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Abstract: In soil erosion estimation models, the variable with the greatest impact is rainfall erosivity
(RE), which is the measurement of precipitation energy and its potential capacity to cause erosion, and
erosivity density (ED), which relates RE to precipitation. The RE requires high temporal resolution
records for its estimation. However, due to the limited observed information and the increasing
availability of rainfall estimates based on remote sensing, recent research has shown the usefulness
of using observed-corrected satellite data for RE estimation. This study evaluates the performance
of a new gridded dataset of RE and ED in Peru (PISCO_reed) by merging data from the IMERG
v06 product, through a new calibration approach with hourly records of automatic weather stations,
during the period of 2000-2020. By using this method, a correlation of 0.7 was found between
the PISCO_reed and RE obtained by the observed data. An average annual RE for Peru of 4831
MJmmha−1h−1 was estimated with a general increase towards the lowland Amazon regions and high
values are found on the north-coast Pacific area of Peru. The spatial identification of the most risk
areas of erosion, was carried out through a relationship between the ED and rainfall. Both erosivity
data sets will allow us to expand our fundamental understanding and quantify soil erosion with
greater precision.

Keywords: rainfall erosivity; satellite precipitation product; IMERG; hourly observed rainfall; Peru;
Andes

1. Introduction

Soil erosion is one of the greatest environmental threats worldwide Nearing et al. [1], Panagos
et al. [2], Karlen et al. [3], Tripathi and Singh [4] presenting multiple issues such as reduced crop yields,
deterioration of water quality due to transport of fertilizers and pesticides, the decreased storage
capacity of reservoirs due to sediment production, as well as losses in soils for cultivation [5–7]. There
are various categories of erosion such as water, wind, freezing, and mixed erosion, but the most
frequent and highest proportion is water [8]. Water erosion of the soil damages the productive surface
of the soil due to separation and transport processes, exposing the subsoil of the soil [9,10]. Therefore,
the quality of the soil is affected by reducing its water retention capacity and amount of organic matter
[11,12], endangering its various ecosystem services such as CO2 fixation, agricultural productivity
and flood risk reduction [13], which are expected to increase in demand due to urban expansion
and changes in consumption patterns [14]. To prevent a worsening of soil erosion, the application of
public soil conservation policies based on the monitoring of regions susceptible to RE is required to
understand and mitigate its effects, such as the reduction of agricultural productivity, food, and water
security, and the national economy [15–18].

The Intergovernmental Panel on Climate Change reports that a continuous increase in CO2

emissions has occurred in recent decades [19]. On average, the global concentration of CO2 in the
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atmosphere increased by 40% from a pre-industrial value in 2011. Evidence suggests that such an
increase has resulted in an average increase in air temperature of 0.85 ◦C (1880-2012), and according to
the outputs of Global Climate Models, it is predicted that by the end of the 21st century the increase
will reach 2◦C with respect second half of the 19th century [19]. In this sense, it is expected that
changes will occur in the hydrological cycle, and consequently, in the availability of water resources
[19–21]. The change in the global water supply is expected to be ± 10% with more intense precipitation
events, depending on the region of analysis [19,22,23]. In Peru, some investigations on the impact
of climate change converged towards a scenario with increased rainfall rates in the summer months
(December-March), which would increase the erosive potential of storms, favouring the loss of soil
from the available agricultural area, during these months [24]. Another consequence is the increase
in the occurrence of events associated with soil loss such as landslides [25,26]. For this reason, soil
erosion in Peru should be part of Urgent National Policy, aiming at the identification and monitoring
of areas more vulnerable to the loss of agricultural soils and promoting actions to prevent, mitigate or
reverse its effects on desertification and soil degradation processes [27,28].

Soil erosion is caused by two physical processes: i) the separation of soil particles generated by
the kinetic energy of the impact of raindrops and ii) the transport of sediments by surface flow [1].
The level of erosion depends on the regional physiographic, soil and precipitation characteristics [29],
which is composed of two factors: the intensity of precipitation and its kinetic energy at the soil surface
[18]. One of the widely used indicators to quantitatively represent and measure the level of soil erosion,
sheet and rill, is the multi-annual index of RE [22,30–32] and the erosivity density (ED), computed
as the ratio of RE and precipitation [33,34]. Generally, the RE is calculated in periods of less than 15
minutes, or adapted by means of statistical algorithms according to the available temporal resolution
[35]. To predict soil erosion using RE, the empirical Revised Universal Soil Loss Equation (RUSLE)
[34,36,37], which combines the influence of duration, magnitude, and intensity of storm events can be
used. Although the RUSLE method is estimated at the annual average level, it can also be calculated
on shorter time scales to assess its variability [38]. In its formulation, the most dynamic and reactive
factor to changes in climatic conditions is RE, therefore identifying temporal variability provides a
more realistic and accurate assessment of soil erosion, for example, the seasonal estimate of RE is used
to assess erosion risk in various vulnerable regions [11,39,40].

