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ABSTRACT: As the global plastics crisis grows, numerous technologies have been
invented and implemented to recover plastic pollution from the environment.
Although laudable, unregulated clean-up technologies may be inefficient and have
unintended negative consequences on ecosystems, for example, through bycatch or
removal of organic matter important for ecosystem functions. Despite these
concerns, plastic clean-up technologies can play an important role in reducing litter
in the environment. As the United Nations Environment Assembly is moving
toward an international, legally binding treaty to address plastic pollution by 2024,
the implementation of plastic clean-up technologies should be regulated to secure
their net benefits and avoid unintended damages. Regulation can require
environmental impact assessments and life cycle analysis to be conducted
predeployment on a case-by-case basis to determine their effectiveness and impact
and secure environmentally sound management. During operations catch-efficiency
and bycatch of nonlitter items, as well as waste management of recovered litter, should be documented. Data collection for
monitoring, research, and outreach to mitigate plastic pollution is recommended as added value of implementation of clean-up
technologies.
KEYWORDS: plastic pollution, litter, clean-up technology, bycatch, externalities, regulations, added value, plastics treaty

1. INTRODUCTION
Plastic pollution is one of the greatest environmental
challenges facing the world today, threatening human and
environmental health.1 Initiatives from local to global levels
have been launched to address the issue, including the current
United Nations negotiations toward a global plastics treaty.2−4

Although upstream actions (e.g., reduction, substitution, and
new product designs and business models) are identified as the
most cost-efficient solutions to reducing and preventing plastic
pollution,1,4−6 a combination of management strategies across
the entire plastic lifecycle is required for reducing current and
future plastic pollution impacts.7−10 These include down-
stream solutions, such as the collection of plastics in the
environment. Globally, manual clean-up activities that engage
the public and the deployment of emerging technologies
expressly designed to address legacy plastic pollution have
been implemented in an effort to mitigate the plastics crisis
downstream.11−13 These combined efforts have contributed to
plastic pollution reductions in the environment, direct benefits
to ecosystems and communities (Arabi et al., 2020), and
additional cobenefits, such as public awareness and the
generation of data to inform policy (e.g., Haarr, Pantalos,14

EU,15 Wyles, Pahl,16 Falk-Andersson, Berkhout,17 Canada18).

Plastic remediation technologies have been utilized globally,
ranging from community-based initiatives to national pro-
grams. These technologies can be grouped into two categories:
(1) prevention technologies and (2) clean-up technologies.13

Plastic prevention technologies are designed to remove plastic
and other anthropogenic waste before entering the environ-
ment and include filtration systems in wastewater treatment
plants and laundry filtration technologies.13,19,20 Plastic clean-
up technologies have been developed and deployed to remove
plastic already present in the environment. The majority of the
clean-up technologies cataloged in The Plastic Pollution
Prevention and Collection Technology Inventory13 as well as
in the plastic clean-up and prevention overview20 are deployed
in aquatic environments. Other environments where plastic
clean-up technologies can be employed include sand and soil.
Aquatic plastic clean-up technologies include river booms and
nets, receptacles, and watercrafts that can be deployed in built,
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urban, or natural environments.13,21 Examples include The
Ocean Cleanup,22 Mr. Trash Wheel,23 and Seabin.24 Within
plastic clean-up technologies, a variety of designs have been
developed to adapt to different environments and contexts19,20

ranging from passive to active technologies (Figure 1).
Manual clean-ups have been conducted around the world by

paid formal and informal waste collectors as well as
volunteers.25 However, there may be circumstances where a
plastic clean-up technology is more appropriate to increase
efficiency, as clean-up technologies can enable access to hard-
to-reach litter and mitigate unsafe working conditions. At the
same time, clean-up technologies may have unintended
consequences and may not always be cost-efficient. Con-
sequently, concerns are raised regarding the cost-efficiency and
environmental impact of these clean-up technologies10,24,26−28

