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Abstract The area of fractional calculus (FC) has
been fast developing and is presently being applied in
all scientific fields. Therefore, it is of key relevance to
assess the present state of development and to fore-
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see, if possible, the future evolution, or, at least, the
challenges identified in the scope of advanced research
works. This paper gives a vision about the directions for
further research as well as some open problems of FC.
A number of topics in mathematics, numerical algo-
rithms and physics are analyzed, giving a systematic
perspective for future research.

Keywords Fractional calculus · Sonine kernels ·
General fractional integrals and derivatives · Fractional
differential equations · Numerical solution · Fractional
dynamics

1 Introduction

In 1695, Gottfried Leibniz exchanged ideas with other
mathematicians about what he called fractional cal-
culus (FC). FC appeared as a misname and general-
ized integro-differentiation seems more adequate, but
the name FC remained due to historical reasons [1–4].
The FC generalizes the standard differential calculus to
non-integer orders, real or complex. This scientific tool
remained mainly in the area of pure mathematics until
the last two decades (see, e.g., [5]), when the research
community recognized its superior performance for
describing many natural and artificial phenomena. For
a comprehensive treatment of present-day knowledge
in FC, the readers are referred to Kochubei and Luchko
[6,7] for mathematics, Karniadakis [8] for numerical
analysis, Tarasov [9,10] physics, Petráš [11] control,
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Fig. 1 Network plot using Co-occurrence, with options Index keywords, Fractional counting

Băleanu and Lopes and [12,13] for applications. The
FC became very popular in all branches of science and
an active area of development. We recall the list of 23
problems raised by Hilbert by the beginning of the 20th
century and its influence upon the succeeding decades
of research. While many problems were solved, efforts
are still on-going for answering the remaining ones.
Therefore, formulating not only possible challenges
and problems, but also pointing toward future direc-
tions of research may have a significant impact. This
manuscript gives the vision of the authors in what con-
cerns the key upcoming issues of this fast advancing
area of knowledge.

We can estimate of the present-day state of FC
using present-day publicly available information, just
to remind that until 1974 there were only one book and
one conference proceedings volume devoted to FC as
a topic, while by 2018 the FC books were estimated
to more than 240 (see [14] and Table 1 in [15]), and
the published FC articles are hardly to be counted as
thousands. For that purpose, we selected the program
VOSviewer [16–21] as the software tool for process-
ing and clustering bibliographic information. We tack-
led data available at Scopus database and collected
papers published during year 2020. Moreover, 8 search
keywords where adopted, namely the set {Fractional

calculus, Fractional derivative, Fractional integration,
Fractional dynamics,Mittag-Leffler,Derivative of non-
integer order, Integral of non-integer order, Derivative
of complex order, Integral of complex order} that led
to 6589 records. The VOSviewer allows a multitude
of possible perspectives of bibliographic analysis, but,
for the sake of parsimony, we focus on three types of
scrutiny based on network plots:

– Co-occurrence, with options Index keywords,
Fractional counting,Minimumnumber of occur-
rence of a keyword: 5, that reveals 1116 key-
words, as portrayed in Fig. 1

– Co-authorship, with options Countries, Frac-
tional counting, Minimum number of docu-
ments of a country: 5, andMinimum number of
citations of a country: 2, that includes 71 coun-
tries, represented in Fig. 2

– Bibliographic coupling, with options Countries,
Fractional counting, Minimum number of doc-
uments of a country: 5, Minimum number of
citations of a country: 2, that leads to 71 coun-
tries, shown in Fig. 3

Figure 1 shows that FC is presently applied in all
fields of science. Additionally, we observe two main
clusters: one that includes the areas of mathematics,
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Fig. 2 Network plot using Co-authorship, with options Countries, Fractional counting

physics, engineering, and economy, and a more recent
one that covers medicine, biology, and genetics. Fig-
ures 2 and 3 portrait also two main clusters. One major
cluster corresponds to China, USA, most European
countries, Russia, South America and several countries
of Asia, such as, Japan, South Korea, and Australia. A
second cluster is formed by more recent contributions
mostly fromMiddle East and south Asia, such as India,
Iran, Turkey, Saudi Arabia, and Pakistan.

The emerging clusters are clearly correlatedwith the
world state of FC. On the one hand, the applicability
of FC for describing complex phenomena including
nonlocality and memory effects, which accounts for
the results in Fig. 1, is well known. On the other hand,
the portraits in Figs. 2 and 3 are also natural, since we
have a historical development of FC in the countries
located in the first cluster, while we observe countries
joining more recently the area of FC that form the right
cluster.

Given this state of affairs, we outline our vision for
a future solid progress of FC in the next sections. Sec-
tion 2 discusses important analytical aspects that need

further work. Section 3 addresses numerical problems
in the scopeof present-day computational era. Section 4
analyzes problems in physics and the application of the
FC tools. Finally, Sect. 5 outlines themain conclusions.
Due to space limitations, these sections can only cover
a limited set of topics and must necessarily reflect the
authors’ perspectives. Nonetheless, the present work
gives a synthetic view and not only stimulates a sound
scientific debate but also gives room for a future contin-
uation that may also cover additional aspects. It is our
sincere hope that this paper opens the door for further
suggestions and discussions in this respect.

2 Analytical aspects

The fractional integrals and derivatives of arbitrary
order α ∈ R or even α ∈ C can be roughly char-
acterized as an interpolation of the nth-order deriva-
tives and the n-fold definite integrals (n ∈ N). Evi-
dently, without posing some additional conditions, this
interpolation is not unique and thus, several different
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Fig. 3 Network plot using Bibliographic coupling, with options Countries, Fractional counting

definitions of the FC operators have been suggested
starting from the very origins of this theory. In particu-
lar, the Riemann–Liouville integral and derivative, the
Grünwald–Letnikov derivative, the Marchaud deriva-
tive, the Weyl integral and derivative of periodic func-
tions, the Erdélyi–Kober integral and derivative, the
Hadamard integral and derivative, the Riesz and the
Feller potentials and fractional derivatives, and the
Dzherbashian–Caputo fractional derivative have been
introduced and studied to mention only some of the
most used FC fractional integrals and derivatives. How-
ever, these operators were defined neither artificially
nor arbitrarily. All of them possess a strong mathe-
matical motivation and their definitions and properties
were exactly adjusted both to the spaces of functions
and their domains and to the problems that these oper-
ators were useful for. For a detailed discussion of the
classical FC operators including their history and appli-
cations, we refer the readers to the “bible of FC”—the

encyclopedic monograph [22] and to the recent books
[6,23,24]. Later on, some other fractional integrals and
derivatives were introduced in form of integral and
integro-differential operators with the suitable special
functions in the kernels, see, e.g., [25,26]. These oper-
ators proved to have also various useful applications in
several mathematical topics.

Within the last few years, the situation in FC essen-
tially changed. Several new definitions of the fractional
derivatives were suggested and, unfortunately, some of
them cannot be called neither fractional nor derivatives,
see, e.g., [27,28]. Thus, the questions like “What are
the fractional integrals and derivatives?”, “What are
their decisive mathematical properties?”, “What frac-
tional operators make sense in applications and why?”
became extremely important and acute.

The aim of this section is in providing some partial
answers to the questions mentioned above (see [29]
for further contributions to this topic). We start with a
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discussion of the characteristic properties that the one-
parameter FC operators should possess. Then, we con-
sider an example of realization of this schema in the
case of the fractional integrals and derivatives acting
on the functions defined on a finite interval. Finally, we
discuss a class of the general fractional derivatives with
the Sonine kernels defined for the functions on the real
positive semi-axis and formulate some open problems
for further research.

2.1 Desiderata for the FC operators

In this subsection, we closely follow the ideas recently
presented in [30]. For the sake of brevity, we restrict
ourselves to the case of the one-parameter fractional
integrals and derivatives of a real order α ≥ 0. The
properties formulated below should be valid on some
suitable spaces of functions that we do not specify here
(see [30] for details).

The families of the operators I α, α ≥ 0 and
Dα, α ≥ 0 can be interpreted as fractional integrals
and fractional derivatives, respectively, if they satisfy
the following six properties (called desiderata in [30]):

(HL1) The operators I α and Dα are linear operators
on the suitable linear spaces of functions.

(HL2) For the operators I α , the index law (semigroup
property)

I α1 ◦ I α2 = I α1+α2 , α1, α2 ≥ 0 (1)

holds true, where ◦ denotes composition of
operators.

(HL3) The operator Dα is left inverse to the operator
I α:

Dα ◦ I α = Id, α ≥ 0. (2)

(HL4) The following limits exist in some sense

lim
α→0

Dα = D0, lim
α→1

Dα = D1 (3)

and define linear maps.
(HL5) The map D0 is the identity operator.
(HL6) The map D1 is the first-order derivative.

We mention once again that the precise formula-
tions of the properties (desiderata) (HL1)–(HL6) pre-
sented above can be found in [30]. In particular, in
[30], a description of the spaces of functions, where
these properties should hold valid, is provided. Some
examples of realization of the schema specified by the
properties (HL1)–(HL6) were discussed in the recent
publications [31–33].

2.2 One-parameter FC operators on a finite interval

This subsection is devoted to a description of a one-
parameter family of the fractional integrals defined for
the functions on a finite interval and several families
of the corresponding fractional derivatives in the sense
of the desiderata presented in the previous subsection.
For the details and the proofs of the theorems, we refer
to the recent publication [34].

We start with an important result regarding a char-
acterization of a one-parameter family of the fractional
integrals defined for the functions on a finite interval.

Theorem 1 [35] Let E be the space L p(0, 1), 1 ≤
p < +∞, or C[0, 1]. Then, there is precisely one fam-
ily I α, α > 0 of operators on E satisfying the following
conditions:

(CM1) (I 1 f )(x) = ∫ x
0 f (t) dt, f ∈ E (interpolation

condition),
(CM2) (I α I β f )(x) = (I α+β f )(x), α, β > 0, f ∈

E (index law),
(CM3) α → I α is a continuous map of (0, +∞) into

L(E) for some Hausdorff topology on L(E),
weaker than the norm topology (continuity),

(CM4) f ∈ E and f (x) ≥ 0 (a.e. for E = L p(0, 1))
⇒ (I α f )(x) ≥ 0 (a.e. for E = L p(0, 1)) for
all α > 0 (non-negativity).

