
   

 

1 

Deep learning enables spatial mapping of the 

mosaic microenvironment of myeloma bone 

marrow trephine biopsies 

 

Yeman B Hagos1†; Catherine SY Lecat2†; Dominic Patel3; Anna Mikolajczak2; 

Simon P Castillo1; Emma J Lyon2; Kane Foster2; Thien-An Tran2; Lydia SH Lee2; 

Manuel Rodriguez-Justo3; Kwee L Yong2*; Yinyin Yuan1,4* 

1Centre for Evolution and Cancer and Division of Molecular Pathology, The Institute 

of Cancer Research, London, U.K. 

2University College London Cancer Institute, Research Department of Haematology, 

London, U.K. 

3University College London Cancer Institute, Research Department of Pathology, 

London, U.K. 

4Centre for Molecular Pathology, Royal Marsden Hospital, London, U.K. 

† = joint first authors 

* = corresponding authors 

Corresponding authors’ contact detail: 

 Prof Yinyin Yuan, Email: yyuan6@mdanderson.org, Tel: (+1)346 722 9360, 
Address: 1515 Holcombe Blvd, Houston, TX 77030, USA 

 Prof Kwee Yong, Email: kwee.yong@ucl.ac.uk, Tel: (+44)20 3447 8028, 
Address: 72 Huntley St, London WC1E 6DD  

Running Title: Spatial mapping of bone marrow trephine biopsies 

 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-22-2654/3381942/can-22-2654.pdf by guest on 15 N

ovem
ber 2023

mailto:yyuan6@mdanderson.org
mailto:kwee.yong@ucl.ac.uk


   

 

2 

Conflicts of interest 

The funders had no role in the design of the study; the collection, analysis, or 

interpretation of the data; the writing of the manuscript; or the decision to submit the 

manuscript for publication.  

Y.Y. has received speakers bureau honoraria from Roche and consulted for Merck 

and Co Inc.  

The authors declare that they have no other conflicts of interest. 

Abstract 

Bone marrow trephine biopsy is crucial for the diagnosis of multiple myeloma. 

However, the complexity of bone marrow cellular, morphological, and spatial 

architecture preserved in trephine samples hinders comprehensive evaluation. To 

dissect the diverse cellular communities and mosaic tissue habitats, we developed a 

superpixel-inspired deep learning method (MoSaicNet) that adapts to complex tissue 

architectures and a cell imbalance aware deep learning pipeline (AwareNet) to 

enable accurate detection and classification of rare cell types in multiplex 

immunohistochemistry images. MoSaicNet and AwareNet achieved an area under 

the curve of >0.98 for tissue and cellular classification on separate test datasets. 

Application of MoSaicNet and AwareNet enabled investigation of bone heterogeneity 

and thickness as well as spatial histology analysis of bone marrow trephine samples 

from monoclonal gammopathies of undetermined significance (MGUS) and from 

paired newly diagnosed and post-treatment multiple myeloma. The most significant 

difference between MGUS and newly diagnosed multiple myeloma (NDMM) samples 

was not related to cell density but to spatial heterogeneity, with reduced spatial 

proximity of BLIMP1+ tumor cells to CD8+ cells in MGUS compared with NDMM 

samples. Following treatment of multiple myeloma patients, there was a reduction in 

the density of BLIMP1+ tumor cells, effector CD8+ T cells, and T regulatory cells, 

indicative of an altered immune microenvironment. Finally, bone heterogeneity 

decreased following treatment of MM patients. In summary, deep-learning based 

spatial mapping of bone marrow trephine biopsies can provide insights into the 
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cellular topography of the myeloma marrow microenvironment and complement 

aspirate-based techniques. 

Keywords:  Multiple myeloma; bone marrow trephine; deep learning; spatial 

analysis 

Significance: Spatial analysis of bone marrow trephine biopsies using 

histology, deep learning, and tailored algorithms reveals the bone marrow 

architectural heterogeneity and evolution during myeloma progression and 

treatment. 

 

Introduction 

Multiple myeloma (MM) is an incurable hematological malignancy characterized by 

the uncontrolled proliferation of abnormal plasma cells in the bone marrow (BM) 

[1][2][3]. According to the International Myeloma Working Group, the current 

diagnosis of MM is based on the demonstration of clonal neoplastic plasma cells and 

organ dysfunction, of which the most common is bone destruction, which is typically 

investigated by BM aspirate, trephine biopsy samples, and whole-body non-invasive 

imaging [4]. 

Increasingly, there is growing appreciation that myeloma is not driven by malignant 

plasma cells in isolation, but tumor growth is accompanied by global immune 

dysregulation in MM [5][6]. These include impaired T cell effector function [7] and 

antigen presentation [8] and an increase in suppressor cells such as regulatory T 

cells (Tregs) [9][10][11]. Our previous work showed that MM patients who had high 

Tregs had shorter progression-free survival [11]. In addition, analysis of CD4+ and 

CD8+ effectors revealed that a low CD4+ effector to Tregs ratio was an independent 

predictor of early relapse [11]. However, these studies were based on MM blood/BM 

aspirates or MM cell lines employing flow cytometry and gene expression analysis, 

and not using biopsies that preserve the architecture of the BM.  Therefore, the 

spatial relationship between BM cell types in MM has not yet been studied. 
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Deep learning methods, specifically convolutional neural networks (CNNs), have 

been shown to accurately identify complex visual patterns in histopathology images 

without handcrafted features [12][13]. This offers a unique opportunity to harness the 

cellular and non-cellular mosaic spatial ecology of BM [12][14]. However, the unique 

tissue integrity and morphology of BM trephine samples are very different from those 

of solid tumors due to its specialized sampling process and its requirement for 

decalcification (Sup. Figure 1A). The BM also has a highly organized structure, 

being a specialized hemopoietic and immunological organ. Thus, the BM is one of 

the priming sites of T cells and contains both rare and abundant cell types (Sup. 

Figure 1B) [15]; the spatial context of cell-to-cell interactions is likely to be crucially 

important in the development of immunity. Deep learning methods are often sensitive 

to the biases in the data unless carefully designed. Thus, there are new challenges 

in the development of reliable automated analysis for BM trephine samples due to 

possible biases in cell abundance and tissue architecture complexity.    

In this study, we propose new deep learning-based image analysis pipelines 

addressing these challenges: 1)  to dissect the mosaic tissue microenvironment of 

BM trephine samples (MoSaicNet) and accurately identify immune T and MM plasma 

cells (AwareNet) on multiplex immunohistochemistry (MIHC) images; 2) to harness 

the morphologic features of bone trabeculae in MGUS, diagnostic, and post-

treatment MM facilitating new understanding of bone physiology; 3) to analyse cell 

density, infiltration pattern and spatial topography of immune T and MM plasma cells 

facilitating understanding of the cellular topography in the BM niche of MGUS, 

diagnostic and post-treatment MM samples.  

Materials and methods 

Patients studied   

All patients were managed at University College London Hospital (UCLH). BM 

trephine biopsies from two cohorts of patients were extracted: 11 patients with 

MGUS and 14 patients with MM. Two patient samples from the MGUS group and 

four patient samples from the MM group were excluded due to suboptimal tissue 

samples (small areas of hematopoietic tissue), leaving nine patients with MGUS and 
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ten patients with MM included in this study. For the second group, we studied newly 

diagnosed MM (NDMM) patients prior to treatment initiation and also post-treatment, 

when BM biopsies were taken at 100 days following Autologous Stem Cell 

Transplant (ASCT). All patients provided written informed consent for this project. 

