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Abstract

It has been shown that structure is shared across multiple modalities in the

real world: if we speak about two items in similar ways, then they are also

likely to appear in similar visual contexts. Such similarity relationships are

recapitulated across modalities for entire systems of concepts. This provides

a signal that can be used to identify the correct mapping between modalities

without relying on event-based learning, by a process of systems alignment.

Because it depends on relationships within a modality, systems alignment can

operate asynchronously, meaning that learning may not require direct labelling

events (e.g., seeing a truck and hearing someone say the word ‘truck’). Instead,

learning can occur based on linguistic and visual information which is received

at di�erent points in time (e.g., having overheard a conversation about trucks,

and seeing one on the road the next day).

This thesis explores the value of alignment in learning to integrate between

conceptual systems. It takes a joint experimental and computational approach,

which simultaneously facilitates insights on alignment processes in controlled

environments and at scale.

The role of alignment in learning is explored from three perspectives, yield-

ing three distinct contributions. In Chapter 2, signatures of alignment are

identified in a real-world setting: children’s early concept learning. Moving

to a controlled experimental setting, Chapter 3 demonstrates that humans

benefit from alignment signals in cross-system learning, and finds that models

which attempt the asynchronous alignment of systems best capture human

behaviour. Chapter 4 implements these insights in machine-learning systems,

using alignment to tackle cross-modal learning problems at scale.
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Abstract

Alignment processes prove valuable to human learning across conceptual

systems, providing a fresh perspective on learning that complements prevailing

event-based accounts. This research opens doors for machine learning systems

to harness alignment mechanisms for cross-modal learning, thus reducing their

reliance on extensive supervision by drawing inspiration from both human

learning and the structure of the environment.
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Impact Statement

Understanding how humans are able to acquire concept knowledge from their

constant and noisy multimodal inputs is of interest both theoretically and

practically.

In Chapter 2 of this thesis, I explore a specific real-world alignment op-

portunity - early concept learning - in detail. It is shown that early acquired

concepts are well-positioned to facilitate learning by aligning systems across

modalities. This provides a novel insight into how infants, as naive learners,

are able to learn correspondences between language and the visual world so

successfully from relatively little supervised input. This work sets the stage

for future work exploring alignment-based learning in children through be-

havioural studies.

Within this chapter, I also demonstrate an application of this finding to

machine learning systems, by using the structural features associated with

alignment to build generative agents which optimise knowledge states for

alignment-based learning. The successful application of child-inspired systems

contributes to a growing literature on building human-like AI systems, and on

optimal curricula for machine systems in the e�ort to develop more human-like

representations of the world.

Chapter 3 of this thesis presents the novel finding that alignable systems

contribute to successful learning in humans, even when full supervision is avail-

able. In turn, I present computational modelling which suggests that an asyn-

chronous and unsupervised alignment mechanism could underpin this learning

behaviour. Given recent findings that systems derived from naturalistic uni-

modal inputs are alignable across modalities, these insights into human learn-
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Impact Statement

ing deepen our understanding of how humans learn so successfully in the real

world, where supervised learning events are rare and ambiguous.

In this thesis’ final contribution in Chapter 4, steps are made towards iden-

tifying an algorithm which is able to learn an unsupervised mapping between

modalities. First, modifications of the alignment scoring metric are assessed

in e�orts to find a metric which o�ers the best chance of algorithmic success.

Next, algorithms drawing from a range of related research domains are tested

on the problem of unsupervised alignment at various scales. Finally, the im-

pact of alignment-based priors on image classification performance in low data

environments is explored.

This thesis contributes to a new perspective on human learning, by demon-

strating that human learning is supported by the asynchronous process of

aligning across systems. Furthermore, it provides evidence that alignable sig-

nals are present when humans begin forming their multimodal understanding

of the world. Applying these insights from human learning, it demonstrates

the potential for human-inspired machine learning systems to use alignment to

capitalise on the rich structural information that is shared across modalities.
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1. Introduction

Chapter 1

Introduction

The human experience is inherently multimodal. We are constantly subjected

to streams of visual, auditory, haptic, and olfactory information, generated by

our environments and the entities contained therein. Further to sensory modal-

ities, language has developed as a mode of communication between humans,

allowing us to refer to the entities in the world. These streams of input are

noisy, and very challenging to derive meaningful information from as a naive

learner. This challenge is evident in the struggles to get machine learning (ML)

systems to learn from unstructured, naturalistic data.

And yet, over time and across our experiences, humans integrate this in-

formation into a holistic understanding of their surroundings. Experiences of

entities are gradually abstracted to become untethered from any individual

event, time or place (Lambon Ralph, 2014; Martin, 2016). This forms our

semantic knowledge, which in turn allows us to impose structure on our sen-

sory inputs, to generalise to new examples and to make meaningful predictions

about the entities in the world around us (Ralph et al., 2017a). On a walk

through town, most humans would not be catastrophically overwhelmed by

the sounds, sights and smells around them. E�ortlessly, they would recognise

the whooshing sound accompanied by the sound of rubber rolling over tarmac

as being associated with a ‘car’, and thus would not be surprised when the

associated large metal object on four wheels rounded the corner.

Sensory inputs across modalities are fundamentally constrained by a shared
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underlying reality. For something to be a ‘car’, it likely possesses certain

properties: it probably has four wheels, with tyres made of some form of

rubber; it falls within a certain size range (constrained by the requirement to

fit people inside of it, but also to fit on a road and inside of a garage); its body

is likely made of metal, and contains a steering wheel and some seats. These

properties in turn determine the sensory impact of the car across modalities -

what it sounds like, looks like, even smells and tastes like. Their properties are

also related to the scenes in which cars will be observed, and the contexts in

which they will be spoken about. And all of this contributes to what it means

for something to be a car.

A consequence of this is that if two entities are experienced similarly in one

modality, they are likely to also be experienced similarly in others. We would

likely see a ‘cow’ and a ‘horse’ in more similar visual contexts than we would

a ‘cow’ and a ‘car’, and we would also talk about ‘cows’ and ‘horses’ in more

similar linguistic contexts than we would ‘cows’ and ‘cars’. The same would

be true of the sounds, smells and even visual properties associated with these

entities (Johns and Jones, 2012; Roads and Love, 2020). This results in shared

structure across modalities in the real world. The existence of shared simi-

larity relationships across modalities, where representations share no physical

similarity, is an example of second-order isomorphism (Shepard and Chipman,

1970).

In theory, this shared structure could provide a valuable signal for learning

mappings between modalities. If similarity structures are su�ciently repli-

cated across linguistic and visual systems, for example, it could be possible

to label all visual items appropriately by aligning the sets of similarity rela-

tionships within the modalities. This means that learning could occur in a

completely unsupervised fashion, without ever telling the learner which item

in one modality corresponds to which item in the other. Consequently, a map-

ping between modalities could be learned without ever experiencing the two

modalities concurrently - that is, via completely asynchronous cross-modal
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learning. We call this process of using the idiosyncratic similarity relations

that are mirrored across multiple systems to perform a cross-system mapping

systems alignment. A visualisation of systems alignment is provided in Figure

1.1.

Figure 1.1: Example of systems alignment. Notice that the similarity relationships in the visual and
linguistic domains mirror one another. Functions F and G learn correspondences between entire domains X
and Y . Dashed lines represent known mappings for individual items. In this example, no mapping is known
for ‘horse’ or ‘truck’, but the correct mapping for these items could be inferred in an unsupervised fashion
based on the alignment of systems via F and G. This demonstrates how systems alignment may facilitate
generalisation.

This dissertation explores the consequences of shared cross-modal structure

for learning from multiple perspectives. First, it explores the role that align-

ing systems across naturalistic modalities could play in a relevant real-world

learning problem: early concept acquisition. Second, it asks whether and how

aligning shared structure between di�erent systems facilitates e�cient learning

in humans. Third, it investigates whether aligning this shared structure can

benefit machine learning systems attempting cross-modal learning in unsuper-

vised or low-data environments.
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1.1 Conceptual similarity relationships in mind

and brain

The hypothesis that learning benefits from similarity structure depends on

the assumption that humans are sensitive to similarity relationships between

entities. This section explores prior work on the role of similarity relationships

in humans’ understanding of the world.

Similarity relationships between entities are of great importance in accounts

of semantic knowledge (McRae et al., 1997), and the workings of the brain

more broadly. In fact, candidate neural substrates for semantic knowledge are

often evaluated using the correlations between semantic similarity judgments

and the similarity in their activity patterns (Martin et al., 2018; Visser et al.,

2012).

An established body of work shows evidence that cognitive and spatial

relationships are handled similarly in the brain. This originates with Tolman’s

theory of the ‘cognitive map’ (Tolman, 1948), and has since found support from

many studies demonstrating that spatial and conceptual relationships (across

multiple modalities) are supported by shared neural mechanisms (O’keefe and

Nadel, 1978; Constantinescu et al., 2016; Bao et al., 2019; Behrens et al., 2018;

Bellmund et al., 2018). Theves et al. (2019) show that distances between

concepts in abstract feature space are encoded in the hippocampus during

concept learning. Whether this evidence is interpreted as suggesting that we

navigate conceptual spaces through spatial means, or vice versa (Mok and

Love, 2019), the existence of geometric structure in our neural representations

of conceptual information is strongly evidenced.

Behavioural studies have demonstrated sensitivities to structural corre-

spondences between concepts from a young age. Unger et al. (2020a) used

a range of paradigms including cued recall, match verification and eye gaze,

to probe the influences of taxonomic similarity (the extent to which words oc-

cur in similar contexts) and co-occurrence (the extent to which words co-occur
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with each other) between concept words. They tested 4-5 year old children and

adults, and found that children were consistently sensitive to co-occurrence re-

lationships between concept nouns, and adults were consistently sensitive to

both co-occurrence and taxonomic relationships.

The influence of semantic similarity relationships has also been demon-

strated in the context of learning. Chen and Yu (2017) showed that semanti-

cally themed learning contexts led to improved learning across a pair of cross-

situational learning experiments, and that this e�ect was independent of recall

context. A recent series of experiments in category learning demonstrated

that the perceived strength of semantic category membership distorted newly

acquired image-location associations (Tompary and Thompson-Schill, 2021).

These results provide evidence that learning leverages the network of existing

inter-concept relationships within a semantic framework. Systems of similarity

relationships are also explored within the context of analogy, discussed in more

detail below.

1.1.1 Analogy and structural alignment

As humans, we are skilled at establishing correspondences between systems

of structural relationships. These correspondences underpin our penchant

for analogy (Gentner, 1983; Gentner and Smith, 2012), which has long been

viewed as a key component of our intelligence (Holyoak, 2012; Mitchell, 2021).

In many domains, analogy is deliberately employed to support learning: by

mapping unfamiliar systems onto familiar ones with shared structure, we are

able to e�ciently integrate new information using existing knowledge frame-

works (Gentner and Holyoak, 1997; Richland and Simms, 2015). Early studies

demonstrated the impact of analogy on memory, showing that alignable cues

yielded better recall than unalignable cues following the explicit comparison

of relationships in visual scenes (Markman and Gentner, 1997).

Local structural relationships are also exploited in fast-mapping, where

learning has been shown to occur based on structural correspondences be-
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tween words in context - e.g., when posed with the task: ‘pass the chromium

tray, not the blue one’, the appropriate inference about the meaning of the

unknown word ‘chromium’ can be made (Heibeck and Markman, 1987; Carey

and Bartlett, 1978). This form of perceptual alignment has also been explored

as a signal in early adjective learning, and has been found to aid learning in

incidental learning contexts (Shao and Gentner, 2022).

But where analogy seeks alignment between two analogs (by processes

which are sometimes referred to as ‘structural alignment’) the work in this the-

sis is oriented around the possibility that entire conceptual systems could be

aligned for learning, at scale. One important application of such an alignment

process might be in the integration of information from multiple modalities to

form unified concept representations.

1.2 Multimodal concepts in the mind and brain

As our experiences of the world and the concepts therein are fundamentally

multimodal (Fernandino et al., 2016), it is no surprise that concept represen-

tations in the brain are also multimodal in nature. When we think of a cat,

for example, we are able to call to mind its general appearance as well as the

sounds it may make and the feel of its fur. When we think of a banana, we

recall its color and form alongside its taste and how best to peel it.

The multimodal nature of concept representations in the brain has been

understood for over a century (Wernicke, 1900 - see Wernicke, 1977; Kiefer and

Pulvermüller, 2012). Indeed, distributed-only theories of semantic knowledge,

which purported that distributed activations across interconnected sensory sys-

tems were the entire basis of concept representations (Patterson et al., 2007a;

Barsalou et al., 2003), were once the dominant theories of semantic knowledge.

While consensus on their role has evolved, distributed and experience-based

neural activations remain an important part of modern theories of concept

representation in the brain (Meteyard et al., 2012; Martin, 2016).

A key development in theories of semantic knowledge has been the inclusion
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of a transmodal hub1: an area of the brain which stores concept knowledge in-

dependent of any specific modality. The transmodal hub was first warranted by

neuropsychological evidence. Warrington (1975) found that Semantic Demen-

tia (SD) patients consistently demonstrated selective and multimodal deficits

in semantic knowledge, while their episodic memory and other cognitive func-

tions remained intact (Warrington, 1975; Patterson et al., 2007a).

By the time of symptom onset, SD patients were found to consistently

exhibit specific deterioration in the Anterior Temporal Lobes (ATL) (Patterson

et al., 2007a). This was the first evidence suggesting that the region may play

a role in supporting transmodal concept representations. The hub-and-spoke

model proposed by Patterson et al. (2007a) simultaneously accounts for (a) the

distributed nature of concept representations across sensory modalities and (b)

the transmodal representations of concepts supported by the ATL.

Since the hub-and-spoke theory was put forward, further evidence has

emerged demonstrating semantic knowledge’s joint dependence on distributed

multimodal representations and a transmodal hub. PET and MEG studies

had previously demonstrated a role for the ATL in transmodal concept rep-

resentations (review in Je�eries, 2013), and despite once uncertain evidence

(Martin, 2007), corrective techniques have yielded convergence to the same

result in fMRI (Visser et al., 2010, 2012; Peelen and Caramazza, 2012). Tran-

scranial magnetic stimulation (TMS) in neurologically healthy individuals has

also been used to demonstrate the role of the ATL in semantic memory (Pobric

et al., 2010). Category-general deficits in object naming were temporarily in-

duced by stimulation of the ATL, while specific deficits for manipulable objects

were induced with stimulation to the motor-relevant Inferior Parietal lobe.

Computational modelling also supports the existence of a transmodal hub

for semantic knowledge (Rogers et al., 2004): while linear combinations of dis-

tributed activations are insu�cient to generate meaningful representations, the

inclusion of a transmodal hub allows semantic models to acquire abstract rep-

resentations which encode conceptual similarity as humans do (Lambon Ralph,
1
Referred to as the amodal hub in some literature (Lambon Ralph, 2014)
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2014). Thus, the transmodal hub’s ability to capture semantic similarity rela-

tions within a high-dimensional space is a key component of arguments in its

favour (Caramazza et al., 1990).

In sum, current evidence has converged on the existence of a transmodal

semantic hub supported by the ATL. This transmodal hub interacts with a

distributed, multimodal network to support the abstract representation of

concept knowledge while maintaining links to concept-relevant sensorimotor

information. This evidence demonstrates that conceptual knowledge in hu-

mans is multimodal at its core, and necessitates the integration of multimodal

information. We must now review the extant knowledge on how multimodal

concepts are acquired in humans, to understand the role that unsupervised

alignment signals may play.

1.3 Concept learning in humans

One aim of this project is to explore the role of cross-modal alignment in human

concept learning. We define a concept as a mapping between representations in

multiple modalities. In this section, I describe the current state of knowledge

on how multimodal representations are acquired, and describe the evidence

suggesting that an unsupervised alignment-based mechanism could play a role.

Concept learning has been defined as ‘tying words to evolving concept rep-

resentations’ (Lake and Murphy, 2021). A person’s concept representations

develop over the course of their lifetime, in response to their idiosyncratic ex-

periences. A child’s representation of an airplane, for example, will be far

more simplistic than that of an aerospace engineer. However, the communica-

tive role of language means that the language we attach to concepts is shared

across individuals and their idiosyncratic experiences, and is robust to these

idiosyncracies. Concept labels function as landmarks for coordination across

individuals with varying experiences (Enfield, 2022).

Acquiring a multimodal understanding of concepts as a naive learner is a

remarkable feat of cognition. Yet, it has been shown that infants can acquire an
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understanding of more than 300 concepts by 16 months of age (Fenson et al.,

1994). The phrase vocabulary spurt has been used to describe the notable

increase in the rate of word acquisition in the second year of life (Bloom,

2013).

Prior work has identified a range of factors which influence how concepts

are acquired. Lexical, phonological and semantic features—such as word fre-

quency, phonological neighbourhood size, and associations with other words—

have all been found to be predictive of a concept’s age of acquisition (Storkel,

2009; Braginsky et al., 2016; Schneider et al., 2015; Hills et al., 2009; Stella

et al., 2017). This section focuses on how di�erent types of learning signal

have been shown to contribute to concept learning process in humans. It con-

cludes with the suggestion that there is room for unsupervised learning signals

derived from cross-modal alignment to be playing a role in human concept

acquisition.

The range of learning signals used by humans in acquiring correspondences

between systems are outlined in this section. Throughout this discussion,

parallels are drawn between machine- and human learning scenarios, and hu-

man learning is categorised according to principles perhaps more commonly

discussed in machine learning: supervised, semi-supervised, weakly-supervised,

and unsupervised learning. This reflects a key theme of this thesis: the value of

a bidirectional interaction between cognitive science and computational mod-

elling. This is discussed further in section 1.4.

Supervised and semi-supervised learning

The first type of learning at play is supervised learning, defined as learning

from labelled examples. In the context of early life, this could be a caretaker

pointing at a dog while saying the word ‘dog’. Analogously in a machine

learning context, a machine learning system learning to classify images of cats

and dogs could be provided with numerous examples of images of cats and

dogs, along with the correct associated labels. Based on this supervision, the
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model can be trained to identify the features which distinguish images of cats

from images of dogs, and to make the correct classification.

In the real world, though, even the most supervised concept-learning learn-

ing episodes - for example, pointing at an object while naming it aloud - are

riddled with ambiguity. This is demonstrated by Quine’s famous ‘gavagai’

thought experiment (Quine, 1960): if a teacher points at a rabbit hopping

through a field and says ‘gavagai’ aloud to a naive learner, how does the learner

know what ‘gavagai’ refers to? It could mean hopping, rabbits generally, this

rabbit specifically, the rabbit’s fur - the list of possibilities goes on.

Despite this ambiguity, supervised learning events demonstrably improve

the development of a child’s vocabulary across cultures (Shneidman and Goldin-

Meadow, 2012). Constraints, such as the mutual exclusivity assumption,

the taxonomic assumption and the whole-object assumption (Markman, 1990,

1994), are known to play a role resolving the ambiguity of such labelling events,

perhaps rendering them ‘supervised’.

However, the extent to which infants encounter supervised learning events

varies greatly, both within and between cultures (Cartmill et al., 2013; Lieven,

1994), and a relatively small proportion of an infant’s language exposures

take the form of supervised labelling events: 60-70% of concrete nouns in

child-directed speech are not in reference to the current environment or activ-

ity (Tamis-LeMonda et al., 2019; Clerkin and Smith, 2022). Learining from

sporadic or infrequent labelling events can be referred to as semi-supervised

learning.

Weakly-supervised learning

The next type of learning contributing to concept acquisition consists of learn-

ing from an imprecise supervisory signal, frequently referred to as weakly-

supervised (Zhou, 2018). Arguably, based on the discussion above, a large

number of learning events fall into this category for human learners. Adults

and infants alike are capable of leveraging statistical regularities from their
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environments to improve the e�ciency of learning under such conditions: hu-

mans have been shown to benefit from cross-situational statistics when learning

multi-modal concepts from as early as 12-months of age (Smith and Yu, 2008;

Yu and Smith, 2007).

Language acquisition can also occur successfully in the near-absence of

explicit instruction: infants can learn from indirect word exposures, either

through overhearing or interactions not intended as learning events (Lieven,

1994; Sa�ran et al., 1996; Akhtar et al., 2001; Akhtar, 2005; Gampe et al.,

2012; Jaswal and Markman, 2001; Shao and Gentner, 2022). In the Psychology

literature, this type of learning is often referred to as incidental learning, but

the presence of a supervisory signal in these studies—even if weak—warrants

their classification as event-based learning episodes.

Unsupervised learning

Finally, we must review the evidence for unsupervised learning processes in

cross-modal learning. While the importance of event-based learning is indis-

putable, some concept learning likely occurs in the absence of even weak su-

pervision. Learning a concept involves information spanning multiple sensory

inputs - for example, the concept ‘bird’ may include the sound of birdsong -

but this information is not consistently provided in the same concept acquisi-

tion episode. Successful concept integration across multimodal systems may,

therefore, benefit from asynchronous learning processes.

The finding that blind and sighted participants have similarly organised

semantic activations in the brain for visual and non-visual stimuli provides ev-

idence for such asynchronous semantic integration (Vetter et al., 2020, 2014).

In developmental contexts, it has has been noted that much of an infant’s lin-

guistic exposure is not child-directed speech, and may not temporally co-occur

with an associated visual referent (Lieven, 1994). It has been shown experimen-

tally that children are capable of integrating multimodal concept information

when the object and referent are presented asynchronously (Samuelson et al.,
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2011).

Some research e�orts have explored whether structure in naturalistic data

could be used as a supervisory signal in concept learning. Machine learn-

ing systems (often described as self-supervised systems) do this very success-

fully (Harris, 1954; Pennington et al., 2014; Mikolov et al., 2013c,a; Lund and

Burgess, 1996; Chen et al., 2020b; Devlin et al., 2018). It has been shown that

infants are sensitive to co-occurrences in language from a young age (Unger

et al., 2020b), and semantic information can be derived from the co-occurrence

statistics in child-directed speech (Li et al., 2000). However, little work has

been done to explore unsupervised cross-modal learning in humans.

The foundations for unsupervised cross-modal learning have been demon-

strated by work showing that structural relationships are recapitulated across

modalities. Early evidence demonstrated that there are redundancies in the in-

formation captured by linguistic and visual systems (Riordan and Jones, 2011),

and that perceptual features can be predicted from linguistic co-occurrence

data (Johns and Jones, 2012; Lewis et al., 2019). Roads and Love (2020)

conducted an information analysis on unimodal embeddings across multiple

modalities, which found that co-occurrence based relationships remain consis-

tent across modalities. That is, if ‘cat’ and ‘dog’ occur in similar linguistic

contexts, their corresponding referents are likely to occur in similar visual con-

texts. As such, it may be possible to leverage structural correspondences in

learning mappings between modalities. While the semantic spaces they used

were not continuous, Tompary and Thompson-Schill (2021)’s results are con-

sistent with a form of alignment in the acqusition of new information. This

alignment process could support the formation of multimodal concept repre-

sentations from complex inputs. However, no scalable model of the role of

alignment in learning has been proposed.

The structural consistencies across modalities identified by computational

means, and our proven human sensitivity to structural relationships in mind

and brain, lend plausibility to the idea that mappings between systems may
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be leveraged as part of the concept acquisition process. As this section has

demonstrated, this thesis explores this possibility from the joint perspectives of

computational modelling and cognitive science. The following section reviews

the background to this bidirectional approach.

1.4 Computational modelling and cognitive sci-

ence

This section addresses the interaction of cognitive science and computational

modelling in general, with a focus on learning. Both the applications of com-

putational modelling to cognitive science and the applications of cognitive

science to computational methods are discussed, to establish a precedent for

the methodology used in this thesis.

1.4.1 The application of computational modelling to cog-

nitive science

Computational modelling is widely viewed as an essential component of cog-

nitive science (Murphy, 2011). One key reason for this is that the process of

developing computational models of cognition forces theory to be formalised

and specified, which in turn allows the theories mechanisms to be better un-

derstood. Along similar lines, McClelland (2009) frames the role of modelling

in cognitive science as exploring ‘the implications of ideas about cognitive

processes’. Computational models are also valuable as a means of generating

testable hypotheses (Farkaö, 2012; Sta�ord, 2012), and providing a process for

their testing and refinement.

In other domains, computational models may be assessed on their e�ciency

and optimality for the task at hand. But when evaluating computational

models of cognitive processes, the key questions are whether the model carries

out a task as well as humans do, and whether mistakes it makes reflect the

mistakes that humans make in attempting the same task. This is referred
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to as a model’s empirical adequacy (McClelland, 2009). It is crucial to note,

though, that good model fit does not necessarily mean that the model reflects

the true cognitive process. All that can be concluded is that the model is a

candidate model worthy of further exploration, for example via the falsifiable

hypotheses that it generates.

In this thesis, computational models are used to explore the explana-

tory power of cross-modal alignment in learning, and to test whether pro-

posed mechanisms are promising candidate mechanisms of human learning

behaviours.

1.4.2 The application of cognitive insights to computa-

tional models

Another benefit of using computational models within cognitive science is the

ability to implement cognitive findings in machine systems. In this thesis, one

aim is to use findings on how humans may learn to perform cross-modal map-

ping tasks via alignment, and apply this to machine learning systems, which

currently struggle to achieve human performance from naturalistic stimuli.

There is a long-standing tradition of human-inspired computational sys-

tems. This is perhaps most notably exemplified by the history of connection-

ism, whose start in the form of Rosenblatt’s perceptron as a model of storage

in the brain (Rosenblatt, 1958) ultimately laid the groundwork for the parallel

distributed processing at the heart of today’s deep neural networks (Rumelhart

et al., 1986).

The origins of deep neural nets lie in attempts to model the brain (Mc-

Culloch and Pitts, 1943) permeate many of the most successful methods and

architectures used today. The field of computer vision and many of the most

successful architectures developed therein is heavily based on insights about

the human visual system (Hubel and Wiesel, 1959; Fukushima, 1980). While

arguably modern machine learning is not principally concerned with biological

plausibility, recent key advances in machine learning continue to take their in-
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spiration from cognitive processes, for example the implementation of attention

mechanisms to deep models (Vaswani et al., 2017; Lindsay, 2020).

The practice of implementing cognitively-inspired elements into computa-

tional systems is often motivated by a desire to address gaps between machine

and human task performance. Advances in machine learning have led to ma-

chine performance surpassing human performance on a wide range of tasks -

from games like chess and Go, to diagnosing cancer from medical imaging -

but there are still many tasks where machine systems struggle in ways that

humans do not (Lake et al., 2017).

When it comes to learning from unstructured real-world data, a popular

approach is to explore developmental inputs into machine learning (Smith and

Slone, 2017). As Zaadnoordijk et al. (2022) put it, infants are ‘natural born in-

telligent systems’, and thus the means by which they build their understanding

of the world can be useful in teaching machine systems to extract information

from the environment. Zaadnoordijk et al. (2022) suggest that infant-inspired

systems could benefit from incorporating constraints which mirror the con-

straints on infant information processing, as well as by incorporating deliber-

ate curriculum learning (Bengio et al., 2009) and by building in appreciations

of statistical regularities across inputs from di�erent modalities. This final

suggestion is a key aim of the work presented in the current thesis, and the

interplay of statistical structure and developmental trajectories is addressed in

Chapter 2.

I now move to explore computational representations of conceptual spaces,

with a focus on language representation, as this field of study has generated

extensive advances in representational spaces. I first explore some of the key

questions these approaches have raised regarding how language relates to the

environment and captures meaning - questions highly relevant for this thesis,

which explores mapping between language and other modalities at length.
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1.5 Learning in the Chinese room

Before reviewing how concept representations are addressed in the literature, I

will first set the scene by applying alignment principles to a modern adaptation

of John Searle’s Chinese Room thought experiment (Searle, 1980), which ad-

dresses the relationship between language and meaning. An alignment-based

interpretation of this thought experiment yields an interesting new conclusion.

This example demonstrates that alignment provides a novel perspective on

learning, which has the potential to contribute to modern debates in compu-

tational linguistics.

The Chinese Room thought experiment serves in its original form to demon-

strate that no understanding of language is required in order to generate a

convincing linguistic output. The thought experiment in its original form is

as follows: imagine an English speaker who knows no Chinese is locked in

a room alone. People slip pieces of paper with Chinese characters on them

under the door (the input). The English speaker has a very comprehensive

manual with a series of steps, outlining how to select characters in response

to the input (the program). The program guides them to produce an output,

also in Chinese, which they then return under the door. Unbeknownst to the

English speaker, the inputs they are receiving are questions, and their manual

guides them to respond with the appropriate answers. On the other side of

the door, the Chinese speakers submitting the questions could be convinced

that the person in the room understands and speaks Chinese, when in fact the

English speaker has no understanding at all. The intended conclusion here

is that, provided the system’s program is adequate to generate the appropri-

ate response, no understanding of language is required to produce meaningful

language outputs.

In the modern day, leaps forward in the performance of large language

models (LLMs) have raised further questions in the mainstream about what it

means to understand language. The success of LLMs is such that users come

away convinced the model must understand what it is saying (Bender and
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Koller, 2020). The implication that an AI agent ‘understands’ language seems

to have been widely unsettling, and has generated a vast amount of public

discourse. Of course, the word ‘understanding’ is loaded with implications of

intelligence - perhaps even sentience. These implications are entirely unwar-

ranted, yet LLMs’ apparent ability to capture meaning, having been trained

on massive volumes of text data, is impressive enough to convince people oth-

erwise.

In an attempt to address these misconceptions, Bender and Koller (2020)

argue that a connection to non-linguistic systems is a requirement for mean-

ing. In an adaptation of the Chinese Room, Bender asks the following: if a

non-Thai speaker was trapped in the National Library of Thailand, with ac-

cess to all books (excluding those containing pictures or those in any other

language), could this person - with infinite time - learn to understand written

Thai (Bender, 2023)?

This poses a di�erent question to the original thought experiment, in that

the point of interest is not whether a system programmed to process language

can be said to understand, but rather whether understanding can be achieved

through language alone, independently of (or separate from) experience of

the world. This is related to Harnad’s symbol grounding problem (Harnad,

1990), which can be formulated as the impossibility of learning Chinese from

a dictionary written in Chinese.

The symbol grounding problem and work relating to it are addressed fur-

ther in the next section, but the implications of alignment in the real world

are exemplified well by a proposed solution to this thought experiment.

Assuming that the individual in the Thai library had prior experience of the

world, learning Thai under these circumstances could indeed be possible under

an alignment account. One could align a system of similarity relationships in

Thai, obtained from word usage patterns, to the known similarity relation-

ships between entities in the world, thus learning a mapping from the entities

in the world to their linguistic representations in Thai. In other words, the
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lack of synchronous presentation of language and non-linguistic information is

theoretically not a requirement for learning a mapping between the two.

The alignability of spaces across multiple modalities could explain, in part,

how LLMs are able to do such a convincing job of emulating conceptual ‘un-

derstanding’, when they have only ever received text inputs. If the alignment

between similarity relationships across systems was perfect, then nothing more

about the meaning of individual words would be learned by ‘grounding’ them

in the non-linguistic space via synchronous experience. One could arguably

know the full extent of word meaning from words alone, assuming that they

had prior experience of the world. And even without this experience, text

information alone could provide an agent with similarity relationships which

reflect the structure of the world in other modalities. In reality, the alignment

may not be perfect, but the fact that some alignment exists means that some

degree of meaning can be captured after training from linguistic input only.

The Chinese Room thought experiment and its modern descendants cap-

ture key philosophical questions around language’s connection to meaning.

Here, we have demonstrated that alignment perspectives could help to o�er a

novel interpretation of some of these problems. Moving beyond the thought

experiment, we now explore prior work on these questions in more detail, to

understand where alignment fits in.

1.6 Models of conceptual spaces

This section discusses computational models of conceptual spaces, and ad-

dresses debates around the value of di�erent methods for ascertaining mean-

ing. First, I review distributional semantic approaches, which are largely based

on Frith’s perspective that word meaning is derived from word context. Then

I discuss arguments against this approach, which largely centre on the view

that a concept’s meaning depends upon establishing correspondence between

language and non-linguistic systems. Finally, I argue that an alignment per-

spective would go some way to reconciling these views, by suggesting that
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the similarity relationships within the linguistic modality facilitate correspon-

dences to non-linguistic systems.

1.6.1 Distributional semantics

According to Harris (1954)’s distributional hypothesis, semantic similarity is

dictated by the similarity of contexts in which concepts appear. This hypothe-

sis is famously summarised by Firth (1957), as: ‘you shall know a word by the

company it keeps’. This is the founding principle of distributional semantic

models (DSMs), which in turn form the basis of many widely employed Natu-

ral Language Processing (NLP) techniques. The following section summarises

some of the key distributional semantic approaches to extracting meaning from

co-occurrence statistics.

Latent Semantic Analysis (LSA) is an early example of how linguistic con-

text has been used to extract semantic information (Landauer and Dumais,

1997). Defining the linguistic context as the words present in an entire doc-

ument, often referred to as a global approach, Deerwester et al. (1990) used

co-occurrence statistics across documents to eliminate dependence on the pres-

ence of individual words when identifying document topics. In LSA, words are

represented as high-dimensional vectors based on their patterns of occurrence

across a large set of documents. Word similarity can be measured using the

cosine similarity between vectors in a reduced space.

The development of local context-based approaches to word embeddings

was a further breakthrough in NLP. These approaches define ‘context’ as a

window of fixed size C around the individual word. The Hyperspace Analogue

to Language (HAL) developed by Lund and Burgess (1996) constructed co-

occurrence matrices using local contexts, and demonstrated that these vectors

captured some degree of a word’s semantic content. Two major developments

which followed were Continuous Bag-of-Words (CBOW) models and skip-gram

models. CBOW models are trained to maximise the conditional probability of

a target word given a set of context words (Mikolov et al., 2013a), while skip-
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gram models are trained to predict the context of a given input word (Mikolov

et al., 2013c,a).

