effect
of cancerisation (Luo et al., 2014; Sanz-Pamplona et al., 2014; Joo
et al., 2021).

There are several methods developed for CRC diagnosis, with
colonoscopy being considered the gold standard (Dekker et al.,
2019). Yet, other potential prognostic and diagnostic markers,
including DNAm-based biomarkers, have been studied in order
to provide robust results (Okugawa et al., 2015; Mueller and Győrffy,
2022). DNAm pattern abnormalities in cancer, including in CRC,
occur due to hyper- and/or hypo-methylation of some genomic
regions (Nishiyama and Nakanishi, 2021). Some CRC cases are also
associated with a unique CpG island methylator phenotype (CIMP),
which is characterised by the strong hypermethylation in certain
promoter regions across the genome (Schmitt and Greten, 2021).

In the past decade, epigenetic age predictors (“epigenetic
clocks”) have been developed to estimate chronological and
biological age based on DNAm levels in specific age-associated
CpG sites (Table 1). The first-generation epigenetic clocks,
namely, Horvath and Hannum clocks, were mainly utilised to
predict chronological age (Hannum et al., 2013; Horvath, 2013).
Second-generation clocks were then developed to not only estimate
the chronological age but also to capture physiological conditions by
incorporating some clinical measures (e.g., blood biomarkers) or by
including specific CpG sites in their models (Horvath et al., 2018;
Levine et al., 2018; Wu et al., 2019; Zhang et al., 2019). Later, some
cancer-specific epigenetic clock models were constructed by
combining molecular mitotic clocks and cancer DNAm pattern
alteration hypotheses (Yang et al., 2016; Youn and Wang, 2018;
Teschendorff, 2020).

Deviation of the predicted epigenetic age (EA) from the
chronological age (CA), known as epigenetic age acceleration
(EAA), has been studied with respect to its association with age-
related phenotypic changes and health outcomes, including cancer
(Horvath, 2013; Oblak et al., 2021). Since DNAm alteration is
associated with cancer incidence, epigenetic age scores have been
studied to find suitable DNAm markers for cancer, including CRC.
Previous studies have assessed the relationship between CRC and
EAA (Durso et al., 2017; Zheng et al., 2019; Devall et al., 2021;
Nwanaji-Enwerem et al., 2021; Matas et al., 2022). However, our
understanding of whether epigenetic ageing measures (EA and/or
EAA) differ between histologically normal colon tissues in
individuals with and without CRC is limited to two publications
(Wang et al., 2020; Joo et al., 2021). These studies identified a
significant difference in epigenetic age acceleration between normal
colon tissue from patients with and without CRC. However,
although both studies assessed the same clocks (i.e., Horvath,
Hannum, PhenoAge, EpiTOC), they obtained different results.
Joo et al. (2021) found a significant difference in EpiTOC age
acceleration while Wang et al. (2020) observed it in EAA from
the PhenoAge clock. The differences in datasets, sample groupings,
and number of samples in each study may be a plausible explanation
for this. Hence, to identify the most suitable clock for reflecting
DNAm changes in CRC, further study regarding the associations
between epigenetic clock measures and CRC, particularly in normal
colon tissue, is needed.

This study was designed to be suitable for a Masters’s student
project (i.e., it had to be completed within 6 months). Although the

vast majority of DNAm data, including for CRC, are deposited in
public databases such as EGA and dbGaP, they are classified as
controlled access data which requires a data access agreement to be
completed and to be approved by a data access committee before the
data can be shared. This process can take months or even years
(Powell, 2021) and is further complicated by diverse and, in some
cases, even inappropriate data access agreements (Saulnier et al.,
2019). For these reasons, only data that are available under open
access were considered for inclusion in this study. Despite being
rare, open access data are of equal quality and have a long and
successful track record as drivers of innovation and training
(Greenbaum et al., 2011). The resulting limitations and
advantages of using exclusively open access data are discussed
further in Section 4.3.

We obtained 14 open access datasets (summarised in
Supplementary Table S1) with the aim of evaluating the
associations between CRC diagnosis and epigenetic ageing
measures (EAs and EAAs) derived from eleven epigenetic clocks.
In particular, we aimed to: 1) evaluate the associations between
chronological age and estimated EAs for each tissue type; 2) identify
the EAAs that can capture the difference between CRC tumours,
normal colon tissues adjacent to tumours, colorectal adenomas, and
normal colon tissues from healthy individuals; 3) determine the
EAAs that can distinguish between histologically normal colon
tissues from individuals with different CRC diagnoses; and 4)
develop an EAA-based classifier that demonstrates good potential
for use in distinguishing between normal colon tissues from healthy
individuals and normal colon tissues adjacent to tumours, thus
aiding CRC diagnosis. Graphical overview of the study design is
presented on Figure 1, the methodology is summarised in
Supplementary Figure S1.

2 Materials and methods

2.1 Association analysis

2.1.1 Data acquisition and pre-processing
The data for this study were downloaded from two public

repositories: NCBI GEO (National Center for Biotechnology
Information Gene Expression Omnibus) and EMBL-EBI
(European Molecular Biology Laboratory European
Bioinformatics Institute) ArrayExpress (Barrett et al., 2012;
Sarkans et al., 2021). The list of datasets used in this study is
given in Supplementary Table S1. In particular, we searched for
human colon tissue DNA methylation (DNAm) profiles generated
using Illumina methylation platforms (Infinium
HumanMethylation450 and MethylationEPIC arrays), with
available chronological age, colorectal cancer (CRC) patient
status, and specimen pathology (tumour, adenoma or normal
tissue) (Bibikova et al., 2011; Pidsley et al., 2016). Dataset
GSE132804, which includes DNAm profiles produced using both
450K and EPIC platforms, was treated as two separate datasets with
respect to the technology used.

Where possible, the data were processed from raw .idat files for each
dataset separately following previously described methods (Chervova
et al., 2019). In brief, samples with more than 1% of low-quality probes
(detection p > 0.01, bead count < 3), or in disagreement between
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reported and inferred sex, were excluded, together with samples
identified as outliers by built-in quality control checks of minfi and
ENmix R packages (Aryee et al., 2014; Xu et al., 2021; R Core Team,
2009). Missing and low-quality CpG probes (across more than 1% of
samples) were filtered out. Data were normalised using the ssNoob
method implemented in the minfi package (Fortin et al., 2017). For
some datasets without raw data and/or necessary technical information,
we used published pre-processed data and performed quality control
checks by assessing their methylation values data (distribution plots,
reported and inferred sex matches).