Ethical approval was granted by the Health Research Authority, U.K. (Research 

ethics committee reference: 07/Q0502/17).   

Patient characteristics for the MGUS group are shown in Table 1. The median age 

was 61 years, and 56% were male. The majority had IgG MGUS (56%), three had 

IgA MGUS (33%), and one had kappa light chain MGUS (11%). Five patients (56%) 

were deemed to have a low risk of MM progression, whilst two (22%) had 

intermediate risk, and two (22%) had a high risk [16]. 

The characteristics of the ten patients in the MM group are described in Table 2. The 

median age at MM diagnosis was 56 years, consistent with an age group that would 

usually proceed with treatment following induction therapy. Six (60%) patients were 

male, five had IgG disease (50%), and half had standard cytogenetic risk by IMWG 

criteria. Four patients (40%) had ISS stage I disease, five (50%) had stage II, and 

one (10%) had stage III [17]. All patients received combination induction therapy with 

a proteasome inhibitor, cyclophosphamide and dexamethasone, followed by 

Melphalan 200mg/m2 as a conditioning regimen prior to ASCT. 

 

Tissue processing  

BM samples were collected and processed as per ICSH guidelines [18]. They were 

first fixed in neutral buffered formalin and then decalcified with formic acid. After 

decalcification, biopsy specimens were embedded in paraffin wax and cut on a 

microtome at 2–3µm. Serial sections were cut and mounted on glass slides. 

Immunohistochemistry panel selection 

Immune T cells play an active role in the disease's development and progression in 

MM. In this study, we aimed to analyse the density and the spatial topography of 

immune T and MM tumor cells in BM trephine biopsies. We chose CD4 and CD8 to 
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label effector T cells, FOXP3 to represent Tregs [19], and BLIMP1 to stain MM tumor 

cells [20-22]. 

The MIHC staining was performed using the fully automated Leica Bond RXm 

stainer. Each slide was serially stained to identify three different antigens using 

different membranous or nuclear stains. The details of antibodies used are in Sup. 

Table 1. Two MIHC multiplex panels were used in this study. Panel 1 included T cell 

markers CD4 and CD8, as well as FOXP3, a transcription factor specifically 

expressed by CD4+ Tregs.  Panel 2 comprised CD4, CD8 and BLIMP1. BLIMP1 is a 

nuclear stain and therefore allowed clear visualization when combined with CD4 and 

CD8 membranous stains. Staining protocols can be found in (Sup. Table 2-3). 

Stained slides were then scanned using the Hamamatsu Nanozoomer s360 scanner 

and analysed by the deep learning models.   

Pre-processing of whole slide images 

The MIHC whole slide images (WSI) were scanned at 40x magnification with a pixel 

resolution of 0.23µm/pixel. A representative image has a 40000 x 40000 pixel size at 

40x magnification. For efficient image processing, the images were downscaled to 

20x magnification and divided into 2000 x 2000 pixel “tiles”. 

MoSaicNet: Segmenting BM trephine components using 

deep learning and superpixel 

The digital image of the BM trephine is a mosaic landscape of blood, bone, cellular 

tissue, and fat region (Sup. Figure 1A). To automatically segment these regions, we 

developed MoSaicNet (Morphological analysis with Superpixel-based habitat 

detection Network) (Figure 1A). MoSaicNet contains superpixel extraction and a 

CNN-based superpixel classifier.  

MoSaicNet training and validation data preparation 

To train, validate, and test MoSaicNet, we collected 260 regions of interest from 19 

samples (Sup. Table 4) annotated by expert pathologists (Sup. Figure 2A) from the 

different regions of the images. The training (47%), validation (31%), and testing 
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(22%) split was randomly done at the patient level. These annotated regions were 

extracted from the WSIs and divided into superpixels using the simple linear iterative 

clustering (SLIC) superpixels algorithm [23] (Figure 1A). SLIC groups neighbouring 

pixels with similar pixel intensity into one superpixel. The shape of the superpixels is 

controlled by the compactness (C) parameter of the SLIC algorithm. The number of 

superpixels depends on the size of the images and the parameter k (Equation (1)) 

[23][24]. The parameters C and k are set by a user to ensure superpixels are 

capturing homogeneous pixels and bounding to region boundaries in the image 

under consideration depending on the scenario [23][24]. The number of superpixels 

(n) was computed using Equation (1). 

 𝑛 = ⌈
Image area

𝑘
⌉   (1) 

Upon visual assessment, superpixels with k=2000 and C=30 best adhere to the 

boundaries of tissue and fat regions. This resulted in about 40 x 40 pixel (18.4µm x 

18.4µm) sized superpixel regions (Figure 1A). After applying SLIC, we generated 

69, 884 superpixels from the 260 regions (Sup. Table 5). These superpixels 

belonged to four classes: blood, bone, fat and cellular tissue. Each superpixel was 

assigned a class of the region it belongs. We implemented and trained a custom-

designed convolutional neural network to automatically classify these superpixel 

regions (Sup. Methods). 

AwareNet: attention-based deep convolutional network for 

cell detection and classification 

Single-cell annotation 

To train, validate and test our proposed deep learning-based single-cell detection 

and classification models, we first collected 8004 single-cell dot annotations on 11 

samples by expert pathologists (Sup. Figure 2A), using a web-based annotation tool 

developed in our lab (not published). The annotations belonged to three classes: 

CD8+ (n = 5103), FOXP3-CD4+ (n = 2381), and FOXP3+CD4+ (n = 518). We 

identified FOXP3+ cells as rare because they represented only 6.5% of all annotated 

cells, despite histopathologists actively looking for them in the whole tissue instead 
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of only regions of interest. The training (46%), validation (27%) and test (27%) split 

was done randomly at the patient level to ensure that cells from the same patients 

are not included in different categories (Sup. Table 6). 

Cell detection and classification 

To automatically localize cells in MIHC images, we developed AwareNet (Figure 

1B). AwareNet is a deep learning method designed to give high attention to rare cell 

types such as FOXP3+CD4+ cells in the case of BM trephine samples. During model 

training, the attention score was inferred from the relative abundance of each cell 

type in the training data. A rare cell type was given a larger attention score. The 

mathematical formulation of attention image generation and usage during model 

training is detailed in [25].  

AwareNet generates a predicted cell nucleus centre probability map image (Figure 

1B) from which the spatial coordinates of the centre of the cell’s nucleus are 

computed (detailed in Sup. Methods). To identify the type of the detected cell, we 

extracted a 28x28x3 patch centred on the cell nucleus (Figure 1B) and applied a 

custom-designed CNN classifier [25]. 

Cell density 

Cell density is measured as the number of cells per unit of tissue area (µm2). 

Suppose a given tissue section has N cells and cellular tissue area of AT, cell density 

is computed using Equation (2).  

 𝐶𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
N

𝐴𝑇
 (2) 

Cells proximity analysis 

We investigated the spatial proximity of a pair of cell types (e.g., BLIMP1+ MM 

plasma cells and CD8+ T cells) within the BM microenvironment as follows (Figure 

1C). Consider a tissue section that contains k number of type A cells located at {ai, i 

∈ {1, 2, 3, …, k}} and m number of type B cells located at {bj, j ∈ {1, 2, 3, …, m}}. 

