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Spatial distribution, environmental risk assessment, 
and source identification of potentially toxic metals 
in Atikhisar dam, Turkey

Şakir Fural   · Serkan Kükrer · İsa Cürebal · 
Dilek Aykır 

very high ecological risks, respectively, while TI and 
As had a significant ecological risk, with Pb exerting 
a medium ecological risk. Hg, Pb, Tl, Cd, As, Cr, Ni, 
Zn, and Cu were enriched via anthropogenic effects 
exceeding their natural concentration levels. Due to 
their high toxic effects, Hg, Cd, Tl, As, and Pb were 
identified as the very high risk elements. Mining, 
household wastes, agriculture, and natural mineral 
deposits were identified as the possible sources of the 
potential ecological risk.

Keywords Metal pollution · Ecological risk 
assessment · Environmental degradation · Potential 
ecological risk · Geographic information systems

Introduction

Though naturally found in certain concentrations in 
(a)biotic environments, metals are enriched anthropo-
genically and discharged into surface water, ground-
water, or sewerage networks. This process contin-
ues with the accumulation and storage of metals in 
sediment. Ecological risk assessments of the met-
als serve to determine the extent to which their risks 
adversely affect the natural health, also known as 
ecosystem health, as well as to distinguish their natu-
ral and anthropogenic sources. For this purpose, vari-
ous indices proven to give reliable results have been 
developed such as enrichment factor (EF) (Brady 
et al., 2015; Sutherland, 2000; Vrhovnik et al., 2013), 

Abstract The objective of this study was to deter-
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their spatial distributions. Our findings indicate that 
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modified ecological risk index (mER) (Brady et  al., 
2015; Hakanson, 1980), geoaccumulation index (Igeo) 
(Müller, 1969), modified potential ecological risk 
index (mPER) (Brady et al., 2015; Hakanson, 1980), 
and the toxic risk index (TRI) (Zhang et  al., 2016). 
Anthropogenic effect is detected with EF and Igeo, 
toxic effects with TRI, and ecological risk assess-
ment with mER and mPER. Dams are more sensitive 
than wetlands to the ecological risks created by met-
als due to their direct contamination effects on eco-
system health (Audry et al., 2004; Deng et al., 2020; 
Goher et al., 2014; Karthikeyan et al., 2020; Kükrer, 
2016; Kükrer et al., 2020; Naz et al., 2016; Ustaoğlu 
et  al., 2020; Yang et  al., 2016). Even though gener-
ally equipped with treatment systems, metals in dams 
are not degraded through microbiological processes, 
thus rendering most treatment systems ineffective 
(Eid et al., 2012). Rising metal concentrations in sur-
face sediment have been attributed to mining, agri-
cultural, and industrial activities (Chen et  al., 2018). 
For example, mining activities and land-use and land-
cover (LULC) changes were reported as the source of 
ecological risks in Asia and Europe (Ma et al., 2020; 
Zhou et  al., 2020). In this context, the objective of 

this study was to quantify the ecological risks of the 
surface sediment metals of Atikhisar dam under the 
human-induced pressures from settlements, agricul-
ture, and mining and their spatial distributions.

Method

Description of study area

Atikhisar dam, located 11 km southeast of Çanakkale 
city in NW Turkey, was established on Sarıçay river 
in 1975 for the purposes of drinking and irrigation 
water supplies and flood control (Fig.  1). The basin 
area of the dam is 471  km2, with the crest height and 
length of 68 and 420  m, respectively; a maximum 
water elevation of 61 m; and a maximum volume of 
52.5 million  m3. The normal water surface is 4  km2. 
Agriculture, mining, rural settlements, and transpor-
tation networks are the most dominant anthropogenic 
activities in the catchment of Atikhisar dam. Au, Fe, 
and kaolinite deposits are mined, while Cu, Pb, Zn, 
Mn, and Quartz are the primary ore deposits. Most of 
the basin is covered with Tertiary andesite and tuffs. 

Fig. 1  Location map of the study area
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Paleozoic metamorphic rocks, Tertiary sedimentary 
rocks, and limestone of Upper Miocene-Pliocene con-
stitute the other lithological units (Öztürk & Erginal, 
2001).