GloVe word embeddings (Pennington et al., 2014) aimed to combine the

benefits of global and local word-embedding approaches. They use co-occurrence

statistics across text corpora to calculate ratios of co-occurrence probabilities

between words. These ratios are the foundation of the learned word vectors.

Transforming words into high-dimensional vectors in this way allows for vector

operations to capture meaningful relationships between words. Famous exam-

ples include the operation: king - man + woman = queen (Pennington et al.,

2014). Indeed, it has been shown that many analogical reasoning problems are

solvable using relationships in word-embedding spaces (Peterson et al., 2020;

Lu et al., 2019a; Pennington et al., 2014).

The demonstrable success of word embedding techniques (Schnabel et al.,

2015) has meant that they continue to form the basis of modern NLP ap-

plications across a range of domains, from text classification (Bakshi et al.,

2016; Kusner et al., 2015) and sentiment analysis (Giatsoglou et al., 2017) to

information retrieval (Ganguly et al., 2015).

The extraction of semantic information from co-occurrences has also been

extended beyond the linguistic domain. Sivic and Zisserman (2003) developed

the Bag of Visual Words (BoV) approach to modelling scenes. This was ini-

tially used for video retrieval, but has since led to more nuanced derivation of

semantic information from images. For example, Sadeghi et al. (2015) used

LSA to derive representations from object co-occurrences in visual scenes, and

demonstrated that these reflected taxonomic relationships between objects.

The distributional semantic hypothesis has been shown to be psycholog-

ically relevant: co-occurrence information is known to be reflected in neural

activity: work from Bar (2004) and Amino� et al. (2013) find that parahip-

pocampal cortex activation is linked to object co-occurences. Mitchell et al.

(2008) also demonstrated that embeddings are predictive of neural activity

patterns. More recently, fMRI work has shown visual and text co-occurrence
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statistics are predictive of responses in scene- and object-selective regions re-

spectively (Bonner and Epstein, 2021).

Fourtassi and Dupoux (2016) find that people are able to perform zero-

shot learning based on linguistic co-occurrence. Having been trained to map

pseudoword labels to images (e.g ‘komi’ to swan), participants were exposed to

sentences of pseudowords, in which the learned labels consistently co-occurred

with specific novel labels (e.g ‘guta’). In subsequent forced-choice tasks, par-

ticipants mapped labels which had co-occurred with the learned labels onto

images from the same category as their corresponding referents (e.g ‘guta’ was

mapped onto an animal instead of a car). This demonstrates that people are

sensitive to linguistic co-occurrence information in learning cross-modal map-

pings, bolstering the justification for the use of distributional semantics in our

exploration.

1.6.2 Arguments for an embodied approach

As summarised by the Chinese Room thought experiment, it has been argued

that word embeddings and other approaches based in distributional semantics

cannot capture all aspects of humans’ concept representations (Lake and Mur-

phy, 2021; Bender and Koller, 2020) because human concepts are embodied, or

rooted in perceptual experiences of the non-linguistic world (see also Barsalou

2008). Distributional approaches, meanwhile, derive the meaning of symbolic

representations from their relationships to other symbolic representations, and

are thus not connected to the real world. This argument can be attributed

largely to Harnad (1990), who describes this as the symbol grounding problem.

In this argument, learning concept representations from linguistic context is

argued to be circular, like trying to learn a new language from a dictionary

which is written exclusively in the language you are trying to learn.

Potential problems with ungrounded or unembodied concept representa-

tions are exemplified in Bruni et al. (2014), where it was noted that some

word embeddings could not tell you that a banana was yellow, despite their
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yellowness being one of the first properties humans call to mind. This comes

down to the fact that text corpora do not capture basic perceptual information,

despite this being fundamental to the human experience.

Having explored the symbolic and embodied approaches to understanding

language, we now review e�orts to reconcile these viewpoints.

1.6.3 Bridging distributional semantics and embodied

approaches

It may not be helpful to place the symbolic and embodies perspectives in

complete opposition to eachother. Louwerse (2008) argues that the embodied

vs. symbolic language debate is outdated, and proposes the symbol interde-

pendency hypothesis. According to this view, language comprehension can

be symbolic by leveraging the interdependencies of symbols (i.e, noting the

significance of the contexts in which they occur) or embodied, by leveraging

references symbols make to their modal representations.

But perhaps more crucially, on the basis of the information presented in

this Introduction, it is clear that structures within linguistic (or symbolic)

spaces reflect structures in the world (Roads and Love, 2020; Riordan and

Jones, 2011; Johns and Jones, 2012; Lewis et al., 2019). Because language was

built on the perceptual world, the perceptual world is encoded in its statistics

(Louwerse, 2018). As such, even if a representation is derived through purely

symbolic means, provided that the language from which it was derived is at

least partially in reference to the world, the resultant representations may be

considered ‘grounded’ to some extent.

Further to this, if the unsupervised alignment of representations was proven

possible, a stricter view of ‘grounding’ could be satisfied by learning correspon-

dences to non-linguistic representations, based solely on the representations

within each modality. The focus of this thesis is not explicitly to address

the symbol grounding problem, but rather to understand the value of shared

contextual information in learning (Vigliocco et al., 2009; Barsalou, 2008).
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Having surveyed theoretical perspectives on mapping from linguistic space

to meaning, and demonstrated the potential value of alignment in this context,

we move to a discussion of how multimodal information has practically been

applied to machine learning systems. I identify opportunities for alignment-

based mechanisms to benefit these systems by providing an unsupervised signal

for learning.

1.7 Multimodal machine learning

Multimodal machine learning refers to any machine learning system whose

inputs span multiple modalities. In some cases, a multimodal approach is

necessitated because the task of interest is multimodal in nature (Mogadala

et al., 2021), for example in image captioning (see Hossain et al., 2019, for

a review) and visual question answering (see Wu wt al., 2017, for review).

But multimodal approaches have also been shown to improve performance in

unimodal linguistic tasks such as metaphor classification (Bruni et al., 2012;

Shutova et al., 2016).

Early multimodal approaches focused on building grounded embeddings,

and included joint feature-topic models (Andrews et al., 2009), the concate-

nation of perceptual and distributional features (Johns and Jones, 2012), and

the use of Canonical Correlation Analysis (CCA) to jointly project distribu-

tional and perceptual information into a lower dimensional space (Silberer and

Lapata, 2012).

In recent years, multimodal language models have gained substantial trac-

tion, showing demonstrable success on a range of downstream tasks despite

their training being task-agnostic (Huang et al., 2023; Chen et al., 2020d;

Wang et al., 2021; Tan and Bansal, 2019; Lu et al., 2019b). Such multimodal

approaches have been discussed as a promising path to something like ‘artificial

general intelligence’. Multimodal representations have also been shown to cor-

respond more closely than unimodal representations to human performance in

unimodal tasks (Demircan et al., 2023; Marjieh et al., 2022). These successes
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reflect the importance of multimodality in our understanding of meaning.

The challenge of cross-modal translation - that is, generating mappings

across modalities (Baltruöaitis et al., 2018) - has been approached using a range

of multimodal techniques, across di�erent levels of task supervision. These

are reviewed below, separated into supervised and semi-supervised, weakly-

supervised and unsupervised approaches.

1.7.1 Supervised and semi-supervised methods

In many cases, multimodal machine learning systems are trained on paired

examples across modalities, for example by providing an image captioning

system with many examples of image-caption pairs (Vinyals et al., 2015; Fang

et al., 2015).

By incorporating linguistic representations of class names, image classifi-

cation can be treated as a cross-modal translation task. In this formulation,

generalisation to novel classes has been demonstrated by learning joint em-

bedding spaces across visual and linguistic modalities. Lazaridou et al. (2014)

compare a range of models for the supervised mapping between image and

text-based distributional semantic spaces (namely a linear model, CCA, SVD

and a neural network). They find that the neural network approach is most

successful on zero-shot learning tasks, and yields improvements on chance in

noisy, real-world datasets.

Frome et al. (2013) used supervised training to map images into a linguistic

embedding space. The resultant multimodal embedding space allowed the

image model to make semantically sound inferences about unseen image labels

in a zero-shot learning task. A di�erent supervised approach from Socher

et al. (2013) trained a linear mapping from image space to linguistic space,

where an outlier detector chose either to (a) map it into an existing linguistic

category using a classifier, or (b) map it onto one of two ‘outlier’ classes in

the multimodal space. While successful, this was only tested for 8 trained

image categories and 2 outlier categories. Akata et al. (2015) scale this up,
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learning a mapping from text-embedding space to image-embedding space for

the purpose of fine-grained image classification. By training on a set of known

classifications, their models are able to generalise classification to test examples

in unseen classes.

Despite their being trained on some known concepts, the application of

these models to zero-shot learning demonstrates the utility of continuous map-

pings between semantic spaces for generalisation tasks.

1.7.2 Weakly-supervised methods

A weakly supervised example of the alignment of modalities is found in Sig-

urdsson et al. (2020), where weak supervision for a translation task is provided

by pairing monolingual instructional videos with their associated audio tracks.

The videos serve to ground the unimodal audio tracks in a shared visual space.

The supervision is rendered ‘weak’ by the loose association of the audio and

the video, and the fact that the videos are non-identical across languages.

Lazaridou et al. (2016) successfully train models to pair words and objects

from noisy temporally co-occurring verbal and visual inputs alongside social

cues. This is achieved by using child-directed utterances to predict (i) the next

word in the utterance and (ii) the objects present in the co-occurring visual

input.

In a weakly-supervised image captioning task, success has been demon-

strated by projecting images and captions into a latent space, which is aligned

using the concepts common to captioning sentences and images (Laina et al.,

2019).

1.7.3 Unsupervised methods

Unsupervised methods have not generally been used to find mappings between

entities across modalities, and are instead common in cross-modal generative

translations tasks, where the output is more open-ended. Generative adversar-

ial networks (GANs) have been used for unsupervised image caption generation
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(Shetty et al., 2017; Dai et al., 2017; Gu et al., 2019; Feng et al., 2019), and

for text-to-image synthesis (Reed et al., 2016).

Optimal transport methods have been applied to structural alignment

problems framed as graph matching (Titouan et al., 2019; Seguy et al., 2017).

These methods were built to find mappings between distributions, and to op-

timise the mapping by minimising the cost of transporting one distribution

to another distribution. Adaptations of these methods have been successfully

applied to image-text domain mapping problems, such as visual-question an-

swering (Chen et al., 2020a).

In this Chapter 4 of thesis, these methods are adapted and tested on un-

supervised cross-modal alignment problems, in an e�ort to enable machines to

learn cross-modal mappings from environmental signals. While these meth-

ods are utilised by prior work in multimodal machine learning, there is also

inspiration to be drawn from other subfields of ML, explored in the following

section.

1.8 Alternative approaches to alignment

Finally, looking beyond multimodal learning, it is valuable to explore methods

which have been used for unsupervised and semi-supervised alignment tasks

in other domains.

An early demonstration of alignment based on similarity structure was

given in Goldstone and Rogosky (2002), in an e�ort to demonstrate that in-

dividuals’ concept representations could be aligned, even in the face of noise

across systems. The method employed here was a constraint satisfaction net-

work, which placed items in correspondence based on the similarity of their

similarity structures.

Mikolov et al. (2013b) applied a semi-supervised alignment approach for

the task of machine translation. They use a relatively small number of known

correspondences between languages to align distributions of monolingual word

embeddings. The success of this technique is grounded in the authors’ obser-

50 of 227



1.8. Alternative approaches to alignment 1. Introduction

vation that di�erent monolingual embeddings share a common distributional

character, much as we have argued is the case for linguistic and non-linguistic

systems.

On the basis of Mikolov et al. (2013b)’s findings, the foundations for many

unsupervised alignment techniques originate in machine translation. Zhang

et al. (2017) used adversarial training followed by the Earth Mover’s distance,

and Conneau et al. (2017) similarly use adversarial training to find a transla-

tion matrix W , but attain superior performance by refining their model using

Procrustes method (Artetxe et al., 2016) followed by a similarity metric called

Cross-domain Local Similarity Scaling (CSLS). CSLS helps to create a one-to-

one mapping of source domain points to target domain points, by penalising

matches to points with high degrees of ‘hubness’ (i.e, points which have many

nearest neighbours). Conneau and colleagues’ unsupervised translation tech-

nique performs as well as supervised machine translation baselines for some

language pairs. Similar methods have been applied in conjunction with RNNs

to perform translation between programming language sequences (Lachaux

et al., 2020).

In the visual domain, unsupervised (or self-supervised) image translation

has been very successful, with CycleGAN being a pioneering approach here

(Zhu et al., 2017). In the absence of paired examples for image-to-image

translation, this method uses the generative adversarial loss alongside a cycle-

consistency loss, to simultaneously ensure successful translation and retention

of image contents. The cycle-consistency loss is a form of self-supervision, as

the loss term is calculated between the original image and its reconstruction

in the original space once it has passed via another space.

For linear transformations, Richardson and Weiss (2021) showed that a

simple algorithm which learned linear mappings between domains via the Iter-

ative Closest Points (ICP) algortihm, was able to achieve remarkable success in

many unsupervised image-to-image translation tasks. Indeed, it outperformed

CycleGAN in linear tasks such as the rotation and vertical flipping of images,
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and performed well in more complex tasks such as inpainting and colorisation.

An alternative framing of the alignment problem highlights another can-

didate unsupervised algorithm. Viewing cross-modal mapping as a one-player

game with a high branching factor, Monte Carlo Tree Search (MCTS) emerges

as a candidate for searching for the best mapping (Browne et al., 2012). MCTS

has been successfully applied to problems with very high degrees of branch-

ing, with a particularly famous example being the champion-beating algorithm

which learned to play the board game Go (Silver et al., 2016). The approach

has since been generalised for extension to other games (Silver et al., 2018),

and utilises deep learning models to estimate state values while conducting

MCTS. Pinheiro et al. (2016) successfully performed graph-matching using

MCTS formulated as a single-player game as a means of evaluating node pair-

ings.

Along with the approaches from the previous section, these methods are

adapted for the pursuit of machine learning applications of alignment in this

thesis.

1.9 Overview of this thesis

Building on the literature reviewed here, this thesis investigates systems align-

ment from multiple perspectives, developing a new understanding of the role

these event-agnostic signals could play in cross-system learning, for humans

and machines. First, systems alignment is explored as a beneficial signal in

early concept learning. Next, a behavioural study tests whether humans utilise

alignment signals in learning when other learning signals are present. Finally,

building on models of this alignment-based learning in humans, the candidate

machine learning methods discussed in this literature review are applied as a

means of promoting human-like ML in an unsupervised cross-modal learning

context.

In Chapter 2, the possibility that alignment contributes to early concept

learning is explored through a series of simulation studies. As discussed in this
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literature review, it is established that supervisory signals for concept learning

are infrequent and ambiguous in children’s early lives. There are key outstand-

ing questions around how children use the structure of their environments to

learn in the absence of supervision, or to resolve the ambiguity in weak su-

pervisory signals. In this chapter, it is found that children’s early concepts

are close to optimal for inferring novel concepts through systems alignment,

enabling agents to correctly infer more than 85% of visual-word mappings with-

out supervision. A structural analysis of the knowledge states that facilitated

successful alignment found that they wee distinguished by their dense simi-

larity relationships, both within the knowledge state and with respect to the

as-yet unknown concepts. Artificial agents using these distinguishing struc-

tural features to select concepts proved highly e�ective, both in environments

mirroring children’s conceptual world and those that exclude the concepts that

children commonly acquire. This shows that machine learning systems serve

to benefit from insights into how humans learn from naturalistic inputs.

In light of Roads and Love (2020)’s finding that systems are alignable

across modalities, and the findings of Chapter 2 which show that children’s

early concepts are strong facilitators of learning by alignment, the next ques-

tion addressed within this thesis is: do humans learn from alignment signals

when they are available? In a paired associate learning task presented in Chap-

ter 3, I found that learning was more e�cient and more successful when the

systems across which pairs were learned had an underlying alignable struc-

ture. This suggests that, in the real world, humans could indeed benefit from

alignable information across modalities when learning multimodal representa-

tions. Furthermore, participants who learned to map between alignable sys-

tems were able to generalise successfully to a completely novel pair of stimuli,

performing successful zero-shot learning. When models were fitted to partic-

ipant behaviour, it was found that a model with an asynchronous alignment

mechanism provided the best account of how participants learned - not only

when the underlying systems were aligned, but also when they were not. This

53 of 227



1.9. Overview of this thesis 1. Introduction

suggests that humans may apply alignment processes to learning problems by

default, even when it is not beneficial for the task at hand.

Finally, in Chapter 4, I explore applications of alignment to machine learn-

ing e�orts in cross-modal learning. First, I assess a series of modifications to

alignment scoring metrics insipred by psychological literature and the findings

from the investigation of early concepts, to maximise the chances of algorithm

success. Then, I test a slate of algorithms drawn from a range of machine-

learning subfields on the problem of unsupervised cross-modal alignment at

di�erent scales. Finally, I examine the potential for alignment to improve the

performance on the cross-modal ML task of image classification, by functioning

as a prior across unseen classes.
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Chapter 2

Alignment in children’s early

concepts

2.1 Introduction

Recent work, reviewed in the previous chapter, has demonstrated that valuable

signals exist which may facilitate learning via unsupervised and asynchronous

mechanisms in the real world: similarity relationships between concepts have

been shown to be upheld across multiple modalities. For example, concepts

which are discussed in similar contexts (such as ‘car’ and ‘truck’) are likely

to also appear in similar visual contexts. Based on this signal, learning could

proceed in an unsupervised fashion by identifying structural idiosyncrasies

that are present in both modalities and then mapping between modalities in

an asynchronous process of systems alignment.

Given the challenge that concept learning presents for a naive learner

(Quine, 1960), children would be strong candidates for taking advantage of

alignment signals in learning. In this chapter, evidence suggesting a role for

systems alignment in early concept learning is presented. First, we demon-

strate the utility of alignment as a means of inferring cross-modal mappings.

We then show that learning by alignment is preferentially supported by con-

cepts acquired early in life, suggesting that early-acquired concepts may be

privileged with respect to systems alignment. We then identify common struc-
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tural features of early-acquired knowledge states in high-dimensional semantic

spaces, and use generative modelling to demonstrate that these can be ex-

ploited to produce knowledge states which are optimally positioned for learning

by alignment. Our findings contribute to the existing literature which suggests

a role for these event-independent, alignment-based learning processes in ac-

quiring cross-modal representations of the world.

While modes of learning are diverse, research predominantly focuses on

event-based learning. Event-based learning includes popular forms of super-

vised, semi-supervised, weakly supervised, and unsupervised learning. A su-

pervised learning event occurs when, for example, a child’s caregiver points

to a dog and labels it as a “dog”. A weakly- or semi-supervised event may

occur when a child overhears a conversation between two adults. Event-based

learning is unquestionably an e�ective route for human learning, but we argue

that people also use an additional, underappreciated mode of learning that is

distinct from event-based learning.

Consider how remarkable it is that children can cut through noisy labels

and learn from weakly supervised events. Even the most direct labelling event

is ambiguous in the real world, as labelling events are heavily underconstrained

(Quine, 1960; Markman, 1990, 1994). Yet infants can learn from indirect word

exposure, either through overhearing or interactions not intended as learning

events (Sa�ran et al., 1996; Akhtar et al., 2001; Akhtar, 2005; Gampe et al.,

2012; Jaswal and Markman, 2001; Shao and Gentner, 2022). They can also

resolve ambiguous labels by combining information across di�erent events, i.e.

cross-situational statistics (Yu and Smith, 2007). Like self-supervised machine

learning systems that use structure in the data as a supervisory signal (Harris,

1954; Pennington et al., 2014; Mikolov et al., 2013c,a; Lund and Burgess,

1996; Chen et al., 2020b; Devlin et al., 2018), children may use co-occurrence

information to infer meaning from natural language. Infants are sensitive to co-

occurrences in language from a young age (Unger et al., 2020b), and semantic

information can be derived from the co-occurrence statistics in child-directed
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speech (Li et al., 2000). All of these learning feats support the idea that

children have a profound ability to infer conceptual relationships, even when

those relationships are not directly observed.

Figure 2.1: Visualisation of systems alignment in concept learning. Dashed lines between systems represent
known word-object mappings. Here, the agent in question knows the mapping between {"apple", "banana",
"car"} and the relevant visual objects, but does not know the mappings for the words {"pear", "truck"}. Based
on the similarity relationships within the systems, however, the agent could make an accurate inference about
which item was "pear" and which was "truck" when presented with the two objects. Having heard the words
truck and pear being used in context, they would know that "truck co-occurs with words like "road" and
"drive", while "pear" co-occurs with words like "eat" and "yummy". Similarly, having seen trucks and pears
in the world, they would know that the visual context of a truck is likely to be outdoors on the highway
(much like a car), while a pear is more likely to be found in a kitchen or fruit bowl (much like an apple or a
banana). Therefore, if presented with the two objects and asked ‘Which is the truck and which is the pear?’,
they could make the appropriate forced choice

In this work, we present evidence that children can exploit information that

transcends individual events to align entire systems (e.g., to discover a mapping

between visual and a word space), which we refer to as systems alignment. To

re-iterate, we define systems alignment as the use of idiosyncratic similarity

relations that are mirrored across multiple systems to perform a cross-system

mapping (Figure 2.1).

As stated previously, we define a concept as a correct mapping across sys-

tems (e.g., the correct mapping between the word ‘car’ and the corresponding

visual object). We refer to the set of known concepts as the knowledge state.

In practice, prior knowledge of some concepts, such as knowing the label “car”

maps to an image of a car, facilitates or bootstraps systems alignment (Figure

2.1). According to systems alignment, the more that is known, the easier it

becomes to infer new knowledge. For example, based on knowing the mapping

for car, we predict that a child could infer the name for a truck without ever
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experiencing the verbal label “truck” co-occurring with the visual experience

of a truck (Figure 2.1). Systems alignment may help explain why children’s

vocabularies rapidly expand after around 50 words are known (Bloom, 2013;

McCarthy, 1946).

Unlike event-based learning which relies on temporally proximate informa-

tion, systems alignment can be asynchronous such that information is acquired

at di�erent times in the visual and linguistic systems and can be aligned at

some later time absent either input. This is a key distinction between this

mechanism and previous multimodal learning approaches (Roy and Pentland,

2002; Huang et al., 2023). The asynchronous nature of alignment may help

explain how label-referent mappings are learned despite their relatively in-

frequent co-occurrence in children’s sensory input: recordings obtained from

cameras mounted on children’s heads in naturalistic environments reveal that

the simultaneous experience of a visual object and its corresponding label is

rare, with absent objects frequently being referenced, and visual objects not

being named (Clerkin and Smith, 2022). Further, 60-70% of concrete nouns

in child-directed speech are not in reference to the current environment or

activity (Tamis-LeMonda et al., 2019).

An example of this is shown in Figure 2.2: based on a documentary

voiceover heard on a prior day, a child at a zoo could use alignment to map a

previously unseen animal to an animal name she has heard before. Alignment

could also facilitate learning asynchronously via known processes of memory

replay (Barry and Love, 2023).

One key question is whether the information present in our natural envi-

ronment can support systems alignment. Roads and Love (2020) answered this

question in the a�rmative, demonstrating that when systems—derived from

environmental measures—were aligned, their mirrored similarity structure—

which they referred to as an alignment score—was higher than other (incorrect)

mappings between the systems. Thus, in principle, an algorithm that max-

imised alignment score could achieve systems alignment. Here, we address a
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Figure 2.2: Illustration of asynchronous learning through everyday experiences. Thought bubbles depict
the child’s knowledge state, with visual and linguistic systems overlaid. (1) The child watches a nature
documentary, where she learns about zebras from synchronous visual and linguistic input. Zebra is added to
her knowledge state by this event-based learning process. (2) She begins playing with toys with her back to
the television. While she is no longer watching the TV, she can still hear the documentary audio describing
okapi. The descriptions of okapi and zebras are very similar, which leads to ‘Okapi’ being positioned
in linguistic space close to ‘Zebra’. Note that she does not have to understand the meaning of all words
surrounding ‘Zebra’ and ‘Okapi’ for this similarity relation to be acquired. (3) Later, the child visits the zoo.
From previous experiences, she can label the gira�e and the zebra. She sees an unknown animal in a nearby
enclosure, which shares visual similarities with the the gira�e and the zebra. (4) Using the asynchronous
inputs in di�erent modalities, she is able to infer that the unknown animal at the zoo is likely an ‘Okapi’.
This is possible via alignment of visual and linguistic systems.

second question, namely could children use systems alignment to learn the

meaning of words? Chapter 3 addresses another key question, testing empiri-

cally whether people engage in systems alignment when learning, and finding

that they do (Aho et al., 2022).

Our consideration of systems alignment in a developmental context is novel

with respect to prior work. Relevant prior work on fast-mapping demonstrates

alignment e�ects on a local scale (e.g. ‘pass the chromium tray, not the blue

one’, where ‘chromium’ is a previously unknown label) (Carey and Bartlett,

1978; Heibeck and Markman, 1987). Perceptual alignment has been explored

as a signal in early adjective learning, and has been found to aid learning

in incidental learning contexts (Shao and Gentner, 2022). Analogies between
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word forms may help children learn to read (Goswami, 1986). But where prior

work on analogy (Gentner, 1983) and alignment processes (Liu and Lupyan,

2023) has been restricted to local contexts, we argue that systems alignment

could be performed between entire systems of relationships, such as across

modalities to promote cross-modal learning.

Besides alignment, prior work has identified a range of factors which in-

fluence how concepts are acquired. Constraints, such as the mutual exclusiv-

ity assumption, the taxonomic assumption and the whole-object assumption

(Markman, 1990, 1994), are known to play a role in ambiguous labelling events.

Lexical, phonological and semantic features—such as word frequency, phono-

logical neighbourhood size, and associations with other words—have all been

found to be predictive of a concept’s age of acquisition (Storkel, 2009; Bra-

ginsky et al., 2016; Schneider et al., 2015). Structural analyses of semantic

networks have also identified patterns in how conceptual knowledge develops

in early life (Hills et al., 2009; Stella et al., 2017; Steyvers and Tenenbaum,

2005), but the influence of structural factors in unsupervised cross-modal learn-

ing has not yet been explored. Here, we consider whether systems alignment

can explain aspects of how children acquire word meanings in a manner that

complements existing explanations.

We take a systems alignment view, solely concerning ourselves with factors

related to the structure of similarity relationships between concepts, within a

system. If children engage in systems alignment, then concepts that readily

align across systems should be preferentially acquired (Roads and Love, 2020),

forming a basis for subsequent learning. To foreshadow our results, artificial

learning agents that are seeded with concepts acquired early by children better

assimilate new conceptual knowledge through systems alignment. We proceed

to investigate whether there are quantifiable structural underpinnings of this

alignment e�ect within semantic spaces. What is it about early-acquired con-

cepts and their relationships that allows for new conceptual knowledge to be

more readily aligned? Our view predicts that knowledge states which yield dis-
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tinctive similarity relationships for unknown concepts will be preferred in early

life. In line with this prediction, structural analysis reveals distinctive charac-

teristics of the similarity relationships of early-acquired knowledge states. To

assess the generalisability of these structural features for improving alignment

performance, we train generative agents to build knowledge states by optimis-

ing these structural parameters. Consistent with our alignment-based view,

we find that agents that build their knowledge states based on these structural

features outperform all other agents in their ability to learn by alignment.

2.2 Materials

2.2.1 Image embeddings

The image embeddings used here are those used in Roads and Love (2020),

derived by applying the GloVe algorithm (Pennington et al., 2014) to the Open

Images V4 dataset (boxes subset) (Kuznetsova et al., 2020). Open Images V4 is

comprised of approximately 9.2 million images, all annotated to identify which

of over 19,000 object classes they contain. Roads and Love (2020) construct

a co-occurrence matrix by counting the images in which each object class co-

occurs with each other class. This matrix is inputted to the GloVe algorithm,

which generates the 10-dimensional image embeddings we use.

2.2.2 Word embeddings

We compared large-scale pre-trained word embeddings to word embeddings

derived from child-directed speech, to choose the most suitable for this study.

Pre-trained word embeddings

The pre-trained word embeddings were 50-dimensional GloVe text embeddings

(Pennington et al., 2014). These embeddings are trained on 6 billion tokens

from the Wikipedia2014 + GigaWord5 text corpus. The resultant vocabulary

size is 400,000 tokens.
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Word embeddings from child-directed speech

It is important to consider the use of word embeddings from child-directed

speech as possible relevant models of linguistic space for this study.

We inferred embeddings from the North American English subset of the

CHILDES database (MacWhinney, 2000), which is comprised of transcripts of

conversations and interactions with children compiled across 49 di�erent stud-

ies. Each transcript in the database was treated as a document by the GloVe

algorithm. After pre-processing to extract child-directed speech inputs and

remove punctuation, the compiled corpus was inputted into the GloVe algo-

rithm. The resultant corpus contained 4 million tokens, and had a vocabulary

size of 12,252. The algorithm was run with a output vector size of 50 and a

window size of 10. The algorithm ran for 1,000 iterations. The minimum count

of word occurrences in order for a word to be included in the GloVe algorithm

was 5.

Choice of word embeddings

When selecting the appropriate embeddings for the task, it was crucial to note

that systems alignment is driven by similarity relationships between concepts,

not knowledge of the concepts themselves. Preserving similarity relationships

across systems is all that is required for systems alignment. Thus, a child may

have di�erent knowledge of a car, a truck, and a shark than an adult (Hills,

2013). However, like an adult, the child may still judge the car as more similar

to the truck than the shark.

Analyses of the resultant embedding spaces find that this is true. For the

concrete concepts explored in this study (i.e, the concepts which exist in both

the word and image embeddings), key similarity relationships are preserved

for child-directed speech embeddings and pretrained word embeddings. The

example described above is shown in Figure 2.3. In this Figure, embeddings

for the items {car, truck, whale, shark} are projected into 2D space using Prin-

cipal Component Analysis (PCA). The results demonstrate that the similarity
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1A 1B 1C

2A 2B 2C

Figure 2.3: Demonstration of the consistency of similarity relations across child-directed embeddings, pre-
trained GloVe embeddings and image embeddings. 1A-C: 2D projections of the embeddings for the items
{car, truck, whale, shark} in each embedding space. All embeddings are projected into 2D using principal
component analysis (PCA). PCA is conducted on this set of four concepts in each space. 2A-C: Pairwise
distance matrices for the four example concepts. As stated in the text, the similarity relationships within the
di�erent embedding spaces are strongly consistent: in all cases, it is true that a truck is more similar to a car
than it is to a shark or a whale, as the pairwise distance for the dyad car-truck is substantially lower than the
pairwise distance for car-shark or car-whale. The pairwise Pearson correlations between distance matrices
for this set of items are as follows: flchildes-pretrained = 1.00, flchildes-image = 0.93, flpretrained-image = 0.93.

relationships for this set of items are recapitulated consistently across child-

directed embeddings, pre-trained GloVe embeddings and image embeddings:

in all three systems, car is indeed much closer to a truck than it is to shark.

Another example is provided in Figure 2.4, which demonstrates that sim-

ilarity relationships which capture specific elements of meaning are also pre-

served across the three embedding spaces. In this demonstration, the em-

beddings for the items {car, truck, airplane, cat, dog, bird} are shown, again

projected into 2D using PCA. Here, the notable result is that all three embed-

ding systems place the items roughly on the vertices of a quadrilateral, where

items can be split appropriately by two classification vectors: animal/vehicle,

and flightless/flying.

This demonstrates that meaningful relationships are captured by child-

directed and pre-trained word embeddings in similar ways. However, the cor-

pus used to train child-directed speech embeddings is substantially smaller

than that used for the pre-trained embeddings. It has been shown by prior
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1A 1B 1C

2A 2B 2C

Figure 2.4: Demonstration of the consistency and meaning in similarity relations across child-directed
embeddings, pre-trained GloVe embeddings and image embeddings. 1A-C: 2D projections of the embed-
dings for the items {car, truck, airplane, bird, cat, dog} in each embedding space. All embeddings are
projected into 2D using PCA performed on the item set in each space individually. Purple and orange
lines demonstrate that, for all embeddings, the items can be appropriately classified on two highly salient
dimensions: Animal/Vehicle and Flightless/Flying. 2A-C: Pairwise distance matrices for the example con-
cepts. The pairwise Pearson correlations between distance matrices for this set of items are as follows:
flchildes-pretrained = 0.63, flchildes-image = 0.86, flpretrained-image = 0.81.

work that corpora of comparable size to CHILDES consistently yield unstable

embeddings (Antoniak and Mimno, 2018). Thus, when we expand our scope

and look at larger systems of items, it may not be safe to assume that a dataset

of this size will yield representatively stable embeddings.

To assess the impact corpus size may be having on the CHILDES em-

beddings, and to assess the extent to which CHILDES embeddings and pre-

trained embeddings yield comparable similarity relationships once corpus size

is accounted for, subsets of the training data used for the pre-trained GloVe

embeddings were used. These subsets came from the enwik81 dataset. The

enwik8 corpus consists of a Wikipedia dump, which is also found in the train-

ing data for original pre-trained GloVe embeddings. For our purposes, enwik8

was pre-processed such that each Wikipedia article was represented as a dis-

tinct document. 20 CHILDES-sized sample corpora were randomly sampled

from the enwik8 dataset, and an embedding was inferred for each using the
1
Obtained from http://mattmahoney.net/dc/textdata.html
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GloVe algorithm, with same parameters as were used to infer the CHILDES

embeddings.

A noise estimate for CHILDES-sized corpora was obtained by evaluating

the similarity between each of these 20 sampled enwik8 embeddings and the

original GloVe embedding. The results for the downsampled enwik8 corpora

demonstrate the challenge of comparing the embeddings derived from corpora

of di�erent sizes: even when the corpus is included in the training set of a

larger embedding, as is the case for samples from the enwik8 corpora and

the pre-trained GloVe embeddings, the similarity scores are relatively low (see

Figure 2.5). Against this backdrop, the child-directed embeddings exhibit the

similarity performance one would expect given their small size relative to the

original GloVe embeddings.