Each cell has an (x, y) position. The number of type B cells within a distance r from 
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type A cell was computed using Equation (3A and B). 

 𝑁𝑝𝑟𝑜𝑥(𝑏 → 𝑎) =
1

𝑘
∑

∑ Ω𝑚
𝑗=1

Փ𝑖
  

𝑘

𝑖=1

 (3A) 

 Ω = {1, 𝐷(𝑎𝑖 , 𝑏𝑗)  ≤  𝑟 ;  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3B) 

where D is the Euclidean distance function for two cells, ai and bj. Փi is a normalizing 

factor, which is the total number of cells (all types) within r distance from ai. In BM 

trephine samples, there is a huge variation in the tissue architecture caused by the 

prevalence of non-cellular regions such as bone and fat regions (Sup. Figure 1A). 

Moreover, in single-cell based spatial analysis, the density of cells could be a 

confounding factor. Incorporating Փi corrects these factors.  

Validation cohort 

Bone marrow trephine samples from a separate patient cohort were used to validate 

this deep learning pipeline. This cohort consisted of 9 NDMM pre- and post-

treatment BM samples. Patient characteristics can be found in Sup. Table 7. These 

were collected from 7 different U.K. hospitals (1 from UCLH, 1 Kent & Canterbury 

Hospital, 2 Sunderland Royal Hospital, 1 Warwick Hospital, 1 Calderdale Royal 

Hospital, 2 Ninewells Hospital, 1 Huddersfield Royal Infirmary) and were stained with 

MIHC panel 2 (CD4, CD8 and BLIMP1) using the same staining protocol. A different 

autostainer of the same model was used. Whole slide images were scanned and 

underwent color normalization (Sup. Method) before analysis to adjust for tissue 

processing and staining variations.   

Bone density similarity and heterogeneity 

To learn the low dimensional representation of bone superpixels, we custom-

designed a convolutional auto-encoder (Sup. Methods, Sup. Figure 2B). For ease 

of visualization and applying unsupervised clustering algorithms on the 

representation of bone superpixels, we applied Uniform Manifold Approximation and 

Projection (UMAP) dimensionality reduction.  
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Then, we applied a clustering algorithm to divide the latent representation space into 

smaller regions. Kmeans and Gaussian Mixture Models (GMM) are the most 

commonly used clustering algorithms. We applied GMM to detect bone superpixel 

clusters in the embedding space due to its flexibility to cluster shapes [26]. To 

determine the number of clusters, we used the Akaike information criterion (AIC) and 

the Bayesian information criterion (BIC). We used the GMM algorithm and its built-in 

AIC and BIC methods from the Scikit-Learn python package [27]. A cluster contains 

superpixels with similar bone density/texture. The clustering enabled us to identify 

artefact bone superpixels with input from an expert pathologist (MR). These clusters 

were excluded from further analysis.  

To quantify the heterogeneity (H) of bone texture within a slide, we computed the 

maximum variance (Var) of the latent representations of all superpixels within the 

slide using Equation (4). 

 𝐻 = max(𝑉𝑎𝑟(𝑈𝑚𝑎𝑝 1), 𝑉𝑎𝑟(𝑈𝑚𝑎𝑝 2) ) (4) 

Automated machine learning algorithm to quantify bone 

thickness 

The proposed method to quantify bone thickness is shown in Figure 2A. We 

extracted the bone regions from the output of MoSaicNet. To compute bone 

thickness for a given bone (B), first, we applied distance [28], and medial axis 

transforms [29] as shown in Figure 2A. The Distance transform (DT) computes the 

minimum distance from bone pixels to non-bone pixels. The medial axis transform 

(MAT) generates the topological skeleton of the bone, a series of bone pixels that 

have more than one closest equidistant non-bone pixel. The bone thickness 

(Bthickness) for a given tissue sample was computed as the mean of the mean 

thicknesses of all bones within the sample using Equation (5). 

 𝐵𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠  =
1

𝑁
∑

2 ∑ DT(𝐵𝑖)  ⊙   MAT(𝐵𝑖)) 

𝐿𝑖

𝑁

𝑖=1

  (5) 

where N is the number of bones in the sample, and ⊙ is elementwise matrix 

multiplication. Li is the length (number of pixels) of the skeleton of the ith bone, Bi.The 
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distance values on the medial axis of the bone are half the thickness of the bone 

across its length. Thus, to get the total bone thickness, the distance was multiplied 

by 2, as shown in Equation (5).  

Spatial analysis 

To quantify the degree of clustering or dispersion of cells in BM trephine samples, 

we used the concept of nearest neighbour distance (NND) and the null hypothesis to 

identify the infiltration pattern of cells (Sup. Methods). NND is the distance from a 

spatial point to its closest neighbour.  Under the null hypothesis, which is complete 

spatial randomness (CSR), the distribution of NND is normal. (Figure 2B). We 

computed the Z-score to measure the difference between the NND for random 

distribution of cells and the NND of observed cells pattern. Z<-1.96, Z>1.96, and -

1.96≤Z≤1.96 indicate a clustered, dispersed and random distribution of observed 

cells respectively. 

 

Statistical analysis 

All statistical analyses were carried out using the Python programming language. All 

correlation values were measured using the non-parametric Spearman test. The p-

values were computed using a two-sided unpaired (for MGUS vs NDMM) or paired 

(for NDMM vs post-treatment), non-parametric Wilcoxon method, considering p < 

0.05 as significant. Benjamini-Hochberg correction was applied in the case of 

multiple comparisons to maintain the experiment-wise type I error rate at 0.05. 
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Code and data availability 

All methods and analyses were implemented in Python. The tested implementation 

of methods listed above can be found on this Code Ocean link 

(https://codeocean.com/capsule/0863619/tree/v1) along with documentation 

explaining how to run the different algorithms. A Docker file containing all the 

dependencies and a test .ndpi whole slide image is also included in Code Ocean 

repository. This repository contains an end-to-end analysis of whole slide image 

comprising of Tiling, superpixel-based tissue classification, cell detection, cell 

classification, cell counting, bone thickness quantification and cell proximity 

quantification. In Code Ocean, at test whole slide image is uploaded and pressing 

the ‘Reproducible Run’ button at the top right corner will automatically perform the 

above listed tasks and output will be saved in results folder.  The code runs on both 

local and high-performance clusters using the Docker container. All raw data are 

available from the corresponding authors upon request. 

Results 

Computational and spatial analysis 

Unlike solid tumors, BM trephine sections consist of isolating structural elements 

over different spatial scales, reflecting a mix of cellular communities and mosaic 

habitats. To dissect this complex tissue landscape and detect rare cells in MIHC 

(Sup. Figure 1), we specifically designed two deep learning methods, MoSaicNet to 

dissect the mosaic landscape of BM tissue (Figure 1A) and AwareNet to detect and 

classify cells (Figure 1B). First, to dissect the MM tissue into blood, bone, fat, and 

cellular tissue patches/habitats, a superpixel-based deep learning method was 

designed to capture the complex landscape (Figure 1A). To train and validate 

MoSaicNet, we collected expert segmentation annotations for 260 regions, which 

resulted in 69884 superpixels (Methods, Sup. Table 4-5). Subsequently, we were 

able to quantify the amount of cellular tissue, which served as an important quality 

control parameter, to determine whether a slide would be considered for further 

analysis. With the help of our pathologist, the tissue area threshold was set to 1.1 x 
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106 μm2. Sections with cellular tissue area less than this threshold were excluded 

from analysis. 