Sampling and analytical procedures

The sediment metal concentration may change sea-
sonally or remain constant for a long time depend-
ing on the sedimentation rate and is considered one 
of the best indicators of ecological risk (Luczynskaa 
& Kang, 2018). Sediment metals can be released 
back into water due to changes in dissolved oxygen, 
organic–inorganic carbon, pH, and oxidation reduc-
tion (Çevik et  al., 2009; Wang et  al., 2012). In the 
study, surface sediments were sampled from 19 points 
on the dam base, while rocks were sampled from 
the nine locations in order to determine their metal 
background values (ppm): Al (30.689), As (2.89), 
Au (0.006), Cd (0.05), Cr (6.20), Cu (32.88), Co 
(17.50), Fe (44.611), Hg (0.006) Mn (815), Ni (8.99), 
Tl (0.053), Pb (3.18), V (137), and Zn (50.10). For 
the analysis of the organic carbon (OC) and metal 
contents, wet sediment samples were dried in the 
oven for 24 h, pounded in a mortar, and pulverized. 
Metal analyses were carried out using ICP-MS by 
the Bureau Veritas Analytical Labs in Canada. Ref-
erence materials, duplicate measurements, and blind 
sampling measurements were used to test the valid-
ity of the analyses. The recovery values of the metal 
measurements varied between 95.45 and 146.80%. 
OC analysis was carried out using the Walkley–Black 
titration method (Gaudette et al., 1974), while chloro-
phyll degradation products (CDPs) were determined 
using the acetone extraction and spectrophotometric 
methods (Lorenzen, 1971).  CaCO3 analysis was con-
ducted using a Scheibler calcimeter (Schlichting & 
Blume, 1966). The metal concentrations of the rock 
samples were averaged to determine the metal back-
ground to be used in EF analysis (Brady et al., 2015; 
Sutherland, 2000; Vrhovnik et al., 2013). Al was used 
as a conservative metal as follows:

where Cn is the metal whose EF is calculated, 
CAl sample is Al concentration, Bn background is 
metal background value, and BAl background is Al 

(1)EF =

[

Cn sample

CAl sample

]

∕

[

Bn Background

BAl Background

]

background. EF refers to a deficiency-to-minimal 
enrichment when EF < 2, a moderate enrich-
ment when EF = 2–5, a significant enrichment 
when EF = 5–20, a very high enrichment when 
EF = 20–40, and an extremely high enrichment 
when EF > 40 (Sutherland, 2000).

The following formula for Igeo was used:

where Cm is measured metal concentration, and 
Bm is continental crust value of metal. Igeo refers 
to uncontaminated when Igeo ≤ 0, uncontaminated 
to moderate when 0 < Igeo < 1, moderate when 
1 < Igeo < 2, moderate to strong when 2 < Igeo < 3, 
strong when 3 < Igeo < 4, strong to very strong when 
4 < Igeo < 5, and extremely strong when Igeo ≥ 5 
(Müller, 1969).

TRI was used to detect ecotoxicological risks 
posed by the metals (Zhang et al., 2016) as follows:

where Ci refers to metal concentration, TEL to a 
threshold effect level, and PEL to a probable effect 
level (MacDonald et al., 2000).

Integrated TRI was calculated as follows:

TRI refers to 5 no toxic risk when TRI ≤ , low 
toxic risk when 5 < TRI ≤ 10, moderate toxic risk 
when 10 < TRI ≤ 15, considerable toxic risk when 
15 < TRI ≤ 20, TRI > 20 very high toxic risk.

The following formula was used to estimate 
mER:

where  Tri indicates the following toxic risk coeffi-
cients (Brady et al., 2015; Hakanson, 1980): Hg = 40, 
Cd = 30, As = 10, Cu = Pb = Ni = 5, Cr = 2, Zn = 1, 
Mn = 1, Co = 5, Tl = 10, and V = 2. Its results for eco-
logical risk indicate a low potential when mEr < 40, a 
moderate potential when 40 ≤ mEr < 80, a significant 
potential when 80 ≤ mEr < 160, a high potential when 
160 ≤ mEr < 320, and a very high potential when 
mEr ≥ 320 (Hakanson, 1980). mPER was used to 

(2)Igeo = log2
Cm

(Bm × 1.5)

(3)TRIi =

√

((Ci∕TEL)
2 + (Ci∕PEL)

2)

2

(4)TRI =
∑n

i=1
TRIi

(5)mER = EF × Tri
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determine the integrated ecological risk (Brady et al., 
2015; Hakanson, 1980) as follows:

Its evaluation regarding ecological risk points to low 
when mPER < 150, moderate when 150 ≤ mPER < 300, 
significant when 300 ≤ mPER < 600, and very high 
when mPER ≥ 600 (Hakanson, 1980). The ecological 
risk indices were transformed into spatial distribution 
maps using the kriging interpolation method in Arc-
Map 10.7 software. It was used to estimate the opti-
mum values of the response surfaces not measured 
given the point data as follows:

where N indicates the number of the sampling points, 
Ni corresponds to the geoid corrugation values of 
the points used in the calculation of Np, Np indicates 
the corrugation value to be calculated, and Pi indi-
cates each Ni value used in the calculation of N (Esri, 
2021). Factor analysis, cluster analysis, Spearman’s 
correlation analysis, and field studies were carried out 
to determine the possible sources and transportation 
processes of the metals, OC, CDP, and  CaCO3.