The classic RE equation requires precipitation time series from 1 to 15 minutes, unfortunately, this
information is scarce globally [41,42]. Nevertheless, through empirical equations, it is possible to use
of hourly or 30-minute data. This convenient technique is commonly used in multiple regions [40,43].
More recently, a diversity of research has examined the use of observed data and Satellite Precipitation
Product (SPP) for RE estimation, with their respective limitations due to the source, data derivation
model and spatial scales [2,44,45]. Based on the above, the spatial estimation of RE can be grouped into
three approaches: i) observed-based RE: local estimates of weather stations and subsequent geospatial
interpolation [44,46,47]; ii) "satellite-based RE": the use of satellite-based precipitation products (SPPs)
[48–50]; and, iii) "merged-based RE": a mix of both observed and simulated data sources, based on the
correction of the RE obtained by the SPPs with respect to data from observed stations, at the national
scale [8,18,51–53], regional [11,54] and global [40,52]. In this research, the "merged-based RE" method
is used through seasonal satellite correction factors based on automatic weather stations (AWS) at a
national scale. This procedure combines the advantages of AWS (accuracy at the hourly timescale)
with that of the SPP (spatial variability), widely used as a complement in the analysis of various
hydrological processes [55,56].

In South America, studies have been carried out with the observed-based RE methodology for
the estimation of the RE. In Brazil, Sanchez-Moreno et al. [57] use that method because they have
more availability of this information, obtaining a RE range from 1672 to 22,452 MJmmha−1h−1 with
an increase from east to west; likewise, Mello et al. [58] identify areas in the northwest with very
high RE (>20,000 MJmmha−1h−1) and in the northeast with medium RE rates (>2,000 MJmmha−1h−1).
Using "merged-based RE", in Ecuador Delgado et al. [59] estimated the RE based on observed stations
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and the Integrated Multi-satellitE Retrievals for GPM (IMERG) obtains a national average of 3,173
MJmmha−1h−1, in Chile central region Bonilla and Vidal [47] obtaining an RE range of 50 to 6,000
MJmmha−1h−1 with an increase from north to south. Moreover, Lobo and Bonilla [60] based on
the hourly precipitation from AWS estimates the RE at a point level with a range of 68 to 3,520
MJmmha−1h−1. In addition, he highlights that the use of rainfall at a higher temporal resolution
results in a non-linear decrease in the RE.

In Peru, there are investigations that use the three methods. Based on the "observed-based
RE", local studies such as that of Romero (2007) in the north of the Andean region, estimates an
RE of 2950 MJmmha−1h−1 at a point level, while Mejía-Marcacuzco et al. [61] on the south coast in
Tacna estimates an RE of 1190 MJmmha−1h−1. Using the "satellite-based RE" method, some global
studies determine an average RE in Peru of 2,246 MJmmha−1h−1 [62]; on the other hand, through
the Global Rainfall Erosivity Database (GloREDa) product developed by Panagos et al. [40] an RE
range is estimated between 148 in the coastal region to 14226 MJmmha−1h−1 in the lowland Amazon.
Using the "merged-based RE" method, (author?) [63], prepared a map of soil erosion intensity at a
national scale, which was published by the National Institute of Natural Resources - INRENA, using
cartographic information, represented by national charts, aerial photographs and images captured by
radar and satellite. Also, Sabino Rojas et al. [64] developed a soil erosion atlas on an annual scale from
1981 to 2014, based on the information from PISCOp V1.0 product on a monthly scale Aybar et al. [65],
finding an range from 0 to ±10000 MJmmha−1h−1.

In this study, PISCO_reed product was used through a seasonal calibration process based on
AWS, in order to i) obtain a more accurate RE product on a national scale and ii) perform a regional
assessment of erosivity, that allows us to identify the areas most at risk from the negative effects of soil
loss. For this reason, the specific objectives of this research are: (a) To carry out a cross-validation of
the RE database, and (b) to evaluate spatio-temporally erosivity by estimating trends and identifying
danger zones. Finally, this study has the utility of demonstrating the application of precipitation data
based on satellite products and observed stations to estimate the erosivity of precipitation at monthly,
annual and multi-annual scales.

2. Study Area

The study was carried for the entire Peruvian territory, located on the west coast of South America
and is between 0◦02N - 17◦50.2S and 68◦10.2W - 81◦90.2W, with an extension of 1,285 million km2.
This territory is characterised by high topographic variability, with an elevation range from sea level to
6,685 meters above sea level (masl), with an average of 1,489 masl. Peru exhibits high variability of
various climatic factors such as precipitation and temperature, as a result of the interaction of various
influences and forcing factors such as synoptic-scale atmospheric currents, the complex orography of
the Andes, the cold Humboldt Current System and El Niño Southern Oscillation [66–69].

In general, the average annual precipitation varies in the range of ± 1 mm on the southern coast,
while in the lowland Amazon it reaches higher values of 4860 mm, the average is 1412 mm. Presenting
the highest rainfall in the month of February and the minimum during the month of July. In addition,
in the Peruvian Andes, the climate is complex and is mainly controlled by the orography that acts as a
topographic barrier to the flow of moisture, causing the formation of strong precipitation gradients
on the eastern flanks of the Andes [65]. The inter-Andean valleys (& 500 mm) are mainly dominated
by convective processes that channel moisture intrusions from the Amazon. At the same time, the
influence of the cold and dry air masses coming from the Humboldt Current System cause the driest
conditions on the Pacific coast and on the western flanks of the Andes (. 500 mm). However, during
the El Niño Southern Oscillation occurrence, the Humboldt Current System weakens and the formation
of severe convective storms can occur, especially over the North Pacific Coast [65].

For the sake of clarity in the development and evaluation of PISCO_reed dataset, the study area
was divided into different regions. This segmentation was based on: i) the classification of climatic
sectors [70] and ii) on the availability of AWS (Figure 1), the regions were labeled as follows: North
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Pacific Coast (1), Central and South Pacific Coast (2), North Western Andes (3), Central and South
Western Andes (4), North Eastern Andes (5), Central and South Eastern Andes (6), High Forest (7),
Northern Low Forest (8) and Lowland Amazon center and south (9). These regions can be grouped into
3 zones: Region 1 and 2 (Pacific Coast), Region 3, 4, 5 and 6 (Andes) and Region 7, 8 and 9 (Amazon).

