
A WSSL Implementation for Critical Cyber-
Physical Systems Applications

MÁRCIA CUNHA ROCHA
outubro de 2023



A WSSL Implementation for Critical
Cyber-Physical Systems Applications

Marcia Cunha Rocha

Dissertation submitted in partial fulfilment of the requirements for the
Master’s degree in Critical Computing Systems Engineering

Supervisor: Prof. Dr. Eduardo Manuel Medicis Tovar
Co-Supervisor: Dr. Sergio Duarte Penna

Evaluation Committee:
President:
Luis Miguel Pinho, ISEP

Members:
David Pereira, ISEP
Eduardo Tovar, ISEP

Porto, October 4, 2023





iii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

The work presented in this document is original and authored by me, and performed in
the scope of the Master’s degree in Critical Computing Systems Engineering.

I have not plagiarised or applied any form of undue use of information or falsification of
results along the process leading to its elaboration, all references have been acknowledged
and fully cited, and all text was originally produced by me (except when duly noted).

I further declare that I have fully followed the Code of Good Practices and Conduct of
the Polytechnic Institute of Porto.

Porto, Porto, October 4, 2023

(Signature as in the official identification document, or, preferably, digital signature)





v

Dedicatory

To my family, especially my mother Erica, who supports me and gives me the strength to
persist in all situations, not only during this master’s degree.

To my friends who supported me when I moved to Portugal, especially Gleizielly Alves, with
whom I shared all the challenges, feelings, and fears of studying in a new country.

To my boyfriend, Michael, who is taking care of me and supporting me in this new period
of my life.

To my old teacher and friend Enio Filho, that shared with me his experience, knowledge,
and good humor and guided me through the academic world.

To the teachers and researchers at CISTER Research Centre for the assistance, encourage-
ment, and for wisely sharing their knowledge with their students.

To my advisor and co-advisor, Eduardo Tovar and Sérgio Penna, for supporting this work.





vii

Abstract

The advancements in wireless communication technologies have enabled unprecedented per-
vasiveness and ubiquity of Cyber-Physical Systems (CPS). Such technologies can now em-
power true Systems-of-Systems (SoS), which cooperate to achieve more complex and effi-
cient functionalities, such as vehicle automation, industry, residential automation, and oth-
ers. However, for CPS applications to become a reality and fulfill their potential, safety and
security must be guaranteed, particularly in critical systems, since they rely heavily on open
communication systems, prone to intentional and non-intentional interferences. To address
these issues, in this work, we propose designing a Wireless Security and Safety Layer (WSSL)
architecture to be implemented in critical CPS applications. WSSL increases the reliability
of these critical communications by enabling the detection of communication errors. Other-
wise, it increases the CPS security using a message signature process that uniquely identifies
the sender. So, this work intends to present the WSSL architecture and its implementation
over two different scenarios: over Message Queue Telemetry Transport (MQTT) protocol
and inside a simulation environment for communication between Unmanned Aerial Vehicles
(UAVs) and Ground Control Stations in case of Beyond Visual Line of Sight (BVLOS) appli-
cations. We aim to prove that the WSSL does not significantly increase the system payload
and demonstrate its safety and security resources, allowing it to be used in any general or
critical CPS.

Keywords: Safety, Security, Cyber-Physical Systems, Critical Systems





ix

Resumo

Os avanços nas tecnologias de comunicação sem fios permitiram uma omnipresença e ubiq-
uidade sem precedentes dos Sistemas Ciber-Físicos (CPS). CPS são a combinação de um
sistema físico, um sistema cibernético, e a sua rede de comunicação. Tais tecnologias po-
dem agora capacitar verdadeiros Sistemas de Sistemas (SoS) que cooperam para alcançar
funcionalidades mais complexas e eficientes, tais como automação de veículos, indústria,
automação residencial, e outras. As aplicações CPS são baseadas num ambiente complexo,
onde sistemas estão interligados e dispositivos interagem entre si em grande escala. Estas
circunstâncias aumentam a superfície de ataque, e os desafios para garantir fiabilidade e
segurança. Contudo, para que as aplicações CPS se tornem realidade e alcancem o seu
potencial, a segurança do funcionamento e segurança contra intrusões devem ser garanti-
das, particularmente em sistemas críticos, uma vez que dependem fortemente de sistemas
de comunicação abertos, propensos a interferências intencionais e não intencionais. Tais
interferências podem ocasionar graves danos ao ambiente e riscos a integridade física e
moral das pessoas envolvidas. Neste trabalho, propõe-se a concepção de uma arquitectura
WSSL, a ser implementada em aplicações críticas de CPS, para abordar estas questões.
Esta arquitectura aumenta a fiabilidade das comunicações críticas, permitindo a detecção
de erros de comunicação. Além disso, aumenta a segurança dos CPS utilizando um pro-
cesso de assinatura de mensagem que identifica de forma única o remetente, garantindo
a integridade e autenticidade, pilares cruciais da cibersegurança. Assim, pretende-se apre-
sentar a definição, arquitectura e a implementação da WSSL sobre um protocolo MQTT
(do inglês Message Queue Telemetry Transport) para avaliação dos custos associados a sua
implementação, e provar que esta não aumenta significativamente a carga útil do sistema.
Também é pretendido avaliar seu comportamento e custos a partir da implementação em
um ambiente simulado para comunicação entre veículos aéreos não tripulados e estações
de controle terrestres . Por fim, deve-se avaliar se os seus recursos de segurança são efi-
cientes na detecção de erros relativos a segurança do funcionamento ou a segurança contra
intrusões, permitindo a sua utilização em qualquer CPS, seja ele um CPS crítico ou não.