To optimally detect and classify cells within BM trephine samples, that contain both 

rare (e.g. FOXP3+CD4+) and abundant cells (Sup. Figure 1B). Thus, to optimally 

detect and classify these cell types, we developed AwareNet [25].  

Subsequently, we analysed the BM spatial microenvironment in terms of cell density, 

cell ratio, cell spatial proximity and clustering, and bone physiology in terms of bone 

density/texture heterogeneity, and bone thickness (Figure 1C, Sup. Methods).    

High accuracy of MoSaicNet classification model   

To evaluate the performance of the MoSaicNet classification model, we used 9330 

superpixels extracted from separately held manually annotated samples (Sup. Table 

5). The superpixels belonged to the blood, bone, fat and cellular tissue classes. To 

measure the classifier’s performance, we used accuracy, area under the curve 

(AUC), precision, recall and F1-score (Sup. Methods). Taking all classes together, 

the superpixel classifier model achieved an AUC value of 0.99, 95% confidence 

interval (CI) [0.989, 0.991] (Sup. Table 8). Moreover, for each class, the bootstrap 

mean AUC was >0.984 for all the classes (Figure 3A and Sup. Table 8). The overall 

accuracy (unweighted) was 0.937, 95% CI [0.935, 0.94]. 

Out of the 9330 superpixels, 585 superpixels were misclassified. Out of the 585 

misclassified superpixels, 208 tissue superpixels were misclassified as bone, and 

122 bone superpixel patches were misclassified as tissue (Sup. Figure 3A). This 

was also evident in the lower precision value for bone class (0.88, 95% CI [0.87, 

0.89]), lower recall value for bone class (0.933, 95% CI [0.93, 0.94]) and lower recall 

value for cellular tissue class (0.932, 95% CI [0.93, 0.94]) (Sup. Table 8) compared 

to other classes. Moreover, 88 tissue superpixels and 29 bone superpixels were 

misclassified as a fat class, and the precision score for the fat class was 0.933, 95% 

CI [0.93, 0.94] (Sup. Table 8). Areas under precision-recall curves (AUC-PR) were 

>0.95 across all classes (Sup. Figure 3B). A mean F1-score of 0.91 was obtained 

for the bone class, and for the other classes, the mean F1-score was 0.943. Taking 

all classes together, an F1-score of 0.94, 95% CI [0.935, 0.945] was obtained (Sup. 
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Table 8). 

Most of the tissue superpixels misclassified as bone were superpixels with poor 

tissue quality, non-cellular regions, and bone-bordering areas (Figure 3B). Most of 

the 122 bone superpixels that were misclassified as tissue were a result of 

background staining of the bordering area (Figure 3B).  

Detecting rare cell types with AwareNet 

To evaluate the performance of AwareNet, we measured precision, recall, and F1-

score on separately held 2131 test single-cell annotations. AwareNet achieved an 

F1-score of 0.78, a 2% increase compared to U-net [30] and a 1% increase 

compared to CONCORDe-Net [13]. In particular, AwareNet excels in detecting 

FOXP3+CD4+ cells, which are rare in BM trephines (representing ~7% of the training 

data) [25].  

Taking all three classes together, the single-cell classifier model of AwareNet 

achieved an AUC value of 0.98, 95% CI [0.977, 0.984] (Sup. Table 9). Moreover, for 

each class, the mean bootstrap AUC value was >0.98, with a minimum AUC 95% CI 

lower bound of 0.976 for the CD8+ class (Sup. Table 9 and Figure 3C). The overall 

accuracy (unweighted) was 0.965, 95% CI [0.962, 0.969]. Out of the 2131 cells, 74 

cells were misclassified (Sup. Figure 3C). 11 cells out of 135 FOXP3+CD4+ cells 

were misclassified as FOXP3-CD4+ cells, and 12 FOXP3-CD4+ cells were 

misclassified as FOXP3+CD4+ cells (Sup. Figure 3C). This resulted in precision 

(0.857, 95% CI [0.83, 0.89]), recall (0.92, 95% CI [0.9, 0.94]), and F1-score (0.887, 

95% CI [0.87, 0.91]) for the FOXP3+CD4+ class (Sup. Table 9). Precision-recall 

curves are displayed in Sup. Figure 3D and the AUC-PR of the rarer cell type, 

FOXP3+CD4+, was 0.82. For the FOXP3-CD4+ and CD8+ class, the F1-score was 

0.956, 95% CI [0.95, 0.96], and 0.98, 95% CI [0.98, 0.98], respectively (Sup. Table 

9). Moreover, when all classes were combined, the classifier obtained an F1-score of 

0.941, 95% CI [0.93, 0.95] (Sup. Table 9). The Matthew’s correlation coefficient was 

0.93 for this panel. 

UMAP-based inspection of the misclassified FOXP3-CD4+ and CD8+ cells revealed 

that these cells were mainly cells co-expressing both CD8 and CD4 proteins (Figure 
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3D, Sup. Methods). These rare cell types have been found in follicular lymphoma 

[31] and urological cancers [32] but, to the best of our knowledge, they have not 

been studied in myeloma.  

AwareNet was trained on single-cell data from CD4/CD8/FOXP3 panel data and 

directly applied to both panels, CD4/CD8/FOXP3 and CD4/CD8/BLIMP1. After 

applying the model to both panels, the numbers of CD8+ and CD4+ cells in both 

panels were significantly correlated (r=0.79, p=2.97 x 10-7 and r=0.79, p=3.43x10-7 

Figure 3E-F, respectively), validating the reliability of AwareNet. All cell frequencies 

from both panels detected by AwareNet can be found in Sup. Table 10.  

 

MoSaicNet reveals changes in bone physiology post-

treatment 

Using MoSaicNet, we quantified the proportion (%) of blood, bone, fat, and cellular 

regions in all sections (Figure 4A). In the NDMM group, post-treatment trephine 

samples contained a greater proportion of bone (%bone) when compared with 

diagnostic samples (p=0.037, Figure 4B). There was a trend of decrease in %bone 

with age (p=0.086). There was, however, no difference in the %bone between 

MGUS and NDMM or between male and female patients (Figure 4C-E). There was 

a trend of increase in %fat at post-treatment compared with diagnostic sample pair 

(p=0.05, Sup. Figure 4A) but was not different between MGUS patients and NDMM 

patients, nor between age or gender (Sup. Figure 4B-D). 

To investigate the heterogeneity of bone structure in BM samples, we used a 

convolutional auto-encoder to learn the embedding of 177.6 thousand bone 

superpixels extracted from nine MGUS (27.8%), ten NDMM (34.4%) and ten post-

treatment (37.8%) WSIs (Sup. Methods). Bone superpixels were mapped into 32 

feature vectors and clustered into 17 groups (Methods, Figure 4F, Sup. Figure 4E-

G). Based on this grouping, there was a positive trend in the similarity of bone 

superpixels from MGUS to bone superpixels from post-treatment samples compared 

with bone superpixels from NDMM samples, even though this was not significant 

(r=0.4, p=0.12 and r=-0.13, p=0.63, Figure 4G).  
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We then asked if the bone texture differed between the patient groups. The intra-and 

inter-sample bone texture or density heterogeneity in NDMM was significantly higher 

at diagnosis compared to post-treatment (Methods, p=0.0098, Figure 4H-I). 

