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Abstract: The wire arc additive manufacturing (WAAM) process is a 3D metal-printing technique
that builds components by depositing beads of molten metal wire pool in a layer-by-layer style. Even
though manufactured parts commonly suffer from defects, the search to minimize defects in the
product is a continuing process, for instance, using modeling techniques. In areas where thermal
energy is involved, thermomechanical modeling is one of the methods used to determine the input
thermal load and its effect on the products. In the WAAM fabrication process, the thermal load is the
most significant cause of residual stress due to the extension and shrinkage of the molten pool. This
review article explores the thermomechanical effect and stress existing in WAAM-fabricated parts due
to the thermal cycles and other parameters in the process. It focuses on thermomechanical modeling
and analysis of residual stress, which has interdependence with the thermal cycle, mechanical
response, and residual stress in the process during printing. This review also explores some methods
for measuring and minimizing the residual stress during and after the printing process. Residual
stress and distortion associated with many input and process parameters that are in complement to
thermal cycles in the process are discussed. This review study concludes that the thermal dependency
of material characterization and process integration for WAAM to produce structurally sound and
defect-free parts remain central issues for future research.

Keywords: wire arc additive manufacturing; thermomechanical modeling; thermal residual stresses;
residual stress; distortions

1. Introduction

Wire arc additive manufacturing (WAAM) is a type of additive manufacturing (AM)
process that uses an electric arc welding technique with a wire feeding process and provides
a high deposition rate [1–3]. Previous investigations showed that the method is carried
out using a layer-by-layer approach to build the part, and the corresponding heat input
influences the mechanical properties of WAAM products [4]. Understanding the thermal
history of thermomechanical and thermal gradients in the WAAM process leads to the
possibility to determine common product defects such as residual stresses (RS), distortion,
and microstructure defects in WAAM products. It provides a description of those factors in
the WAAM process that influence the characteristics of the formation of the molten pool
and bead geometry. The RS and distortion are partly caused by the effects of preventing
ionization as a result of the nearby low temperature and a contracting orifice in its inner
wall [5–9]. Furthermore, components manufactured by WAAM are mostly affected by RS
because of the high heat input from the electric arc source induced between the workpiece
and wire, which is the cause of the overall mechanical response [10–13]. As a consequence
of thermal complexity in the process of WAAM, the RS induced is also considerably com-
plicated [14]. Particularly, the effects of thermal complexity behavior in fabrication show
a significant role in the mechanical behaviors and geometrical formation of components
manufactured with WAAM technology [15].
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Wire-feed AM processes in general contain high remaining stresses and distortions
because of excessive heat input and an excessive deposition rate [16]. Similarly, in wire-feed
AM technology, the energy input, welding speed, wire diameter, wire-feed rate, deposition
sequences, and deposition pattern, etc. are factors of RS on the thermal history of the
process. In addition to their effects on defects, the above-listed factors also affect the surface
roughness and accuracy of the products. Specifically, the influence of heat accumulation on
the arc stability, bead formation, and metal-transfer behavior during the printing process
need to be given attention during the printing process [17–22]. Furthermore, monitoring or
determining the interlayer temperature (IT) is one of the significant measures to enhance
WAAM product quality. In the case of mitigation of part distortion, compressed CO2
is actively used in the interpass cooling. The temperature in the building rises as the
thermal mass increases with energy input. To track thermal gradients and ensure proper
thermal management, non-contact thermal monitoring, that is, thermal imaging, can be
used [23,24]. Heat input accumulation during layer deposition causes high RS in WAAM
components. The results of RS developed in the products are defects such as delamination,
cracks, distortion, and low fatigue life [25].

The metallographic and mechanical characteristics of parts manufactured by WAAM
using gas metal arc welding (GMAW) and plasma arc welding (PAW) indicated that
PAW is slightly increased in elongation and toughness compared to GMAW [26], which
could be due to the difference in the thermal input. The concept of welding simulation is
very supportive for both WAAM and the welding process because, in both cases, metals
are melted to build the parts. Due to the thermal cycle in the melting process, RS and
distortion lead to non-uniform contraction and expansion mechanisms in the materials [27].
Figure 1 [28] illustrates the region where the melting front in the WAAM process is heated
up sharply and lets the material fuse locally during the process of deposition, in a similar
fashion as the arc welding process [29].
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Figure 1. Thermal cycle analysis of the WAAM process (Reprinted with permission from ref. [28].
Copyright 2019 Elsevier, License Number-5462710771792).

The objective of this review article is to explore the thermomechanical modeling and RS
effects of the WAAM process. Following this introduction section, the article is structured
as follows: Section 2 presents the methods used to review the articles and the statistics of
the cited articles with publication year, followed by an analysis of the thermomechanical
modeling approaches of the WAAM process and the residual stresses caused by thermal
and mechanical effects in Sections 3 and 4, respectively. Then, Section 5 deals with the
discussion of a useful outlook, and finally, the conclusion is drawn in Section 6.

2. Materials and Methods

To address the objective of the article, this literature review focuses on the most recent
articles (whose statistics are displayed in Figure 2), except for some exceptions, and the



Metals 2023, 13, 526 3 of 24

content is thematically organized with topics or issues. The search was limited to sources
that have published articles in English only. The databases used in this review include
Google Scholar, elibrary.ru, Free Full PDF, INGENTA, Polish Scientific Journals, Database,
Science Direct, Springer Nature, Worldwide Science, WorldCat, Open Access Journals, IOP,
JST, WS, ISSN, and peer-reviewed journals.
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Though this review work may not cover all possible relevant works worldwide, it
has reported research results reported in 152 articles to put together recent progress in
thermomechanical modeling and analysis of residual stresses in WAAM. As displayed in
Figure 2, the largest number of articles reviewed for this work are those reported in 2022.