xi

Acknowledgement

This work was partially supported by National Funds through FCT/MCTES (Portuguese
Foundation for Science and Technology), within the CISTER Research Unit (UID-
P/UIDB/04234/2020); by the FCT and the Portuguese National Innovation Agency (ANI),
under the CMU Portugal partnership, through the European Regional Development Fund
(ERDF) of the Operational Competitiveness Programme and Internationalization (COM-
PETE 2020), under the PT2020 Partnership Agreement, within project FLOYD (grant
nr. 45912, POCI-01-0247-FEDER-045912); by FCT and the EU ECSEL JU under the
H2020 Framework Programme, within project ECSEL/0010/2019, JU grant nr. 876019
(ADACORSA); also by project FLY-PT (grant nr. 46079, POCI-01-0247-FEDER-046079),
co-financed by the European Regional Development Fund (ERDF) within COMPETE 2020,
in the scope of PORTUGAL 2020. The JU receives support from the European Union’s
Horizon 2020 research and innovation program and Germany, Netherlands, Austria, France,
Sweden, Cyprus, Greece, Lithuania, Portugal, Italy, Finland, and Turkey. The ECSEL JU
and the European Commission are not responsible for the content of this paper or any use
that may be made of the information it contains.





xiii

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

List of Acronyms xxi

1 Introduction 1
1.1 Motivations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Cyber Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 CPS Applications and Challenges . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Security and Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Cybersecurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Communication Protocols for CPS . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Message Queue Telemetry Transport . . . . . . . . . . . . . . . . 12

3 Development 13
3.1 WSSL Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 WSSL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Signature Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 WSSL Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 WSSL Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
WSSL Sender entity for safety . . . . . . . . . . . . . . . . . . . . 22
WSSL Sender entity for security . . . . . . . . . . . . . . . . . . . 23

3.3.2 WSSL Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
WSSL Receiver entity for security . . . . . . . . . . . . . . . . . . 26
WSSL Receiver entity for safety . . . . . . . . . . . . . . . . . . . 27

4 Evaluation 31
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Evaluation using MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 WSSL Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Inter-message delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Tests Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 37



xiv

5 Applications 41
5.1 WSSL and CopaDrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 WSSL and ADACORSA . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 WSSL Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Tests Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 51

Bibliography 53

7 Appendix A - WSSL Instalation Tutorial 59
7.1 How do I get set up? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1 Make and CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.2 CryptoIdentity library . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1.3 Using WSSL with MQTT Libmosquitto . . . . . . . . . . . . . . . 60



xv

List of Figures

2.1 Ground Station simulation using QGroundControl. . . . . . . . . . . . . . 7

3.1 Basic implementation of WSSL. . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 WSSL covered threats and defense methods. . . . . . . . . . . . . . . . . 14
3.3 General flow of the WSSL Library. . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Illustration of sending three equal messages. . . . . . . . . . . . . . . . . . 16
3.5 Sender and Receiver files containing the Identities information. . . . . . . . 18
3.6 WSSL Sender’s safety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 WSSL Sender’s security. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 WSSL Sender sequence diagram. . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 WSSL Receiver’s security. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 WSSL Receiver’s safety. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Receiver sequence diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Laboratory using MQTT and WSSL . . . . . . . . . . . . . . . . . . . . . 31
4.2 WSSL’s delay detection - MQTT. . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Log file of generated errors. . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 WSSL average costs versus frequency and number of messages when inte-

grated with MQTT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 WSSL’s safety entity costs in percentage versus frequency and number of

messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 WSSL’s security entity costs in percentage versus frequency and number of

messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 WSSL costs in percentage versus frequency and number of messages. . . . 39

5.1 CopaDrive Architecture (Filho, Severino, Rodrigues, et al. 2021). . . . . . 42
5.2 How WSSL was planned to be integrated with CopaDrive. . . . . . . . . . 42
5.3 Laboratory setup for evaluating WSSL in the Handover code. . . . . . . . . 44
5.4 WSSL’s costs in percentage for different frequencies - ADACORSA. . . . . 45
5.5 Telemetry velocities without WSSL. . . . . . . . . . . . . . . . . . . . . . 46
5.6 Telemetry velocities with WSSL. . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Sequence diagram illustrating the communication between Drone and GCS

using WSSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8 WSSL average costs versus frequency and number of messages when inte-

grated with ADACORSA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.9 WSSL’s inter-message delay detection in ADACORSA. . . . . . . . . . . . 49





xvii

List of Tables

4.1 Sent and reception time costs when sending fifty thousand msgs with the
frequency of 1000 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Sent and reception time costs when sending fifty thousand msgs with the
frequency of 1000 Hz and 333 Hz. . . . . . . . . . . . . . . . . . . . . . . 48





xix

List of Source Code

3.1 Fuction responsible to create the Identifier (ID) file. . . . . . . . . . . . . . 17
3.2 Fuction responsible to a new identity in the known identity list of the ID. . 17
3.3 Signing the message coming from safety. . . . . . . . . . . . . . . . . . . 18
3.4 Verifying the signature and recovering the message coming from the Sender