Figure 1. Regions in the study area and location of automatic weather stations with hourly rainfall
data. Triangles represent automatic weather stations (AWS) and circles the AWS for cross validation.

3. Materials and Methods

3.1. Overview

Stages, functions and gridded/observed data used in this research are shown in the flowchart
(Figure 2), obtaining as results the PISCO_reed product and its evaluation. First, the RE of the AWS
and the IMERGF product is estimated on an hourly scale using the conventional RUSLE method.
Then, the IMERGF-RE series is reconstructed through a correction based on the observed-RE, with a
validation of the interpolation of the multiplicative factor by seasonal periods. Next, the uncertainty of
the erosivity products generated is evaluated taking the observed data as a reference. Secondly, the ED
rates and the areas of greatest danger of erosivity are estimated. Moreover, trends of the annual RE
series by region are estimated.

3.2. Data

The estimation and evaluation of the RE in Peru required gridded products and observed
precipitation data: (i) SPP IMERG, (ii) AWS from SENAMHI, and iii) Global RE gridded products.
These data sets were used in this study for the development of the methodology.
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Figure 2. Rainfall erosivity analysis methodology. RE-IMERGF and RE-AWS is the rainfall erosivity
obtained from IMERGF and AWS source.

3.2.1. IMERG V06

The increased accessibility to high spatio-temporal resolution SPPs, such as the Global
Precipitation Measurement (GPM) mission, has facilitated the development of hydrological research.
GPM jointly developed by the National Aeronautics and Space Administration (NASA) and the Japan
Aerospace Exploration Agency (JAXA) (Hoe, 2014), was put into orbit and has been in operation since
2014 as a successor to TRMM (deployed in 1997), to unite and increase precipitation estimates from a
constellation of satellites [71]. NASA’s Goddard Earth Sciences Data and Information Services Center
(GES DISC) provides access to GPM-derived products through multiple applications that contribute
to knowledge about the water cycle and its impact from extreme natural events [45,72]. NASA’s
Earth Observing System Data and Information System has defined three levels of products for the
distribution and labeling of GPM products, level 3 is called IMERG. For precipitation estimation,
IMERG is based on an algorithm that uses GPM microwave observations as a reference for combining,
using a number of interpolation methods such as CMORPH-KF [73], with multiple satellite data such
as passive microwave (PMW), geosynchronous infrared (IR), TRMM microwave imager estimates.
(TMI), among others. Therefore, it presents advantages with respect to TRMM in terms of temporal
resolution (3 to 0.5 hours), spatial resolution (0.25◦ to 0.1◦), and area covered (60◦ S–60◦ N). In addition,
IMERG version 6 features two enhancements. The first is the length of the period covered by GPM,
using TRMM estimates (2000-2014) to obtain hourly rainfall from June 2000 to the present [71]. The
second is the distinction between liquid and non-liquid precipitation, to calculate the precipitation
from this first ratio. IMERG classifies its products according to latency periods: Early, Late and Final
with ±4 hours, ±14 hours and ±3.5 months, respectively [74]. The Early and Late versions only have
a calibration for observed climatology, while the Final version uses the observed monthly rainfall
from the Global Precipitation Climatology Center (GPCC) for bias correction. GPM-IMERG-V06-Final
(IMERGF) contains the variable PrecipitationCal, calibrated precipitation with observed stations,
expressed in mm/h. To estimate the RE, this research uses IMERGF data from September 2000
to August 2020. The product is available in NCDF4 format, freely downloadable from the portal
https://disc.gsfc.nasagov/datasets (accessed on 1 April 2023).

3.2.2. Observed Rainfall

The observed hourly precipitation used in this study was obtained from the National Hydrology
and Meteorology Service of Peru (SENAMHI). The data were extracted from 322 AWS, located at
altitudes ranging from 100 to 5,000 masl, with an average of 2,000 masl (Figure 1). The amount of AWS
has increased in recent years, from 120 in 2014 to 320 in 2021. In addition, the temporal period of the
seasons is from 1.5 to 6 years, with an average of 3.5 (Figure A1), therefore, this is the most extensive
hourly data set for the estimation of the RE in Peru. The analysis of the results derived from the AWS
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is classified in the nine climatic regions, obtaining a total of 180, 90 and 40 AWS in the Coast, Andes
and Amazon zones, respectively. SENAMHI provides this information with a basic quality control
(QC), with a procedure that can be divided into two stages: i) filtering by extreme physical, national
limits (401 mm/h) and internal consistency control; ii) visual inspection of the hourly, daily, monthly
and annual series, to validate internal consistency and homogeneity. The reliability of the AWS data
has been successfully tested in various investigations that evaluate the performance and accuracy of
the SPPs in Peru [56].