2.1.2 Sample notations and variables description
All samples in our data contain information regarding

chronological age, sex, and tissue types. We categorised samples
into four different tissue types:

• healthy: samples from normal colon tissues of individuals
without CRC (i.e., no concurrent CRC was observed at the
time of sample collection); normal colon tissues from
individuals with concurrent colon adenoma were included
in this category,

FIGURE 1
Study design overview. Human colon DNAm datasets, obtained from open access repositories was pre-processed, and corresponding epigenetic
agemeasures were calculated using 11 DNAmclocks. Thesemeasures were used in evaluating associations between epigenetic age and age acceleration
with tissue type (healthy, normal, adenoma, tumour), and developing a novel CRC status classifier model.
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• normal: samples from normal colon tissues adjacent to the
tumours of CRC patients,

• tumour: samples from cancerous tumours obtained from
CRC patients,

• adenoma: samples from adenoma tissues of patients with
observed colorectal adenoma (mostly sessile serrated
adenomas).

For association analysis, we used two different datasets: (a)
dataset with healthy, normal, tumour, and adenoma samples
(Dataset 1) and (b) dataset with only healthy and normal
samples (Dataset 2). A summary of the available cohort
characteristics is given in Table 2. Details about the sample
collection site (i.e., left or right colon) are available for only half
of the dataset. Some samples also have information regarding the
detailed location. We classified samples from descending colon,
rectosigmoid junction, rectum, sigmoid, and splenic flexure as
samples from the left colon, while ascending colon, caecum,
hepatic flexure, and transverse colon are from the right colon
(Lin et al., 2016). Other information such as race/ethnicity,
cancer stage, mutation, and CpG island methylator phenotype
(CIMP) status is limited to a small number of samples, hence we
excluded these variables from the analysis.

2.1.3 Epigenetic age calculation
We classified the epigenetic clocks into three categories: first-

generation, second-generation, and epigenetic mitotic clocks. First-
and second-generation epigenetic age (EA) were calculated for each
sample using R methylClock library (Pelegí-Sisó et al., 2021),
while epigenetic mitotic clocks were run using the scripts provided
by their authors (Yang et al., 2016; Youn and Wang, 2018;
Teschendorff, 2020). Estimated age and mitotic age scores were
used to calculate epigenetic age acceleration (EAA) which is
described in the next section. Further details about the epigenetic
clocks and EAAs are provided in Table 1.

2.1.4 EAA calculation and statistical analysis
We performed the analysis of outliers separately for Dataset

1 and Dataset 2 by using the differences between epigenetic and

chronological age values, which we call epigenetic age acceleration
differences (EAAd). This metric was only calculated for the first- and
second-generation clocks, and not for the mitotic clocks. A sample
was labelled an outlier if its EAAd value was more than three
standard deviations away from the mean EAAd across the whole
dataset (i.e., outside the interval mean ± 3 ·SD). We removed all
samples which were outliers in at least two clocks. In total, 142 and
38 samples were removed as outliers from Dataset 1 and Dataset 2,
respectively.

All analyses in this study were conducted in R v. 4.2.2 (R Core
Team, 2009). To evaluate the associations between EAA and CRC,
we calculated EAAs from each epigenetic clock using the following
steps (EAA for Dataset 1 and Dataset 2 were calculated separately
using the same steps):

• Step 1a: We regressed epigenetic age onto the chronological
age and sex of healthy samples using the linear model (1).

EA ~ CA + sex. (1)
Healthy samples were chosen to ensure the uniform EAA calculation
for all epigenetic age scores, including those for mitotic clocks.

• Step 2a: Using the linear regression coefficients obtained in
Step 1a in model (1), we calculated EAAs as the model
residuals.

• Step 3a: Based on the mixed-effect model (2), we adjusted
EAAs obtained in Step 2a for the dataset and patient IDs using
Formula (2). This adjustment was made to ensure data
independence because in some datasets there is more than
one sample per patient, and without this adjustment, they
would violate the independence assumption of most statistical
tests. Adjustment for dataset ID is to alleviate any batch effect.

residuals EAA ~ 1|dataset ID + 1|patient ID( ). (2)
It is worth noting that traditionally EAAs for the first- and

second-generation epigenetic clocks are calculated either as
differences between EA and CA or as the residuals from linear
regression of EA onto chronological age using the whole dataset

TABLE 2 Summary of cohort characteristics.

Dataset 1 Dataset 2

All Healthy Normal Tumour Adenoma All Healthy Normal

No. of samples 1845 716 522 535 72 1,220 715 505

Age [median (range) in years] 63 (25.1–93.6) 59 (31–88) 64 (25.1–93) 66 (27–93.6) 75 (50–90) 60 (25.1–93) 59 (31–88) 64 (25.1–93.6)

Gender

Female 936 453 206 229 48 650 453 197

Male 909 263 316 306 24 570 262 308

Site

Left 637 426 140 71 0 561 426 135

Right 307 218 46 43 0 263 217 46

NA 901 72 336 421 72 396 72 324
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(Horvath, 2013; McEwen et al., 2020). This works well when the
output of the epigenetic clock is predicted age, which correlates well
with chronological age. Epigenetic mitotic clocks predict the number
of cell divisions (as a proxy to the quality of maintenance of ageing
cells). The residuals from fitting mitotic predicted “age” to CA are
much less interpretable, as they cannot be easily compared to CA. To
improve interpretability, we changed the way we calculate EAAs for
all clocks in this study (see Steps 1a-3a in Section 2.1.4). Now, we fit
linear regression only on the control or baseline class (for this study,
this was the samples classed as “healthy”) and then expect that if a
clock captures the difference between classes, residuals for this class
will be different from the control group.

Associations between estimated epigenetic age and
chronological age were analysed using the Pearson correlation
test, while the relationships between EAAs and sample
characteristics were assessed using the Spearman correlation test,
which is suitable for both continuous and ordinal variables. Two-
sample t-tests were performed to analyse the difference in EAAs
between different tissue types. All graphs presented in this study
were produced using ggplot and its extensions (Wickham, 2011),
pheatmap (Kolde, 2019), and base R functions (R Core Team,
2009).

2.2 Classifier

2.2.1 Data selection
Ten different datasets spanning 990 samples were used to build

the classifier. 328 were normal and 662 were healthy colon tissue
samples. The classifier was trained on sex and on the epigenetic age
acceleration scores from 11 different clocks.

The data was split into training and testing datasets. The training
dataset consisted of data from six studies (NCBI GEO datasets
GSE101764, GSE132804_450k, GSE132804_EPIC, GSE142257,
GSE149282, and GSE166212), and contained 341/215 healthy/normal
samples. The testing dataset included data from four studies
(ArrayExpress deposited E-MTAB-3027 and E-MTAB-7036, as well
as NCBI GEO datasets GSE151732 and GSE199057), and contained
321/113 healthy/normal samples. Samples originating from the same
dataset were not split between training and testing sets in order to avoid
potential data leakage through batch effect. The distribution of healthy
and normal samples across the different datasets is provided in
Supplementary Table S2.