Device (SD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Return classes of the Sender and Receiver. . . . . . . . . . . . . . . . . . 19
3.6 Packet format of the Sender and Receiver tables. . . . . . . . . . . . . . . 20
3.7 Init function for the WSSL_Sender. . . . . . . . . . . . . . . . . . . . . . 20
3.8 Init function for the WSSL_Receiver. . . . . . . . . . . . . . . . . . . . . 20
3.9 Functions responsible for deleting old connexions in the table. . . . . . . . 21
3.10 Functions responsible for deleting old connexions in the table. . . . . . . . 21
3.11 Public variables inside the WSSL class. . . . . . . . . . . . . . . . . . . . . 21
3.12 Treating the invalid argument error. . . . . . . . . . . . . . . . . . . . . . 21
3.13 Different ways to instantiate the WSSL Sender. . . . . . . . . . . . . . . . 22
3.14 Different ways to instantiate the WSSL Receiver. . . . . . . . . . . . . . . 25
4.1 Function publishing in topic "wssl" in Mosquitto broker. . . . . . . . . . . 32
4.2 Function subscribed in topic "wssl" in Mosquitto broker. . . . . . . . . . . 33
5.1 Definition of the drone telemetry struct. . . . . . . . . . . . . . . . . . . . 43





xxi

List of Acronyms

ADACORSA Airborne Data Collection on Resilient System
Architectures.

AMQP Advanced Message Queuing Protocol.

BVLOS Beyond Visual Line of Sight.

CAGR Compound Annual Growth Rate.
CAM Cooperative Awareness Message.
Co-CPS Cooperative Cyber-Physical Systems.
Co-VP Cooperative Vehicular Platooning.
CoAP Constrained Application Protocol.
CPS Cyber-Physical Systems.

DDS Data Distribution Service.

ERTMS European Traffic Management System.
ETSI European Telecommunications Standards Insti-

tute.

GCS Ground Control Station.

HTTP HyperText Transfer Protocol.

ID Identifier.
IoT Internet of Things.
ITS Intelligent Transport System.

M2M Machine-to-Machine.
MQTT Message Queue Telemetry Transport.

pk public key.

QoS Quality of Service.

RD Receiver Device.
ROS Robot Operating System.

SD Sender Device.
sk secret key.
SoS Systems-of-Systems.



xxii

UAVs Unmanned Aerial Vehicles.

V2I Vehicle-to-Infrastructure.
V2V Vehicle-to-Vehicle.
V2X Vehicle-to-Everything.

WSSL Wireless Security and Safety Layer.



1

Chapter 1

Introduction

Cyber-Physical Systems (CPS) applications are gaining prominence due to advances in wire-
less communications in several areas, including industry (Hermann, Pentek, and Otto 2016),
logistics (Coopmans et al. 2015), smart buildings (Pivoto et al. 2021) and vehicle automa-
tion (Rawat and Bajracharya 2017). These systems offer many benefits, like removing people
exposition to dangerous conditions, improving safety, reducing costs, and increasing flexibil-
ity and mobility. Moreover, such technologies can now empower true Systems-of-Systems
(SoS), which cooperate to achieve more complex and efficient functionalities, enabling var-
ious services and applications and involving several interconnected systems.

Nevertheless, CPS require additional attention for critical environments where malicious
activities or network issues can greatly damage or put lives at risk. Many CPS devices,
whether cooperative or not, actuating in open communication environments, are mainly
subject to malicious agents. Furthermore, their implementation based on devices from
different manufacturers allows the possibility of security flaws (EN 50159 2010).

The criticality of CPS also arises from the fact that these systems heavily rely on wireless
communications to exchange safety-critical information (Vieira et al. 2019). Hence, the
wireless communication is commonly susceptible to unauthorized access due to its inherent
open transmission system and broadcast nature (J. Zhang et al. 2017). In addition, the
amount of systems relying on wireless communication to transmit messages is increasing,
contributing to an extension of the attack surface. Therefore, for CPS applications to
become a reality and fulfill their potential safety and security must be guaranteed.

Research on safety and security for CPS devices is broad and widespread in the literature,
but only a few address security and safety in a practical way. According to (Kavallieratos,
Katsikas, and Gkioulos 2020), between sixty-eight analyzed methods for cyber-security and
safety co-engineering, less than half are aware of security and safety standards or even
include information on the validation of the method they propose. The authors also state
that [...]" the applicability to different application domains is usually not demonstrated in
most reviewed methods," and several important issues remain open.

1.1 Motivations and Challenges

Many well-known international companies operate in the CPS market, including IBM Cor-
poration, Microsoft, Siemens, Astri, MathWorks, and Intel. Additionally, market size pro-
jections show a large potential for the CPS market. The global CPS market is estimated to
reach 137 billion dollars by 2028 with a projected Compound Annual Growth Rate (CAGR),
which measures the return on investment over time, of 8.2 percent over the forecast period



2 Chapter 1. Introduction

between 2022 and 2030 (Analytics Market Research 2023). It also underlines that the CPS
market represents around 40 percent of the global market for information security.

