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Abstract⎯Over the last decade, the deep neural networks are a hot topic in machine learning. It is
breakthrough technology in processing images, video, speech, text and audio. Deep neural network
permits us to overcome some limitations of a shallow neural network due to its deep architecture. In
this paper we investigate the nature of unsupervised learning in restricted Boltzmann machine. We
have proved that maximization of the log-likelihood input data distribution of restricted Boltzmann
machine is equivalent to minimizing the cross-entropy and to special case of minimizing the mean
squared error. Thus the nature of unsupervised learning is invariant to different training criteria. As a
result we propose a new technique called “REBA” for the unsupervised training of deep neural net-
works. In contrast to Hinton’s conventional approach to the learning of restricted Boltzmann
machine, which is based on linear nature of training rule, the proposed technique is founded on non-
linear training rule. We have shown that the classical equations for RBM learning are a special case of
the proposed technique. As a result the proposed approach is more universal in contrast to the tradi-
tional energy-based model. We demonstrate the performance of the REBA technique using well-
known benchmark problem. The main contribution of this paper is a novel view and new understand-
ing of an unsupervised learning in deep neural networks.
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INTRODUCTION
Deep learning is a revolutionary technique in the domain of machine learning and has been success-

fully applied to many problems in artificial intelligence, namely speech recognition, computer vision, nat-
ural language processing, data visualization, etc. [1–14]. Deep learning allows computational model,
which consist of multiple processing layers to learn representations of data with multiple levels of abstrac-
tion. Deep neural network (DNN) can perform a deep hierarchical transformation of the input data, and
as a result have been found to have better performance and more representational power than shallow neu-
ral networks. This kind of neural network has been investigated in many studies [1–14].

This paper deals with an unsupervised learning technique for restricted Boltzmann machine (RBM),
which can be applied for the training of deep neural networks. The conventional approach to unsupervised
training the RBM uses an energy-based model and is based on maximization of the log-likelihood input
data distribution using gradient descent approach. In this paper we consider the unsupervised deep learn-
ing from another point of view, which provides a deeper understanding of the nature of unsupervised
learning in deep neural networks. First of all we use two training criteria, namely square error and cross-
entropy, instead of energy-based technique. Next, we present the RBM as PCA or auto-encoder neural
network, which consist of three layers: visible, hidden and visible. Finally, the Gibbs sampling in order to
define mean square error and cross-entropy loss function is used. As a result we have proved that maxi-
mization of the log-likelihood input data distribution of restricted Boltzmann machine is equivalent to
minimizing the cross-entropy and to special case of minimizing the mean squared error. It follows that the
nature of unsupervised learning is invariant to the different learning criteria. We propose also a new tech-
nique called “REBA” for RBM learning, and this approach in contrast to an energy-based model is based
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on the minimization of the reconstruction mean square error in the hidden and last visible layers of the
RBM. We will show that classical equations for RBM training are a special case of the proposed technique.
Therefore the proposed approach is more universal in contrast to the traditional energy-based model.

The rest of the paper is organized as follows. Section 1 introduces the conventional approach for
restricted Boltzmann machine training based on an energy model. In Section 2 we propose the novel tech-
niques for inference of RBM training rules. Section 3 demonstrates the results of experiments, and finally
we give our conclusion.

1. RELATED WORKS
Let us consider the related works in this domain [1–14]. As mentioned earlier, the deep neural network

has been the hottest topic in the domain of machine learning in recent years. Deep neural networks can
accomplish a deep hierarchical representation of their input data. The first layer can extract low-level fea-
tures; the second layer can extract higher level features, and so on. There are different kinds of deep neural
networks: deep belief neural networks, deep perceptron, deep convolutional neural networks, deep recur-
rent neural networks, deep auto-encoder, deep R-CNN and so on. If we take, for instance, the percep-
tron, it will be deep if more than two hidden layer is used. The analogical situation is for deep belief and
deep recurrent neural networks. It should be noted that the training rules are identical for different kind
of deep neural networks. Therefore we will take the many-layered perceptron as a deep neural network in
order to investigate deep learning rules. As already mentioned the DNN consists of many hidden layers
and can perform a deep hierarchical representation of the input data as shown in Fig. 1.