Only normal and healthy tissue samples were included when
making the classifier (tumour and adenoma samples were excluded).
Samples were excluded if there was no corresponding raw data
(.idat) file or technical information (array identifiers and position of
the sample in the array) available. Analysis of outliers using EAAd
was done as described in Section 2.1.4–samples were removed if they
were outside of the mean ± 3 ·SD interval in even one clock. In total,
39 samples were removed using these exclusion criteria.

2.2.2 EAA calculation
To calculate EAAs for the classifier we used the following four-

step procedure for each epigenetic clock:

• Step 1b: We regressed epigenetic age onto the chronological
age for healthy samples in the training dataset using model (3).

EA ~ CA. (3)

• Step 2b: Using linear regression coefficients obtained in Step
1b, we calculated the EAA scores for all samples used in the
classifier as the regression residuals.

• Step 3b: We performed normalisation of the training dataset
using standard normal distribution scaling.

• Step 4b: Test data were scaled using the mean and standard
deviation of the training data used in Step 3b.

These steps were taken to prevent data leaks between the
training and testing datasets. The choice of using only healthy
samples in Step 1b was made to ensure a uniform EAA
calculation for all epigenetic age scores, including mitotic clocks.
Scaling was performed to unify the various scores’ distribution,
making the classifier coefficients more interpretable. We also
calculated platform-adjusted residuals by adding binary Illumina
platform ID data (Illumina 450k or EPIC arrays) as a predictor in the
model (3) in the first step.

2.2.3 Grid search, cross-validation, and classifier
training

Elastic net regression with ridge and lasso penalty terms was
used when training our classifier. The optimal values for the elastic
net parameters α and λ were identified through cross-validation. We
manually selected folds for the cross-validation process. It was done
by choosing two datasets for each fold testing data, and the
remaining four for the fold training subset. By doing this, we
ensured that the training and testing subsets in each fold
included both healthy and normal samples, which resulted in
12 folds being used in the cross-validation process.

EAA calculation was performed separately at each fold, followed
by training a classifier on the fold training set and calculating metrics
on the fold testing set. This was done using a grid search for α ∈ [0, 1]
with step 0.05, and λ ∈ [0, 1] with step 0.01. For each set of parameter
values (fold, α and λ) we calculated two threshold-independent
metrics [areas under the receiver operating characteristic (ROC-
AUC) and precision-recall (PR-AUC) curves] to evaluate the model
performance and identify optimal values for the parameters. For
each pair of values {α, λ} we calculated the means of ROC-AUC
across all folds and chose the optimal parameters based on the
maximum mean ROC-AUC number.

The classifier model was then fitted on the training dataset using
elastic net regression on EAAs and sex. The R glmnet (Tay et al.,
2023) and PRROC (Grau et al., 2015) libraries were used to prepare
the classifier and evaluate its performance metrics. Results were
visualised using pROC (Robin et al., 2011) and ggplot2

(Wickham, 2011) R libraries.

3 Results

3.1 Evaluation of epigenetic clocks in healthy
and cancer patients

Our dataset consists of n = 1845 samples containing healthy (n =
716), normal (n = 522), tumour (n = 535), and adenoma (n = 72)
samples from colorectal tissues (Table 2). We evaluated the
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relationship between chronological age and epigenetic age through
Pearson correlation coefficient for each tissue category. A summary
of descriptive statistics for epigenetic age scores is given in
Supplementary Table S3. In general, the epigenetic ages from
most clocks showed positive correlations with chronological age
(CA) (Figure 2A; Supplementary Figure S2). In terms of correlation
strength, CA and EA from first- and second-generation clocks
(except Wu’s clock) have higher correlations in healthy and
normal tissues (r = 0.46–0.79) compared to epigenetic mitotic
age scores (r < 0.3).

We calculated EAAs following the procedure described in
Section 2.1.4, the corresponding regression coefficients are given
in Supplementary Table S9 for Dataset 1 and Supplementary
Table S10 for Dataset 2. EAAs were calculated as the regression

onto both CA and sex in order to reduce possible age- and sex-
related bias. We analysed the relationship between EAAs and
sample characteristics using the Spearman correlation test. We
only included sample characteristics which were covered in more
than half of the samples (i.e., age, sex, site). In all tissue samples,
the correlation coefficients between EAAs and age are close to
zero apart from a few EAAs from adenoma samples (Figure 2B;
Supplementary Figure S5), similar results were observed between
EAAs and sex. On the other hand, the site (i.e., left or right colon)
has a high correlation with Hannum AA and most second-
generation EAAs in healthy samples, but the correlation
strength is decreased in samples from CRC patients. In terms
of EAAs, the first- and second-generation clock EAAs are
clustered together in all tissues except for Horvath AA, PedBE

FIGURE 2
(A) Relationship between chronological age and epigenetic age estimates in four different tissues [healthy (n = 716), normal (n = 522), tumour (n =
535), and adenoma (n = 72)]. Pearson’s correlation coefficients are provided for each tissue separately. (B)Heatmap of Spearman correlation (correlation
coefficients are presented as absolute values) between sample characteristics and epigenetic age accelerations (EAAs) in normal colon tissues from non-
CRC (healthy) and CRC (normal) participants.
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AA, and Wu AA. The latter three EAAs behaved differently in
CRC patients and patients with colorectal adenoma. Epigenetic
mitotic clocks-based EAAs showed associations with each other,
yet the coefficient became smaller in adenoma tissues
(Supplementary Figure S5). Analysis of unadjusted EAAs
showed similar results (Supplementary Figure S6). Density
plots of EAA distribution in four different tissue types are
given in Figure 3C; Supplementary Figure S3. Summaries of
EAA descriptive statistics for Dataset 1 and Dataset 2 are
given in Supplementary Tables S4–S6.