Given these results, pre-trained word embeddings were selected as the pri-

mary text embeddings for the analyses in this study, owing to (a) the large size

of the training corpus, which has been shown to significantly impact embedding

stability (Antoniak and Mimno, 2018), (b) their established correspondence

to human semantic judgments of language (Pereira et al., 2016) and (c) the

finding that child-directed speech embeddings correlate as highly with these

embeddings as these embeddings do with themselves, presented below. With

point (c) in mind, together with the findings that key similarity relationships

are preserved in child-directed speech embeddings as demonstrated above, it is

likely that alignment-based findings using pre-trained embeddings will also be

relevant for child-directed speech, however points (a) and (b) mean that the

data is currently not su�cient to rely on child-directed speech embeddings as

representative of children’s semantic spaces.

To bolster the relevance of our findings for early concept learning in the

real world, the first experiment presented below was also conducted using the

CHILDES embeddings, and the key result was replicated.
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Figure 2.5: [Correspondence of CHILDES embeddings and embeddings inferred from the downsampled
enwik8 corpus with pre-trained GloVe embeddings. (a) Correlations of pairwise relationships and (b) Jac-
card similarity scores for 10-nearest-neighbours of concepts across 20 embeddings of comparable size to the
CHILDES corpus, sampled from the enwik8 corpus. The corresponding performances of CHILDES on the
relevant metrics are also shown. Performance is shown for all concepts in the set (blue) and for early-acquired
concepts only (orange). On both similarity measures, the CHILDES embeddings perform comparably to the
comparably-sized samples from the GloVe embedding training corpus. CHILDES embeddings even outper-
form the enwik8 embeddings of comparable size for early-acquired words. This shows that the CHILDES
embeddings are as similar to the large-scale pre-trained GloVe emebeddings as they could be expected to
be, given their corpus size. Thus, there is no evidence here to suggest that the similarity relationships for
children are substantially di�erent to those for adults, for the concepts used in this contribution.

2.2.3 Age-of-acquisition data

Age-of-acquisition (AoA) data taken from Frank et al. (2017)’s WordBank

dataset. WordBank aggregates experimental results using MacArthur-Bates

Communicative Development Inventories (MB-CDI) (Fenson et al., 2007). We

used the English (American) dataset, containing data from linguistic develop-

ment trajectories of 8,300 children. Specifically, we used the item trajectory

dataset, which reported the proportion of children who could produce each

word by each month of age. This data is obtained from parental reports of

children’s word production. This dataset contains monthwise probabilities of

the acquisition of 680 words overall. We pre-process the dataset by taking the
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subset of WordBank words which exist in the intersection of our word and im-

age embeddings. There are 418 words in the word/image intersection, and of

these 138 words are present in the WordBank dataset. These 138 words com-

prise the AoA concept set, and the full set of 418 concepts in the image/word

embedding intersection intersection comprise the control concept set.

AoA data is available for children from 16 to 30 months of age. However,

as the MB-CDI is an index of representative words for early vocabulary, and

not a comprehensive review of a child’s entire vocabulary, it is known that

MB-CDI results diverge from true vocabulary size as MB-CDI scores increase

(and, typically, as a child gets older) (Fenson et al., 1994, 2007). This is

because as the vocabulary expands, the representative words which comprise

the MB-CDI become less likely to capture the idiosyncrasies of an individual

child’s vocabulary. Mayor & Plunkett modelled the extent of the divergence

(Mayor and Plunkett, 2011), and provided estimates for the proportion of the

vocabulary which is not captured within the MB-CDI at each month of age.

For our probabilistic interpretation of the MB-CDI data, we require the

assumption that the probability of a child having acquired any concept outside

of the index is approximately 0. Therefore, all of our modelling and analyses

are performed using WordBank data for months 16-24 only, where the index

is likely to capture close to 100% of a child’s vocabulary.

We assume that the order in which words are produced corresponds to

the order in which words are ‘known’. For our purposes, a word is ‘known’

when a correspondence is established to its visual form from its linguistic form

(i.e, an agent can correctly label a picture of a dog as a ‘dog’). Estimating

children’s knowledge bases using production norms likely introduces noise into

our analyses and may underestimate semantic knowledge because other factors,

including phonological, will influence which words children produce.
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Figure 2.6: An illustrative example of how knowledge states expand in simulated agents. In this example,
six concepts (nm = 6) are added to each agent’s knowledge state. The AoA agent’s knowledge state grows in
accordance with the probabilities of each concept’s acquisition by month m in the AoA data (i.e., the agent
acquires concepts typical of children). The Control agent ignores AoA information – the concepts added to
its knowledge state are randomly drawn from the full set of concepts (see Materials and Methods).

2.3 Forced choice by alignment

Our first set of simulations tested the alignment capabilities of early-acquired

concepts by examining the ease with which new concepts could be learned

without instruction, based solely on relationships with known concepts.

2.3.1 Methods

Knowledge trajectory simulation

We compare the e�cacy of knowledge assimilation for two agent conditions:

agents whose knowledge states are based on real Age-of-Acquisition data (Frank

et al., 2017) (AoA agent condition), and agents whose knowledge states are

randomly selected (Control agent condition). Idealised examples of the knowl-

edge state simulation process for each agent are shown in Figure 2.6.

To simulate knowledge trajectories, we calculated the mean number of con-

cepts nm acquired in each month m of the Age-of-Acquisition data. This is

achieved by summing the probabilities of acquisition across all concepts in

each month, nm = qN
i=0 pi,m, where N is the total number of concepts in our

AoA set, and rounding to the nearest integer. This produces the sequence
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given in Table 2.1. At each month for each agent type, we therefore have a

simulated knowledge state which contains Nm concepts, where Nm = qm
j=16 nj.

We generate sequences of acquired concepts under two conditions:

• AoA: New items are selected from a probability distribution across items

in the WordBank dataset (see Materials). The probability distribution

is generated by normalising the probabilities of acquisition for all con-

cepts in the WordBank inventory which have not yet been added to the

simulated sequence, such that the probabilties sum to 1.

• Control: New items are randomly selected from all items in the inter-

section of word and image embeddings, which have not yet been added

to the simulated sequence.

Month (m) 16 17 18 19 20 21 22 23 24

Concepts acquired in month m (nm) 17 3 15 9 4 6 14 9 6

Cumulative concepts (Nm) 17 21 36 45 49 55 68 77 83

Table 2.1: Number of concepts acquired in each month, based on mean number of concepts known in each
month of the WordBank dataset. Values are rounded to the nearest whole number of concepts.

Forced choice task

To test the extent to which agents’ knowledge states facilitated learning new

concepts by alignment, we used a forced-choice paradigm. In this paradigm,

simulated agents attempted to infer the correct mappings for a novel pair

of probe concepts presented in word and image embedding spaces. Probe

concepts were sampled using two di�erent probe conditions: either from the

remaining AoA concepts (AoA-constrained probe condition) or from all re-

maining concepts (Unconstrained probe condition).

Agents made their choice by assessing the alignment score for the two

possible image-word mappings—one of which mapped each probe word to its

correct visual object, and the other of which yielded the incorrect mapping

(visualised in Figure 2.7).

The scoring procedure for the forced choice task is visualised in detail

in Figure 2.8. The alignment score measures the extent to which within-
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Figure 2.7: Example of the forced choice task used to evaluate agents. In this example, Agent A’s knowledge
state allows it to make the correct inference in the forced choice task, using alignment. In the left panel,
the agent’s knowledge state prior to the forced choice task is represented. Greyed out images and words
in the visual/linguistic spaces represent items which the agent has experienced separately in each modality,
but which have not been mapped across systems. The next panel to the right shows an example forced
choice task: in this case, agents are asked to infer which of two visual objects is an ‘Airplane’ and which is a
‘Train’. The next panel shows how the agent attempts this inference. The agent obtains the alignment score
for each candidate mapping of the probe items using the alignment scoring function. The alignment scoring
function is shown in detail in Figure 2.8. Agent A correctly identifies the appropriate mapping, because the
alignment score for the correct mapping is higher than the score for the incorrect mapping. For an example
of a knowledge state which would yield failure in this forced choice task, see Appendix A1.

system similarity relationships correlate for corresponding items in a given

cross-system mapping. Given that the mapping for all but the probe items was

fixed in the forced choice task, the higher alignment score can be determined by

the Spearman correlation, fls, between concatenated pairwise distance vectors

for the probe items’ distances from the known concepts in each modality. The

order of concatenation in each modality was determined by the proposed cross-

modal mapping (see Figure 2.8). A forced choice was deemed correct if the

correlation for the correct mapping was higher than for the incorrect one.

Both probe conditions are tested on both agent conditions, with 100 sim-

ulated agents for each condition. Month m and probe condition are within-

subjects factors; agent condition is a between-subjects factor. This yields a

two-way repeated measures design.

2.3.2 Results

The results are shown in blue (AoA) and red (Control) in Figure 2.9. First,

it is striking that with only a handful of known concepts that both agents’

inferences are over 80% accurate in the forced choice task (see Table A.3 for

month-wise t-tests). This indicates that children, like our agents, could align

systems (e.g., visual and words) to correctly label objects using similarity re-
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Figure 2.8: Details of how the score is calculated for a candidate forced choice mapping, using an agent’s
knowledge state. First, the agent retrieves the inter-concept distances for the probe items with respect to its
known items in each modality. Then, the similarity relationships in each modality are concatenated in the
order determined by the candidate mapping. The resultant vectors are correlated across modalities. The
chosen mapping is the one which maximises the correlation between similarity vectors across modalities

lationships to their known concepts. These results extend those of Roads and

Love (2020) to suggest that systems alignment is useful for inferring unknown

concepts and building useful priors or expectations.

Second, we found that the AoA agent was more e�ective than the control

agent (F (1, 198) = 347.48, p < .001, ÷
2
p = 0.627) and an advantage of AoA

test probes (F (1, 198) = 529.96, p < .001, ÷
2
p = 0.719). There was also a

significant interaction between agent and probe type (F (1, 198) = 11.83, p <

0.001, ÷
2
p = 0.069) such that the AoA probe e�ect was heightened for the AoA

agent. Complete ANOVA results are provided in Table 2.2.

2.4 Analysis of structural features

Based on the findings in the forced-choice experiment, we hypothesised that

early-acquired concept sets possess common structural features which facili-
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Figure 2.9: Results for forced choice experiment for di�erent agent types. Shaded regions represent
95% confidence intervals across 100 agents for each agent type. AoA vs control Blue lines represent
performance for agents simulating AoA-based concept acquisition, and red lines represent results for control
agents. Generative modelling Orange and black lines represent results for structural agents. Black lines
represent performance for the agents which are trained to match AoA acquisition statistics; orange lines
represent performance for the agents which are trained to optimise probe pair performance.

Predictor df F p ÷
2
p

Agent (1, 198) 347.48 < .001ú 0.627
Probe (1, 198) 529.96 < .001ú 0.719

Agent * Probe (1, 198) 11.83 < .001ú 0.069
Month (8, 1584) 62.11 .001ú 0.235

Agent * Month (8, 1584) 2.61 .008ú 0.011
Probe * Month (8, 1584) 1.84 .066 0.008

Probe * Agent * Month (8, 1584) 1.09 .369 0.005

Table 2.2: Repeated-measures ANOVA results for probe pair experiment. Agent condition (AoA vs control)
and probe condition (AoA-constrained vs Unconstrained) were between-subject factors and month was a
within-subject factor. ú indicates statistically significant results for –=0.05. df = degrees of freedom; ÷2

p is
partial ÷2 e�ect size.

tated the observed uplift in learning by alignment. In this analysis, we sought

to identify quantifiable structural features which distinguish an AoA knowl-

edge state from a Control knowledge state, and aimed to explore whether these

features drove alignment uplift.

We calculated a range of features for the knowledge states of both Control

and AoA agent types. The di�erent features were derived from similarity rela-

tions of concepts and graphs of concepts’ close neighbours. Where applicable,

these features were calculated for each concept with respect to both (a) the

full space of all concepts, and (b) the set of concepts already in the agent’s

knowledge state at the point of acquisition. Additional features characterised

the knowledge state as a whole, including its average coverage of embedding

space dimensions and the distribution of node degrees within the knowledge

state (see Table A.4 for the full table of features tested).
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Most tested features are averages of concept-wise features taken across the

concepts in the knowledge state. These fall into one of two broad categories:

• Global similarity features: These are features based on similarity

relationships in the full system of concepts. These features are rooted

in the similarities between each concept and others in the system. For

example, the mean global distance for a concept i would be the mean of

i’s distance to every other concept in the system.

• Neighbourhood graph features: These are derived from graphs con-

structed from only the shortest-range inter-concept relationships (or, in

other words, concepts’ immediate neighbourhoods). We build a graph

G, whose nodes are concepts within an embedding space, by retaining

the vertices for the 10% of smallest inter-concept distances, based on the

similarity matrix.

Note that the graphs we generate in this study are not necessarily con-

nected, therefore some graph measures such as smallworldness are not appli-

cable in our case. Clustering and betweenness measures were obtained using

networkx in Python (Hagberg et al., 2008). While we explored clustering

and betweenness results for the AoA vs control knowledge states, we excluded

these variables from selection by the logistic regression model due to the com-

putational demands of calculating them for model training. This exclusion

had no impact on the performance of the model selected. All features were

normalised to fall in [0, 1].

A logistic regression classifier was trained to predict if a knowledge state

was sampled under the AoA or the Control condition. Logistic regression was

performed using scikit-learn in Python (Pedregosa et al., 2011). An 80/20

training/test split was applied to the knowledge states in advance of training.

Logistic regression was performed with a liblinear solver and L2 loss, where

the maximum number of iterations was set to 10,000.

We used recursive feature elimination to identify the features which were

most powerful in demarcating early-acquired knowledge sets. When applying
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recursive feature selection, values of k (number of features included in the

model) from 1 to the full feature set were tested, and the value which minimised

each model’s Akaike Information criterion (AIC) was selected.

Regression results are shown in Table 2.3. Recursive feature selection chose

seven features: distance to closest neighbour in full space and knowledge state,

mean degree in full space and knowledge state, degree distribution skew in

knowledge state, mean distance in knowledge state and mean dimension cov-

erage of the knowledge state. The accuracy, recall and precision the resultant

model were all over 92% for a balanced set of 900 Control and 900 AoA knowl-

edge state samples, meaning that all models correctly classified a significant

majority of samples on the basis of these features.

Feature —

Degreeknowledge 7.21
Degreefull 5.36

Mean(Distknowledge) ≠3.28
Mean dimension coverage ≠7.43

Min(Distknowledge) ≠4.04
Min(Distfull) ≠2.60

Skew(Degreeknowledge) 4.76

Table 2.3: The — values of logistic regression after recursive feature elimination. The regression model was
trained to classify sample knowledge states as early-acquired (Y = 1) or control (Y = 0).

The regression analyses indicated that AoA concepts are distinguished by

their dense neighborhoods. From a systems alignment perspective, density

may be advantageous because it promotes stability. Embedding algorithms

are sensitive to initial conditions such that the position of items within an

embedding can vary across simulations. Human learners may also be a�ected

by these and other factors, such as noise and the idiosyncratic nature of human

experience. We confirmed the stability hypothesis: longer-range relationships

are less stable across embedding initialisations (see Figure 2.10), meaning that

dense neighborhoods characteristic of AoA concepts are better suited to system

alignment. Stability may explain why children preferentially acquire concepts

with many semantic neighbours (Hills et al., 2009; Stella et al., 2017).
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Figure 2.10: Relationship between the average distance between two concepts and the standard deviation
of the relationship across multiple initialisations of the embedding space.

2.5 Learning with generative agents

Having identified structural features of early-acquired concepts within em-

bedding spaces, we explored whether these features could be used to build

knowledge states which are optimal for alignment. Could removing the ad-

ditional constraints which apply to early concept acquisition yield even bet-

ter alignment performance, using the same structural features that AoA con-

cepts seem to favour? We introduced two new agents, which we refer to as

structural agents. We began by testing the forced-choice performance of a

structural agent which was trained to predict empirically-derived knowledge

states (henceforth the AoA-Matched agent). We also trained a separate Task-

Optimised agent, which aimed to maximise performance on the forced-choice

task. The Task-Optimised agent serves as an upper bound on the forced-choice

performance which can be achieved by optimising these structural parameters,

to which the AoA-Matched agent’s performance can be compared.
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2.5.1 Methods

The training and generative processes for structural agents are outlined in

Figure 2.11, and are described in detail below.

Model structure

Both agents were set up to learn a vector of target values x̂ œ Rk for the

structural features we identified as being predictive of early acquisition, where

k is the number of features available to learn (k = 7). Agents also learned a

weight vector w œ Rk, which captured the relative importance of each feature.

Generating knowledge trajectories based on model parameters

For each month m in the AoA data, the agent samples new concepts one at

a time from probability distributions generated based on the current model

parameters. These probability distributions are derived from the proximity of

the candidate knowledge state associated with each candidate concept to the

current target values x̂ in structural feature space, weighted according to the

current estimate of feature importances. This is shown in panel 2a of Figure

2.11.

When selecting a new concept to add to the knowledge state according to

our current model, we construct a generative score vector for the candidate

concepts s œ Rn (where n is the number of candidate concepts for acquisition)

as follows:

• Obtain feature matrix A œ Rn◊p for all n concepts in candidate concept

set (i.e., all concepts which have not yet been acquired.)

• Get generative scores for all concepts, s = ≠wT (AT ≠ x̂J1,n), where

x̂ œ Rp is the model’s current best estimate of target feature values, w

is the current estimate of feature weights and J1,n is an 1 ◊ n matrix of

ones. The generative score is highest for sampled items whose feature

values have the smallest distance to the current target feature values,

weighted by feature importance.
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Figure 2.11: Diagram showing the training and generative processes of the structural agents. Model
parameter training proceeds as follows: assume we start observing training when the knowledge state and
candidate concept set are as shown in panel 1. Here, the agent knows {apple, car, fish}. Panel 2 shows how
the agent uses its internal model to calculate a probability distribution for the selection of the next concept
from the nc candidates shown in panel 1. The internal model consists of target structural feature vector
x̂t œ Rk and weight vector wt œ Rk. For visualisation purposes we show the case of k = 2, but in the main
study k = 7 (as 7 structural features were identified in the structural analysis). Internal model parameters
and model training steps are highlighted in red. In panel 2a, all structural features are calculated for each
candidate knowledge state (where, for example, the candidate knowledge state associated with acquiring the
concept ‘shoe’ is {apple, car, fish, shoe}). Then, the distance of each candidate knowledge state from x̂t in
each dimension is calculated, yielding distance matrix Dnc◊k, shown in panel 2b. The vector of weighted
distances from target in each dimension, Dw, is calculated in panel 2c for all candidate knowledge states.
This is transformed into a probability distribution across candidate concepts, where candidate knowledge
states with features close to x̂t are chosen with higher probability. In step 3, the next concept for the
knowledge state is sampled from this distribution. In model training, the agent progresses to step 4 at
the end of each month m, where it calculates the relevant loss for optimisation. For the AoA-matched
agent (shown in orange, 4a), the loss is the distance between the expected probability that each concept
will be in the knowledge state according to the model, and the probability of each concept being acquired
by the end of month m in the AoA data. In this instance, the acquisition of each concept is modelled
as an independent Bernoulli random variable. For the Task-optimised agent (shown in blue, 4b), the loss
is flincorrect ≠ flcorrect, averaged across a series of forced choice tasks. Crucially here, the correlations are
weighted by the probability that each concept will be selected for the knowledge state. Then, in step 5, the
loss term is backpropagated to update parameters x̂ and w. Once a model is trained, parameters are fixed
and knowledge state trajectories are generated by repeating steps 1, 2 and 3.
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• Generate probability distribution across candidate concepts by taking

the softmax of normalised scores (softmax temperature parameter T =

5 ◊ 10≠2). The closer a candidate knowledge state is to the target values

in the weighted feature space, the more likely the associated candidate

concept is to be selected.

• Sample a concept from this probability distribution and add to knowl-

edge state.

Loss and model training

At the end of each month in the data, where the number of acquired con-

cepts in simulation matches the average number of concepts acquired from

the WordBank dataset, we backpropagate our loss. The key distinction be-

tween the AoA-Matched and Task-Optimised agents was the loss function that

is backpropagated to optimise the agent’s internal parameters. The AoA-

Matched loss term pressured the agent’s probability of acquiring each con-

cept to match the real probability of acquisition from the AoA data. Mean-

while the Task-Optimised agent aimed to directly optimise performance on the

forced-choice task by using a loss term which pressurised the model to max-

imise the margin between alignment scores for correct and incorrect mappings

(fls, correct ≠fls, incorrect) across a randomly selected set of forced-choice problems.

Details on both loss terms are provided below.

AoA-Matched agent The loss for this model is the average MSE between

(a) the model’s estimated probabilities of each concept being included in the

knowledge state by the end of month m and (b) a set of bootstrapped proba-

bility distributions sampled from the WordBank acquisition probabilities. The

model’s estimate of the probability that an item it has already selected for its

knowledge state being in the knowledge state by the end of month m is set to

1. The probabilities for remaining candidate concepts are determined by the

probability distribution across candidates outputted by the current model. We
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train R = 5 model restarts on average MSE across training set bootstrapped

distributions. Models are trained for 150 epochs. An Adam optimiser with a

learning rate of 0.003 was used for training. We select the best model based

on validation loss averaged across the final 5 epochs.

To obtain ground truth probability distributions for AoA-Matched train-

ing, we take bootstrap samples from the probability distributions of concept

acquisition in WordBank. Details are provided in Appendix A5.

Task-Optimised agent To train the optimal model, we backpropagate a

soft alignment loss across a sample of probe pairs, where the alignment loss is

the extent to which the incorrect alignment score is greater than the correct

alignment score, averaged across pairs. The larger the margin for the correct

alignment score (i.e, the clearer the correct answer is), the smaller the loss

becomes. The alignment loss is soft because it is weighted by the candidate

concepts’ probabilities of being selected for the knowledge state. The process

of calculating the soft alignment loss is presented in Appendix A6.

As before, we train R = 5 model restarts to minimise this alignment loss,

and models are trained for 150 epochs. An Adam optimiser with a learning

rate of 0.01 was used for training. We select the best model based on validation

loss averaged across the final 5 epochs, where validation loss is soft alignment

loss calculated on a validation set of forced-choice items.

Testing resultant knowledge states

After each agent model was trained, model parameters were fixed and agents

were tested. Using the learned model parameters, agents simulated concept

acquisition across an eight-month period. Trajectory generation occurred in

the same way as it did during model training, but without parameter updates.

Each model was tested using 100 generative simulations in order to establish

a reproducible result. For each simulation, agents sequentially expanded their

knowledge states by selecting concepts that satisfied the agent’s previously

learned feature weightings (e.g., an outlier concept was selected because it
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better satisfied the agent’s preference for wider coverage of the embedding

space). As the agent sequentially selected concepts, it was tested each month

using forced-choice tasks, according to the same procedure used for AoA and

Control agents in Experiment 1.

2.5.2 Results

Forced choice results

Forced-choice results for the generative paradigm are visualised in Figure 2.9.

Results for the AoA-Matched and Task-Optimised agent are shown in black

and orange respectively. Significance tests for all agent comparisons are pro-

vided in Table A.5.

When the forced-choice task involves AoA concepts, the AoA-Matched

agent performs worse than AoA Agent in the first three months and out-

performs the AoA agent in the final months. When the forced-choice task in-

volves Unconstrained concepts, the AoA-Matched agent performs worse than

the AoA agent during early months, but performs at a similar level in later

months. The Task-Optimised agent performs better than the AoA-Matched

agent in the early months (for both probe types) and performs better than the

AoA agent for later months (for both probe types).

Structural trajectory analysis

An analysis of the proportions of early-acquired concepts in the knowledge

states learned by each agent type demonstrates that the performance of struc-

tural agents did not rely solely on concepts in the AoA set, with 57% and

62% of concepts being early-acquired in the final knowledge states of Task-

Optimised and AoA-Matched agents respectively (see 2.12). Naively, one might

think AoA trajectories are the only learning path which yields success using

these structural features. However, these results demonstrate that there is

a more general solution space which lies outside of what is observed empir-

ically. In the final knowledge state, where the Control condition consisted
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of only 33% AoA concepts, both AoA-Matched (t(198) = 48.9, p π 0.01) and

Task-Optimised agents (t(198) = 43.7, p π 0.01) demonstrated enhanced pref-

erence for AoA concepts compared to Control agents. This was true despite

the Task-Optimised agent having no explicit training pressure to select AoA

items.

It is interesting to note that the proportion of acquired items which were in

the early acquired set in each month declined over time (see Figure 2.13): the

structural agents started out by choosing concepts which were somewhat sim-

ilar to those chosen by an AoA agent (indeed, nearly 70% of the concepts each

agent chooses are early-acquired in the first month), but both agent types

increasingly branched out into non-AoA concepts over time. AoA-Matched

agents did not consistently acquire a higher proportion of early-acquired con-

cepts than the Task-Optimised agents. This goes to show that while there are

clearly additional constraints on early concept acquisition which were not cap-

tured by our structural features—resulting in the number of non-AoA concepts

acquired by AoA-Matched agents—early-acquired concepts do indeed possess

a privileged position when it comes to optimising for alignment.

Figure 2.12: Number of concepts acquired which are early-acquired, by generative condition. The AoA
line represents all items in the sample being early-acquired.

The two agent types had di�erent priorities when selecting new concepts

for acquisition: the Task-Optimised agent, which performed better in forced-

choice, prioritised learning concepts which had many close neighbours in the

full semantic space; the AoA-Matched agent, on the other hand, prioritised
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Figure 2.13: Proportion of concepts acquired in each month which are in the set of early-acquired concepts
found in WordBank.

acquiring concepts which had low mean distances from other concepts in the

existing knowledge state and many close neighbours within the knowledge

state (see Figure 2.14). This suggests that Task-Optimised agents achieved

their superior performance by focusing on concepts which have dense similarity

neighbourhoods in semantic space. AoA-Matched agents were prone to select

knowledge states with low coverage, as was seen in the classification results, but

this was not true of Task-Optimised agents, indicating that while low coverage

may be a feature of early-acquired knowledge states, it does not necessarily

contribute to the enhanced alignment e�ect.

Figure 2.14: Mean learned importances of features for selecting new concepts to add to the knowledge
state, for each generative agent type. Error bars represent 95% confidence intervals across restarts.

So, what types of concepts do these structural features lead agents to seek
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out? We examined the semantic category coverage of the concepts learned by

each agent type (see Figure 2.15). The AoA-Matched agents show a similar

distribution across categories to the AoA agents, while the Task-Optimised

agents have a tendency to focus in on fewer semantic categories, as indicated by

low cross-category entropy. This implies that the Task-Optimised agents prefer

specialism or depth of knowledge within categories, as opposed to covering all

category bases as a priority for knowledge acquisition.

Figure 2.15: Overall entropy of knowledge state’s category distribution after each month of concept
acquisition. Shaded areas represent 95% confidence intervals around the mean, based on 100 simulated
agents per condition.

2.6 Discussion

This chapter has demonstrated that aligning systems can aid the acquisition

of conceptual knowledge. By matching inter-concept relationships alone, it is

possible to infer the meanings of concepts with over 80% accuracy in a forced

choice task with a knowledge state containing only 21 known concepts. This

startling result, along with prior work on systems alignment (Roads and Love,

2020) and supportive brain imaging findings (Popham et al., 2021), suggests a

revised account of human learning. Rather than being strictly event-based, hu-

man learning may also draw upon the alignment of conceptual systems, which

can link asynchronous events in an o�ine manner, akin to how neuroscientists

characterise memory replay (Barry and Love, 2023).

We found that children’s early-acquired concepts provided knowledge states

that better supported alignment than randomly-sampled knowledge states
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(i.e., AoA vs Control agent results, Figure 2.9). In turn, early-acquired con-

cepts were easier to learn by alignment than later-acquired concepts (i.e., AoA

vs Unconstrained probe type results, Figure 2.9). These findings suggest that

children could engage in the types of unsupervised learning involved in systems

alignment, which would lead to a preference for concepts forming alignable

systems. A complementary possibility is that children are biased to acquire

alignable systems of concepts based on some structural property of these knowl-

edge states.

In accord with this second possibility, we found that children’s early (AoA)

concepts were distinguished from other concepts by certain structural features,

such as being densely packed and interconnected (see Table 2.1). We pre-

dicted that these features were particularly beneficial for systems alignment.

To evaluate this possibility, we built agents that used these features to select

concepts to learn through systems alignment (see Figure 2.7). As predicted,

these agents were more e�ective than agents that randomly sampled concepts

(see Figure 2.9). The AoA agent patterned after children’s acquired concepts

performed nearly as well as the Task-Optimised agent which indicates that

children’s early concepts provide a knowledge base highly suited to (and per-

haps shaped by) systems alignment.

One factor underlying the success of these agents (and children) may be

that dense semantic neighbourhoods provide a solid foundation for subsequent

concept learning. In support of this conjecture, we found that relationships

in embeddings across multiple initialisations are most stable for shorter-range

relationships, which would make knowledge bases consisting of densely packed

concepts most reliable for systems alignment. This inherent sensitivity to

initial conditions and noise in learning systems may privilege densely packed

concepts as found in children’s early concepts.

These structural agents were constrained to follow the feature patterns

characteristic of children’s early concepts rather than learn the specific con-

cepts children do. Their success demonstrates that there are multiple paths

84 of 227



2.6. Discussion 2. Alignment in children’s early concepts

to successful learning by alignment. Indeed, the specific concepts learned by

the structural agents di�ered from those children learned (see 2.12). When

we use our structure-based models to generate sequences using only concepts

which are not in the AoA dataset at all, they still achieve forced-choice perfor-

mance with up to 90% accuracy at the maximum knowledge state size tested

(see Figure A.4). In summary, while children’s early concepts form a read-

ily aligned system, there are many other knowledge states that also support

systems alignment.

Unlike the artificial agents, children likely face a trade-o� between the con-

cepts which are easiest to integrate with their current knowledge by alignment

-i.e., those with dense connections- and those which they must learn in order

to gain a functional understanding of their world. We found evidence of this

trade-o� by comparing the structural preferences of agents which were trained

to mimic early-concept acquisition and agents which were trained solely to

optimise alignment performance. Agents which mimicked real-world concept

acquisition struck a balance between densely-connected knowledge states and

knowledge states which spanned semantic categories, while agents optimising

alignment performance honed in on a narrow range of semantic categories,

favouring connection density.

We focused exclusively on systems alignment, which we view as an excit-

ing and under-explored avenue for learning. We fully acknowledged that other

factors shape early concept acquisition. Supervised episodes, and other afore-

mentioned event-based inputs, undeniably a�ect children’s learning. Rather

than be in opposition, systems alignment is compatible with other forms of

learning, including event-based learning. Children’s learning likely reflects a

mix of systems alignment and event-based learning. In our own results, we

found that AoA concepts tend to be higher frequency, which we take as a

marker of event-based learning. Thus, children’s early concepts show indi-

cations of both systems alignment and event-based learning. When we limit

our simulations to non-AoA concepts that tend to be lower frequency, systems
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alignment continues to perform well (see figure A.4), suggesting that it may

be possible to disentangle these forms of learning that are likely intertwined

in natural environments.

Systems alignment can explain how learning is possible from weak super-

visory signals. In naturalistic environments, weak signals may come in the

form of ambiguous (Quine, 1960; Yu and Smith, 2007) or infrequent (Clerkin

and Smith, 2022; Karmazyn-Raz and Smith, 2022) labelling events, or indeed

from the context-specificity of early language (Tamis-LeMonda et al., 2019;

Roy et al., 2015). These signals could constrain systems alignment processes

by suggesting links between systems and restricting the set of candidate so-

lutions. In turn, systems alignment could help constrain weakly-supervised

mapping problems by favouring mappings that mirror similarity relationships

across systems.

Learning via systems alignment remains to be tested in children under

controlled conditions. Our results invite directed laboratory studies to evaluate

whether children’s learning is accelerated by systems alignment. Like our

agents, we predict children should be able to infer novel mappings between

objects and labels using systems alignment.

We made the simplifying assumption that each embedding or similarity

space is constant over time. While there is evidence that similarity spaces apply

over development – co-occurrence statistics derived from child-directed speech

generate adult-like word embeddings (Li et al., 2000; Unger et al., 2020b) –

and our own analysis showed that the alignment benefit for early-acquired

concepts is also observed when using child-directed speech embeddings (see SI

text), one would expect some changes in these spaces over learning. Infant

environments, while certainly correlated with adult environments for the con-

cepts they are exposed to, are more constrained than adult environments, and

semantic spaces will develop over time.

A limitation of this work remains in the fact that the visual object em-

beddings are not specific to children’s environments. Although the similar-
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ity relationships between the concepts studied here are likely to be largely

re-capitulated in such embeddings, these embeddings may align even better

with child-directed speech embeddings. Future work could infer more child-

like visual representations to explore how alignment signals manifest in early

similarity space.

Additionally, while our visual embeddings are based on visual object co-

occurrences, the semantics of the visual space may instead be captured by

embedding other kinds of visual information, such as how objects co-occur

with actions and contexts (Tamis-LeMonda et al., 2019; Roy et al., 2015) or

objects’ perceptual features (Riordan and Jones, 2011). Embeddings based on

these types of visual information may better capture how children judge visual

similarity, which may improve systems alignment to linguistic spaces (Johns

and Jones, 2012).

To simplify, we considered conceptual understanding as ‘all-or-nothing’:

when a word-image mapping is known, the concept is ‘understood’. Instead,

conceptual understanding, and indeed cross-modal mappings themselves, are

likely graded. One possibility is that systems alignment may provide infor-

mative priors for concept learning, thus facilitating event-based learning. For

example, possible alignments that lead to higher alignment scores could be

assigned higher priors. In turn, event-based learning constrains systems align-

ment by expanding the knowledge base. These principles could benefit machine

learning systems using alignment-informed priors for multi-modal learning.