Let’s p is the number of deep perceptron layers, except of first layer. Then the common number of syn-
aptic weights (weights and thresholds) is defined by

(1)

The j-th output unit for k-th layer is given by

(2)

(3)

where F is the activation function,  is the weighted sum of the j-th unit,  is the weight from the

i-th unit of the (k – 1)-th layer to the j-th unit of the k-th layer, and  is the threshold of the j-th unit.
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Fig. 1. Deep perceptron.
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In the common case we can write that

(5)

where W is a weight matrix, Yk – 1 is the output vector for (k – 1)-th layer and Tk is the threshold vector.
It should also be noted that the output of a DNN is often defined using the softmax function:

(6)

There exist the two main techniques for learning of deep neural networks: learning with pre-training
using a greedy layer-wise approach and stochastic gradient descent approach (SGD) with rectified linear
unit (ReLU) transfer function [6].

The learning with pre-training consists of two stages [1–4]. The first stage is the pre-training of neural
network using greedy layer-wise approach. This procedure is started from the first layer and performed in
unsupervised manner. The second one is fine-tuning all of parameters of neural network using back-prop-
agation algorithm.

The training with stochastic gradient descent approach is the online or mini-batch learning using con-
ventional backpropagation algorithm [14]. The use of ReLU activation function can help to avoid of van-
ishing gradient problem, poor local minima and unstable gradient problem due to the greater linearity of
such kind of activation function [6].

At present the following paradigm for DNN learning is used. If training data set is large then SGD with
ReLU is used for deep neural network learning. Otherwise pre-training and fine-tuning is applied. So, for
instance, for smaller data sets, unsupervised pre-training helps to prevent overfitting [6]. As stated in paper
[6]:“Although at present the supervised training with ReLU is used mainly for deep neural networks learn-
ing, we expect unsupervised learning to become far more important in the longer term. Human and ani-
mal learning is largely unsupervised: we discover the structure of the world by observing it, not by being
told the name of every object”. Thus the unsupervised learning has great perspectives. Therefore let’s con-
sider this problem in more detail.

The most important stage of deep neural network training is the pre-training of each layer of the DNN
in unsupervised manner. There exist two main techniques for DNN pre-training. As a rule the DNN pre-
training is based on either the restricted Boltzmann machine (RBM) or auto-encoder approach [1, 9, 12].
In accordance with the greedy layer-wise training procedure, in the beginning the first layer of the DNN
is trained using RBM or auto-encoder training rule and its parameters are fixed. After this the next layer
is trained, and so on. As a result a good initialization of the neural network is achieved and we can then
use back-propagation or the wake-sleep algorithm for fine tuning the parameters of the whole neural net-
work.

At present the approach based on RBM is more popular for DNN pre-training. Therefore we will con-
sider the DNN pre-training technique based on the restricted Boltzmann machine. In this case the deep
neural network can be represented as a set of restricted Boltzmann machines and the RBM is the main
building block of deep neural network. The traditional approach to RBM training was proposed by
G. Hinton and is based on an energy model and training rules which take into account only a linear nature
of neural units, as will be shown in Section 3.

Let’s consider the conventional restricted Boltzmann machine, which consists of two layers of units:
visible and hidden (Fig. 2).

The restricted Boltzmann machine can represent any discrete distribution if enough hidden units are
used [9]. The layers of neural units are connected by bidirectional weights W. Often the binary units are
used [1–4]. The RBM is a stochastic neural network and the states of visible and hidden units are defined
using a probabilistic version of the sigmoid activation function:
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It should be noted that the visible and hidden units are conditionally independent:

(9)

As can be seen, the states of all the units are obtained through a probability distribution. The hidden
units of the RBM are feature detectors which capture the regularities of the input data. The key idea of
RBM training is to reproduce as closely as possible the distribution of the input data using the states of the
hidden units. This is equivalent to maximizing the likelihood of the input data distribution P(x) by the
modification of synaptic weights using the gradient of the log probability of the input data. Then the mod-
ification of synaptic weights is defined by

(10)

Using this approach Hinton proposed to use contrastive divergence (CD) technique for RBM learning
[1]. It is based on Gibbs sampling. As a result we can obtain the RBM training rules. In the case of CD-1
the training rule is defined as

(11)

In case of CD-k
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Fig. 2. Restricted Boltzmann machine.
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Here α is the learning rate. In this equations the first term in the training rule denotes the data distri-
bution at the time t = 0 and the second term is the model distribution of reconstructed states at the step
t = k. Therefore the CD-k procedure can be represented as follows:

(13)

As can be seen from these equations, the training rules for RBMs are essentially minimizing the differ-
ence between the original data and the synthesized samples from model. The synthesized data can be
obtained using a Gibbs sampling algorithm.