Concerns are likewise raised that clean-ups distract the public
and decision makers from upstream source-reduction strat-
egies,27 misrepresenting that plastic pollution can be mitigated
solely through downstream approaches. These concerns justify
the use of regulatory instruments to oversee the use of clean-up
technologies. However, the plastics policy landscape currently
lacks explicit guidance or oversight over clean-up technology
implementation.
The United Nations Environment Assembly resolution to

end plastic pollution specifically refers to the need for the

intergovernmental negotiating committee to consider measures
to reduce plastic pollution already present in the environ-
ment.29 The future international instrument may therefore
include provisions encouraging countries to include clean-up
activities in their national action plans and other implementa-
tion measures. Given the current lack of guidance in the
international policy landscape, the treaty provisions must be
designed to ensure uptake of clean-up technologies does not
result in adverse outcomes and instead maximizes positive
impacts.
Given the expansion of innovative and novel plastic

remediation technologies (to date, over 100 technologies
have been recorded20) and the diversity of technology types
and potential trade-offs, we saw a need to share knowledge and
insights to better understand the role of plastic clean-up
technologies in combating plastic pollution. In June 2022, a
two-session webinar series was organized that brought together
diverse stakeholders (i.e., entrepreneurs, nongovernmental
organizations, and researchers) in fruitful discussions on the
role and contribution of plastic clean-up technologies in
reducing plastic pollution. Webinar panelists coalesced around
two key messages: (1) regulation of plastic clean-up
technologies is needed to ensure a net benefit for the
environment and affected communities, and (2) responsible

Figure 1. Graphical depictions of categories of plastic clean-up technologies, as classified in Schmaltz, Melvin,13 demonstrating the diversity of
plastic clean-up technologies that currently exist. These are deployed in various environments, use unique methods, and target different kinds of
plastic pollution (all figures are original and developed by authors of this article).

Figure 2. Suggested elements for evaluation of clean-up technologies to secure environmentally sound management and added value. To secure
environmentally sound management, EIAs and LCAs should be conducted predeployment, while during deployment the catch-efficiency, bycatch
rates, and waste management should be documented. During deployment, collection of data for monitoring and research, as well as implementation
of outreach projects, would provide added value of implementing the clean-up technology.
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implementation of plastic clean-up technologies can result in
cobenefits to society.
We argue that to maximize cobenefits and mitigate potential

negative consequences, the role of plastic clean-up technolo-
gies in reducing plastic pollution should be given careful
attention in the upcoming international treaty. Here, we
elaborate on the key insights from the webinar and clarify the
role of plastic clean-up technologies in the solutions landscape
to reduce plastic pollution with specific reference to the global
plastic treaty currently being negotiated.2,4,30 We argue that the
treaty should include language and guidance on ensuring clean-
ups of existing plastics in an environmentally sound manner
(ESM). Elements under the guidelines include predeployment
feasibility studies, such as environmental impact assessments
(EIA), and/or life cycle analysis (LCA). During deployment,
monitoring and reporting of bycatch and litter collected should
be conducted to document cost-effectiveness and environ-
mental impact and enable transparency regarding waste
management and final fate of collected litter to secure ESM.
Additionally, data collection on amounts and sources for
monitoring, research, education, and outreach would provide
added value (Figure 2).

2. SECURING ENVIRONMENTALLY SOUND
MANAGEMENT

In international environmental law, the ESM is commonly
used to signify that measures will need safeguards to prevent
negative environmental externalities. Two examples are the
Basel Convention and the Minamata Convention. However,
there is no single agreed upon definition of what ESM
entails.31 Rather, ESM is understood as a “broad policy
concept that is implemented in various ways by different
countries, organizations and stakeholders”.32 In the context of
the Basel Convention, ESM implementation is guided by
technical guidelines, toolkits, and frameworks.33 The Frame-
work for ESM of wastes, adopted at COP11 of the Basel
Convention, identified the following elements as needed to be
considered: regulatory matters, facility-related matters, waste-
related matters, resource and process efficiency, environmental
protection, occupational safety and health, organizational
matters, transparency, and innovation, research and develop-
ment.34 Such an integrated ESM approach may also be relevant
for clean-up technologies. In the next sections, we identify the
challenges and opportunities that such technologies represent
and the evaluations and documentation that should be
conducted predeployment and during deployment.
2.1. Predeployment Evaluations. Although the removal

of plastics from the environment using clean-up technologies
has ecological benefits, negative environmental impacts and
implementation costs should also be considered. Depending
on the scale and target plastic size, clean-up technologies may
impact multiple levels of biological organization, from
microbiomes to individual organisms and sessile or floating
habitats.24,26,27,35,36 For example, deployment of technology
and personnel to clean up nurdles on the coast of Sri Lanka
was found to cause increased coastal erosion.37 Additionally,
some studies have reported a high occurrence of organic
matter (e.g., algae, seaweed) when sampling plastics collected
from clean-up technologies.24,38,39 Organic matter has
important ecosystem functions. For example, floating mats of
Saragassum spp. macroalgae are classified as essential fish
habitats in the marine environment,40 and organic matter is
crucial for sustaining ecosystems within and downstream of

rivers.41−43 Thus, implementing plastic clean-up technologies
may pose negative ecological risks. Ecological harm may be
reduced through technological innovation (e.g., bycatch
reduction analogy from fisheries as described in Falk-
Andersson, Larsen Haarr26) or implementing the technology
where and when the plastic load is high,44 the risk of harming
ecosystems is low, and the benefit of preventing plastics from
reaching vulnerable ecosystems is high.26,45