Moreover, we observe a pattern of increased bone heterogeneity in NDMM samples 

compared with MGUS samples; however, this was not significant (p=0.086, Figure 

4H, J). The bone heterogeneity was similar between MGUS and post-treatment 

samples (Figure 4H and p=0.87, Sup. Figure 4H).  

Furthermore, to analyse bone thickness, we developed an automated image analysis 

algorithm (Sup. Method, Figure 2A). The bone thickness of NDMM samples was 

similar to post-treatment samples (p=0.23, Figure 4K) and MGUS (p=0.37, Figure 

4L). The bone thickness in patients aged ≤58 years (median) was significantly higher 

compared with that in patients aged >58 years (p=0.018, Figure 4M), without 

variation between gender (p=1.0, Figure 4N).  

Decreased FOXP3+CD4+ and BLIMP1+ cell density post-

treatment 

When comparing cell density on the NDMM and post-treatment samples, we 

observed a decrease in both regulatory T (FOXP3+CD4+), as well as CD8+ T cells 

following treatment (p=0.0039 and p=0.0039, respectively, Figure 5A-B). However, 

FOXP3-CD4+ T cell density did not change post-treatment (p=0.77, Figure 5C). The 

FOXP3+CD4+:FOXP3-CD4+ ratio is significantly reduced after ACST (p=0.0137, 

Figure 5D), largely due to the reduction in the density of FOXP3+CD4+ cells post-

treatment. However, the FOXP3-CD4+:CD8+ ratio (CD4+ effector:CD8+ effector cells 

ratio) and the FOXP3+CD4+:CD8+ ratio were not different between the two-time 

points (Figure 5E, Sup. Figure 5A, respectively). We defined FOXP3-CD4+ cells as 

CD4+ effector T cells and CD8+ cells as CD8+ effector T cells. Tumor burden as 

measured by BLIMP1+ cells per unit area was significantly reduced post-treatment 

compared with the paired diagnostic samples (p=0.0134, Figure 5F). However, the 

CD8+:BLIMP1+ and CD4+:BLIMP1+ ratios were not significantly different between the 

diagnostic and post-treatment pairs (p=0.275 Figure 5G and p=0.43, Sup. Figure 

5B, respectively). 
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Increased spatial proximity between BLIMP1+ cells and 

CD8+ cells in NDMM compared to MGUS 

The density and ratio of CD8+, FOXP3+CD4+, and FOXP3-CD4+ cells were not 

significantly different between MGUS and NDMM (Figure 5H, Sup. Figure 5C-G). 

There was a pattern of increase in BLIMP1+ cells density and BLIMP1+:CD4+ ratio in 

the NDMM sample compared to MGUS samples, though this was not significant 

(p=0.08, Figure 5I, and p=0.08 Sup. Figure 5H, respectively). Furthermore, the ratio 

of the number of BLIMP1+ cells to CD8+ cells did not differ between MGUS and 

NDMM (p=0.165, Figure 5J). The density of FOXP3+CD4+ cells was significantly 

correlated with the density of BLIMP1+ cells in the post-treatment (r=0.79, p=0.006, 

Sup. Figure 5I) samples but not in MGUS and NDMM samples (r=0.47, p=0.205 and 

r=0.20, p=0.58, Sup. Figure 5I, respectively). Figure 5K and Figure 5L are paired 

pre- and post-treatment BM examples that illustrate a reduction in FOXP3+CD4+, 

CD8+ and BLIMP1+ cell densities post-treatment. 

Next, we asked if the spatial proximity between immune cells and BLIMP1+ plasma 

cells differed according to disease state and treatment. To demonstrate that the 

spatial analysis result is not dependent on the distance threshold chosen, cell 

proximity was calculated for a range of distances with the maximum distance set at 

the cell-cell communication distance of 250μm (30, 50, 100, 150, 200, 250μm) 

[33][34]. Cell proximity data was corrected for cell abundance (Methods and Sup. 

Figure 6A-D). The number of FOXP3+CD4+ cells in proximity to FOXP3-CD4+ cells 

decreased at post-treatment compared with the paired diagnostic samples 

(Benjamini-Hochberg (BH) corrected p=0.023 for r=30-250μm Sup. Figure 7A). 

However, the number of FOXP3+CD4+ cells in proximity to CD8+ cells was not 

different between NDMM samples and paired post-treatment samples (BH corrected 

p>0.05 for r=30-250μm Sup. Figure 7B).  The number of BLIMP1+ cells in proximity 

to CD8+ and CD4+ cells significantly reduced after treatment (BH corrected p<0.05 

for r= 30-250μm, Figure 6A and Sup. Figure 7C, respectively), indicating a 

significant change in the immune microenvironment post-treatment. However, the 

number of FOXP3+CD4+ cells in proximity to FOXP3-CD4+ and CD8+ cells and the 

number of BLIMP1+ cells in proximity to CD4+ cells was not different between NDMM 

and MGUS samples (Sup. Figure 7D-F). Interestingly, despite similar cell density, 
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the number of BLIMP1+ cells in proximity to CD8+ cells in MGUS samples was 

significantly lower than in NDMM samples (BH corrected p=0.036 for r=30-250μm 

Figure 6B, C), which may indicate variability in anti-tumor immune activity in the 

precursor stage compared with the malignant stage.  

 

Significant spatial clustering of CD8+ cells in NDMM 

samples compared with post-treatment 

We next asked how cells distribute within the BM tissues; do they display a spatially 

dispersed or clustered pattern? To identify the spatial pattern of a specific cell type, 

we compared the observed nearest neighbour distance with the spatial randomness 

of the cell type within the tissue section (Sup. Methods).  In most MGUS, NDMM, 

and post-treatment samples, we observed clustered patterns (Z-score < -1.96) of 

CD8+, BLIMP1+ and FOXP3-CD4+ cells compared to spatial randomness but not for 

FOXP3+CD4+ cells (Figure 6D-H and Sup. Figure 8A-C). The degree of clustering 

of CD8+ cells in the NDMM was significantly higher at diagnosis than in post-

treatment samples (p=0.027, Figure 6D) but not compared to MGUS samples 

(p=0.514, Figure 6G). There was a trend towards increased clustering of BLIMP1+ 

cells in the NDMM samples compared with their paired post-treatment and with 

MGUS samples (p=0.065 and p=0.06, Figure 6B, H, respectively). The degree of 

clustering of BLIMP1+ cells in female samples was significantly higher than in male 

patients (p=0.039, Figure 6I) but not different between age groups (Sup. Figure 

8D). 