3. Thermomechanical Modeling of the WAAM Process

Thermomechanical modeling provides the description, methodology, and backgrounds
of WAAM techniques to assist the production process and increase the quality of printed
parts based on the concepts of thermal and mechanical analysis. Though most recent
research on WAAM focused on modeling techniques, many studies merged both modeling
and experimental works for the sake of validation. For instance, Ding et al. [30] studied both
the mechanical and thermal models with the finite element (FE) software package ABAQUS
6.10 using Eulerian and Lagrangian reference frames for a steady state and a transient ther-
mal model, respectively, and validated them with experiments. The study also indicated
that, in the WAAM, the higher power input of the welding process causes major RS and
distortion of the manufactured components. Cambon et al. [31] conducted experimental
work on the thermomechanical model to separately explain the heat effect in the WAAM
process and on a mechanical model to study the expansion and the solidification leading
to shrinkage. The mechanical properties of parts produced using WAAM are affected by
the thermal residual stresses when the stress results exceed the local yield stresses and
experience plastic deformation [32]. Other researchers, such as Li et al. [14], conducted a
coupled thermaomechanical model to determine the thermal stresses and the distributions
of RS using a GMA-based AM process in the MSC. Marc code. The hole-drilling method
was used to measure the RS generated in the deposited layers and substrate to confirm the
effectiveness of the model.

For the entire WAAM process, the thermal properties of solids and liquids such as the
thermal conductivity, density, specific heat, emissivity, and latent heat are used for melting
the wire. Similarly, the mechanical properties such as the yield strength, elastic modulus,
and thermal expansion coefficient, as well as the elastic and plastic strain of the materials
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that are functions of temperature are used during the process to predict the expansion and
contraction of molten beads, as reported in the literature [33,34].

Numerical simulation is the best way to represent the thermal phenomena existing
in WAAM during the process. Among others, the finite element method (FEM) is used
to model the deposition of material and heat input during the WAAM process [35]. For
instance, Tangestani et al. [36] studied the process for enhancing the mechanical properties
using both thermomechanical FEM and experimental tests, in which the results revealed
that the profile of RS in the pinch rolling process is sensitive to the direction of rolling. It
was also observed that more compressive RS could be made into the wall by applying
fewer passes of rolling with thicker rollers. As reported in [14,37] the distributions of RS in
the parts along the deposition pathway on the inside surfaces and on the outside of the
fifth layer are equal to zero transversal RS. In the WAAM process, 3D thermomechanical
transient simulation within FEM can give comprehensive and correct temperature distri-
bution predictions, the distortion and stress distribution, as well as the thermal history
of built parts. All temperature-dependent thermal properties are required to accurately
simulate the process from solidus to liquidus transition and the heat-affected zone [1,38].

3.1. Thermal Modeling

Thermal modeling in the WAAM process is important to specify an optimum process
parameter with geometrical consistency for the desired production by moderating the
heat inputs. RS and distortions are considered to be the major obstacles against the more
widespread application of WAAM. In particular, since WAAM involves significant amounts
of heat input within the printed part, thermal management is the main important action
needed to improve the quality of the part in cases of surface finish and induced internal
voids [39,40]. For these defects, thermal modeling can provide the basis for the thermal
properties of the RS remaining in the products. As the moving localized heat source causes
steep temperature gradients, which are inevitable in this process, accurate prediction of
the thermally induced RS and distortions is of paramount importance. The properties of
the thermally affected build-up part are due to the layer-by-layer molten pool deposits
and process conditions such as the deposition patterns, energy input, and heat conduction
during the printing process [18,41].

Wire and arc-directed energy deposition (WADED) is among the metallic AM tech-
nologies that are most important in monitoring the temperature evolution since it directly
affects the deposited quality of parts. The history of temperature in WADED can be attained
using numerical simulations and/or experiments [42]. The thermal cycle in the WAAM
was applied equally as a thermal load for each bead according to the welding process. The
heat source parameters gained as a result are used for carrying out thermal and mechanical
analysis. The influence of the heat input on the grain size, tensile properties, hardness,
and impact toughness along the building direction are studied [29,43], which reveal su-
perior tensile properties and hardness. However, variation in the mechanical properties
are due to grain sizes and microstructural evolution evolved with the level of heat input.
The heat input of the WAAM process arc melts the wire into the molten pool to make
the parts. The heat loss modes in such processes are discussed and illustrated in several
studies, such as [20,44,45]. The adjacent tool-path concentration makes fragments in the
thermomechanical properties of continuous tool-paths that are likely to be poor, bringing
about a degradation of performance and other defects [46].

Based on the heat input parameters, mathematical modeling [47,48] and management
concepts are related to RS, tension, shrinkage, and deformation, which are critical and
particularly covered in [49,50]. In such mathematical modeling works, a general equation
of energy balance based on the First Law of Thermodynamics is often used, which is given
in Equation (1):

QL = QC + QCv + QR (1)

where QL is the quantity of heat loss, QC is the conduction loss, QCv is the convection loss
and QR is the radiation loss. The heat losses by radiation and convection from the surfaces
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of the substrate and deposit are applied as boundary conditions [9]. As reported in [10,51],
the transient temperature fields over the part geometry in all directions were calculated
from the 3D heat conduction equation, which is given in Equation (2). In this formulation,
the thermal model was sequentially coupled to the mechanical model. Regarding the heat
source model in the AM process, the heat transfer equation of the arc in the material and
transient temperature fields is given by the Fourier equation for a transient and non-linear
system, which is the heat-conduction equation during the process of deposition [10,14,51],
as shown in Equation (2).