The socioeconomic context in which clean-up technologies
will be implemented is also key. Without formal regulatory
mechanisms, the deployment of technologies can harm
communities already disproportionately burdened by the
plastics crisis. For example, the clean-up technology Sweepy
Hydro was donated to the Sri Lankan government after the
containership X-Press Pearl released 1,680 tonnes of plastic
nurdles.37 This was an imperfect solution that further
burdened the community affected by the spill, as the nurdles
extended into the substrate, while the Sweepy Hydros could be
used only at the surface. The devices were also vulnerable to
clogging with wet sand, which made them ineffective in coastal
environments. Finally, as Sri Lanka is facing an economic
downturn and fiscal crisis, both spare parts and fuel for the
machines are in short supply. Ultimately, manual cleaning
turned out to be more cost-efficient in this case.46

While plastic can generate value within the waste stream,
recovery of plastic litter is generally associated with extra waste
disposal cost,6 which must be carried by those initiating clean-
ups. However, this responsibility is not always clear and is also
a potential issue for litter collected at high seas outside of
national jurisdiction. Waste disposal costs include sorting,
cleaning, transportation, and processing, with any positive
revenue from recovered litter being dependent on a number of
factors, including the market for the recycled products.47

Separation of collected plastics from organic matter may be
time-consuming if the ratio of plastics to organics collected is
low.24 Correct sorting of the recovered litter may require
specific expertise as its composition may be highly complex.47

Recycling facilities may not be available locally, with
transportation for recycling adding environmental and
economic costs and a risk of plastics becoming mismanaged
in import countries.47,48 At present, the quality of recovered
ocean plastics is often too low to be accepted for recycling,19,46

and recycled ocean plastics have been found to score lower on
a range of functional material tests49 and environmental
indicators in life cycle assessments (LCA).50 Both the socio-
economic context and the recovered plastic’s quality influence
the feasibility and cost-efficiency of using clean-up technology,
as well as the destiny of recovered plastics in waste
management.
Before deployment we recommend that guidelines for ESM

clean-ups include feasibility studies (EIAs and LCA) to
evaluate the cost-efficiency of the technologies, the main-
tenance and management of technologies over time, availability
of infrastructure for waste management, and the environmental
impact of deployment of the technology. Such assessments
should evaluate different clean-up methods against each other,
including manual clean-ups, in different contexts to ensure that
the best solutions are chosen according to the local context.
This would secure the optimal use of society’s resources in
reducing plastic pollution and avoid unintended negative
consequences.
Development projects that may have positive and negative

environmental impacts are often subject to EIA regulations in
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many jurisdictions.51 When conducted properly, EIAs require
science-based evidence to help inform decision-making on
major projects to reduce, mitigate, and disclose negative
environmental impacts. Although some companies have
conducted EIAs of their technologies,52 there are no
standardized national or international regulatory requirements
guiding EIAs for plastic clean-up technologies. To successfully
conduct an EIA on plastic clean-up technologies, the
parameters that influence the chances of biota, organic matter,
or plastic being collected must be determined, and impacts on
the local ecosystems assessed. The latter should include
identification of vulnerable species in time and space that can
conflict with clean-ups, for example through negative impacts
on breeding or nesting. All these factors will depend on the
location, time, and type of technology deployed26,35,53 and how
recovered plastic is managed after collection. While plastic
clean-up technologies are most often deployed in aquatic
environments, EIAs and other biophysical assessment tools
should consider and compare the impact or benefit of the
deployment of these technologies in various environments on
site specific or case by case basis, as appropriate. For example,
well-understood EIAs typically propose scenarios that include
alternatives or no action at all. In the case of clean-up
technologies, various devices may perform better than others in
some scenarios, and in other cases, not deploying the device or
technology at all may be considered the best option.
LCAs of the technology deployed will permit better cost-