Training an RBM is based on presenting a training sample to the visible units, then using the CD-k
procedure to compute the binary states of the hidden units p(y|x), sampling the visible units (reconstructed
states) p(x|y), and so on. After performing these iterations the weights and biases of the restricted Boltz-
mann machine are updated. Then we stack on another hidden layer to train a new RBM. This approach
is applied to all layers of the deep neural network (greedy layer-wise training). As a result of this unsuper-
vised pre-training we can obtain a good initialization of the neural network. Finally, supervised fine-tun-
ing of the whole neural network is performed. As mentioned before the energy-based model leads to the
linear nature of neural units as will be shown in the next section.

2. A NEW UNDERSTANDING OF UNSUPERVISED LEARNING IN RBM

In this section we will consider the restricted Boltzmann machine from another point of view, namely
as auto-encoder or the PCA neural network. We will use two training criteria in order to obtain RBM
learning rule. As a result we have proposed a new unsupervised learning rule and the novel techniques to
infer the RBM training rules. It is based on minimization of the reconstruction mean square error and
cross-entropy error function, which we can obtain using simple iterations of Gibbs sampling. In contrast
to the traditional energy-based method, which is based on a linear representation of neural units, the pro-
posed approach permits us to take into account the nonlinear nature of neural units.

Let’s examine the restricted Boltzmann machine. We will represent the RBM using three layers (visi-
ble, hidden and visible) [15] as shown in Fig. 3. As can be seen such a representation of RBM is equivalent
to PCA neural network, where the hidden and last visible layer is respectively compression and recon-
struction (inverse) layer.

Let’s consider the Gibbs sampling using unfolded representation of RBM. In this case we can represent
Gibbs sampling as shown in Fig. 4.
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Fig. 3. Unfolded representation of RBM.
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Then Gibbs sampling will consist of the following procedure. Let x(0) be the input data, which arrives
at the visible layer at time 0. Then the output of the hidden layer is defined as follows:

(14)

(15)

The inverse layer reconstructs the data from the hidden layer. As a result we can obtain x(1) at time 1:

(16)

(17)

After this, x(1) enters the visible layer and we can obtain the output of the hidden layer the follo-
wing way:

(18)

(19)

Continuing the given process we can obtain on a step k, that

(20)

(21)

There exist the different ways for RBM training. It is based on the use of the different learning cri-
teria. As mentioned before G. Hinton proposed an energy-based model, which is based on maximiza-
tion of the log-likelihood input data distribution P(x). We suggest using the two loss functions for RBM
learning [15–17]. The first training criterion is based on minimization of mean square error (MSE). The
second one involves the minimization of cross entropy error function. Both training criteria have the
attractive properties and have been studied in many papers [18, 19]. Our main goal here is to show, that
the use of different training criteria leads to the same learning rules. In the next subsections we will study
these criteria in more detail.

2.1. MSE Training Criterion
Let’s consider the use of mean square error function for RBM learning. Then the primary goal of train-

ing RBM is to minimize the reconstruction mean squared error (MSE) in the hidden and visible layers.
The MSE in the hidden layer is proportional to the difference between the states of the hidden units at the
various time steps. Then in case of CD-k

(22)

Similarly, the MSE in the inverse layer is proportional to the difference between the states of the inverse
units at the various time steps:

(23)

where L is the number of training patterns.
In case of CD-k the common reconstruction mean squared error is defined as the sum of errors:
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Then

(25)

Using the same approach for CD-1 we can write the reconstruction mean square error by the following
way [16, 17]:

(26)

Тheorem 1. Maximization of the log-likelihood input data distribution P(x) in the space of synaptic weights
of the restricted Boltzmann machine is equivalent to special case of minimizing the reconstruction mean squared
error in the same space.

Proof. Let’s consider online training of an RBM. In this case the weights and thresholds are updated
iteratively in accordance with the gradient descent technique:

(27)
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If we use CD-k, the cost function E(k) for one sample is defined by the following expression:
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Then differentiating (30) with respect to ωij we get the following result:
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Analogically, for CD-1 we can obtain the following RBM training rule:

(34)

As can be seen the last equations are identical to the conventional RBM training rule. Therefore the
proof of Theorem 1 is completed.