Results and discussion

Spatial distributions of metals, OC, CDP, and  CaCO3

The mean metal concentrations (ppm) were as follows: 
Fe (28.021) > Al (22.742) > Mn (732) > Zn (74.4) > V 
(49.10) > Cu (40.26) > Pb (35.51) > Ni (29.10) > Cr 
(24.50) > As (16.90) > Co (12.80) > Hg (0.121) > Tl 
(0.47) > Cd (0.37) > Au (0.0066) for the surface sedi-
ments and Fe (44.611) > Al (30.689) > Mn (815) > V 
(137) > Zn (50.10) > Cu (32.88) > Co (17.50) > Ni 
(8.99) > Cr (6.20) > Pb (3.18) > As (2.89) > Cd (0.5) > Tl 
(0.053) > Au (0.006) = Hg (0.006) for the rocks. The 
metal concentrations of the surface sediments ranged 
from 36.300  ppm at the sampling point (SP) 12 to 
8.500  ppm at SP 3 for Al, from 25.9  ppm at SP 9 to 
5.8 ppm at SP 10 for As, from 64.78 ppm at SP 16 to 
9.41 ppm at SP 3 for Cu, from 19.5 ppm at the mouth 
of Sarıçay to 3.4 ppm at SP 3 for Co, from 57.30 ppm 
at SP 18 to 3.70 ppm at SP 6 for Cr, from 39.200 ppm 
at the mouth of Değirmendere to 10.000 ppm at SP 10 

(6)mPER =
∑

mER

(7)Np =
∑n

i=1
Pi × Ni

for Fe, from 0.74 ppm at SP 6 to 0.024 ppm at SP 10 
for TI, from 79 ppm at the mouth of the Değirmendere 
to 16  ppm at SP 3 for V, and from 110  ppm at the 
mouth of the Değirmendere to 22.30 ppm at SP 3 for 
Zn (Fig. 2). The maximum values were determined as 
0.0125 ppm at the mouths of Sarıçay and Değirmendere 
rivers for Au; 0.59  ppm at the mouths of Sarıçay and 
Değirmendere rivers and at SPs 4, 5, and 7 for Cd; 
0.526 ppm at SP 6 for Hg; 1.763 ppm at SP 12 for Mn; 
69.3 ppm at SP 18 for Ni; and 91.49 ppm at SP 11 for 
Pb. The minimum values were found at SP 10 for Hg 
(0.023 ppm), at SP 3 for Mn (223 ppm), at SP 10 for Ni 
(6.4 ppm), and at SP 3 for Pb (13.81 ppm). According to 
their spatial distributions, the seasonal streams discharg-
ing into SP 10 decreased all the metal concentrations. 
Hg, Pb, Tl, Mn, CDP, and  CaCO3 were not distributed 
homogeneously in the surface sediments, reaching their 
maximum concentrations with the local peaks (Fig. 2). 
Its minimum  CaCO3 concentration was lower than that 
of İkizcetepeler Dam (2%) and Aktaş Lake (9.20%) 
(Kükrer, 2017), while its maximum concentration was 
higher than that of Çardak Lagoon (5.30%) (Kükrer 
et  al., 2020) and Emerald Lake (9.80%) (Karthikeyan 
et al., 2020).

The Al concentration of Atikhisar Dam was 
higher than all the wetlands except for Manwan 
Dam in Table  1. Its concentration was higher than 
that of Castilseras, Klingenberg, and Çatören dams 
for As; that of all the dams except for Klingenberg 
dam for Cd; that of Çardak lagoon for Co; that of 
İkizcetepeler, Klingenberg, and Jutrosin dams for 
Cr; that of all the dams except for lake Emerald for 
Cu; that of all the dams except for lake Emerald and 
Castilseras dam for Fe; that of all the dams for Hg 
and Mn; that of Çatören, İkizcetepeler, Castilseras, 
and Jutrosin dams for Ni; than that of all the dams 
except for Manwan dam for Pb; and that of Çardak 
lagoon and Çatören, İkizcetepeler, and Jutrosin 
dams for Zn. When compared to the various wet-
lands, the high Al, Cd, Cu, Fe, Hg, Mn, Ni, and Pb 
concentrations occurred in Atikhisar dam (Table 1).