benefit analyses and help determine the best mitigation
strategy for a particular environmental compartment, litter
density, and socio-economic capacity. Both floating litter and
seafloor clean-ups have extremely expensive capital costs that
increase with depth and the upscaling needed to significantly
reduce legacy plastics,27,28 and as plastic density decreases the
cost/benefit may change quickly.26 An LCA should include an
economic assessment, including capital costs, operating costs
(e.g., fuel, repair, maintenance), staff requirements, and
installation and extraction costs. The technical and financial
capacity to apply and maintain clean-up technologies should
also be evaluated. Furthermore, the LCA should include a risk
assessment that also evaluates impacts from malfunction of the
technology, such as fuel spills, fire risk, and shipping and
navigation hazards from lost equipment. While considerations
of EIA, LCA, and risk assessment have been proposed here,
there is no one single biophysical assessment tool that is
recommended. Instead, clean-up technologies should be
assessed holistically and on a site-specific basis. For example,
if accurate predictions can be made for a technology that has
not been deployed yet, then an EIA approach would be well
suited. However, if a technology has already been deployed but
the incidence of mortalities, injuries, or entanglement of
species are assessed against other criteria such as population
stability and species conservation status, then the risk of
deploying the technology may be considered unacceptable
based on biodiversity considerations.
2.2. Assessments during Deployment. 2.2.1. Catch-

Efficiency and Bycatch. Studies have shown that the cost-
efficiency of clean-up technologies depends on the type of
environment, spatiotemporal litter density, and accessibility. In
open oceans and on the ocean floor, cost-efficiency of clean-up
technologies is low, while in some rivers and coastal areas with
litter hotspots, cost-efficiency may be higher.10,26,27 Although
recent studies are aiming to unravel the effectiveness of certain
clean-up technologies,54,55 a lack of data on spatiotemporal

litter density as well as capital and maintenance costs limits the
ability to clearly evaluate their cost-efficiency.26,56 For example,
the estimated investment, operational and management costs
are 1.24−1.55 USD/kg plastics for Seabins and 22.5−30.1
USD/kg plastics for booms.6 But this assumes that plastics
represent 80−90% of the catches. The cost of cleaning up 25
tons of litter manually at an isolated island of the Seychelles
archipelago was about 8.83 USD/kg plastics.57 This cost is
expected to be substantially lower in or closer to urban areas.
To help markedly reduce plastics already in the environment,
implementation of clean-up technologies often needs to be
scaled up. Parker-Jurd, Smith24 calculated that 500 Seabins
were needed to keep a marina of 25,000 m2 clean, while Hohn,
Acevedo-Trejos10 found that even 200 oceanic clean-up
devices from The Ocean Cleanup would only have a modest
impact on floating ocean plastics globally given the current
plastic production trajectory. With upscaling of deployment,
the risk to the ecosystems described above also increases.
Studies have attempted to standardize catch per unit effort

(CPUE) across different plastic clean-up technologies, but a
lack of data limits these efforts (e.g., Falk-Andersson, Larsen
Haarr26). Furthermore, bycatch is generally not documented.26

As an example, The International Trash Trap Network has
developed a protocol for collection of data that can be used to
estimate litter capture rates (weight/day or hour) and
document the occurrence of bycatch. However, documentation
of flow rates, specific water body information, and the type of
bycatch is not mandatory.58 Nationally and regionally
established litter monitoring protocols do not accommodate
for recording catch-rates and bycatch of nonlitter items.26

Harmonization efforts to standardize calculation of catch
rates and bycatch need to be strengthened to allow for CPUE
comparisons across technologies and with manual cleaning.
Such data would support feasibility studies prior to deploy-
ment of clean-up technologies as well as during implementa-
tion and could also feed into environmental monitoring
schemes under the treaty. Harmonization should include
standardization of data collection across the multiple clean-up
technologies applied, as they differ considerably in their
mechanisms for plastic pollution capture, which affects the
representativity of items caught.13,24,35 It is important that
selectivity (e.g., size range of plastic debris captured) is
documented and that data collection methods and reporting
metrics are harmonized.53,59,60 Counts data are generally used
in plastics monitoring and would be relevant in this context
too. Most clean-up technologies targeting macroplastics are
unlikely to capture the very large items that account for the
large differences in identifying the main sources of litter when
using counts as compared to weights.61,62 However, for
technologies that also capture smaller plastics, both counts
and weight data should be recorded as this affects our
understanding of the amounts of litter recovered.24 Weight
data may also be relevant for comparing catch rates of litter
and nontarget biota, as plant material may be difficult to count.
Technical guidelines should be developed to define bycatch