According to the United Kingdom government’s Cyber Security Breaches Survey 2022 (Ell
and Gallucci 2022), 39 percent of the businesses identified a cyber-attack in the last 12
months of the survey period. Similarly, cybercrime research in the United States concluded
that [...] " over 53 million individuals were affected by data compromises, which include
data breaches, data leakage, and data exposure" (Statista 2022) in the last half of 2022.
Moreover, Gartner, Inc. (Moore 2020) predicts that the financial impact of CPS attacks
resulting in fatal casualties will reach 50 billion dollars in compensation, litigation, insurance,
and reputation loss in 2023.

CPS applications are based on a complex environment with devices interacting with each
other on a large scale and interconnection among systems. These circumstances increase
attack surfaces, bringing new challenges regarding reliability and security. Simultaneously,
adding safety and security mechanisms to protect these applications may increase the sys-
tem’s complexity and transmission costs. As a result, methods and tools have been developed
to deal with CPS complexity, such as approaches involving separating the system into parts
to facilitate their management, modeling formalisms, and tools for verifying and validating
software and systems (Navet and Merz 2013).

According to (Törngren and Sellgren 2018), some key elements to deal with complexity for
CPS are decision-making and developing means to improve the management of uncertainty
and risk during the design stage, for instance, using software security certification to build
on existing software assurance, validation, and verification techniques. However, the authors
also state that these practices are often weak, and integrating such systems is usually identi-
fied as a challenge that consumes time and increases costs. On the other hand, certification
cannot provide proof of the status of a system dynamically (Munoz and Mafia 2014), which
is a must for heterogeneous and unpredictable systems such as CPS.

According to (Baheti and Gill 2019), these certification and formal modeling approaches
are insufficient for verifying the safety and correctness of designs at the system level and
component-to-component physical and behavioral interactions. The author also states that
certifications at the control design stage consume more than 50 percent of the resources
needed to develop new safety critical systems in several application domains, such as avi-
ation, automotive, medical, and energy systems. Therefore, there is an urgent need for
standardized abstractions and architectures that allow modular design and development of
CPS.

This thesis aims to fill the gap of a modular, low-cost, open-source application that ad-
dresses unified safety and security features for CPS. So, it fulfills the necessity of a generic
and portable application that can be applied between all kinds of CPS without significantly
increasing the communication costs, system complexity, and network overhead.

This work is inserted in the FLY-PT project (FLY-PT 2023), which will develop the prototype
of a personal air transport system at scale. This prototype will consist of an autonomous
aerial vehicle (drone), allowing air mobility, an autonomous vehicle, allowing land mobility,
and a cabin that can be attached to each of the two vehicles.



1.2. Contributions 3

1.2 Contributions

This thesis will present a modular Wireless Security and Safety Layer (WSSL) architecture,
establishing a safe way to exchange information in CPS. The proposed WSSL does not rely
on standard transmission systems such as gateways and protocols, applying to a wide range
of applications that demand secure transmissions and safe applications, including simulated
and real environments (Filho, Guedes, et al. 2020). Moreover, although some defenses
involve verifying the origin and destination of the messages sent, the WSSL is agnostic to
the message contents or application payload, guaranteeing the data’s trust and privacy. In
addition, its implementation is independent, as much as possible, of the communication
stack used. Thus, the contributions of this work can be divided into the following main
aspects:

• Demonstrate the architecture of WSSL, introducing its concept and agnostic model,
based on a black channel modeling, for communication in insecure media.

• Evaluate the implementation of WSSL using Message Queue Telemetry Transport
(MQTT) as the communication protocol between two devices, measuring the impact
of its use on the data network through quantitative and qualitative analysis.

• Evaluate the implementation of WSSL inside a project that aims Beyond Visual Line
of Sight (BVLOS) communication Handover, ADACORSA (ADACORSA 2023), mea-
suring the impact of the integration through quantitative and qualitative analysis.

• Demonstrate the ability of WSSL to add safety features to the message: Sequence
Number, Identifier (ID), and Timestamp.

• Demonstrate the ability of WSSL to add security features (integrity and authenticity)
to the message using a digital signature.

• Demonstrate the ability of WSSL to use its features to detect attack actions on the
CPS, monitor network problems, and report them to the application, increasing the
application’s security and safety.

• Writing and publishing of an ACM/IEEE conference article (Cunha Rocha et al. 2023).

1.3 Outline

This work is divided as follows: Chapter 2 represents the state of the art, presenting back-
ground information regarding the different components of this thesis and explaining some
essential concepts to understand the WSSL environment. At the same time, it has an
overview of the related works and an analysis of the proposed problem. Chapter 3 describes
the concepts and design of the WSSL algorithm and how its components work together to
improve safety and security. Chapter 4 details the evaluation methodology, namely, how the
tests were developed, the achieved results, and the gathered conclusions. Chapter 5 presents
the application of WSSL in the telemetry of an uncontrolled environment within Unmanned
Aerial Vehicles (UAVs) and a Ground Control Station (GCS). Moreover, the evaluation of
the integration in this system is described, and the results are analyzed. At last, 6 con-
cludes this thesis, headlining the principal results and contributions and promoting possible
directions for future works.





