
Received November 17, 2021, accepted November 27, 2021, date of publication December 7, 2021,
date of current version December 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3133810

A Novel Approach for Code Smell Detection:
An Empirical Study
SEEMA DEWANGAN1, RAJWANT SINGH RAO1, ALOK MISHRA 2, (Senior Member, IEEE),
AND MANJARI GUPTA 3
1Department of Computer Science and Information Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India
2Department of Informatics and Digitalization, Molde University College-Specialized University in Logistics, 6410 Molde, Norway
3DST Centre for Interdisciplinary Mathematical Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India

Corresponding author: Alok Mishra (alok.mishra@himolde.no)

ABSTRACT Code smells detection helps in improving understandability and maintainability of software
while reducing the chances of system failure. In this study, six machine learning algorithms have been
applied to predict code smells. For this purpose, four code smell datasets (God-class, Data-class, Feature-
envy, and Long-method) are considered which are generated from 74 open-source systems. To evaluate the
performance of machine learning algorithms on these code smell datasets, 10-fold cross validation technique
is applied that predicts the model by partitioning the original dataset into a training set to train the model and
test set to evaluate it. Two feature selection techniques are applied to enhance our prediction accuracy. The
Chi-squared and Wrapper-based feature selection techniques are used to improve the accuracy of total six
machine learning methods by choosing the top metrics in each dataset. Results obtained by applying these
two feature selection techniques are compared. To improve the accuracy of these algorithms, grid search-
based parameter optimization technique is applied. In this study, 100% accuracy was obtained for the Long-
method dataset by using the Logistic Regression algorithm with all features while the worst performance
95.20% was obtained by Naive Bayes algorithm for the Long-method dataset using the chi-square feature
selection technique.

INDEX TERMS Code smell, code smell detection, machine learning techniques, feature selection, parameter
optimization.

I. INTRODUCTION
Now days the complexity of the software is increasing
continuously due to complex requirements, increased number
and size of modules, and code smells in the developed
software etc. Complex requirements are difficult to analyze
and understand and thus development becomes difficult.
Understanding complex software is also difficult and thus
maintainability of complex software becomes low. Complex
requirements are not in developers hand but code smells
can be detected and refactored to make the software more
simple, understandable, easy to develop and maintain [1].
In the software development process, functional and non-
functional values both are essential for designers to follow
the guaranteed software quality [2]. Generally functional
requirements are only emphasized by developers whereas
nonfunctional requirements, for example comprehensibility,

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

verifiability, evolution, maintainability and reusability are
neglected [3]. The lack of nonfunctional quality leads
to decline in the quality of the software, so that the
complexity and maintenance work of software increases.
Fowler et al. [4] explained the refectory technique by which
the loosely implemented code can be converted into a good
implementation. They proposed definitions of 22 code smells.

The effects of code smells on software have been examined
by various studies and revealed their undesirable effect on the
quality of the software [19]–[23]. The effects of removing
code smells in improving the possibility of software system
failures and faults are also examined by them. They explored
the challenges that code smells have negative effects on the
software development process and recommended refactoring
the software to remove them.

The influences of code smells on software are ana-
lyzed by different researchers; Olbrich et al. [24], [25],
Khomh et al. [26], Deligiannis et al. [27] by inspecting
the frequency and size of changes in the software system.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 162869

https://orcid.org/0000-0003-1275-2050
https://orcid.org/0000-0003-1939-5383
https://orcid.org/0000-0003-3264-185X


S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

It is also examined by them that the classes, infected by
code smells have a higher rate of changes and needs more
maintenance work. Li et al. [29] studied the role of bad smells
and class error probability in the object-oriented software
system. Their study results showed that the infected software
components using code smells have higher changes of class
errors than other components. Castillo et al. [28] studied
the harmful effect of god class on power consumption and
that eliminating God Class smells reduce the cyclomatic
complication of the source code. Thus code smell detection
will indirectly help in reducing all these problems of
costly maintenance and chances of failure of software
systems etc.

There are lot of challenges in code smell detection for
software developers. Different types of code smells make this
process difficult. Not a formal definition of code smells is
another challenge.

In this study, a framework is built for code smell prediction
using machine learning algorithms and software metrics.
In a code smell prediction, metrics play an important role
in measuring the functional and nonfunctional qualities of
software and understanding the features of the source code.
Static information of the software is given by metrics, such
as number of methods, classes, and parameters along with
the measure of coupling and cohesion among objects in the
system.

This paper proposes code smell prediction and its analysis
using six machine learning algorithms. For this purpose, four
code smell dataset (God Class, Data-Class, Feature-Envy, and
Long-Method) from Fontana et al. [18] are used that are
generated from 74 open source systems. The first two datasets
belong to class-level and the remaining two datasets belong
to method-level. Six machine learning algorithms (Naive
Bayes, KNN, Multilayer Perceptron, Decision Tree, Logistic
Regression and Random Forest) are applied on the datasets
and achieved the highest accuracy in the Logistic Regression
algorithm (100%).

Various experimental studies, tools, and techniques have
been developed by researchers to detect code smells and
they found different results. Various reviews and comparative
studies [30]–[32] represent that there are several reasons
behind it including the problem to discover the formal
definitions for code smells. Additionally, given tools and
techniques are not identifying all code smells since they focus
on some code smells.

The main contribution of this paper is two-fold: In the
first step the six machine learning methods for detecting the
code smell are proposed. In the second step, performance
measurement (Accuracy, Precision, Recall, and F-1 Score),
achieved by applying machine learning methods and their
evaluation with grid search cross-validation technique are
shown.

The following research questions are answered and
discussed in this research study.

RQ1. What is the effectiveness of applying machine
learning techniques to explain the code smell detection

problem and which software metrics play important role in
predicting code smells?

Motivation. To study and examine the impact of machine
learning methods to build a code smell prediction framework
that can predict code smells in object-oriented software using
software metrics.

RQ2. Does a feature selection method affect the perfor-
mance of the prediction?

Motivation. To study the impact of feature selection
technique to improve the model’s accuracy and to identify
which software metrics contribute an important role in the
code smell prediction process.

RQ3. Whether methods used for separating dataset into
training set and test set affect accuracy or not?

Motivation. To study the impact of 10-fold cross validation,
to set the training set and test in each dataset, on the
performance accuracy.

RQ4. Does the parameter optimization technique affect the
accuracy of the prediction?

Motivation. To study the impact of tuning the machine
learning techniques’ parameters on performance accuracy.

The outline of the paper is as follows; the section 2
explains related works, which briefly describes code smell
detection using machine learning techniques. Section 3
reports the datasets related information, approaches and
research framework used in this work. Section 4 illustrates
the experimental results. Threats to validity is discussed in
section 5 and the final section 6, provides the conclusion of
our work.

II. RELATED WORK
Many researchers have studied machine learning techniques
applications to detect the code smells. This section represents
different types of tools and techniques, and different types of
machine learning techniques applied on code smell datasets
to detect the code smells. In the literature, different tools and
techniques are proposed to detect code smells. Each tool and
technique produces different results. Kessentini et al. [17]
classified the code smells detection techniques into seven
categories such as manual approaches, symptom-based
approaches, metrics-based approaches [13]–[15], probabilis-
tic approaches [12], visualization-based approaches [8],
search-based approaches [9]–[11], and cooperative-based
approaches [7]. Inspection methods [5], process identifi-
cation, and manufacturing process methods [6] are used
to improve software quality by manual approach. The
specification algorithm [16] is used to detect code smell by
symptom-based approach.