3.2.3. Global RE products

This study uses global RE products such as GloREDa and CMORPH for comparison purposes.
GloREDa is based on observed data of high temporal resolution (1 to 60 min) that mainly cover the
period from 2000 to 2010, collected from various countries of different regions and climates, however
in South America the number of stations only represents 5% with an irregular geographic distribution
[40]. The resulting global RE product has a spatial resolution of 0.1◦ and can be accessed through the
European Soil Data Center website (https://esdac.jrc.ec.europa.eu/). On the other hand, CMORPH is
a global precipitation reanalysis product, based on geostationary, low-orbit and PMW satellites [18],
with temporal resolution (0.5 h), spatial resolution (0.8km × 0.8km), temporal period (1998 to present),
and coverage area (60◦S–60◦N), developed by the National Oceanic and Atmospheric Administration.
(NOAA) [75,76]. This product has been applied for the identification of extreme hydrological processes
such as RE, Bezak et al. [52] obtained this variable by pixel level using the RUSLE method [77].

3.3. Methodology

3.3.1. Gridded product construction

Estimation RE

The estimation of the RE requires a minimum period of 20 years of information in order to reduce
the uncertainties and biases generated by dry and wet years Wischmeier and Smith [30]. In addition,
this indicator carries out the analysis of each storm event separately, therefore, Wischmeier and Smith
[30] recommends as storm identification requirements: i) use a minimum time interval (TMI) of 6
hours between each event, ii) hourly rainfall greater than 0.2 mm at the hourly level and 0.1 mm at the
30 minute level, iii) finally, the accumulated volume of each event must be greater than 0.2 mm (Figure
A2).

Figure 3. An example of the identification of storm events, during February 2020 at the Alamor AWS.
Blue spaces represent storm events.
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The precipitation intensity (I) for the hourly and sub-hourly scales was obtained through the
relationship of the accumulated precipitation and its corresponding recording time (1).

I =
P

T
(1)

Where, I indicates the intensity of precipitation in mm/h, P the precipitation in mm and T as
the recording time in hours. In each storm event, according to Wischmeier and Smith [30], the unit
measure of kinetic energy (er) is estimated at each chosen time resolution interval, Equation 2.

er = 0.29[1 − 0.72 × exp(−0.05ir)] (2)

Where, ir is the precipitation intensity during the time interval in mm/h. The sum of the unit
kinetic energy, multiplied by the rainfall volume for each time interval in a storm event, result to its
total kinetic energy E, expressed in the next Equation 3.

E =
m

∑
r=1

er∆Vr (3)

Where, E is expressed in MJ/ha and Vr is the rainfall in mm, during an event. Subsequently,
Brown and Foster [36] defines the RE (EI30), as the result of the multiplication of E with the maximum
intensity in 30 minutes of each storm event, as indicated in Equation 4.

RE = EI30 = EI30max (4)

Where, RE is expressed in MJmmha−1h−1.yr−1 and I30 is the maximum rainfall intensity by
storm event in mm/h. In the case of only having temporal resolutions of 60 minutes Panagos et al.

[11], Yin et al. [53], suggest multiplying E × I60max with a correction coefficient (CC60), this value
varies between 1.15 and 3.37 (Equation 5).

RE = EI30 = E × I60max × CC60 (5)

Where I30max corresponds to the maximum intensity of 30 minutes identified in each storm event.
EI30 is the equivalent to the RE of RUSLE and CC60 is the correction coefficient.

As part of the methodology, CC60 was estimated by means of correlations between the RE obtained
from the AWS of 10 minutes added to 30 minutes, with those obtained from the temporal resolution
of 60 minutes. Fischer et al. [78] identified an underestimation of the RE of RUSLE, when using
precipitation series with a temporal resolution greater than 30 minutes.

Estimation ED

The erosivity needs to be evaluated with long periods of hourly precipitation, to solve these
deficiencies, Foster et al. [79] introduced the ED function. This erosivity index is more stable and
independent of the length of precipitation information, it is also used to evaluate erosion patterns
Panagos et al. [11], it is also more dependent on the number of erosive events and the intensity of
precipitation [79]. Although, the RE provides information on the erosive potential of rainfall, it does
not provide information on the concentration of extreme storms during the year, on the other hand,
the ED better represents the RE patterns and the type of precipitation during erosive events (Zu et al.,
2020). Very high ED values indicate high runoff, which implies an area more prone to the occurrence of
floods and intense storms [37,45,80]. The ED is the ratio of RE to precipitation [79]. Expressed through
Equation 6.

ED =
RE

P
(6)
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Where the annual accumulated precipitation is measured in mm.yr-1 and the annual RE in
MJmmha−1h−1.yr−1, the equation will be applied on a monthly and annual scale. The estimation of
the RE from the IMERGF product (RE-IMERGF) was carried out pixel by pixel, while the one obtained
by the AWS (RE-AWS) was calculated in a specific way, both results were classified by region.

Reconstruction and validation of rainfall erosivity

Various studies show a high correlation between the precipitation characteristics obtained from
SPPs and observed stations, likewise, its spatial distribution shows a good correlation with the annual
RE [51,65]. Therefore, there is evidence of using the IMERGF precipitation to estimate the temporal
variability of the RE. However, it is necessary to perform a bias correction, with respect to the observed
values [51]). Correction of simulated data based on observed stations is widely used to improve the
accuracy in the generation of precipitation products [75,81,82].