That family is given by the Riemann–Liouville frac-
tional integrals with α > 0:

(I α f )(x) =
{

1
Γ (α)

∫ x
0 (x − t)α−1 f (t) dt, α > 0,

f (x), α = 0.
(4)

As we see, Theorem 1 does not cover the case α =
0. However, it is well known [22, Theorem 2.6] that
the Riemann–Liouville fractional integrals I α, α ≥ 0
given by (4) form a semigroup in L p(0, 1), p ≥ 1,
which is strongly continuous for all α ≥ 0, i.e., the
relation

lim
α→α0

‖I α f − I α0 f ‖L p(0,1) = 0 (5)

holds valid for any α0, α0 ≥ 0 and for any f ∈
L p(0, 1). Thus, we can uniquely extend the family of
the Riemann–Liouville fractional integrals defined for
α > 0 to a family defined for α ≥ 0 by setting I 0 = Id.
Evidently, this extended family of operators satisfies
the properties (CM1)–(CM4) for all α ≥ 0.

The conditions formulated in Theorem 1 are much
stronger than those presented in the previous subsec-
tion. However, they are very natural and useful for
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applications and thus, in a certain sense, the Riemann–
Liouville fractional integrals are the only “right” one-
parameter family of the fractional integrals defined for
the functions on a finite interval.

In what follows, without loss of generality, we
restrict ourselves to the operators defined on the inter-
val [0, 1].

In order to introduce the suitable fractional deriva-
tives, the following result regarding solvability of the
Abel integral equation is employed:

Theorem 2 [22] The Abel integral equation

(I α φ)(x) = 1

Γ (α)

∫ x

0
(x − t)α−1 φ(t) dt

= f (x), 0 < α < 1, x ∈ [0, 1] (6)

possesses a unique solution in L1(0, 1) if and only if

I 1−α f ∈ AC([0, 1]) and (I 1−α f )(0) = 0, (7)

where the notation AC([0, 1]) stands for the space of
functions that are absolutely continuous on the interval
[0, 1]:

f ∈ AC([0, 1]) ⇔ ∃φ ∈ L1(0, 1) :
f (x) = f (0) +

∫ x

0
φ(t) dt, x ∈ [0, 1]. (8)

If these conditions are satisfied, the solution is given by
the formula

φ(x) = d

dx
(I 1−α f )(x)

= d

dx

1

Γ (1 − α)

∫ x

0
(x − t)−α f (t) dt,

0 < α < 1. (9)

Using the representation (8), we define a (weak)
derivative of a function f ∈ AC([0, 1]):

f (x) = f (0) +
∫ x

0
φ(t) dt, x ∈ [0, 1]

⇒ d f

dx
:= φ ∈ L1(0, 1). (10)

In the further discussions, we interpret the first-order
derivative of the absolutely continuous functions in the
sense of the formula (10).

According to the property (HL3) from the desider-
ata, a fractional derivative for the functions defined
on a finite interval is introduced as a linear operator
Dα, α ≥ 0 left inverse to the Riemann–Liouville frac-
tional integral I α , i.e., as an operator that satisfies the
relation (1st Fundamental Theorem of FC)

(Dα I α φ)(x) = φ(x), x ∈ [0, 1] (11)

on an appropriate nontrivial space of functions.
It turns out that there exist infinitely many differ-

ent families of the fractional derivatives in the sense
of relation (11). In the rest of this subsection, we dis-
cuss some known and new families of the fractional
derivatives on the interval [0, 1] (see [34] for details).
Remark 1 The formula (11) and the relation (I 0 f )(x)

= f (x) uniquely define the fractional derivative of
order α = 0 as the identity operator: (D0 f )(x) =
f (x). In what follows, we mainly restrict ourselves to
the case 0 < α ≤ 1 and to the space L1(0, 1) and its
subspaces (a similar theory can be developed for, say,
L p(0, 1), 1 < p < +∞ and its subspaces).

The formula (11) can be rewritten in equivalent form
of two equations:

(I α φ)(x) = f (x), (Dα f )(x) = φ(x), x ∈ [0, 1].
(12)

As we see, the second of equations (12) defines the
fractional derivative Dα of a function f as the solu-
tion φ of the Abel integral equation with the right-hand
side f . Now we recall Theorem 2 and reformulate it as
follows:

Theorem 3 On the space of functions I α(L1(0, 1)),
the unique fractional derivative Dα of order α, 0 <

α < 1, is the Riemann–Liouville fractional derivative
given by the formula

(
Dα
RL f

)
(x) = d

dx
(I 1−α f )(x)

= d

dx

1

Γ (1 − α)

∫ x

0
(x − t)−α f (t) dt.

(13)

Evidently, the formula (13) makes sense for a space
of functions larger than I α(L1(0, 1)), namely, for the
space { f : I 1−α f ∈ AC([0, 1])}.

Moreover, the 1st Fundamental Theorem of FC
(relation (11)) for the Riemann–Liouville fractional
derivative is valid on the whole space L1(0, 1), i.e.,
the formula
(
Dα
RL I α f

)
(x) = f (x), x ∈ [0, 1], f ∈ L1(0, 1)

(14)

holds true [22].
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For the Riemann–Liouville fractional derivatives,
the properties (HL4)–(HL6) from the desiderata formu-
lated in the previous subsection are valid on the suitable
spaces of functions (see, e.g., [22]). Thus, the fami-
lies of the Riemann–Liouville fractional integrals and
derivatives are the fractional integrals and derivatives
in the sense of the desiderata.

However, there exist infinitely many other one-
parameter families of the fractional derivatives associ-
ated with the Riemann–Liouville fractional integrals.
They are introduced in the rest of this subsection (see
[34] for details).

On the space AC([0, 1]), the Caputo fractional
derivative Dα

C of order α, 0 < α ≤ 1, is defined as
follows:

(
Dα
C f

)
(x) =

(

I 1−α d

dx
f

)

(x). (15)

As in the case of the Riemann–Liouville fractional
derivative, the 1st Fundamental Theorem of FC (rela-
tion (11)) for the Caputo fractional derivative is valid
on the even larger space of functions

XFT = {
f : I α f ∈ AC([0, 1]) and (I α f )(0) = 0

}
,

(16)

i.e., the formula
(
Dα
C I α f

)
(x) = f (x), x ∈ [0, 1], f ∈ XFT (17)

holds true [34]. It is worth mentioning that the space
XFT can be also characterized as follows (Theorem 2.3
in [22]):

XFT = I 1−α(L1(0, 1))

(∀ f ∈ XFT ∃φ ∈ L1(0, 1) : f (x)=(I 1−α φ)(x)). (18)

Another family of the fractional derivatives associ-
ated with the Riemann–Liouville fractional integral is
the Hilfer fractional derivatives of order α, 0 < α ≤ 1,
and type γ1, 0 ≤ γ1 ≤ 1 − α:

(
Dα,γ1
H f

)
(x) =

(

I γ1
d

dx
I 1−α−γ1 f

)

(x). (19)

This derivative is well defined on the space{
f : I 1−α−γ1 f ∈ AC([0, 1])}.
The 1st Fundamental Theorem of FC (relation (11))

for the Hilfer fractional derivative is valid on the space
XFT defined by (16) [34]:
(
Dα,γ1
H I α f

)
(x) = f (x), x ∈ [0, 1],

f ∈ XFT, 0 < α ≤ 1, 0 ≤ γ1 ≤ 1 − α. (20)

For every type γ1, 0 ≤ γ1 ≤ 1 − α, the Hilfer
fractional derivatives Dα,γ1

H of order α, 0 < α ≤ 1,
form a one-parameter family of the fractional deriva-
tives in the sense of the 1st Fundamental Theoremof FC
(relation (11)). For γ1 = 0, this family coincides with
the Riemann–Liouville fractional derivatives, while for
γ1 = 1 − α we get the Caputo fractional derivatives.

The construction of the Hilfer fractional derivative
can be extended to the case of n compositions of
the first-order derivatives and appropriate Riemann–
Liouville fractional integrals. As a result, we get
infinitely many different families of the one-parameter
fractional derivatives that were called in [34] the nth
level fractional derivatives of order α, 0 < α ≤ 1 and
type γ = (γ1, γ2, . . . , γn).

To define these fractional derivatives, we introduce
the parameters γ1, γ2, . . . , γn ∈ R that satisfy the con-
ditions

0 ≤ γk and α + sk ≤ k, k = 1, 2, . . . , n (21)

with sk in the form

sk :=
k∑

i=1

γi , k = 1, 2, . . . , n. (22)

The nth level fractional derivative of order α, 0 <

α ≤ 1 and type γ = (γ1, γ2, . . . , γn) is defined as
follows [34]:

(
Dα,(γ )

nL f
)
(x) =

(
n∏

k=1

(

I γk
d

dx

))

(I n−α−sn f )(x).

(23)

The right-hand side of (23) is well defined for the func-
tions from the space { f : (∏n

k=i (I γk d
dx )

)
I n−α−sn f ∈

AC([0, 1]), i = 2, . . . n + 1}.
The nth level fractional derivative of order α, 0 <

α ≤ 1 and any type γ = (γ1, γ2, . . . , γn) is associated
with the Riemann–Liouville fractional integral via the
1st Fundamental Theorem of FC.

Theorem 4 [34] The nth level fractional derivative is
a left-inverse operator to the Riemann–Liouville frac-
tional integral on the space XFT defined by (16):
(
Dα,(γ )

nL I α f
)
(x) = f (x), f ∈ XFT, x ∈ [0, 1]. (24)

Remark 2 In [36], the Cauchy problems for the frac-
tional differential equations with the operators similar
to the nth level fractional derivatives Dα,(γ )

nL (in other
notations and with other restrictions on the parameters)
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were treated. However, the connection to the Riemann–
Liouville fractional integrals in form of Theorem 4was
not discussed in [36].

For further properties of the nth level fractional
derivatives and the fractional relaxation equations with
these derivatives, we refer the interested reader to
[34,37].