Travassos et al. [5] proposed Inspection methods and
Ciupke [6] presented process identification, and manufactur-
ing process methods to improve software quality by manual
approach. The specification algorithm [16] used to detect
code smell by symptom-based approach. Marinescu [13]
proposed a technique called ‘‘detection strategy’’ for devising
metrics-based rules that capture deviations from good design
principles and heuristics. Moha et al. [14] and Tsantalis

162870 VOLUME 9, 2021



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

and Chatzigeorgiou [15] also introduced metrics-based
approaches. Rao et al. [12] proposed a probabilistic approach
to detect bad smells in object-oriented design.

A novel smell indicator known as Stench Blossom is
proposed by Murphy-Hill and Black [8], it represents
a cooperative ambient conception designed to first give
programmers a fast, high-level overview of the smells in
their code, and then, if they wish, to help in understanding
the sources of those code smells. Abdelmoez et al. [7]
recommended risk-based approach to detect code smells. And
search-based approach presented by [9]–[11] for code smell
detection.

A comparing and experimenting machine learning
algorithm for code smell detection is suggested by
Fontana et al. [18]. They experimented 16 machine
learning algorithms on four code smells dataset and 74
Java systems that are manually validated instances on
the training dataset. Additionally, boosting techniques are
applied on four code smell datasets. The code smell severity
classification using machine learning algorithm is proposed
by Fontana et al. [33]. This technique can help software
designers to prioritize the classes or methods. Multinomial
classification and regression method is used to classify the
code smell severity.

Assessment of Code Smell for Predicting Class Change
Proneness Using Machine Learning techniques is presented
by Pritam et al. [42]. They approve the effect of code smells
on the change inclination of a specific class in a product
framework. They applied six machine learning algorithms to
predict the change proneness using code smell from a set
of 8200 java classes spanning 14 software systems. Hadj-
Kacem and Bouassida [43] suggested an advanced method
to detect code smells by using deep-learning techniques.
They applied hybrid detection approach based on deep Auto-
encoder and artificial neural network algorithm on four code
smell datasets that is extracted from 74 open-source systems.

Pushpalatha and Mrunalini [34] recommended ensemble
methods approach to predict the severity of closed source
bug reports. They applied. two preprocessing techniques, i.e.,
Information gain and Chi-square for data reduction and they
observed information gain gives slightly good accuracies over
chi-square. They found bagging gives better accuracy than
other ensemble algorithms. They obtained the accuracies of
various ensemble approaches after reducing dimensionality
using Information gain. The accuracy for, PitsA varies
between 58.09 and 74.07, for PitsB varies between 54.38 and
80.72, for PitsC varies between 79.85 and 89.80, for PitsD
varies between 93.42 and 96.20, for PitsE varies between
69.21 and 72.36, for PitsF varies between 64.10 and 75.70
using different ensemble methods.

Mhawish and Gupta [35] proposed Machine learning
approach to detect code smells from software and they
observed the metrics that play critical roles in the detection
process. They applied genetic algorithm based two feature
selection techniques and parameter optimization technique
based on a grid search. They obtained best accuracy in

predicting the Data Class, God Class, and Long Method
smells by 98.05%, 97.56%, and 94.31% respectively using
GA_CFS method, and in the Long Method scored the best
accuracy of 98.38% using GA-Naïve Bayes feature selection
method.

Mhawish and Gupta [36] suggested code smells analysis of
Predictions using machine learning techniques and software
metrics. They also applied genetic algorithm-based feature
selection methods to enhance the accuracy of these machine
learning algorithms by selecting the best features in each
dataset. Moreover, they applied parameter optimization
techniques based on the grid search algorithm which is
enhance the accuracy of all these algorithms. They noted in
Random Forest model achieves the best accuracy of 99.71%
and 99.70% in predicting the Data Class in the ORI_ D and
REFD _D datasets respectively.

Guggulothu and Moiz [37], [38] considered code smell
detection using multi-label classification approach. They
used multi-label classification method to detect whether the
given code elements are affected in multiple smells. They
applied an unsupervised classification technique for finding
good accuracy. Guggulothu and Moiz [37] obtained 99.10%
highest accuracy using B-J48 pruned algorithm for Feature-
envy dataset, and 95.90% highest accuracy using Random
forest algorithm for Long-method dataset.

Gupta et al. [39] recommended prediction of code smells
using feature extraction from source code on eight types of
code smells. They present the application of data sampling
technique to handle the class imbalance problem and uses
feature selection technique to find most relevant features sets.
They applied deep learning technique and improved 88.47 to
96.84% AUC accuracy.

Kaur and Kaur [40] presented Ensemble learning tech-
nique and correlation feature selection technique on three
open-source java datasets for detection of the code smell.
They applied Bagging and Random forest classifier to
analyze each approach with four performance measurements
like accuracy (P1), G-mean 1(P2), G-meam2 (P3), and F-
measure (P4).

Draz et. al. [41] suggested search-based technique to
improve the code smell prediction using Whale optimization
algorithm as a classifier. They perform their experiment on
five open-source software projects and found the nine types
of code smells. They obtained average of 94.24% precision
and 93.4% recall.

Azeem et al. [63] described a Systematic Literature Review
(SLR) on the utilization of machine learning techniques for
code smell detection. They targeted four aspects related to
previous research work on code smell detection techniques.
These are (a) which code smells have been detected (b) what
machine learning setup has been adopted (c) what kind
of evaluation strategies have been exploited, and (d) what
are the claimed performances of proposed ML techniques.
They have found that the decision tree and support vector
machine are the most common machine learning techniques
used for code smell detection. On the other hand, JRip and

VOLUME 9, 2021 162871



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

Random forest algorithms are themost effective classification
techniques.

Pecorelli et al. [64] proposed a significant study to compare
the performance of heuristic-based and machine-learning-
based techniques for metric-based code smell detection. They
considered five types of code smells (God Class, Spaghetti
Code, Class Data Should Be Private, Complex Class, and
Long Method) and compare ML techniques with DECOR,
a state-of-the-art heuristic-based approach. They found that
the DECOR normally obtained better performance than ML
baseline.

III. RESEARCH FRAMEWORK
The list of steps followed to build the code smell prediction
framework is shown in figure 1. In the first step, code
smell datasets are taken from Fontana et al. [18]. Then,
preprocessing (Normalization) step is applied to the dataset
to cover the different ranges of the datasets and to obtain
the best algorithms’ parameters. Then machine learning
algorithms on the dataset is trained and their performance
are computed. Finally, 10-Fold cross-validation technique is
applied to evaluate each experiment performance during the
training process andGrid search algorithm applied to enhance
the accuracy.

FIGURE 1. Proposed work.

A. REFERENCE DATASETS
In this study four code smell datasets (God class, Data-class,
Feature-envy, and Long-method) from Fontana et al. [18] are
used to build the code smell detection framework. The data
preparation methodologies of Fontana et al. [18] are briefly

TABLE 1. Automatic detector tools (advisors).

TABLE 2. Dataset description.

explained in following subsections. These datasets are avail-
able at http://essere.disco.unimib.it/reverse/MLCSD.html.