3.2 Differences between EAAs in healthy
individuals and CRC patients

In order to evaluate the association between epigenetic clocks
and CRC, we investigated whether EAAs can capture the
differences between tissues with different origins (i.e., healthy,
normal, tumour, and adenoma) using the two-sample t-test.
Among the different tissue types, tumour samples have the
highest EAA variability. We also observed that Horvath AA,
Pheno AA, Wu AA, EpiTOC AA, HypoClock AA, and MiAge

FIGURE 3
(A) Boxplots of EAAs from first- and second-generation clocks in normal colon tissues from Dataset 1. (B) Boxplots of EAAs from mitotic clocks in
normal colon tissues from Dataset 1. (C) Density plots of EAA distribution in four different tissues. p-values for (A,B) were obtained from Welch’s two-
sample t-test. ns = non significant, *p ≤ 0.05, ** p < 0.001, ***p < 0.001, ****p < 0.0001.
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AA captured differences between every tissue, except for healthy
and adenoma (Supplementary Figure S7). Interestingly, most
EAAs showed significant differences between normal and
adenoma samples (Supplementary Figure S7). All EAAs were
significantly different between normal and healthy samples,
except for PedBE AA (Figures 3A, B). Most EAAs also captured

the differences between tumour and normal samples, as well as
between tumour and healthy samples (Supplementary Figure S7).

We repeated this test using Dataset 2 to further investigate the
ability of EAAs from different epigenetic clocks to distinguishing
between healthy and normal colon tissues. The distribution of EAAs
from this dataset is given in Supplementary Figure S4. EAAs were

FIGURE 4
(A) Boxplots of EAAs from first- and second-generation clocks in normal colon tissues fromDataset 2. (B) Boxplots of EAAs from epigenetic clocks in
normal colon tissues from Dataset 2. (C) Density plots of EAA distribution in two different tissues. The p-values were obtained fromWelch’s two-sample
t-test. *p ≤ 0.05, ** p < 0.001, ***p < 0.001, ****p < 0.0001.
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obtained from the residuals of regressing EA onto the CA for healthy
samples and adjusted for the dataset and patient ID in Dataset 2,
which contains fewer samples compared to Dataset 1. Hence, the
EAA estimates will be different from the scores in the previous
dataset. In general, normal samples had significantly lower EAAs
compared to healthy samples. These differences were observed in all
EAAs except for Horvath AA and SkinBlood AA (Figure 4).
However, the p-value of SkinBlood AA was around the
borderline (p = 0.056, 95% CI = −0.014, 1.180), hence, we may
still consider SkinBlood AA for distinguishing between normal
colon tissues from patients with and without CRC. This result
slightly differs from comparing healthy and normal samples in
the previous dataset, where PedBE AA was the only EAA that
did not capture the difference between these tissues. Thus, all EAAs
in our study, except for PedBE AA and Horvath AA, showed

potential in discriminating between healthy and normal colon
tissues in our datasets.

3.3 EAA-based classifier demonstrates good
diagnostic potential

We calculated EAAs following the steps described in Section
2.2.2, the corresponding regression coefficients and scaling
parameters are given in Supplementary Table S11. We trained a
classifier model based on the sex data as well as on the EAAs
calculated from normal colon tissue samples from six datasets, using
elastic net regression with parameters α = 0.05 and λ = 0.16
estimated through the 12-folds cross-validation process (see
Supplementary Table S12 for the cross-validation folds list).

FIGURE 5
Classifier performance. ROC curve (A), precision-recall (PR) curve (B) and histogram (C) of the classifier scores for the testing data subset. The
diagonal dashed line on panel (A) corresponds to the y = x, and represents the ROC of a random classifier. The horizontal line on panel (B) corresponds to
the minimum precision value y = 0.26.
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Optimal parameter values were chosen based on the highest mean of
the ROC-AUCmetric across twelve cross-validation folds; heatmaps
of the mean and standard deviations of the ROC-AUC are given in
Supplementary Figure S12. For these values of α and λ, the model
selected binary sex data and ten EAAs, and excluded only Horvath’s
EAA. The resulting classifier coefficients and performance were
assessed on the testing subset (Supplementary Table S13) and
demonstrated ROC-AUC = 0.886, 95% CI [0.850, 0.922]. The
ROC and PR curves for the classifier performance on the testing
dataset and the histogram of the classifier’s scores are given in
Figures 5A–C; Supplementary Figure S10, respectively.

We also tried other values of the elastic net regression
parameters α and λ, which have also demonstrated high values of
mean ROC-AUC in the cross-validation step. In particular, for α =
λ = 0.25 and α = 0.1, λ = 0.35, the classifier model used sex and six
EAAs as predictors and demonstrated ROC-AUC of 0.882 [95% CI
(0.845, 0.918)] and 0.835 [95% CI (0.791, 0.879)] on the testing data,
respectively. The corresponding classifier coefficients for these
values of regularisation parameters are presented in
Supplementary Table S13.

By using the EAAs adjusted for the Illumina platform ID (450k
or EPIC), we trained a platform-dependent classifier. In this case, the
cross-validation step was based on six folds (Supplementary Table
S12), and the optimal elastic net parameters values were identified as
α = 0.05 and λ = 0.68. This classifier demonstrated a higher ROC-
AUC = 0.921 [95% CI (0.892, 0.949)] than the platform-
independent version, and was based on sex and ten EAAs. The
corresponding plots and coefficients can be found in Supplementary
Figure S11; Supplementary Table S13.

4 Discussion

4.1 Associations between epigenetic age
and CRC

Abnormal changes in biological age, including epigenetic age,
might reflect the underlying process of cancer development,
including in CRC. In our study, we focused on evaluating the
relationship between epigenetic clock measures (EA and EAA)
and colon tissues from participants with and without CRC. We
observed that most first- and second-generation epigenetic clocks
reflect the chronological age very well in normal and healthy colon
tissues, especially Horvath age. On the other hand, epigenetic
mitotic clocks showed weaker correlations with CA. Our results
align with findings from Wang et al. (2020) and Joo et al. (2021),
where Horvath and EpiTOCwere reported to have the strongest and
weakest associations with CA, respectively. This is not surprising,
since Horvath’s clock model was originally trained to predict CA
across various tissues (Horvath, 2013) while mitotic clock models
were developed to account for stem cell division rates, which may
affect their ability to predict CA (Yang et al., 2016). For example,
MiAge gives an estimate of cell cycle numbers (which are measured
in thousands) and EpiTOC’s scores reflect the average DNAm
increase due to presumed cell replication error (ranging between
0 and 1).

It is worth mentioning that associations between EA and CA
vary for some of the considered clocks in histologically normal,

adenoma, and cancerous colon tissues. Similar results were also
described in Joo et al. (2021) for Horvath, Hannum, PhenoAge, and
EpiTOC. As reviewed byWeisenberger et al. (2018), abnormal DNA
methylation patterns have been observed in cancer cells, including in
CRC cases. This aberration mainly results in the silencing of genes
that contribute to DNA repair and tumour suppression, such as
MLH1, CDKN2A, and SFRP2, hence promoting cancer growth and
survival (Weisenberger et al., 2018; Schmitt and Greten, 2021). This
might be a plausible explanation for the increased variance in the
epigenetic age of CRC tumours. We also observed a higher variance
in adenoma samples compared to normal and healthy tissues. A
previous study reported that adenoma may have a similar
methylation pattern with either normal colon tissue or
chromosomally unstable cancer tissue, depending on the
methylator epigenotype status (low or high) (Luo et al., 2014).
The variance in our data might be present due to abnormal
DNAm patterns or other epigenetic instability. However, it might
also be caused by the low number of adenoma samples available in
this study compared to other tissues.