Several studies identified a high correlation in the spatiotemporal variability between precipitation
and RE [23,51,62], therefore, the correction of the RE from IMERGF was performed by reescaling
precipitation with observed data, for each independent pixel, using an annual factor average by season.
By extending the approach of Chen et al. [51], the correction process was as follows: i) obtention of
the calibration factor by grouping the monthly series at the seasonal level DJF, MAM, JJA, SON in the
same period 2015-2020. ii) building a linear model between the point-gridded values from RE-AWS
and RE-IMERGF in the four seasonal periods to obtain the slope of each linear model defined as
the seasonal multiplicative factor (FME). iii) spatial interpolation of the FME point values by using
the inverse distance weighted interpolation (IDW) method, at the same native spatial resolution of
IMERGF (0.1◦C), iv) spatial aggregation was applied to reduce the spatial resolution from 0.1◦ to 0.25◦,
with the aim of avoiding spatial inconsistencies as a consequence of the high variability of the multiply
factor. iii) Finally, RE-COR was obtained as a result of multiplying RE-IMERGF by the FDM maps. The
validation was carried out at the pixel level with the observed data from RE-AWS during the common
period 2015-2020.

Metrics validation

The performance of PISCO was evaluated by regions with reference to RE-AWS, both database
was comparing by statistical correlation and magnitude difference. The metrics statistics used are
Pearson correlation coefficient (r) and the aggregation index (dr) [83]. The coefficient r is a measure of
the relationship of strength between two variables where a result of 1 indicates a perfect relationship
with a positive slope, while -1 indicates a relationship with a negative slope. The dr is similar to a
correlation coefficient, except that it varies between -1 and 1, a high value (>0.5) indicating both high
correlation and low absolute differences between the observed and simulated time series. On the
other hand, due to the difference between the magnitudes of the hydrological variables in the study
regions, it was necessary to have a statistic that indicates the relative difference between the observed
and simulated data, through a normalization process. In the comparison of the samples the relative
differences are normalized by the observed sample. The “Normalized mean gross error” (NMGE) and
“Normalized Mean Bias” (NMB) statistics were selected. NMGE is a measure of the mean relative
deviation from the observed values and is independent of the magnitude of the hydrological variable,
suitable for comparison between arid and humid regions. While NMB is useful for evaluating the RE
of different monthly rates, since the mean bias is normalized by dividing it by the observed RE.

3.3.2. Erosivity evaluation

Trends

Analysis of RE and ED trends provides information on rates and magnitudes of change over
long periods of time [30]. For this, the detection of trends was carried out using the non-parametric
Mann-Kendall (M-K) test, since it is widely used to identify monotonic trends in hydro-meteorological
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time series, it is more resistant to the existence of outliers and does not require that the data be normally
distributed [84–87]. To avoid the effects of autocorrelation on the results of the M-K test, the RE series
were preprocessed using the 3PW method on a seasonal scale [88,89].

In addition, the magnitude of the trend was estimated using the non-parametric method of Sen’s
slope (SS), where a positive value indicates an increase, while a negative value indicates a decrease in
the trend [90,91]. In this study, the areas with statistically significant positive or negative RE trends
were identified at the pixel level at a confidence level (p) of 0.1, as well as the respective magnitude of
the trend at the seasonal level, expressed in 10-year (decadal) changes, T, as shown in Equation 7.

T = SS × 10 (7)

Global and national comparative analysis

The evaluation of the performance of the IMERGF in the estimation of the RE and its characteristics,
such as the intensity of precipitation, duration, accumulated precipitation and number of events during
2015-2020, was carried out using a statistical approach based on the results obtained by the AWS. In
addition, a comparison was made in statistical terms at the pixel scale between the observed data, the
generated RE product, and other global products that use the same RE estimation method [30], such as
the GloREDa product [2], derived from the observed ER-corrected ERA5 precipitation from globally
distributed AWS for the period 1998–2019; and the global RE product obtained by Bezak et al. [52],
based on the CMORPH precipitation product and observed stations for the period 1998-2019, both
products with a spatial resolution of 0.1 ◦. The temporary availability of global products is different,
therefore, the RE was contrasted by means of the multi-year average; in the case of the correlation, a
symmetric line with origin at 0 was used as reference.

Risk map

In this study we use ED to evaluate erosivity patterns and their effect under different ranges of
precipitation, through a hazard map [2]. Based on the combination of quartiles of the variables at a
multi-year scale of ED and P, we obtain 16 classes to characterise the susceptibility to soil erosivity Das
et al. [45]. In this range, areas with very high ED and very high to very low mean precipitation are the
most vulnerable, while areas with very low ED, regardless of the precipitation rate, can be considered
as those with less prone to soil erosion Panagos et al. [2].

4. Results

4.1. Spatiotemporal distribution of RE and ED

In Figure 4, the properties of the rain erosivity events are compared, such as the average
accumulated precipitation, maximum intensity, total number, average duration, average annual
precipitation, RE and ED obtained with the IMERG product, with respect to that obtained by
the stations observed during the 2015-2020 period. The precipitation during the events and the
accumulated annual precipitation is slightly underestimated in part of the Coast and Amazon,
according to Derin et al. [92]. On the contrary, the duration of the events is overestimated at the
national level by the IMERGF product, in a ratio of up to 3 to 1 in the Andean regions. However,
the greatest disagreement of magnitudes is found in the identification of the maximum intensities,
with a high correlation by underestimation up to 5 times in all the regions, which has a more relevant
impact on the estimation of the RE and ED, the maximum underestimations are found in the lowland
forest region reaching -80%, that is, in 12000 MJmmha−1h−1. In summary, this comparison shows
a significant discrepancy in the identification of magnitudes of storm properties, since they require
greater temporal resolution as Chen et al. [51] demonstrates, presenting correlations from 0.47 in the
average duration of the events to 0.85 in the total annual number of storm events.
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Figure 4. Seasonally based annual average scatter plots of (a) total precipitation amount, (b) average
number of storm events, (c) average duration of storm events, (d) maximum storm intensity, (e)
precipitation erosivity, and (f) erosivity density relative to those derived from IMERGF data at the
corresponding pixels in 2015-2020.
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The precision of the annual RE estimates using the IMERGF precipitation-based data was also
evaluated and compared with the observed stations. The correlation coefficient of the mean annual RE
based on the observed precipitation data and IMERGF is 0.84. In general, taking the observed data
as a reference, the values based on IMERG indicate an underestimation of the RE, present in all the
analysis regions, with IMERGF values in region 1 and maximum values in 7 and 9.