2.3 General FC operators with the Sonine kernels

The previous subsections were devoted to the one-
parameter families of the fractional integrals and
derivatives. Without any doubts, these FC operators
can be interpreted as direct generalizations of the n-
fold integrals and integer-order derivatives and thus
they are objects important and useful both for analyti-
cal and numerical treatment and for applications. How-
ever, within the last years, somemore general fractional
operators were introduced and employed as models in
several applications including the linear viscoelastic-
ity and anomalous diffusion and wave propagation.
In particular, much attention was given to the multi-
term fractional differential operators that are the finite
sums of the one-parameter fractional derivatives with
different orders and their generalizations in form of
the distributed-order fractional derivatives that can be
interpreted as sums of infinitelymany fractional deriva-
tives with different orders that belong to a certain inter-
val (usually, to the intervals [0, 1], or [1, 2], or [0, 2]).
These more general fractional derivatives are deter-
mined either by finitely (multi-term case) or infinitely
(distributed-order case) many orders of the fractional
derivatives and thus they require a different procedure
for their characterization compared to the schema we
presented in the previous subsections.

One of the possible approaches for a descrip-
tion of both the single-term, the multi-term, and the
distributed-order fractional derivatives is in the frame-
work of the so-called general fractional calculus sug-
gested in [38].

In this subsection, we present some results derived
in [38] and in the recent publications [39–41] regarding
the general fractional derivatives (GFD) and the gen-
eral fractional integrals (GFI). We start with the case of
the operators with the “generalized order” restricted to
the interval (0, 1). TheGFDs of theRiemann–Liouville
and Caputo types, respectively, are defined as the fol-
lowing integro-differential operators of the convolution

type:

(D(k) f )(t) = d

dt

∫ t

0
k(t − τ) f (τ ) dτ, (25)

(∗D(k) f )(t) =
∫ t

0
k(t − τ) f ′(τ ) dτ, (26)

where k is a Sonine kernel defined below. For an abso-
lutely continuous function f satisfying f ′ ∈ L1

loc(R+),
the relation

(∗D(k) f )(t) = (D(k)( f − f (0)))(t)

= (D(k) f )(t) − k(t) f (0) (27)

between the Caputo and Riemann–Liouville types of
GFDs holds true. In [38], the Caputo-type GFD was
introduced in form of the right-hand side of (27) that
is well defined for a larger class of functions (in par-
ticular, for absolutely continuous functions) compared
to the definition (26) that requires the inclusion f ′ ∈
L1
loc(R+). In what follows, wemainly address the GFD

of the Caputo type in the sense of the right-hand side
of the formula (27).

The Riemann–Liouville and Caputo fractional
derivatives defined by (13) and (15), respectively, are
particular cases of the GFDs (25) and (26) with the
kernel

k(t) = h1−α(t), 0 < α < 1 (28)

with the power function hβ(t) := tβ−1/Γ (β), t >

0, β > 0. Other important particular cases of (25) and
(26) are the multi-term fractional derivatives and the
fractional derivatives of the distributed order. They are
generated by (25) and (26) with the kernels

k(t) =
n∑

m=1

am h1−αm (t), 0 < α1 < · · · < αn < 1,

am ∈ R, m = 1, . . . , n (29)

and

k(t) =
∫ 1

0
h1−α(t) dρ(α), (30)

respectively, where ρ is a Borel measure on [0, 1].
In [38], the case of the GFDs (25) and (27) with

the kernels that satisfy the following properties was
considered:

(K1) The Laplace transform k̃ of k,

k̃(p) = (L k)(p) =
∫ ∞

0
k(t) e−pt dt,

exists for all p > 0,
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(K2) k̃(p) is a Stieltjes function,
(K3) k̃(p) → 0 and pk̃(p) → ∞ as p → ∞,
(K4) k̃(p) → ∞ and pk̃(p) → 0 as p → 0.

In what follows, we denote the set of the kernels that
satisfy the conditions (K1)–(K4) by K. As shown in
[38], for each k ∈ K, there exists a completely mono-
tone function κ such that the Sonine condition holds
true:

(k ∗ κ)(t) =
∫ t

0
k(t − τ)κ(τ ) dτ = {1}, t > 0, (31)

whereby {1} we denote the function that takes the con-
stant value 1 for t > 0. The kernels that satisfy the
Sonine condition (31) are called the Sonine kernels.
The set of all Sonine kernels is denoted by S (K ⊂ S).
For the properties of the Sonine kernels and their exam-
ples we refer to [28,39–43] and other related publica-
tions.

A GFI with the kernel κ associated with the kernel k
of the GFD by means of the relation (31) is introduced
as follows:

(I(k) f )(t) =
∫ t

0
κ(t − τ) f (τ ) dτ. (32)

The notions of GFD and GFI are justified by the
following relations [38]:

(∗D(k) I(k) f )(t) = f (t), (33)

for any locally bounded measurable function f on R+
and

(I(k) ∗D(k) f )(t) = f (t) − f (0) (34)

for any absolutely continuous function f on R+.
The formula (33) and the relation (27) between the

GFDs of the Caputo and the Riemann–Liouville types
lead to the identity

(D(k) I(k) f )(t) = f (t), (35)

i.e., the Riemann–Liouville GFD is also a left-inverse
operator to the GFI defined by (32).

As mentioned in [28,42], the functions that satisfy
the Sonine condition (31) cannot be continuous at the
point t = 0 and thus the “new fractional derivatives”
with the continuous kernels introduced recently in the
FC literature do not belong to the class of the GFDs
that we discuss in this subsection.

Recently, in the papers [39–41], another important
class of the Sonine kernels was treated.

Definition 1 [39] Let κ, k ∈ C−1,0(0,+∞), where

Cα,β(0,+∞) = { f : f (t) = t p f1(t), t > 0,

α < p < β, f1 ∈ C[0,+∞)},(36)
be a pair of the Sonine kernels, i.e., the Sonine condi-
tion (31) be fulfilled. The set of such Sonine kernels is
denoted by L1:

(κ, k ∈ L1) ⇔ (κ, k ∈ C−1,0(0,+∞))

∧((κ ∗ k)(t) = {1}). (37)

The properties of the GFI and GFD with the kernels
from L1 including the 1st and the 2nd Fundamental
Theorems of FC were investigated in [39–41] on the
spaceC−1(0,+∞) := C−1,+∞(0,+∞). In particular,
we mention the mapping property

I(κ) : C−1(0,+∞) → C−1(0,+∞), (38)

the commutativity law

I(κ1) I(κ2) = I(κ2) I(κ1), κ1, κ2 ∈ L1, (39)

and the index law

I(κ1) I(κ2) = I(κ1∗κ2), κ1, κ2 ∈ L1 (40)

that are valid on the space C−1(0,+∞).

Theorem 5 [39] Let κ ∈ L1 and k be its associated
Sonine kernel.

Then, the GFD (25) is a left-inverse operator to the
GFI (32) on the space C−1(0,+∞):

(D(k) I(κ) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0,

(41)

and the GFD (26) is a left-inverse operator to the GFI
(32) on the space C−1,(k)(0,+∞):

(∗D(k) I(κ) f )(t)

= f (t), f ∈ C−1,(k)(0,+∞), t > 0, (42)

where C−1,(k)(0,+∞) := { f : f (t) = (I(k) φ)(t),
φ ∈ C−1(0,+∞)}.
Theorem 6 [39] Let κ ∈ L1 and k be its associated
Sonine kernel.

Then, the relations

(I(κ) ∗D(k) f )(t) = f (t) − f (0), t > 0, (43)

(I(κ) D(k) f )(t) = f (t), t > 0 (44)

hold valid for the functions f ∈ C1−1(0,+∞) := { f :
f ′ ∈ C−1(0,+∞)}.
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In [39,40], the n-fold GFIs and GFDs with the
Sonine kernels from L1 were defined and studied. For
details, we refer the interested readers to these publica-
tions. In the rest of this subsection, we discuss the GFI
and GFD of arbitrary order that were recently intro-
duced in [41].

To define these operators, we first formulate a con-
dition on their kernels that generalizes the Sonine con-
dition (31):

(κ ∗ k)(t) = {1}<n>(t), n ∈ N, t > 0, (45)

where

f <n>(t) := ( f ∗ . . . ∗ f
︸ ︷︷ ︸

n times

)(t).

Thus, the relation

{1}<n>(t) = hn(t) = tn−1

(n − 1)!
holds valid. Evidently, the Sonine condition corre-
sponds to the case n = 1 of the more general condition
(45).

Then, we proceed with defining the kernels that sat-
isfy the condition (45) and belong to the suitable spaces
of functions.

Definition 2 [41] Let the functions κ and k satisfy the
condition (45) and the inclusions κ ∈ C−1(0,+∞),
k ∈ C−1,0(0,+∞) hold true.

The set of pairs (κ, k)of suchkernelswill be denoted
by Ln .

As mentioned in [41], there are at least two rea-
sonable possibilities to construct a pair (κn kn) of the
kernels from Ln, n > 1 based on the Sonine kernels
κ, k from L1. The first strategy consists in building the
kernels κn = κ<n> and kn = k<n>. The kernels κn

and kn satisfy the relation (45) because κ and k are
the Sonine kernels. However, the pair (κn, kn) does
not always belong to the set Ln . This is the case only
when the inclusion k<n> ∈ C−1,0(0,+∞) holds true
(of course, κ<n> ∈ C−1(0,+∞) for any n ∈ N). A
more general and important possibility for construc-
tion a pair (κn, kn) of the kernels from Ln, n > 1
based on the Sonine kernels κ, k from L1 is presented
in the following theorem:

Theorem 7 [41] Let (κ, k) be a pair of Sonine kernels
from L1.

Then, the pair (κn, kn) of the kernels given by the
formula

κn(t) = ({1}<n−1> ∗ κ)(t), kn(t) = k(t) (46)

belongs to the set Ln.

It is worth mentioning that in [44], some important
sub-classes of the kernels κ, k from Ln in form of con-
volutions of several different kernels fromL1 were sug-
gested.

Now we introduce the general fractional integrals
and derivatives of arbitrary (non-integer) order and dis-
cuss some of their basic properties (for more properties
and examples see [41]).

Definition 3 [41] Let (κ, k) be a pair of the kernels
from Ln .

The GFI with the kernel κ has the same form as
before

(I(κ) f )(t) :=
∫ t

0
κ(t − τ) f (τ ) dτ, t > 0, (47)

whereas the GFDs of the Riemann–Liouville and
Caputo types with the kernel k are defined as follows:

(D(k) f )(t)

:= dn

dtn

∫ t

0
k(t − τ) f (τ ) dτ, t > 0, (48)

(∗D(k) f )(t)

:=
⎛

⎝D(k)

⎛

⎝f (·) −
n−1∑

j=0

f ( j)(0)h j+1(·)
⎞

⎠

⎞

⎠ (t), t > 0.