In general, EAAs in this study are independent of age and sex
both before and after adjusting for sex, while the sample
collection site correlated with some of the EAAs in healthy
samples. This might be explained by the balanced ratio
between male and female subjects in our dataset. Besides,
evidence for sexual dimorphism in CRC is still lacking
(White et al., 2018; Abancens et al., 2020), although
worldwide statistics showed slightly higher CRC incidence in
males (Sung et al., 2021). In contrast, immunological landscape
variations and differentially methylated loci between the left and
right colon have been observed in previous studies, which might
be due to differences in the embryological lineage between the
left and right colon (Illingworth et al., 2008; Kaz et al., 2014;
Zhang et al., 2018). Some CRC cases might also have higher
CIMP on one side of the colon (Weisenberger et al., 2018) and
the methylated region might overlap with some of the clocks’
CpGs. However, despite the evidence, it is noteworthy that site
information is available only for about half of the samples in our
dataset and is distributed differently in each tissue. Hence, an
explanation for the association between site and epigenetic
clocks cannot be given through our study.

Our dataset consists of colon tissue with different tissue
states to assess the ability of EAAs to capture the epigenetic
deviation between each tissue. We observed that Pheno AA, Wu
AA, and epigenetic mitotic clocks-based EAAs distinguished
most of these tissues very well, compared to other EAAs.
Moreover, all of the considered EAAs (except Horvath and
PedBE AA) were significantly different between the healthy
and normal colon tissue in both datasets. Our results are in
line with Joo et al. (2021), in which EpiTOC performed well in
distinguishing between these colon tissues, whereas non-mitotic
clocks, especially Horvath AA, demonstrated inconsistent
results. Field cancerisation that affects genomic stability,
particularly the DNAm pattern, of normal colon tissues
adjacent to CRC tumours might contribute to the EAA
differences (Sanz-Pamplona et al., 2014). Wang et al. (2020)
also reported that normal colon tissue samples from CRC
patients are differently methylated in 5–20 CpGs that overlap
with CpGs from Hannum, Horvath, PhenoAge, and EpiTOC
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model, compared to colon tissue from participants without CRC.
Hence, this might explain the sensitivity of these clocks in
distinguishing normal colon tissues from individuals with
different CRC diagnoses. Further investigation of the
epigenome of normal colon tissue and its association with
various epigenetic clock models is needed to find the most
suitable CpGs as biomarkers in normal colon tissue.

4.2 Classifier for capturing CRC risk from
normal colon tissue

The main idea behind developing a classifier was an attempt to
combine the abilities of several clocks to distinguish between normal
colon tissue from individuals with and without CRC. To the best of
our knowledge, this is the first effort to make a cancer status
predictor based on EAAs in histologically normal tissues. We
performed a thorough literature search and did not manage to
find any similar studies, although there were several fairly successful
attempts to create CRC diagnostic methods based on peripheral
blood, stool blood, and colon tissue, which are well-summarised in
the recent review on CRC diagnostic, prognostic and predictive
DNAm biomarkers (Mueller and Győrffy, 2022).

Our classifier demonstrated a very encouraging performance
(ROC-AUC above 0.88), which is a clear indication of its
diagnostic potential. The only EAA excluded from the
regression by the elastic net (for α = 0.05, λ = 0.16) was
Horvath AA, which is in line with the results reported in
Section 3.2 and is discussed above, where Horvath EAAs were
found to be distributed similarly in healthy and normal samples.
At the same time, we observed that the highest absolute classifier
coefficients come from EAAs derived from the Wu and
PhenoAge clocks, whilst the lowest values were observed for
EpiTOC, Zhang BLUP, and Skin and Blood clocks, which mostly
reflects our association analyses outcomes. The improved
performance of the platform-dependent classifier (ROC-AUC
above 0.92) suggests that the classifier could be upgraded further
with the inclusion of relevant predictors, which was not possible
in the present study due to data availability. In particular, we
expect that adding relevant information such as the sample
location and patient ethnicity/race to the regression model
could make a substantial contribution to the classifier
performance. The presented framework for classifier
development, including EAA calculation, cross-validation,
and parameter tuning steps, could be applied to an extended
(or modified) list of epigenetic clocks and relevant phenotypic
data. It might also be adapted for a classifier based on DNAm
data for a subset of CpGs (e.g., CpGs used in epigenetic clocks).
Potentially these lead to the creation of a tool that can support
diagnostic/prognostic decisions for clinical professionals.

4.3 Study limitations

The results presented in this paper should be considered
while taking into account several shortcomings. The analysed
dataset comprises data obtained from multiple independent
studies which were conducted in different countries; following

diverse sample extraction, processing, and storage protocols;
and using four different DNAm profiling technologies (two
versions of Illumina 450k and two versions of EPIC arrays).
The diversity in sample handling makes our dataset very prone
to technical bias. In order to reduce the influence of this bias,
where possible, we pre-processed the data using consistent
unified techniques and methods designed to treat samples
without the context of the dataset (e.g., using single sample
normalisation method ssNoob). We would like to point out
that the heterogeneity of our data due to technical variability can
be viewed as an advantage rather than as a shortcoming, since it
reflects real-world data diversity.

Furthermore, the datasets from most studies had very limited
clinical data available, which reduced our ability to account for
several important characteristics that are known to be reflected in
DNAm data. For example, sample location (i.e., left/right colon) and
race are known to be associated with different distributions of EAAs
(Devall et al., 2021; Devall et al., 2022), which, in turn, could
influence epigenetic age scores for some clocks. Hence, we
cannot fully guarantee that these clocks correlate with CRC
status in our dataset. Moreover, due to the limited availability of
clinical data, we could not study whether the classifier scores are
associated with the disease stage and outcome. This also means that
when developing our model we were unable to account for some
potentially important characteristics (e.g., site, cancer stage). The
better performance of the platform-dependent classifier compared
to the platform-independent version demonstrated that variability
in the DNAm profiling platforms (Illumina arrays) influences
DNAm measures and that our results could be substantially
improved with a larger, more homogeneous, and better-
annotated dataset.