Thus the nature of the conventional RBM training rule is linear in terms of minimizing the MSE.
Therefore we will call such a machine a linear RBM.

Corollary 1. A linear restricted Boltzmann machine from the training point of view is equivalent to the linear
PCA (auto associative) neural network if we use Gibbs sampling during learning.

Corollary 2. The training rule for a nonlinear restricted Boltzmann machine in the case of CD-k is defined as

(35)

Corollary 3. The training rule for a nonlinear restricted Boltzmann machine in the case of CD-1 is the fol-
lowing:
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Thus as can be seen the classical equations for RBM training are a particular case of the proposed
technique.

If batch learning is used we can write:
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Corollary 4. If we use CD-1 for a nonlinear RBM, with batch learning, the training rule is defined by the
following equations:

(39)

Corollary 5. If we use CD-k for a linear RBM, with batch learning, the training rule is defined by the fol-
lowing equations:

(40)

Corollary 6. If we use CD-1 for a linear RBM, with batch learning, the training rule is defined by the fol-
lowing equations:

(41)

In this section we have obtained the novel unsupervised learning rules for restricted Boltzmann
machines, using MSE training criterion. The traditional energy-based method is based on maximiza-
tion of the log-likelihood input data distribution and leads to the linear representation of neural units
in terms of minimizing the MSE. The proposed approach, which we can be obtained using simple iter-
ations of Gibbs sampling is based on minimization of reconstruction mean square error and leads to
nonlinear and linear representation of neurons. In contrast to energy-based approach, the MSE train-
ing criterion permits us to take into account the derivatives of a nonlinear activation function for neural
network units. As a result the proposed approach is more universal in comparison with traditional
energy-based model. We will call the proposed approach the reconstruction error-based approach
(REBA). We have shown that the classical equations for RBM training are a special case of the proposed
technique. Such a technique, based on minimization MSE training criterion can be applied for deep
neural networks learning. For the first time, the approach described above has been proposed in [15]
for the CD-1 and in [16, 17] for CD-k.

2.2. Cross-Entropy Training Criterion

The cross-entropy measure (CE) can be used as an alternative to mean squared error. Let’s consider a sig-
moid neural network and the cross entropy error function instead of mean square error. The goal of training
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RBM is to minimize the cross-entropy in the hidden and visible layers. In the case of CD-k the cross-
entropy error function in the inverse layer is defined as

(42)

Similarly, the cross-entropy error function in the hidden layer

(43)

The common cross entropy error function in case of CD-k is defined as the sum of errors:

(44)
Тheorem 3. Maximization of the log-likelihood input data distribution P(x) in the space of synaptic weights

restricted Boltzmann machine is equivalent to minimizing the cross-entropy error function CEs(k).
Proof. In order to simplify the proof of the theorem let’s consider the cross entropy for CD-1. In this

case the cross entropy error function for a single example is

Then

Accordingly, for the thresholds

The theorem is proved. As follows from theorem the RBM learning rules can be obtained in a simpler
way compared to the conventional energy-based approach. Thus using minimization of the cross-entropy
error function and simple iterations of Gibbs sampling we have received the conventional linear RBM
learning rules.

The obtained results can be summarized in the following general theorem.
Theorem 4. Maximization of the log-likelihood input data distribution P(x) in the space of synaptic weights

restricted Boltzmann machine is equivalent to minimizing the cross-entropy and to special case of minimizing
the mean squared error:

(45)
Theorem 4 represents a generalization of the previous results in this paper. It follows from the theorem

that the use of various training criteria leads to the same learning rules. Therefore the nature of unsuper-
vised learning of RBM is the same, even if we use different objective function. The maximization of the
log-likelihood input data distribution and minimization cross-entropy error function leads to the linear
representation of neural units in terms of minimizing the MSE. It should be noted, that applying of train-
ing criterion, which is based on minimization of MSE, we can take into account also nonlinear represen-
tation of neurons. Thus an obvious advantage of the use MSE as error function compared to applying log-

( )
1 1 1

( ) ( 1) log( ( )) (1 ( 1)) log(1 ( )) .
L k n

l l l l
i i i i

l p i

CE k x p x p x p x p
= = =

⎡ ⎤
= − − + − − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑∑v

( )
1 1 1

( ) ( 1) log( ( )) (1 ( 1)) log(1 ( )) .
L k m

l l l l
h j j j j

l p j

CE k y p y p y p y p
= = =

⎡ ⎤
= − − + − − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑∑

( ) ( ) ( ).s hСE k CE k CE k= + v

( )