λ

(
∂2T
∂x2

)
+ λ

(
∂2T
∂y2

)
+ λ + qv = ρc

(
∂T
∂t

)
(2)

where T is the temperature, λ is the material’s thermal conductivity, qv is the heat source or
sink, ρ is the material density, c is the specific heat capacity of the materials, t is the time of
heat transfer, and x, y, and z are coordinates in the space coordinate system.

The heat source model of a dual ellipsoid was used to simulate the heat input in the
AM process [52] as shown in Figure 3a. The movement of the heat source simulation and
the temperature change position are also shown in Figure 3b [11].
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The front and rear halves of the heat flux densities are further discussed in the relevant
literature [30,53–55], and the formulas are presented in Equations (3) and (4), respectively.

q f (x, y, z) =
6
√

3 f f Q
πa f bc

√
π

exp

[
−3

(
x2

a2
f
+

y2

b2 +
z2

c2

)]
(3)

qr(x, y, z) =
6
√

3 frQ
πarbc

√
π

exp
[
−3
(

x2

a2
r
+

y2

b2 +
z2

c2

)]
(4)

f f + f r = 2

where a f and ar are the lengths of the frontal ellipsoid and rear ellipsoid, respectively; b is
the heat source width; c is the depth of the heat source, which is the heat source parameter;
Q is the efficiency factor of energy input; and fr and f f are the distributing power factors
for the rear and front heat source, respectively. The high-density electron beam heat source
was modeled as a conical volumetric heat source with a Gaussian distribution or double
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ellipsoid volumetric heat source model, as given in Equation (5). The intensity distribution
profile can be adopted and modified from the mathematical modeling [10,33].

Q =
2
h

(
1− z

h

)3× η ×Va × Ib
π ×∅2

e
exp

(
−

2
(
x2 + y2)
∅2

e

)
(5)

where Q is the power generated per unit volume, h is the penetration depth, η is the heat
source efficiency, Va is the accelerating voltage, Ib is the beam current, ∅e is the beam
diameter, and x, y, and z are the local coordinates of a point on the part geometry.

Convective heat losses on the surface caused by the forced mechanism are ignored
since the EBAM process is carried out in a vacuum. Radiation heat losses were considered
from all outer free surfaces according to the Stefan–Boltzmann law as shown in Equation (6):

qrad = εσ
(

T4
sr f − T4

∞

)
(6)

where ε is the emissivity, σ is the Stefan–Boltzmann constant, Tsr f is the surface temperature
of the part, and T∞ is the ambient temperature (298 K).

Wu et al. [56] investigated the arc stability, bead formation, and metal transfer mecha-
nisms during the fabrication of Ti6Al4V. From heat accumulation by gas tungsten WAAM,
the effects of localized gas shielding and heat accumulation indicate the deposition con-
stancy during the WAAM process control and component optimization. Others studied
the indication of comprehensive thermal characteristics of a WAAM process and pointed
out the thermal effects on the geometrical accuracy, process stability, and deposited part
properties. The deposited beads’ temperature profile and the solidification parameters are
examined using experimental and numerical simulation models that reflect the deposition
process characteristics [22,57–59]. Inconsistent layer cross-sectional dimensions and undu-
lated surface appearance are two types of defects observed in WAAM products. These are
due to an inadequate heat input and nonlinear time-varying boundary conditions of the
thermal effect in the molten pool [60]. Fluid flow and heat transfer models are usable to
join process variables and parameters that affect the properties of printed parts. Both the
arc pressure and the convective flow are the two main factors that govern the depth and
width of penetration, respectively [61].

The summary of arc welding types and thermal distribution effects on the WAAM
components is given in Table 1.

Table 1. Some reviewed effects of thermal distribution on the specific study in the WAAM process.

Arc Welding Focus Area Specific Area of the Study Citation (Year)

EBM Microstructure, macrostructure, and mechanical
properties Effect of heat input in WAAM process [62] (2021)

GMAW Geometric accuracy, productivity, and
microstructure

Geometry regulation of thermoelectric
cooling-aided bead in WAAM of thin-walled
structures

[63] (2018)

CMT and
C-GMAW mode

Microstructure transformations and mechanical
properties

Thermal effect on evolution of
microstructure and mechanical properties in
WAAM components

[64] (2022)

GT-WAAM
Influences of heat accumulation, surface
oxidation, and bead geometries in building
direction

Heat accumulation effects on the arc
characteristics and metal transfer behavior
in WAAM

[56] (2017)

GMA-AM Multi-track depositions for different processing
conditions for defect formation

Improving fluid flow and heat transfer
model of WAAM [61] (2021)

GT-WAAM Heat accumulation effect on microstructure and
mechanical properties of AM products

Heat impact on microstructure deposited
and mechanical properties by WAAM [15] (2018)

GMAW and PAW Analysis of wall geometry, metallography, and
mechanical properties.

Heat input effect on WAAM of Invar:
microstructure and mechanical properties [26] (2022)

GMAW-CMT Assumption of thermomechanical analysis Method of computing temperature and RS
in WAAM component [31] (2020)



Metals 2023, 13, 526 7 of 24

A high-temperature gradient near the melt pool leads to undesirable product dimen-
sional distortion and deformation, which is the outcome of rapid thermal cycling. When
the product is exposed to excessive strain due to thermal strain, it is more susceptible to
fracture, which decreases the component life expectancy and increases the risk of early
component failure [18]. The direction of deposition influences the residual strain and stress
during the welding process of a single-pass multilayer [29,65]. The physical properties of
the components made using WAAM depend on heat input during the printing process [48].
Similarly, physical properties such as the thermal conductivity and specific heat conductiv-
ity were increased with temperature while the density, viscosity, Young’s modulus, and
yield strength decrease with increased temperature [66]. Moreover, thermomechanical
simulation to predict the thermal flow and numerical analysis for metal addition during
the deposition process are performed. The numerical analysis is validated with experimen-
tal investigation results by considering the effects of welding parameters such as the arc
current, arc voltage, wire speed, welding speed, wire diameter, shielding gas, heat sources,
and temperature fields, as studied and reported in [17,31,67].