B. DATASET SELECTION AND REPRESENTATION
Qualitas Corpus Software System is compiled by
Tempero et al. [44] and analyzed by Fontana et al. [18].
In the corpus software out of 111 systems, 74 systems are
considered and remaining 37 systems could not be used
to detect code smells since these did not comply correctly.
For the available 74 software systems, Fontana et al. [18]
computed 61 software metrics for the class level code smells-
Data Class and God Class and 82 software metrics for the
method level code smells- Feature Envy and Long Method.

Fontana et al. [18] used several detection tools and tech-
niques to detect code smells called advisors: iPlasma (God
Class, Brain Class), Anti-pattern Scanner [45], PMD [46],
iPlasma, Fluid Tool [47], and Marinescu detection rules [48].
Table 1 shows the automatic detection tools. They filtered
and relabeled results manually with the help of 3 students of
Master’s degree. Each dataset contains140 smells and 280 no-
smell.

As shown in Table 2, 61 software metrics are calculated
for Data class and God class code smells at class level. 82
software metrics are calculated for long method and feature
envy code smells at method level. Detailed descriptions of
these features are available in Fontana at al. [18].

Definitions of the code smells on which study is based as
following:

God class describes a large class that have many lines of
code, functions, or fields. The God Class is considered the
most complicated code smells for many reasons, operations
and functions that occur there. It causes issues associatedwith
size, coupling, and complexity [49].

Data Class points to the class used to store the data which
are used by other classes. Data Class covers only fields
and accessor methods (getters/setters) without any behavior
methods or complex functionalities. Because of it create
problems related to data abstraction and encapsulation [49].

162872 VOLUME 9, 2021



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

Feature Envy is the method level smell that accesses data
or use operations that belong to different classes as compared
to its own class i.e., it admits additional foreign data in
comparison the local one. and therefore, it creates problems
associated to the strength of coupling [49].

Long Method is method level smell that points to big-
sized method, because of the heavy size of code lines and the
functionalities, it is appliedwithin themethod. It enhances the
functional complication of the method and it will be difficult
to understand and therefore it creates problems related to the
strength of understanding the operations in methods [49].

C. FEATURE SCALING
Sometimes datasets have different ranges of features,
so machine learning or classification algorithms cannot be
directly applied to the dataset. Therefore, Feature scaling is
necessary to cover the different range of the dataset. Some-
times, several machine learning algorithms can converge
faster on the feature scaled dataset and when the model is
sensitive to size, it will have a greater impact. For example,
before applying the support vector machine algorithm, avoid-
ing standardization id is essential for supremacy of advanced
numerical ranges on slight numerical ranges where the range
of possible high values cause mathematical problems [50].

In this paper, Min-Max normalization technique is applied
to convert feature values of datasets between 0−1. This
process is used in the data preprocessing stage in which the
data are prepared to be used later by one of the machine
learning technique like Support vector machine, Neural
network etc. [51]. Equation 1 shifts and rescales the values
of a feature (X) so that they end up ranging between 0 and 1.

X ′ =
X − Xmin

Xmax − Xmin
(1)

In the equation 1, X is an original value and X′ is the
normalized value. X′ will be between 0 and 1. Min-Max
normalization is applied to all the datasets and the new
reformed data received in the form of 0 to 1 have been taken
as input into all machine learning techniques.

D. FEATURE SELECTION TECHNIQUE
Feature selection is a method designed to obtain the
maximum impact features in the dataset so it can advance
performance by improving awareness of the software metrics
that play a significant role in distinguishing between similar
roles in design patterns [55]. In this study, two feature
selection techniques are applied to find most important
features from each dataset: Chi-square and Wrapper based
feature selection technique.

The chi-square based feature selection technique is used
for categorical features in a dataset. Chi-square is calculated
between each metrics and select the desired number of
metrics with best chi-square scores. Bestmetrices are selected
in each code smell datasets using chi-square based feature
selection technique.

The Wrapper based feature selection technique is used
to select a subset of features or variables in the dataset so
that these features are most relevant to the predicted target
value [60]. Fig. 2 shows the working of wrapper-based feature
selection method.

FIGURE 2. Wrapper-based feature selection method [61].

E. PARAMETER OPTIMIZATION
Every learning approach in machine learning, has one set of
parameters that affect the learning procedure and algorithm
performance. In addition, each parameter is different in
type and domains. The best parameter for each algorithm
is different, depending on training data set. To determine
the correct parameters’ values, different combination of
parameter values for each algorithm should be tested; so
that the prediction model can correctly predict the test data
set [36].

Grid search algorithm is applied in this work to find the
optimum values of the parameters of each algorithm. The grid
search approach is an optimization algorithm which is used
to obtain the best hyper parameter values from the parameter
values set provided [52]. Grid search is essential to find
the optimal hyper parameters of a model, which results in
the most accurate predictions. It is based on comprehensive
search for the combination of parameters that yields the
best performance value in the prediction model [53].
10-fold cross-validation is used to prevent it from overfitting
of the model on training data. It is used to measure the
algorithm performance with each possible combination of the
parameters.

In parameter optimization based on a grid search algo-
rithm, a set of values for each parameter are recognized.
For nominal parameters, the nominal values are assigned as
shown in Table 3. The value range as well as number of steps
to the numeric parameters are also assigned. The values that
must be tested are assigned within upper and lower bounds
of the range based on the specified number of steps that are
assigned for each parameter, as shown in Table 4.

F. VALIDATION METHODOLOGY
In this study, validation techniques are applied to evaluate
each experiment performance. During the training pro-
cess 10-fold cross-validation technique is applied. Machine

VOLUME 9, 2021 162873



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

TABLE 3. Tuning algorithms’ nominal parameters.

TABLE 4. Tuning algorithms’ numeric parameters and number of steps
assigned for each parameter.

learning models are evaluated by using 10-fold cross-
validation that split the dataset into 10 portions with 10 times
of repetition of training the model. In each repetition, one part
of the dataset is considered as a test dataset, and other parts of
the dataset are taken for training purpose. Then, finally the
trained models are tested with unseen test dataset (20% split
from the dataset before training). The following fig. 3 shows
the general k-fold cross-validation evaluation technique.

FIGURE 3. k-fold cross-validation technique.

G. PERFORMANCE MEASURES
In this study, a set of experiments have been performed.
To measure the performance of machine learning algorithms,
four performance parameters: Precision, F-measure, Recall
and Accuracy are considered. To calculate them, true positive
(TP), true negative (TN), false positive (FP), and false

negative (FN) are used. TP shows the detected instances
where the model correctly predicted positive class. False
positive (FP) shows the detected instances where the model
wrongly predicts the positive class. True negative (TN) shows
the detected instances where the model correctly predicts
the negative class. False negative (FN) shows the detected
instances where the model wrongly predicts the negative
class. These parameters are calculated using a confusion
matrix that contains the actual and predicted information rec-
ognized by design pattern detection classifiers [54]. A brief
definition and equations of the performance parameters
which are used to measure the performance of design pattern
prediction model are given below:
• Precision: The precision measures the percentage of
correctly identified code smell instances by the machine
learning model. The following equation 2 is used to
calculate precision value. Precision is measured as the
number of true positives divided by the total number of
true positives and false positives. The precision result
value is 0.0 for no Precision and 1.0 for perfect Precision.