(49)

Evidently, the GFI (47) with the kernel κ(t) =
hα(t), α > 0 is reduced to the Riemann–Liouville
fractional integral (4) and the Riemann–Liouville and
Caputo fractional derivatives of the order α, n − 1 <

α < n, n ∈ N are particular cases of the GFDs (48)
and (49) with the kernel k(t) = hn−α(t).

To justify the denotation GFI and GFD, we provide
formulations of the 1st and 2nd fundamental theorems
of FC for the GFDs (48) and (49) of the Riemann–
Liouville and Caputo types (for the proofs see [41]).

Theorem 8 [41] Let (κ, k) be a pair of kernels from
Ln.

Then, the GFD (48) is a left-inverse operator to the
GFI (47) on the space C−1(0,+∞):

(D(k) I(κ) f )(t) = f (t), f ∈ C−1(0,+∞), t > 0,

(50)

123



Trends, directions for further research, and some open problems 3255

and the GFD (49) is a left-inverse operator to the GFI
(47) on the space C−1,(k)(0,+∞):

(∗D(k) I(κ) f )(t) = f (t),

f ∈ C−1,(k)(0,+∞), t > 0, (51)

where the space C−1,(k)(0,+∞) is defined as in The-
orem 5.

Theorem 9 [41] Let (κ, k) be a pair of kernels from
Ln.

Then, the relation

(I(κ) ∗D(k) f )(t) = f (t) −
n−1∑

j=0

f ( j)(0) h j+1(t) (52)

holds valid on the space Cn−1(0,+∞) := { f : f (n) ∈
C−1(0,+∞)} and the formula

(I(κ) D(k) f )(t) = f (t), t > 0 (53)

is valid for the functions f ∈ C−1,(κ)(0,+∞).

Further properties and examples of the GFIs and
GFDs of arbitrary order were presented in the recent
papers [41,44]. For the results regarding the fractional
ODEs and PDEs with the GFDs, we refer the readers
to [38,40] and to the recent survey [45] (see also the
references therein).

2.4 Open problems

In this subsection, we formulate some open problems
regarding the one-parameter families of the fractional
integrals and derivatives and the GFIs and GFDs.

1. Deduce a characterization of the fractional integrals
for the functions defined on a finite interval that
satisfy the desiderata presented in Sect. 2.1 (the
Riemann–Liouville fractional integrals are one of
such families that satisfies essentially stronger con-
ditions compared to those fromdesiderata, see The-
orem 1).

2. Characterize all families of the fractional deriva-
tives for the functions defined on a finite inter-
val that are associated with the Riemann–Liouville
fractional integrals through the 1st Fundamental
Theorem of FC (the nth level fractional derivatives
including the Riemann–Liouville, Caputo, and Hil-
fer derivatives are examples of such families).

3. Deduce a general form of the fractional integrals
and derivatives for the functions defined on a finite
interval in the sense of the desiderata formulated in
Sect. 2.1.

4. Consider the problems formulated above in the case
of the functions defined on the positive real semi-
axis and on R.

5. Consider the problems formulated above in the
multi-dimensional case, i.e., for the functions
defined on R

n .
6. For a function κ ∈ C−1(0,+∞), determine the

conditions for the inclusion κ ∈ L1 and derive a
representation for the associated kernel k.

7. For a function κ ∈ C−1(0,+∞), determine the
conditions for the inclusion κ ∈ Ln and derive a
representation for the associated kernel k.

8. Adjust the notions of theGFIs andGFDs to the case
of a finite interval and R.

9. Develop a theory of the GFIs and GFDs on other
conventional spaces of functions including L p and
Hölder weighted spaces.

10. Consider the time-fractional differential equations
with the GFDs of arbitrary order to model, for
instance, the processes intermediate between dif-
fusion and wave propagation.

3 Numerical aspects

For the numerical handlingof fractional differential and
integral operators, and in particular for the numerical
solution of initial value problems associated with frac-
tional ordinary differential equations, i.e., problems of
the form

CDα
a+y(t) = f (t, y(t)), y(k)(a) = y(k)

0

(k = 0, 1, . . . �α� − 1) (54)

(where the differential operator is chosen to be of
Caputo’s type [24, Chapter 3] because this is the type
that is most important in the mathematical modeling
of processes in physics, engineering, economics, etc.),
quite a lot of approaches and techniques have been
proposed. Recent surveys about the state of the art
in this respect may be found, e.g., in [23,46–49]. In
addition to these well-known results, we can witness
the publication of a large number of new papers deal-
ing with such aspects. Unfortunately, many of these
papers merely describe the application of well-known
concepts to special types of equations, thus not really
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providing any innovative steps in this area of research,
or—as explained in detail in [50]—they do not take into
account the analytic properties of the exact solutions to
the differential equations in an appropriate way, thus
stating misleading results.

For the most important numerical approaches, a
detailed understanding of their properties is available
(cf., e.g., [51–54]). This includes, in particular, thor-
ough discussions of the weaknesses and limitations of
these algorithms [55–57]. In this context, we believe
that the following fundamental issues require attention
in the near future and that the corresponding questions
will provide ample opportunities for further research:

– The nonlocality of fractional differential opera-
tors and its implications: This includes, in particu-
lar, the observation that traditional numerical algo-
rithms require an O(N 2) amount of run time and
an O(N ) amount of memory when taking N time
steps, both of which may be prohibitively large in
practical application scenarios. Regarding the run
time aspect, a number of approaches have been
developed that provide a remedy. In particular, a
general FFT-based technique for numerically deal-
ing with convolution integrals has been developed
in [58,59]. Its concrete implementation in com-
bination with the traditional Adams method from
[51,52] has been described in [48], thus reduc-
ing the computational cost to O(N log2 N ) (but
not lowering the memory requirement). Almost the
same can be said about the nested mesh technique
of [56] which has an O(N log N ) complexity but
does not reduce the memory demands either. The
approaches of [60–62] address both matters; they
have an O(N log N ) computational complexity and
require an O(log N ) amount of memory. Other (but
similar) ideas to resolve this issue have also been
proposed in [63,64]. Here now (to be precise: in
Sects. 3.1 and 3.2, respectively), we shall indicate
two completely different potential approaches to
deal with this challenge, neither of which is based
on using traditional one-step or multistep methods.
Specifically, the approach of Sect. 3.1 has the goal
of reducing the complexity even further to the best
possible values, i.e., O(N ) for the computational
cost and O(1) for thememory,whereas themethods
of Sect. 3.2 have the goal of providing the approx-
imate solution over the entire interval of interest

in one single (but large) operation rather than pro-
gressing through the interval step by step.

– Terminal value problems: For initial value prob-
lems like (54) and their numerical handling, a well-
developed theory is available. However, the appli-
cation of such mathematical models in practice
requires the user to be able to provide the initial val-
ues y(k)(a), i.e., to have access to information about
the exact solution at time t = a, the starting point
of the process (indicated by the fact that a is also
the starting point of the differential operator CDα

a+
in the differential equation). In concrete technical
applications, this information may not necessarily
be available; rather, one can sometimes only mea-
sure y(t) (and, if necessary, its derivatives) at some
point t = b > a. This problem requires numerical
methods that are completely different from those
for (54); it will be discussed in Sect. 3.3.

3.1 Algorithms based on infinite state representations

In view of the observations recalled in the introduc-
tion to Sect. 3, a number of novel numerical methods
for solving fractional differential equations have been
developed; see, e.g., [65–77]. Although there are var-
ious differences in the details, all these methods share
the common feature that they are based on some non-
classical representation of the Caputo-type fractional
differential operator CDα

a+ of order α > 0 that appears
in the differential equations under consideration, i.e.,
instead of one of the traditional forms
CDα

a+y(t)

= 1

Γ (�α� − α)

∫ t

a
(t − τ)�α�−α−1y(�α�)(τ ) dτ (55a)

or
CDα

a+y(t)

= 1

Γ (�α� − α)

d�α�

dt�α�

∫ t

a
(t − τ)�α�−α−1

[

y(τ )

−
�α�−1∑

k=0

y(k)(a)

k! τ k
]

dτ, (55b)

one uses a relation of the type [24, Section 3.2]

CDα
a+y(t) =

∫ ∞

0
φ(w, t) dw, (56a)

the so-called infinite state representation (or diffusive
representation, cf. [78]) of the fractional derivative of
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y. Here the integrand φ (whose values φ(w, t) for w ∈
(0,∞) are known as the infinite states of the observed
system at time t) solves an inhomogeneous linear first-
order initial value problem of the form
∂

∂t
φ(w, t) = h1(w)φ(w, t) + h2(w)y(�α�)(t),

φ(w, 0) = 0, (56b)

with certain functions h1, h2 : (0,∞) → R for which
many different specific choices have been suggested in
the papers mentioned above. Using this representation,
the task of numerically evaluating the fractional dif-
ferential operator (which is the core of every numer-
ical method for solving such differential equations)
amounts to

1. approximately computing the solution φ(w, t) to
the initial value problem (56b) at the time point
t = tn currently under consideration for certain
suitably chosen values of w, and

2. based on this information, numerically evaluating
the integral on the right-hand side of Eq. (56a) with
a properly designed quadrature formula.

In this context, the “suitable choice” of the values w

mentioned in the first of the two items above is essen-
tially determined by the location of the nodes of the
quadrature formula used in the second item.

From an algorithmic and software engineering point
of view, this is an excellent approach because it is both
fast—having a computational complexity of O(N )

when N time steps need to be taken rather than the
O(N 2) of the original fractional Adams method from
[51] or the at best O(N log N ) cost of its modified ver-
sion mentioned above—and memory efficient in the
sense that a computation over N time steps requires
only a memory amount of O(1) instead of O(log N )

as in the method from [60–62] or even O(N ) in all
other versions of the Adams method (and, in this com-
parison, replacing the Adams method by a different
classical approach would not make any difference in
these respects [47]). This observation is an immediate
consequence of the fact that one has to solve the differ-
ential equation (56b) which is a differential equation of
order 1 and hence does not exhibit any nonlocality or
any other memory effects.

However, from a numerical analysis perspective, the
situation is highly unsatisfactory for a number of rea-
sons:

– Almost all the arguments on which the specific ver-
sions of the algorithm indicated above are based

are heuristic in nature. In particular, the quadrature
formulas for the integral from Eq. (56a) required
in step 2 are constructed in an ad hoc manner; the
analytical properties of the integrand that are well
known to strongly influence the accuracy of the
approximate results [79] are taken into account only
partially in the proposal from [66] and are com-
pletely ignored in most of the other schemes.