5 Conclusion

This open access-enabled study investigated the associations
between eleven epigenetic age measures and the colon tissue of
individuals with and without CRC. Our results indicate that CRC
status might affect the association between epigenetic age and
chronological age, as well as between colon tissue EAAs and
clinical characteristics. We have also demonstrated that most
EAAs, except for Horvath and PedBE AA, are able to
distinguish between colon tissue with different CRC status,
particularly between normal and healthy colon tissues. We
developed a CRC status classifier based on sex and EAAs
calculated using histologically normal colon tissue DNAm data,
which performed well. Although further studies on a larger, more
homogeneous, and more clinically described datasets are needed to
acquire a deeper understanding of this association, our results
provide valuable insights into the relationship between epigenetic
age and CRC. In addition, our framework could be used for
developing a more robust classifier.

Data availability statement

The datasets used for this study are openly available from
NCBI GEO and EMBL-EBI ArrayExpress443 repositories using
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unique accession IDs. The list of the accession number(s) can be
found in Supplementary Table S1. A copy of the table with
clinical data and calculated epigenetic age together with the code
is openly445 available from the UCL Medical Genomics Lab
GitHub repository (https://github.com/ucl-medical-genomics/
eaa_crc_classifier).

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and
institutional requirements. Written informed consent to
participate in this study was not required from the
participants or the participants’ legal guardians/next of kin in
accordance with the national legislation and the institutional
requirements.

Author contributions

TW: Data curation, Visualization, Writing–original draft,
Conceptualization, Formal Analysis, Investigation, Methodology,
Validation, Writing–review and editing. JS: Writing–review and
editing, Investigation, Validation, Conceptualization, Formal
Analysis, Methodology. KP: Conceptualization, Methodology,
Visualization, Writing–review and editing, Data curation, Formal
Analysis. EC: Investigation, Methodology, Writing–review and
editing, Conceptualization, Visualization. NH: Formal Analysis,
Methodology, Writing–review and editing, Investigation. SB:
Conceptualization, Formal Analysis, Methodology, Supervision,
Validation, Visualization, Writing–review and editing. VV:
Conceptualization, Data curation, Formal Analysis, Methodology,
Supervision, Visualization, Writing–original draft, Writing–review
and editing, Software, Validation. OC: Supervision,
Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Visualization, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare financial support was received for the research,
authorship, and/or publication of this article. OCwas partly supported by
the Horizon 2020 CETOCOEN Excellence project (grant agreement ID
857560). TW was funded by the Indonesian Endowment Fund for
Education (Lembaga Pengelola Dana Pendidikan).

Acknowledgments

The authors are grateful to the studies which made their data
openly available. We also thank the UCL Cancer Institute Medical
Genomics lab for the stimulating and inspiring discussions.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1258648/
full#supplementary-material

References

Abancens, M., Bustos, V., Harvey, H., McBryan, J., and Harvey, B. J. (2020). Sexual
dimorphism in colon cancer. Front. Oncol. 10, 607909. doi:10.3389/fonc.2020.607909

Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen,
K. D., et al. (2014). Minfi: a flexible and comprehensive Bioconductor package for the
analysis of Infinium DNA methylation microarrays. Bioinformatics 30, 1363–1369.
doi:10.1093/bioinformatics/btu049

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M.,
et al. (2012). NCBI GEO: archive for functional genomics data sets—update. Nucleic
acids Res. 41, D991–D995. doi:10.1093/nar/gks1193

Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J. M., et al. (2011). High
density DNA methylation array with single CpG site resolution. Genomics 98, 288–295.
doi:10.1016/j.ygeno.2011.07.007

Chervova, O., Conde, L., Guerra-Assunção, J. A., Moghul, I., Webster, A. P., Berner,
A., et al. (2019). The Personal Genome Project-UK, an open access resource of human
multi-omics data. Sci. data 6, 257. doi:10.1038/s41597-019-0205-4

Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M., and Wallace, M. B. (2019).
Colorectal cancer. Lancet 394, 1467–1480. doi:10.1016/S0140-6736(19)32319-0

Devall, M. A., Sun, X., Eaton, S., Cooper, G. S.,Willis, J. E.,Weisenberger, D. J., et al. (2022).
A race-specific, DNA methylation analysis of aging in normal rectum: implications for the
Biology of aging and its relationship to rectal cancer. Cancers 15, 45. doi:10.3390/
cancers15010045

Devall, M., Sun, X., Yuan, F., Cooper, G. S., Willis, J., Weisenberger, D. J., et al. (2021).
Racial disparities in epigenetic aging of the right vs left colon. JNCI J. Natl. Cancer Inst.
113, 1779–1782. doi:10.1093/jnci/djaa206

Durso, D. F., Bacalini, M. G., Sala, C., Pirazzini, C., Marasco, E., Bonafé, M., et al.
(2017). Acceleration of leukocytes’ epigenetic age as an early tumor and sex-specific
marker of breast and colorectal cancer. Oncotarget 8, 23237–23245. doi:10.18632/
oncotarget.15573

Fortin, J.-P., Triche, T. J., Jr, and Hansen, K. D. (2017). Preprocessing,
normalization and integration of the Illumina HumanMethylationEPIC
array with minfi. Bioinformatics 33, 558–560. doi:10.1093/bioinformatics/
btw691

Gems, D. (2015). The aging-disease false dichotomy: understanding senescence as
pathology. Front. Genet. 6, 212. doi:10.3389/fgene.2015.00212

Grau, J., Grosse, I., and Keilwagen, J. (2015). PRROC: computing and visualizing
precision-recall and receiver operating characteristic curves in R. Bioinformatics 31,
2595–2597. doi:10.1093/bioinformatics/btv153

Greenbaum, D., Sboner, A., Mu, X. J., and Gerstein, M. (2011). Genomics and privacy:
implications of the new reality of closed data for the field. PLoS Comput. Biol. 7,
e1002278. doi:10.1371/journal.pcbi.1002278

Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46.
doi:10.1158/2159-8290.CD-21-1059

Frontiers in Genetics frontiersin.org13

Widayati et al. 10.3389/fgene.2023.1258648

https://github.com/ucl-medical-genomics/eaa_crc_classifier
https://github.com/ucl-medical-genomics/eaa_crc_classifier
https://www.frontiersin.org/articles/10.3389/fgene.2023.1258648/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1258648/full#supplementary-material
https://doi.org/10.3389/fonc.2020.607909
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.ygeno.2011.07.007
https://doi.org/10.1038/s41597-019-0205-4
https://doi.org/10.1016/S0140-6736(19)32319-0
https://doi.org/10.3390/cancers15010045
https://doi.org/10.3390/cancers15010045
https://doi.org/10.1093/jnci/djaa206
https://doi.org/10.18632/oncotarget.15573
https://doi.org/10.18632/oncotarget.15573
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.1093/bioinformatics/btw691
https://doi.org/10.3389/fgene.2015.00212
https://doi.org/10.1093/bioinformatics/btv153
https://doi.org/10.1371/journal.pcbi.1002278
https://doi.org/10.1158/2159-8290.CD-21-1059
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1258648


Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al. (2013).
Genome-wide methylation profiles reveal quantitative views of human aging rates.Mol.
Cell 49, 359–367. doi:10.1016/j.molcel.2012.10.016

Horvath, S. (2013). Dna methylation age of human tissues and cell types. Genome
Biol. 14, R115–R120. doi:10.1186/gb-2013-14-10-r115

Horvath, S., Oshima, J., Martin, G. M., Lu, A. T., Quach, A., Cohen, H., et al. (2018).
Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria
Syndrome and ex vivo studies. Aging (Albany NY) 10, 1758–1775. doi:10.18632/aging.
101508

Illingworth, R., Kerr, A., DeSousa, D., Jørgensen, H., Ellis, P., Stalker, J., et al. (2008). A
novel CpG island set identifies tissue-specific methylation at developmental gene loci.
PLoS Biol. 6, e22. doi:10.1371/journal.pbio.0060022

Joo, J. E., Clendenning, M.,Wong, E. M., Rosty, C., Mahmood, K., Georgeson, P., et al.
(2021). DNAmethylation signatures and the contribution of age-associated methylomic
drift to carcinogenesis in early-onset colorectal cancer. Cancers 13, 2589. doi:10.3390/
cancers13112589

Kaz, A. M., Wong, C.-J., Dzieciatkowski, S., Luo, Y., Schoen, R. E., and Grady,
W. M. (2014). Patterns of DNA methylation in the normal colon vary by
anatomical location, gender, and age. Epigenetics 9, 492–502. doi:10.4161/epi.
27650

Kolde, R. (2019). Pheatmap: pretty heatmaps. Google Scholar.version 1.0. 12

Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., et al.
(2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (albany
NY) 10, 573–591. doi:10.18632/aging.101414

Lin, J. S., Piper, M. A., Perdue, L. A., Rutter, C. M., Webber, E. M., O’Connor, E., et al.
(2016). Screening for colorectal cancer: updated evidence report and systematic review
for the US Preventive Services Task Force. Jama 315, 2576–2594. doi:10.1001/jama.
2016.3332

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The
hallmarks of aging. Cell 153, 1194–1217. doi:10.1016/j.cell.2013.05.039

Luo, Y., Wong, C.-J., Kaz, A. M., Dzieciatkowski, S., Carter, K. T., Morris, S. M., et al.
(2014). Differences in DNA methylation signatures reveal multiple pathways of
progression from adenoma to colorectal cancer. Gastroenterology 147, 418–429.
doi:10.1053/j.gastro.2014.04.039

Matas, J., Kohrn, B., Fredrickson, J., Carter, K., Yu, M., Wang, T., et al. (2022).
Colorectal cancer is associated with the presence of cancer driver mutations in normal
colon. Cancer Res. 82, 1492–1502. doi:10.1158/0008-5472.CAN-21-3607

McEwen, L. M., O’Donnell, K. J., McGill, M. G., Edgar, R. D., Jones, M. J., MacIsaac,
J. L., et al. (2020). The PedBE clock accurately estimates DNA methylation age in
pediatric buccal cells. Proc. Natl. Acad. Sci. 117, 23329–23335. doi:10.1073/pnas.
1820843116

Mueller, D., and Győrffy, B. (2022). DNA methylation-based diagnostic, prognostic,
and predictive biomarkers in colorectal cancer. Biochimica Biophysica Acta (BBA)-
Reviews Cancer 1877, 188722. doi:10.1016/j.bbcan.2022.188722

Nishiyama, A., and Nakanishi, M. (2021). Navigating the DNA methylation
landscape of cancer. Trends Genet. 37, 1012–1027. doi:10.1016/j.tig.2021.05.002

Nwanaji-Enwerem, J. C., Nze, C., and Cardenas, A. (2021). Long-term aspirin use and
epigenetic mitotic clocks for cancer risk prediction: findings in healthy colon mucosa
and recommendations for future epigenetic aging studies. Epigenetics Commun. 1, 5–11.
doi:10.1186/s43682-021-00004-4

Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., and Boks, M. P. (2021). A
systematic review of biological, social and environmental factors associated with epigenetic
clock acceleration. Ageing Res. Rev. 69, 101348. doi:10.1016/j.arr.2021.101348

Okugawa, Y., Grady, W. M., and Goel, A. (2015). Epigenetic alterations in colorectal
cancer: emerging biomarkers. Gastroenterology 149, 1204–1225.e12. doi:10.1053/j.
gastro.2015.07.011

Pelegí-Sisó, D., de Prado, P., Ronkainen, J., Bustamante, M., and González, J. R.
(2021). methylclock: a Bioconductor package to estimate DNA methylation age.
Bioinformatics 37, 1759–1760. doi:10.1093/bioinformatics/btaa825

Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P.,
et al. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray

for whole-genome DNA methylation profiling. Genome Biol. 17, 208–217. doi:10.1186/
s13059-016-1066-1

Powell, K. (2021). The broken promise that undermines human genome research.
Nature 590, 198–201. doi:10.1038/d41586-021-00331-5

R Core Team, A. (2009). A language and environment for statistical computing.
Available at: http://www.R-project.org.

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., et al. (2011).
pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC
Bioinforma. 12, 77–78. doi:10.1186/1471-2105-12-77

Sanz-Pamplona, R., Berenguer, A., Cordero, D., Molleví, D. G., Crous-Bou, M., Sole, X.,
et al. (2014). Aberrant gene expression in mucosa adjacent to tumor reveals a molecular
crosstalk in colon cancer. Mol. cancer 13, 46–19. doi:10.1186/1476-4598-13-46

Sarkans, U., Füllgrabe, A., Ali, A., Athar, A., Behrangi, E., Diaz, N., et al. (2021). From
arrayexpress to biostudies.Nucleic acids Res. 49, D1502–D1506. doi:10.1093/nar/gkaa1062

Saulnier, K. M., Bujold, D., Dyke, S. O., Dupras, C., Beck, S., Bourque, G., et al. (2019).
Benefits and barriers in the design of harmonized access agreements for international
data sharing. Sci. Data 6, 297. doi:10.1038/s41597-019-0310-4

Schmitt, M., and Greten, F. R. (2021). The inflammatory pathogenesis of colorectal
cancer. Nat. Rev. Immunol. 21, 653–667. doi:10.1038/s41577-021-00534-x