Indicative of the transportation and storage pro-
cesses, the spatial distribution of OC plays an impor-
tant role in the surface sediment metals (Jiang et al., 
2018; Tomlinson et al., 1980). When increased with 
anthropogenic influence, OC concentration poses a 
risk of water pollution (Xu et al., 2019). Its concen-
tration in Atikhisar dam varied between 3.48% at SP 
8 and 0.99% at SP 14, with a mean of 2.26%, and was 
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Fig. 2  Spatial distributions of metal, OC, CDP, and  CaCO3 concentrations for the surface sediments of Atikhisar dam
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estimated at 2.75% at the mouths of both Sarıçay and 
Değirmendere rivers primarily feeding the dam and 
to be of allochthonous origin. Its minimum concen-
tration was higher than that of Wadi Al-Arab dam 
(0.80%) (Ghrefat & Yusuf, 2006), while its maximum 
concentration was higher than that of İkizcetepeler 
dam (3.48%) (Fural et al., 2019), lake Çıldır (2.55%) 
(Kükrer et al., 2015), and lake Tortum (1.68%) (Kaya 
et al., 2017).

As an indicator of net primary production and 
metal transportation, CDP analysis is frequently used 
in ecological risk assessment (Laval-Martin, 1985). 
Its concentration ranged from 142.05 µg/g at SP 8 to 
25.32 µg/g at SP 18, with a mean of 69.33 µg/g, and 
was estimated at 25–30 µg/g in the mouth of Sarıçay 
and Değirmendere rivers and to be of autochthonous 
origin.  CaCO3 concentration changed from 0.00 to 
11.02% with a mean of 0.85%. Its maximum concen-
tration occurred at SPs 2 and 3. Minimum CDP con-
centration was higher than that of İkizcetepeler dam 
(25 µg/g), while its maximum was higher than that of 
lake Çıldır (47.67 µg/g).

Spatial distribution of EF

The mean values of EF were of the following order: 
Hg (20.35) > Pb (16.61) > Tl (14.62) > Cd (9.95) > As 
(9.08) > Cr (4.92) > Ni (4.13) > Zn (2.02) > Cu (1.70) > Au 
(1.22) > Mn (1.18) > Co (1.01) > Fe (0.90) > V (0.49) 
(Fig. 3). The areas with the maximum EF were detected 
as follows: SP 4 for Hg (49), SP 11 for Pb (50), SP 6 for 
Tl (41), and SPs 11 and 19 for Cd (17). The mouth of 
Sarıçay river exhibited the maximum EF for Cr (13), Ni 
(11.50), Zn (3), and Cu (2.55). Au (1.91) peaked at the 
mouths of both Sarıçay and Değirmendere rivers. The 
peak values occurred at SP 12 for Mn (1.80), at SP 18 for 
Co (1.56), at SP 6 for Fe (1.50), and at SP 17 for V (0.78). 
Figure 3 presents the detailed spatial distributions of EF in 
the surface sediments. Au, Cd, Co, Cr, Cu, Ni, V, and Zn 
peaked at the mouths of Sarıçay and Değirmendere rivers 
and were distributed almost homogeneously in the surface 
sediments. As, Fe, Hg, Mn, Pb, and Tl were not homoge-
neously distributed in the surface sediments and exhibited 
local peaks. The seasonal streams at SP 10 reduced the 
enrichment of all the metals except for Au, Cd, and Mn 
(Fig. 3).

The As enrichment in Atikhisar dam (9.08) was 
lower than that of Gökçekaya (46.13) (Akin & Ta
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Kırmızıgül, 2017) and Kapulukaya (47.35) (Başaran, 
2010) dams but higher than that of İkizcetepeler (3.88) 
(Fural et  al., 2020) and Manwan (1.48) (Wang et  al., 
2012) dams and lake Tortum (1.35) (Kükrer, 2016). Its 
Cd enrichment (9.95) was higher than that of Gökçe-
kaya (2.04), Kapulukaya (1.89), and İkizcetepeler 
(2.04) dams and lake Tortum (1.79). Its Hg enrichment 
(20.35) was higher than that of İkizcetepeler (2.34), 
Aguamilpa (0.46) (Pereza et  al., 2015), and Kapulu-
kaya (0.64) dams. Its Cr enrichment (4.92) was lower 
than that of Gökçekaya (7.58) dam but higher than 