In [51,68], it has been reported that a thin substrate and low interpass temperature
are capable of minimizing the tensile RS in the WAAM products. The study also indicated
that mechanical properties and microstructural characteristics are strongly dependent on
the thermal history during printing. Likewise, significant temperature gradients, high
heating and cooling rates, bulk temperature rises, and periodic thermal cycles cause varia-
tion in printed parts’ properties. One of the key factors in the WAAM process is thermal
management to mitigate the accumulation of heat and cope with restrictions concerning
geometry issues, the deposition cycle, and anisotropies in the mechanical properties [69,70].
Furthermore, a theoretical model was developed to optimize the heat input and the in-
terlayer temperature for the deposition of each layer. In thin-walled structures built up
in the WAAM process, molten pool solidification and bead geometry vary as wall height
increases, mainly due to heat dissipation on the substrate. An active cooling system during
the process using the technology of thermoelectric cooling is used to eliminate the variance
in the dissipation of heat between the lower and upper layers [24,31,63]. The evolution of
microstructure in the WAAM process depends on the material’s thermal history, which is
estimated using FE modeling. Transformations of the microstructure are assessed with a
diagram of continuous cooling transformation, and the microstructure is investigated with
the use of scanning electron and optical microscopy. Similarly, the impact of temperature
interpass on the hardness and microstructure was studied in [64,68,71] for AM80 HSLA
steel, and the result revealed that a high interpass temperature leads to the development
of martensite. During the WAAM process, heat accumulation results in the deposition
of a multi-layer increase in the temperature preheat in the preceding built layer. These
reasons lead to instabilities in the interlayer density, microstructure, mechanical properties,
and geometry, which evolve differences in the material properties [72,73]. There are two
types of temperature-measuring methods in the WAAM process: (1) contact (thermocou-
ple) [10,30,33,74] and (2) non-contact measuring (infrared camera, pyrometrical methods,
etc.,) [27,39,75,76].

3.2. Mechanical Modeling

Since the WAAM process has different thermal effects leading to varying mechanical
properties of the printed parts, the process is examined in different building directions,
which gave different results [18]. Additionally, variation in the substrate geometry has a
significant effect on the molten pool geometry and heat transfer condition, which influence
the welding for deposition of the WAAM process [1,77]. However, mechanical analysis
to evaluate the stresses developed in the WAAM-printed products is carried out with a
thermal load employed in finite element analysis (FEA) that caused RS and distortion. No
significant variances were realized in either the mechanical or microstructural character
succeeding heat treatments in air, in a vacuum, or in argon [78–81]. In the mechanical
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analysis, the clamping conditions (i.e., degrees of freedom constraints) have an important
influence on the printed products [72].

The Lagrangian thermal model and nodal temperature results from the thermal analy-
sis are used as thermal load inputs for the mechanical analysis [30,82]. Another investiga-
tion was performed in [30] using the Eulerian thermal model to calculate the steady-state
temperature distributions, which are used as inputs to a 3D mechanical model for RS
and distortion analysis. From the results of both the experimental and numerical studies,
the temperature, distortion, and RS were compared and showed good agreement. Chen
et al. [83] conducted a study of the superalloy (Ni-17Mo-7Cr) component fabricated with
WAAM. The results showed stability in both tensile and hardness properties while a sharp
reduction was perceived in the layers of the superficial surface. Thermal evolution is
coupled to an elastoplastic mechanical boundary condition value problem that calculates
the thermal stresses and distortions with Goldak thermal modeling approach. It was
extensively modeled for accuracy by comparing the mechanical properties and thermal
predictions with the equivalent experimental measurements with a non-linear transient
function [41,53]. Hejripour et al. [84] studied on two parts built with WAAM, i.e., (1) wall
and (2) tube from 2209 Duplex Stainless Steel. The results indicated that the slow rate
of cooling for layers built at high temperatures caused austenite creation significantly in
a ferrite matrix. The correlation between the developed thermal model for phase trans-
formation and cooling rates is quite accurate to predict thermal cycles and weld zone
profiles [7,69,85,86].

Even though WAAM technology is an energy-efficient manufacturing method for
metal production, heat accumulation during deposition and associated mechanical changes
result in RS, which was observed in the profiles across the cross-section of the printed
components [25,87]. The mechanism of crack formation in a WAAM-manufactured Al-
Zn-Mg-Cu alloy, which has high crack sensitivity, was studied using a combination of
microstructure analysis and thermal-stress simulation [65,67]. The results indicated that
increasing the deposition height increases the stress, which leads to crack propagation
and the appearance of a macrocrack. In other studies, it has been reported that WAAM-
manufactured super duplex stainless steel has both excellent corrosion resistance and
mechanical properties [67,88]. In the studies, the microstructure of the wall deposited was
carefully examined for variation in the mechanical properties. The results also revealed that
the austenite/ferrite balance of phases in the wall body was fragmented by the overgrowing
of the austenite phase. The anisotropic examination revealed that the ultimate tensile
stress (UTS) and elongation appeared separately in the horizontal and vertical directions.
The yield stress (YS) variables are rejected by the nitrogen work hardening result to a
large extent.