5

Chapter 2

State of the art

This chapter introduces a contextualization and a good overview of the state-of-the-art.
Section 2.1 presents the CPS, its context, and its characteristics. Then, the theory for
CPS safety and security and the standards related to this work are described in section 2.3.
Moreover, the CPS cybersecurity threats are briefly presented in section 2.4 to clarify the
defenses WSSL aims to implement. At last, the communication protocols used in CPS are
presented in section 2.5, together with the general specifications of the MQTT, the protocol
intended to be used during the evaluation tests.

2.1 Cyber Physical Systems

Cyber-Physical Systems (CPS) address a new generation of systems that integrates cyber
and physical components, that is, with computational and physical capabilities that can inter-
act with humans through several modalities. "CPS are spatially-distributed, time-sensitive,
and multi-scale, networked embedded systems [...]" (Esterle and Grosu 2016) that can con-
nect to the physical environment using modern sensors and actuators with computational
capabilities and network technologies.

CPS allows combining technologies and knowledge and has been widely adopted (Alguliyev,
Imamverdiyev, and Sukhostat 2018). According to (Bilenko et al. 2020), CPS are key to
ensuring competitiveness in companies engaged in industry and manufacturing processes. It
can bring several advantages for new systems, such as autonomy, reliability, and control,
without the need for human intervention. "The ability to interact with, and expand the
capabilities of, the physical world through computation, communication, and control is a
key enabler for future technology developments" (Baheti and Gill 2019).

Often related to Industry 4.0 and Internet of Things (IoT), CPS are the basis for the
development of smart technologies such as smart manufacturing, smart infrastructures,
smart city, smart vehicles, and others. They offer many benefits to modern society (Esterle
and Grosu 2016), like removing people exposition to dangerous conditions by reducing traffic
fatalities, improving safety and control in smart cities, reducing costs through resource
conservation, facilitating network management, and increasing flexibility, autonomy, and
mobility.

In Industry 4.0, also known as Smart Industry, CPS connects machines, products, data, and
service providers, allowing new ways of organizing and conducting industrial processes and
ensuring an appropriate interaction between the areas (Hermann, Pentek, and Otto 2016).
In the Smart Building, the interaction between CPS and smart devices can reduce energy
consumption and increase the resident’s protection, safety, and comfort (Pivoto et al. 2021).



6 Chapter 2. State of the art

In smart vehicles, CPS combines computation, communication, and control between vehicles
and vehicle and infrastructure. As a result, they improve road safety, efficiency, comfort,
and quality of life by reducing traffic congestion, accidents, and fuel consumption (Rawat
and Bajracharya 2017).

There is an increasing consensus about the similarities between the CPS and IoT concepts.
According to (Greer et al. 2019), both comprise interacting logical, physical, transducer, and
human components and have overlapping definitions. However, the author highlights that
they emerge from different communities. CPS primarily emerges from a system engineer-
ing and control perspective. In contrast, IoT emerges from a networking and information
technology perspective. So, CPS are interconnected systems collaborating through the IoT
systems (Marwedel 2021), and the IoT can be considered the backbone of CPS (Esterle and
Grosu 2016). Thus, CPS came to integrate physical and computing elements (Wolf and
Serpanos 2018), which unlocked a wide range of potential cyber-derived threads.

2.2 CPS Applications and Challenges

Critical systems applications such as the drone and automotive industries brought different
challenges to the developing of CPS. For example, drone operations must be safe, reli-
able, and secure in all situations and flight phases. In this scenario, Beyond Visual Line of
Sight (BVLOS) technologies enhance the autonomy of drones, and their use goes beyond
military applications. Furthermore, BVLOS allows complex interactions between Unmanned
Aerial Vehicles (UAVs), empowering the integration in aerial photography, search and rescue,
commercial delivery, infrastructure inspection, and surveillance (Politi et al. 2022).

These applications represent a new class of CPS, the Cooperative Cyber-Physical Systems
(Co-CPS), and have many benefits and significant economic potential in numerous domains
(Kabir 2021). Likewise, they bring a new paradigm for these systems, increasing their capac-
ity to perform critical activities with real-time constraints. Nevertheless, several challenges
emerge with Co-CPS, raising concerns regarding the reliability and security of communica-
tions and their impact on safety and efficiency in the environment where such systems are
implemented.

UAVs, known as Drones, confront several safety and security issues as they are planned to
be deeply inserted in society’s safety-critical activities. As it is broadly discussed nowadays,
Drone networks are vulnerable to many types of privacy and security threats. The connec-
tions between drones are also vulnerable since they rely on mobile wireless networks and
may experience challenges due to limited power, high movement speed, packet loss, network
congestion, and others (Shayea et al. 2022).

Ensuring reliable, smooth, and continuous connectivity for Drones is one of the major chal-
lenges in their implementation. More problems emerge from the fact drones depend on
frequent handovers. Handover is a method to maintain continuous active sessions of the
users during base station or sector switching connection (Gódor et al. 2015). It is a crucial
mechanism for wireless communication systems and even more important when speaking
about UAVs operating as BVLOS.

Handovers are naturally exposed to cyber-attacks. Moreover, erroneous transmissions from
limited coverage areas in drone networks can disrupt the service. These problems and many
others increase the need for securing critical infrastructures and developing new safety and



2.2. CPS Applications and Challenges 7

security solutions for UAVs, which made some European and international collaborations
formed among industrial and academic partners.