This chapter has demonstrated that the concepts children learn in early life

are particularly well-positioned to support learning by systems alignment. A

natural question to follow is whether people do in fact benefit from alignable

systems when learning. As noted here and in the previous chapter, there are a

host of established learning signals which are known to contribute to concept

learning. So, more specifically, do alignment signals bolster human learning in

the presence of other learning signals? The next chapter of this thesis addresses

this question via a behavioural study. The answer to this question will help
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to understand the hypothesised role of alignment in resolving ambiguity in

real-world learning signals.
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Chapter 3

Alignment in supervised

learning

Prior work (Roads and Love, 2020; Johns and Jones, 2012) and the simula-

tion study presented in the previous chapter converge on the theoretical util-

ity of alignment-based signals for learning cross-modal mappings. But while

these signals have been shown to exist in naturalistic learning environments,

do humans capitalise on alignable systems in learning? In this chapter I ex-

plore this phenomenon in a human-subject experiment, which tests whether

cross-system learning is supported by shared structural relationships. We in-

vestigated whether participants were better able to learn associations between

aligned systems than misaligned ones in the presence of supervised learning

signals.

Learning is often viewed as event-based. For example, pairing a face with a

label provides a means to learn a stranger’s name. A complementary possibility

is that humans learn by establishing correspondences between entire systems

(Goldstone and Rogosky, 2002).

Imagine you are abroad with your partner who is watching a basketball

game on television in an unknown language. You are facing away from the

television unpacking your luggage. You frequently hear cheering followed by

the announcer saying various utterances containing “Michael”. Your partner,

noticing your disinterest in the game, plugs their headphones into the televi-
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sion. Turning toward the muted television, you notice the same star player

from the home team keeps scoring. Despite being limited to asynchronous

cross-modal input, a reasonable inference based on aligning systems is that

the star player’s name is Michael.

Mappings like this are possible far beyond simple features like frequency.

For instance, similarity relations across visual and linguistic systems may mir-

ror one another: cups and mugs appear in related linguistic contexts concerning

drinking and also are visually similar.

We have presented evidence that the information exists in the real world

to support aligning conceptual systems based on similarity relations. To re-

iterate, Roads and Love (2020) conducted an information analysis on di�erent

unimodal embeddings, which found that similarity relations remain consistent

across modalities. That is, if ‘car’ and ‘truck’ occur in similar linguistic con-

texts, their corresponding referents are likely to occur in similar visual contexts

(Figure 1.1). The previous chapter demonstrated that these relationships are

particularly prevalent in early-acquired concepts, and could support successful

concept learning in early life.

We define a system as a set of items organised within a domain, where a

domain is the set of possible inputs to a mapping function F (X) for a given

task (see Figure 1.1). In learning to label visual objects, we learn correspon-

dences between systems of items within visual and linguistic modalities. These

modalities are the domains, in this case1. While perceptual modalities are

clearly relevant examples of domains between which humans regularly estab-

lish correspondences, this chapter aims to demonstrate a domain-general pro-

cess through which humans may capitalise on cross-system structure to boost

learning.

Research in analogy seeks alignments between representations (Gentner,

1983; Holyoak and Thagard, 1989; Lu et al., 2012; Doumas et al., 2019), but

whereas analogical alignment is between two analogs, such as an atom and
1
Domains could also be contained within a single modality: in translating between two

languages or performing analogy, correspondences may be established between di�erent

systems of items within the linguistic modality.
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the solar system, we suggest that entire conceptual systems could be aligned.

Systems alignment also diverges from alignment work in category learning

(Lassaline and Murphy, 1998) and in similarity perception (Goldstone and

Medin, 1994), as it does not require features to be shared across systems for

mapping, and depends instead on the similarity relationships within systems.

As described in the previous chapter, systems alignment o�ers a possible

explanation for humans’ remarkable success in acquiring multimodal concepts,

despite this being a famously challenging and underconstrained task. Infants

can acquire an understanding of more than 300 concepts by 16 months of age

(Fenson et al., 1994). Yet even the most supervised learning episodes—such as

pointing at an object while naming it aloud—are ambiguous. This problem of

referential ambiguity is demonstrated by Quine‘s famous thought experiment

(Quine, 1960); if a teacher points at a rabbit hopping through a field and says

‘gavagai’ aloud to a naive learner, how does the learner know what ‘gavagai’

refers to? It could mean hopping, rabbit, fur, field - the list of possibilities

goes on.

To solve this problem, systems alignment could facilitate cross-modal learn-

ing o�ine (that is, in the absence of synchronous input across systems) by

capitalising on common structural relationships. For example, the systems in

Figure 1.1 could be mapped by matching the similarity relationships between

concepts across domains, requiring no synchronous input across modalities.

As such, systems alignment can explain learning from ambiguously supervised

events (such as those discussed in the ‘gavagai’ problem), and even in the ab-

sence of explicit instruction (Cartmill et al., 2013; Lieven, 1994; Samuelson

et al., 2011).

While systems alignment enables purely unsupervised learning, signals

about the strength of alignment may also enhance learning in the presence of

supervised examples, as memory of individual item mappings is reinforced by

the alignment of systems. In this study, we aimed to investigate whether par-

ticipants were better able to learn associations between aligned systems com-

91 of 227



3. Alignment in supervised learning

pared to misaligned ones in a supervised learning task (Figure 3.1). Aligned

systems are those for which the correct pairing of objects between systems is

dictated by their second-order isomorphism. This means paired items share a

pattern of relationships within their respective systems, while sharing no phys-

ical properties (Shepard and Chipman, 1970). In a misaligned set of systems,

paired items share neither physical properties nor patterns of relationships.

Figure 3.1: Examples of aligned and misaligned systems. In aligned systems, similarity relations are
recapitulated across systems, which is not true for misaligned systems.

Our primary hypothesis is that learning will be facilitated when systems

align, even in cases where feedback is provided and synchronous. That is, even

when systems alignment is optional for success in the learning task, people will

engage in it. A default systems alignment strategy might produce idiosyncratic

error patterns for misaligned scenarios.

Systems alignment should create expectations for how an unseen example

maps from domain X to Y based on its relationships to other items in X

(Figure 1.1). This can be described as zero-shot generalisation (Xian et al.,

2017): unlike classic generalisation tests (e.g in category learning), zero-shot

generalisation could occur where items in domain X and domain Y are both
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novel, provided that their relationships to other items in the system were

known. We predict that participants who align systems should be able to

perform zero-shot generalisation to a novel stimulus in X to Y , which would

be like knowing the name of visual object one has never encountered before.

Finally, we predict that a computational model including an o�ine alignment

mechanism would be the best fit for participants in the aligned condition,

compared to models simulating (i) rote-memorisation and (ii) cross-system

mapping with no distributional alignment.

3.1 Experimental Methods

3.1.1 Design

We tested the primary hypothesis using a paired-associate learning (PAL)

paradigm, presented as a memory game. Participants were tasked with learn-

ing where a set of cartoon monsters lived on a map across a series of trials.

This is a similar procedure to the ‘image-location association’ procedure used

in Tompary and Thompson-Schill (2021).

The monsters varied on two feature dimensions: body colour and eye orien-

tation, where their eye was an orientation grating. In the aligned condition, the

relationships between monsters based on these two features could be mapped

onto the relationships between their corresponding houses as shown in Figure

3.2.

To account for the possibility that alignment e�ects could result solely from

the mapping of feature dimensions onto the privileged set of canonical axes,

the experiment also included a rotation condition. This was used to explore

whether the impact of alignable systems varied based on the rotation of the

spatial axes.

The experiment proceeded with a 2x2 (system alignment x rotation) repeated-

measures design across 5 blocks of 6 trials each, for a total of 30 paired-

association trials per participant. One further trial tested generalisation to an
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unseen stimulus. Participant assignments across the four experimental condi-

tions were counterbalanced.

3.1.2 Neighbourhood stimuli

The rotation condition was included to control for the possibility that par-

ticipants could align privileged axes instead of whole spaces. The relative

positions of houses on the map were kept constant across all participants and

conditions. House positions were rotated 45°clockwise about the centre of the

map for the rotated condition (see Figure 3.2).

Figure 3.2: Neighbourhood maps used in the PAL task. The unrotated map is on the left, and rotated
on the right. Participants were assigned to a rotation condition at the beginning of the experiment, and
learned where each monster lived on their assigned map through paired-associate learning. The map of grey
houses was visible to participants throughout the experiment. The red houses were only shown at the end
of the experiment, to evaluate zero-shot generalisation based on systems alignment. Grid lines are shown
for reference only, and were not visible during the experiment.

3.1.3 Monster Stimuli

Stimuli were generated in the free and open-source graphics editor Krita (V

4.2.2). All monsters had identical body shapes, hair, arms and legs. The

monsters’ eyes were orientation gratings.

Eye orientation took values between 5°and 85°from the horizontal, and

body colour took values along a perceptually uniform trajectory from from blue

to green. Feature spaces were generated such that the mapping of stimulus

features onto spatial dimensions was randomised by participant. The direction
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of variation along each spatial axis (e.g whether a green or blue monster was

at the top of the map when colour was mapped onto the Y-axis) was also

randomised independently for each feature dimension. This yielded a total of

8 possible feature spaces, all with the same range of values for each feature.

Stimulus sets for each participant were constructed based on the aligned

condition in their randomly assigned feature space: stimuli were selected from

positions in the 2D feature space which corresponded with the house positions

in Figure 3.2. For participants in the misaligned condition, the stimuli in this

constructed set were randomly assigned to houses in the neighbourhood.

Eye orientation

Sinusoidal orientation gratings (or Gabor patches) with a fixed spatial fre-

quency of 5Hz were used as the monsters’ eyes. The minimum rotation from

horizontal was 5°, and the maximum was 85°. Prior studies have demonstrated

that just noticeable di�erences (JND) in orientation are smaller than 1°(Vo-

gels and Orban, 1985). The minimum di�erence between Gabor patch angles

sampled for our stimuli was 32°for main trial stimuli and 8°for generalisation

stimuli.

Body colour

This study required that stimuli could be generated at perceptually uniform

intervals in the colour dimension, and that the colour values for neighbouring

stimuli were perceptually distinct. To meet these criteria, we sampled colours

along a linear trajectory in CIECAM02 Uniform Colour Space (CAM02-UCS)

(Moroney et al., 2002). CAM02-UCS is a state-of-the-art uniform colour

space, which outperforms previous spaces in modelling perceptual distances

(Luo et al., 2006). The linear path in CAM02-UCS and corresponding colour

scheme were generated using the viscm tool (Van der Walt and Smith, 2015,

July 6–12).

For the main trials, we took 6 equally spaced values from this linear tra-

jectory in CAM02-UCS. The CAM02-UCS and its predecessors were designed
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such that 1 unit distance in the space corresponds to a JND in perception

(Mokrzycki and Tatol, 2011). Kuehni (2016) investigated the relationship be-

tween JND in colour and the distances in CIECAM02-UCS experimentally,

finding that 0.5 units in CAM02-UCS on average corresponded to a JND.

Luo et al. (2006) demonstrates colour di�erence perceptibility in CAM02-UCS

by plotting chromatic discrimination ellipses in the space, demonstrating that

no di�erence thresholds perception distances in this space exceed 5 (Luo and

Rigg, 1986; Melgosa et al., 1997). The �E between our colours in CAM02-

UCS, calculated as the Euclidean distance in the space (Luo et al., 2006), is

12.3 - greater than even the most conservative JND values.

3.1.4 Procedure

The experiment was composed of three phases: pre-exposure, paired-associate

learning and generalisation. In the pre-exposure phase, participants were fa-

miliarised with the monster feature space. In the paired-associate learning

phase, participants learned to associate monsters with their homes over a se-

ries of trials. In the generalisation phase, participants’ ability to generalise

their learning to a new monster was tested. Each phase is elaborated upon

below.

Pre-exposure

Before the task began, participants were given instructions for the task and

were pre-exposed to the full set of stimuli. They were shown a pair of gifs,

which cycled through the full range of feature values for monster colour and

eye orientation respectively. The text on this page drew participant attention

to the two dimensions of variation in the stimuli.

Paired-associate learning (PAL) task

The task procedure consisted of two trial types: active trials, in which partic-

ipants were presented with a monster and asked to click on the home in which
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they thought it lived, and passive trials, in which participants were shown the

monsters’ correct homes one by one. Trials were presented in separate blocks

of active trials and passive trials, wherein every block contained one trial for

each of the six stimuli in the set. The order of stimuli was randomised within

each block. Each of the five active blocks was preceded by a set of two blocks

of passive trials.

Prior to each set of passive blocks, participants landed on a break screen

which prompted them to click a ‘Continue’ button to play the passive blocks.

In each passive trial, the home whose resident was about to be revealed was

cued with a grey border for 1 second. The resident monster was then shown

in the home for 3 seconds before disappearing. The next home was cued after

a 1 second break.

After two blocks of passive trials, participants moved on to a block of

active trials. An example active trial screen is shown in Figure 3.3. On each

trial, one monster was shown in the ‘Holding Pen’ on the left of the screen.

Participants were instructed to click on the house on the map in which they

thought the monster in the holding pen belonged. They could amend their

choice as desired, and all clicks were recorded. Participants were instructed to

click the ‘Submit’ button on the right hand side of the screen once they were

happy with their choice.

The remaining five stimuli in the set were visible in a grid under the heading

‘Other monsters’ in the bottom left-hand corner of the screen. The arrange-

ment of these stimuli was randomised, and was re-shu�ed on each page load

(i.e when the next trial was loaded or participants refreshed the page). This

eliminated the possibility that participants could learn a mapping between

between grid and map locations.

After submitting their response, participants recieved feedback. Once a

participant submitted their response for a trial, a feedback screen was dis-

played for three seconds. This screen indicated whether their response had

been correct or incorrect. If correct, participants advanced to the next trial
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Figure 3.3: Example of an active trial screen in the rotated condition

automatically after three seconds. If incorrect, participants were prompted to

click on the correct home which was highlighted with a grey box. Once they

had clicked the correct home, they advanced to the next trial.

Generalisation task

After the PAL task was complete, participants were told that a new monster

had moved to the neighbourhood, and that they were going to choose where

they thought it should live on the map. The new monster was shown in the

holding pen and there were two new homes to choose from in the map locations

indicated by red houses in Figure 3.2. The monster’s colour and eye orientation

were both as-yet unseen values.

The instructions stated that the homes that they had been using in the

previous trials would be visible on the map, but were not options for the new

monster as they were already occupied. The trial screen was almost identical

to the PAL trial screen, but the ‘Other monsters’ grid was removed and the

homes that were used for the PAL task were greyed out and unclickable. Par-

ticipants clicked on their choice of home for the monster, and submitted their

answer. They received no feedback for this trial, and were taken straight to

the debriefing page.

In the aligned condition, the unseen monster’s position within monster fea-

ture space corresponded to the position of one of the presented house options.
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The monster-house pair was randomly selected from the two options for each

participant.

3.1.5 Participants

N = 491 participants completed the experiment in total, all of whom were re-

cruited via AMT. Participants were limited to residents of the US and Canada.

We required participants to have completed Ø 1000 prior tasks with an accep-

tance rate Ø 95%. All participants provided their informed consent prior to

participation, and the experiment complied with UCL’s code of ethics. The

task took approximately 15 minutes to complete, and participants were paid

$2.00 for their participation. One participant was excluded for submitting

inaccurate responses in the demographic survey.

Identifying poor engagement If a participant was making an earnest

attempt at the task, we would expect their responses to be distributed near-

uniformly across the available house options. Participants whose responses

were poorly distributed across the options might have repeatedly submitted

the same house or alternated between a small number of houses, indicating

poor engagement with the task. We sought to exclude poorly engaged par-

ticipants from the analysis. Our exclusion criterion was based on the average

entropy of a participant’s responses across blocks, H̄b, which is maximised by a

uniform distribution of responses across house options. We excluded the 10%

of participants with the lowest H̄b.

For each participant on each block of trials b, we calculated the entropy of

the response distribution across options using:

Hb =
6ÿ

i=1
P(Xi)log2(P(Xi)),

where P(Xi) was the probability of the participant selecting house i in block b,

calculated as P(Xi) =
q6

t=1[Xt=i]
6 for trial t = (1, .., 6) in block b. H̄b for each

participant was the mean of Hb taken across all the experimental blocks.

To assess H̄b as a criterion for participant engagement, we examined the
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relationship between H̄b and performance in the final block of trials. If H̄b were

a sensible measure of engagement, we would expect a relationship between low

values of H̄b and poor performance on the final block of trials, indicating that

participants whose responses were not evenly distributed across the space of

house options were not learning the task as well as others. This investigation

was performed blindly with respect to experimental condition. The plot in

Figure 3.4 demonstrates that there is a strong positive correlation between H̄b

and accuracy in the final block of responses (rp = 0.753, p < .001). Excluding

the bottom 10% of participants yielded an exclusion threshold H̄b < 0.131,

visualised in Figure 3.4.

Figure 3.4: Relationship between final block accuracy and mean block-wise response entropy for all partic-
ipants. Grey points represent excluded participants; blue points represent remaining sample after entropy
threshold is applied.

The distribution of participants across conditions pre- and post-application

of the entropy threshold is shown in Table 3.1. A ‰
2 test comparing the

proportions of participants by condition in the pre- and post-criterion samples

reveals no significant di�erence in the impact of the entropy filter between

conditions (‰2(3) = 0.335, p = .953).

Resultant sample This resulted in N = 443 participants whose responses

were included in the following analysis. The sample was 40.2% female, with

ages ranging from 20 to 72 (x̄ = 45.5 years, ‡ = 14.7 years). Following the

random assignment of participants to conditions, a one-way ANOVA finds
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Pre-criterion Post-criterion

Aligned
Unrotated 123 (.250) 110 (.248)

Rotated 124 (.252) 112 (.251)

Misaligned
Unrotated 121 (.246) 106 (.239)

Rotated 123 (.250) 115 (.262)

Total N 491 443

Table 3.1: Distribution of participants across conditions pre- and post-application of the entropy-based
exclusion criterion. Proportions of each condition in the total pre- and post-criterion samples respectively
are shown in parentheses.

no significant di�erence in participant ages between conditions (F (3, 439) =

0.487, p = .692). A ‰
2 test also finds no significant di�erence in the proportions

of females between conditions (‰2(3) = 2.42, p = .491).

3.2 Experimental Results

3.2.1 Paired-associate learning

To evaluate how each condition impacts learning we examine two di�erent

measures: response accuracy and distance error. Response accuracy measures

if a participant correctly mapped a monster. Distance error measures the

distance between the chosen home and the correct home. If the monster is

placed in the correct home, response accuracy is 1 and distance error is 0.

Analyses revealed significant main e�ects of alignment condition on both

response accuracy and distance error. Results for block-wise means of response

accuracy and distance error are shown in Figure 3.5. These results support our

hypotheses that (i) learning is more successful in the PAL task when spaces are

alignable than when they are not, and (ii) participants learning the PAL task

across an alignable pair of spaces place the monster in homes with smaller

distance error than participants learning paired associates in non-alignable

spaces.

Results for both dependent variables were analysed using mixed-design

ANOVAs. In each case, block was included as a within-subjects factor, and

alignment and rotation conditions were included as between-subjects factors.

Analyses were conducted using the package ez in R (Lawrence and Lawrence,
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2016).

Figure 3.5: Results by alignment condition for (a) mean response accuracy and (b) mean distance error
by experiment block. Blue lines show mean performance for participants in the aligned condition; red lines
show mean performance for participants in the misaligned condition. Shaded areas show the 95% CI about
group means.

In the ANOVA model fitted for block-wise mean response accuracy, Mauchly’s

test of sphericity indicated a violation of the sphericity assumption, there-

fore the Huynh-Feldt correction (‘ = 0.83) was used to appropriately ad-

just the degrees of freedom. Significant main e�ects of alignment condition

(F (1, 425) = 5.70, p = .017) and block (F (3.31, 1408.84) = 135.83, p < .001)

were found, but not of rotation condition (F (1, 425) = 0.62, p = .430) nor of

any interaction terms. Full results for the ANOVA are shown in Table 3.2.

Predictor df ‘ F p

Alignment condition (1, 425) 5.70 .017 *

Rotation condition (1, 425) 0.62 .430

Alignment x Rotation (1, 425) 0.17 .678

Block (3.31, 1408.84) 0.83 135.83 < .001 *

Alignment x Block (3.31, 1408.84) 0.83 1.23 .297

Rotation x Block (3.31, 1408.84) 0.83 0.99 .402

Alignment x Rotation x Block (3.31, 1408.84) 0.83 1.98 .108

Table 3.2: Results for repeated-measures ANOVA for block-wise mean accuracy. df = degrees of freedom;
‘ = Huynh-Feldt correction factor for violation of sphericity assumption.

The ANOVA model for block-wise mean distance error also violated the

sphericity assumption according to Mauchly’s test of sphericity. Degrees of

freedom were adjusted accordingly using the Huynh-Feldt correction (‘ =

0.82). Significant main e�ects of alignment condition (F (1, 425) = 13.67, p =<
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.001) and block (F (3.29, 1398.98) = 120.16, p < .001) were found, but not of

rotation condition (F (1, 425) = 0.62, p = .430) nor of any interaction terms.

Full results for the ANOVA are shown in Table 3.3.

Predictor df ‘ F p

Alignment condition (1, 425) 13.67 < .001 *

Rotation condition (1, 425) 0.62 .430

Alignment x Rotation (1, 425) 0.08 .779

Block (3.29, 1398.98) 0.82 120.16 < .001 *

Alignment x Block (3.29, 1398.98) 0.82 1.21 .303

Rotation x Block (3.29, 1398.98) 0.82 0.67 .584

Alignment x Rotation x Block (3.29, 1398.98) 0.82 2.19 .081

Table 3.3: Results for repeated-measures ANOVA for block-wise mean distance error. df = degrees of
freedom; ‘ = Huynh-Feldt correction factor for violation of sphericity assumption.

Considering the results visualised in Figure 3.5, it is worth noting that

participants in the misaligned condition take all 5 blocks of trials to perform

at the same standard reached in block 2 by those in the aligned condition -

that is more than double the number of trials.

3.2.2 Generalisation

Our findings in the zero-shot learning trial support the notion that mapping

between alignable systems enables generalisation to unseen examples.

Generalisation analyses are performed on the aligned condition only. Re-

sults for the misaligned participants were statistically indistinguishable from

chance. This is as expected, given that there was no meaningful ‘correct’

response for these participants.

In the generalisation trial, 131 of the 222 participants in the aligned con-

dition (59.0%) selected the correct house for the unseen monster, according

to its position within an alignable system. This result is significantly above

chance for – = 0.05 (‰2(1) = 7.21, p = .007), supporting the hypothesis that

participants who learn to align across are able to generalise to unseen mappings

between the alignable structures.

A ‰
2 test found no significant di�erence between rotated and unrotated con-

ditions in generalisation accuracy where the systems were alignable (‰2(1) =
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0.03, p = .874). This provides no support for the hypothesis that the ability

to generalise across aligned systems depends on privileged sets of axes.

3.3 Modelling

There are range of cognitive strategies participants may use to complete the

PAL task, each of which motivates a model in this portion of the study. We

identify the best-fit model type for each participant, and compare the winning

model counts within aligned and misaligned learning conditions. This allows

us to better understand the distributions of learning strategies used in each.

The strategy and implementation of each model is summarised below.

Classifier The Classifier model simulates a blind memorisation strategy,

which makes no use of the 2D space. This strategy treats stimuli as unrelated

from one another, and simply rote-learns an associated house for each monster.

The Classifier is a multilayer perceptron (MLP) that takes as input a monster’s

feature coordinates and outputs a categorical prediction corresponding to a

particular house.

The Classifier is comprised of an input layer, ReLU activation function, one

fully-connected hidden layer of size 100 and output layer of size 6, correspond-

ing to the n = 6 homes in which a stimulus could be placed on each trial. The

input to the Classifier was the 2D coordinate vector of the stimulus in feature

space, x, normalised such that xd œ (0, 1) for d œ {1, 2}. The output vector

was fed into a softmax function with temperature parameter T to produce a

probability distribution across classes.

Regression The Regression model simulates a strategy which maps mon-

sters into the 2D space of the neighbourhood, demonstrating an appreciation

of the continuous nature of the feature space. The Regression model is a MLP

that takes as input a monster’s feature coordinates and outputs the coordinates

of the correct house.

The Regression model F (.) is comprised of an input layer, ReLU activation

function, one fully-connected layer of size 100 and output layer of size 2. The
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input to the model was the coordinate vector of the stimulus in feature space,

x, normalised such that xd œ (0, 1) for d œ {1, 2}. A sigmoid activation

function was applied to model outputs to constrain output values such that

yd œ (0, 1) for d œ {1, 2}. In other words, the MLP performed a mapping

F : X æ Y from stimulus space X to house space Y . To generate a probability

distribution across house options, the Euclidean distance between the model

output and each house option was subtracted from
Ô

2 (the maximum distance

between points in the normalised space), yielding a measure of similarity which

took values in range (0,
Ô

2). If the model had mapped a stimulus perfectly

onto a house, this transformation would return its maximum value of
Ô

2, and

conversely if a stimulus was mapped as far as possible from a house the value

would be 0. The resultant distributions were fed into a softmax function with

temperature parameter T to generate a probability distribution across houses

for the stimulus according to the model.

Regression + Aligner model The Regression + Aligner model also maps

monsters into the neighbourhood, with an added assumption that the systems

of houses and monsters should be aligned. On each trial, it updates its internal

representions based on the trial feedback together with its knowledge of the

structural relationships within systems.

The Regression + Aligner model has a similar structure to the Regres-

sion model, with some key additions corresponding to the putative ‘space

alignment’ mechanism. Firstly, while the Regression model consisted of one

MLP F (.), which mapped from stimuli X to houses Y , the Regression +

Aligner model consisted of two MLPs: F (.) and G(.). These perform map-

pings F : X æ Y and G : Y æ X respectively. This is visualised in the

leftmost panel of Figure 3.6.

Secondly, the aligner minimised two additional unsupervised loss compo-

nents: a cycle consistency loss term (Lcyc) and a distribution loss term (Ldist).

Inspired by the work of Zhu et al. (2017), Lcyc is defined as the mean Euclidean

distance between input stimuli X and the recovered estimates X
ÕÕ, generated
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Figure 3.6: Illustration of cycle consistency loss Lcyc, adapted from Zhu et al. (2017). The Aligner model is
comprised of two MLPs F (.) and G(.), visualised in the leftmost panel. Lcyc measures the average distance
between each point in its original space, x, and its reconstruction in the same space x

ÕÕ generated by the
mapping x

ÕÕ = F (G(x))

by mapping via both MLPs: X
ÕÕ = G(F (X)). This is visualised in Figure 3.6.

Ldist is visualised in Figure 3.7. In space Y , it is defined as the mean

negative log likelihood (NLL) of all F (X) as samples from a Gaussian mixture

model comprised of 2D Gaussian kernels placed on Y . Ldist is minimised when

all F (X) are mapped directly onto Y . Further details of both loss terms are

provided in B1.

Figure 3.7: Visualisation of distribution loss Ldist for a low (left) and high (right) loss mapping. Red
points represent X

Õ, overlaid on a heatmap representing the probability density of GMMY .

3.3.1 Training and model fitting

For every participant, each model type was fitted to see how well it could

replicate the participant’s behaviour in the PAL task. Each model’s hyperpa-

rameters were selected to minimise the total negative log likelihood (NLL) of

the participant’s submitted responses across all trials. Both in hyperparameter
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selection and in final training, the sequence of inputs in model training was

matched to the sequence seen by the relevant participant in the experiment.

This stimulus sequence included both active and passive trials. Passive trials

were masked from the NLL calculation in hyperparameter optimisation.

A random model was included as a control. This model selected a ran-

dom home for the presented stimulus on each trial. It did not learn, and no

hyperparameters were fitted to individual participant data.

For each participant, the best fitting model type was that which minimised

the Akaike Information Criterion (AIC ), where AIC = 2k + 2NLL. k is the

number of hyperparameters which could be varied to fit the participant data

for each model type.

All models were built and trained using pytorch. Model weights in all

cases were initialised with Xavier uniform initialisation. On each trial, mod-

els performed 30 update steps using stochastic gradient descent (SGD) with

constant lr. Multiple steps were required to balance the need for fast learning

(owing to the small number of trials) with the instability of high learning rates.

Preliminary tests found that 10 gradient steps per trial was the maximum value

required for any model to reach optimal performance.

To prevent any probabilities from reaching zero and causing computational

issues, we took the maximum of each resultant probability and a small ‘ (‘ =

10≠30), and re-normalised the distribution. In model training, the loss term

on each trial was the negative log-likelihood (NLL) of the correct response

according to this distribution.

Hyperparameter optimisation was performed using the hyperopt package

in python. Optimisation was performed over 150 evaluations for each model of

each participant, using the Tree Parzen Estimator (TPE) method. Preliminary

testing found that the success of the Classifier model in learning the task was

particularly sensitive to initialisation, while the Regression and Regression +

Aligner models were more stable. As such, the classifier was trained three

times with each set of hyperparameters tested, and the minimum NLL across
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the three iterations was taken as the score for those hyperparameters.

In all three models described above, the softmax temperature parameter

T and learning rate lr were hyperparameters. One final hyperparameter, –,

described each participant’s probability of choosing according to the model on

any given trial. The probability of choosing a random house was therefore

(1 ≠ –). Where random variable Yt is the model’s house choice on trial t,

the probability of a participant choosing house y on trial t was modelled as:

P (y) = –P (Yt = y) + (1 ≠ –)(1
6)

The Regression + Aligner model had two additional hyperparameters, ⁄cyc

and ⁄dist. This yielded a total number of hyperparameters k = 3 for the

Classifier and Regression models, and k = 5 for the Regression + Aligner

model.

3.3.2 Modelling results

Model fitting finds that the majority of participants in the aligned condition are

best fitted by the Regression + Aligner model. This supports our hypothesis

that participant responses in the aligned condition would be best captured

by a model with an alignment mechanism. Surprisingly, we also find that

the majority of participants in the misaligned condition are best fitted by

the Regression + Aligner model. Models were fitted to minimise the NLL

of participants’ responses in the experiment, not to best predict the correct

answer, so this result suggests that participants may attempt alignment by

default in learning, and seek out alignable signals even when this leads to

errors.

The left panel of Figure 3.8 shows counts of the best fitting model types

within each condition. The Regression + Aligner model was the best fitting

model for the majority of participants in both aligned (84.2%, ‰
2(3) = 418.40,

p < .001) and misaligned (54.2%, ‰
2(3) = 123.16, p < .001) conditions.

The AICs for best-fit models of each type relative to the random model

are shown in the right-hand panel of Figure 3.8. Note that among those best
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fitted by the Regression + Aligner model, improvement over random for aligned

participants is far greater than for misaligned participants. This is consistent

with the fact that the alignment signal was misleading for participants in the

misaligned condition. The result that misaligned participants are best-fitted

by the Regression + Aligner model means it was the most predictive model of

their errors, but misaligned participants would have to overcome the tendency

to seek out alignment in order to respond correctly in the task, leading to

poorer model fit.

Figure 3.8: Best fitting models by participant. Left: Frequencies of each model type being chosen as best
fitting model on the basis of AIC; right: improvement of each fitted model over random on AIC.

3.4 Discussion

This thesis’ overarching aim is to explore the value of systems alignment for

learning in naturalistic contexts. The previous chapter used simulations based

on naturalistic data to demonstrate that alignment signals are valuable for

early concept learning in the real world. The current chapter moved this

investigation into a lab setting, to test whether and how humans benefit from

these alignment-based signals where they exist. To understand how systems

alignment operates in conjunction with the other signals available in real-world

learning scenarios, the impact of alignment on learning was explored in the

presence of supervisory signals.

This chapter has developed the contribution of this thesis in two ways:

first, the behavioural experiment provides evidence that humans benefit from

alignability when learning to map between spaces, both in terms of the e�-
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ciency of learning and the ability to accurately generalise to previously unseen

examples. Secondly, behavioural modelling results demonstrate that an align-

ment mechanism is well-placed to account for how humans learn the paired

associate learning task relative to traditional models.

The experimental results suggest that aligned spaces facilitate more e�-

cient cross-system learning than misaligned spaces. In the context of Roads

and Love (2020)’s finding that spaces derived from unimodal distributional se-

mantics are alignable across modalities, this suggests that systems alignment

could support cross-modal learning in the real-world. Our significant result

for the generalisation task suggests that alignable spaces could facilitate asyn-

chronous integration of multi-modal information in human concept learning

(Fourtassi and Dupoux, 2016; Samuelson et al., 2011; Socher et al., 2013). Fu-

ture work could explore how alignment applies to di�erent domains and types

of similarity relationship. With Socher et al. (2013)’s computational work in

mind, which demonstrates that zero-shot learning of multimodal concepts is

possible by transferring information between unimodal distributions, our sig-

nificant result for the generalisation trial suggests that alignable spaces could

support the asynchronous integration of multi-modal information in concept

learning (Fourtassi and Dupoux, 2016; Samuelson et al., 2011).

The results of the model-fitting provide evidence in favour of the hypothesis

that an alignment process may be recruited when learning to map between

systems. Models which included an unsupervised loss term for whole-system

alignment were superior on AIC for the majority of participants. In the context

of indeterminacy of reference (Quine, 1960) and often infrequent supervised

learning episodes (Lieven, 1994), the incremental benefit of an unsupervised

aligner loss term suggests a place for an alignment mechanism in explanations

of humans’ concept acquisition in the real world.

The relative success of the Regression + Aligner model in fitting participant

responses, even in the misaligned condition, suggests that participants attempt

to align systems even where they are not alignable, and make errors consistent
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with this approach. So while our original hypothesis only pertained to the

aligned condition, the fact that the majority of participants in the misaligned

condition are also best modelled by the Regression + Aligner provides further

evidence for alignment mechanisms in learning.