WAAM technology with PAW has high deposition rates and can producing compo-
nents of various sizes and yields with high mechanical performance. Similarly, two walls of
Ti6Al4V were fabricated in a shielding argon atmosphere using WAAM-PAW to examine
the deposition process, the growth in height per layer, the temperature deposition process,
and the cooling times, which gave good results [69]. Three-dimensional thermoelastic–
plastic transients and the thermomechanical multi-layer wall structure modeling approach
are studied in [30]. The result of the study shows that temperature simulations and distor-
tion expectations are proved by equating with the experimental results of laser scanners
and thermocouples, while the RS is verified using neutron diffraction of strain scanner
ENGIN-X. The response of the mechanical to the thermal history is examined by performing
a 3D quasi-static incremental analysis.

The yield strength (σy), elastic modulus (E), and coefficient of thermal expansion (α)
are temperature-dependent, while other mechanical property values such as Poisson’s ratio
are independent of temperature [89]. The physical and mechanical behavior of temperature-
dependent properties such as the thermal conductivity, specific heat, and yield stress of
SAE-AISI 1524 steel were studied in [90]. For materials such as SS 316 L, the behavior is
supposed to be elastoplastic with a mix of kinematic and isotropic hardening (Chaboche-
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like model) [31]. Under the theory of small deformation, the total incremental strain can
be disintegrated in elastic and inelastic forms. Equation (7) shows the formula for total
deformation.

∆εtot = ∆εel + ∆εth + ∆εp + ∆εvp (7)

where ∆εel , ∆εth, ∆εp, and ∆εvp are, respectively, the elastic, thermal, plastic, and viscoplas-
tic total incremental strains. The thermal strain is expressed in the absence of metallurgical
transformations by Equation (8):

εth = α(T)
(

T − Tre f

)
(8)

where α is the thermal expansion coefficient and Tre f is a reference temperature. In all
three directions, the strains measured were combined to analyze the stress, supposing
the directions measured are given by Hooke’s law with principal strain directions [30], as
Equation (9).

σx =
E

(1 + υ)
εx +

Ev
(1 + υ)(1− 2υ)

(
εx + εy + εz

)
(9)

where εx, εy, and εz are strains in the principal directions, E is the modulus of elasticity, and
υ is Poisson’s ratio of the material.

4. Analysis of Residual Stress Effects in WAAM Components

The RS in WAAM products exists due to non-uniform heating or cooling results and
cannot be ignored [47]. However, there are techniques to print products using WAAM with
the minimum amount of RS and distortion [91]. RS are inherent in parts manufactured
using the WAAM method, resulting in unpredictable structural integrity, and a variety
of mechanical responses are seen [36]. As reported in [92], a continuous tool-path in
the process is one of the factors. RS analysis can be examined using FE modeling in the
WAAM process, which is very important because of the influence of thermal loads on the
mechanical properties and life cycle of the built parts that mostly rely on this RS [31,47,93].
Tensile RS in the WAAM process is induced along the weld bead. This is due to the
input parameters [94], molten metal contraction, and the welding parameters [47]. On the
another hand, material shrinkage during solidification causes compressive RS in the base
plate [30,33].

Microstructures, mechanical properties, RS, and distortion of metals and their alloys
in products made using the WAAM process are affected by the process parameters. Many
investigations show that these parameters are the major factors used to improve the quality
of manufactured components [32,95]. Furthermore, the defects are strictly associated with
the target characteristics by the process parameters [13,96].

The causes of WAAM defects can be various, and for these reasons, the vulnerable
material responses are different [6,47,96–99]. The reasons include unstable weld-pool-like
dynamics due to poor parameter setup, poor software design strategy, thermal-deformation-
related heat accumulation, environmental conditions, machine malfunctions, and others.
Figure 4 illustrates some selected materials affected by specific defects. For instance, there
is severe porosity for aluminum alloys, oxidation for titanium alloys, and poor roughness
of the surface in steel, along with severe distortion and bimetal cracks [13].

Different process parameters and preheating strategies are sensitive to process assess-
ment to check their helpfulness in the mitigation of RS and distortions [96]. The effects of
the processing conditions such as the interlayer temperature, deposit height, and substrate
thickness on the distribution and magnitude of RS were studied. The study results show
that the thickness of the substrate was the main influence on the RS distribution along the
height of the deposit. The major part of the substrate revealed recompensing compressive
RS while the deposited layer shows tensile stress [100–102].
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4.1. Method of Measuring Residual Stress during and after Processing

Measuring RS physically is difficult and hence it is mostly estimated theoretically.
Neutron diffraction and radiographic testing (X-ray) are the most common RS measurement
tools using Bragg’s law, and they reveal qualitative experimental results [73,103]. The pro-
cedure for RS measurement using the contour method is discussed in [104]. Figure 5 shows
the three categories of RS measurement techniques: (1) destructive; (2) non-destructive;
and (3) semi-destructive techniques [16,44,47,104–110].
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The mechanisms of strengthening printed components using various post-processing
methods are discussed in [48,97], while the study of the heat input effect on the evolution
and control of RS in long-scale WAAM-fabricated components is reported in [79]. Based on
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the analysis of RS distribution with Simufact 2016–FEA software, the clamping method with
only the transverse direction can attain the least RS distribution [111]. The investigation
reported by Nadeem and Ahmed [82] showed that high tensile stresses can be the cause
of performance loss in fatigue, corrosion, and fracture. The experimental and FEA study
results also indicated a good agreement for the anticipated RS and distortion, which
showed a loss of measurements of performance in the WAAM products. According to
Chi et al. [112], the RS results measured with the X-ray diffraction technique are used to
examine the effects of path planning in the WAAM process.