Precision (P) =
TP

TP+ FP
(2)

• Recall: The recall measures the code smell instances
identified by machine learning model. The formula of
recall value is shown in equation 3. Recall is measured as
the number of true positives divided by the total number
of true positives and false negatives. The recall result
value is 0.0 for no recall and 1.0 for perfect recall.

Recall (R) =
TP

TP+ FN
(3)

• F1-Score: F1-score is a combination of precision
(P) and recall (R). It is a harmonic mean of precision and
recall metrics, and it represents a balance between their
values. The formula of F1-score is shown in equation 4.
The F1-score result value is 0.0 for no F1-score and 1.0
for best F1-score.

F1-score (F) = 2×
P× R
P+ R

(4)

• Accuracy: in the machine learning technique, accuracy
is an important performance measurement. It represents
the percentage of correctly classified instances in
the positive and negative classes. The accuracy is
defined to the relationship between precision and recall.
Ideally, a rational approach should be taken in decent
precision and recall rate, i.e., while recall values improve
the precision values should remain high. Thus, it is
concluded that a suitable method should have a high rate
of true positives with a low rate of false positives and
false negatives [34]. Equation 5 shows the formula of
accuracy. The accuracy is 0.0 for worst performance and
1.0 for best performance.

Accuracy (A) =
TP+ TN

TP+ TN + FP+ FN
(5)

162874 VOLUME 9, 2021



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
The six machine learning techniques and the results obtained
from the experiments are shown in following sub sections.
The experimental results obtained from each machine
learning technique are shown in the form of table and bar
chart.

A. NAIVE BAYES
Naive Bayes is a simple machine learning algorithm, it uses
Bayes rules, and strongly assumes that given classes, the
conditions are conditionally independent. Although this
independence assumption is often violated in practice. Naive
Bayes often provides competitive classification accuracy.
Together with its computational efficiency and many other
desirable features, this has led to the wide application of
Naive Bayes in practice [56].

FIGURE 4. Comparative performance bar chart of all datasets with
Naive-Bayes technique.

Experimental results obtained by applying the Naive Bayes
algorithm to the four code smell datasets is shown in Table 5.
The comparative performance among all the code smell
datasets are shown in Fig. 4 in the form of bar chart. In this
experiment, it is found that Naive Bayes algorithm is obtained
highest accuracy (96.80%) for God Class dataset.

TABLE 5. Prediction results of Naive-Bayes algorithm.

B. K-NEAREST NEIGHBOUR (KNN)
The K Nearest Neighbor (KNN) algorithm is a supervised
ML procedure that can be applied for classification and
regression prediction problems. However, it is mostly used
for classification prediction problems in industry. KNN
algorithm uses ‘feature similarity’ to predict the value of a

TABLE 6. Prediction results of KNN.

new data point, which also means that the new data point will
be assigned a value based on how closely the new data point
corresponding to training point [57].

Experimental results obtained by applying the KNN
algorithm to the four code smell datasets are shown in
Table 6. The comparative performance among all the code
smell datasets is shown in Fig. 5 in the form of bar chart.
In this experiment, it is found that KNN algorithm obtained
highest prediction accuracy (97.89%) for Long-Method
dataset.

FIGURE 5. Comparative performance bar chart of all datasets with KNN
technique.

C. MULTILAYER PERCEPTRON (MLP)
Multilayer perceptron (MLP) is flexible machine learning
technique that can adapt to complex nonlinear assignments.
MLP is the most popular type of neural network, consisting
on a feed forward network of processing neurons that are
grouped into layers and connected by weighted links [58].

Experimental results obtained by applying the Multilayer
perceptron algorithm to the four code smell datasets are
shown in Table 7. The comparative performance among all
the code smell datasets is shown in Fig. 6 in the form of
bar chart. In this experiment, it is found that MLP algorithm
obtained highest prediction accuracy (97.62%) for Data Class
dataset.

D. DECISION TREE (DT)
A decision tree is a tree in which each internal or non-
leaf node is associated with a decision, and the leaf node
is usually associated with an outcome or class label. Each
internal node tests one or more attribute values that lead

VOLUME 9, 2021 162875



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

FIGURE 6. Comparative performance bar chart of all datasets with MLP
technique.

TABLE 7. Prediction results for multilayer perceptron.

to 2 or more links or branches. Each link in turn is associated
with a possible decision value. These links are separate and
exhaustive [59].

FIGURE 7. Comparison performance bar chart of all datasets with DT
technique.

Experimental results obtained by applying the Decision
tree algorithm to the four code smell datasets are shown in
Table 8. The comparison performance among all the code
smell datasets is shown in Fig. 7 in the form of bar chart.
In this experiment, Decision Tree algorithm obtained highest
prediction accuracy (98.59%) for Long-Method dataset.

E. LOGISTIC REGRESSION
Logistic regression is a statistical analysis technique that is
applied to predict data values based on past observations
of a dataset. This is an important tool in machine learning
which predicts the dependent data variables by analyzing
the relationship between one or more existing independent

TABLE 8. Prediction results for decision tree.

variables. It can be used to predict whether software metrics
will be found, or not.

FIGURE 8. Comparison performance bar chart of all datasets with logistic
regression.

Experimental results obtained by applying the logistic
regression to the four code smell datasets are shown in
Table 9. The comparison performance among all the code
smell datasets is shown in Fig. 8 in the form of bar chart.
In this experiment, it is found that Logistic Regression
algorithm obtained highest accuracy 99.52% and F1 score
100.00% for Long-Method dataset.

TABLE 9. Prediction results for logistic regression.

F. RANDOM FOREST
Random forest is a machine learning technique used to
solve regression and classification problems. It uses ensemble
learning, which is a technique that combines many classifiers
to provide solutions to complex problems. Random forest
algorithm builds the result based on the prediction of the
decision tree by taking the average or mean value of the yield
of various trees. It can reduce the over fitting of the dataset
and improve accuracy.

Experimental results obtained by applying the Random
forest algorithm to the four code smell datasets are shown

162876 VOLUME 9, 2021



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

FIGURE 9. Comparison performance bar chart of all datasets with
random forest technique.

TABLE 10. Prediction results for random forest.

in Table 10. The comparison performance among all the
code smell datasets is shown in Fig. 9 in the form of bar
chart. In this experiment, it is observed that Random Forest
algorithm is obtained highest prediction accuracy 99.52% and
F1 score 100% for Long-Method dataset.

G. PERFORMANCE COMPARISION
In the earlier subsections, the performance measurements
of six machine learning techniques are shown in different
tables. In this section, the performance of all these six
machine learning techniques (Naive Bayes, KNN, MLP,
Decision Tree, Logistic Regression and Random Forest) are
compared. The comparison of performances of these six
machine learning techniques on the four code smell datasets
are shown in Table 11 and their comparison charts are shown
in Figure 10. After comparing it is observed that the Random
Forest algorithm (Data class- 98.94%, God class- 97.88%,
Feature-envy- 97.58%, and Long-method- 99.52%) has got
better accuracy then the rest of five algorithms, while the
overall worst performance is achieved by Naive-Bayes.