that of İkizcetepeler (2.86), Kapulukaya (3.42), and 
Manwan (0.72) dams. Its Pb enrichment (16.61) was 
higher than that of İkizcetepeler (0.48), Kapulukaya 
(1.13), and Wadi Al-Aqiq (0.16) dams (Alghamdi 
et al., 2019) but lower than that of Gökçekaya (23.59) 
dam. Its Cu enrichment (1.70) was lower than that 
of Gökçekaya (6.54) and Kapulukaya (18.51) dams 
but higher than that of İkizcetepeler (1.15), Man- 
wan (0.95), and Aguamilpa (0.61) dams. Its Ni 
enrichment (4.13) was lower than that of Kapulu- 
kaya (24.44), İkizcetepeler (6.93), Gökçekaya (5.77) 

Fig. 3  Spatial distributions of EF for the surface sediments of Atikhisar dam
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dams but higher than that of Aguamilpa (1.55) and 
Wadi Al-Aqiq (0.69) dams and lake Tortum (1.07). 
Its Zn enrichment (2.02) was lower than that of lake 
Aygır (2.70) (Kükrer, 2018) and Gökçekaya (13.09) 
and Kapulukaya (7.03) dams but higher than that of 
İkizcetepeler (1.08) and Manwan (1.24) dams. Over-
all, As, Cd, Hg, Cr, and Pb enrichments were higher 
in Atikhisar dam than in most wetlands in the related 
literature.

Anthropogenic impact assessment with Igeo

The mean Igeo values of the surface sediment metals 
were as follows: Hg (3.32) > Pb (2.75) > Cd (2.13) > As 
(1.86) > Cr (0.97) > Ni (0.77) > Zn (0.58) > Cu 
(-0.45) > Mn (-0.95) > Al (− 1.15) > Fe (− 1.35) (Fig. 4). 
EF and Igeo were used to identify the natural versus 
anthropogenic origins of the metals. The source of the 
Hg enrichment was attributed to the mining activities 
and municipal waste streams from the extensive set-
tlements in the basin. Our finding was consistent with 
Hg enrichments reported (Tecra Tech Inc., 2005; Gray 
& Hines, 2009; Yang et al., 2016). Hg is also used in 
the recovery of gold in mines (Pinedo-Hernández 
et al., 2015; Song et al., 2019).

The primary sources of Cr include unexplored 
natural deposits and industry (Mishra & Bharagava, 
2016). It peaked at SP 18 due to kaolinite mines in its 
immediate vicinity, thus pointing to its anthropogenic 
source as the mining area. The possible anthropogenic 
sources of Tl include mines, industrial activities, and 

fossil fuels (Karbowska, 2016). It peaked at SP 9 near 
a mine land (Fig. 3). Its another source was emission 
from the fossil fuel combustion by the settlements 
throughout the dam.

Found in low concentrations among the rock 
samples, Pb was described as a moderate pollutant 
according to Igeo. Since the mining activities did 
not affect Pb deposits in the basin reaching 26%, the 
source of the Pb enrichment was evaluated as natu-
ral factors. Ilgar (2000) reported that the Pb depos-
its in the basin increased the Pb concentration in the 
sediments of Sarıçay river. Cd is the raw material 
of phosphate fertilizers (Karaca & Turgay, 2012). 
The phosphate measurements of the Atikhisar dam 
water exceeded the recommended limit values by 10 
times (Akbulut et al., 2006). Pesticide residues were 
also detected in the Atikhisar dam and Sarıçay river 
(Kaya, 2007). The possible source of Cd was related 
to agricultural activities based on the spatial analy-
sis, field campaigns, and related literature. The prob-
able anthropogenic sources of As included the mines 
and industrial facilities located in the study area. The 
possible source of Cr included mineral deposits and 
municipal and industrial wastes. Agricultural fertiliz-
ers as the probable source of Ni (Bolat & Kara, 2017) 
were also evidenced by the significant relationships 
between Ni and Cd. Overall, the primary cause of 
the anthropogenic effects in the basin was improper 
LULC changes. For example, the environmental pro-
tection zones have been compromised in the dam 
basin by the existing land uses not compatible with 
vulnerable water resources (Toptepe, 2011).