4.2. Method of Minimizing Residual Stress and Distortion

Various RS- and distortion-mitigation methods are compiled in the WAAM process
to deliver a framework direction for the future. Likewise, simulations validated with
experimental results are examined depending on the thermal fields of RS and distortion to
provide a critique of real-life tests [44,113]. Defects in WAAM can be reduced effectively by
the form of reasonable clamping [111]. For instance, the laser cladding process (CLAD) was
used to improve the distortions in the WAAM process, according to study results conducted
on parts made of Ti–6Al–4V [106]. The peening effect, especially laser shock peening (LSP),
is an innovative method to strain refinement and improve RS typically on the layer surface,
as shown in Figure 6 [114]. While the enlarged images in Figure 6b–d, before LSP indicate
existence of evenly distributed dimples and few micro-voids, the images after application
of LSP (Figure 6f–h) show tearing ridges, cleavage steps and cleavage planes that are
typical SEM fracture morphologies after such process [114]. Interpass cold rolling [115],
weld pool oscillation, interpass cooling [5,76,116], and heat treatment [80,117,118] are also
used to minimize RS in the WAAM components. Another method is reducing the layer
thickness and deposition rate during WAAM, which significantly minimizes RS [50]. A
thermomechanical model depending on 3D heat sources was developed by the Simufact
2016 welding software. The numerical model forecasted precisely the profile of the molten
pool, the thermal cycles, and the distortion geometry of the butt weld, and an experimental
test was carried out to determine the distortion, dimensions, and shape of the weld [77,119].

Rolling is an effective technique during printing processing that improves the me-
chanical properties by refining the grain size in WAAM-printed parts [36], as illustrated
in Figure 7a [120]. Similarly, different RS- and distortion-mitigation methods performed
in WAAM have been compiled to provide an outline for future research directions [44].
Mitigating RS and distortion is possible using active interpass cooling in the WAAM pro-
cess [68,75,86]. In welding, ultrasonic impact treatment (UIT) is an effective method widely
used for RS reduction and surface refinement, and similarly, investigations prove that UIT
can be used in WAAM [121]. Several methods have been proposed by investigators to
decrease RS during WAAM, including:

(1) high-pressure rolling with clamping [122], as illustrated in Figure 7b;
(2) air-jet impinging, as shown in Figure 7 [123];
(3) dwell time after layer deposition [124];
(4) machining between intermittent layers [108]; and
(5) laser shock peening [114].

Figure 8 illustrates an air-jet impinging system in a coolant hose that is connected to
the welding torch and thus operates synchronously with it to cool the molten bead during
the WAAM process. The air jet is conveyed by the hose nozzle to overthrow on the surface,
as shown by the green highlighted area in Figure 8a under the welding torch, and the main
geometric parameters are shown in Figure 8b. Heat transfer is modelled with Newton’s
law based on the fluid reference temperature and local surface temperature [124]. There
are also other methods of cooling mechanisms that are used to minimize defects [63,125].
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Recently, the hybrid methods that WAAM uses to manufacture the near net shape
for the single-step with hot forging process were developed to overcome the defects and
anisotropic properties of the products [126]. On the other hand, performing heat treatment
and peening processes in WAAM showed that refinement occurred up to the first layer
band in the microstructure. The smallest grains were observed just above the boundary at
which higher temperatures and significant grain growth occurred [47,70,80,118].
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As illustrated in Figure 9 [48], several researchers used different methods of post-
processing after completing the WAAM production to eliminate defects. These actions
started by observing that defects are mainly minimized using several methods (Figure 9).

Among the methods used, some are used during and after the printing process to
enhance the product quality. The main methods and parameters reported in diverse studies
to enhance the required qualities and to minimize residual stress and distortion with their
effects on printed parts are listed in Table 2.
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Table 2. Methods and parameters for minimizing residual stress and distortion.

S/N Methods Parameters Effect on Printed Parts References

1
Clamping form (on edge and
corner in the transverse and
longitudinal direction)

Edges and corner clamping form force;
longitudinal and transverse clamping
form force

Reduce defects (RS and distortion) [111,122]

2 Laser shock peening Shallow thickness and size of
microscopic voids

Ductile fracture existed in the
specimen after LSP [114,127]

3 Post-deposition heat treatments
Process parameters (travel speed, arc
length, wire feed, current, and voltage)
with single- and multi-weld beads.

Reduces anisotropy, increases
elongation, mixed sub grain is
visible

[124,128]

4 Post-process heat treatment Temperature, material design, and
other parameters

Grain refinement and
improvement of material strength
minimize residual stress, control
hardness

[13,117]

5 Interpass Rolling Temperature and the volume of the
weld pool

Minimizes microstructural
anisotropy via plastic deformation
of the deposit; grain refinement;
uniform layer height; increase in
wall width; enhances the
mechanical properties

[5,76,117,118]

6 Thermal monitoring
Distance of welding torch and parent
material, temperature of the molten
pool, weld pool area, and wavelength

Uniform microstructure, improved
material properties, and reduced
defects of parts

[24,39,129]

7 Active interpass cooling Travel speed, cooling gas flow rate,
and cooling time

Improved microhardness and
mechanical strength, more
fine-grained, more grain boundary
high-density dislocations, and
attain isotropic property

[71,130–132]

8 Vertical and pinch rolling
processes

Rolling depth, curvature depth of the
roller, roller shape, transverse
displacement, rolling direction, and
roller thickness

Refines the grains, minimizes
voids, and enhances the
mechanical properties

[36,54,72]

9 Interpass cold rolling Deposited layer thickness, radius of
roller, loads

Brings more homogeneous, large
columnar grains; improves
mechanical properties

[13,115]

Stress evolution analyzed theoretically for ribs along central lines was conducted
without consideration of the distribution of stress hypothesis in the WAAM process [133].
The reported results showed that warpage and stress remain unmanageable problems.
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According to this review, many investigations have been conducted on different techniques
with various feedstock materials to determine RS and distortion in WAAM products.
Similarly, experimental and numerical analyses for different feedstocks are presented with
different results and explanations. Table 3 shows summaries of the general methods,
feedstock materials, and their discussion of results used in WAAM processes.