Based on the comparison of the IMERGF RE and the AWS at a seasonal scale for the period
2015-2020, the multiplicative factors for each AWS were calculated (Figure 5). Values less than 1
indicate an underestimation of IMERGF, while values greater than 1 indicate an overestimation.
Figure 5 shows a variability between 0 to 28 with a central value of 5.5. There is a smaller amount
of multiplicative factors < 1 ( 4% on average) that indicate the overestimation of the RE, mainly in
the coastal regions during the winter and spring seasons. Whereas, the regions with the greatest
underestimation of the RE are 3, 4, 5, 6 and 9, precisely where the most intense storm events are
recorded. The interpolation of the multiplicative factors was added to reduce the spatial resolution to
0.4º, in order to reduce the factors with the greatest difference and proximity (Figure 5). Subsequently,
the IMERGF is corrected, through seasonal multiplication with the multiplicative factor map.

Figure 5. (a) Map of the seasonal multiplicative factor and its respective, (b) histograms.

The corrected RE from 2015-2020 was compared with the AWS data in Figure 6. The results show
an improvement in the dr, with means in the range of 0.5 in region 9, up to 0.65 in region 1. Also, the
underestimation of the product is improved with means of NMB from -0.06 to -0.43. On the other
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hand, the NMGE medians range from 0.78 to 1.11, indicating an adequate performance of the final RE
product, which will be analysed at a regional scale in the following sections. In addition, together with
the ED product, both on a monthly scale, the PISCO_reed product was formed.

Figure 6. Comparison of PISCO_reed and the observed rainfall erosivity. (a) Aggregation index, (b)
Normalized Mean Bias y (c) Normalised mean gross error.

4.1.1. Comparison with global products

When comparing the PISCO_reed product with the global products GloREDa and CMORPH
obtained from the multi-year average, taking as reference the observed data from the AWS (Figure 7 and
A3), a higher correlation is found in the PISCO_reed product (r = 0.94), finding slight overestimations
in some regions. On the other hand, the CMORPH product has a greater underestimation in all
regions, mainly in regions 3, 4, 5 and 6. This underestimation is also observed in GloREDa, with the
particularity of a marked overestimation of the RE in regions 1 and 2, where the RE is less than 3,000
MJmmha−1h−1.

4.1.2. National analysis

Figure 8 shows the observed RE of the AWS, the map of RE and ED for Peru. The RE and ED map
was presented with a spatial resolution of 0.1 ◦ or ∼ 10 km. The mean RE value is 7,118 MJmmha−1h−1

with a high variability that can be expressed by the standard deviation of 6231 MJmmha−1h−1 or a
coefficient of variation of 0.88. The median RE is 7,161 MJ. The first quartile is 841 MJ, and the third
is 12,377 MJmmha−1h−1. In the same way, the ED has an average value of 3.18 MJ.ha-1.h-1 with a
coefficient of variation of 0.62, in addition, the 25th, 50th and 75th percentiles are 1.33, 3.48 and 4.49
MJ.ha-1.h-1, respectively.
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Figure 7. Scatterplot of PISCO_reed, GloREDa, and CMORPH product precipitation erosivity, based
on observed data from 321 stations for 2015–2020.

Figure 8. (a) Precipitation erosivity of the observed stations and PISCO_reed product: (b) precipitation
erosivity and (c) erosive density.

The RE climatology map in Figure 9 shows that the month with the highest erosiveness is March
(954 MJmmha−1h−1), followed by December, January and February (793 to 846 MJmmha−1h−1). The
RE shows its lowest values in the period from June to September (224 to 397 MJmmha−1h−1), coinciding
with the variability of precipitation climatologies. Likewise, the spatial distribution of the RE shows
a notable difference between the regions of the eastern Andes and the Amazon, with respect to the
formerly western and coastal regions, with the high rates of erosivity in the first years.
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Figure 9. Climatology of precipitation erosivity.
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4.1.3. Regional analysis

Figure A4 shows, at the regional level, the 2000-2020 annual variability of storm properties such
as total precipitation from erosive events, average storm duration, number of storm events, RE and
ED. In 2001, 2012 and 2017 where the RE reached its highest annual values, the total precipitation,
the number and duration of storm events were also higher than in the other years. The mean annual
duration of storm events is in the range of 3 and 10 hours, the mean annual number of storms ranges
from 40 to 280, the total precipitation ranges from 50 to 2,500 mm, and the mean annual RE ranges
from 40 to 11,000 MJmmha−1h−1.

The properties of the average annual storm events are analyzed at the regional scale in Figure
10. The average number of storm events varies gradually from 47 in region 2 to 242 in 8, that gradual
scale in the regions is also shown in the average duration of the storms with the range of 2.5 to 8 hours.
The Amazon regions have a higher RE (7,677 to 13,648 MJmmha−1h−1), compared to the coastal and
Andean regions (44 to 1488 MJmmha−1h−1). This contrast is mainly due to the total precipitation,
which on average is up to 13 times higher between the regions of the respective groups. In the same
way, the analysis of the DE shows average rates of 0.5 to 2 MJ.ha-1.h-1 in the coastal and Andean
regions, while in the Amazon the average ED varies from 3.8 MJ.ha-1.h-1 in region 7 to 5.6 MJ.ha-1.h-1
en 9.