High accuracy achieved in the validation cohort 

The validation cohort contained 9 NDMM and paired post-treatment BM samples 

(n=18) obtained from different hospitals and were stained with MIHC panel 2 using a 

different Leica Bond RXm autostainer.  All samples had a tissue area of above 1.1 x 

106 μm2, a threshold set for analysis inclusion. They also underwent color 

normalization before analysis (Sup. Figure 9A-B). To evaluate the performance of 

our model on this cohort, 4857 single-cell annotations (BLIMP1 = 2330, CD4 = 1589, 

CD8 = 938) and tissue segmentation (e.g. fat, bone, blood) annotations in 54 regions 

of interest were made on 10 samples. Despite possible variations from tissue 
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processing and staining, MoSaicNet was able to achieve an AUC value of 0.97, 95% 

CI [0.974, 0.978] taking all classes into account (Sup. Table 11 and Sup. Figure 

10). In addition, each class had a mean AUC of >0.94, reaching an overall accuracy 

of 0.949, 95% CI [0.946, 0.953].  

Of the 4487 superpixels, 227 superpixels were misclassified. Most of the 

misclassified superpixels were bone being misclassified as blood (65 superpixels), 

followed by blood being misclassified as tissue (51 superpixels). Taking all classes 

together, the overall precision value was 0.947, 95% CI [0.942, 0.95], the recall value 

was 0.938, 95% CI [0.933, 0.942] and the F1-score was 0.942, 95% CI [0.938, 

0.945] (Sup. Table 11).  

When evaluating the performance of AwareNet in the validation cohort, the single-

cell classifier achieved an AUC value of 0.987, 95% CI [0.985, 0.988] for BLIMP1+ 

cells, 0.988, 95% CI [0.986, 0.989] for CD4 and 0.979, 95% CI [0.973, 0.977] for 

CD8 (Sup. Figure 11A-C and Sup. Table 12). The overall accuracy was 0.905, 95% 

CI [0.901, 0.909]. Of the 4857 cells, 441 cells were misclassified. 192 CD8+ cells 

were misclassified as CD4+ cells and 103 BLIMP1+ cells were misclassified as CD4+ 

cells. Nevertheless, high F1-scores were noted across all three cell types: 0.944, 

95% CI [0.94, 0.95] for BLIMP1, 0.897, 95% CI [0.89, 0.90] for CD4 and 0.814, 95% 

CI [0.80, 0.82] for CD8, with a combined F1-score of 0.885, 95% CI [0.88, 0.89] 

(Sup. Table 12). AUC-PR for all cell types were >0.91 and the Matthew’s correlation 

coefficient was 0.85 for this cohort (Sup. Figure 11D). 

Furthermore, quantitative and spatial analysis of the validation cohort revealed 

similar findings to the original dataset. As in the original dataset, NDMM samples had 

significantly higher BLIMP1+ cell density (p=0.004, Sup. Figure 12A-B, 13A) than 

post-treatment samples in the validation cohort. Similarly, CD4+ T cell densities were 

not significantly different between the two groups (p=0.91, Sup. Figure 13B). CD8+ 

T cell densities also did not differ significantly (p=0.82, Sup. Figure 13C), a finding at 

variance with our discovery cohort, this could be due to the small sample size. 

Spatial analysis demonstrated significantly lower numbers of BLIMP1+ cells in 

proximity to CD4+ as well as CD8+ T cells in the post-treatment group, in 

concordance with the original dataset (BH corrected, p=0.003, r=30-250μm, Sup. 

Figure 14A-B).  
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Post-hoc analysis for training dataset sample size 

calculation  

To estimate the sample size needed to train AwareNet and MoSaicNet, we 

evaluated the performance of these models using different sample sizes and 

displayed this as learning curves (Sup. Methods and Sup. Figure 15A-B). For 

AwareNet, using only 40% of the training data, we achieved an F1-score of 0.973 

compared to 0.98 when using 100% of the training data (Sup. Figure 15A). Thus, by 

reducing the number of required annotations by about 60%, AwareNet could achieve 

comparable performance to the model trained on the whole dataset. For MoSaicNet, 

the model showed the highest performance when trained on 80% of the data, 

achieving an F1-score of 0.932 compared to a model trained on 100% of the data, 

with a gap of about 1% (Sup. Figure 15B).  

 

Discussion 

Myeloma, like many other blood cancers, initiates and evolves in the BM. The BM 

ecological niche is highly organized, where hemopoietic, including immune cells, 

osteoblasts, osteoclasts, adipocytes, and other cells interact and co-evolve with 

neoplastic cells [35][36]. The BM milieu and its architectural pattern are, therefore, 

crucial to the decoding of neoplasm evolution for many blood cancers. Analysis of 

the intact BM niche has been limited in the past, both due to the difficulty in 

preserving epitopes and nucleic acid during the processing of BM trephines and the 

lack of specialized computational methods that are capable of removing sample 

artefacts and dissecting BM components.  

 

Here, we demonstrate that, through the generation of carefully preserved BM 

trephine tissue sections and the development of spatial histology methods based on 

deep learning and spatial statistics, new biological insights on MM neoplastic 

progression and treatment response can be derived. The spatial architecture of MM 

BM was interrogated by establishing fully automated computational pipelines to 

analyse immune cells' spatial topography, bone texture heterogeneity and thickness, 

in addition to the changes in tumor load and BM components during neoplastic 
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progression and treatment. Previously, spatial interactions of stromal components in 

BM using 3D microscopy in a mouse model [37] and spatial interactions of BM 

adipose tissue and hematopoietic stem cells in rhesus macaques were studied [38].  

To the best of our knowledge, this is the first study to use spatial histology based on 

deep learning to discover spatial cellular topologies and architectural patterns in 

human BM trephine samples that inform changes in disease status in MM. This is in 

contrast to the many machine-learning methods available for BM aspirate derived 

cell suspensions for cell counts and marrow evaluation [18][39]. Methods developed 

in our study may impact the study of many other diseases by unlocking the potential 

of deep learning and spatial tissue architecture, thus generating new insights from 

routine BM trephine samples.   

 

BM trephine tissue is a mosaic landscape of blood, bone, cellular tissue, and fat. To 

dissect the complex mosaic tissue microenvironment into individual components in 

MIHC images, MoSaicNet was developed. Instead of a standard application of CNNs 

to generate patch-level [40] or pixel-level classification [30][41], MoSaicNet can 

efficiently define the highly irregular tissue component boundary without requiring 

large amounts of expert annotation training, thus combining the best of two 

approaches. Patch-based approaches use rigid image patches as units for 

classification tasks, requiring fewer annotations but cannot generate a detailed 

mapping of the tissue. In comparison, pixel-based algorithms such as U-Net [30] or 

Micro-Net [41] generate detailed contours, but such algorithms often require large 

amounts of training data. MoSaicNet combines a machine learning-based approach, 

superpixel segmentation, and deep learning classification to efficiently map out the 

MM BM tissue landscape using superpixels as spatial units, classifying them into 

cellular components, blood, bone, fat, and background.  

 

Building on MoSaicNet, a new autoencoder-based approach was developed to study 

bone physiology. This was inspired by the potential role of bone and related cells, 

such as osteoblasts and osteoclasts, in regulating BM remodelling [14][42] and MM 

dormancy and proliferation [43]. Autoencoder is an effective method for dimension 

reduction and denoising. Here we demonstrated its value in bone texture 

heterogeneity analysis, using feature extraction based on autoencoder and 

unsupervised clustering of the bone superpixels. We observed that the amount of 
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bone in the biopsies taken post-treatment was greater than those taken at diagnosis, 

reflecting the destructive effect of MM tumor cells on bone.  The bone density of 

NDMM samples was also more heterogeneous when compared to matched post-

treatment samples, again reflecting an effect of the disease process on bone 

physiology that occurs in a spatially heterogeneous manner [44]. Moreover, a novel 

method was developed to study bone thickness using distance transform and 

topological analysis. In agreement with the bone trabecular surface analysis on 

lymphoid cancer samples [12], bone% and bone thickness showed a decreasing 

pattern with ageing but was not different between male and female samples. Taken 

together, our data indicate that bone analytical methods may be useful for the study 

of bone degeneration during MM progression and treatment, and bone heterogeneity 

may be a useful marker for disease activity. 