Table 3. WAAM technologies’ feedstock materials, methods, results, and discussions.

Feedstock Materials Methods Results and Explanation Reference

Carbon steel Numerical approach:
ABAQUS software 2019

An increasing number of deposited layers
increases the peak temperature. Preheating a
substrate increases the peak temperature of the
first layer and decreases its average cooling
speed. The thermal behavior of deposited layers
is mainly affected by the travel speed

[12]

AZ31-magnesium and G4Si1
(1.5130) for stainless steel
materials.

FE software MSC Marc 2017
and experimental tests

Examined distortions, temperature fields, and
mechanical properties. A uniform wall geometry
can be formed using a continuous welding path
with same temperature distribution

[53,134]

316 L stainless steel and Iron
Aluminide (Fe3Al)

Neutron diffraction and
numerical analysis

Temperature and RS fields were computed at
each time stage and more reliable RS results were
obtained from the acquired neutron diffraction

[31,103,135]

Stainless steels 308LSi and 304 Thermomechanical coupling
analysis model

RS in both structures and their relationship with
the deposition height and shape were simulated;
measured RS validated with simulation

[136]

A36 steel DFLUX in ABAQUS analysis
and experimental test

Both thermal and mechanical models were
validated with the experimental data [137]

Stainless steel alloy 304L FEA software ABAQUS 2017
Influences of roller design, rolling load, and
friction coefficient on plastic strain and RS
distributions were analyzed and elucidated

[138]

Ti-6Al-4V Experimental test (Neutron
diffraction) and FEA

Contour method of RS measurements and
micro-hardness measurements were in good
agreement away from the baseplate. The results
indicate that a measurement-based convection
model is requisite to produce accurate
simulation results. Built the single-bead walls
with different process situations; RS was
significantly minimized after substrate removing

[2,30,106,
139–141]

ER70S-6 commonly used
welding wire X-ray and neutron diffraction The warpage and hardness have a direct relation

with measured RS [50]

Aluminum, silicon, and
copper

Laser opto-ultrasonic
dual-detection approach

Detected compositions of elemental, defects of
structural, and RS in Al-alloy components
during WAAM processes. LOUD detection holds
the promise of becoming an effective testing
method for WAAM processes to ensure quality
control and process feedback

[142]

Aluminum and its alloys

Taguchi method and
ANNOVA analysis: three
process parameters: wire feed
rate, gas flow rate, and
welding speed

The correlations between the process variables
and response variables were developed using
the multiple regression method. Shows
fine-grained microstructure and how it improves
the properties of the modeled wall.

[143,144]
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Table 3. Cont.

Feedstock Materials Methods Results and Explanation Reference

AA6061, Aluminum Neutron diffraction

RS measurements show tensile stresses (up to
130 MPa) in the built parts and compressive
stresses (up to -80 MPa) in the substrate. Less
copper in solid solution with aluminum,
showing greater precipitation and so, potentially
paying to improve the strength of the material.

[145,146]

Stainless steel
Numerical modeling software
such as MSC Marc
2019/Mentat

The outcome of this research is to develop an
effective procedure to analyze the distortion and
RS of WAAM of stainless steel.

[53,93]

Grade 91 steel (P91) Post-WAAM heat treatment
process

The microstructure is optimized with a very fine
martensite lath and rational prior austenite grain
size (PAGS).

[147]

304 Stainless steel COMSOL–5.4 Multiphysics
software

Simulated the build-up of the wall. To validate
this model, the dimensions of the melt pool and
the shape of the deposit calculated for the first
layer were compared to experimental data given
by macrographs and high-speed videos.

[148]

Aluminum alloys
Experiments measure
temperature results (thermal
cycles, etc.)

Variation in the beam height can affect the
measurement and longitudinal RS distribution in
both the beam and the substrate, while that can
only influence the transverse RS in the substrate
but not in the beam nearly

[32,66]

Ti17 Titanium alloy
Post-treatment technique
combining laser shock
peening and heat treatment

Enhance the mechanical performance of WAAM
parts by changing their microstructure and RS
distribution

[127]

Nickel-based super alloys X-ray, optical, and scanning
electron microscopy

Studied the microstructure, RS, and mechanical
properties [149]

Ti-6Al-4V and Inconel 718 Hole-drilling method,
theoretical and experimentally

RS and distortion were minimized by printing
with short track lengths among the three
patterns investigated for both alloys. The strain
parameter exactly predicted the effects of
WAAM parameters on distortion when the
detailed thermomechanical calculations cannot
be carried out

[19,143]

Aluminum Finite element model and
experiments

Predicted the melt pool volume as an indicator
of the porosity rate [150]

Ti-6Al-4V Thermocouple measurements
and numerical simulation

Measured and predicted temperatures, RS, and
distortion profiles indicated that the model is
quite reliable for grain morphology, predicting
the cooling rates and the microstructure

[33]