( )

1

1

(1) (0) log( (1)) (1 (0)) log(1 (1))

(0) log( (1)) (1 (0)) log(1 (1)) .

n

i i i i

i
m

j j j j

j

CE x x x x

y y y y

=

=

= − + − −

− + − −

∑

∑

1
(0) 1 (0)(1) (1)(1 (1)) (0) (1)(1 (1)) (0) (0)(1 (1)) (1)
(1) 1 (1)

i i
i j i i j j j i

ij i i

x xCE x x y x x y y y x
x x

−∂ = − − + − − −
∂ω −
(1 (0)) (1) (1) (0)(1 (1)) (0) (1 (0)) (1) (0) (0)(1 (1)) (1)j j i i i j i i j j j iy y x x x y x x y y y x+ − = − − + − − −

(1 (0)) (1) (1) (0) (0) (0) (1) (0) (1) (0) (0) (1) (0)j j i i j i i j i j i i jy y x x y x x y x y x x y+ − = − + + −

(0) (1) (0) (1) (1) (1) (1) (0) (1) (1) (1) (1) (0) (0).j i j j i j i j j i i j i jy x y y x y x y y x x y x y− + + − = −

(1) (1) (0),i i
i

CE x x
T

∂ = −
∂

(1) (1) (0).j j
j

CE y y
T

∂ = −
∂

max(ln ( )) min( ) min( ).s sP x CE E= =



OPTICAL MEMORY AND NEURAL NETWORKS  Vol. 25  No. 3  2016

THE NATURE OF UNSUPERVISED LEARNING IN DEEP NEURAL NETWORKS 137

likelihood and cross-entropy loss function is that using MSE training criterion can be received both linear
and nonlinear learning rules, but not vice versa. Therefore such an approach is more universal, fundamen-
tal and flexible compared to the energy-based and cross-entropy techniques and can open us new possi-
bilities to unsupervised learning in deep neural networks.

In conclusion of this section let’s consider the analogy with a single layer perceptron (SLP) learning
rule. The delta rule for training of a single layer perceptron proposed by Rosenblatt and Widrow–Hoff has
linear nature, but could be applied also for SLP learning with threshold activation function [20, 21]. This
delta rule can be obtained from MSE minimization using linear activation function of neural unit or using
nonlinear transfer function, if we take the derivative of the activation function equal to unity. We can apply
the linear or nonlinear training delta rule depending on real-life application and it gives us learning’s
diversity and additional possibilities for SLP learning.

3. EXPERIMENTAL INVESTIGATIONS

In this section we present some numerical results to show effectiveness of the proposed approach. To
check the performance of the proposed technique, we used a well-known benchmark problem. In order
to train neural network, we applied the previously described rules without any additional techniques, such
as dropout, etc.

3.1. Data Compression

To assess the performance of the proposed learning technique experiments were conducted on an arti-
ficial data set. The artificial data x lie on a one-dimensional manifold (a helical loop) embedded in three
dimensions [22] and were generated from a uniformly distributed factor t in the range [–1, 1]:

(46)

where μ – Gaussian noise with mean 0 and standard deviation 0.05.

In order to verify the proposed approach experimentally, we trained seven-layer deep auto-encoder
using data subsets of 1000 samples. The deep auto-encoder is shown in Fig. 5. We used the sigmoid acti-
vation function for all layers of the neural network except for the bottleneck layer. The linear activation
function is used in the bottleneck layer (fourth layer).

The average results are provided in Table 1. Here MSE is the mean square error on the training data
set; MS is the mean square error on the test data set in order to check generalization ability. The size of
the test patterns is 1000. The learning rate α is 0.1 for conventional RBM and 0.5 for REBA in all experi-
ments.