Figure 10. Boxplots of PISCO_reed, GloREDa, and CMORPH product precipitation erosivity, based on
automatic weather stations for 2015–2020.

Figure 11 shows the monthly RE by region. The seasonality of the RE is visible in the regions,
presenting the highest values of the RE during the wet season from December to April (average 510
MJmmha−1h−1), with maximum values in the month of March. While the low RE values were found
during the dry season from June to September (average 152 MJmmha−1h−1), with minimums during
the months of July or August. Finally, a descriptive statistical summary is shown in Figure 11 and A5.
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Figure 11. Climatology of precipitation erosivity. Moreover, show following RE multiannual stats by
region: mean, minimum, maximum, median, SD, CV.

4.2. Spatial variation of risk areas

The spatial variation of the danger areas, classified into 16 classes in Peru is shown in Figure
A1. The high-risk areas are found mainly in the region 8 and 9, only some areas were identified in
region 7, due to their high rates of precipitation and ED. These transition areas to the Amazon plain
are associated with areas of high soil erosion and landslides, depending on the physiography. The rest
of the high Amazon, eastern and western Andes belong to the medium precipitation classification, but
with high rates of ED associated with a medium danger of erosion. These regions are the ones that are
frequently affected by soil erosion and mass movements, due to their physiography with steep slopes
and intense rainfall. In the Andean regions, during the period 2004-2013, 38 land movements were
registered with fatal consequences for the local population and high damage to the supply network at
the national level [93]. In addition, the Andean regions have multiple geological faults, anthropogenic
soil erosion activities, and are affected by extreme hydrological events such as ENSO, which due to
climate change are accentuating their intensity and frequency.
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Figure 12. Risk map of erosivity in Peru as a function rainfall (mm) and Erosivity Density
(MJmmha−1h−1). The quartile of these hydrological variables are presented in a table.

4.3. RE seasonal trend

The spatial variation of the seasonal trends of the RE evaluated at the pixel level with a significance
level of 0.95% (p < 0.05) and the regional averages are shown in Figure A2. The seasonal periods of
SON and DJF show an increase in the central low and high Amazon regions with positive annual
changes greater than 50 MJmmha−1h−1 , while in the southern and northern low Amazon regions
the change is negative at rates of 80 MJmmha−1h−1 . In the rest of the country, such as in the coastal
and western Andean regions, no significant changes (+/- 10 MJmmha−1h−1) are observed during all
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seasons. This same pattern is observed in the western Andes in the SON and JJA stations, however,
during the MAM and DJF stations a slight increase in areas with trends of up to -20 MJmmha−1h−1 is
identified. Finally, it is highlighted that the lowland forest regions are the ones with the widest range
of trends (<120 to >120 MJmmha−1h−1), becoming more accentuated during the DJF and SON seasons,
on the other hand, the range is reduced from -80 to 50 MJmmha−1h−1 during the JJA or winter season.

Figure 13. RE trends at 95% significance, p.value < 0.05 and meadian trend by region.

5. Discussion

5.1. Comparison with other studies and analysis of causes

Observed sub-daily station data is a fundamental source of information on rainfall frequency
and amount (Chen et al, 2021). However, the scarce availability, irregular distribution and spatial
inconsistencies, in steep regions, limit the use of the observed rainfall [94]. Therefore, SPPs are an
alternative solution to precipitation estimation, since they provide spatially continuous information
over large geographic areas [95]. The complementary use of this information is already used in South
America, for the estimation of the RE with the RUSLE method on a monthly and annual scale [47,59].
The evaluation of the product obtained from RE in this study is compared with the hourly rainfall data,
suitable for evaluating hydrological products based on hourly information such as RE [45], which
constitute the longest, most numerous hourly base and with quality control in Peru.

The main factors of uncertainty in the generation of the RE are the precision of precipitation
data, the estimation model of the RE and the correction factor in the conversion of time scales [8].
Furthermore, Catari et al. [96], identifies the sources of the error in the estimation of the RE: erroneous
measurements of precipitation, efficiency of the kinetic energy equation of storms as a function of
intensity and the variation of spatial patterns.
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This study is consistent with the RE obtained by Barurén [97], however, the maximum average
RE are higher than our product (41106 MJmmha−1h−1). This may be due to the fact that the analysis
periods are different, altering the final result of the multi-year product. In addition, Rosas and
Gutierrez [98] coincides with the quantification of erosion variability, finding an increase in erosion in
the direction of region 4 to 3, the latter region being the region with the highest erosion in the western
Andes of Peru. In region 2, the results are in the range obtained by Mejía-Marcacuzco et al. [61], with an
analysis period within the years of analysis of this study 1997-2020. In the South American region, one
of the global RE products is GloREDa, which estimates this variable using globally observed data and
the ERA5 precipitation reanalysis product, however, the largest differences between RE and GloREDa
estimates were observed in South America due to underestimation of precipitation in mountainous
regions such as the Andes [52]. The observed stations used for the elaboration of this product are
mainly from the Brazilian Amazon.