5. Discussion

This section mostly discusses the limitations of thermomechanical modeling and
methods of minimizing RS carried out in the past literature that is used in this review article.
As the use of thermomechanical modeling for WAAM products is a major contributor to
the increase in the quality of the part, it is important to control RS and distortion. Although
WAAM technology is used in various application areas, it is very applicable in the aerospace,
automotive, and defense industries. These applications require very intensive consideration
of the components due to the RS and distortion as a result of thermal stress. In this review,
the most widely seen problems during thermomechanical modeling are in the case of
multi-joint printed parts. At the multi-joint places, there are additional heat effects that
alter the first deposition behavior of the parts. For instance, if one component with the
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shape of the cross is printed using the WAAM process, the joint place is repeatedly affected
by thermal loads. Nevertheless, the investigators have not considered thermal modeling
for such occurrences that produce non-uniform thermal stress and dissimilar properties
through printed parts, which leads to unpredicted failure. Out of all the articles used in
this review, none of them considers thermomechanical modeling for irregular shapes and
multi-jointed components’ effects on RS and distortion in the WAAM process.

The control and prediction of the evolution of microstructural behaviors, which are
responsible for the deviation of mechanical properties for WAAM-printed components, are
big challenges since thermal processes are inherently non-equilibrium. In such cases, there
are no clear control mechanisms to obtain an optimum RS and distortion in the WAAM
products. Similarly, in the long-path and short-path depositing processes, the RS and
distortion induced in the part varies due to variation in the time it takes to add consecutive
deposition layers. The deposits of short paths faced redundant heat effects, while long paths
release the heat from molten beads since they have more time for cooling. Additionally,
parameters such as the width and thickness of deposition beads are also important for heat
release, with the length component, which varies the volume of deposited beads, and the
time it has taken to deposit consecutive layers. Therefore, consideration of parameters
such as the length, width, and depth (thickness) of deposition leads to good results for
thermomechanical modeling to determine RS and distortion in the printed parts [151].

In the case of the substrate (base plate), the literature explains that the thickness of
the substrate has effects on RS and distortion. This is due to heat conduction loss during
printing, which leads to variation in the heat movements in the molten bead deposited.
Likewise, pre-heating the substrate makes it smoother and decreases the cooling rate of
the molten pool. Nevertheless, the dependence of temperature magnitude on the pre-
heating substrate is not specified [74]. The optimum temperature and specific substrate
thickness for each printed metal or alloy material have not yet been stated with regard to
the printed thickness.

In other ways, the thermomechanical modeling conducted in the reviewed articles has
not considered the wire diameter being used in the depositing process. The wire used for
WAAM processes is available in different diameters, which can contribute to variation in
the distortion during printing. The trial was performed using different diameters—0.8 mm
and 1.2 mm—to test humping effect dependence. From the results, less humping was seen
in 0.8 mm wire than in 1.2 mm [152]. However, the effects of wire diameter variation on
RS are not mentioned in all reviewed articles. For a known wire diameter, printing layer
thickness, and standard feeding rate, it is possible to predict the RS and distortion using
the thermomechanical modeling of WAAM.

RS and distortion induced in WAAM products are closely related to the specific process
parameters and material characteristics. Thus, the chemical composition of the wire and
the physical mechanisms should be considered as further research in the thermomechanical
modeling of the WAAM process to optimize the defects of the products. Understanding
the thermomechanical effects should be ancillary to strategies for development of WAAM
process since it is the major important factor to overcome the generation of defects. Never-
theless, no preferential consistency was clearly stated and developed to obtain optimum RS
and distortion. Furthermore, in order to conduct research on the thermomechanical effect
of WAAM processes, an understanding of the thermal cycles in the process and materials’
thermal characteristics is very crucial for printing defect-free products. Since different
materials perform differently in similar conditions, there would be various specifications
used for different materials.

RS and distortions are mitigated using various methods. Among all methods men-
tioned in Section 4.2, clamping and interpass rolling are limited only in the case of regularly
shaped parts. For parts with an irregular shape, these mechanisms of minimizing RS and
distortion are not relevant due to the constraints of disallowing of the geometry of the com-
ponent. Further investigations in thermomechanical modeling would be recommended to
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consider the hindered concepts, such as multi-joints, length of deposition path, pre-heated
substrate, and wire diameter.

6. Conclusions

This review article presented the details of thermomechanical modeling and analysis
of RS with a focus on how the thermal input effects are interrelated to the mechanical
properties and RS associated with the WAAM process, as well as the characterization of
the products. According to the literature reviewed, the mechanical performance of WAAM
components is determined by defects that exist in the products, which are mostly affected
by the thermal cycle performed during the manufacturing process.

Thermal loads that affect WAAM products are divided into two categories: (1) thermal
load effects during the manufacturing process and (2) thermal load effects during post-
processing (heat treatment) on the products. Even though both contribute to the RS in the
products, a greater effect on products is observed from the first one. While the first thermal
load type is intended to give the heat input needed for wire melting at the time of the
fabrication process, the second load is to strengthen the product after it is printed. In these
two cases, the thermal characterization of materials is very useful because it is related to
the composition of the material and its microstructure, which govern the properties of the
material and fabrication quality. All metals have no identical melting point and can have
various molten densities, which causes changes in the mechanical and thermal properties
of the products. The deposition plan and rolling of interlayers are the best-adopted RS- and
distortion-mitigation methods in WAAM products up to the present time. As confirmed
from the literature review, the mechanical and thermal characterization of the printed
materials are affected by the heat input for the WAAM process. Accordingly, our future
research on this topic will focus on the observed research gaps such as the influence of the
wire diameter, substrate temperature, and length of the deposition layers on the reduction
of defects.
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