When working with critical systems, research and development of components and systems
are necessary to reduce risk, time, and costs. With that in mind, many important projects
have been developed to address Co-CPS challenges. For instance, Airborne Data Collection
on Resilient System Architectures (ADACORSA) is an EU-funded project aiming to reinforce
the drone industry and increase public and regulatory acceptance of BVLOS technologies
by demonstrating technologies for safe, reliable, and secure drone flight in all circumstances
and phases. In addition, ADACORSA covers the development of an authority Handover
between Ground Control Station (GCS) and Drones without human interference, and the
future integration with WSSL represents an essential part of the project.

One of the ADACORSA’s software uses Ardupilot firmware in the drone and the QGround-
Control simulator for communication and simulation of the Ground Control Stations. The
ArduPilot Project (ArduPilot 2023) is an open-source project that enables the creation
and use of trusted, autonomous, unmanned vehicle systems. It provides an advanced, full-
featured, and reliable autopilot software system and a comprehensive suite of tools suitable
for almost any vehicle and application.

The QGroundControl (QGroundControl 2023) provides full flight control and vehicle setup
for PX4 or ArduPilot-powered vehicles. Its primary goal is to facilitate the use of professional
users and developers, providing straightforward usage for beginners while delivering high-
end feature support for experienced users. Moreover, QGroundControl is open-source and
provides full flight control and mission planning for any MAVLink-enabled drone. Figure 2.1
shows the GroundControl simulating the drone flying a configured mission.

Figure 2.1: Ground Station simulation using QGroundControl.

There is still much work to do regarding developing and validating Drone capabilities and
specific services and procedures to ensure secure operation and traffic management, allowing



8 Chapter 2. State of the art

efficient and safe access to airspace for a substantial quantity of Drones. As pointed out,
UAVs require efficient mobility, safe handover techniques, and a continuous, stable, and
reliable network connection. With that in mind, Integrating WSSL in such a project would
allow service providers to perform complex drone operations safely and increase the Handover
security.

Accordingly, WSSL will be implemented as extra protection for the telemetry data of UAVs.
Drone telemetry is used to provide drone position, velocity, and timing (PVT) information to
the operator along with other information such as heading, battery status, distance to home,
flight time, attitude, and others (European Global Navigation Satellite Systems (EGNSS)
for drones operations: white paper 2020).

On the other hand, autonomous driving has achieved unprecedented growth, and connec-
tivity between vehicles (V2V) and between vehicles and infrastructure (V2I) enabled various
advanced applications. In this scenario, a Cooperative Vehicular Platooning (Co-VP) is vital
to advancing the safety and efficiency of autonomous driving by increasing road capacity
and fuel efficiency. Thus, CopaDrive (Filho, Severino, Rodrigues, et al. 2021) emerges as
a simulation tool that evaluates the security and reliability of a Co-VP system and whose
WSSL would add a powerful resource to increase its capability to detect network problems.

CopaDrive is a 3D vehicle simulation tool integrated with an European Telecommunications
Standards Institute (ETSI) standard (ETSI EN 302 663 2012) operating in the 5 GHz
frequency band, known as Intelligent Transport Systems (ITS-G5), and a network simulator
OMNET++, which evaluates network problems, such as delays and packet losses, on the
security and reliability of a Co-VP system. CopaDrive works with Robot Operating System
(ROS), a framework that facilitates the development process of autonomous vehicles by
providing multiple libraries, tools, and algorithms (ROS - Robot Operating System 2022).
ROS is an integrative tool since it also supports several devices to simulate the physical
environment and many sensors and actuators for CPS.

Through a 3D simulator, Gazebo, and OMNET++, CopaDrive is an integrated framework for
developing, testing and evaluating Co-VP systems in different environments. For example,
it assesses how the communication between vehicles impacts the ability of the platoon to
perform safely and how network problems, such as delays and packet losses, can significantly
impact the security and reliability of the Co-VP system.

CopaDrive defined an architecture that would minimize the implementation effort in real
platforms. Thus, WSSL emerges as a tool to increase safety and security in CopaDrive.
Furthermore, it can be integrated with minimal resources and effort, optimizing its opera-
tion and improving its safety and security features. Integrating both works would allow a new
paradigm with new methods for evaluating WSSL efficiency, advantages, and possible limi-
tations. In future works, it could also be extended for real scenarios, using ROS capabilities
to expand to implement a hybrid environment.

2.3 Security and Safety

The safety standard EN 50159 (EN 50159 2010) helps to classify transmission systems into
three categories. Category 1 comprises systems under the designer’s control and fixed during
their lifetime. Category 2 of systems partly unknown or not fixed, but unauthorized access
can be excluded, and Category 3, where systems are not under the control of the designer,
and unauthorized access has to be considered. Category 1 and 2 type communication



2.3. Security and Safety 9

systems are often referred to as closed transmission while Category 3 is referred to as
open transmission.

Although an open transmission system always has the potential for unauthorized access,
wireless communication is still the favorite option to avoid installation costs and enable the
connection between CPS devices in an IoT system, increasing the systems’ mobility. So,
as CPS will generally contain sensitive, private, or confidential information, it must dispose
of methods to guarantee safety and security, ensuring the data authenticity, integrity, and
availability at the receiving end.