The number of epochs for the pre-training of each layer is 10. The number of epochs for fine-tuning is
1000. It is evident from the simulation results that the use of the REBA technique can improve the gener-
alization capability of a deep auto-encoder in the case of CD-1 and CD-10. Figures 6 and 7 depict the
original training data and the reconstructed data from one nonlinear component, using test data. As can
be seen, the auto-encoder reconstructs the data from one nonlinear component with well accuracy.
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3

sin( ) ,
cos( ) ,

,

x t
x t
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= π + μ⎧
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⎪ = + μ⎩

Fig. 5. Deep auto-encoder.
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3.2. Data Visualization

In order to illustrate the performance of REBA technique we present simulation results for visualiza-
tion of handwritten digits using MNIST dataset [23]. The MNIST dataset contains 28 × 28 handwritten
digits in gray-scale and has a training set of 60000 samples, and a test set of 10000 samples. For mapping
784D digits data to a 2D feature space, the deep auto-encoder with topology 784-1000-500-250-2 is used.
The identity function for neural units is applied in bottleneck layer. In other layers the sigmoid activation
function is used. We have realized pre-training of deep auto-encoder using greedy layer-wise approach
with RBM and REBA techniques. This procedure is started from first layer and performed in unsuper-
vised manner. Finally fine-tuning all of parameters of neural network using simple back-propagation
algorithm is implemented. We have compared two techniques: REBA and conventional RBM. We have
used the following training parameters: the learning rate for pre-training is 0.2 for REBA and 0.05 for con-
ventional RBM in all layers except of bottleneck layer. The training rate for bottleneck layer is 0.001. The
comparative analysis of two techniques is shown in the Table 2.

Visualization of MNIST dataset on the basis of REBA is shown in Fig. 8 for the 500 test images for
each class of digits.

Fig. 6. 2D views of original and reconstructed datasets.
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Table 1. Comparison of RBM and REBA techniques

Training procedure CD-k MSE MS

RBM 1 0.699 0.886

5 0.710 0.932

10 0.689 0.916

15 0.688 0.873

REBA 1 0.673 0.851

5 0.719 0.966

10 0.677 0.907

15 0.700 0.895

Table 2. Comparative analysis

Training procedure MSE MS

RBM 3.7801 4.0115

REBA 3.6490 3.8726
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As can be seen from Fig. 8 and the Table 2 the use of REBA technique permits to obtain the better per-
formance compared conventional approach.

3.3. Data Classification

In order to check the performance of proposed technique we present simulation results also for hand-
written digits classification using again MNIST dataset.

The deep perceptron with topology 784-500-500-2000-10 and sigmoid activation function in all layers
of neural network is used. The classification of input image is performed by the following way. At the
beginning the k-th output neuron, which has a maximum output value is defined:

(47)

The output value of the k-th neuron is assigned a unit value, and the output values of the other neurons
are equal to zero:

(48)

arg max .k jy y=

oth
1, ;
0, w .er isej

j k
y

=⎧= ⎨
⎩

Fig. 7. 3D views of original and reconstructed datasets.
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Also we can use probabilistic coding the output values of the deep perceptron. In this case the output
value of the j-th neuron is determined as follows:

(49)

We applied here the following training parameters: learning rate is 0.1 for REBA and 0.2 for conven-
tional RBM; size of mini batch is 100 samples; the number of pre-training epoch is 10, the number of fine-
tuning epoch is 100. Also we use here weight decay technique with decay parameter 0.00001. It should be
noted that the best performance has been obtained using the hybrid approach to pre-training of deep neu-
ral network, when we use both conventional and proposed approach. The results of experiments are shown
in the Table 3. The NIT is the number of pre-training epochs. In this case we used for pre-training 9 epoch
of classical RBM approach and 1 epoch of REBA. As can be seen from the Table 3 we can reach the test
error rate 1.09% using hybrid approach.

CONCLUSIONS
In this paper we have addressed the key aspects of unsupervised learning in deep neural networks. We

described both the traditional energy-based method, which is based on a linear representation of neural
units, and the proposed approach, which is based on nonlinear representation of neurons. We have proved
that maximization of the log-likelihood input data distribution of restricted Boltzmann machine is equiv-
alent to minimizing the cross-entropy and to special case of minimizing the mean squared error. It follows
that the nature of unsupervised learning is invariant to the different learning criteria. We have proposed
also a new technique called “REBA” for RBM learning, and this approach in contrast to an energy-based
model is based on the minimization of the reconstruction mean square error in the hidden and last visible
layers of the RBM. Thus using MSE training criterion we can get both conventional and novel learning
rules. We have shown that classical equations for RBM training are a special case of the proposed tech-
nique. Therefore the proposed approach is more universal in contrast to the traditional energy-based
model. The simulation results demonstrate the effectiveness of the proposed technique.
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