H. IMPACT OF FEATURE SELECTION
This experiment is focused on the study and influences of
feature selection methods to improve the model accuracy and
recognizing the software metrics that contribute significant
role in predicting the code smells. To answer the RQ2, Chi-
square and Wrapper-based feature selection techniques are
applied. In Table 12, the percentage accuracy and F1-score of
all algorithms before and after applying the feature selection
technique are compared. The results indicate that Random
forest and Logistic regression algorithm performs better

FIGURE 10. Comparison graph of accuracy among six machine learning
techniques with four code smell datasets.

when all features are used. On the other hand, the feature
selection technique significantly improves the accuracy in
some models such as KNN, Naive Bayes and Multilayer
perceptron model.

Table 13 shows the selected set of features that are detected
by Chi-square feature selection technique for code smell
datasets. The best results are obtained by using 10 metrics for
the God class and 12 metrics for the Data class, Feature-envy
and Long-method are selected. Likewise, Table 14 shows
the selected metrics from each datasets that are detected
by Wrapper based feature selection technique. Using this
method 12 metrics in data class, 9 metrics in the god class,
11 metrics in Feature envy and 7 metrics in Long method are
selected.

I. IMPACT OF 10-CROSS VALIDATION AND GRID SEARCH
To answer the RQ3, the accuracy of 10-Fold cross validation
and Grid search algorithm are compared. Table 15 illustrates
the accuracy of 10-fold cross validation and Grid search.
In this experiment it is found that the grid search algorithm
gives better results rather than cross validation.

J. IMPACT OF TUNING MACHINE LEARNING
PARAMETERS
To answer the RQ4, the impact of tuning machine learning
algorithm parameters on performance is checked. Decision
tree model achieved highest accuracy of 98.22% when the
number of trees are 12, maximum depth 10, and criteria
is ‘‘Gain ratio,’’ ‘‘Gini index’’ or ‘‘Information gain,’’
‘‘Accuracy’’ and ‘‘Entropy.’’ The Table 16 and 17 shows
the different combination of parameters for decision tree
algorithm. The Multilayer Perceptron model achieved best
accuracy 97.62% when Learning Rate is Constant, and
Momentum Rate is set to 0.9. In the same case, when the
Momentum Rate is set to 0, the accuracy is decreased from
97% to 93%. The Naive Bayes model achieved best accuracy
96.80% when the best parameter Alpha set is 10. In the
same case, when the Alpha value is set to 0, the accuracy is
decreased 96% to 92%.

VOLUME 9, 2021 162877



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

TABLE 11. Comparison of performance among six machine learning techniques on four code smell datasets.

TABLE 12. Effect of feature selection methods on prediction models.

The Random Forest model obtained best accuracy 99.74%
when the numbers of trees are 35, and the maximal depth
is 20. Table 18 shows that when the number of trees
grows and the maximal depth remains constant, the accuracy
decreases. The logistic regression model achieved highest
accuracy 99.52%when parameter ‘C’ is 0.1 and penalty is 11.

A table 19 shows, in the same case, when ‘C’ value is set
to 1 to 100 and penalty is 12 or 11, the accuracy is decreased
97% from 98%.

In this experiment, it is observed that the parameter opti-
mization technique provides positive effects for improving
the accuracy of the machine learning algorithms.

162878 VOLUME 9, 2021



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

TABLE 13. Selected features from each dataset using chi-square feature
selection technique.

TABLE 14. Selected features from each dataset using wrapper-based
feature selection technique.

V. DISCUSSION
A. COMPARISON OF OUR RESULTS WITH OTHER
RELATED WORKS
Table 20 represents a brief comparison of our method with
other related works. These methods applied machine learning
techniques on code smell dataset given by Fontana et al. [18].
In the Data class dataset, in our approach’s accuracy is
99.74% using Random forest algorithm with all features
whereas the Fontana et al. [18] approach’s accuracy score

TABLE 15. Compare among accuracy between 10-fold cross validation
and grid search.

TABLE 16. Applying ‘tuning algorithms’ parameters on decision tree
model.

TABLE 17. Impact of parameter optimization technique on the accuracy
of the decision tree model.

is 99.02% in the B-J48 Pruned algorithm. Nucci et al. [62]
approach’s shows its accuracy in graphical form not in
number form. According to this, they obtained approximately
83.00% accuracy using Random forest and J48 algorithm.
Mhawish and Gupta [36] obtained highest accuracy 99.70%
using Random forest model.

VOLUME 9, 2021 162879



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

TABLE 18. Effect of parameter optimization technique on the accuracy of
the random forest model.

TABLE 19. Effect of parameter optimization technique on the accuracy of
the logistic regression model.

For the God class dataset, in our approach Random
forest algorithm using Chi-square feature selection technique,
scores the best accuracy of 98.21% and F1-score of 97.00%
while the Fontana et al. [18] approach scores maximum
accuracy of 97.55% and 98.14% of F1-score in the case
of Naive Bayes algorithm. Nucci et al. [62] obtained
accuracy approximately 83.00% using Random forest and
J48 algorithm. Mhawish and Gupta [36] obtained highest
accuracy 98.48% using GBT model.

For the Feature envy dataset, Decision tree algorithm,
scores the best accuracy of 98.60% and F1-score of 97.00%
while the Fontana et al. [18] approach scores maximum
accuracy of 96.64% and F1- score of 97.44% using the
B-JRip algorithm. Nucci et al. [62] obtained approximately
84.00% using Random forest and J48 algorithm. Mhawish
and Gupta [36] obtained highest accuracy 97.97% using
Decision tree model. Guggulothu et al. [37] obtained best
accuracy 99.10% using B-J48 Pruned algorithm.

For the Long method dataset, our approach scores the
best accuracy of 100% and F1-score 100% using Logistic
regression algorithm with all features. When the Logistic
regression model is applied with all features for the Long
method dataset and take 10% for the test set and 90%
for the training set then 100% accuracy is obtained, while
when 20% for the test set and 80% for the training set
are taken then 99.52% accuracy is achieved. While the
Fontana et al. [18] approach scores maximum accuracy of
99.43% and 99.49% of F1-score using the B-J48 Pruned
algorithm. Nucci et al. [62] obtained approximately 82.00%
using Random forest and J48 algorithm. Mhawish et al. [36]
obtained highest accuracy 95.97% using Random forest
model. Guggulothu and Moiz [37] obtained best accuracy
95.90% using Random forest algorithm.

B. ANALYSIS OF RESULTS
RQ1: To answer our first research question six machine
learning algorithms are applied on four code smell datasets.
It has been seen that machine learning algorithms have good
capability of predicting code smells. Software metrics that

play important role in predicting code smells are identified
and shown in Table 13 and Table 14.

RQ2: Chi-square and Wrapper-based feature selection
techniques are applied. The results indicate that Random
forest and Logistic regression algorithm perform better when
all features are used while KNN, Naive Bayes and Multilayer
perceptron model’s accuracy is significantly improved using
feature selection techniques.

RQ3: To answer our third question the accuracy of 10-Fold
cross validation and Grid search algorithm are compared.
Table 15 illustrates the accuracy of 10-fold cross validation
and Grid search. It is found that the grid search algorithm
gives better results rather than cross validation.

RQ4: The impact of tuning machine learning algorithm
parameters on performance is checked to answer fourth ques-
tion. It is observed that the parameter optimization technique
provides positive effects for improving the accuracy of all
machine learning algorithms used in this work.