 

Subsequently, AwareNet, developed specifically to identify rare immune cell types, 

enabled us to dissect the hematopoietic ecosystem of BM in the context of MM. 

Deep learning models are often sensitive to class imbalance, resulting in lower 

accuracy in detecting rare cell types such as FOXP3+CD4+ Tregs in our samples. To 

resolve this, cell segmentation-based spatial cell weighting was proposed [30][45]. 

AwareNet extends cell segmentation-based spatial cell weighting [30][45] by using 

cell identification instead of segmentation, which is less costly. Furthermore, giving a 

higher attention score to rare cell types improved the detection of rare cell types 

compared to U-Net [30] and CONCORDe-Net [13].  

Using AwareNet, we observed a reduction in the density of BLIMP1+ tumor cells, and 

of the immune cell subsets, CD8 and Tregs in post-treatment BM, compared with 

diagnostic samples from paired NDMM.  While the reduction in tumor cell density is 

expected, the decrease in immune cell subsets may suggest an alteration in immune 

function, such as anti-tumor responses. Several studies have reported on the 

changes in frequency or proportion of T cell subsets in post-treatment BM or blood. 

However, all these studies have hitherto studied BM aspirate samples and assessed 

immune cell subsets as a percentage of the CD138-negative fraction of mononuclear 

cells, while our study quantified cell density as a function of tissue surface area.  

Thus, although we ourselves have reported an increase in CD8+ T cells as a fraction 

of CD3+ cells in post-treatment BM aspirates compared to pre-treatment samples 
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[46], it is not possible to directly compare these data.  Regulatory T cells have 

attracted a great deal of attention in MM, and most studies, including our previous 

work in BM aspirates, concur in reporting an increased abundance of these cells in 

MM patients compared with healthy controls [11][47][48]. Hence, our observation in 

this study of a greater density of Tregs in NDMM samples compared with post-

treatment samples is consistent with previous studies [49]. On the other hand, our 

observation that the density of CD8+ cells falls following treatment may be at odds 

with studies using aspirate samples, for the reasons described above, as well as 

variation in sampling time and site, but the actual treatments received, and type of 

transplant are also likely to influence the results [9][5][6]. Our previous work on BM 

aspirates found no difference in the actual frequency of Tregs between pre- and 

post-treatment [46]. 

Importantly, new insights were derived from the topological analysis between MM 

plasma cells and immune T cells. In solid tumors such as oestrogen receptor-

positive breast [50] and lung tumors [34], spatial scores were found to be more 

prognostic than cell counts. In MM, however, the spatial relationship of cells and their 

prognostic value have remained unexplored. Our approaches control for cell 

abundance and take into account the local tissue architecture and cell distribution. 

Interestingly, the number of BLIMP1+ cells in spatial proximity with CD8+ cells was 

significantly greater in diagnostic MM samples compared with MGUS and post-

treatment samples. Given reports of tumor-reactive CD8+ T cell populations in MM 

patients [51], the proximity of CD8+ T cells to tumor cells may represent increased 

immune activity in MM, and the “homing” of CD8+ T cells to tumor sites. This is 

consistent with the clustered pattern of CD8+, CD4+ and BLIMP1+ cells in most 

cases. We observed a dispersed pattern of FOXP3+CD4+ Tregs. The expansion of 

Tregs has been found to contribute to the growth, proliferation, and survival of 

myeloma plasma cells [9]. Thus, the dispersed pattern of Tregs may be a phenotype 

of expansion, which may promote the invasion and differentiation of MM plasma 

cells.  

Accuracy of a deep learning platform often fails when it is applied to a different set of 

samples with different sample preparation procedures, introducing technical variation 

[52]. BM samples in our validation cohort were collected from different hospitals that 
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may have slightly different tissue processing protocols. They were also stained using 

a different Leica Bond RXm stainer resulting in staining variation. With the use of a 

color normalization step, our deep learning model achieved high overall accuracy 

with an AUC of >0.9. There was also good concordance in the quantitative and 

spatial findings between the original and the validation cohort. This suggests that our 

model could potentially be applied to different datasets after image normalization, 

maintaining a high performance. 

Training machine learning models on limited sample size may result in training bias 

such as overfitting, impacting the model’s performance and generalizability [53]. In 

order to justify our training sample size, we performed post-hoc learning curves to 

evaluate performance of our models against different sample sizes. AwareNet 

achieved high F1-score of >0.97 when trained on 40% to 100% of the training data, 

whereas MoSaicNet showed best performance when trained on 80% of the data with 

a slight drop in performance when trained on 100% of the data. While having more 

data is believed to generate a better model, adding more heterogeneous data could 

confuse the model and lead to a reduction in performance [54]. This could explain 

the fluctuation of the model performance in MoSaicNet as the sample size increases. 

Results from these learning curves suggested that we had an adequate amount of 

data to train our models. 

The limitations of this study include the limited number of samples. More samples 

are needed to capture the full cellular and non-cellular region heterogeneity, and the 

results should be interpreted with this consideration. Our quantitative and spatial 

results are likely underpowered, but these are exploratory analyses and as such, 

there was no pre-specified power or sample size. Finally, the MIHC staining 

contained three parameters. Our next step will be to apply the computational 

methods developed in this study to more parameters, allowing us to distinguish more 

immune cell subsets.   

 

To conclude, we demonstrated how spatial and machine learning methods can be 

used to dissect the mosaic tissue microenvironment of BM trephine samples 

(MoSaicNet) and accurately identify immune T and MM plasma cells (AwareNet). 

Despite the limited sample size, bone trabeculae morphologic and cell spatial 
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proximity analyses enabled the deep mine of both cellular and non-cellular parts of 

the BM niche. Future works include: 1) adapting MoSaicNet and AwareNet to 

routinely available hematoxylin and eosin stain of BM trephine samples to further 

explore bone remodelling; 2) integrating morphologic and spatial features with 

molecular features to identify genetic aberrations associated with morphologic or 

spatial phenotypes in the BM niche; 3) identifying morphologic and spatial features of 

progressor and non-progression patients with MM precursor conditions [55] to help 

refine risk models; 4) exploring the association of bone morphologic features and 

cellular spatial topography features with patients' clinical outcomes such as 

treatment response and survival. Insights generated from this study warrant further 

validation and investigation in larger cohorts, which is in progress. 
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Tables: 

Table 1 | Patient characteristics: MGUS 

 

Patient characteristics (n=9) Patient no. (%) 

 Age at diagnosis  

 Median (range) 61 (54, 89) 

 Gender  

 Male 5 (56) 

Immunoglobulin (Ig) isotype  

IgG 5 (56) 

IgA 3 (33) 

 Light chains only 1 (11) 

Light chain isotype  

Kappa 5 (56) 