Accordingly, EN 50159 proposes an end-to-end safety approach using the black channel
principle (Filho, Severino, Koubaa, et al. 2021). In this approach (IEC 61508 2010), safe
applications are implemented over a non-secure transmission system with non-certified net-
work communication. Therefore, the transmission system is considered unsafe, and safety
and security mechanisms are implemented as separate layers in each end node in the com-
munication. The safety layer is in charge of the defenses against random and systematic
faults and failures, and the security layer protects against deliberate threats from external
sources with malicious purposes.

It is important to define the terminologies of safety and security and their differences and
interdependencies to clarify this thesis’s scope, objective, and motivations.

Safety and security have a variety of definitions depending on the context and communities
(Esterle and Grosu 2016; Lyu, Ding, and Yang 2019; Wolf and Serpanos 2018). Both are
associated with risks and can cause different consequences (e.g., human losses, environmen-
tal damage, financial loss), being differentiated in the risk source. Under the environment
covered by this thesis, safety considers hazards with potential impact on the system envi-
ronment. At the same time, security focuses on threats that could impact the environment
and the system itself. Thus, safety can be defined as accidental risks originating from the
system. Security is related to malicious threats caused by intentional attacks that may
impact a vulnerable system and its operation.

Traditionally, much attention has been given to system safety, such as accidental component
failures and software errors. Over the years, safety standards have been created to stan-
dardize and ensure safety for different applications. For example, IEC 61508 (IEC 61508
2010) is a safety standard that addresses functional safety for electrical, electronic, and
programmable electronic systems. This norm defines safety as freedom from unacceptable
risk of harm to humans, directly through injury or death, or indirectly due to damage to
equipment, property, or the environment.

Safety standards like IEC 61508 define several aspects and models to increase systems
safety but still need to advance to real applications (Magro, Pinceti, and Rocca 2016).
Furthermore, most works encompassing safety are closed in a specific application field,
reducing their utilization to general CPS. For instance, EURORADIO (Cecchetti et al. 2013;
L.-j. Chen et al. 2011) is a safety layer related to railways control systems, defined by
the European Traffic Management System (ERTMS). WirelessHART is a standard that
addresses the main concerns about reliability, security, and integration for real-world industrial
applications (Akerberg et al. 2011), and ISO 26262 and SAE J3061 define international
vehicle safety and security standards used for autonomous vehicles (Schmittner et al. 2016).
Such complex solutions related to CPS are not easily portable to other scenarios. Thus,
current safety measures are inadequate and intrusive, and many research proposals still need
to be practical and cost-effective.



10 Chapter 2. State of the art

Furthermore, safety and security have been discussed independently by distinct communities
in the literature. Several kinds of research focus on the CPS security issues, suggesting
the use of cryptography (J. Zhang et al. 2017), attack detection methods (D. Zhang et
al. 2021), and other security mechanisms (Lind 2020; Xiao, H.-H. Chen, et al. 2006; Xiao,
Sethi, et al. 2005). Just a few studies comprise safety and usually are focused on a theoretical
approach (Balador et al. 2018), like surveys analyzing existing methods (Hoffmann et al.
2018) or suggesting the importance of safety in CPS devices (Atlam and Wills 2020). On
the other hand, some complex systems are being developed: a risk assessment framework
focused on quick and guided feedback about safety and security (Asplund et al. 2019), or
a cyber-physical system analytical framework (Vinel, Lyamin, and Isachenkov 2018), where,
despite their importance, neither of them are easily implemented into the system or provide
operational tools that simplify their integration.

CPS are often safety-critical systems (Nandi, Pereira, and Proença 2021). Integrating soft-
ware components across safety-critical infrastructures is sensitive to a wide range of security
attacks, bugs, and design flaws, and their failure can cause grave consequences (Johnson
2012). Several studies raised concerns about new security threats and their potential impact
on safety, concluding that the security and safety of CPS often influence each other (Car-
reras Guzman, Kozine, and Lundteigen 2021; Ji et al. 2021; Kriaa et al. 2015; Lyu, Ding,
and Yang 2019; Zhou et al. 2021). Still, only a few address both of them in a practical way,
providing adequate methods, theory, and tools to cover CPS complexity. Thus, to bridge
the gap concerning these limitations, CPS must be designed and operated under a unified
view of safety and security characteristics.

Therefore, with the integration of the technologies caused by IoT applications and CPS, it
is no longer adequate to treat safety and security separately. The fact that safety can be
compromised by security flaws raised the necessity of combining both disciplines. The con-
vergence of safety and security concerns increases the need for industrial facility design and
risk assessment approaches that consider both aspects (Kriaa et al. 2015). Consequently,
integrating safety and security is a remaining challenge of great importance.

2.4 Cybersecurity

CPS brought a reality where billions of connected devices are placed in several new locations
and applications. Likewise, these interconnected systems can generate a knock-on effect
of failures and must be secured on all levels. Thus, ensuring security for CPS is a complex
problem. These challenges unleash new concerns about cyberattacks and their impact on
privacy and safety. Additionally, because they are intentional, security attacks are hard to
detect and prevent. They cannot be evaluated quantitatively and do not follow a probabilistic
occurrence model (Heinrich et al. 2019).