C. THREATS TO VALIDITY
Here possible threats will be discussed that might have affect
our experiment and how we tried to mitigate them.

1) THREATS TO INTERNAL VALIDITY
The main internal threat in our study is the dataset.
The dataset used in this study is taken directly from
Fontana et al. [18]. They developed the dataset using code
smell advisors to select candidates from large repository
of 74 heterogeneous software systems (Qualitas Corpus)
and validated manually the 420 examples for each code
smell. Different metrics are considered to generate dataset.
All of them might not have impact on the performance of
models implemented. To manage this threat, two feature
selection techniques are used to find metrics that are more
impactful and compared results found using both techniques.
As for the experimented prediction models, the model is
implemented in Python which is now widely accepted as a
better programming language with large set of the libraries in
most of the domains.

2) THREATS TO EXTERNAL VALIDITY
In our experiment, threats to external validity are as follows.
The first threat is that the dataset used has only two types
of code smells, namely class-level and Method-level smells.
The second threat is related to application software from
which dataset is generated are all Java source code. Thus, our
approach might not be appropriate for C/C++ source codes.

3) THREATS TO CONCLUSION VALIDITY
This threat focuses on evaluating the performance of
prediction models. 10-fold cross-validation is used to eval-
uate predictive models using multiple evaluation metrics,
including accuracy, F1-score, precision, and recall. Although
these evaluation metrics are not sufficient, to compare
our results with existing techniques, the same metrics are
used to evaluate the performance of models as taken from

162880 VOLUME 9, 2021



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

TABLE 20. Comparison of our approach with other related works.

Fontana et al. [18]. To manage this threat, the confidence
value of each prediction is calculated, and using feature
selection, the important metrics are identified that have higher
impact on prediction which helps the prediction model to take
the correct decisions.

VI. CONCLUSION AND FUTURE WORK
In this paper, a novel approach is proposed to predict the
code smells from the software and detect the metrics that
contribute a significant role in the detection process using
machine learning techniques. Four code smell datasets (God
class, Data class, Feature-envy and Long-method) generated
from 74 open-source system (Fontana et al. [18]) are
used. The Chi-Square and Wrapper-based feature selection
technique is applied to detect the best metrics that can be used
to improve the accuracy. The Grid search algorithm is applied
for the parameter optimization technique that significantly
improves the accuracy of all algorithms.

The six different machine learning algorithms (Naive
Bayes, KNN, Multilayer Perceptron, Decision Tree, Random
Forest and Logistic Regression) are used to detect metrics
from code smell datasets that are generated from 74 open-
source system (Fontana et al. [18]). The main contribution
of this paper is two-fold: In first step machine learning
algorithms are used for detecting the code smells. In the
second step the performance measurement (Accuracy, Preci-
sion, Recall, and F1-Score), are calculated. The performance
was improved by applying chi-square and wrapper-based
feature selection techniques along with grid search algorithm
with 10-fold cross-validation technique. In this paper, it is
observed that for Data class dataset Random Forest algorithm
achieved highest accuracy 99.74% when all features were
considered while worst performance was achieved by Naive
Bayes 83.10% when all features were considered. In case
of God class dataset Random Forest algorithm achieved
highest accuracy 98.21% when chi- square feature selection
technique was used while worst performance was achieved
by KNN 93.81%when chi-square feature selection technique
was used. In case of Feature-envy dataset Decision tree

algorithm achieved highest accuracy 98.60% when all
features were considered while worst performance was
achieved by KNN 84.85% using wrapper-based feature
selection technique. In case of Long-method dataset Logistic
Regression achieved highest accuracy 100%when all features
were considered while worst performance was achieved
by Naive Bayes 95.20% using chi-square feature selection
technique.

REFERENCES
[1] M. M. Lehman, ‘‘Programs, life cycles, and laws of software evolution,’’

Proc. IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980.
[2] K. Wiegers and J. Beatty, Software Requirements. London, U.K.: Pearson

Education, 2013.
[3] L. Chung and P. L. J. C. S. do, ‘‘On non-functional requirements in software

engineering,’’ in Conceptual Modeling: Foundations and Applications
(Lecture Notes in Computer Science), A. T. Borgida, V. Chaudhri,
P. Giorgini, and E. S. YuE, Eds. Cham, Switzerland: Springer, 2009,
pp. 363–379.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code, 1st ed. Reading, MA, USA:
Addison-Wesley, 1999.

[5] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, ‘‘Detecting defects
in object-oriented designs: Using reading techniques to increase software
quality,’’ in Proc. 14th ACM SIGPLAN Conf. Object-Oriented Program.,
Syst., Lang., Appl. (OOPSLA), 1999, pp. 47–56.

[6] O. Ciupke, ‘‘Automatic detection of design problems in object-oriented
reengineering,’’ in Proc. Technol. Object-Oriented Lang. Syst. (TOOLS),
1999, pp. 18–32.

[7] W. Abdelmoez, E. Kosba, and A. F. Iesa, ‘‘Risk-based code smells
detection tool,’’ in Proc. Int. Conf. Comput. Technol. Inf. Manage.
(ICCTIM), 2014, pp. 148–159.

[8] E. Murphy-Hill and A. P. Black, ‘‘An interactive ambient visualization for
code smells,’’ in Proc. 5th Int. Symp. Softw. Visualizat. (SOFTVIS), 2010,
pp. 5–14.

[9] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. D. Lucia, ‘‘Mining version histories for detecting code smells,’’ IEEE
Trans. Softw. Eng., vol. 41, no. 5, pp. 462–489, May 2015.

[10] H. Liu, X. Guo, and W. Shao, ‘‘Monitor-based instant software refactor-
ing,’’ IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1112–1126, Aug. 2013.

[11] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, ‘‘Detecting bad smells in source code using change history
information,’’ in Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2013, pp. 268–278.

[12] A. A. Rao and K. N. Reddy, ‘‘Detecting bad smells in object oriented
design using design change propagation probability matrix 1,’’ in Proc. Int.
MultiConf. Eng. Comput. Sci. (IMECS), vol. 1, Hong Kong, Mar. 2008.

VOLUME 9, 2021 162881



S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

[13] R. Marinescu, ‘‘Detection strategies: Metrics-based rules for detecting
design flaws,’’ in Proc. 20th IEEE Int. Conf. Softw. Maintenance,
Sep. 2004, pp. 350–359.

[14] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. L. Meur, ‘‘DECOR:
A method for the specification and detection of code and design smells,’’
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, Jan. 2010.

[15] N. Tsantalis and A. Chatzigeorgiou, ‘‘Identification of move method
refactoring opportunities,’’ IEEE Trans. Softw. Eng., vol. 35, no. 3,
pp. 347–367, May 2009.

[16] N.Moha, Y.-G. Guéhéneuc, A.-F.-L. Meur, L. Duchien, and A. Tiberghien,
‘‘From a domain analysis to the specification and detection of code and
design smells,’’ Formal Aspects Comput., vol. 22, no. 3, pp. 345–361,
May 2010.

[17] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
‘‘A cooperative parallel search-based software engineering approach
for code-smells detection,’’ IEEE Trans. Softw. Eng., vol. 40, no. 9,
pp. 841–861, Sep. 2014.