limits. Bycatch of biota may be inevitable, and in fisheries
management, bycatch limits are commonly used for regulating
the severity of this type of impact.63 Similar regulations may be
applied regarding how and when to implement plastic clean-up
technologies. For instance, governments could define times
when clean-up technologies should not be used due to higher
risks of bycatch (e.g., during seasonal spawning or fish
migrations). There should also be requirements to design
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technologies to minimize bycatch. For example, fishing gear
has been developed to minimize bycatch rates through the
implementation of sorting grids and turtle exclusion devices,
which take advantage of the behavioral differences among
species.64−66 Just as in the fisheries sector, bycatch regulations
are not enforceable without monitoring and reporting of catch
and discard rates.67 There is a need to record and report
bycatch items and rates, particularly for vulnerable species,26 as
a part of clean-up technology reporting requirements. As in
fisheries, compliance in terms of reporting data correctly could
be a challenge. Independent observers are used in fisheries, and
in recent years the use of remote electronic monitoring has also
been explored.68 Such measures can also be implemented in
documenting litter caught by clean-up technologies.
2.2.2. Waste Management. While large amounts of litter

have been recovered from the marine environment, there is
very little documentation of their destiny.69 Circular economy
solutions that allow for recovered litter to re-enter the
economy should be strived for and may even represent
economic opportunities and thereby a cobenefit. Waste
collection represents an important livelihood for marginalized
communities in low- and middle-income countries,70 and
collected plastics can be a source of income through
repurposing,57 energy sources,71 or replacement of bitumen
in road constructions.72 However, the environmental, social,
and economic viability of these solutions needs to be carefully
assessed and will depend on the country or location of
deployment, as there will be differences in factors such as
access to customers, favorable regulatory conditions, and waste

management infrastructure.19,73 Today there are limited
economically and environmentally sustainable end-of-life
solutions for recovered plastics.19,50 Recovered litter represents
a diverse mix of materials, with plastics dominating, that is
difficult to separate, clean, and recycle.69,74 Utilizing waste in
energy recovery is an option, as incineration and pyrolysis can
use degraded and mixed plastics as feedstock. However, these
processes come with economic and environmental challenges,
including a contribution to global greenhouse gas emissions
and release of atmospheric pollutants in jurisdictions where
appropriate incineration facilities are lacking.75−77 Relying on
such solutions could also lead to a technological lock-in, which
does not address the many problems created upstream in the
plastics life cycle. In many cases, landfilling may be the best or
only option, but this requires that the landfills have high
environmental standards to avoid the leakage of chemicals and
litter into the environment. To secure the economic viability of
these interventions, planning and development of the clean-up
technology in parallel with development of business models are
recommended.78

2.2.3. Ensuring Cobenefits. 2.2.3.1. Monitoring and
Research. Clean-up initiatives have generated valuable data
documenting pollution levels, identifying sources, informing
research, guiding upstream mitigation efforts, and monitoring
the impact of policies.26,59,79 Technologies for knowledge
collection, such as mobile applications (i.e., apps) for
documentation of amounts and types of litter (e.g.,
DebrisTracker,80 CleanSwell81) have allowed for cost-efficient
data collection through citizen science. Apps and protocols for

Table 1. Summary of Benefits and Risks Associated with Implementation of Clean-Up Technologies, as well as Policy
Recommendations

Benefits of clean-up technologies Risks of clean-up technologies Policy recommendations

Removal of plastics and litter Bycatch affecting ecosystems negatively Predeployment evaluation of interaction with ecosystem
components in time and space

Documentation of bycatch
Harmonization of bycatch calculations
Bycatch limits
Design requirements to limit bycatch
Restrictions in time and space to limit bycatch

Removal of plastics and litter Inappropriate technology for ecological, social, and economic
setting

Holistic predeployment evaluation of site-specific ecological,
social, and economic factors

Removal of plastics and litter Malfunctioning of technology Predeployment evaluation of risks related to malfunctioning and
losses of technology

Removal of plastics and litter Low cost-efficiency Predeployment evaluation
Documentation of catch-efficiency
Harmonization of catch-efficiency calculations

Recovered litter enters the waste
management system

High costs of disposal Predeployment evaluation of waste management opportunities

Low recycling potential
Immature technology for recycling and waste-to energy Documentation of destiny of recovered litter
Lack of waste management facilities
High transportation costs