In the context of concept learning, systems alignment mechanisms could

provide an account of how amodal concept representations incorporate infor-

mation from di�erent modalities (Patterson et al., 2007b; Ralph et al., 2017b;

Popham et al., 2021).

Here, we have explored the role of alignment signals in supervised learning.

Future work may seek to understand how people use these signals in more eco-

logical multimodal learning contexts, where learning signals are noisier. Cross-

situational learning, for example, provides participants with weak supervision

across multiple training episodes (Smith and Yu, 2008; Yu and Smith, 2007),

and has been found to be enhanced by semantically themed encoding contexts

(Chen and Yu, 2017). An examination of the e�ect of alignable systems in

a weakly-supervised context would further develop our understanding of how

alignment signals are used in the real-world, and how these interact with other

learning signals.

Of course, the scale of ecological alignment problems is much larger than

those tested here, but the possibility remains that established learning pro-

cesses are supplemented by these alignable signals. Indeed, larger systems

have richer signals for alignment (Roads and Love, 2020; Goldstone and Ro-

gosky, 2002). The relatively small e�ect size observed here may be attributed

to the low di�culty of the task: with only 6 items to hold in memory, the

task was intended to be learnable for the majority of participants even in the

misaligned case. But the incremental benefit of cross-system alignment may

increase with problem size, as the cognitive cost of aligning systems is over-

powered by the cognitive cost of memorising individual mappings. A natural

extension of this project could explore the role of alignment in learning for

di�erent problem sizes. Future work may seek to explore the role of alignable
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spaces in ecological multimodal learning contexts, for example the mapping

of concept labels to their referents. This is explored from a machine learning

perspective in the next chapter.

In sum, our findings provide evidence for the value of alignable spaces

in accelerating human learning. Together with prior work demonstrating that

real-world multimodal spaces are alignable, this opens an avenue of exploration

regarding how humans may tackle referential ambiguity in concept learning,

and how we learn from the statistics of our noisy environments more broadly.

The modelling portion of this chapter demonstrated that an asynchronous,

unsupervised alignment mechanism was a strong candidate explanation of how

people use this information to support learning. The next chapter of this the-

sis extends the investigation of alignment mechanisms, applying alignment

to larger-scale problems with data from naturalistic environments. Applying

these human behavioural findings to computational approaches, we also ex-

plore the use of alignment mechanisms in cross-modal machine learning prob-

lems.
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Chapter 4

Modelling alignability at scale

4.1 Introduction

In Chapter 3, it was shown that humans benefit from alignment when learning

to map between systems. Computational modelling of this e�ect found that

an asynchronous alignment mechanism was the best model for capturing how

humans learned to map across systems. In this chapter, I evaluate whether

machine learning algorithms can take inspiration from this process, and capi-

talise on alignment signals to facilitate cross-system learning from naturalistic

data.

Prior work demonstrating that real-world cross-modal systems possess shared

underlying structure at scale (Roads and Love, 2020) suggests that alignment

mechanisms could prove valuable in cross-modal machine learning. Conserva-

tively, cross-modal alignment signals may provide a useful prior, which could

improve the e�ciency of learning and inject a valuable signal in instances

where training data is restricted (Zaadnoordijk et al., 2022). This perspective

is further supported by the aforementioned behavioural experiment discussed

in Chapter 3 of this thesis, which indicated that humans make use of alignable

spaces in learning environments even when supervision signals are available.

Taking the implications of alignment further, alignable signals could be suf-

ficient to perform fully unsupervised alignment across modalities, allowing

mapping between visual objects and words (for example) to be learned with
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no supervised examples.

In the real world, there is a huge deal more data to align than the 6 items

mapped in the study presented in Chapter 3, and structural correspondences

are undoubtedly noisier than this controlled example. While Roads and Love

(2020) demonstrated that the alignment between inter-concept relationships

across systems provides a signal for mapping accuracy, there has to date been

no in-depth exploration of how these alignment signals could be used to find

cross-modal mappings at scale. This chapter uses simulations based on real-

world embedding data to compare scalable algorithms for cross-modal align-

ment.

The analyses in this chapter are split into two main sections. First, I tested

a range of loss function optimisations and candidate alignment algorithms

on the unsupervised alignment problem. Using a combination of synthetic

examples and naturalistic tests, I do not find a viable solution for completely

unsupervised cross-modal alignment at scale. However, in line with prior work,

both in Chapter 2 of this thesis and elsewhere (Akata et al., 2015; Socher et al.,

2013; Frome et al., 2013), I find that alignment yields promising solutions for

novel concepts when some concepts are known.

In the second section of the chapter, I use these promising alignment meth-

ods to generate priors across classes in an image classification task. The prior

is generated based on knowledge of classes which are not included in the clas-

sification problem. To foreshadow results, I find that an alignment mechanism

with an unsupervised cycle loss component yields the strongest prior. Inter-

estingly, this is only true when the prior is trained without full supervision.

4.1.1 Relevant prior work

While there are multiple related streams of prior work, there is no existing

model which attempts the unsupervised alignment of information across mul-

tiple naturalistic modalities.

Machine learning approaches to finding mappings between modalities have
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largely been supervised or semi-supervised. Supervised approaches include

those presented by Socher et al. (2013), where some image-word mappings are

used to learn a mapping between spaces, which is then used to learn mappings

for novel items. Taking a similar approach, Frome et al. (2013)’s DeViSE and

Akata et al. (2015)’s Structured Joint Embeddings train joint linguistic and

visual embeddings by training an embedding model to map visual representa-

tions onto their known labels in image space.

Unsupervised mappings between conceptual systems based on similarity

structures have been discussed by Goldstone and Rogosky (2002), where a

constraint satisfaction network was used to map between concepts based on

idiosyncratic similarity judgments. In machine translation contexts, where

di�erent linguistic representations are mapped onto eachother, success in un-

supervised mapping has been achieved by using adversarial networks (Zhang

et al., 2017; Conneau et al., 2017). Unsupervised models in cross-modal tasks

largely take the form of generative adversarial networks (GANs), generally

applied to problems of a di�erent nature, such as image captioning and text-

to-image synthesis (Reed et al., 2016; Shetty et al., 2017; Dai et al., 2017; Gu

et al., 2019; Feng et al., 2019).

Optimal transport methods have also been used for structural alignment

problems, particularly with applications to graph matching (Titouan et al.,

2019; Seguy et al., 2017). Optimal transport methods optimise distribution

matches by learning to minimise the cost of transporting one distribution to

another distribution. This has been successfully applied to image-text domain

mapping problems, such as visual-question answering (Chen et al., 2020a).

Large-scale unsupervised learning problems can also be tackled using reinforcement-

learning inspired techniques such as Monte-Carlo Tree Search, which has demon-

strably been successful on tasks with large solution spaces (Browne et al., 2012;

Silver et al., 2016, 2018; Pinheiro et al., 2016).

Models inspired by these related e�orts are applied to the unsupervised

alignment problem in this chapter.

115 of 227



4.1. Introduction 4. Modelling alignability at scale

4.1.2 Challenges for a cross-modal alignment algorithm

In order to guide the e�orts to build an unsupervised alignment algorithm -

the first focus of this chapter - let us consider some of the critical challenges

that such an algorithm faces.

When it comes to learning cross-modal mappings at scale, the solution

space quickly becomes intractably large for an exhaustive search of mappings.

Increasing the number of concepts to be learned, N , vastly increases the num-

ber of possible mappings between systems, N !. For 10 concepts, the number of

possible mappings is 3.6 ◊ 106; for 50 concepts, this number rises to 3.0 ◊ 1064,

and for 100, to 9.3 ◊ 10157.

Even in cases where the full set of mappings could be searched, unsuper-

vised algorithms will also contend with the problem of misleading mappings. A

misleading mapping is any incorrect mapping which has a higher score on the

chosen objective function than the correct mapping does. In Roads and Love

(2020), it was shown that the proportion of misleading mappings gets smaller

as the number of concepts gets larger. However, together with the previous

challenge of combinatorial explosion, this does not eliminate the problem of

misleading mappings, as there may still be a large number of misleading map-

pings which cause problems for a candidate algorithm.

As discussed in Chapter 2 of this thesis, it is also possible that long-range

similarity relationships do not show the same degree of cross-modal corre-

spondence as close-range similarity relationships. While there is a meaningful

answer to the question of whether a ‘mouse’ is more similar to a ‘rat’ or to a

‘table’, it is less meaningful to ask whether a ‘mouse’ is more similar to a ‘glass’

or to a ‘shoe’. In line with this intuition, it was shown in Chapter 2 that long-

range similarity relationships are less stable across multiple initialisations of an

embedding than short-range relationships. Embeddings in di�erent modalities

can be considered as analogous to the multiple initialisations of the embedding

algorithm tested in Chapter 2. As a result, while similarity structure is broadly

reflected across modalities, noise may originate from arbitrary di�erences in
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long-range inter-concept distances.

Furthermore, when working with high-dimensionsal embeddings (e.g, 50-

dimensional word embeddings from GloVe), there is a risk of problems re-

lated to the curse of dimensionality (Bellman, 1966). For example, high-

dimensionality can have unintuitive e�ects on inter-concept distance calcu-

lations (Aggarwal et al., 2001), which are the basis of alignment.

The following investigation aims to facilitate unsupervised alignment by

addressing these challenges. A range of preprocessing steps (including di-

mensionality reduction and the transformation of similarity relationships) and

modifications of the objective function are tested, to see if the number of

misleading mappings can be minimised. Then, algorithms which have demon-

strated potential to be robust to the large solution space are prioritised. The

resultant testing framework is visualised in Figure 4.1

4.2 Unsupervised cross-modal alignment

4.2.1 Materials

Text embeddings

The pre-trained word embeddings used here were 50-dimensional GloVe text

embeddings (Pennington et al., 2014). These embeddings are trained on 6 bil-

lion tokens from the Wikipedia2014 + GigaWord5 text corpus. The resultant

vocabulary size is 400,000 tokens.

Image embeddings

The image embeddings used here are those used in Roads and Love (2020),

derived by applying the GloVe algorithm (Pennington et al., 2014) to the Open

Images V4 dataset (Kuznetsova et al., 2020). Open Images V4 is comprised

of approximately 9.2 million images, all annotated to identify which of over

19,000 object classes they contain. Roads and Love (2020) construct a co-

occurrence matrix by counting the images in which each object class co-occurs
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Figure 4.1: Figure showing the breakdown of alignment components which we explore in Chapter 4. Boxes
1 and 2 form the pre-processing steps which can be applied prior to score generation. Box 3 outlines the
choices to be made regarding which function is used to generate the alignment score. Boxes 1, 2 and 3
together constitute the construction of the alignment score. The diagram also visualises how the score
interacts with the alignment algorithm, which is explored in the second section of this chapter.
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with each other class. This matrix is inputted to the GloVe algorithm, which

generates the 10-dimensional image embeddings we use.

4.2.2 Optimising the objective for unsupervised align-

ment

The aim of this section is to identify an alignment scoring metric which is best

positioned to yield success when used by an unsupervised alignment algorithm.

We test a range of modifications to the alignment score, aiming to address the

challenges of alignment discussed above and to incorporate insights from prior

chapters.

The alignment scoring process is broken down into three key components:

(1) transformations of the concept space (i.e., is dimensionality reduction ap-

plied); (2) the similarity relations which are compared across systems (i.e.,

are similarity relationships transformed within individual modalities) (3) the

function for generating the score. The whole process is outlined in Figure 4.1.

The method used in step (3) is partially dictated by the alignment algo-

rithm of choice. Some algorithms optimise a global score, which is calculated

based on a complete proposed mapping. Others optimise a score which evalu-

ates each pair of concepts mapped across systems, independent of how other

items in the system are mapped.

Dimensionality reduction

To address concerns around the curse of dimensionality, raised in section 4.1.2

above, we explore methods of dimensionality reduction as a pre-processing step

before score generation. The intuition here is that there may, for example, be

certain dimensions of variation in the pretrained linguistic embedding which

are redundant for the set of items (concrete nouns) being mapped to the visual

domain. As such, when we look at the dimensions of variability of objects which

occur in both visual and linguistic domains, we may find a smaller space of

dimensions which is more relevant for alignment.
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Dimensionality reduction is applied to the system representations, before

the relationship between the alignment score and mapping accuracy is probed.

Note that these methods are not themselves performing alignment - they are

simply being explored in their ability to improve the success of alignment

algorithms.

We test three dimensionality reduction techniques to explore their impact

on the strength of alignment signals: Canonical Correlation Analysis (CCA),

Principal Component Analysis (PCA) and Uniform Manifold Approximation

and Projection (UMAP). Note that CCA requires a known mapping between

systems in order for the space to be constructed, and as such it is not a

viable candidate for use in the final unsupervised alignment algorithm. It

is included only as a proof of concept and upper bound on dimensionality

reduction performance. PCA and UMAP are performed on each space in

isolation, and so are consistent with an unsupervised alignment algorithm.

Canonical correlation analysis (CCA) CCA was originally proposed

by Hotelling (1992), as a method for finding a set of basis vectors to maximise

the correlation between the projections of di�erent sets of variables onto these

basis vectors.

CCA acts as a supervised form of dimensionality reduction for both sys-

tems before alignment. It seeks a projection of each system into a common

space, with a pre-specified number of dimensions k, where the common space

maximises the correlation between matched items across its dimensions. By

definition, this requires a known mapping between spaces. As such, in the

terms of the original formulation in Hotelling (1992), dimensions in system X

are considered one set of variables, and dimensions in system Y are considered

the other. We test values of k œ 2, 5, 10. CCA was performed using the Python

package scikit-learn.

Principal component analysis (PCA) PCA is the first of the un-

supervised dimensionality techniques tested. Some unsupervised dimension

reduction techniques focus on preserving global pairwise similarity structure
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others prioritise local over global similarity structure preservation. PCA is

an example of the former category, where global pairwise similarity structure

is preserved. PCA derives a set of d orthogonal basis vectors, or principal

components, onto which the d original dimensions of a set of points can be

projected. They are ordered such that the first principal component captures

the largest amount of variation possible in the data, the second principal com-

ponent captures the second highest amount of variation, and so forth until the

d
th principal component. Dimensionality reduction is performed by selecting

only the first k principal components, where k is the desired number of dimen-

sions in the transformed space and k < d. In our experiments, we test values

of k œ 2, 5, 10. PCA was performed using the Python package scikit-learn.

Uniform Manifold Approximation and Projection (UMAP) By

contrast, UMAP is an unsupervised dimensionality reduction method which

focuses on the preservation of local similarity structure over global similarity

structure. This class of algorithms are sometimes referred to as neighbourhood

based dimensionality reduction (McInnes et al., 2018). In our analyses of early-

acquired concepts in Chapter 2, we found that local structure was among the

most important structural signals for promoting alignment, as local relation-

ships were more likely to be preserved across multiple embedding initialisia-

tions, and likely represented more stable semantic relationships. Thus, it was

logical to test a dimensionality reduction algorithm which prioritised preserv-

ing these relationships, in the hopes of facilitating unsupervised alignment.

UMAP works by first constructing a weighted nearest neighbour graph for

the points in the system. Each point in the system is a vertex V in the weighted

graph. The number of nearest neighbours included, Nneigh, is a hyperparam-

eter which determines the number of outgoing edges incident on each vertex.

Edge weights are calculated based on the distance between vertices which are

connected by an edge, with lower weights corresponding to higher distances.

Weights are interpretable as the probability that the edge exists (McInnes

et al., 2018).
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A force directed graph layout algorithm is applied to the resultant weighted

graph, where attractive forces along edges and repulsive forces between vertices

are applied iteratively. The layout of the space is optimised with respect to

these forces until a local minimum is reached. The number of target dimensions

k and the minimum distance bewteen points in the final embedding space

minDist are additional hyperparameters.

Values of k œ 2, 5, 10 and Nneigh œ [2, 150] were tested. The default value

of minDist = 0.1 in the python package UMAP, which was used to perform this

dimensionality reduction, is retained.

Similarity relations

Raw inter-concept distance The raw inter-concept distance is the Eu-

clidean distance between concepts in the relevant embedding space. Within

each system, pairwise distances are scaled such that values fall within the range

[0,1].

Exponential transform Based on the finding that longer-range simi-

larity relationships are less stable across embedding initialisations (shown in

Figure 2.10), there is reason to believe a new similarity function which down-

weights the importance of long-range relationships could improve our capacity

to identify appropriate mappings between systems.

An appropriate transformation of inter-concept distances would ensure that

the contribution of di�erences between long-range relationships to the align-

ment score of two systems under a given mapping, was minimised. That is,

if two items were deemed to be ‘dissimilar’ in one system and ‘very dissim-

ilar’ in another, this would be negligably di�erent from the case where they

were deemed to be ‘very dissimilar’ in both systems (recall the intuitive ex-

ample from section 4.1.2). Therefore, for an alignment algorithm to penalise

a mapping on the basis of this kind of meaningless alignment may be counter-

productive, as it steals attention in the correlation calculation from the more

meaningful local connections.
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Figure 4.2: Example transformations of pairwise distances, to upweight di�erences in local relationships,
according to dtrans = 1 ≠ e≠Cd for varying values of C. This is a visualisation of one of the preprocessing
steps tested in an e�ort to identify the best way to calculate alignment score, such that it leads to accurate
mappings.

Shepard (1987) proposes that human judgments of similarity follow an

exponential law, and this has been shown to hold when tested on large volumes

of naturalistic stimuli (Marjieh et al., 2023). Together with the finding that

more proximal relationships are more valuable than distant ones for alignment,

this leads us to explore exponentially transformed spaces for our naturalistic

alignment problem. Examples of such a transformation are shown in Figure

4.2.

Exponential rank transform An alternative method transforming our

alignment correlation function, is to apply a transformation to the ranked

pairwise distance matrices, such that di�erences in smaller distances are up-

weighted and di�erence between larger distances are downweighted. The mo-

tivation here is that the distributions of inter-concept relationships are non-

identical across systems (see Figure 4.3). By ranking pairwise distances within

each system, our distance function can become agnostic to any relative skew

in the distance distributions, potentially leading to a stronger signal for align-

ment.

First, we obtain matrices of the ranked inter-concept distances in systems

X and Y, RX and RY respectively. We then scale RX and RY such that

the maximum value of each is set to 1, by dividing by the maximum rank in

each. Then, we can transform these values such that they satisfy our desired
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Figure 4.3: Non-identical distributions of pairwise distances across systems

transformation criteria, using: RX,trans = 1 ≠ e
≠CRX , where parameter C de-

termines the relative weighting of local vs distant relations. Examples of this

transformation for di�erent values of C are shown in Figure 4.2.

To calculate the alignment score from these transformed ranks, we simply

take the Pearson correlation of the transformed ranks. In this case, we use the

same value of C in both modalities, as by applying ranks we remove any issues

of distance distribution.

Scoring function

As previously mentioned, the options available for the scoring function depend

on the scale at which alignment is being evaluated, which is in turn dictated

by the alignment algorithm. This can be split into scores which evaluate (a)

the alignment within a candidate pairwise mapping between two systems (full

mapping score), or (b) the alignment of the similarity relationships between

two individual items in di�erent systems (pairwise score).

Visualised in Figure 4.4, the full mapping score gives a holistic alignment

score, which measures alignment across the entire systems of relationships.

The score is calculated by correlating the upper triangular portions of pair-

wise similarity matrices across systems, where the positions of columns and

rows in the pairwise similarity matrices are determined by the candidate map-

ping of items across systems. In the orange box of Figure 4.4, for example, the
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proposed mapping places item A from system X in correspondence with item

4 from system Y. As such, item A occupies the first row and column of system

X’s pairwise distance matrix, and item 4 occupies the first row and column of

system Y’s pairwise distance matrix. Item B in system X is mapped to item

2 in system Y, and so these items are both placed in the second position in

the pairwise distance matrix, and so on. After the matrices are arranged in

this way, the correlation between the upper triangular portions of the matrices

quantifies the extent to which this mapping places the systems in alignment, by

measuring the extent to which the structural relationships correspond across

systems for mapped items. The correlation can either be the Spearman cor-

relation, as was used in Roads and Love (2020), or the Pearson correlation.

Rationale for these options is discussed below.

Figure 4.4: Example of full mapping score calculation, adapted from Roads and Love (2020). This is the
calculation of the mapping score for algorithms which evaluate an entire proposed cross-system mapping.

The pairwise score is less holistic, and instead tries to adapt the princi-

ple of second-order isomorphism for use in algorithms which require a score

to be evaluated for candidate pairings of individual items across systems. In

this case, the score is calculated by (1) computing the similarity relationships

within each system, (2) sorting the pairwise distances for each item, to ob-
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tain a ‘fingerprint’ for each item in each system, (3) obtaining the pairwise

distances between the two systems’ fingerprint matrices. These distances can

be calculated either as a Euclidean or a Wasserstein distance, both of which

are explained below. The output of this is a pairwise cost matrix, which gives

the cost of placing each pair of items in correspondence across systems. A

cross-system mapping can then be obtained by optimising based on this cost

matrix.

Figure 4.5: Example of pairwise cost calculation. This is the calculation used for algorithms which evaluate
cross-system mappings for individual points. The ‘local alignment loss’ matrix outputted by the calculation
can be inputted as a cost matrix to an algorithm which makes pairs to minimise global cost.

The next sections discuss variations within each score type (full mapping

score and pairwise score) which are to be compared.

Spearman correlation (full mapping score only) As done in Roads

and Love (2020), one option in the case of the full mapping score, is to take

the Spearman correlation between the upper trangular portions of the aligned

pairwise distance matrices. Using the Spearman correlation could be yielding

strong performance in part by minimising the impact of distributional di�er-

ences in pairwise inter-concept distances (visualised in Figure 4.3).

Note that, in the case of Spearman correlation objective function, similarity

relationship transformations do not make a di�erence to the alignment score.

This is because all the transformation functions being tested are monotonic

and therefore the ranks of distances do not change with transformation, and
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so nor does the Spearman correlation. Hence, the test slate shown in Table 4.1

only includes one combination of Distance transformation ◊ Objective f(·).

Pearson correlation (full mapping score only) An alternative to

the Spearman correlation of pairwise distances would be to take the Pearson

correlation between the upper-diagonal portions of two systems’ similarity ma-

trices, where the order of concepts in the matrices is dictated by the mapping

between systems. This allows for us to explore the impact of similarity rela-

tionship transformations on the utility of the alignment score, incorporating

our findings that close-range relationships may be more useful for alignment

than long-range relationships.

Euclidean distance (pairwise score only) When using the pairwise

score (see Figure 4.5), one option for computing the cost of matching a pair of

items across systems is to take the Euclidean distance between the fingerprint

vectors of the two items being paired. This is the default distance metric for

this score type.

Wasserstein distance (pairwise score only) An alternative distance

measure between the fingerprint vectors for a given pair of concepts is the

Wasserstein distance. In its original formulation, the Wasserstein distance (or

Earth Mover’s distance) is a distance between two probability distributions,

quantifying the minimum cost of turning one probability distribution into an-

other. For the current problem, this has the potential to address weaknesses

in the Euclidean measure. For example, the Wasserstein distance may not be

as sensitive to small perturbations between systems as the Euclidean distance

measure, as it incorporates an appreciation of column proximity, as opposed

to treating each column of the fingerprint matrix as an orthogonal dimension.

Now that the objective functions that we are aiming to optimise have been

established, we move on to the testing procedure, where we hope to establish

which modifications are most e�ective for each function type.
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Comparing candidate objective functions

To test how well an objective function corresponded to success in the unsuper-

vised alignment task, we used the conditional sampling procedure established

in Roads and Love (2020). This tests the relationship between the output of

the objective function (the alignment score) and the mapping accuracy.

Method: Sets of N œ {10, 50} concepts were sampled from the concepts

in the intersection of the word and image embeddings being used. For each

possible accuracy level, where 0 Æ nacc Æ N ≠ 2, we sample min(nperm, 10, 000)

cross-system mappings from the set of nperm possible mapping permutations

where nacc concepts are mapped correctly.

To explore the performance of these new settings, we look at two metrics:

the logarithm of estimated proportion of misleading mappings when using the

score (log(pmm)), and the Spearman correlation between the score and accu-

racy of a mapping (fl). The objective of the test in this section is to find a

scoring system which maximises fl and minimises log(pmm), as a stronger cor-

respondence between the scoring system and accuracy lends itself to maximal

accuracy of an algorithm which optimises the score in question.

Figure 4.2.2 plots score vs mapping accuracy for the scoring settings used

in Roads and Love (2020). This setting applies no dimensionality reduction,

no similarity relationship transformation, and uses a Spearman correlation

objective function. This setting functions as our baseline for the full mapping

score. In Table 4.1, this setting’s ID is 2S.

The red area in Figure 4.2.2 highlights sampled mappings which were mis-

leading according to the score in question. That is, the score for these mappings

was higher than the score for the correct mapping, despite their accuracies of

course being lower. The metric log(pmm) is the natural logarithm of the ex-

pected proportion of all possible mappings which would be misleading, based

on the proportions of misleading mappings observed in the sampling process,

and therefore captures the size of this red area.

Results: What follows are two tables which show the best performance of
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Figure 4.6: Plots of the relationship between alignment score and mapping accuracy for the settings used
in the original Roads and Love (2020) paper. The left panel shows the relationship for 10-concept samples;
the right panel shows the relationship for 50-concept samples In both plots, dark shading represents one
standard deviation from the mean (represented by the dark line). Lighter shading shows the minimum-
maximum envelope. Red regions represent misleading mappings. In this section, we attempt to identify
scoring methods which can improve upon these baselines, in terms of the relationship strength and the
number of misleading mappings..

any hyperparameter set for each setting combination. Table 4.1 summarises

the results for scoring settings which are used for full mappings, and Table 4.2

summarises results for individual pairing scoring settings. Within each table

the best performance on each metric is highlighted in bold font. Note that,

while CCA is included in both tables as a reference for near-ceiling perfor-

mance, it is not included in the selection of the best performance, as it is a

supervised method.

The aim here is to identify a combination of settings for each algorithm

type which outperforms the relevant baseline, by achieving a stronger relation-

ship between accuracy and score – higher fl – or a smaller number of misleading

mappings – lower log(pmm). For the full mapping score, shown in Table 4.1,

the baseline score settings have ID 2S. For the pairwise mapping score, shown

in Table 4.2, the baseline score settings have ID 2E. On the whole, we find

that a UMAP dimensionality reduction and an exponential transformation

of inter-concept distances are best able to improve the quality of the score.

This demonstrates that the representation of similarity may be an important

component of successful alignment algorithms, and that prioritising local rela-

tionships yields success.

The best combination of tested hyperparameters for each setup on each

metric was selected on each of the 4 metrics in question (fl and log(pmm) for
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ID

Dimensionality Reduction Distance transformation Objective f(·) Performance

None CCA1 PCA UMAP None Exp Exp
Rank

Correlation N=10 N=50
rp rs fl log(pmm) fl log(pmm)

(0) (1) (1) (2) (0) (2) (1) (0) (0)
1P X X X 0.542 ≠Œ 0.964 ≠Œ
2S X X X 0.205 -3.60 0.895 -102.32
2P X X X 0.123 -3.15 0.920 -127.98
3P X X X 0.427 ≠Œ 0.933 -135.39
4P X X X 0.333 -7.03 0.914 -116.79
5S X X X 0.381 -10.61 0.888 -102.29
5P X X X 0.247 -7.404 0.891 -113.18
6P X X X 0.441 -15.10 0.935 -134.75
7P X X X 0.361 -11.51 0.928 -124.24
8S X X X 0.423 -10.95 0.929 -120.50
8P X X X 0.417 -11.96 0.922 -116.09
9P X X X 0.501 ≠Œ 0.937 -120.51
10P X X X 0.506 -13.56 0.929 -123.11

Table 4.1: Performance of all tested combinations of settings for the full mapping score. Cell values
represent performance for the best combination of hyperparameters tested in a given row. rp is Pearson
correlation, rs is Spearman correlation. Note that not only one distance transformation is tested when the
objective function is Spearman correlation, as all transformations are monotonic and therefore the Spearman
correlation renders the transformation meaningless in the eyes of the objective function.

ID

Dimensionality Reduction Distance transformation Objective f(·) Performance

None CCA2 PCA UMAP None Exp Exp
Rank

Similarity N=10 N=50
dE dW fl log(pmm) fl log(pmm)

(0) (1) (1) (2) (0) (2) (1) (0) (0)
1E X X X 0.716 -13.06 0.949 -130.31
2E X X X -0.103 -0.392 0.607 -4.43
2W X X X -0.061 -0.47 -0.300 -0.19
3E X X X 0.538 -7.36 0.740 -7.69
3W X X X 0.453 -6.01 0.753 -8.56
4E X X X 0.316 -2.87 0.577 -3.89
4W X X X 0.475 -5.61 0.691 -6.02
5E X X X 0.122 -1.24 0.501 -3.08
5W X X X 0.365 -3.76 0.034 -0.78
6E X X X 0.431 -5.02 0.653 -5.26
6W X X X 0.419 -4.31 0.510 -3.16
7E X X X 0.354 -4.16 0.602 -4.36
7W X X X 0.436 -5.24 0.221 -1.33
8E X X X 0.608 -12.51 0.889 -58.68
8W X X X 0.456 -9.65 0.788 -10.34
9E X X X 0.698 -14.00 0.938 -95.24
9W X X X 0.637 -12.22 0.892 -63.61
10E X X X 0.689 -12.79 0.911 -71.47
10W X X X 0.594 -11.02 0.889 -49.55

Table 4.2: Performance of all tested combinations of settings for the individual mapping score. Cell values
represent performance for the best combination of hyperparameters tested in a given row. dE is Euclidean
distance, dW is Wasserstein distance

each of N=10 and N=50). The Spearman correlation between fl and log(pmm)

was 0.975 (p < 0.001).

For reference, the score v. accuracy plots for CCA - the supervised com-

parison - is included below in Figure 4.7 for the full mapping score, and Figure

4.9 for the individual mapping score. As is visible from both the table and

the plots below, CCA generated no misleading mappings for either set size in

the full case, and had the highest values of fl for both set sizes as well. In the

individual case, CCA had the best performance on fl and log(pmm) for N=50,

but was outperformed by another setting on log(pmm) for N=10.
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Plots for the best performing parameters for the full mapping score are

shown in Figure 4.8. Plots for the best performing parameters on the individual

mapping score are shown in Figure 4.10. In both cases, we observe a strong

relationship between score and accuracy, and find combinations of settings

which outperform the baselines in Roads and Love (2020). For the full mapping

score, the best settings use dimensionality reduction and/or transformation of

similarity relationships, depending on the measure of success. For 10 concepts,

the best performing settings are 10P and 9P respectively; for 50 concepts, the

best performing settings are 9P and 3P .

For the individual mappings, we had no starting point from prior work,

but similarly we observe that the best combination of settings includes a di-

mensionality reduction and distance transformation. For both set sizes and on

both measures, the best setting is 9E.

Figure 4.7: Score performance with CCA dimensionality reduction (full mapping). This serves as a proof
of concept for the possible impact of dimensionality reduction methods/space manipulations on the ability
for an alignment score to help perform alignment, but is not performed in an unsupervised fashion.

4.2.3 Alignment algorithms

Having identified modifications to the alignment score which improve the pos-

sibility that it will guide us to accurate mappings, I now proceed to explore

candidate alignment algorithms for the unsupervised mapping problem.

Chapter 3 demonstrated success in using a CycleGAN inspired (Zhu et al.,

2017) model to fit human behaviour in a paired-associate learning task. But

could a di�erent, less human-like model do a better job of alignment than
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Figure 4.8: Plots of alignment score (full mapping) performance for the score settings which optimised the
number of misleading mappings (top row) and the correlation between score and accuracy (bottom row). For
10 concepts, the best performing settings are 10P and 9P respectively; for 50 concepts, the best performing
settings are 9P and 3P .

this cycle model? Or does this model indeed yield superior alignment results

compared to other candidate approaches? To begin answering this question,

this chapter evaluates the following classes of alignment algorithm, which were

selected to provide a good spread across suitable approaches identified from

prior work:

• The Kuhn-Munkres algorithm (or, Hungarian algorithm): an opti-

mal transport method

• The Cycle model: an extension of the CycleGAN-inspired aligner used

in the behavioural experiment (Zhu et al., 2017)

• Monte Carlo Tree Search (MCTS) (Browne et al., 2012; Pinheiro

et al., 2016),
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Figure 4.9: Score performance with CCA dimensionality reduction (individual mappings). This serves as
a proof of concept for the possible impact of dimensionality reduction methods/space manipulations on the
ability for an alignment score to help perform alignment, but is not performed in an unsupervised fashion.

Kuhn-Munkres algorithm

The Kuhn-Munkres algorithm is an algorithm for the one-to-one assignment of

items in one system to items in another system, such that the final assignment

minimises the overall cost of assignments. In its original formulation, system

X consisted of ‘workers’ and system Y of ‘jobs’, where each worker had a

cost associated with each job. The assignment problem which the Hungarian

algorithm solves is formalised as follows: for two systems X and Y of equal

size and a cost matrix C : X ◊ Y æ R, find the bijection f : X æ Y which

minimises the cost function q
xœX C(x, f(x)) (Kuhn, 1955).

In our case, system X is the embeddings in one modality and system Y

embeddings in the other. The cost matrix C is calculated as the pairwise

distance matrix between the fingerprint matrices of items in systems X and Y,

where fingerprint matrices are constructed by sorting the in-system similarity

relationships row-wise. This is visualised in Figure 4.5. The cost matrix is

calculated as Calignment = 1 ≠ 1
2(corr + 1), such that all cost values œ [0, 1].