– There is hardly any investigation regarding the
interaction between the numerical ODE solver
required in step 1 of the algorithm and the quadra-
ture formula from step 2. The only information usu-
ally provided is the observation that the nodes of
the quadrature formulas that have been proposed
have such magnitudes that the solution of the ODE
requires an A-stable method. Then, according to
Dahlquist’s well-known second barrier [80, Sec-
tion V.1], the order of the ODE solver cannot be
higher than 2 if it is chosen from the set of lin-
ear multistep methods; a higher order can however
be achieved by using suitable implicit Runge–Kutta
methods [80, Section IV.6]. In practice, to avoid the
intricacies connected to higher-order Runge–Kutta
methods, all the proposals found in the literature
suggest to use a linear multistep method (often, the
backwardEulermethod). The loworder seems to be
acceptable because, as mentioned above, no strong
effort has been invested into the selection of the
quadrature scheme, so using a high order but com-
plex ODE solver does not seem to be worthwhile
anyway.

– The typically chosen building blocks for the overall
algorithm contain a number of parameters (num-
ber and location of quadrature nodes, quadrature
weights, choice of theODEsolver, step size ofODE
solver) whose influence on the accuracy of the final
result is essentially unknown. None of the papers
mentioned above contains any comprehensive error
analysis.

– For many of the approaches mentioned above, it is
not immediately clear how the implied constants in
the error bounds (if such bounds are known at all)
dependon the orderα of the differential operators in
question; in particular, it is often unknown whether
the bounds hold uniformly for all α ∈ (0, 1) or
whether the constants blow up as α → 0 or α → 1.
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Therefore, there exists a strong demand for a thorough
investigation of the non-classical algorithms for the
numerical solution of fractional differential equations.

3.2 Spectral methods and related techniques

A frequent objection against the use of one-step ormul-
tistep methods for solving fractional differential equa-
tions is that these methods are of some kind of a local
naturewhich does not appear to be a natural concept for
dealing with operators like fractional derivatives that
are not local. One potential and promising approach in
this direction is the use of spectral methods.

Traditionally, such spectral methods are based on
classical polynomials [81,82], but clearly this is not
ideal because polynomials cannot accurately capture
the singular behavior that the exact solutions to frac-
tional differential equation exhibit near the starting
point of the associated differential operator [83]. A
more suitable alternative is to use generalized poly-
nomials with a combination of integer and non-integer
exponents as suggested, e.g., in [84–86]. This alterna-
tive comes with two significant advantages:

1. The exponents can be chosen to exactlymatch those
present in the analytical solution to the differen-
tial equation, thus eliminating the error compo-
nent induced by these (generalized)monomials and
leading to a significantly better convergence rate.

2. If the basis of the set of generalized polynomials
is chosen in an appropriate way [85] then, for cer-
tain classes of differential equations, the coefficient
matrices of the discretized differential equations
become sparse, thus greatly reducing the compu-
tational cost and the memory requirements of the
resulting algorithms.

One of the key outcomes of [86] is the recommenda-
tion to use a Petrov–Galerkin strategy for the construc-
tion of the approximate solution, i.e., one should choose
the test function space for the Galerkin method to be
different from the space of trial functions in which the
approximate solution is sought. Following the devel-
opment of [86], we shall summarize this construction
by means of the simplest possible example application,
namely the initial value problem
CDα−1+y(t) = f (t), y(−1) = y0, t ∈ [−1, 1], (57)

i.e., a differential equation whose right-hand side is
independent of the unknown function y so that the ana-

lytical solution process essentially amounts to a frac-
tional integration of the forcing function. (The inter-
val [−1, 1] has been chosen for convenience and with-
out loss of generality.) In this special case, one starts
with the construction of an associated Sturm–Liouville
eigenvalue problem of the first kind [85],

RLDα/2
1− K CDα/2

−1+Φ1,λ(t)

+λ(1 − t)−α/2(1 + t)−α/2Φ1,λ(t) = 0,

Φ1,λ(−1) = 0,
RLI 1−α/2

1− K CDα/2
−1+Φ1,λ(t)

∣
∣
∣
t=1

= 0 (58)

with some constant K , and computes the eigenfunc-
tions of this problem. It turns out that these eigenfunc-
tions can be written as

P1,n(t) = (1 + t)α/2P(−α/2,α/2)
n−1 (t) (n = 1, 2, 3, . . .)

(59)

where P(−α/2,α/2)
k denotes the standard kth degree

Jacobi polynomial for the weight function defined by
the superscript in the usual way [87, Chapter IV]. The
eigenfunctions P1,n for n ∈ {1, 2, . . . , N } with some
predefined natural number N are chosen as the basis
functions of the space in which the approximate solu-
tion is sought.

Moreover, a similar Sturm–Liouville eigenvalue
problem of the second kind [85]

RLDα/2
−1+K CDα/2

1− Φ2,λ(t)

+λ(1 − t)−α/2(1 + t)−α/2Φ2,λ(t) = 0,

Φ2,λ(1) = 0,
RLI 1−α/2

−1+ K CDα/2
1− Φ2,λ(t)

∣
∣
∣
t=−1

= 0 (60)

is constructed, and the associated eigenfunctions of this
problem are determined too. In this case, they can be
written in the form

P2,n(t) = (1 − t)α/2P(α/2,−α/2)
n−1 (t) (n = 1, 2, 3, . . .),

(61)

and these functions (for n = 1, 2, . . . , N ) are used as
the test functions.

Based on these definitions of trial and test func-
tions, one can then apply the standard Petrov–Galerkin
scheme to compute the approximate solution YN ,0 of
the differential equation from the given problem (57)
augmented with the initial condition y(−1) = 0. The
fact that we can only work with this initial condition
is due to the observation that, as can be seen from
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Eq. (59), all basis functions satisfy P1,n(−1) = 0,
and so the approximate solution—being a linear com-
bination of these basis functions—must also satisfy
YN ,0(−1) = 0. The case of the general initial con-
dition given in Eq. (57) then leads to the approximate
solution YN (t) = y0 + YN ,0(t) with the function Yn,0

from above being the solution of the differential equa-
tionwith a homogeneous initial condition. This follows
from the fact that the additive constant y0 is annihilated
by the Caputo differential operator in the differential
equation (57).

A particularly relevant feature of this process is that
the stiffness matrix of the resulting linear system that
determines the coefficients of the approximate solution
YN ,0 is actually a diagonal matrix, so the system can
be solved in an extremely simple way.

From a more general perspective, one starts from
the given differential equation and constructs associ-
ated Sturm–Liouville eigenvalue problems of the first
kind and of the second kind, respectively. The eigen-
functions of the eigenvalue problem of the first kind
are then used as the basis functions for the space of
approximate solutions, and the eigenfunctions of the
eigenvalue problem of the second kind are chosen as
the test functions of the Petrov–Galerkin algorithm.

A detailed and recent survey describing the state of
the art in this area of research may be found in [83].

In a similar way, one can handle so-called spectral
elementmethodswhere the domain is first decomposed
in a finite element-likemanner, and afterward a spectral
kind of approximation is used on each element; cf., e.g.,
the survey in [88].

The description given above indicates that the strat-
egy proposed in [86] depends on the precise form of
the given differential equation in various respects. This
applies, e.g., to the construction of the two Sturm–
Liouville eigenvalue problems and the determination
of their eigenfunctions (i.e., the trial and test functions),
but also to the specificway inwhich a potential inhomo-
geneous initial condition can be incorporated (although
the latter can be generalized rather easily). From a prac-
tical perspective, it would be advantageous to have a set
of test functions and a set of trial functions that could
be used not just for one type of differential equations
but for a broad class of such problems. The search for
sets of such basis functions (that, of course, should be
able to guarantee a rapid convergence of the sequence
of approximate solutions toward the exact solution) is
a topic of great interest. Moreover, one might raise the

question whether a different construction of the basis
and test functions could lead to an even faster conver-
gence.

A notable weakness of this approach that might also
be addressed in future research projects is that one is
naturally led to consider the convergence behavior and
the error estimates in an L2 norm only whereas other
solvers for fractional ordinary differential equations are
usually analyzed with respect to the stronger L∞ norm.

3.3 Terminal value problems

A completely different but also potentially very rele-
vant question with respect to which many open ques-
tions exist is also connected to the fractional differential
equation

CDα
a+y(t) = f (t, y(t)) (62a)

that is discussed with some given function f on the
interval [a, a + T ] for some T > 0. We concentrate on
the practicallymost important caseα ∈ (0, 1). Keeping
inmind thewell-knownproperties of the operator CDα

a+
and, in particular, the classical existence and unique-
ness result for initial value problems [24, Theorem6.5],
it is natural to believe that this problem requires exactly
one additional condition of the form

y(b) = y∗ (62b)

with some given numbers y0 ∈ R and b ∈ [a, a + T ]
to assert the uniqueness of the solution. Such a condi-
tion with b > a may be necessary for example because
measurements of the state of the modeled system are
available only at time t = b but not at time t = a (the
starting point of the differential operator in Eq. (62a)).
It turns out in the case b > a, however, that the unique-
ness can only be guaranteed in the case where the prob-
lem is scalar, i.e., when we are looking for a function
y : [a, a + T ] → R, but not in the vector-valued case
where y : [a, a + T ] → R

d with d ≥ 2, cf. [89]. We
thus impose the additional restriction to consider only
the scalar case. In this situation, the problem can be
decomposed into two steps:

1. Solve the problem on the interval [a, b].
2. Solve the problem on the interval [a, a + T ].
Once the first step has been completed, the initial value
y(a) is known, and hence it can be added to the dif-
ferential equation in the form of an initial condition,
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replacing the terminal condition (62b) and thus cre-
ating an initial value problem whose solution can be
computed with standard and well-established methods
to find the solution of the second step and hence the
overall solution. Therefore, the only really novel task
is step 1. Since the auxiliary condition is formulated at
the end point of the interval of interest, this problem is
called a terminal value problem.