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021).
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA a cancer J. Clin. 71, 209–249. doi:10.3322/caac.21660

Tay, J. K., Narasimhan, B., and Hastie, T. (2023). Elastic net regularization paths for
all generalized linear models. J. Stat. Softw. 106, 1. doi:10.18637/jss.v106.i01

Teschendorff, A. E. (2020). A comparison of epigenetic mitotic-like clocks for cancer
risk prediction. Genome Med. 12, 56–17. doi:10.1186/s13073-020-00752-3

Wang, T., Maden, S. K., Luebeck, G. E., Li, C. I., Newcomb, P. A., Ulrich, C. M., et al.
(2020). Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk.
Clin. epigenetics 12, 5–9. doi:10.1186/s13148-019-0801-3

Weisenberger, D., Liang, G., and Lenz, H. (2018). DNA methylation aberrancies
delineate clinically distinct subsets of colorectal cancer and provide novel targets for
epigenetic therapies. Oncogene 37, 566–577. doi:10.1038/onc.2017.374

White, A., Ironmonger, L., Steele, R. J., Ormiston-Smith, N., Crawford, C., and Seims,
A. (2018). A review of sex-related differences in colorectal cancer incidence, screening
uptake, routes to diagnosis, cancer stage and survival in the UK. BMC cancer 18,
906–911. doi:10.1186/s12885-018-4786-7

Wickham, H. (2011). ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185.
doi:10.1002/wics.147

Wu, X., Chen, W., Lin, F., Huang, Q., Zhong, J., Gao, H., et al. (2019). DNA
methylation profile is a quantitative measure of biological aging in children. Aging
(Albany NY) 11, 10031–10051. doi:10.18632/aging.102399

Xu, Z., Niu, L., and Taylor, J. A. (2021). The ENmix DNA methylation analysis
pipeline for Illumina BeadChip and comparisons with seven other preprocessing
pipelines. Clin. Epigenetics 13, 216. doi:10.1186/s13148-021-01207-1

Yang, Z., Wong, A., Kuh, D., Paul, D. S., Rakyan, V. K., Leslie, R. D., et al. (2016).
Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 205–218.
doi:10.1186/s13059-016-1064-3

Youn, A., and Wang, S. (2018). The MiAge Calculator: a DNA methylation-based
mitotic age calculator of human tissue types. Epigenetics 13, 192–206. doi:10.1080/
15592294.2017.1389361

Zhang, L., Zhao, Y., Dai, Y., Cheng, J.-N., Gong, Z., Feng, Y., et al. (2018). Immune
landscape of colorectal cancer tumor microenvironment from different primary tumor
location. Front. Immunol. 9, 1578. doi:10.3389/fimmu.2018.01578

Zhang, Q., Vallerga, C. L., Walker, R. M., Lin, T., Henders, A. K., Montgomery, G.
W., et al. (2019). Improved precision of epigenetic clock estimates across tissues and
its implication for biological ageing. Genome Med. 11, 54–11. doi:10.1186/s13073-
019-0667-1

Zheng, C., Li, L., and Xu, R. (2019). Association of epigenetic clock with consensus
molecular subtypes and overall survival of colorectal cancer. Cancer Epidemiol.
Biomarkers Prev. 28, 1720–1724. doi:10.1158/1055-9965.EPI-19-0208

Frontiers in Genetics frontiersin.org14

Widayati et al. 10.3389/fgene.2023.1258648

https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.18632/aging.101508
https://doi.org/10.18632/aging.101508
https://doi.org/10.1371/journal.pbio.0060022
https://doi.org/10.3390/cancers13112589
https://doi.org/10.3390/cancers13112589
https://doi.org/10.4161/epi.27650
https://doi.org/10.4161/epi.27650
https://doi.org/10.18632/aging.101414
https://doi.org/10.1001/jama.2016.3332
https://doi.org/10.1001/jama.2016.3332
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1053/j.gastro.2014.04.039
https://doi.org/10.1158/0008-5472.CAN-21-3607
https://doi.org/10.1073/pnas.1820843116
https://doi.org/10.1073/pnas.1820843116
https://doi.org/10.1016/j.bbcan.2022.188722
https://doi.org/10.1016/j.tig.2021.05.002
https://doi.org/10.1186/s43682-021-00004-4
https://doi.org/10.1016/j.arr.2021.101348
https://doi.org/10.1053/j.gastro.2015.07.011
https://doi.org/10.1053/j.gastro.2015.07.011
https://doi.org/10.1093/bioinformatics/btaa825
https://doi.org/10.1186/s13059-016-1066-1
https://doi.org/10.1186/s13059-016-1066-1
https://doi.org/10.1038/d41586-021-00331-5
http://www.R-project.org
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1476-4598-13-46
https://doi.org/10.1093/nar/gkaa1062
https://doi.org/10.1038/s41597-019-0310-4
https://doi.org/10.1038/s41577-021-00534-x
https://doi.org/10.3322/caac.21660
https://doi.org/10.18637/jss.v106.i01
https://doi.org/10.1186/s13073-020-00752-3
https://doi.org/10.1186/s13148-019-0801-3
https://doi.org/10.1038/onc.2017.374
https://doi.org/10.1186/s12885-018-4786-7
https://doi.org/10.1002/wics.147
https://doi.org/10.18632/aging.102399
https://doi.org/10.1186/s13148-021-01207-1
https://doi.org/10.1186/s13059-016-1064-3
https://doi.org/10.1080/15592294.2017.1389361
https://doi.org/10.1080/15592294.2017.1389361
https://doi.org/10.3389/fimmu.2018.01578
https://doi.org/10.1186/s13073-019-0667-1
https://doi.org/10.1186/s13073-019-0667-1
https://doi.org/10.1158/1055-9965.EPI-19-0208
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1258648

	Open access-enabled evaluation of epigenetic age acceleration in colorectal cancer and development of a classifier with dia ...
	1 Introduction
	2 Materials and methods
	2.1 Association analysis
	2.1.1 Data acquisition and pre-processing
	2.1.2 Sample notations and variables description
	2.1.3 Epigenetic age calculation
	2.1.4 EAA calculation and statistical analysis

	2.2 Classifier
	2.2.1 Data selection
	2.2.2 EAA calculation
	2.2.3 Grid search, cross-validation, and classifier training


	3 Results
	3.1 Evaluation of epigenetic clocks in healthy and cancer patients
	3.2 Differences between EAAs in healthy individuals and CRC patients
	3.3 EAA-based classifier demonstrates good diagnostic potential

	4 Discussion
	4.1 Associations between epigenetic age and CRC
	4.2 Classifier for capturing CRC risk from normal colon tissue
	4.3 Study limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