Fig. 4  Box-Whisker dia-
gram of geoaccumulation 
index (Igeo)
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TRI

The toxic ecological risk index (TRI) values of the 
metals were thus As (1.28) > Ni (1.00) > Cu (0.92) > Pb 
(0.73), Hg (0.48) > Zn (0.45) > Cr (0.43) > Cd (0.27). 
Given the mean TRI of 5.56, a low level of toxic risk 
was identified in the surface sediments. The TRI value 
peaked at 7.89 at the mouths of Değirmendere and 
Sarıçay rivers and plunged at 1.69 at SP 10 (Fig.  5). 
The maximum level at the outlets of Sarıçay and 
Değirmendere rivers pointed to a small quantity of the 
human-enriched metals discharged from the basin.

Spatial distribution of mER and mPER

The mER values were as follows: Hg (813) > Cd 
(298) > TI (146) > As (90) > Pb (83) > Ni (20) > Cr 
(9) > Co (5) > Zn (2) > Mn (1) > V (0.98). The Hg eco-
logical risk (1.900) peaked at SPs 4 and 8. Cd was at 
its maximum (550) at the mouths of Değirmendere and 
Sarıçay rivers and at SP 11. The maximum ecological 
risk was caused by Tl (430) at SP 6, As (26) at SPs 6 
and 9, and Pb (260) at SP 11. Ni (11), Cr (25), and Co 
(8) resulted in a low level of ecological risk and peaked 
at SP 18. The maximum levels occurred with Zn (3) at 

Fig. 5  Spatial distributions of mER, TRI, and mPER
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SP 11, Mn (1.80) at SP 12, and V (1.60) at the mouth 
of Değirmendere river (Fig. 5). Cd, Co, Cr, Cu, Ni, V, 
and Zn reached their maximum ecological risk levels at 
the mouths of Sarıçay and Değirmendere rivers. As, Hg, 
Mn, Pb, and Tl showed local peaks.

The mPER value data pointed to a very high 
potential ecological risk for the entire surface sedi-
ments and peaked at SP 4. The TRI and mPER values 
were higher in the outlets of the two main streams. 
The spatial distribution maps showed that TRI and 
PER decreased as a result of the discontinuous rivers 
located on the left bank of the dam and increased due 
to the rivers on the right bank (Fig. 5). This was prob-
ably related to the mining facilities on the right bank. 
Kaolen and Au mines, in operation for many years, 
are responsible for the high TRI and mPER values in 
the specified areas.

The mER value of Hg (813) was higher than that of 
Çardak lagoon (98) (Kükrer et al., 2020), İkizcetepeler 
dam (94) (Fural et  al., 2020), and lake Çıldır (110) 
(Kükrer et al., 2015). Gold mines in the basin appeared 
as the cause of its extremely high ecological risk 
(Pinedo-Hernández et  al.,  2015; Song et  al.,  2019). 
Cd (298) was higher than that of Çardak lagoon (67), 
İkizcetepeler dam (61) but lower than that of Tailings 
(711) and D. Duze (2.532) dams. As (90) was higher 
than that of Çardak Lagoon (17) (Kükrer et al., 2020), 
İkizcetepeler (38) (Fural, 2020) and Tailings dams 
(10) (Sey & Belford, 2019) but lower than that of D. 
Duze dam (96) (Tytla & Kostecki, 2019). Pb (83) was 
higher than that of D. Duze (45), İkizcetepeler (6), and 
Wadi Al-Aqiq dams (1.31). Hg, As, Pb, Tl, and Cd 
were higher than the mER values of some wetlands 
in related literature. mPER (1481) was higher than 
that of Çardak lagoon (226) and İkizcetepeler (201) 
and Wadi Al-Aqiq (20) dams but lower than that of 
D. Duze (2727) and Tailings (722) dams. The met-
als that created ecological risks in Çardak Lagoon, 
35  km northeast of Atikhisar dam, were as follows: 
Hg > Cd > As > Tl > Pb (Kükrer et  al., 2020). This 
ranking was similar to our study except for As and Tl 
although Çardak lagoon and Atikhisar dam had dif-
ferent risk levels. This shows that the anthropogenic 
effects in the adjacent areas were similar.

Possible sources of metals, OC, CDP, and  CaCO3

Factor analysis identified three factors with an eigen-
value of > 1, explaining 81.80% of the total variance. 