From an analytical point of view, the fundamental
difference between initial and terminal value problems
is highlighted when the two problems are rewritten as
equivalent integral equations: While, as is well known,
an initial value problem is equivalent to a Volterra inte-
gral equation [24, Lemma 6.2], the terminal value prob-
lem (62) can be reformulated on [a, b] as
y(t) = y∗ + 1

Γ (α)

∫ b

a
G(t, s) f (s, y(s)) ds (63a)

with

G(t, s) =
{

−(b − s)α−1 for s > t,

(t − s)α−1 − (b − s)α−1 for s ≤ t,

(63b)

which is a Fredholm integral equation [24, Theorem
6.18]. From this difference in the types of the integral
equations, it is already clear that the terminal value
problemneeds completely different numericalmethods
than the initial value problem; in particular, one can see
that the nature of a fractional-order terminal value prob-
lem is much closer to an integer-order boundary value
problem than to an integer-order initial value problem.
Therefore, it is natural to solve fractional-order termi-
nal value problems with the help of methods based on
the construction principles coming from the area of
integer-order boundary value problems.

Following the line of thought outlined above, a first
obvious strategy to solve terminal value problems is the
class of shooting methods (cf., e.g., [90, Chapter 2] for
a very detailed discussion of such methods in the case
of integer-order equations): One starts with an initial
guess for the initial value y(a), solves the associated
initial value problem, and compares the terminal value,
i.e., the approximation for y(b), obtained in this way
with the desired value y∗. If these two values are suf-
ficiently close to each other, the approximate solution
is accepted; otherwise, a new attempt is started with a
suitably modified initial value.

Such methods have been proposed for fractional ter-
minal value problems in [91, Section 6] where the clas-
sical Adams method from [51,52] has been suggested

for solving the initial value problems. Various improve-
ments of this algorithm with the aim of increasing its
efficiency have been discussed in [92]. One of the main
observations from that paper is that in the early stages of
the iterative process, i.e., when the selected initial value
is still far away from the correct one, it is not necessary
to use a very small step size for the initial value prob-
lem solver. However, that proposal still leaves room
for improvement in this direction, and numerous other
questions remain open as well, most importantly the
question what the best algorithm for selecting the ini-
tial value in the next iteration step is. This question is
currently under active consideration [93].

A case study conducted by Ford and Morgado [94]
provides a comparison of this shooting method based
on the Adams scheme with corresponding approaches
using other solvers for the initial value problems, essen-
tially based on linear multistep methods, and comes to
the conclusion that, among the methods investigated,
the one using the Adams algorithm provides the best
balance between accuracy and computational effort.
Obviously, this investigation can only cover a limited
number of alternatives to the Adams method and might
be extended to other schemes. A different replacement
for the Adams scheme, namely a collocation method
using a combination of classical piecewise polynomials
and generalized polynomials (with non-integer expo-
nents) has been shown to also provide relatively good
results in [95].

Shooting methods are, of course, not the only possi-
ble approach to numerically handle fractional terminal
value problems. In view of the integral equation repre-
sentation (63a) of the problem, all the known standard
techniques for the numerical solution of weakly sin-
gular Fredholm equations are available too, cf., e.g.,
[96]. It seems, however, that among the many classes
of methods that can be used in principle such as, e.g.,
Nyström methods, collocation methods, or Galerkin
methods, only a very small number has actually been
attempted for fractional terminal value problems. A
notable instance is a collocation scheme, again based on
a combination of classical polynomials and polynomi-
als with non-integer exponents (which, in view of the
well-known properties of the exact solutions to frac-
tional differential equations, seems to be a quite nat-
ural idea) discussed in [97]. The convergence results
shown in that paper indicate the method to be quite
attractive and rapidly convergent. A comparison of the
computational cost of this method to the cost of a
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shooting method would be useful to get a comprehen-
sive impression. Similar studies for other approaches
to the Fredholm equation (Galerkin, Nyström, etc.)
would be most welcome. Such investigations should in
particular include a discussion about a suitable set of
basis functions that combines the ability to accurately
model the asymptotic behavior of the exact solution as
t → a, thus exactly capturing the singular behavior of
its derivatives, with a rapid convergence of the remain-
ing part of the approximate solution to the smooth part
of the exact solution. This latter aspect in particular
includes the task of applying the spectral or spectral
element methods discussed in Sect. 3.2 to the gen-
eral class of terminal value problems described in the
present subsection.

4 Applications in physics

For the first time, FCwas applied by Niels Henrik Abel
in 1823 [98,99] to the tautochrone problem, which is
the kinematic problem of finding the trajectory of a
point mass sliding without friction to its lowest point,
when time does not depend on its starting point of
the trajectory. Then, applications of FC to problems
of physics were proposed in the works of Joseph Liou-
ville, beginning in 1832 [100–103]. For Liouville, the
applications of FC were not easy illustration to awaken
the interest of other mathematicians. The applicability
of FC was the meaning of the existence of this math-
ematical theory. This relationship to FC significantly
distinguishes Liouville from his predecessors, whose
main goal was a purely mathematical generalization of
ordinary calculus [103, p. 307]. Liouville’s contribu-
tion to the application of FC is described by Lützen
[101,102] and [103, pp. 307–320]. The contribution of
the first pioneers of the application of FC in physics is
described in [4].

Fractional calculus, equations with fractional inte-
grals, derivatives, and differences are a powerful tool
for describing local processes in time and space with
different types of nonlocality. Conventionally, all appli-
cations can be divided into five directions: nonlocal-
ity in space and time in the framework of continuous
and discrete approaches, and their interrelationships,
which can be called (CT) Nonlocality in continuous-
time; (DT) Nonlocality in discrete time; (CS) Nonlo-
cality in continuous-space; (DS)Nonlocality in discrete
time; (R) Relationship between these directions.

Moreover, there is a need to classify the types of
nonlocality and to link these types with the description
of the types of phenomena. For example, it is neces-
sary to distinguish nonlocalities in time that describe
(1) memory, (2) distributed lag (time delay); (3) dis-
tributed scaling (dilatation, dilation), and others. Note
that these different phenomena and types of nonlocal-
ity must be described by different types of kernels of
fractional operators.

One of themost important trends in themodern stage
of applications of FC is the urgent need to describe
general types of nonlocal phenomena and the corre-
sponding sets of kernels of fractional operators that
form FC. We emphasize here the importance of not
only, and not so much specific examples from various
fields of science, since there can be an infinite number
of such examples. It is important to solve general ques-
tions, it is important to answer the questions of what
types of operator kernels (and therefore fractional oper-
ators) what types of phenomena can describe [104].
For example, (1) the Riemann–Liouville and Caputo
fractional operators can describe memory; (2) the frac-
tional operators of Hadamard type and Erdelyi–Kober
can describe scaling and dilation; (3) Fractional oper-
ators in the form of a Laplace convolution, whose ker-
nel satisfies the normalization condition, can describe
a distributed lag (time delay), and so on [104].

The very important trend in application of FC is
investigations and results concerning of general formof
nonlocality, which can be described by general form of
operator kernels, and not its particular implementations
and representations [105].

Due to page limits for review, we will highlight only
applications of FC that seem very promising, impor-
tant, and interesting. Unfortunately, some of the impor-
tant andpromising applications of FCwill remain out of
consideration. Some of these areas are described in vol-
umes 4 and 5 of Handbook of Fractional Calculus with
Applications [9,10], which contain 25 reviews on vari-
ous areas of applications of FC in physics. Other areas
of application of FC are described in reviews [106–110]
and in books on fractional dynamics [111–113].

4.1 Nonlocal continuum and lattice mechanics

The classical area of application of FC is the contin-
uum mechanics, which remains in the trend of future
research. At the same time, the interest is currently
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shifting from nonlocalities in time to nonlocalities in
space, and in the direction of nonequilibrium thermo-
dynamics, and electrodynamics of media with space
dispersion and frequency dispersion.

Continuum mechanics with nonlocality in time has
a long history dating back to the work of Ludwig
Boltzmann in 1874. The first physical model of media
with nonlocality in time has been proposed by Ludwig
Boltzmann in 1874 and 1876 [114,115] for isotropic
viscoelastic media. In these works, the fading and
superposition principles were suggested. Then this
approach is used in the works of Vito Volterra [116].
The first application of FC to continuum mechanics of
viscoelastic media with nonlocality in time was pro-
posed in work of Andrey N. Gerasimov [117] in 1948.
At present time, FC is actively used to describe contin-
uum mechanics with nonlocality in time (for example,
see [118–121] and references therein).

Continuous mechanics with nonlocality in space, in
contrast to mechanics with nonlocality of time, has a
shorter history. Apparently, the first application of FC
to continuum mechanics with nonlocality in space was
proposed by V.S. Gubenko in 1957 [122,123]. The the-
ory of nonlocal continuum mechanics was formally
initiated by the papers of Kröner [124], and Eringen
[125–127]. Nonlocal theory is based on the assump-
tion that the forces between material points are a long-
range type, thus reflecting the long-range character of
inter-atomic forces [128,129].

In electrodynamics and mechanics of media, the
nonlocality in space is interpreted as special form of
spatial dispersion (SD) [130–132]. For the first time,
FC was used to describe SD in electrodynamics and
mechanics inworks [133,134], and then fractional form
of SD was described in the next works.

For continuous models of media with nonlocality in
space, the limitation is the absence of a fractional ana-
logue of usual tensor and vector calculus [135], [112,
pp. 241–264]. This is due to the fact that nonlinear coor-
dinate transformations transform fractional operators
of non-integer order into pseudo-differential operators,
accompanied by a change in the form of nonlocality.
For the first time, a consistent mathematical formula-
tion of fractional vector calculus was proposed in work
[135], [112, pp. 241–264], which includes fractional
generalizations of the differential operations (gradient,
divergence, curl), the integral operations (flux, circu-
lation), and the relationship of these operators in the

form the generalized Gauss, Stokes, and Green theo-
rems (see also [136] and references therein).

It is well known in solid-state physics that long-
range interactions between particles can be considered
as a source of nonlocality in space, which largely deter-
mines the properties of the medium [128]. Because
of this, it seems natural to construct mechanics of
continuum and lattice with nonlocality in space [128,
137,138]. Long-range interactions in lattice models of
media are important in physics, starting with Dyson’s
work in 1969 [139,140] about models of spin chains
and lattices with long-range interactions. However, the
active use of FC in this direction begins only now.