[18] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, ‘‘Comparing
and experimenting machine learning techniques for code smell detection,’’
Empirical Softw. Eng., vol. 21, no. 3, pp. 1143–1191, Jun. 2016.

[19] A. Yamashita and L. Moonen, ‘‘Exploring the impact of inter-smell
relations on software maintainability: An empirical study,’’ in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 682–691.

[20] A. Yamashita and S. Counsell, ‘‘Code smells as system-level indicators
of maintainability: An empirical study,’’ J. Syst. Softw., vol. 86, no. 10,
pp. 2639–2653, 2013.

[21] A. Yamashita and L.Moonen, ‘‘Do code smells reflect important maintain-
ability aspects?’’ inProc. 28th IEEE Int. Conf. Softw.Maintenance (ICSM),
Sep. 2012, pp. 306–315.

[22] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå,
‘‘Quantifying the effect of code smells on maintenance effort,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 8, pp. 1144–1156, 2013.

[23] D. Sahin, M. Kessentini, S. Bechikh, and K. Ded, ‘‘Code-smells detection
as a bi-level problem,’’ ACM Trans. Softw. Eng. Methodol., vol. 24, no. 1,
p. 6, 2014.

[24] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, ‘‘The evolution and
impact of code smells: A case study of two open source systems,’’ in Proc.
3rd Int. Symp. Empirical Softw. Eng. Meas., Oct. 2009, pp. 390–400.

[25] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, ‘‘Are all code smells
harmful? A study of god classes and brain classes in the evolution of
three open source systems,’’ in Proc. IEEE Int. Conf. Softw. Maintenance,
Sep. 2010, pp. 1–10.

[26] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, ‘‘An exploratory study of
the impact of code smells on software change-proneness,’’ in Proc. 16th
Work. Conf. Reverse Eng., 2009, pp. 75–84.

[27] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shepperd,
‘‘A controlled experiment investigation of an object-oriented design
heuristic for maintainability,’’ J. Syst. Softw., vol. 72, no. 2, pp. 129–143,
Jul. 2004.

[28] R. Perez-Castillo and M. Piattini, ‘‘Analyzing the harmful effect of god
class refactoring on power consumption,’’ IEEE Softw., vol. 31, no. 3,
pp. 48–54, May 2014.

[29] W. Li and R. Shatnawi, ‘‘An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,’’
J Syst. Softw., vol. 80, no. 7, pp. 1120–1128, Jul. 2007.

[30] T. Sharma and D. Spinellis, ‘‘A survey on software smells,’’ J. Syst. Softw.,
vol. 138, pp. 158–173, Apr. 2018.

[31] G. Rasool and Z. Arshad, ‘‘A review of code smell mining techniques,’’
J. Softw., Evol. Process, vol. 27, no. 11, pp. 867–895, Nov. 2015.

[32] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, ‘‘A review-
based comparative study of bad smell detection tools,’’ in Proc. 20th Int.
Conf. Eval. Assessment Softw. Eng., Jun. 2016, pp. 1–12.

[33] F. Arcelli Fontana andM. Zanoni, ‘‘Code smell severity classification using
machine learning techniques,’’ Knowl.-Based Syst., vol. 128, pp. 43–58,
Jul. 2017.

[34] M. N. Pushpalatha and M. Mrunalini, ‘‘Predicting the severity of open
source bug reports using unsupervised and supervised techniques,’’ Int. J.
Open Source Softw. Processes, vol. 10, no. 1, pp. 1–15, Jan. 2019.

[35] M. Y. Mhawish and M. Gupta, ‘‘Generating code-smell prediction rules
using decision tree algorithm and software metrics,’’ Int. J. Comput. Sci.
Eng., vol. 7, no. 5, pp. 41–48, May 2019.

[36] M. Y. Mhawish and M. Gupta, ‘‘Predicting code smells and analysis of
predictions: Using machine learning techniques and software metrics,’’
J. Comput. Sci. Technol., vol. 35, no. 6, pp. 1428–1445, Nov. 2020, doi:
10.1007/s11390-020-0323-7.

[37] T. Guggulothu and S. A. Moiz, ‘‘Code smell detection using multi-label
classification approach,’’ Softw. Qual. J., vol. 28, no. 3, pp. 1063–1086,
Sep. 2020, doi: 10.1007/s11219-020-09498-y.

[38] T. Guggulothu and S. A. Moiz, ‘‘Detection of shotgun surgery and
message chain code smells using machine learning techniques,’’ Int.
J. Rough Sets Data Anal., vol. 6, no. 2, pp. 34–50, Apr. 2019, doi:
10.4018/IJRSDA.2019040103.

[39] G. Himanshu, T. G. Kulkarni, L. Kumar, L. B. M. Neti, and A. Krishna,
‘‘An empirical study on predictability of software code smell using
deep learning models,’’ in Proc. Int. Conf. Adv. Inf. Netw. Appl., 2021,
pp. 120–132, doi: 10.1007/978-3-030-75075-6_10.

[40] I. Kaur and A. Kaur, ‘‘A novel four-way approach designed with
ensemble feature selection for code smell detection,’’ IEEE Access, vol. 9,
pp. 8695–8707, 2021, doi: 10.1109/ACCESS.2021.3049823.

[41] M.M.Draz,M. S. Farhan, S. N. Abdulkader, andM.G. Gafar, ‘‘Code smell
detection using whale optimization algorithm,’’Comput., Mater. Continua,
vol. 68, no. 2, pp. 1919–1935, 2021.

[42] N. Pritam, M. Khari, L. H. Son, R. Kumar, S. Jha, I. Priyadarshini,
M. Abdel-Basset, and H. V. Long, ‘‘Assessment of code smell for
predicting class change proneness using machine learning,’’ IEEE Access,
vol. 7, pp. 37414–37425, 2019.

[43] M. Hadj-Kacem and N. Bouassida, ‘‘A hybrid approach to detect
code smells using deep learning,’’ in Proc. 13th Int. Conf. Eval.
Novel Approaches Softw. Eng., 2018, pp. 137–146, doi: 10.5220/
0006709801370146.

[44] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, ‘‘The qualitas corpus: A curated collection of Java code for
empirical studies,’’ in Proc. Asia Pacific Softw. Eng. Conf., Nov. 2010,
pp. 336–345.

[45] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, ‘‘Are all code smells
harmful? A study of god classes and brain classes in the evolution of
three open source systems,’’ in Proc. IEEE Int. Conf. Softw. Maintenance,
Sep. 2010, pp. 1–10, doi: 10.1109/ICSM.2010.5609564.

[46] C. Marinescu, R. Marinescu, P. Mihancea, D. Ratiu, and R. Wettel,
‘‘iPlasma: An integrated platform for quality assessment of object-oriented
design,’’ in Proc. 21st IEEE Int. Conf. Softw. Maintenance (ICSM),
Budapest, Hungary, Jan. 2005, pp. 77–80.

[47] K. Nongpong, ‘‘Integrating ‘code smells’ detection with refactoring tool
support,’’ Ph.D. dissertation, College Eng. Appl. Sci., Univ. Wisconsin
Milwaukee, Milwaukee, WI, USA, Aug. 2012.

[48] R.Marinescu, ‘‘Measurement and quality in object oriented design,’’ Ph.D.
dissertation, Dept. Comput. Sci., Polytech. Univ. Timisoara, Timişoara,
Romania, 2002.