Details of the Hungarian algorithm are included in Appendix C1.2

Note that in this unsupervised form, using fingerprint distances as a cost

function (see Figure 4.5), the Hungarian algorithm does not actively seek to

optimise for alignment, as mappings are made on an individual basis using un-

aligned patterns of relationships. It is therefore agnostic to global structures

and to the consistency of mapping decisions across the set of points. But in the
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Figure 4.10: Plots of alignment score (individual mapping) performance for the score settings which
optimised the number of misleading mappings (top row) and the correlation between score and accuracy
(bottom row). For both set sizes and on both measures, the best setting is 9E .

trivial case where all relationships were identical across systems, this algorithm

is well placed to solve the task.

In turn, with some relationships known, the cost matrix can be adapted to

use alignment as a means of performing cross-system mappings. For example,

with a set of concepts Ys whose mappings are known, the cost matrix C can

be re-formulated such that the algorithm maximises the correlation between

similarity relationships to known items in systems X and Y for the selected

matched pairs. This is discussed in more detail in section 4.2.4.

Cycle

The structure of the cycle model used here was very similar to the Aligner

component of the Regression + Aligner model used in Section 3.3. The model

was comprised of two multi-layer perceptrons (MLPs): F (.) and G(.). One

performed mapping F : X æ Y from space X into space Y, and the other
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mapped in the opposite direction G : Y æ X. The MLPs used in this chapter

had 2 hidden layers of size 100. This model used only the unsupervised com-

ponents of the loss term: cycle consistency loss and distribution loss. ⁄cyc was

fixed at 1. ⁄dist and the standard deviations of the multidimensional Gaussian

kernels in the distribution loss, ‡, were hyperparameters. Training was con-

ducted over 1000 iterations. An Adam optimizer (Kingma and Ba, 2014) was

used with a learning rate of 0.001.

Supervision can be incorporated by re-introducing the regression compo-

nent of the loss. This is discussed further in 4.2.4.

MCTS

Monte Carlo Tree Search is a search method which combines tree search with

random sampling, enabling the search of vast search spaces with some notable

successes. The process of MCTS is summarised in Figure 4.11, (Browne et al.,

2012). The algorithm builds a tree by simulating series of actions each time it

reached an unvisited node, which are used to estimate the values of tree nodes.

Before the simulation begins, nodes are selected at each level of the tree based

on the selection policy. Once the simulation has begun, nodes are relected

based on the rollout policy. At the end of each simulation, we calculate the

value of the mapping using the alignment score described above. This score is

backpropagated to the node from which simulation began.

To apply MCTS to the search for a mapping between spaces, we frame the

problem as a single-player game (Schadd et al., 2008), where each node in the

tree is defined as the mapping between an unmapped point in system X and

one in system Y, given all previous points mapped across the systems.

We explore some variations of MCTS to best understand its scope for

success in this problem. Variations occur in two places: the selection policy

and the rollout policy. The variations we test in each policy are outlined below.

Selection policy

• UCB1: The UCB1 score which weighs value estimates derived from
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Figure 4.11: Overview of the MCTS algorithm, adapted from Browne et al. (2012)

simulations against the number of times each node has been visited.

MCTS algorithms whose tree policies are based on the UCB1 score are

commonly referred to as Upper Confidence Bound for Trees (UCT) al-

gorithms (Browne et al., 2012). Details of the UCT algorithm are pro-

vided in Appendix C1.1. Schadd et al. (2008) successfully implements a

modified version of the UCB1 score for single player games, given that

single-player games do not have a win/loss/draw outcome. Here, for ex-

ample, the outcome of our ‘game’ is an alignment score. We use this

modified UCB1 score given in Equation C1.2 (Appendix C1.1) in our

UCT algorithm.

• Alignment heuristic: For a large problem, like the mapping between

two concept spaces, domain knowledge may improve the e�ciency of

tree search. In our case, we know that in order for the alignment score

to be maximised for a complete mapping, alignment scores of mappings

made along the way will for the most part be maximised (or close to

maximised). We also know that alignment scores are more likely to be

reliable where they are calculated with respect to a larger number of

concepts. Therefore, we implement a version of the MCTS algorithm

which uses an alignment heuristic for node selection.

This heuristic operates by selecting nodes on how the candidate node

impacts the alignment score for the current mapping. Taking the parent
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node as a fixed mapping to the original system, for items 0,...,i-1, what

is the alignment score when each candidate node is chosen as a match

for node i? We take the softmax of the candidate nodes’ alignment

scores to generate a probability distribution across candidate matches for

node i. The temperature parameter T in the softmax function decreases

(i.e, makes the distribution less uniform) as i increases, owing to the

knowledge that alignment scores for more known items are more reliable.

Values of visited states are tracked, and an average is updated as in

UCB1, to account for the possibility that some missteps are made by

greedily maximising alignment score. This should identify any missteps

which yield lower alignment scores in the final mapping, for example by

filling a spot early on when it is better suited to a future spot, thus

possibly avoiding local minima.

• Exhaustive start: There is a strong possibility that seeding a sys-

tem with a small number of correctly mapped concepts would aid per-

formance. Alignment could then proceed based on relationships with

known concepts. As such, we investigated a version of MCTS which up-

weighted the top of the tree - prioritising finding a small set of mapped

concepts which led to superior mappings further down the tree, and then

using these to anchor further decisions in the tree once they were locked

in. The details of how this is implemented are found in Appendix C1.3

After the pre-determined number of items have been searched exhaus-

tively, we revert to the alignment heuristic.

Rollout policy

• Random: The random rollout policy randomly selects states in simu-

lation phase. While this method may work for small problems, it may

become too di�cult to find the correct answer as the problem size in-

creases.

• Alignment-constrained According to this policy, the probability of
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choice is determined by the alignment score with respect to currently

mapped items. A softmax function is used to generate this probability

distribution from alignment scores, and the temperature of this softmax

function is decreased as the number of concepts increases. The rationale

for this is that the alignment score becomes more reliable when a larger

number of items have already been mapped. The temperature decreases

linearly between a max of 1 and a min of 0.2 with each level of the tree.

Top-1 accuracy

To evaluate the alignment algorithms, the top-1 accuracy is used. This mea-

sures the percentage of mappings which are mapped to their correct counter-

part across systems. MCTS and the Kuhn-Munkres algorithm both naturally

output a one-to-one mapping between visual and linguistic entities. For the

Cycle model, the one-to-one mapping is generated by using the Sinkhorn algo-

rithm. Once the mapping fucntion F : X æ Y has been trained, the Sinkhorn

algorithm is applied to the pairwise distances between F(X) and Y in order to

find the optimal pairwise correspondence.

4.2.4 Algorithm testing

Throughout this section, horizontal green lines on plots are used to visualise

performance at chance in each testing condition.

We start by testing the algorithms on artificial, noise-free unsupervised

mapping problems, from which the problems gradually become more realis-

tic. Certain algorithms which were successful for perfect mapping conditions

become very poor performers for naturalistic cross-modal mapping problems.

We find that the most computationally expensive variant of MCTS is the most

successful on the unsupervised mapping problem, but that in general it is very

di�cult for algorithms to achieve e�cient success in this problem.

Having demonstrated the di�culty of unsupervised mapping, we add some

supervision to the mapping problem to test algorithm performance in this case,
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and find that the Cycle + Regression model and the Kuhn-Munkres algorithm

are the most successful when some concept mappings are known.

Self-self mapping as proof of concept

To begin, and to explore the theoretical e�cacy of the candidate algorithms

for the task of alignment, we run the alignment algorithms on a test slate of

self-to-self mappings. In the first instance, system X and system Y are both

sets of 50-dimensional word embeddings sampled from the 418 concepts in the

word-image embedding intersection. We test the algorithms on the sample

sizes Ns œ [10, 50], to explore whether the number of candidate items leads

to changes in performance. While this problem may seem trivial, as it is a

completely noise-free mapping, and therefore very unrealistic for something

like cross-modal alignment, the journey from this trivial problem to the more

complex solution may highlight individual weaknesses or strengths of di�erent

algorithm types. Thus we take a systematic approach from this trivial problem

to the full cross-modal problem.

The results for the self-self mapping test are shown in Figure 4.12. The

Kuhn-Munkres algorithm achieves 100% accuracy in this mapping for all prob-

lem sizes. The most computationally intensive MCTS variant - exhaustive start

selection policy + alignment-constrained rollout - is the next best performer.

These are the only two algorithms whose performance is significantly di�er-

ent to chance on both problem sizes when tested with post-hoc Bonferroni-

corrected t-tests (see Appendix C2.1). The heuristic-constrained MCTS vari-

ant performs significantly better than chance for the 10 concept problem in

the same test, but fails in the 50-concept problem.

The impact of noise

Next, some noise is introduced to the problem, which immediately impacts the

performance of the Kuhn-Munkres algorithm. Di�erent levels of noise (‘) are

explored, to determine whether algorithms are di�erentially sensitive to per-

turbations in the matched embeddings. We add noise to the self-self mapping
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Figure 4.12: Results for a self-self mapping of 50-dimensional word embeddings. This tests the algorithms
in a completely noise-free environment, which is not realistic, but demonstrates algorithm performance
under perfect conditions. Note that all runs of the Kuhn-Munkres algorithm achieve perfect mappings in
this artificial case. As such, their performance in this plot is represented by a horizontal line at accuracy
level 1.0.

problem by sampling noise for each point in system Y from a multivariate

Normal distribution X ≥ N(µ, �), where µ = 01,D and � = ‘ID. D is the

number of dimensions in the embedding to which we are adding noise. Here,

D = 50.

The results for mappings of noisy embeddings are shown in Figure 4.13.

For the lower noise conditions, the Kuhn-Munkres algorithm is generally the

highest performance solution, followed by the exhaustive/constrained variant

of MCTS. However, its performance is substantially a�ected by noise, becom-

ing comparable to the performance of other methods as noise increases. In

the highest noise condition, the exhaustive-constrained MCTS variant is the

only algorithm which achieves performance significantly above chance in both

problem sizes (see Appendix C2.2 for statistical tests).

Naturalistic, di�erent problem sizes

Moving from the self-self mapping to a more complex problem, we deploy the

algorithms on the problem of finding an optimal mapping from word- to image-

systems. Here, we test performance on three di�erent configurations of the ob-

jective function: baseline, which corresponds to the Spearman correlation on

mapped similarity relationships (as implemented in Roads and Love (2020));
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Figure 4.13: Results for a self-self mapping of 50-dimensional word embeddings, with artificial noise added
to increase problem di�culty. This demonstrates the impact of noise on the performance of di�erent algo-
rithms on unsupervised alignment. Noise quickly impacts the performance of the Kuhn-Munkres algorithm,
while other algorithm performance is more robust to the addition of noise.

bestProp, corresponding to the configuration which yielded the lowest propor-

tion of misleading mappings in section 4.2.2, and bestCorr which yielded the

highest correlation with mapping accuracy in section 4.2.2.

Figure 4.14 shows the performance of each system of interest on word-

image mapping problems for 10- and 50- concept problems. Having moved

to the cross-modal mapping problem, the performance of the Kuhn-Munkres

algorithm becomes indistinguishable from chance (see Appendix C2.3 for sta-

tistical tests). So while this algorithm was successful for synthetic problems, it

fails in the face of the noise introduced by the cross-modal mapping problem.

The computationally intensive exhaustive search variant of MCTS is the

best performer on the real unsupervised task. This is perhaps not surprising,

given that we know the alignment signal exists, and have shown in section

4.2.2 that maximising the optimised objective function should in theory yield

success in mapping. The exhaustive MCTS variant is the algorithm on the test

slate which uses the highest computational budget to search through mappings,

and is thus able to deliver the best results in the unsupervised task. No other

algorithm delivers performance significantly di�erent to chance on any setting

or problem size in the unsupervised cross-modal mapping problem.
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Figure 4.14: Results for a word-image mapping for 50-dimensional word embeddings and 10-dimensional
image embeddings. First row is top 1 accuracy; second row is top 5 accuracy. Green dashed line shows
chance performance

Introducing supervision

Given the challenges encountered in attempting the fully unsupervised prob-

lem, the following test sought explore how these algorithms could perform

when some cross-modal mappings were known. First, the way in which super-

vision is incorporated into each algorithm is explained. Then, the results are

presented.

Supervision in Kuhn-Munkres algorithm To incorporate supervision

into the Kuhn-Munkres algorithm, the cost matrix is updated, such that min-

imising the cost corresponds to finding a mapping which matches items with

similar relationships to the known concepts in each modality. To do this, the

entries to the cost matrix C(i, j) are the inverse of the alignment score ob-

tained when xi is mapped to yj, given the known items y œ Ys in system Y

and x œ Xs. This is visualised in Figure 4.15 (such that minimising the cost

function corresponds to maximising the alignment score).

Supervision in Monte Carlo Tree Search Incorporating supervision

into MCTS, the alignment score calculated at the end of a simulation is cal-

culated with respect to the known concepts. This is then backpropagated to

update the values of the nodes that were visited before simulation began. Fur-

thermore, for MCTS variations using the alignment heuristic, the probability

distributions across concepts as the algorithm moves through the tree are now

calculated using the alignment scores relative to the known concepts.
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Figure 4.15: Schematic of how supervision signals are incorporated into the Kuhn-Munkres algorithm.

As the exhaustive search MCTS variation was intended to be a proxy for

supervision (by finding successful early mappings to anchor the rest of the

search), this variation is now dropped in the presence of supervised items.

Supervision in Cycle In the Cycle model, supervision is incorporated

through an additional term added to loss function. This additional loss term,

⁄sup, is the sum of the distances between F (Xi) and the corresponding Yi

for i œ S, where S is the set of seen concepts (that is, items for which the

mapping is known). In other words, on top of optimising the unsupervised

cycle loss, the model now also aims to accommodate the known relationships

across modalities.

For a fair comparison, a Regression model is also added to the model slate.

This is a model with the same underlying structure are the Cycle model, in

that it is comprised of mapping functions F(.) and G(.) which map F : X æ

Y and Y : Y æ X respectively. However, the Regression model does not

include the unsupervised alignment term in its loss function, and instead only

minimises the loss ⁄sup - the distance between mapped items and their known
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counterparts.

4.2.5 Supervision experiments

The results for tests of the e�ect of supervision are shown in Figure 4.16.

Supervised concepts are randomly selected from the set of concepts in the em-

bedding intersection. The Kuhn-Munkres algorithm begins to perform better

than chance with 10 supervised examples. With 50-supervised, both the Kuhn-

Munkres algorithm and the Cycle + Regression models outperform chance on

both problem sizes (see Appendix C2.4 for statistical tests). This agrees with

the intuition and findings from Roads and Love (2020), that the more map-

pings are known the easier learning by alignment can become. Interestingly,

the Regression only model does not perform as well as the Cycle + Regression

model, and does not in any test configuration outperform chance.

Figure 4.16: Plot to show algorithm performance with various levels of supervision (known concepts).

4.3 Evaluating alignment as prior

An idea introduced in Chapter 2 was that systems alignment could function

as a prior for learning object-word mappings in the real world. In machine

learning contexts, learning object-word mappings corresponds to the task of

image classification. The following section examines whether systems align-

ment could serve as a valuable prior in object classification tasks.
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Based on the findings of the previous section, we are particularly interested

in how knowledge of some classes can be leveraged to generate priors across

novel classes (Socher et al., 2013; Frome et al., 2013; Akata et al., 2015). In

line with the terminology established in Socher et al. (2013), we refer to the

classes on which the prior is trained as seen classes Ys, and the novel classes

on which classification is tested as unseen classes Yu.

We are interested in exploring whether alignment processes based on known

classes better enable a learner to correctly generalise its knowledge to new

categories with little to no supervision. This is akin to a real-world learning

scenario where some concepts have been learned based on multiple supervised

instances, and other classes remain unknown.

Learning scenarios where the availability of supervised examples for a clas-

sification is low are often known as few-shot learning scenarios. This could

be considered a machine-learning parallel to the naturalistic learning environ-

ments of a human learner, where few explicitly supervised examples of object

labelling are encountered (Tamis-LeMonda et al., 2019; Clerkin et al., 2017).

We use a few-shot learning test to see how well learners can learn new classes

from a small number of supervised instances. We also test zero-shot learning,

to see how well the learner can generalise to new classes with no supervised

examples at all. Details on both few- and zero-shot learning are provided

below.

A key question in this exploration is whether the inclusion of unsupervised

alignment information benefits performance of a cross-system mapping model.

This is of interest because the model that was identified in Chapter 3 as a

the best fit for human learning included an unsupervised component alongside

the supervised learning component. Additionally, the Cycle model was a top

performer when a su�cient number of supervised classes were provided to the

system in the previous section.

In the coming section, the model which contains an unsupervised alignment

component engages this component while learning its seen classes Ys. The
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model is provided with some supervised examples from the known classes, for

which an image is provided alongside its label, but also with unsupervised

examples from these classes. We test whether this model, which attempts to

learn from these unsupervised examples, is able to outperform a comparison

model which relies on the supervised examples alone.

This reflects real-world learning scenarios: while some synchronous cross-

modal examples will exist for a class of objects (where a member of the class is

seen and the accompanying label is provided at the same time), there will be

many examples within a class which are seen, but without the appropriate label

being provided. This exploration is also highly relevant to machine learning

contexts, where labelled data is hard to come by. If unsupervised learning

processes prove valuable for establishing a cross-modal mapping, this could

allow machine learning systems to make use of unlabelled data to facilitate

learning.

Few-shot learning

Few-shot learning (FSL) is the task of learning to perform a task - here, object

classification - after training on only a few examples (Wang et al., 2020).

Humans are capable of performing few-shot learning of categories, and can

generalise to new objects successfully (Potter, 1976; Thorpe et al., 1996).

One approach to few-shot learning is to perform unsupervised pre-training

on unlabelled data, followed by fine-tuning using the small number of labels

available within the FSL environment (Chen et al., 2020c). The unsupervised

pre-training step makes the most of unlabelled data by leveraging it in a task-

agnostic fashion. This approach has been highly fruitful in natural language

processing contexts (Devlin et al., 2018), and has more recently been applied

to the task of image classification within the computer vision domain (Chen

et al., 2020b,c).

If n images per class are used for classifier training, this is referred to as

n-shot learning (e.g, if 2 images per class are used for the training set, this is
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2-shot learning).

Zero-shot learning

By extension, zero-shot learning is performing a task with no training exam-

ples present (Pourpanah et al., 2022). As a result, zero-shot learning tasks

require some form of ‘background’ information in order to be successful, such

as semantic information or other context. Prior studies have shown that by

incorporating semantic representations for class labels, zero-shot mapping of

images to previously unseen class labels is possible (Socher et al., 2013; Frome

et al., 2013; Akata et al., 2015).

SimCLR embeddings

For this assessment, we use visual embeddings extracted from SimCLRv2

(Chen et al., 2020c). SimCLR, the ‘simple framework for contrastive learning

of visual representations’, is a self-supervised embedding algorithm, which gen-

erates representations based on objects’ visual features (Chen et al., 2020b).

Representations are trained by encouraging the embedding model to maximise

agreement between representations for transformations of a single image, while

simultaneously maintaining distance between an image and other images.

While the SimCLR embeddings themselves are trained in an unsupervised

fashion, and are therefore task-agnostic, the performance of SimCLR embed-

dings on downstream tasks such as image classification is highly impressive.

SimCLR embeddings outperform both fully-supervised classifiers and state-

of-the-art semi-supervised classifiers on image classification tasks with small

numbers of training examples (i.e, in few-shot learning environments) (Chen

et al., 2020c).

A key di�erence between SimCLR embeddings and the co-occurrence based

visual embeddings used previously, is that SimCLR embeddings are inferred

for raw image inputs. When it comes to evaluating the potential for alignment

to benefit machine learning systems, this provides a valuable testing ground,
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as there is no pre-requisite for category labels to be inputted into the visual

system before the training for alignment can take place.

One consequence of this is that the alignment problem becomes a many-

to-one mapping problem. In the visual co-occurrence based embeddings used

so far in this thesis, the mapping problem was one-to-one, as visual object

categories were being aligned with linguistic category labels. But using Sim-

CLR, it is individual visual images which are mapped onto linguistic labels,

and there are many visual images associated with each potential label.

Adding an alignment prior

Can a machine learning system leverage existing knowledge of cross-modal

mappings to improve performance on novel image classes? The scenario ex-

plored here is as follows: if a machine learning system has knowledge of how

some items relate to their class labels, but no such knowledge for any examples

in other classes, can the novel classes be learned more e�ectively by extract-

ing a prior distribution across classes based on alignment? If so, are some

alignment mechanisms more successful at generating a successful prior than

others?

Based on the findings presented in this thesis, it is plausible that align-

ment information would be able to improve performance on image classifica-

tion when there is little supervisory data available. In Chapter 2, it was shown

that novel image-word mappings could be inferred based on known concepts

using alignment principles. In Chapter 3, in a completely supervised task,

learning e�ciency and final performance in humans were both improved by

the mere presence of alignable systems. In the first section of the current

chapter, semi-supervised alignment algorithms were found to be beneficial for

highly computationally complex image-word labelling tasks. Could the find-

ings of this thesis’ previous chapters and the algorithmic exploration above be

combined to contribute to successful learning in a few-shot learning environ-

ment?

148 of 227



4.3. Evaluating alignment as prior 4. Modelling alignability at scale

The process for the incorporation of an alignment prior into the classifi-

cation pipeline is visualised in Figure 4.17. The pipeline proceeds as follows:

the image classification task is restricted to Yu ‘unseen’ image classes. Im-

age representations resulting from unsupervised pre-training are obtained from

SimCLR, for n images per novel image classes (for 1-shot learning. n = 1; for

2-shot learning, n = 2 etc). Using an alignment-based method, trained on Ys

‘seen’ image classes, a prior distribution across the Yu unseen image classes is

generated for each image xi œ Xy for y œ Yu. Note that the sets of known

image classes and novel image classes are mutually exclusive. Then, the linear

classifier is trained on the small number of supervised examples in the training

set, and the prior for each image is inputted into the linear classifier alongside

its feature vector.

We compare 4 prior conditions: no prior information (Uniform prior); a

Correlation-based prior; a Regression prior and a Cycle + Regression prior.

The Correlation-based prior is conceptually similar to the underpinnings of

the forced-choice task in Chapter 2, and to the pairwise cost function used

in the Kuhn-Munkres algorithm in the previous section. The Regression and

Cycle + Regression priors involve training mapping functions to map between

visual and linguistic space using the known item classes, and then applying

these trained mapping functions to the novel classes. These two prior types

are derived in the same way, with the only exception being the loss term used

to train the mapping models. More details on each model type are provided

in section 4.3.3.

4.3.1 Materials

Visual representations using SimCLR

The images used in this study are sourced from the ImageNet ILSVRC2012

dataset. This dataset contains labelled images from 1000 object categories. For

our purposes, it was necessary that the class names corresponded to a word

with a GloVe embedding in the set described below. Some minor pre-processing
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Figure 4.17: Schematic demonstrating how the prior interacts with the classifier in the classification task.

of class names done to align class names with GloVe embeddings (e.g., ‘cellular

telephone’ ILSVRC2012 class name amended to ‘cellphone’, present in the set

of GloVe embeddings). After pre-processing, the total number of classes whose

names aligned with available GloVe embeddings was 640. This is the set of

classes Y from which we select our seen and unseen categories, Ys and Yu

respectively.

To obtain image representations, images are passed through the pretrained

SimCLR model with a ResNet50 backbone (1x width, see Chen et al. (2020c)).

From this, we obtained 2042-dimensional image representations.

In total, this resulted in a dataset of 822,982 image representations, with

dimensionality 2042 image representations across 640 classes. The mean num-

ber of images per class was 1286, with the minimum number of images in any

class being 754.

GloVe embeddings

The pre-trained word embeddings used here were 50-dimensional GloVe text

embeddings (Pennington et al., 2014). These embeddings are trained on 6 bil-

lion tokens from the Wikipedia2014 + GigaWord5 text corpus. The resultant

vocabulary size is 400,000 tokens.

150 of 227



4.3. Evaluating alignment as prior 4. Modelling alignability at scale

4.3.2 Are SimCLR embeddings and GloVe embeddings

alignable systems?

If alignment is going to be useful as a source of prior information for this task,

a necessary pre-requisite is that SimCLR embeddings and category labels are

alignable systems. In the prior sections of this thesis, visual embeddings based

on the co-occurrences of objects in visual space have been used to probe the

role of alignment in learning cross-modal mappings. The alignability of these

systems was confirmed (Roads and Love, 2020), using a conditional sampling

procedure which tested the alignment of cross-system mappings with di�er-

ent mapping accuracies. As described above, this section uses embeddings

inferred using contrastive learning, based on the visual features of images, and

are shifting to the use of SimCLR embeddings. Thus, it is worth testing the

alignability of SimCLR embeddings and the GloVe embeddings for the associ-

ated class labels.

It is reasonable to believe that representations based on visual features

and those based on language use might be alignable. As has been discussed in

previous sections of this contribution, things which are spoken about in similar

contexts are likely to be similar in form (for example, pens and pencils look

alike because both are used for writing, and they are spoken about similarly for

the same reasons). There is supporting evidence for this relationship in Johns

and Jones (2012), where it was demonstrated that if the perceptual features of

some object names are unknown, but the similarity relationships for the object

names in the linguistic space are known, perceptual features can be inferred

to an impressive degree of success using a simple associative mechanism.

To confirm the presence of alignable similarity relationships, I conducted

a systems alignment analysis of these systems, using the conditional sampling

procedure outlined in section 4.2.2.

A key amendment to the conditional sampling procedure arises from the

many-to-one nature of this new problem. Specifically, SimCLR embedding

positions were averaged within categories before alignability was tested using
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conditional sampling. For each image class, the embedding positions were

averaged across categorised items.

The results of this conditional sampling analysis are provided in Figure

4.18, confirming that the SimCLR embeddings and GloVe embeddings are

indeed alignable.

Figure 4.18: Conditional sampling analysis results for SimCLR embeddings and GloVe embeddings. Sim-
CLR embeddings are averaged within classes to give a mean class position in image embedding space, and
conditional sampling is performed on mappings between these mean positions in visual space and class labels
in GloVe embedding space.

4.3.3 The impact of alignment priors

This investigation tested the impacts of di�erent types of prior on few-shot

classification. The following section describes the methods associated with

(A) prior generation, and (B) classifier training, as outlined in Figure 4.17.

Prior conditions

We compare the performance of the few-shot learning classifier under 4 prior

conditions:

• No prior information To assess the impact of the alignment priors,

we compare to a baseline classifier with no prior information (a uniform

prior). For this model, SimCLR embeddings for the supervised examples

are inputted to the classifier. The classifier optimises performance on

categorical cross-entropy loss across the number of classes being tested.
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• Similarity relationship correlations The similarity relationship cor-

relation does not rely on any trained model to map between spaces. In-

stead, this prior is based on the similarity relationships to known classes

of items, in both image and label spaces. For an image xi being classi-

fied, the similarity relationships to the mean positions of images in seen

classes (xj œ Xy for y œ Ys) are calculated in image space. For each

candidate class label y œ Yu, the similarity relationships to known class

labels y œ Ys in the linguistic space are also obtained. Then, the rela-

tionships of the candidate image in image space are correlated with the

relationships of each candidate class name to the known labels. A prior

across candidate class names is generated based on the strength of these

correlations. This is visualised in Figure 4.19.

Figure 4.19: Schematic illustrating how the similarity relationship prior is generated across novel class
labels based on a set of known mappings for image labels. In box 1, green labels and image outlines
represent items from known classes. Blue labels represent the candidate class names, and the red outlined
image represents the novel image xi.

• Regression model The regression model learns two mappings between
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systems, F(.) and G(.), where F(.) performs the mapping F : X æ Y

from visual space X to linguistic space Y, and G(.) performs the map-

ping G : Y æ X from linguistic space Y to visual space X. Both F(.)

and G(.) are multi-layer perceptrons, which take inputs in the dimen-

sionality of the source space and output vectors in the dimensionality of

the target space. The regression model trains the MLPs using a super-

vised loss term: for the p% of images in known classes which are used

for aligner training, F(.) and G(.) are optimised by backpropagating the

L2 distance between the mapping output and the position of the known

corresponding item in target space: LF,Regression = 1
b

qb
i=0(F (xi) ≠ yi)2

and LG,Regression = 1
b

qb
i=0(G(yi) ≠ xi)2, where b is the number of items

in the batch. The overall regression loss is the mean of regression losses

in each space, LRegression = 1
2(LF,Regression + LG,Regression).

Once F(.) and G(.) have been trained, the prior across unseen classes Yu

for image xi is obtained by normalising the inverted distances between

F (xi) and y œ Yu.

• Cycle + regression model Much like the Regression model, the Cycle

+ Regression model also trains F(.) and G(.). The main di�erence

between the regression and the Cycle + Regression models is that the

Cycle + Regression model includes an additional component in the loss

function: L = LF,Regression+LG,Regression+LX,Cycle+LY,Cycle. These cycle

loss terms are unsupervised loss components, which aim to minimise the

reconstruction loss for mapping xi back to itself via space Y: LX,Cycle =
1
b

qb
i=0(xi ≠ G(F (xi))2, and in parallel LY,Cycle = 1

b

qb
i=0(yi ≠ F (G(yi))2.

Once F(.) and G(.) have been trained, the prior across unseen classes Yu

for image xi is obtained by normalising the inverted distances between

F (xi) and y œ Yu.

For each of the three alignment prior conditions (similarity relationship cor-

relations, Regression only and Cycle + Regression), four supervision scenarios

are tested: 25%, 50%, 75% and 100% supervision. In the case of the similarity
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Figure 4.20: Visualisation of how priors across novel classes are extracted from models F(.) and G(.)
learned in the Regression and Cycle + Regression models. In box 1, green labels and image outlines
represent items from known classes. In box 2, blue labels represent the candidate class names, and the red
outlined image represents the novel image xi.

relationship prior, this means that p% of the images in the known classes are

averaged to obtain the mean positions in visual space which are mapped to

the known class labels. In the model-based priors - the Regression only and

Cycle + Regression priors - this means that the supervised component of the

loss term gets contributions from p% of the images in the known classes. For

the Regression only prior, the supervised loss term is the only loss term com-

ponent. The Cycle + Regression model has the additional unsupervised cycle

loss terms, which is calculated based on the full set of images in the known

image classes.

In each condition, we train 20 classifiers, each on a di�erent sample of

known and novel classes. Accordingly, for the model-based priors, a di�erent

model is trained for each of the 20 classifiers.
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Classification

Following the implementation in the original SimCLR papers (Chen et al.,

2020c,b) the classifier used is a simple linear classifier layer with a softmax

activation. The classifier’s dense layer takes an input of size DI (the dimen-

sionality of the image space), and outputs a vector of size nYu (number of

candidate classes).

Where a prior is used, the prior distribution across candidate classes is

multiplied by the output of the dense layer. The output of this is normalised

to give the final probability distribution across classes. We test models on a

classification problem of size ku = 100.

Results

Zero shot performance

A 2-way 3 (prior: Cycle + Regression, Regression only, Correlation) x

4 (supervision: 25%, 50%, 75%, 100%) mixed ANOVA, where prior was a

within-subject factor and supervision was a between-subjects factor, revealed

a significant main e�ect of prior (F(1.64, 122.64) = 1227.29, p <.001) on the

uplift in top 1 accuracy from the uniform condition,. No significant main e�ect

of supervision level or the interaction of prior and supervision level was found

(full ANOVA table is provided in Appendix C3.1).

Zero-shot performance for all prior conditions is shown in Figure 4.21. As

concept sets are nested within supervision levels, post-hoc comparisons are

pairwise repeated measures t-tests within supervision levels, with Bonferroni

correction applied. In all cases, the Correlation prior performs significantly

worse than both Regression and Cycle + Regression models. For some levels

of supervision (25% and 75%) the Cycle + Regression model has a statistically

significant advantage over the Regression only prior, but this is not consistent

across all supervision levels, with a much smaller e�ect than the di�erence for

the Correlation prior.

Few-shot performance A 3-way 3 (prior: Cycle + Regression, Regression
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Figure 4.21: Zero-shot classifier performance. Significance in post-hoc pairwise comparisons (via
Bonferroni-adjusted paired t-tests) are visualised by *s as follows: *: padj < 0.05, **: padj < 0.01, ***:
padj < 0.001 , ****:padj < 0.0001. For some levels of supervision, the Cycle + Regression model outperforms
the Regression only model, suggesting an advantage for the unsupervised learning mechanism.

only, Correlation) x 4 (supervision: 25%, 50%, 75%, 100%) x 3 (n-shot: 1, 2,

5) mixed ANOVA - where prior and N-shot were within-subject factors and

supervision level was a between-subject factor - found significant main e�ects

of prior (F(1.65, 120.29)=46.90, p < .001) and N-shot (F(1.83,133.55)=13.90,

p < 0.001). No other main e�ects or interaction terms were found to be

significant.

Results for the performances of all prior conditions for 1-, 2- and 5-shot

learning are shown in Figure 4.22.

Performance uplift vs the uniform prior condition, with pairwise compar-

isons by prior condition, are shown in Figure 4.23. In most cases, the Regres-

sion and Cycle + Regression models both significantly outperform the Correla-

tion prior but do not perform significantly di�erently from each other. For the

1- and 2-shot cases at 50% prior supervision, the Cycle + Regression model

outperforms the Correlation model but the Regression only prior does not. In

both of these cases, the results are trending towards the Cycle + Regression
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Figure 4.22: Classification performance in few-shot learning compared across prior conditions.

prior outperforming the Regression only prior, but this is not significant at an

– level of 0.05.

4.4 Discussion

The first section of this chapter attempted the fully unsupervised version of

the cross-modal alignment problem. First, the alignment metric was assessed,

by testing modifications to the alignment objective function, in an e�ort to

improve the likelihood of success for models optimising on this score. Modi-

fications to the alignment score were discovered which improved both (a) the

correlation between the score and the accuracy of an alignment, and (b) the

number of misleading mappings that the score identified (i.e, mappings for
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Figure 4.23: Classification performance uplift over uniform prior in few-shot learning. For some levels of
supervision below 100%, there is a trend towards the Cycle + Regression model outperforming the Regression
only model.

which the score was higher than the score for the correct mapping).