Lambda 3 (33) 

Polytypic 1 (11) 

IMWG Cytogenetics risk  

Standard risk 5 (56) 

High risk 1 (11) 

Unknown 3 (33) 

Risk categories for progression to MM  

Low 5 (56) 

Intermediate 2 (22) 

High 2 (22) 
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Table 2 | Patient characteristics:  Paired diagnostic and post-treatment samples 

Patient characteristics (n=10) Patient no. (%) 

Age at diagnosis  

 Median (range) 56 (53, 63) 

Gender  

 Male 6 (60) 

Immunoglobulin (Ig) isotype  

IgG 5 (50) 

 IgA 2 (20) 

 Light chains only 3 (30) 

Light chain isotype  

Kappa 7 (70) 

Lambda 3 (30) 

IMWG Cytogenetics risk  

Standard risk 5 (50) 

 High risk 5 (50) 

IMWG ISS staging  

I 4 (40) 

II 5 (50) 

III 1 (10) 

PC % in diagnostic BM biopsy  

Median (range) 70% (13, 80) 

Line of therapy at treatment  

1 10 (100) 

Induction therapy  

KCD* 10 (100) 

PC % at D100 BM biopsy post-treatment  

Median (range) 0.5% (0, 10) 

*K = Carfilzomib, C = cyclophosphamide, D = dexamethasone.  
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Figures legend 

Figure 1 | Overview of computational deep learning and image processing 

pipelines for BM MIHC images: A) MoSaicNet pipeline. The polygons (black) 

indicate superpixels. MoSaicNet dissects a tissue section into bone, blood, fat, and 

cellular tissue regions (Methods). B) AwareNet for attention-based cell detection 

and classification (Methods). The attention image pixel values were generated from 

the abundance of cell types. An attention image was applied to the objective function 

during model parameter optimization to regularize the algorithm by assigning high 

attention to rare cell types. The cell detection algorithm generates a cell probability 

map. A post-processing algorithm was developed to find the cell nucleus centre, (x, 

y) location, from the probability map (Methods). A patch centred on each cell was 

extracted and fed to deep learning (DL) based classifier to infer its class. C) Spatial 

and morphological analysis of BM trephine samples. Bone texture and structural 

heterogeneity were investigated using an auto-encoder-based machine learning 

method (Sup. Methods). We used spatial proximity analysis to study the spatial 

relations of cells. r = radius. Cell density refers to the number of cells per unit of 

tissue area. 

Figure 2 | Computational methods for bone thickness analysis and cells 

infiltration patterns: A) Image analysis to estimate bone thickness (Sup. 

Methods). Using the same BM sample image as Figure 1A, the bone segmentation 

(ii) is an output of MoSaicNet (Methods), and each bone is displayed in a different 

color. The color bar shows the pixel intensity of the image in (iii and iv). The pixel 

intensity on the skeleton indicates half of the bone thickness (Sup. Methods). B) 

Cells infiltration pattern analysis using nearest neighbour distance (NND) and the 

null hypothesis of complete spatial randomness (CSR) (Sup. Methods). Z<-1.96, 

Z>1.96, and -1.96≤Z ≤1.96 indicate a clustered, dispersed, and random distribution 

of observed cells, respectively. std=standard deviation; μ=mean NND of CSR.   

Figure 3 | Performance evaluation of MoSaicNet and AwareNet deep learning 

models: A) The receiver operating characteristic (ROC) curves and AUC values of 

the MoSaicNet superpixel classifier. The values in brackets indicate the 95% 

confidence interval. B) 2-dimensional mapping of superpixels using MoSaicNet 
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learned 200-dimensional features after dimensionality reduction by Uniform Manifold 

Approximation and Projection (UMAP). C) The ROC curves and AUC values of 

single-cell classifier model on separately held test data. The values in brackets 

indicate the 95% confidence interval. D) UMAP features visualization of deep 

learned features by AwareNet single-cell classifier CNN.  E-F) Validation of 

AwareNet model using correlation of density of CD8+ (E) and CD4+ cells (F) in panel 

1 and panel 2. 

Figure 4 | Studying bone physiology using MoSaicNet: A) Proportion of different 

compartments of BM trephine digital images. One stacked bar represents a sample. 

B-E) Boxplots showing the difference in %bone between samples from NDMM and 

post-treatment (B), MGUS and NDMM (C), different age groups (D) (median 

age=58.0 years), and gender groups (E). F) Scatter plot showing the number of bone 

superpixels in 17 clusters from MGUS, NDMM and post-treatment samples. The size 

of the dots represents the percentage of superpixels. The color represents the 

number of slides in each cluster. G) correlation of percentage of superpixels in each 

cluster between different patient groups. A point represents a cluster.  H) Scatter plot 

of slide-level heterogeneity of bone features measured by features variance (Sup. 

Methods). A point represents a patient/slide. I,J) box plots showing differences in 

bone density heterogeneity between NDMM and post-treatment (I), and between 

MGUS and NDMM (J). K-L) Boxplots showing the difference in bone thickness 

between samples from NDMM and post-treatment (K), MGUS and NDMM (L), and 

different age groups (median age=58.0 years) (M) and gender (N). 

Figure 5 | Density of immune T cells and plasma cells in MGUS, NDMM and 

post-treatment samples: (A-G) Boxplots showing the difference in density of 

FOXP3+CD4+ (A), the density of CD8+ (B), the density of FOXP3-CD4+ (C), 

FOXP3+CD4+:FOXP3-CD4+ ratio(D), FOXP3+CD4+:CD8+ ratio(E), density of 

BLIMP1+ (F), and CD8+:BLIMP1+ ratio(G) between paired NDMM samples and post-

treatment samples (n=10 pairs).  H-J) Boxplot showing the difference in density of 

FOXP3+CD4+(H), the density of BLIMP1+ (I) cells, and CD8+:BLIMP1+ cells (J) 

between MGUS and NDMM samples (n=19). K-L) Sample images showing the 

reduction of the density of FOXP3+CD4+ and CD8+ cells (K) and BLIMP1+ (L) cells at 

post-treatment compared to paired NDMM samples. The cell density is presented 

per 1 mm2 tissue area. 
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Figure 6 | Spatial neighbourhood of immune and tumor cells: A-B) and between 

MGUS and NDMM (B). The p* indicate p values after multiple testing correction 

using the Benjamini-Hochberg method. The points represent the mean and the bars 

are 95% confidence intervals indicating uncertainty. C) Sample images showing an 

increased number of BLIMP1+ cells in the neighbourhood with CD8+ on NDMM 

samples (NDMM example shown here is the same image as Figure 5L) compared 

with MGUS samples. D-I) Clustered or dispersed pattern of immune and tumor cells 

in BM trephine sample. Boxplots showing the difference in nearest neighbour 

distance (NND) and Z score between NDMM and post-treatment for CD8+ cells (D), 

BLIMP1+ cells (E), FOXP3-CD4+ cells (F). Boxplots showing the difference in NND 

and Z score between NDMM and MGUS for CD8+ cells (G) and BLIMP1+ cells (H), 

and between male and female for BLIMP1+ cells (I). The unit of NND is μm. The Z 

score shows the significance of the difference between the NND distribution for a 

given cell type from a complete spatial random distribution and the observed NND 

(Sup. Methods).  
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