The first factor consisted of Cu, Zn, Ni, Mn, Fe, Cd, 
Cr, Al, Au, Co, and V and explained 56.94% of the 
variance (Table  2). All the metals had a low enrich-
ment except for Ni, Cr, and Cd in the first factor and 
had low ecological risk levels except for Cd. Given Al, 
Fe, Mn, and Au as the main components of the earth’s 
crust, and their enrichment and ecological risk level, 
the first factor was estimated to be of lithological ori-
gin. The enrichments of Ni, Cr, and Cd related to some 
anthropogenic effects. Agriculture may be responsible 
for Ni and Cd, while municipal and industrial wastes 
or undetected ore deposits may be responsible for Cr. 
According to the spatial distribution maps, all the met-
als in the first factor were transported from the basin 
by Sarıçay and Değirmendere rivers. The concentra-
tions in the surface sediments were almost homogene-
ous except for Ni, Cr, and Cd. Local peaks observed 
for Ni, Cr, and Cd verified that these metals were of 
anthropogenic origin. The inclusion of some anthro-
pogenic and lithogenic metals in the first factor was 
because the source definition and transportation pro-
cesses were taken together in the statistical data analy-
sis. All the metals in the first factor were transported 
from terrestrial sources by rivers. The second factor 
consisted of As, Hg, and Tl, whose anthropogenic 

Table 2  Results of factor analysis (bold values show metals 
within the same factor)

Factor 1 Factor 2 Factor 3

Cu 0.9682 0.119572 0.0901258
Pb 0.482246 0.0074078 0.548132
Zn 0.973256  − 0.0647696 0.125258
Ni 0.906572  − 0.0784261  − 0.203494
Mn 0.827294 0.0698359  − 0.0659511
Fe 0.930637 0.266546  − 0.139117
As 0.499 0.781646  − 0.0525002
Cd 0.842684  − 0.117968 0.336715
Cr 0.912822  − 0.109114  − 0.221156
Al 0.885423  − 0.00803183 0.0505892
Hg  − 0.376648 0.886271  − 0.0208685
Au 0.917694 0.0483786 0.205257
Co 0.957095 0.179961  − 0.129404
Tl 0.0498728 0.844589 0.375798
V 0.972018  − 0.0665766  − 0.050646
OC  − 0.144738 0.332326 0.540522
CDP  − 0.229264  − 0.0246606 0.822807
CaCO3  − 0.475076  − 0.401639  − 0.485244

Environ Monit Assess (2021) 193: 268 Page 11 of 16 268



 

1 3

Ta
bl

e 
3 

 S
pe

ar
m

an
 c

or
re

la
tio

n 
m

at
rix

 (b
ol

d 
va

lu
es

 sh
ow

 a
 st

ro
ng

 c
or

re
la

tio
n)

C
u

Pb
Zn

N
i

M
n

Fe
A

s
C

d
C

r
A

l
H

g
A

u
C

o
Tl

V
O

C
C

D
P

C
u

Pb
0.

77
02

Zn
0.

87
54

0.
84

39
N

i
0.

92
06

0.
59

94
0.

80
82

M
n

0.
71

58
0.

62
98

0.
83

33
0.

74
68

Fe
0.

84
74

0.
59

12
0.

83
86

0.
86

09
0.

83
16

A
s

0.
49

65
0.

34
39

0.
43

68
0.

41
07

0.
45

96
0.

65
26

C
d

0.
77

05
0.

77
84

0.
81

35
0.

64
76

0.
54

44
0.

57
43

0.
23

57
C

r
0.

89
82

0.
57

19
0.

78
25

0.
98

55
0.

73
16

0.
81

93
0.

32
28

0.
64

64
A

l
0.

75
79

0.
72

28
0.

87
02

0.
78

98
0.

93
86

0.
82

81
0.

33
86

0.
57

96
0.

77
54

H
g

 −
 0.

08
4

0.
16

32
 −

 0.
05

7
 −

 0.
21

6
 −

 0.
06

8
 −

 0.
09

7
0.

46
69

 −
 0.

11
7

 −
 0.

29
9

 −
 0.

06
4

A
u

0.
91

93
0.

81
58

0.
92

63
0.

81
53

0.
83

68
0.

81
93

0.
45

79
0.

78
10

0.
80

35
0.

86
84

 −
 0.

01
8

C
o

0.
91

79
0.

59
85

0.
79

95
0.

92
36

0.
74

59
0.

91
27

0.
49

76
0.

63
66

0.
88

02
0.

76
70

 −
 0.

17
4

0.
82

05
Tl

0.
01

49
0.

22
06

0.
08

00
 −

 0.
07

9
0.

20
21

0.
11

42
0.

53
43

 −
 0.

10
0

 −
 0.

17
9

0.
20

12
0.

14
67

0.
14

67
0.

02
95

V
0.

87
45

0.
67

43
0.

87
36

0.
90

47
0.

78
67

0.
90

43
0.

40
21

0.
74

43
0.

89
46

0.
83

32
0.

84
37

0.
84

37
0.

88
98

 −
 0.