Having identified valuable modifications of the alignment score, a range of

algorithms which held promise for solving the unsupervised alignment problem

were tested on alignment problems of increasing di�culty. While some algo-

rithms were ideal in noise-free mapping problems, they failed when noise was

introduced, and were unsuccessful in the unsupervised mapping problem across

modalities. In the fully unsupervised problem, a constrained version of MCTS

yielded the greatest success. This algorithm poured computational resources

into identifying the most promising matches early in the tree, which led to the

highest alignment scores further down the line. This approach was aided by

the amendments made to the alignment score. However, while it did improve

performance over chance for the larger problem (a 50-concept mapping), the

improvements were greatly reduced on account of the heightened computa-

tional demands of this search. The results for the smaller problem do provide

hope for the future: if MCTS could be implemented at a larger scale, with

the heuristics this investigation has identified, performance on larger problems

could be improved.

Testing the slate of algorithms on a semi-supervised task, where some con-

cepts were treated as ‘known’, and new concepts were mapped on this basis,

the Cycle model and Kuhn-Munkres algorithm yielded the greatest promise.
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The success of the Cycle model was, interestingly, greater than the success

a model with the same structure but with no unsupervised loss component

included in its training.

These findings led to an investigation of alignment-based priors in image

classification tasks. Following the line of work of Socher et al. (2013), Frome

et al. (2013) and Akata et al. (2015), priors generated from alignment algo-

rithms were injected into classifiers being trained on novel classes of items in

low-data environments. This required the adaptation of alignment systems

from a one-to-one mapping problem to a many-to-one mapping problem.

In line with the findings of prior work, Regression and Cycle + Regression

priors were e�ective in yielding performance uplift on the classification task.

While the findings of this investigation are somewhat preliminary, there seems

to be a trend towards the Cycle + Regression model performing better than

the Regression only model, when the models were trained with a certain level

of supervision, with this impact appearing to be maximal at 50% supervised

training of the values tested.

One reason why this may be the case is that the Cycle + Regression model

is pressured to build learn a cross-system mapping which retains the fine-

grained local structure of the image embedding space. The cycle loss term

aims to reconstruct each image in the original image space via the mapping

G(F(x)), and success in this requires the original local similarity structure to

be recoverable. With only the regression loss term, as is present in the Regres-

sion only model, this local structure is ignored, and the only pressure is to map

all images within a class to the class label. This could result in the collapse of

the mapped representations of images onto the position of the label. It seems

that the presence of images which do not have labels provided for supervised

learning are beneficial to the generalisation performance of the Cycle + Re-

gression model, perhaps providing it with the opportunity to optimise for local

structure preservation free of the pressures of supervision.

To explore this thought, I performed an analysis of the mappings of training
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Figure 4.24: The average within-class dispersion for training image classes mapped into linguistic space,
compared between Regression and Cycle + Regression models across supervision levels.

images into linguistic space, comparing the the within-class dispersion between

regression and Cycle + Regression models. The results are shown in Figure

4.24. These results support this hypothesis, as the within-class dispersion is

reliably higher for the Cycle + Regression model than it is for the Regression

only model.

This may also give an idea of why the impact of the cycle model is relatively

small here, and highlights areas of application where it may be of greater ben-

efit. The image classes in the ILSVRC2012 are, in many cases, highly specific.

For example, there are over 100 classes of di�erent dog breeds distinguished

in the dataset, from ‘kelpie’, to ‘kuvasz’; from ‘flat-coated retriever’ to ‘curly-

coated retriever’. Therefore, there is not much meaningful variation within

the visual representations within each class which would be beneficial for gen-

eralisation to other classes. But if dogs of all breeds were included under a

single label ‘dog’, a model which retained local structure might be able to

generalise more easily to novel classes. The hypothesised di�erence between

models in this example is visualised in Figure 4.25. If generalisation to ‘wolf’

and ‘fox’ was tested, a model which retained local structures which was able

to disambiguate ‘wolf-like’ dogs and ‘fox-like’ dogs may facilitate superior gen-

eralisation compared a model whose only aim had been to map all dogs to the

label ‘dog’.

Based on these findings, a natural next step is to test the e�ect of a Cycle
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Figure 4.25: Hypothesised local structure preservation in Cycle + Regression model vs label collapse in
regression-only models. This Figure demonstrates how the preservation of local structure may assist with
successful generalisation to new classes. Here, concept representations both image space and linguistic space
are represented by image icons. In linguistic space, the positions of class labels are marked with points and
callout boxes. In image space, the organisation of dogs is based on their visual features. When mapped into
the linguistic space, the regression model is pressured to map all dog images to the same point in space. The
Cycle + Regression model retains the similarity structure in the mapped representations in image space.
This allows the Cycle + Regression model to use the local similarity of known classes to generalise to new
classes.

+ Regression prior compared to a Regression-only prior for a classification

task with more general classes, to see whether the the hypothesised benefit

of local structure preservation is indeed more valuable for generalisation in

cases where there is more within-class variation. This could be achieved by

combining ILSVRC2012 classes at a higher level of the semantic taxonomy.

Overall, this chapter has established a number of promising avenues for

machine learning applications of human-inspired alignment mechanisms.
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Chapter 5

General discussion

This thesis investigated the role of systems alignment in learning cross-modal

mappings.

On the basis of prior work demonstrating that naturalistic information is

alignable across modalities (Roads and Love, 2020), Chapter 2 investigated

the value of this signal for a challenging real-world cross-modal learning prob-

lem: concept learning. By exploring signals for alignment in children’s early

learning environments, this first study showed that children’s early concepts

are particularly well positioned to enable learning by alignment. This led to

an exploration of the structural features which underpin success in facilitat-

ing alignment, guided by insights from the success of children’s early concept

sets. Having demonstrated the value of alignment signals for learning in the

real world, the question remained: do people benefit from systems alignment

in learning? In a behavioural study, Chapter 3 tested whether humans do

indeed learn from alignment signals when they are available. It showed that

alignable systems facilitate more e�cient learning, even when full supervision

is available. The presence of supervision meant that there was no need to

perform alignment to succeed in the task. In fact, for participants in the mis-

aligned condition, performing alignment was counter to the learning goal. And

yet, participants in both conditions had a tendency to engage in in systems

alignment, which boosted learning performance where systems were alignable.

With this finding that alignment facilitates learning in humans, and having
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identified the structural signatures of alignment in Chapter 2, potential algo-

rithmic applications of alignment mechanisms were tested. The aim of Chapter

4 was to see whether the psychological and information-theoretic insights from

Chapters 2 and 3 could be leveraged to improve the performance of machine

systems. Building on the modelling conducted in Chapter 3, a slate of algo-

rithms were tested on the fully unsupervised alignment problem - that is, map-

ping from linguistic to visual space in the complete absence of labels. In the

absence of supervision, only the most computationally demanding algorithms

yielded performance advantages over chance. When alignment-based models

were used to generate priors for an image classification task (i.e., a cross-modal

mapping task), alignment improved classification performance. In some cases,

performance was further improved by a alignment models which contained an

asynchronous learning mechanism.

In this concluding chapter, I will review the key contributions of the thesis

and their significance within the fields of cognitive science and machine learn-

ing. I will also discuss limitations of the work presented in this thesis, and

highlight promising avenues for future work.

5.1 Could alignment facilitate early concept

learning?

The presence of alignable systems across modalities was identified in prior

work (Roads and Love, 2020; Riordan and Jones, 2011). In Roads and Love

(2020), it was suggested that alignable signals could be beneficial in scenarios

requiring learning mappings between systems, for example in mapping visual

objects to their labels. Analagous to the naive learners in Quine’s ‘gavagai’

thought experiment, children learning to map language onto the entities they

observe in the world are subjected to an overwhelming and very poorly con-

strained task. Research e�orts have long tried to understand how humans are

so readily able to learn these kinds of mappings, in spite of the degree of refer-
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ential ambiguity inherent therein. But could alignment-based information be

providing a valuable constraining signal to the learning problem children face?

Chapter 2 explored this question by simulating real world knowledge devel-

opment using age-of-acquisition data, and comparing the child-like knowledge

states to control knowledge states in their ability to facilitate new concept ac-

quisition via alignment. Regardless of whether linguistic embeddings were pre-

trained based on large language corpora (Pennington et al., 2014) or trained

on smaller, child-directed speech data (MacWhinney, 2000), child-like knowl-

edge states were better than control knowledge states at facilitating learning

via alignment. This was true whether the concepts being learned were those

that children acquire early in life, or later-acquired concepts.

Alignment has the potential to be a powerful explanatory factor in the

‘vocabulary spurt’ (Bloom, 2013): alignment postulates that as more cross-

modal mappings are known, the easier learning by alignment becomes. Prior

to 2 years of age, children exhibit a rapid acceleration in vocabulary growth

(Goldfield and Reznick, 1990). This is consistent with findings in alignment

whereby the unsupervised acquisition of new mappings becomes easier when

more concepts are known.

It must be noted that the causal nature of this finding cannot be dis-

cerned from the current exploration alone: do children’s caregivers teach them

words in early life which provide this superior foundation for future learning

from the environment, acting as ‘optimal teachers’? Do children learn early

acquired words preferentially because they are easier to align, and thus align-

ment supports the process? The current results do not allow us to parse these

possibilities.

One limitation of this work is that, while e�orts were made to use child-

directed speech embeddings where possible (given the restricted volumes of

data), the visual embeddings were not child-directed. While some notable

child-like visual data sets from real world environments do exist (Sullivan et al.,

2021; Clerkin and Smith, 2022), to date none allow for the straightforward ex-
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traction of representative child-like visual embeddings. I would hypothesise

that the alignment of child-like visual embeddings and child-like linguistic em-

beddings would be even stronger than those observed in the current study, as

both would be subject to the same environmental constraints as children are

in the world.

A crucial direction for future work here is to test the extent of learning

by alignment in children, via behavioural studies. While this exploration

demonstrates that the signals in children’s early concepts support learning

by alignment, it does not conclusively demonstrate that they use these signals

in learning. Given the signal identified in this work and the finding that adults

learn from alignable signals, the clear hypothesis is that the same would be

found in children.

Based on the finding that early-acquired concepts yielded a greater capac-

ity for alignment based learning than control concept sets, the next question

in the investigation presented in Chapter 2 was: are there structural features

which make a concept set particularly well-suited for alignment-based learn-

ing? The distinguishing structural features of child-like concept sets, which

had performed well in the alignment learning task, were analysed to address

this question. It was shown that there were indeed distinguishing structural

features at play. Specifically, early knowledge states had dense connectivity,

both within the knowledge state and with concepts outside of the knowledge

state (i.e., knowledge yet to be acquired). They also contained concepts with

more proximal nearest neighbours, had lower dimensional coverage, and had

more positively skewed degree distributions.

Noting that these concept sets conflated being early-acquired and yield-

ing success in structural alignment, the influence of structural features on

alignment was tested using generative agent-based modelling. Agents’ inter-

nal parameters controlled the structural features of interest identified from

the child-like knowledge states. One class of agent optimised these internal

parameters such that the knowledge states it produced were as similar as pos-
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sible to the child-like knowledge states produced using age-of-acquisition data;

the other class of agent optimised its internal parameters such that it max-

imised performance in the alignment-based forced choice task. For the agent

which matched to Age-of-Acquisition (AoA) data, the learned internal param-

eters matched well with the parameters identified in the analysis, with the

exception of the most proximal nearest neighbour, which was not influential

in deciding the concepts to select. For the agent optimising task performance,

the key structural factors in concept selection were maximising connectivity,

both within and beyond the knowledge state, and high degree skew within the

knowledge state.

While the Task-Optimised agents did outperform the AoA agents in alignment-

based forced choice, the results showed that the structural features of the AoA

concept set were close to optimal for alignment-based learning, as the di�erence

in performance between early-acquired concept sets and task-optimised agents

was relatively small. The success of the Task-Optimised agent is attributable

to its focus on dense connectivity in the concept space, while the AoA-Matched

agent had to prioritise other features in order to match the statistics of early

concept acquisition, which were non-essential for alignment but perhaps key

for other aspects of conceptual development (Hills et al., 2009; Stella et al.,

2017).

The gap in performance between the AoA-Matched agents and the AoA

agents suggests that perhaps something is missing from the current structural

feature set, which underpins the success of the AoA agents in alignment-based

forced choice in these early months. One explanation for this is that the in-

ternal model parameters could be dynamic, and evolve over time, which is

not accounted for in the model presented here. For example, the dense con-

nectivity of early-acquired concepts could be key for the concepts acquired in

the first months, and this could be reflected in the structural features of early

concepts in the real world. But after this initial knowledge base is built, the

concept acquisition strategy in infancy could evolve, for example to deepen
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knowledge within sub-categories, and this could change the balance of struc-

tural features’ influence. Future work could look to incorporate dynamics into

the internal models. This has the potential to improve performance for both

the AoA-matching and the task-optimised models, and thus to develop our

understanding of how alignment might be supported in early concept learning.

This structural analysis identified structural underpinnings of alignment,

and the generative modelling portion successfully applied insights from the

psychological world to improve the performance of machine-learning systems

in this task.

Having demonstrated that alignment signatures exist in a naturalistic learn-

ing context, the investigation moved into the lab, where humans’ use of align-

ment signals for learning was tested and modelled.

5.2 Does alignment support human learning?

Having explored the value of alignment signals for learning in the real world,

Chapter 3 presented a controlled behavioural study in the lab, to test whether

humans benefit from alignable signals when learning to map between systems.

This was a novel investigation of whether underlying second-order isomorphism

improved human performance in a learning task. Performing this experiment

in the lab allowed models to be fit to each individual participant’s behaviour,

in order to explore the best fitting learning mechanisms across conditions.

The hypothesis of the paired-associate learning experiment presented in

Chapter 3 was that learning would be more successful when the correct cor-

respondences were dictated by systems alignment (aligned condition), than

when the correct correspondences were randomly selected (misaligned condi-

tion). Participants were not instructed to align in the learning task, providing

a good test of whether people have a tendency to perform alignment based on

the underlying structures of systems. The results provided support for this hy-

pothesis: participants in the aligned condition performed better in the learning

task than those in the misaligned condition. Furthermore, participants in the
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aligned condition were able to successfully generalise their cross-system map-

ping to a completely novel example - or in other words, to perform zero-shot

learning.

In both conditions, participants were given full and repeated supervision:

they were shown the correct responses twice before each block of trials. As

such, there was no need to engage in systems alignment to successfully perform

the task at hand. What’s more, computational modelling of each participant’s

series of responses found that a model which contained an unsupervised align-

ment mechanism was the best fit for the majority of participants - not only in

the aligned condition, but also in the misaligned condition. The unsupervised

alignment mechanism attempted to map the full set of representations in one

domain onto the set of representations in the other. As the correct responses

for participants in the misaligned condition were not consistent with this kind

of smooth mapping, the alignment mechanism did not benefit the performance

of these participants. And yet, the errors that participants in this condition

made were consistent with a tendency to align systems.

The alignment mechanism in the best fitting model of human behaviour

attempted to align the two systems as wholes, rather than just learning a

mapping from one space to another. This model, referred to as Cycle + Re-

gression, and inspired by Zhu et al. (2017)’s CycleGAN, operated with an

unsupervised loss term. While in the models fitted here, alignment steps were

interleaved with supervised trials, this optimisation step could be performed

asynchronously in the absence of any supervision at all, based on the distribu-

tions of items in each system independently. This could, for example, occur via

neural replay (Barry and Love, 2023). Since the study in Chapter 3 was con-

ducted, an EEG study conducted by Huang and Luo has demonstrated that

replay contributes to improving working memory for aligned systems: sponta-

neous replay of one system occurred when a second system was recalled, only

when the two systems are aligned (Huang and Luo, 2023). This provides strong

support for the hypothesis that replay could facilitate cross-modal learning
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from signals presented asynchronously in the real world (Clerkin and Smith,

2022; Tamis-LeMonda et al., 2019).

As a whole, the research project oriented around alignment-based signals in

learning is firmly rooted in the goal of understanding learning beyond the lab:

alignment-based signals have been identified in naturalistic environments, and

as such represent a rich and complex information source that is available in

the real world. Chapter 3 of this thesis is the first behavioural study exploring

the e�ects of systems alignment in cross-domain learning, and demonstrated

the hypothesised e�ect. But one clear next step would be to explore align-

ment e�ects in a more naturalistic setting: the artificial stimuli and controlled

experimental paradigm limit the scope of the conclusions that can be drawn

about the role of alignment in the real world at this stage. While the finding

that learning is supported by alignable systems is certainly novel, the nature

of learning by alignment outside the lab remains to be explored. One step in

this direction would be to update the stimulus space to be more complex or of

higher dimensionality, for example by using semantic dimensions as the axes

of variation, and selecting visual concepts as the stimuli.

Extensions of this work could examine how the alignment e�ect changes

with varying degrees of task supervision. In Chapter 3, the supervision signals

were complete: participants were shown the correct mapping for every item.

Testing the alignment e�ect in a weakly-supervised context could provide fur-

ther insight on how the e�ect may interact with other learning signals in the

real world, as supervisory signals are rarely so clear in reality. It is possible

that weakly supervised contexts would lead to a larger alignment e�ect than

was observed here: alignment-based learning is theoretically possible with no

supervision at all, but the same is not true the misaligned condition. So, re-

ducing the supervision to somewhere between the perfect supervision here and

no supervision is likely to yield benefits for the alignment condition.

Another factor of interest is the size of the learning task (i.e., the number

of items to learn). In this study, the task was carefully formulated such that
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success was attainable for the vast majority of participants, in either condition.

But it is feasible that more di�cult tasks would demonstrate even more of

a performance gain from alignment. There may be a trade-o� between the

cognitive costs of aligning systems and memorising individual mappings. For

example, if the number of items to learn mappings for was far too high to

retain in working memory, alignment could reduce the memory requirements

of the task su�ciently for a substantial di�erence in success rates (Edelman,

1998).

5.3 Can machine learning systems learn by align-

ment?

The power of alignment in human learning exhibited in Chapter 3 of this

thesis, along with the finding that children’s early concepts are near optimal

from an alignment perspective, begs the question of whether alignment-based

mechanisms can benefit machine-learning systems in learning contexts where

humans excel and machine systems struggle.

The most challenging formulation of this question entailed exploring whether

fully unsupervised alignment across modalities was possible using alignment.

That is, can the similarity structures within individual modalities be mapped

across modalities with no known mappings to start with? This is a very di�-

cult problem at scale: the size of the candidate mapping space makes search

intractable, and the distinct morphologies within the relevant systems mean

that tricks used in other applications of alignment do not apply (e.g., anchoring

the alignment with proper nouns, which share their morphology across mul-

tiple languages, in language alignment for translation, Conneau et al., 2017).

Solving the problem of unsupervised alignment across modalities would be a

huge breakthrough in Machine Learning. Chapter 4 of this thesis presented

an exploration of potential avenues for solving this problem at scale. Given

the di�culty of the unsupervised alignment problem, applications of an unsu-
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pervised alignment mechanism to semi-supervised cross-modal learning prob-

lems was also explored, motivated by the findings of previous chapters which

showed that (a) humans use alignment signals alongside supervision to improve

learning, and (b) alignment in tandem with prior knowledge can facilitate the

acquisition of new mappings.

Building on the modelling in Chapter 3, which modelled alignment pro-

cesses in conjunction with supervision, Chapter 4 scaled up the alignment

problem, and dialled up the di�culty by testing the alignment algorithms

where no supervision at all was available. A range of unsupervised methods,

which have demonstrated success on comparable problems through di�erent

lenses, were tested.

The investigation first looked to set the algorithms up for maximum suc-

cess by testing modifications to the objective function that algorithms sought

to optimise. Modifications covered dimensionality reduction of the unimodal

representations, transformations of similarity relationships and di�erent cor-

relation functions for scoring the correspondence of similarity relationships.

While some of these modifications brought about improvements in the corre-

spondence between score and mapping accuracy, these improvements were not

reflected in improvements in algorithm performance. Monte Carlo Tree Search

algorithms showed promise in identifying successful mappings across systems,

but versions which were most successful were highly computationally inten-

sive. Future work could build on the successes of this algorithm by using more

e�cient MCTS modifications, to explore the potential for MCTS methods to

succeed in unsupervised cross-modal mapping problems.

On the introduction of some supervision, in the form of some known map-

pings between systems, alignment success also begins to improve for other

models, as we would expect from the prior work of Socher et al. (2013), Frome

et al. (2013) and Akata et al. (2015). Interestingly, preliminary findings in

this thesis suggest that an unsupervised alignment component when learning

the cross-modal mapping from known concepts could lead to improvements in
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generalisation to new classes of items, compared to mapping functions trained

with a purely supervised signal.

Trends in this direction were found when comparing the impact of priors

in few-shot image classification. Priors were generated using alignment-based

models. Mapping functions were trained on a set of seen image classes. Once

trained, these mapping functions were used to generate priors for images in

unseen classes. While priors improved classification performance in general, it

was found that the presence of unsupervised examples and an asynchronous

alignment mechanism gave the best prior of all. When there were unsuper-

vised examples to learn from, mapping models which were trained with a cycle

loss term - the same model which provided the best fit to human learning in

Chapter 3 of this thesis - were better able to generalise to previously unseen

image classes than either (a) models with the same amount of supervision,

but no cycle loss term, or (b) models including the cycle loss term, but with

supervision for all training examples.

Why would unsupervised examples in mapping function training yield su-

perior classification performance for unseen classes of items? I presented evi-

dence that models trained with some unsupervised items may develop a greater

appreciation for local similarity structure. It seems that the presence of some

items whose label is not specified, and which the model is therefore not pres-

sured to map onto the specific location of the label in label space, is beneficial

in facilitating model generalisation. Future work on di�erent datasets, per-

haps with more general labelling schema, could explore this e�ect further, to

understand the potential value of incorporating unsupervised alignment into

model training. In situations where labelled data is rare, this has the potential

to extract more information from unlabelled data, and thus could be valuable

in machine-learning domains where obtaining labelled data is a challenging

roadblock.
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5.4 General limitations

The limitations of the individual components of this thesis have been discussed

in the prior sections of this chapter. In this section, I address limitations to

more general aspects of the approach taken in this thesis.

One general limitation to note is that modelling cannot in isolation prove

the cognitive processes at hand. No matter how strong a model fit may be, it

will never be able to provide conclusive evidence that it captures the processes

taking place in the mind (McClelland, 2009). The models used throughout this

thesis serve to explore alignment as a theoretical framework, and to understand

the potential implications of alignment-based processes for learning in human

and machine-systems. So, this limitation does not detract from the value

of computational models of cognitive processes, which allow us to formalise

theory and generate testable predictions. Instead, the computational work

presented in this thesis paves the way for future studies to test the mechanisms

underpinning the alignment-learning e�ect in humans, observed in the study

presented in Chapter 3.

Throughout this work, embeddings are used as approximations of unimodal

information available to humans. In reality, humans’ experiences develop over

time and are not static like our embeddings. In applications for early con-

cept development, this raises interesting questions about the correspndences

between developing unimodal spaces. In terms of the inputs to modalities, it

seems highly plausible that the constraints on children’s early environments

constrain multiple modalities in similar ways, and thus may not impede align-

ment processes. This is not to say that the inputs to di�erent modalities

are perfectly matched to one another - indeed, we have discussed evidence

throughout this thesis that synchronous inputs relatively rare (Clerkin and

Smith, 2022; Tamis-LeMonda et al., 2019) - but merely that most infants ex-

perience a narrower range of environments than most adults, and that the lan-

guage they are exposed to most frequently is reflective of this (Tamis-LeMonda

et al., 2019). So, from an input perspective, alignment could operate on (and
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even benefit from) gradually developing unimodal spaces, as the number of

concepts for which representations exist to be mapped reduce the size of the

problem space.

Embeddings also possess a degree of randomness. This was demonstrated

in Chapter 2, where multiple initialisations of an embedding algorithm yielded

di�erences in similarity structure (particularly for long-range relationships

which, I have argued, carry less meaning). This is perhaps analogous to di�er-

ences in the representations humans infer from their idiosyncratic experiences

of concepts throughout their lifetimes, which may lead to di�erences in how

inter-concept relationships are structured across individuals. However, the

nature and extent of this variability has not been compared to variability in

human representations. The findings in this thesis persist in spite of the po-

tential for variability in the inferred embeddings, generalising across adult-

and child-like embeddings in Chapter 2 and from co-occurrence based visual

embeddings to visual similarity-based embeddings in Chapter 4. Nonetheless,

it is worth acknowledging that the relationship between variability in embed-

dings and human concept representations is speculative, and therefore noting

that variability in human unimodal representations may have di�erent impacts

on alignment than those suggested by computational models.

5.5 Potential implications of alignment

The theoretical perspectives explored in this thesis provide a new view on how

learning can occur from information in di�erent modalities. Alignment sig-

nals were shown to benefit machine learning across all chapters, and to benefit

human learning in Chapter 3. Developments in the theory of learning are

valuable in their primary contribution to our understanding of how the human

mind works, and establish directions for research connecting these cognitive

findings to their neural underpinnings. As was demonstrated in this thesis,

theoretical developments in learning - such as the finding that humans can

learn by alignment - are also valuable in their application to machine learn-
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ing systems. In Chapter 2, I demonstrated that agents were able to develop

knowledge states which were optimal for unsupervised generalisation to new

concepts, based on the structural features of early-acquired concepts. In Chap-

ter 4, the application of unsupervised alignment mechanisms which captured

human performance in an alignment task have shown potential in application

to cross-modal machine learning tasks. Future applications to the domain of

machine learning could include the development of cross-modal concept curric-

ula for machine learning systems (Bengio et al., 2009), with the aim of setting

networks up for success in generalisation to new image and word concepts fo-

cusing on alignable concepts in their early training (Elman, 1993; Lake et al.,

2017).

Outside of machine learning, the perspective on learning o�ered by an align-

ment account could be beneficial in developing learning strategies which may

be useful when the integration of multimodal information into concept repre-

sentations is impaired. In semantic dementia (SD) patients, the deterioration

of semantic memory results in deficits in concept understanding, speaking and

object recognition (Warrington, 1975; Hodges et al., 1995), while other cog-

nitive functions such as episodic memory and topographic memory remain

largely unimpaired (Pengas et al., 2010). Aiming to improve the quality of

life of SD patients, research has aimed to develop strategies that patients can

use to retain their conceptual language (i.e., to slow progressive anomia), and

even to recover or build their semantic knowledge. These strategies are often

called ‘relearning techniques’. Some such strategies include straightforwardly

repeating exposures to object pictures and names, while other approaches in-

volve linking semantic concepts to objects used in the patients own home or

environment (Robinson et al., 2009), and linking concepts to their autobi-

ographical memories (Snowden and Neary, 2002). Many of these strategies

yield some success, but struggle to help patients generalise beyond the learn-

ing context (e.g. the specific task or exemplars used). Suárez-González et al.

(2015) showed that generalisation of restored concepts beyond specific exem-
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plars was substantially improved by using a ‘cognitive enrichment’ relearning

strategy which linked degraded concepts to the patient’s remaining semantic

knowledge.

Given that alignment has been found to benefit cross-modal mappings (such

as those required for visual object naming), alignment-based strategies could

be tested in similar contexts to see if semantic dementia patients benefit from

these signals in maintaining their semantic networks. For example, by pre-

senting training examples within naturalistic visual and linguistic contexts,

generalisation to new examples in the real world may be bolstered by align-

ment processes.

Along similar lines, alignment strategies could be tested for children with

word-learning di�culties. Nash and Donaldson (2005) demonstrate that chil-

dren with word learning di�culties struggle to learn at the same level as

children with normal word learning in both incidental and explicit learning

contexts. It is possible that alignment could benefit these children, for ex-

ample by guiding their attention in incidental learning environments to the

information contained within the context of a word. Alternatively, using prin-

ciples like those explored in the agent-based modelling study in Chapter 2,

alignment principles could develop curricula for word learning, to help these

children build knowledge bases which facilitated the strongest possibility for

alignment-based learning when exposed to new and unknown words.

These potential applications, together with the findings of the work pre-

sented in this thesis, identify a range of exciting avenues for future work.

5.6 Future directions

The discussion above has identified several directions for future pursuits in

the application of systems alignment. Some of these involve the use of align-

ment to improve long-term memory of cross-system mappings. In the context

of memory, alignment could be viewed as an abstract schema (Bartlett and

Bartlett, 1995) - a conclusion supported by the finding in this thesis that peo-
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ple have a tendency to align items, even when this is not beneficial to the task.

This finding suggests that humans expect systems to align. Prior work on

schemas suggests that memory for schema-congruent and schema-incongruent

items are both improved relative to schema-irrelevant items, and that these

two processes are mediated by di�erent regions of the brain (Van Kesteren

et al., 2012; Greve et al., 2019). Future work should investigate the impact of

alignment and misalignment across systems on memory for cross-system map-

pings, perhaps testing the hypothesis that alignment operates as a schema for

cross-modal mapping. If memory under alignment was indeed improved, this

could guide e�orts to use alignment in order to address the memory di�culties

discussed in the previous section.

Above, I presented many applications of systems alignment for mapping

between visual and linguistic spaces, from further behavioural tests to probe

alignment in human learning – in both adults and children – to extensions of

the machine learning approaches tested, in pursuit of a solution to the unsu-

pervised visual-linguistic mapping problem. But systems alignment is likely a

general learning process. While much of this thesis explored the implications

of alignment in visual-linguistic cross-modal learning (based on prior work

showing that alignable signals exist for this task in the naturalistic environ-

ment) the findings of the Chapter 3 suggest that alignment could apply to

other domains. The behavioural study presented in this chapter demonstrated

that alignment plays a role in a general cross-system mapping problem, and

that learning in this scenario is well explained by a model which contains an

unsupervised alignment mechanism. As such, future applications of alignment

beyond the visuo-linguistic realm.

Mappings exist between many kinds of systems. Consider the correspon-

dences between sounds and shapes exhibited by the ‘bouba’-‘kiki’ e�ect (Köh-

ler, 1970; McCormick et al., 2015); between music and emotions (Juslin et al.,

2001; Eerola and Vuoskoski, 2012) and (perhaps obviously) between languages.

Indeed, perhaps because some valuable alignments do exist, people also seek
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alignments elsewhere - for example, by mapping birthdays to personality traits

via astrology.

In translation, alignment may provide a lens through which to examine

word meaning. By identifying translations for which alignment is poor, one

could explore cross-linguistic mappings which do not do a good job of captur-

ing meaning in translation. It may also prove to be a useful tool for analysing

translation errors. It is also possible that, by examining changes in a word’s

position within the linguistic space over time, we could use alignment to un-

derstand changes in word meaning within a single language (Hamilton et al.,

2016), which could have implications for our understanding of historical doc-

uments.

In the example of music-emotion mappings, Won et al. (2021) took an

approach similar to the cross-modal approaches used in image retrieval tasks

to retrieve music based on emotional language. It is possible that alignments

between physiological response spaces and music-spaces could add further to

a multimodal representation of emotional musicality.

When it comes to learning by alignment in these broader domains – par-

ticularly where belief is involved, such as in the astrology example – issues

of motivation may prove important. People’s representations of the world,

the information they seek out within it, and the extent to which information

induces learning, are all impacted by individuals’ motivations and existing be-

liefs (Leong et al., 2019; Sharot and Sunstein, 2020; Kappes and Sharot, 2019).

In the context of alignment, such factors may influence the extent to which

alignment-based learning occurs, or may influence the representations of the

systems being aligned themselves. To understand learning by alignment in a

broader range of contexts, the value of alignment for human learning under

di�erent motivational conditions could be explored.

Alignment as a framework has the potential to help us understand cross-

system mappings and their implications beyond the realm of cross-modal learn-

ing. If future work continues to show that humans apply alignment to learning
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in a range of domains, as the work in this thesis hypothesises, this can be incor-

porated into machine systems to build human-like mechanisms of information

processing.

5.7 Conclusion

This thesis has explored cross-modal alignment in learning, shedding light

on the oft-neglected unsupervised learning processes which facilitate the inte-

gration of sensory inputs into meaningful representations of the environment.

It has demonstrated that alignment signals are valuable in the naturalistic

cross-modal learning problem of concept acquisition. Together with its finding

that humans learn and generalise better across systems where their underlying

structure is constrained by alignment, this presents a revised account of learn-

ing, which incorporates asynchronous processes that capitalise on emergent

cross-modal structure. Computational modelling of human learning identi-

fied promising candidate mechanisms for these asynchronous processes, which

were applied in machine-learning solutions to unsupervised and zero-shot gen-

eralisation problems. Preliminary successes here open the door for alignment

methods to capitalise on unlabelled data in cross-modal tasks. These human-

inspired models take steps towards addressing widespread problems with the

availability of labelled data, by emulating the human capacity to learn by

asynchronous alignment. I hope this thesis o�ers an exciting new perspective

on the role unsupervised learning processes could play in human and machine

learning in the real world.
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Appendix A

Supplementary information for

Chapter 2

A1 Example of failed alignment

An example of an Agent failing the forced choice task based on its starting knowledge state.

A2 Forced-choice experiment with CHILDES

The results for the forced-choice experiment conducted using the resultant

child-directed speech embeddings are shown in Figure A.2, with ANOVA re-

sults provided in Table A.1. The results of the experiment echo the results

when the pre-trained GloVe embeddings were used: we find a significant main

e�ect of agent type (F (1, 198) = 1165.70, p < .001, ÷
2
p = 0.850) and probe type

(F (1, 198) = 12.03, p < .001, ÷
2
p = 0.070), as well as a significant agent ◊ probe

type interaction (F (1, 198) = 6.90, p = .009, ÷
2
p = 0.049).

181 of 227



Appendix

Figure A.2: Forced choice results where linguistic embeddings are derived from child-directed speech corpus
CHILDES.

Figure A.3: Forced choice results where linguistic embeddings are derived from the enwik8 corpus, down-
sampled to match the CHILDES corpus in size.