5.2. Limitations

In this research, the hourly precipitation data at hourly temporal resolution are based on the SPP
IMERG, evaluations of the performance of this product in the analysis of storm events have been
carried out in multiple regions of the world. According to Derin et al. [92], Manz et al. [99], IMERG is
better than other products such as TMPA-V7 in terms of precision of the estimation of the frequency of
occurrence and intensity of distribution of rainfall in the Andean regions. Regarding the detection of
daily rainfall volumes, Das et al. [45] find that IMERG is sensitive in identifying light and null rainfall
conditions. On the contrary, in the detection of extreme rainfall, the global average is satisfactory due
to the correction of biases based on the observed stations [100], for the geographical conditions of
the Andean zone of Peru, Derin et al. [92] identifies slight overestimations. These biases influence the
underestimation of the RE in regions 1, 6 and 4, since IMERG has limitations to detect extreme storms.

The IMERG product, being a high spatial resolution dataset, reduces the uncertainties in the
spatial patterns caused by the punctual interpolation of rainfall and its derivatives in geographical
areas with low AWS density [45]. However, the scarcity of AWS in region 8 limits the bias correction of
the ER, although these zones are more resilient to erosion due to their flat land cover and physiography.
These zones have a lower level of danger in the generation of extreme events as identified in the
domain area of the SILVIA product (Potential Mass Movement Monitoring System generated by
Intense Rain) for the identification of earth movement events [26].

The RE estimate is sensitive to the temporal resolution of the rainfall [45], which originally
required 30 minutes for its calculation. Therefore, if we use a different temporal resolution, it is
necessary to apply an appropriate regression function to obtain a result equivalent to the estimate of
the RE. Various studies develop a correlation function based on 30-minute resolutions, in areas where
sub-hourly rainfall is not available. Panagos et al. [2] finds a high underestimation of the RE ( 56%)
when using hourly rainfall without correction, but when using a correction factor a good correlation is
obtained. The use of an erroneous function, or a low and irregular distribution of sub-hourly stations
for its development, can increase the bias of your estimate [45]. In this investigation, information
from stations with 10-minute temporal resolution of the rains was used for the first time, to find an
adequate correction factor for the hourly RE, finding a factor greater than 1.5, which indicates an
underestimation of the RE, compared to the original calculation with 30-minute rains.

5.3. Applications

RE is a key factor in estimating soil erosion [23]. Rain and its kinetic energy is the main driver of
soil water erosion processes. These processes are associated with the detachment of soil particles, the
generation of runoff and the triggering of mass movements [101,102]. On the other hand, agricultural
practices without soil conservation measures together with the increase in the intensity of severe storms
[23,103], would cause erosion and increase the amount of solids in suspension in rivers, which could
clog reservoirs, raise riverbeds and affect water quality, due to high turbidity levels in the rainy season.
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High erosion rates have effects on the ground as well as effects external to it [11]. As a consequence
they are responsible for contamination and low productivity of farmland [104]. It is expected that the
rain erosivity results developed in this research can be used to update the maps and identify regions
vulnerable to this mode of erosion. We must understand the physical processes of soil erosion, for
this reason it is important to implement a monitoring system for erosion and sediment production in
experimental basins. The results of this study can be considered in the planning of public policies to
reduce erosion aimed at conserving soil productivity [105] and maintaining soil ecosystem services at
a tolerable level [106], especially in regions where a large increase was detected.

In Peru, data from AWS are spatially scarce. Therefore, SENAMHI projects the installation of rain
radars, which will make it possible to have high-resolution spatiotemporal information. This could
potentially improve [107] estimates of RE [108].

6. Conclusions

In this research, the RE was estimated in the 9 climatic regions of Peru, using the RUSLE
methodology, based on a correction of the IMERG product based on the hourly and sub-hourly
AWS in the period 2000 to 2020. The following is concluded: through the spatial calibration of the
IMERGF-RE based on the observed RE, it was possible to reduce the biases, to analyze its spatial
distribution at the national and regional level, on various time scales (climatology, monthly, and
annual). At the national level, the RE mean was 7,840 MJmmha−1h−1, in the range of 0 in region 2
to 60,000 MJmmha−1h−1 in region 9, with a spatial distribution similar to rainfall. The results of this
study indicate that the previous analyzes underestimated the RE, due to the underestimation of the
maximum intensities by the use of daily rainfall data, however, the RE obtained is in the range of
regional studies in the Amazon and the South and North Pacific that use similar methodologies.

The PISCO_reed product has the advantage of quick and simple access to information for the
characterization and identification of zones vulnerable to erosion and trends at a grid level (0.1◦) on a
climatological, monthly, and annual scale. This information is necessary for the implementation of
soil conservation and management policies, water administration, disaster prevention, agricultural or
forestry planning and other applications for the management of hydrographic basins, especially in the
regions and seasonal periods where a significant increase in the trend has been identified in regions 5
and 6.

In the coming years, through the use of radars for the identification of observed hourly
precipitation, storm events will be able to be analysed with greater precision, improving the accuracy
of the PISCO_reed product.
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Appendix A

Appendix A.1

Figure A1. Number of automatic weather stations with availability of information by year.

Figure A2. Cross validation of the correction factor from corrected IMERG=RE and the RE from AWS
by means of (a) Aggregation index, (b) Normalized Mean Bias and (c) Normalized mean gross error.
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Figure A3. Map plot of PISCO_reed, GloREDa, and CMORPH rainfall erosivity, based on observed
data from weather automatic stations for 2015–2020.

Figure A4. Characterization storm events by year at regional scale.

Figure A5. Variation of regional RE at yearly and monthly scale.
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