09
7

O
C

 −
 0.

16
2

 −
 0.

06
1

 −
 0,

06
9

 −
 0.

09
6

 −
 0.

11
0

 −
 0.

19
9

0.
01

32
 −

 0.
05

1
 −

 0.
14

3
 −

 0.
10

4
 −

 0.
18

4
 −

 0.
18

4
 −

 0.
21

5
0.

33
27

 −
 0.

15
8

C
D

P
 −

 0.
14

7
0.

21
40

0.
01

75
 −

 0.
33

7
 −

 0.
05

1
 −

 0.
30

4
 −

 0.
15

4
0.

13
98

 −
 0.

33
7

 −
 0.

07
4

0.
00

70
0.

00
70

 −
 0.

35
2

0.
21

70
 −

 0.
21

3
0.

32
21

C
aC

O
3

 −
 0.

49
1

 −
 0.

59
2

 −
 0.

52
4

 −
 0.

27
8

 −
 0.

32
3

 −
 0.

27
4

 −
 0.

15
3

 −
 0.

71
9

 −
 0.

28
3

 −
 0.

37
9

 −
 0.

60
6

 −
 0.

60
6

 −
 0.

29
0

 −
 0.

22
7

 −
 0.

40
7

 −
 0.

23
0

 −
 0.

40
1

Environ Monit Assess (2021) 193: 268Page 12 of 16268



1 3

effects were detected in all ecological risk indices, 
and explained 15.87% of the variance. The third factor 
consisted of Pb, OC, and CDP, explaining 8.98% of 
the variance. Though highly enriched in the local area, 
Pb originated from its natural deposits in the basin and 
was transported from within the basin by Sarıçay and 
Değirmendere rivers. CDP was discharged by the sea-
sonal streams around the dam.

A positive correlation was found between Cu and 
Pb, Zn, Ni, Mn, Fe, As, Cd, Cr, Al, Au, Co, and V; 
between Pb and Zn, Ni, Mn, Fe, Cd, Cr, Al, Co, and 
V; between Mn and Fe, Cd, Cr, Al, Au, Co, and V; 
between As and Hg; between Co and Tl; between 
Cd and Cr, Al, Au, Co, and V; and between Cr and 
Al, Au, Co, V. A negative correlation was detected 
between Cu and  CaCO3; between Pb and  CaCO3; 
between Cd and  CaCO3; between Al and Au, Co, 
V; between Hg and V; between Au and Co, V; and 
between Co and V (Table 3). Though effective in the 
transport processes of the metals, OC and CDP did 
not correlate with any metal.  CaCO3 showed a nega-
tive correlation with Cu, Pb, Zn, and Cd. Some met-
als that created ecological risks were in positive cor-
relation with the metals of lithological origin. This is 
due to the similar transportation processes of the met-
als of anthropogenic and lithogenic origins.

According to the cluster analysis, Cu, Fe, Co, 
Zn, V, Au, Cd, Ni, Cr, Mn, and Al were transported 
from the same source. When the factor analysis data 
and spatial distribution maps were examined, the 

aforementioned metals were transported from ter-
restrial sources by the rivers and were of lithologic 
origin. These metals were exposed to anthropogenic 
effects in addition to lithologic sources (Fig.  6). Ni, 
Cr, and Cd are of mixed origin. As, Pb, Hg and Tl 
were included in the same class and of anthropogenic 
origin except for Pb. OC, CDP, and  CaCO3 were also 
in the same class, but no common source identifica-
tions could be made for them. Findings from cluster 
analysis were consistent with those from the factor 
analysis and spatial distribution maps.

Conclusion

This study quantified the ecological risk levels in the 
surface sediments of Atikhisar dam under the pres-
sures by mining, agriculture, settlements, and trans-
portation networks and detected an extremely high 
level of ecological risk. Among the possible reasons 
for this were Hg and Tl pollutions from mines and 
municipal waste, Cd from phosphate fertilizers, Pb 
from its natural deposits, and anthropogenic As. OC, 
CDP, and  CaCO3 were not positively correlated with 
the metals, thus showing their slight effect on the 
transportation and deposition processes of the met-
als. An extremely high potential ecological risk in the 
sediments of Atikhisar dam exists as a result of min-
ing and agricultural activities. This requires that reha-
bilitation projects be put in practice for Çanakkale 

Fig. 6  Cluster analysis
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not to have pollution of its drinking water resources, 
LULC changes be regulated to ensure their sustain-
able use, the leach pools of the mines be relocated, 
municipal waste be controlled, and organic agricul-
ture be encouraged.
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