Higher environmental awareness Clean-up technology seen as solution resulting in more
littering and less focus on upstream solutions

Outreach programs of high quality focusing on real solutions
that encourage critical thinking

Data on pollution levels and
sources

Improper reporting and poor data quality Harmonization of data collection protocols

Poor quality of citizen-science data Develop citizen science projects based on best practice
recommendations

Independent observers
Protocols allow for identification of policy relevant items

Economic opportunities related
to recovered plastics

No opportunities to safely pursue repurposing and recycling
options

Predeployment evaluation of economic opportunities and
potential social, ecological, and economic risks

Development of business models
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litter quantification and identification applied by national
monitoring programs (e.g., Fleet, Vlachogianni,82 Ospar,83

Vighi84), could also be used to document plastic captured
using clean-up technologies. The University of Toronto Trash
Team, for example, uses data on common items collected via
Seabins installed along the Toronto Harbourfront to inform
local pollution prevention projects,85 and data on items
collected by MrTrashWheel are available on their Web site.86

The development and application of harmonized protocols
would facilitate the use of the data from clean-up technology
deployment in monitoring and policy advice. The protocols
applied should be harmonized with global monitoring efforts
(e.g., UNEP,62 Vighi,84 COBSEA87). To reduce the cost of
data collection, simplified protocols, such as citizen science
protocols, could be suitable for this purpose. Such proposed
guidelines can counteract challenges related to securing the
quality of citizen-science data.88,89 High resolution of some
source categories may be needed to secure data that is
important for policy interventions.90 For example, in the
European Union, specific single-use plastic items documented
to be abundant on European shorelines have become policy
targets.15

2.2.3.2. Outreach. Technological solutions have cross-sector
enthusiasm and support and can contribute positively to
reducing plastic pollution. Several cobenefits of manual clean-
ups have been documented that could also apply to clean-up
technologies. These include individual and community
empowerment, exemplified by community bonding over a
shared issue, and individual engagement to change behavior
and identify solutions.28,91 Groups engaging in clean-ups can
become more connected to their culture and community as
members work together to protect their local environment and
become motivated for advocacy to drive change on a larger
scale,91 benefits known as “knowledge building”, “culture
building”, and “movement building”.92

It is important that such cobenefits are maintained to the
extent possible with clean-up technology implementation. A
study by Maeda, Brsčǐc9́3 found that while observing a human
picking up litter made people less inclined to litter, this was not
seen when people saw a robot doing the same. Discarding of
more litter to the environment due to the perception that the
technologies will remove it has also been identified as a risk.20

However, some clean-up technologies are designed to engage
communities positively. For example, Mr. Trash Wheel in
Baltimore Harbor has googly eyes and a social media
personality, making it a friendly and beloved character rising
to a local celebrity. The aim of this initiative is to build a sense
of community pride and engagement around plastics clean-up
and environmental stewardship, inspiring people to keep the
environment free of plastic.86,94 How clean-ups, including
employment of clean-up technologies, affect littering behavior
is not well studied as indicated by the review of Chaudhary,
Polonsky.95 Successful public outreach requires resources and
logistics to secure participation, high-quality information and
engagement materials, the health and safety of participants, and
proper waste management for litter recovered (e.g., for clean-
up guidelines, see e.g. Marfo,96 OC97). To encourage critical
thinking, these events should also include reflections regarding
solutions to the plastic pollution problem, the role of clean-up
technologies, their potential negative impacts, if they are
appropriate in all contexts, and the scale of the issue in
comparison to the scale of plastic collected.

3. THE PATH FORWARD
The benefits and potential risks of applying clean-up
technologies, as well as associated policy recommendations,
are summarized in Table 1. Further guidelines and regulations
are essential to ensure the beneficial use of plastic clean-up
technologies and to minimize potential negative effects.
Stakeholders that should be involved in the design,
implementation, and monitoring of plastic clean-up technol-
ogies range from start-ups, entrepreneurs, device manufac-
turers, and distributors, to civil society, local governments, port
authorities, and NGOs. We recommend development and
implementation of EIA and LCAs, and standards for recording
catch- and bycatch rates. Despite challenges posed, plastic
clean-up technologies can provide important added value in
terms of data collection and outreach to implement preventive
efforts. Because of the role of these technologies to combat
plastic pollution, these considerations should be included in
the plastics treaty to secure their net benefit to the
environment and society.
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