The use of FC for constructing lattice models with
nonlocality in space (with long-range interactions) and
consideration of the continuous (continuum) limit of
thesemodels, which is described by fractional differen-
tial equations, actually began with the works [141,142]
in 2006 (see also [112, pp. 153–214]). Then the pro-
posed approach was generalized from the one-dimen-
sional case to the n-dimensional case, and was repre-
sented as a lattice FC [143,144]. This representation
allows to formulate the concept of exact differences
of integer and fractional orders in [145–147]. Unfortu-
nately, for exact fractional differences, which are pro-
posed in [144,146,147], the fundamental theorems of
FChave not been proven for non-integer orders of oper-
ators at present time.

4.2 Economics with nonlocality in time: memory and
distributed lag

Thefirst application of fractional calculus in economics
can be considered thework of theNobel laureateC.W.J.
Granger and R. Joyeux, in 1980 [148], in which the
Grünwald–Letnikov fractional differences were actu-
ally rediscovered. In this work, a fractional generaliza-
tion of ARIMA models was proposed. In recent years,
various attempts to apply FC in economics and finance
are suggested. The history of these applications of FC is
given in [149] and [108, pp. 5–32], [109].Many of these
attempts have various disadvantages that are described
in the review [150].

FC is used to construct the basic concepts of eco-
nomic theory and to formmathematical models of eco-
nomic processes on their basis [109]. The directions of
further applications of FC in this area are described in
[149] (or [108, pp. 5–32]), and in Section 30 [109, pp.
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532–539]. Additional references on application of FC
in economics and finance can be found in the list of
references in [109,149].

Note that, in contrast to mechanics and physics,
where relaxation equations are often used, in eco-
nomics, growth equations are more often applied. The
fractional differential equations describing relaxation
and growth have a qualitative difference in the behav-
ior of the solution due to their difference in asymptotic
behavior. This is one of the distinctive features of the
novelty of the behavior of economic processes with
memory from processes with memory in physics. The
appearance of memory or memory changes can lead
to a significant acceleration or slowdown of the pro-
cess, that is, the characteristic time of the process can
be substantially increased or decreased by memory.

Application of FC is important to describe nonlo-
cality in the form of distributed lag (time delay). The
distributed lag has been considered starting with the
models: (1) the model with uniform distributed lag that
was suggested by Michal A. Kalecki [151] in 1935
to described business cycles [152, pp. 251–254]; (2)
the models with the exponential distribution of delay
time was proposed by Alban W.H. Phillips [153] in
1954; (3) models and operators with distributed lag
that were considered by Roy G.D. Allen [152] in 1956.
The distributed lag is described by the kernels that are
probability density functions (p.d.f), when the opera-
tors are defined by the Laplace convolution with these
kernels. The distributed lag is caused by finite speeds
of processes, and cannot be interpreted as a memory.
In physics, the distributed lag as a form of nonlocality
in time is interpreted as hysteresis.

Simultaneous presence of memory effects and dis-
tributed lag is important for economic models. How-
ever, for fractional operatorswith distributed lag,which
are proposed in [154] and used in [109, Chapters 20–
23], the fundamental theorems of FC have not been
proved in general. Note that p.d.f of the gamma distri-
bution is the Sonine kernel, and we can use the general
FC [38–41,136,155] in this case and some other distri-
butions on the positive semi-axis. This is an important
direction of future research in FC and its applications
in economics and physics.

4.3 Non-Markovian dynamics of open quantum
systems

The theory of open quantum systems is the most gen-
eral type of modern quantum mechanics as fundamen-
tal theory [156,157]. Moreover, this theory has great
practical importance for the creation of quantum com-
puters and quantum informatics. The influence of the
environment changes the quantum computation, which
is realized by dynamics of quantum systems of qubits.
Note that the Schrödinger equation describes only pure
quantum states and cannot be used for general descrip-
tion of quantum dynamics.

In recent decades, the theory of open quantum sys-
tems has been actively developing (for example, see
basic papers [158–160], books [156,157,161], and
reviews [162]). The most general form of Markovian
equations, which describe quantum observables and
quantum states of quantum systems, was suggested
by Gorini, Kossakowski, Sudarshan, and Lindblad in
[158–160]. The most general explicit form of equa-
tions for the quantum mechanical systems is the Lind-
blad equations, which describeMarkovian dynamics of
quantum observables and quantum states.

Currently, modern quantummechanics is faced with
the question of the most general form of the equation
describing the non-Markovian dynamics of quantum
systems with memory. Attempts to construct a non-
Markovian theory of open quantum systemswithmem-
ory have been actively pursued recently (for exam-
ple, [163–168], and references therein). The non-
Markovian character of quantum processes was often
interpreted as nonlocality in time. Note that exact solu-
tions of equations describing non-Markovian dynam-
ics with memory have practically not been proposed
in these works. All these attempts were not associ-
ated with the use of FC. In construction of a consistent
non-Markovian theory of open quantum systems, the
FC gives new possibilities for the development of this
direction.

For the first time, the use of FC to take into account
memory effects (non-Markovity) in open quantum sys-
tems was proposed in work [112] (see Chapter 20 in
book [112, pp. 477–482] and [169,170]). The solutions
of non-Markovian equations describing quantum sys-
tems with memory, which is based on FC, were pro-
posed in these works.

For the first time, fractional powers of Lindblad
superoperators were defined and used to describe non-
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Markovian dynamics in 2008 [157] (see Chapter 20
in book [157, pp. 433–444], Chapter 20 in book [112,
pp. 458–464, 468–477], [171]). Solutions of the pro-
posed generalized Lindblad equations, which describe
non-Markovian quantum dynamics, were derived in
[112,157,170,171]. For construction of a theory of
non-Markovian quantum dynamics, it is important to
consider time-dependent parameters [172] and the rela-
tivistic quantum systems with memory. For further ref-
erence, it can be used the list of references in [170]. The
non-Markovian quantum dynamics can also be con-
sidered in the framework of fractional generalizations
of Heisenberg equations [157], [112, pp. 457–466], in
contrast to the time-fractional Schrödinger equation.

Quantum mechanics with nonlocality in space and
quantum field theory with nonlocality in space-time by
using models of lattices with long-range interactions
and its continuum limits [143,144,146,147] are impor-
tant future direction of applications of FC to quantum
physics. This is due to the fact that at present various
nonlocal models are being actively investigated within
the framework of quantum field theory at present time.
In addition, lattice models with long-range action are
being actively investigated within the framework of
quantum physics of solids and condensed matter.

4.4 Nonlocal discrete maps

In nonlinear dynamics, maps with discrete time are
derived from integer-order differential equations with
periodic kicks (Sections 5.2, 5.3 in [111, pp. 60–68],
and Chapter 18 in [112, pp. 409–453]). These maps
define the next step only by the previous step (or a fixed
number of previous steps). In discrete maps with non-
locality in time, this means that the next step depends
on all past steps.

Discrete maps from fractional differential and inte-
gral equations of non-integer orders canbe also derived.
For the first time, such discrete maps were obtained in
article [173–175] in 2008. The proposed nonlocalmaps
can be derived by using the equivalence of the FDE
and the Volterra integral equations in [112,174,175].
Then, this approach has been applied in next works
(for further information see [105,109,176] and refer-
ences therein). The first computer simulations of the
suggested nonlocal maps were made in [177,178], and
then numerical simulations have proved the existence
of new types of attractors and new types of chaotic

behavior for these maps (see [179–181] and references
therein).

A new general approach to the study of the chaotic
behavior of discrete maps with nonlocality was pro-
posed in [105,181]. In the framework of this approach,
new types of attractors and chaotic nonlocal dynam-
ics can be discovered for nonlocal discrete maps with
discrete convolution [105,181].

4.5 Self-organization with memory

Self-organization is a process of formation of ordered
spatial or temporal structures that can be realized with-
out external influences. Self-organization can be real-
ized in physical, chemical, biological, and economic
processes [182–185]. For the first time, FC was used
to describe the processes of self-organization, where
effects of self-organizationwithmemory is considered,
in 2018 [186], (see also Chapter 19 in [109, pp. 364–
382]).

The emergence and change of memory can lead to
the appearance of hierarchy of relaxation times and
qualitatively change the behavior of the systems at the
remaining other parameters unchanged. This can lead
to the self-organization, which is generated only by
memory.

We should note that the discrete maps with memory
and nonlocality in time, which are derived from frac-
tional differential equations [109,112,173–175], can
demonstrate qualitatively new types of chaotic and reg-
ular behavior. Similarly, fundamentally new types of
self-organization are expected in processes with non-
locality in time and memory. This direction of future
researches is very important for nonlinear fractional
dynamics.

5 Conclusions

This paper was started by surveying the present-day
trends of research in FC. Stemming from the state
of scientific knowledge, possible directions for further
research were pointed out. Associated with this analy-
sis, some open problems in FCwere also identified. The
work was organized in three main sub-areas, namely
aspects in mathematical analysis, numerical process-
ing, and applications in physics. Given the limitation of
space, this work is necessarily parsimonious, but gives
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a synthetic vision that can somehow guide researchers
in the future.
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13. Băleanu, D., Lopes, A.M. (eds.): Handbook of Fractional
Calculus with Applications: Applications in Engineering,
Life and Social Sciences, Part B. De Gruyter Reference,
vol. 8. De Gruyter, Berlin (2019). https://doi.org/10.1515/
9783110571929

14. Machado, J.A.T., Kiryakova, V.: The chronicles of frac-
tional calculus. Fract. Calc. Appl. Anal. 20(2), 307–336
(2017). https://doi.org/10.1515/fca-2017-0017

15. Machado, J.A.T., Kiryakova, V.: Recent history of the
fractional calculus: data and statistics. In: Kochubei, A.,
Luchko, Y. (eds.) Handbook of Fractional Calculus with
Applications: Basic Theory, pp. 1–22. De Gruyter, Berlin
(2019). https://doi.org/10.1515/9783110571622-001

16. van Eck, N.J., Waltman, L.: Software survey: VOSviewer,
a computer program for bibliometric mapping. Sciento-
metrics 84(2), 523–538 (2009). https://doi.org/10.1007/
s11192-009-0146-3

17. Waltman, L., van Eck, N.J., Noyons, E.C.M.: A unified
approach to mapping and clustering of bibliometric net-
works. J. Inform. 4(4), 629–635 (2010). https://doi.org/10.
1016/j.joi.2010.07.002