[49] A. J. Riel,Object-Oriented Design Heuristics, 1st ed. Reading, MA, USA:
Addison-Wesley, 1996.

[50] G. Forman, M. Scholz, and S. Rajaram, ‘‘Feature shaping for linear SVM
classifiers,’’ inProc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), 2009, pp. 299–308.

[51] J. P. M. Ali and H. R. Faraj, ‘‘Data normalization and standardization : A
technical report,’’Mach. Learn. Tech. Rep., vol. 1, no. 1, pp. 1–6, 2014.

[52] D. Chicco, ‘‘Ten quick tips for machine learning in computational
biology,’’ BioData Mining, vol. 10, no. 1, p. 35, 2017.

[53] C. W. Hsu, C. C. Chang, and C. J. Lin, ‘‘A practical guide to support vector
classification,’’ Dept. Comput. Sci. Inf. Eng., Univ. Nat. Taiwan, Taipei,
Taiwan, Tech. Rep., 2003, pp. 1–12.

[54] C. Catal, ‘‘Performance evaluation metrics for software fault prediction
studies,’’ Acta Polytechnica Hungarica, vol. 9, no. 4, pp. 193–206, 2012.

[55] E. Romero and J. M. Sopena, ‘‘Performing feature selection with
multilayer perceptrons,’’ IEEE Trans. Neural Netw., vol. 19, no. 3,
pp. 431–441, Mar. 2008.

[56] G. I. Webb, ‘‘Naïve Bayes,’’ in Encyclopedia of Machine Learning,
C. Sammut and G. I. Webb, Eds. Boston, MA, USA: Springer, 2011, doi:
10.1007/978-0-387-30164-8_576.

[57] KNN Algorithm—Finding Nearest Neighbors. Accessed: Nov. 11, 2021.
[Online]. Available: https://www.tutorialspoint.com/machine_learning_
with_python/machine_learning_with_python_knn_algorithm_finding_
nearest_neighbors.htm

[58] P. Cortez, ‘‘Data mining with multilayer perceptrons and support vector
machines,’’ in Data Mining: Foundations and Intelligent Paradigms.
Intelligent Systems Reference Library, vol. 24, D. E. Holmes and L. C. Jain,
Eds. Berlin, Germany: Springer, 2012, doi: 10.1007/978-3-642-23241-
1_2.

162882 VOLUME 9, 2021

http://dx.doi.org/10.1007/s11390-020-0323-7
http://dx.doi.org/10.1007/s11219-020-09498-y
http://dx.doi.org/10.4018/IJRSDA.2019040103
http://dx.doi.org/10.1007/978-3-030-75075-6_10
http://dx.doi.org/10.1109/ACCESS.2021.3049823
http://dx.doi.org/10.5220/0006709801370146
http://dx.doi.org/10.5220/0006709801370146
http://dx.doi.org/10.1109/ICSM.2010.5609564
http://dx.doi.org/10.1007/978-0-387-30164-8_576
http://dx.doi.org/10.1007/978-3-642-23241-1_2
http://dx.doi.org/10.1007/978-3-642-23241-1_2


S. Dewangan et al.: Novel Approach for Code Smell Detection: Empirical Study

[59] M. N. Murty and V. S. Devi, ‘‘Decision trees,’’ in Pattern Recognition.
Undergraduate Topics in Computer Science. London, U.K.: Springer,
2011, doi: 10.1007/978-0-85729-495-1_6.

[60] A. J. Soto, R. L. Cecchini, G. E. Vazquez, and I. Ponzoni, ‘‘A wrapper-
based feature selection method for ADMET prediction using evolutionary
computing,’’ in Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics, vol. 4973, E. Marchiori and J. H. Moore Eds.
Berlin, Germany: Springer, 2008, pp. 188–199, doi: 10.1007/978-3-540-
78757-0_17.

[61] Selecting the Best Subset. Accessed: Nov. 11, 2021. [Online]. Available:
https://images.app.goo.gl/1PAv9VM1Rm7xBWW97

[62] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
‘‘Detecting code smells using machine learning techniques: Are we there
yet?’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Mar. 2018, pp. 612–621, doi: 10.1109/SANER.2018.8330266.

[63] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, ‘‘Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,’’ Inf. Softw. Technol., vol. 108, pp. 115–138, Apr. 2019.

[64] F. Pecorelli, F. Palomba, D. D. Nucci, and A. D. Lucia, ‘‘Comparing
heuristic and machine learning approaches for metric-based code smell
detection,’’ in Proc. IEEE/ACM 27th Int. Conf. Program Comprehension
(ICPC), May 2019, pp. 93–104, doi: 10.1109/ICPC.2019.00023.

SEEMA DEWANGAN received the MCA degree
from the Department of Computer Science
and Information Technology, Guru Ghasidas
Vishwavidyalaya (a central university), Bilaspur,
Chhattisgarh, India, in 2012. She is currently
a Research Scholar with the Department of
Computer Science and Information Technology,
Guru Ghasidas Vishwavidyalaya. Her research
interests include design patterns mining and code
smell detection.

RAJWANT SINGH RAO received the Ph.D.
degree from the Department of Computer Science,
Institute of Science, Banaras Hindu University,
Varanasi. He is currently working as an Assistant
Professor with the Department of Computer Sci-
ence and Information Technology, Guru Ghasidas
Vishwavidyalaya (a central university), Bilaspur,
Chhattisgarh, India. His research interests include
design patterns mining, code smell detection, and
machine learning.

ALOK MISHRA (Senior Member, IEEE) is a Pro-
fessor in informatics and digitalization at Molde
University College (a specialized university in
logistics), Norway. His research interests include
software engineering, information systems, infor-
mation technology, and artificial intelligence.
He is actively involved in editing special issues
of reputed journals in his areas of research
interest. He had also extensive experience in online
education related to computing and management

disciplines. In teaching, he has received Excellence in Online Education
Award by U21Global Singapore, while in research he has been awarded
by Scientific and Research Council of Turkey and Board of Management
of University for outstanding publications in science and social science
citation indexed (Thomson Reuter) journals. He was a recipient of many
scholarships, international awards, and research projects. He is an Editorial
Board Member of many reputed journals, including Computer Standards &
Interfaces (Elsevier), Journal of Universal Computer Science, Computing
and Informatics, and Data Technologies and Applications journal.

MANJARI GUPTA received the Ph.D. degree from
the Indian Institute of Technology (Banaras Hindu
University), in 2008. She is currently working
as an Associate Professor (computer science) at
the DSTCentre for InterdisciplinaryMathematical
Sciences, Banaras Hindu University, Varanasi. Her
research interests include software engineering
and artificial intelligence. More specially, her
work is on design patterns detection, code smell
detection, object-oriented frameworks, and appli-

cation of artificial intelligence in this area. She also works on video
processing, in particular action recognition using deep learning techniques.

VOLUME 9, 2021 162883

http://dx.doi.org/10.1007/978-0-85729-495-1_6
http://dx.doi.org/10.1007/978-3-540-78757-0_17
http://dx.doi.org/10.1007/978-3-540-78757-0_17
http://dx.doi.org/10.1109/SANER.2018.8330266
http://dx.doi.org/10.1109/ICPC.2019.00023