Predictor df F p ÷2
p

Agent (1, 198) 1165.70 < .001ú 0.850

Probe (1, 198) 12.03 < .001ú 0.070

Agent * Probe (1, 198) 6.90 .009ú 0.049

Month (8, 1584) 25.50 < .001ú 0.111

Agent * Month (8, 1584) 4.55 < .001ú 0.020

Probe * Month (8, 1584) 1.65 0.107 0.007

Probe * Agent * Month (8, 1584) 0.49 0.863 0.002

Table A.1: Repeated-measures ANOVA results for probe pair experiment with word embeddings derived
from CHILDES dataset of child-directed speech. Agent condition (AoA vs. control) was a between-subject
factor, and probe condition (AoA-constrained vs. Unconstrained) and month were within-subject factors. ú
indicates statistically significant results for –=0.05. df = degrees of freedom; ÷2

p is partial ÷2 e�ect size.

Embeddings derived from a sample corpus drawn from enwik8, of compa-

rable size to the CHILDES corpus, did not yield the same results. The results

for this corpus are shown in Figure A.3, and ANOVA results are provided in

Table A.2.
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Predictor df F p ÷2
p

Agent (1, 198) 49.27 < .001ú 0.200

Probe (1, 198) 0.31 0.577 0.015

Agent * Probe (1, 198) 17.46 < .001ú 0.092

Month (8, 1584) 112.98 < .001ú 0.059

Agent * Month (8, 1584) 1.45 0.169 0.006

Probe * Month (8, 1584) 1.10 0.364 0.005

Probe * Agent * Month (8, 1584) 1.04 0.401 0.004

Table A.2: Repeated-measures ANOVA results for probe pair experiment with word embeddings derived
from the enwik8 Wikipedia dataset. Agent condition (AoA vs. control) was a between-subject factor, and
probe condition (AoA-constrained vs. Unconstrained) and month were within-subject factors. ú indicates
statistically significant results for –=0.05. df = degrees of freedom; ÷2

p is partial ÷2 e�ect size.

A3 Pairwise t-tests vs. chance for Control and

AoA agents

Control AoA

Month (m) t-statistic p t-statistic p

16 88.86 π 0.001ú 180.27 π 0.001ú

17 88.69 π 0.001ú 167.68 π 0.001ú

18 105.51 π 0.001ú 194.75 π 0.001ú

19 98.09 π 0.001ú 190.28 π 0.001ú

20 111.38 π 0.001ú 198.06 π 0.001ú

21 101.42 π 0.001ú 202.29 π 0.001ú

22 102.06 π 0.001ú 207.49 π 0.001ú

23 114.62 π 0.001ú 194.81 π 0.001ú

24 113.06 π 0.001ú 189.24 π 0.001ú

Table A.3: One sample t-test results for the comparison of control and AoA forced-choice results to
chance performance (50% accuracy) with pre-trained embeddings. At – = 0.05, Bonferroni corrected for 18
individual comparisons to give adjusted threshold 0.0027, all comparisons are highly significantly di�erent
from chance performance in the forced choice task.
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A4 Features tested

Feature type Feature Description

Node

Distance in full space (mean/-
max/min)

The mean/max/min magnitude of a concept’s
distances from other concepts in the full con-
cept space.

Distance within knowledge state
(mean/max/min)

The mean/max/min magnitude of a concept’s
distances from concepts in the existing knowl-
edge state

Degree in full space (kfull) Number of vertices between a concept and all
other concepts in the full space.

Degree in knowledge state (kknowledge) Number of vertices between a concept and all
concepts in the existing knowledge state.

Betweenness in full space Fraction of shortest paths in the full space
graph which pass through the concept.

Betweenness in knowledge state Fraction of shortest paths in the knowledge
state graph which pass through the concept.

Clustering in full space The fraction of possible triangles that pass
through the concept in the full space which
are realised.

Clustering in knowledge state The fraction of possible triangles that pass
through the concept in the knowledge state
which are realised.

Knowledge state Average dimension coverage The average proportion of embedding dimen-
sions’ overall variability in the full concept set
which is covered by the concepts in the knowl-
edge state.

Degree distribution skew (proxy) The skew of the degree distribution of the
knowledge state. Skew is approximated as
max(k)≠mean(k)
max(k)≠min(k)

Table A.4: Features tested for knowledge state classification

A5 Bootstrapping AoA distributions for AoA-

matched loss

Generating bootstrapped AoA distributions is necessary so that we have train-

ing and validation data for model selection across restarts. It also builds in

an acknowledgment of the fact that the WordBank dataset is itself a single

sample from the underlying population distribution of word acquisition. The

bootstrapping process is as follows:

• We generate B = 1000 bootstrapped probability distributions, P̃b(X).

• For each one, we sample 300 AoA sequences using the procedure de-

scribed above and visualised in Figure 2.7. Then we calculate P̃b(X) from

these generated sequences, by calculating the proportion of sequences in

which each concept was acquired by each month.
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• Generate train and validation sets of bootstrapped distributions (70/30

split for train/test).

As the magnitude of the loss varied by month, we aimed to normalise the

loss month-wise such that no month was disproportionately favoured in op-

timisation. To achieve this, we sampled 5,000 MSEs for each month m, by

randomly selecting Nm concepts and calculating the average MSE between the

resultant probability vector and bootstrapped probability distributions. We

then calculated a z-score for the loss term using the mean, µ, and standard

deviation, ‡, of MSEs acquired for the relevant month. To ensure that no loss

was below zero, we subtracted the z-score of the theoretical minimum MSE

(0) from all MSE z-scores. This constituted the final loss term for the AoA-

Matched agent.

A6 Soft alignment loss for Task-Optimised agents

The calculation of the soft alignment loss proceeds as follows:

• For the optimal agent, the loss requires a sample of test pairs for the

forced choice experiment. Therefore, on each backpropagation step, we

segment the remaining concepts into the ‘candidate set’, the ‘train set’

and the ‘validation set’. The candidate set contains 300 concepts, and is

comprised of the nt concepts in the current simulated knowledge state,

and 300 ≠ nt concepts randomly selected from the remaining concepts.

• This leaves 59 concepts for each of the training and validation concept

sets, from each of which 750 random pairs of concepts are then sampled

to serve as the testing and validation slates respectively.

• As in the training procedure for the structural agent, at each timestep we

obtain a vector across all candidate concepts, whose value represents each

concept’s probability of being in the knowledge state at t+1. Therefore,
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for concepts which have already been acquired, the value of this vector

is 1; for any concepts which have not yet been acquired, the value is

determined by the probability obtained from the generative score.

• This is the same probability vector used in the structural agent’s training

process. In the case of the optimal agent, this probability distribution is

used to weight the contributions of inter-concept distances to the align-

ment score.

• We obtain the pairwise probability matrix pT p, and use this to weight

the Spearman correlation in the alignment score calculation for the two

permutations of the test pair mapping.

• At each timestep, we backpropagate this soft alignment loss to update

the target variable vector x and the weight vector w.

Following the observation that the magnitude of the soft alignment loss

increases with the number of concepts in the knowledge state, we normalised

the alignment loss terms within each month. To achieve this, we aimed to

replicate the alignment loss calculation as closely as possible:

• For each of 5,000 samples for each timestep t, we sampled a pseudo-

partition of 300 concepts, from which we sampled a knowledge state of

size nt ≠ 1.

• We then gave all of the selected concepts a probability of 1, and gener-

ated a uniform distribution across the remaining concepts in the pseudo-

partition, just as is done prior to the soft alignment score calculation in

training.

• We then calculated the di�erence between the correct and incorrect align-

ment scores for a randomly selected pair of concepts from outside of the

partition set for each sample (sincorrect ≠ scorrect).

To normalise the loss terms in model training using the distribution of these

di�erences, we calculated a z-score for the (sincorrect ≠scorrect) component of the
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loss term, using the µ and ‡ parameters from the sampled distributions for

the appropriate month. To ensure that no losses were below zero, we added

the z-score of the theoretical minimum value of this component of the loss

term which is ≠2 (min = min(sincorrect) ≠ max(scorrect) = ≠1 ≠ 1 = ≠2), to the

di�erence in each month. This yielded the loss term that we optimised for the

Task-Optimised agent.

A7 Calculating influence of learned variables

on concept selection

While all features are scaled to fall between 0 and 1, this scaling is generally

based on the theoretical minima and maxima of the feature values. Conse-

quently, there is still variation in the regions of the parameter space which is

typically occupied by concepts in a knowledge state. This means that learned

parameter values and weights are not directly comparable without some trans-

formation.

To interpret the learned feature values and weights, we take a sample of

900 calibration knowledge states (100 for each month) generated via random

sampling as in the control agent. For each of these knowledge states, we

obtain values of the parameters of interest and calculate the distance to the

trained model’s parameter values. This gives us a distribution of representative

values for the distances from target variable values, that we would see when

obtaining generative scores for knowledge states (i.e, the distances that would

occupy vector D in panel 2 of Figure 2.11). We then multiply this mean

distance by the learned weight for the variable, to give a representative metric

for learned feature importance (i.e, how much the feature sways the probability

distribution across candidate concepts).
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A8 Pairwise comparison for forced choice re-

sults

AoA probe Control probe
A-M v T-O A-M v AoA T-O v AoA A-M v T-O A-M v AoA T-O v AoA

Month t p-value t p-value t p-value t p-value t p-value t p-value
16 4.07 π 0.001ú 4.72 π 0.001ú 0.23 0.816 8.77 π 0.001ú 9.66 π 0.001ú 0.75 0.452
17 4.54 π 0.001ú 4.27 π 0.001ú 1.16 0.247 8.63 π 0.001ú 8.01 π 0.001ú 2.05 0.041
18 5.04 π 0.001ú 3.55 < 0.001ú 2.55 0.012 9.71 π 0.001ú 7.73 π 0.001ú 3.39 < 0.001ú

19 3.14 0.002 0.31 0.755 4.54 π 0.001ú 5.15 π 0.001ú 3.01 0.003 3.01 0.003
20 2.64 0.009 1.54 0.125 4.84 π 0.001ú 5.58 π 0.001ú 3.52 < 0.001ú 3.10 0.002
21 3.01 0.003 0.03 0.972 3.92 < 0.001ú 5.62 π 0.001ú 3.39 < 0.001ú 3.29 0.001
22 1.87 0.062 2.53 0.012 5.11 π 0.001ú 6.12 π 0.001ú 2.82 0.005 4.48 π 0.001ú

23 0.57 0.573 4.14 π 0.001ú 3.53 < 0.001ú 3.59 < 0.001ú 0.93 0.353 3.30 0.001
24 1.44 0.152 4.25 π 0.001ú 2.47 0.014 2.70 0.001 0.07 0.947 3.25 0.001

Table A.5: Results for monthwise pairwise t-tests for forced-choice performance between each pair of
model types. A-M=AoA-Matched; T-O=Task-Optimised For – = 0.05, Bonferroni corrected threshold is
0.05/54 = 0.0009

A9 Category analysis

To obtain the semantic categories of concepts, we started with the categori-

sations available in the WordBank dataset (e.g Food & Drink, Clothing, Ani-

mals), and added some additional categories to cover concepts which were not

included in the AoA set but existed in the word/image embedding intersection

(e.g Weapons, Medical, Tools). Upon the addition of these new categories,

the early-acquired concepts were reviewed, and some items were re-assigned to

these new categories if appropriate. Category distributions are given in Table

A.6.
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Category Non-AoA AoA Total

Animals 64 (0.218) 34 (0.241) 98 (0.226)

Body parts 2 (0.007) 0 (0.000) 2 (0.005)

Clothing 19 (0.065) 17 (0.122) 36 (0.083)

Food/Drink 42 (0.143) 28 (0.199) 70 (0.161)

Furniture/Rooms 11 (0.038) 17 (0.121) 28 (0.065)

Household 51 (0.174) 19 (0.135) 70 (0.161)

Medical 6 (0.020) 0 (0.000) 6 (0.014)

Music 20 (0.068) 0 (0.000) 20 (0.046)

Outside 12 (0.041) 5 (0.035) 17 (0.039)

People 0 (0.000) 5 (0.035) 5 (0.012)

Places 5 (0.017) 1 (0.007) 6 (0.014)

Sports/Activities 24 (0.082) 0 (0.000) 24 (0.055)

Tools 6 (0.020) 2 (0.014) 8 (0.018 )

Toys 1 (0.003) 4 (0.028) 5 (0.012)

Vehicles 17 (0.058) 9 (0.064) 26 (0.060)

Weapons 7 (0.024) 0 (0.000) 7 (0.016)

Other 6 (0.020) 0 (0.000) 6 (0.014)

Total 293 (1.000) 141 (1.000) 434 (1.000)

Table A.6: Frequencies of each semantic category within each concept set. Proportions in brackets represent
the proportion of the concept set which is comprised of concepts from a given semantic category.

A10 Forced choice performance with AoA ex-

cluded

Figure A.4: Forced choice performance for control, AoA-Matched and Task-Optimised agents, when knowl-
edge states are not permitted to contain any early-acquired concepts.
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Appendix B

Supplementary information for

Chapter 3

B1 Regression + Aligner model

F (.) and G(.) had the same structure as the MLP F (.) described above for the

Regression model. Further to the description in the main text, cycle loss Lcyc

included the parallel loss term for the mapping of all Y to Y
ÕÕ. This makes

the total cycle consistency loss:

L̄cyc = 1
2

1
Ex

Ë
ÎX ≠ X

ÕÕÎ
È

+ Ey

Ë
ÎY ≠ Y

ÕÕÎ
È2

As described in the main text, Ldist is the mean negative log likelihood

(NLL) of F (X) as samples from a Gaussian mixture model comprised of 2D

Gaussian kernels placed on Y (GMMY ). The Gaussian mixture model is

defined as follows:

GMMY = 1
6

6ÿ

j=1
N(y; yj, ‡I 2),

where ‡=0.1. The total distribution loss includes the mean NLL of Y
ÕÕ as

a sample from GMMY and the mean NLL of X
ÕÕ as a sample from GMMX .

As both Lcyc and Ldist required exposure to the whole space of stimuli, the

unsupervised loss terms were not introduced until after the first block of passive
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trials in model training, where t > 6. ⁄cyc and ⁄dist specified the weights of

the cycle consistency and distribution loss terms respectively, relative to the

supervised loss term. On each trial in model training, the total loss term was:

L = 1
2

1
NLLyt

(x Õ
t) + NLLxt(y Õ

t)
2

+ ⁄cycL̄cyc + ⁄distL̄dist

where :

⁄cyc =

Y
___]

___[

⁄cyc, if t > 6

0, otherwise
⁄dist =

Y
___]

___[

⁄dist, if t > 6

0, otherwise
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Appendix C

Supplementary information for

Chapter 4

C1 Algorithm details

C1.1 Monte Carlo Tree Search

Each iteration of the MCTS algorithm begins from the root node. At each

node, a child node is selected based on some function of the child node utility,

until either (i) a node which has not been fully expanded or (ii) a terminal

node is reached. Upon selecting an unexpanded node, the algorithm enters a

simulation stage, sometimes referred to as rollout or playout. Here, the value

of the selected nodes are estimated by simulating ns further paths through the

tree.

Once each simulation phase has been completed, here meaning that each

item has been mapped to an item in the other space, the value of the terminal

state is calculated. The highest mapping value across the ns simulations is

backpropagated via the nodes visited prior to expansion, and is used to update

their estimates.

When the algorithm is terminated - either by interruption or by computa-

tional budget being reached - actions within the output tree can be selected by

a range of mechanisms (Browne et al., 2012; Schadd et al., 2008; Chaslot et al.,
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2008). We use the max-child policy, choosing the action with the maximum

estimated reward.

The tree policy refers to the decision policy used to select a node at each

level of the tree where node is unexplored. Kocsis and Szepesvári (2006) pro-

poses a node tree policy based on the UCB1 score. This score balances the need

to explore nodes which have not been frequently visited with the exploitation

of current value estimates. The UCB1 score for node j is shown in equation

C1.1:

UCB1 =
q

vj

nj
+ c

ı̂ıÙ ln(n)
nj

, (C1.1)

where nj is the number of times node j has been visited from the parent

node in question, and n is the total number of times the parent node of j has

been visited. q
vj is the sum of all values obtained when passing through node

j on previous visits. The constant c in the UCB1 formula controls the balance

of exploration and exploitation of existing knowledge of high-value states.

An adapted version of the UCB1 score, which was proposed in Schadd et al.

(2008), can be used for single-player games where the game outcome does not

lie within a preset interval and cannot be summarised as a draw, win or loss.

This modified score is shown in equation C1.2, and is the score used in our

MCTS procedure.

UCB1 =
q

vj

nj
+ c

ı̂ıÙ ln(n)
nj

+

ı̂ıııÙ
q

v
2
j ≠

3q
vj

nj

42
nj + D

nj
, (C1.2)

Where D is a high constant to ensure that nodes which have rarely been

expxlored are viewed as uncertain.

Once a node is selected for expansion, simulated play continues until a

terminal node is reached. For our purposes, a terminal node is one in which all

items in space X are mapped onto items in space Y. In the simulation phase,

actions are selected according to a separate decision policy, termed the default

policy (Browne et al., 2012). The default policy may be random - where the
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probability of selection is an even distribution across actions - or based on

some prior estimate of node values.

C1.2 Kuhn-Munkres algorithm

The process of the Kuhn-Munkres algorithm, in matrix formulation, is pro-

vided below:

• Step 1: Subtract each row’s smallest value from all row items, such

that each row’s minimum cost assignment takes the value 0. If resultant

matrix can be used for assigning (i.e., if there is one 0 per row and per

column), terminate.

• Step 2: Else, repeat step 1 column-wise (subtract each column’s small-

est value from all column items). If resultant matrix can be used for

assigning (i.e., if there is one 0 per row and per column), terminate.

• Step 3: Else, try to randomly ‘assign’ one zero in each row by starring

it. Zeros cannot be assigned if they are in a column where an assigned

zero already exists.

• Step 4: Obscure all columns which contain an assigned (or starred) zero.

Then, Find an unobscured zero and prime it. If all zeros are obscured,

skip to Step 5.

– If the primed zero has a starred zero on the same row, unobscure

the column containing the starred zero and obscure the whole row.

Then, return to beginning of step 4.

– Else, if the primed zero has no starred zero on the same row:

� Take a path from this zero as follows: (a) Find a starred zero in

the corresponding column. If one exists, proceed to (b). Else,

stop. (b) Find a primed zero in the corresponding row. This

will always exist. Then, return to (a)
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� For all zeros encountered while making this path, star any

primed zero and unstar any starred zeros.

� Unprime all primed zeros, and unobscure all lines

� Continue looping step 4 until conditions above permit skipping

to step 5

• Step 5: Zeros are now obscured by the minimum number of lines. Now,

find the lowest uncovered value in the matrix. Subtract this from every

unmarked matrix element, and add it to every element obscured by a

row line and a column line (e�ectively, this subtracts the number from

all unobscured rows and adds the same number to all obscured columns).

Repeat steps 4 and 5 until the minimum number of lines equals min(rows,

columns). The resultant starred zeros indicate the optimal assignment.

C1.3 Exhaustive start implementation

The process for implementing the exhaustive start selection policy is as follows:

• Start by exhaustively searching the set of mappings for the first k con-

cepts

• The number of sets to search is
1

N
k

2
, where N is the total number of

concepts and k is the size of the mapping

• This is quickly very computationally demanding. E.g., for 50 concepts,

to search the space of the first 3 concepts requires running simulations

for 19,600 mappings of the first 3 concepts from system X. In these

simulations, we map the first 3 concepts.

• Each mapping has to be tested through multiple simulations (here, we

use 20 simulations), and after mapping those 3 concepts we then have

to continue performing MCTS to a su�cient level for the results to be

meaningful.
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C2 Alignment algorithm testing

C2.1 Self-self mapping

Predictor df F p ÷2
p

Nu 1 3.97 0.048ú 0.03

Algorithm 6 40.92 < 0.001ú 0.65

Nu x Algorithm 6 3.26 0.005ú 0.13

Table C.1: Results of the 2-way ANOVA for the experiment on unsupervised self-self mapping performance
of algorithms. Nu is the number of ‘unseen’ concepts, i.e. the number of concepts for which the algorithm
learns the mapping. Significance at level – = 0.05 is indicated by *.

N concepts Algorithm t df p

10

mctsbasicRandom 3.473 9 0.007

mctsheuristicRandom 2.806 9 0.021

mctsbasicConstrained 3.601 9 0.006

mctsheuristicConstrained 4.243 9 0.002ú

mctsexhaustiveConstrained 4.830 9 0.001ú

cycle 1.641 9 0.132

kuhn Œ 9 < 0.001ú

50

mctsbasicRandom 0.709 9 0.496

mctsheuristicRandom 0.739 9 0.479

mctsbasicConstrained 0.000 9 1.000

mctsheuristicConstrained -0.612 9 0.555

mctsexhaustiveConstrained 4.813 9 0.001ú

cycle 1.748 9 0.111

kuhn Œ 9 < 0.001ú

Table C.2: Table of t-test results for di�erence from chance for each algorithm in the task of unsupervised
self-self mapping. Bonferroni-corrected significance level = 0.05/14 = 0.004. Significance at this level is
indicated by *.

C2.2 Self-self mapping with noise

Predictor df F p ÷2
p

Nu 1 13.12 < .001ú 0.03

Algorithm 6 103 < .001ú 0.57

noise 1 0.25 0.615 0 .00

Nu x Algorithm 6 3.76 < .001ú 0.05

Nu x noise 1 0.23 0.629 0.00

Algorithm x noise 6 34.51 < .001ú 0.31

Nu x noise x Algorithm 6 0.24 0.964 0.00

Table C.3: ANOVA table for the results of the experiment on unsupervised performance of algorithms for
representations for noisy versions of themself. Nu is the number of ‘unseen’ concepts, i.e. the number of
concepts for which the algorithm learns the mapping. Noise size indicates the amount of noise added to the
representations for which the mappings were learned. Significance at level – = 0.05 is indicated by *.
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Noise size = 0.01 0.03 0.1

N concepts Algorithm t df p t df p t df p

10

cycle 1.166 10 0.271 2.324 10 0.042 1.000 10 0.341

kuhn 35.404 10 < .001ú 9.461 10 < .001ú 2.206 10 0.052

mctsbasicConstrained 1.857 9 0.096 2.535 9 0.032 2.167 9 0.058

mctsbasicRandom 1.868 9 0.095 3.143 9 0.012 1.078 9 0.309

mctsexhaustiveConstrained 8.232 9 < .001ú 10.091 9 < .001ú 10.474 9 < .001ú

mctsheuristicConstrained 1.922 9 0.087 0.802 9 0.443 0.000 9 1.000

mctsheuristicRandom 3.508 19 < .001ú 4.925 19 < .001ú 2.557 19 0.019

50

cycle -1.399 10 0.192 0.000 10 1.000 1.000 10 0.341

kuhn 33.001 10 < .001ú 20.499 10 < .001ú 7.321 10 < .001ú

mctsbasicConstrained 0.199 10 0.846 -0.429 9 0.678 -1.000 9 0.343

mctsbasicRandom -0.802 9 0.443 0.669 9 0.520 0.514 9 0.619

mctsexhaustiveConstrained 7.216 9 < .001ú 8.060 9 < .001ú 7.060 9 < .001ú

mctsheuristicConstrained -0.614 10 0.553 0.000 9 1.000 1.500 9 0.168

mctsheuristicRandom -1.453 19 0.163 0.000 19 1.000 -1.000 19 0.330

Table C.4: Table of t-test results for di�erence from chance for each algorithm in the task of unsupervised
mapping of a systems to a noisy version of itself. Nu is the number of ‘unseen’ concepts, i.e. the number
of concepts for which the algorithm learns the mapping. Noise size indicates the amount of noise added to
the representations for which the mappings were learned. Bonferroni-corrected significance level = 0.05/42
= 0.001. Significance at this level is indicated by *.

C2.3 Unsupervised visual-linguistic mapping

Predictor df F p ÷2
p

Nu 1 4.24 0.040ú 0.01

setting_type 2 0.17 0.844 0.00

Algorithm 6 32.54 < 0.001ú 0.34

Nu x setting 2 0.01 0.991 0.00

Nu x Algorithm 6 2.56 0.019 0.04

setting_type x Algorithm 12 1.34 0.194 0.04

Nu x setting x Algorithm 12 1.76 0.054 0.05

Table C.5: ANOVA table for the results of the experiment on unsupervised performance of algorithms for
mapping between image and word embeddings. Greenhouse-Geisser correction has been applied to corresct
for violations of Sphericity assumptions. Setting was a factor specifying which alignment scoring setting was
used for the mapping algorithm. Significance at level – = 0.05 is indicated by *.
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setting bestCorr bestProp Original settings

N concepts Algorithm t df p t df p t df p

10

cycle 0.803 10 0.441 1.936 10 0.082 1.456 10 0.176

kuhn -0.559 10 0.588 0.000 10 1.000 1.102 10 0.296

mctsbasicConstrained 0.557 9 0.591 1.784 9 0.108 0.000 9 1.000

mctsbasicRandom 0.840 9 0.423 -1.627 9 0.138 -1.152 9 0.279

mctsexhaustiveConstrained 26.509 54 < 0.001ú 27.507 54 < 0.001ú 11.619 9 < 0.001ú

mctsheuristicConstrained 0.318 9 0.758 0.605 9 0.560 1.561 9 0.153

mctsheuristicRandom 2.333 9 0.045 0.709 9 0.496 0.000 9 1.000

50

cycle 0.000 10 1.000 0.000 10 1.000 2.206 10 0.052

kuhn -1.174 10 0.267 1.936 10 0.082 0.614 10 0.553

mctsbasicConstrained -1.809 9 0.104 -0.896 9 0.394 -0.314 7 0.763

mctsbasicRandom -0.802 9 0.443 -1.861 9 0.096 0.429 9 0.678

mctsexhaustiveConstrained 16.474 54 < 0.001ú 11.776 54 < 0.001ú 19.744 54 < 0.001ú

mctsheuristicConstrained 1.809 9 0.104 -2.236 9 0.052 0.000 9 1.000

mctsheuristicRandom 0.000 9 1.000 0.000 9 1.000 -0.557 9 0.591

Table C.6: Table of t-test results for di�erence from chance for each algorithm in the task of unsupervised
mapping between image and word embeddings. Nu is the number of ‘unseen’ concepts, i.e. the number of
concepts for which the algorithm learns the mapping. Noise size indicates the amount of noise added to the
representations for which the mappings were learned. Bonferroni-corrected significance level = 0.05/42 =
0.001. Significance at this level is indicated by *.

C2.4 Supervised visual-linguistic mapping

Predictor df F p ÷2
p

Nu 1 5.27 0.022ú 0.01

Algorithm 6 1.44 0.198 0.02

Ns 2 19.8 0.001ú 0.09

Nu x Algorithm 6 0.45 0.847 0.01

Nu x Ns 2 4.83 0.008ú 0.02

Algorithm x Ns 12 4.81 0.001ú 0.13

Nu x Algorithm x Ns 12 1.54 0.108 0.05

Table C.7: ANOVA table for the results of the experiment on supervised performance of algorithms for
mapping visual- to linguistic representations. Greenhouse-Geisser correction has been applied to corresct
for violations of Sphericity assumptions. Ns is the number of ‘seen’ concepts, i.e. the number of concepts
for which supervision is provided. Nu is the number of ‘unseen’ concepts, i.e. the number of concepts for
which the algorithm learns the mapping. Significance at level – = 0.05 is indicated by *.
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N_sup= 5 10 50

N concepts Algorithm t df p t df p t df p

cycle 1.861 9 0.096 3.515 9 0.007 7.141 9 < 0.001ú

kuhn 1.809 9 0.104 4.993 9 0.001ú 5.526 9 < 0.001ú

mctsbasicConstrained 1.246 9 0.244 1.309 9 0.223 0.429 9 0.678

mctsbasicRandom 0.612 9 0.555 1.168 9 0.273 1.069 8 0.316

mctsheuristicConstrained -0.557 9 0.591 -0.208 9 0.840 2.946 9 0.016

mctsheuristicRandom 0.246 9 0.811 0.361 9 0.726 -0.318 9 0.758

10

regression 1.784 9 0.108 3.354 9 0.008 1.778 9 0.109

cycle 2.167 9 0.058 3.515 9 0.007 6.520 9 < 0.001ú

kuhn 4.707 9 0.001ú 5.277 9 0.001ú 10.115 9 < 0.001ú

mctsbasicConstrained 0.688 9 0.509 -0.896 9 0.394 0.896 9 0.394

mctsbasicRandom -0.688 9 0.509 -0.287 9 0.780 -1.500 9 0.168

mctsheuristicConstrained 1.177 9 0.269 -0.688 9 0.509 0.480 9 0.642

mctsheuristicRandom 0.429 9 0.678 -1.000 9 0.343 -0.688 9 0.509

50

regression 2.167 9 0.058 2.012 9 0.075 3.584 9 0.006

Table C.8: Table of t-test results for di�erence from chance for each algorithm in the task of supervised
visual- to linguistic mapping. Bonferroni-corrected significance level = 0.05/42 = 0.001. Significance at this
level is indicated by *.

C3 Alignment prior results

C3.1 ANOVA results for zero-shot performance

Predictor df F p ÷2

Supervision (3, 00, 75.00) 0.109 0.954 0.002

Prior (1.64, 122.64) 1227.288 < .001ú 0.876

Supervision * Prior (4.91, 122.64) 0.973 0.436 0.016

Table C.9: Results of a 2-way mixed ANOVA for the uplift in zero-shot classification performance over a
classifier with a uniform prior. Greenhouse-Geisser correction has been applied to corresct for violations of
Sphericity assumptions. * Indicates a significant result for – = 0.05.
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C3.2 Post-hoc pairwise comparisons for zero-shot per-

formance

Priori Priorj t df padj

25%

Cycle + Reg Reg only 3.25 19 0.013ú

Cycle + Reg Similarity corr 27.33 19 < 0.001ú

Reg only Similarity corr 25.93 19 < 0.001ú

50%

Cycle + Reg Reg only 2.07 19 0.156

Cycle + Reg Similarity corr 25.70 19 < 0.001ú

Reg only Similarity corr 23.18 19 < 0.001ú

75%

Cycle + Reg Reg only 4.31 19 0.001ú

Cycle + Reg Similarity corr 25.68 19 < 0.001ú

Reg only Similarity corr 24.37 19 < 0.001ú

100%

Cycle + Reg Reg only -0.84 19 1.000

Cycle + Reg Similarity corr 26.01 19 < 0.001ú

Reg only Similarity corr 11.38 19 < 0.001ú

Table C.10: Post-hoc pairwise comparisons for uplift in accuracy relative to uniform prior in 100-way
zero-shot classification. * Indicates a significant result for – = 0.05

C3.3 ANOVA results for few-shot performance

Predictor df F p ÷2

Supervision (3, 00, 73.00) 1.363 0.261 0.027

Prior (1.65, 120.29) 46.901 < .001ú 0.103

N-Shot (1.83, 133.55) 13.896 < .001ú 0.043

Supervision * Prior (4.94, 120.29) 1.318 0.261 0.010

Supervision * N-shot (5.49, 133.55) 1.096 0.367 0.010

Prior * N-shot (3.27, 238.70) 2.248 0.078 0.003

Supervision * Prior * N-shot (9.81, 238.70) 0.986 0.455 0.004

Table C.11: Results of a 3-way mixed ANOVA for the uplift in classification performance over a classifier
with a uniform prior. Greenhouse-Geisser correction has been applied to corresct for violations of Sphericity
assumptions. * Indicates a significant result for – = 0.05.
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C3.4 Post-hoc pairwise comparisons for few-shot per-

formance

Shot Supervision % Priori Priorj t df padj

1

25

Cycle + reg Reg only 0.465 19 1.000

Cycle + reg Similarity corr 3.885 19 0.003ú

Reg only Similarity corr 2.800 19 0.034ú

50

Cycle + reg Reg only 2.230 19 0.114

Cycle + reg Similarity corr 3.049 19 0.02ú

Reg only Similarity corr 1.313 19 0.615

75

Cycle + reg Reg only -0.011 19 1.000

Cycle + reg Similarity corr 3.622 19 0.005ú

Reg only Similarity corr 3.666 19 0.005ú

100

Cycle + reg Reg only -1.329 18 0.603

Cycle + reg Similarity corr 1.658 18 0.345

Reg only Similarity corr 2.446 18 0.075

2

25

Cycle + reg Reg only 0.424 18 1.000

Cycle + reg Similarity corr 5.232 18 0.000

Reg only Similarity corr 4.270 18 0.001ú

50

Cycle + reg Reg only 2.063 18 0.161

Cycle + reg Similarity corr 2.842 18 0.032ú

Reg only Similarity corr 2.152 18 0.136

75

Cycle + reg Reg only -0.517 18 1.000

Cycle + reg Similarity corr 2.828 18 0.033ú

Reg only Similarity corr 5.410 18 0.000ú

100

Cycle + reg Reg only 0.624 17 1.000

Cycle + reg Similarity corr 2.788 17 0.038ú

Reg only Similarity corr 2.699 17 0.046ú

5

25

Cycle + reg Reg only 0.013 18 1.000

Cycle + reg Similarity corr 10.761 18 0.000ú

Reg only Similarity corr 6.986 18 0.000ú

50

Cycle + reg Reg only 1.109 18 0.846

Cycle + reg Similarity corr 2.404 18 0.082

Reg only Similarity corr 2.682 18 0.046ú

75

Cycle + reg Reg only -0.365 18 1.000

Cycle + reg Similarity corr 6.331 18 0.000ú

Reg only Similarity corr 6.335 18 0.000ú

100

Cycle + reg Reg only 0.481 17 1.000

Cycle + reg Similarity corr 5.160 17 0.000ú

Reg only Similarity corr 5.004 17 0.000ú

Table C.12: Post-hoc pairwise comparisons for uplift in accuracy relative to uniform prior in 100-way 1-,
2- and 5-shot classification. * Indicates a significant result for – = 0.05
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