18. van Eck, N.J., Waltman, L.: Visualizing bibliometric net-
works. In: Ding, Y., Rousseau, R.,Wolfram, D. (eds.) Mea-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cnsns.2010.05.027
https://doi.org/10.1016/j.cnsns.2010.05.027
https://doi.org/10.2478/s13540-014-0185-1
https://doi.org/10.2478/s13540-014-0185-1
https://doi.org/10.1515/9783110571622
https://doi.org/10.1515/9783110571622
https://doi.org/10.1515/9783110571660
https://doi.org/10.1515/9783110571684
https://doi.org/10.1515/9783110571684
https://doi.org/10.1515/9783110571707
https://doi.org/10.1515/9783110571707
https://doi.org/10.1515/9783110571721
https://doi.org/10.1515/9783110571721
https://doi.org/10.1515/9783110571745
https://doi.org/10.1515/9783110571745
https://doi.org/10.1515/9783110571905
https://doi.org/10.1515/9783110571905
https://doi.org/10.1515/9783110571929
https://doi.org/10.1515/9783110571929
https://doi.org/10.1515/fca-2017-0017
https://doi.org/10.1515/9783110571622-001
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1016/j.joi.2010.07.002
https://doi.org/10.1016/j.joi.2010.07.002


3266 K. Diethelm et al.

suring Scholarly Impact, pp. 285–320. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10377-8_13

19. Perianes-Rodriguez, A., Waltman, L., van Eck, N.J.: Con-
structing bibliometric networks: a comparison between
full and fractional counting. J. Inform. 10(4), 1178–1195
(2016). https://doi.org/10.1016/j.joi.2016.10.006

20. van Eck, N.J., Waltman, L.: Citation-based clustering of
publications using CitNetExplorer and VOSviewer. Sci-
entometrics 111(2), 1053–1070 (2017). https://doi.org/10.
1007/s11192-017-2300-7

21. Moral-Muñoz, J.A., Herrera-Viedma, E., Santisteban-
Espejo, A., Cobo, M.J.: Software tools for conducting bib-
liometric analysis in science: an up-to-date review. El Prof.
Inform. (2020). https://doi.org/10.3145/epi.2020.ene.03

22. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Inte-
grals and Derivatives. Theory and Applications. Gordon
and Breach, New York (1993)
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163. Chruściński, D., Kossakowski, A.: From Markovian semi-
group to non-Markovian quantum evolution. EPL (Euro-
phys. Lett.) 97(2), 20005 (2012). https://doi.org/10.1209/
0295-5075/97/20005

164. Vacchini, B., Smirne, A., Laine, E.M., Piilo, J., Breuer,
H.P.: Markovianity and non-Markovianity in quantum and
classical systems. New J. Phys. 13(9), 093004 (2011).
https://doi.org/10.1088/1367-2630/13/9/093004

165. Breuer, H.P.: Foundations and measures of quantum non-
Markovianity. J. Phys. B At. Mol. Opt. Phys. 45(15),
154001 (2012). https://doi.org/10.1088/0953-4075/45/15/
154001

166. Rivas, Á., Huelga, S.F., Plenio, M.B.: Quantum non-
Markovianity: characterization, quantification and detec-
tion. Rep. Prog. Phys. 77(9), 094001 (2014). https://doi.
org/10.1088/0034-4885/77/9/094001

167. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Collo-
quium: non-Markovian dynamics in open quantum sys-
tems. Rev. Mod. Phys. (2016). https://doi.org/10.1103/
revmodphys.88.021002

168. de Vega, I., Alonso, D.: Dynamics of non-Markovian open
quantum systems. Rev. Mod. Phys. (2017). https://doi.org/
10.1103/revmodphys.89.015001

169. Tarasov, V.E.: Quantum dissipation from power-law mem-
ory. Ann. Phys. 327(6), 1719–1729 (2012). https://doi.org/
10.1016/j.aop.2012.02.011

170. Tarasov, V.E.: General non-Markovian quantum dynam-
ics. Entropy 23(8), 1006 (2021). https://doi.org/10.3390/
e23081006

171. Tarasov, V.E.: Fractional generalization of the quan-
tum Markovian master equation. Theor. Math. Phys.
158(2), 179–195 (2009). https://doi.org/10.1007/
s11232-009-0015-5

172. Tarasov, V.E., Tarasova, V.V.: Time-dependent fractional
dynamics with memory in quantum and economic physics.
Ann. Phys. 383, 579–599 (2017). https://doi.org/10.1016/
j.aop.2017.05.017

173. Tarasov, V.E., Zaslavsky, G.M.: Fractional equations of
kicked systems and discrete maps. J. Phys. A Math.
Theor. 41(43), 435101 (2008). https://doi.org/10.1088/
1751-8113/41/43/435101

174. Tarasov, V.E.: Differential equationswith fractional deriva-
tive and universal map with memory. J. Phys. A Math.
Theor. 42(46), 465102 (2009). https://doi.org/10.1088/
1751-8113/42/46/465102

175. Tarasov, V.E.: Discrete map with memory from fractional
differential equation of arbitrary positive order. J. Math.
Phys. 50(12), 122703 (2009). https://doi.org/10.1063/1.
3272791

176. Tarasov, V.E.: Fractional dynamics with non-local scal-
ing. Commun. Nonlinear Sci. Numer. Simul. 102, 105947
(2021). https://doi.org/10.1016/j.cnsns.2021.105947

177. Tarasov, V.E., Edelman,M.: Fractional dissipative standard
map. Chaos Interdiscip. J. Nonlinear Sci. 20(2), 023127
(2010). https://doi.org/10.1063/1.3443235

178. Edelman,M., Tarasov,V.E.: Fractional standardmap. Phys.
Lett. A 374(2), 279–285 (2009). https://doi.org/10.1016/j.
physleta.2009.11.008

179. Edelman, M.: Maps with power-law memory: direct intro-
duction and Eulerian numbers, fractional maps, and frac-
tional difference maps. In: Kochubei, A., Luchko, Y. (eds.)
Handbook of Fractional Calculus with Applications: Frac-
tionalDifferential Equations, pp. 47–64.DeGruyter,Berlin
(2019). https://doi.org/10.1515/9783110571660-003

180. Edelman, M.: Dynamics of nonlinear systems with power-
lawmemory. In: Tarasov,V.E. (ed.)Handbookof Fractional
Calculus with Applications: Applications in Physics, Part
A, pp. 103–132. De Gruyter, Berlin (2019). https://doi.org/
10.1515/9783110571707-005

181. Edelman, M.: Cycles in asymptotically stable and chaotic
fractional maps. Nonlinear Dyn. 104(3), 2829–2841
(2021). https://doi.org/10.1007/s11071-021-06379-2

182. Nicolis, G., Prigogine, I.: Self-organization in Nonequi-
librium Systems: From Dissipative Structures to Order
through Fluctuations. Wiley, New York (1977)

183. Haken, H.: Synergetics: An Introduction. Nonequilibrium
Phase Transitions and Self-organization in Physics, Chem-
istry and Biology. Springer, Berlin (1977). https://doi.org/
10.1007/978-3-642-96363-6

184. Haken, H.: Advanced Synergetics: Instability Hierarchies
of Self-organizing Systems and Devices. Springer, Berlin
(1983). https://doi.org/10.1007/978-3-642-45553-7

185. Zhang, W.B.: Synergetic Economics: Time and Change in
Nonlinear Economics. Springer, Berlin (1991). https://doi.
org/10.1007/978-3-642-75909-3

186. Tarasov, V.E.: Self-organization with memory. Commun.
Nonlinear Sci. Numer. Simul. 72, 240–271 (2019). https://
doi.org/10.1016/j.cnsns.2018.12.018

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/bf01608499
https://doi.org/10.1016/0034-4877(76)90029-x
https://doi.org/10.1016/0034-4877(76)90029-x
https://doi.org/10.1142/s0218301394000164
https://doi.org/10.1142/s0218301394000164
https://doi.org/10.1209/0295-5075/97/20005
https://doi.org/10.1209/0295-5075/97/20005
https://doi.org/10.1088/1367-2630/13/9/093004
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1103/revmodphys.88.021002
https://doi.org/10.1103/revmodphys.88.021002
https://doi.org/10.1103/revmodphys.89.015001
https://doi.org/10.1103/revmodphys.89.015001
https://doi.org/10.1016/j.aop.2012.02.011
https://doi.org/10.1016/j.aop.2012.02.011
https://doi.org/10.3390/e23081006
https://doi.org/10.3390/e23081006
https://doi.org/10.1007/s11232-009-0015-5
https://doi.org/10.1007/s11232-009-0015-5
https://doi.org/10.1016/j.aop.2017.05.017
https://doi.org/10.1016/j.aop.2017.05.017
https://doi.org/10.1088/1751-8113/41/43/435101
https://doi.org/10.1088/1751-8113/41/43/435101
https://doi.org/10.1088/1751-8113/42/46/465102
https://doi.org/10.1088/1751-8113/42/46/465102
https://doi.org/10.1063/1.3272791
https://doi.org/10.1063/1.3272791
https://doi.org/10.1016/j.cnsns.2021.105947
https://doi.org/10.1063/1.3443235
https://doi.org/10.1016/j.physleta.2009.11.008
https://doi.org/10.1016/j.physleta.2009.11.008
https://doi.org/10.1515/9783110571660-003
https://doi.org/10.1515/9783110571707-005
https://doi.org/10.1515/9783110571707-005
https://doi.org/10.1007/s11071-021-06379-2
https://doi.org/10.1007/978-3-642-96363-6
https://doi.org/10.1007/978-3-642-96363-6
https://doi.org/10.1007/978-3-642-45553-7
https://doi.org/10.1007/978-3-642-75909-3
https://doi.org/10.1007/978-3-642-75909-3
https://doi.org/10.1016/j.cnsns.2018.12.018
https://doi.org/10.1016/j.cnsns.2018.12.018

	Trends, directions for further research, and some open problems of fractional calculus
	Abstract
	1 Introduction
	2 Analytical aspects
	2.1 Desiderata for the FC operators
	2.2 One-parameter FC operators on a finite interval
	2.3 General FC operators with the Sonine kernels
	2.4 Open problems

	3 Numerical aspects
	3.1 Algorithms based on infinite state representations
	3.2 Spectral methods and related techniques
	3.3 Terminal value problems

	4 Applications in physics
	4.1 Nonlocal continuum and lattice mechanics
	4.2 Economics with nonlocality in time: memory and distributed lag
	4.3 Non-Markovian dynamics of open quantum systems
	4.4 Nonlocal discrete maps
	4.5 Self-organization with memory

	5 Conclusions
	References