The standard IEC 27001 (ISO/IEC 27001:2013 2013) defines information security as the
conservation of Confidentiality, Integrity, and Availability of information. Confidentiality en-
sures the information is available only to authorized stakeholders. Integrity ensures the
accuracy of the information and its completeness. Finally, Availability ensures the informa-
tion is accessible and usable always it is necessary. The security challenges of CPS are usually
related to these three properties, although more essential properties have been covered over
the years, such as Authenticity, that assures confidence in the validity of a transmission, a
message, or a message originator.



2.5. Communication Protocols for CPS 11

There are several types of cyber threats. Message corruption, wireless scrambling, eaves-
dropping, and man-in-the-middle attacks are common examples. Moreover, they come from
different sources, like hardware, firmware, data, system applications, and network-related at-
tacks. Over the years, cyberattacks have been detected in several safety-critical fields, such
as power distribution, healthcare, military, and transportation infrastructures. The more
critical the system is, the more these threats may cause damage.

CPS has additional properties that open a wide range of opportunities to attackers. For
example, its real-time behavior means a minimum time change could be enough to put the
system into an unsafe state. In addition, critical information can be obtained by exploring
wireless network vulnerabilities. IoT devices are usually embedded, battery-powered, and
small. Besides, many are low-cost and cannot afford additional power consumption or the
necessary code space for expensive mathematical calculations of cryptography methodologies
(J. Zhang et al. 2017). Thus, there is an urgent need for a modular security solution to be
implemented in CPS to secure the information exchange between them.

This thesis focuses on wireless network threats and proposes defenses for an open trans-
mission system. CPS and IoT devices have bi-directional communication, leaving the link
between devices open for network attacks and protocol failure. To ensure and validate the
authenticity and integrity of a message, WSSL will implement a mathematical technique
known as Digital Signature. "Digital signature mechanisms are reasonable in safety-related
applications where the credibility of information incoming from (or outgoing to) remote
nodes has to be verified" (Rastocny et al. 2016), which is the case of most critical systems.
Thus, this approach would allow WSSL to increase cybersecurity for CPS.

2.5 Communication Protocols for CPS

Machine-to-Machine (M2M) communications are becoming crucial for enabling inter-
machine communication. "Machine-to-machine (M2M) communications enables networked
devices to exchange information among each other as well as with business application
servers and therefore creates what is known as the Internet of Things (IoT)." (Aijaz and
Aghvami 2015)

Communication protocols are necessary to exchange messages between computing systems.
They are responsible for defining a system of rules and digital message formats, allowing dif-
ferent devices to share messages consistently. Dedicated communication protocols are being
developed and proposed as middleware to allow M2M communication in the heterogeneity of
CPS and IoT systems. They are Message Queue Telemetry Transport (MQTT), HyperText
Transfer Protocol (HTTP), Constrained Application Protocol (CoAP), Data Distribution
Service (DDS), Advanced Message Queuing Protocol (AMQP), and others.

M2M protocols are well-defined architectures and can be divided between client-server pro-
tocol (e.g., CoAP and HTTP) and publish-subscribe protocol (e.g., MQTT and AMQP).
The first is also known as the request-response model, commonly used in distributed sys-
tems. Here, information is only shared if it is requested. The second is based on forwarding
updates from senders (publishers) to interested users (subscribers), which allows information
to be shared even if not expressly requested.



12 Chapter 2. State of the art

2.5.1 Message Queue Telemetry Transport

Message Queue Telemetry Transport (MQTT) is an OASIS standard messaging protocol for
the IoT (MQTT 2022), designed as an extremely lightweight publish-subscribe messaging
transport with a small code footprint and oriented for connecting remote devices and minimal
network bandwidth.

MQTT today is used in several industries, such as automotive, manufacturing, telecommu-
nications, oil, and gas (Silva et al. 2018). In addition, many MQTT brokers are available
for testing or real applications, some being free self-hosted brokers. This work will use the
Mosquitto Broker, a lightweight open-source broker written in C (Eclipse 2022).

MQTT also provides extra features that are interesting for CPS. It supports TLC/SSL
for encrypting connections between the broker and the devices. Plus, it allows the set of
permissions since the broker can block the access of forbidden devices to restricted topics.
Moreover, MQTT also allows Quality of Service (QoS), providing more reliability by ensuring
message delivery.

There are three levels of QoS available:

• QoS 0: At most once delivery

• QoS 1: At least once delivery

• QoS 2: Exactly once delivery

Using MQTT has many benefits and broads the possibility of future analytic work regarding
the WSSL performance. MQTT is a communication protocol recommended by ISO/IEC
20922. It is lightweight and efficient, reducing the necessary resources for the user and the
network bandwidth. Furthermore, it allows bidirectional communication between devices and
servers and broadcast. Finally and indispensable for CPS, it is more scalable than client-
server protocols since the broker operations can be highly parallelized, and the messages can
be processed by events (event-driven). Adding WSSL and MQTT will help to provide the
highest reliability in the worst network conditions.



13

Chapter 3

Development

This chapter presents the approach to solving the problem defined in the last chapters. Sec-
tion 3.1 presents the WSSL definition and design, summarizing its concepts and methodolo-
gies and how they intend to increase safety and security for CPS. Section 3.2 presents the
WSSL architecture and its responsibility in each communication end node, going deeper into
the algorithm structure of the library. Finally, Section 3.3 is responsible for breaking through
the details of each layer (safety and security) and their respective behavior depending on the
side of the communication.

3.1 WSSL Definition

CPS
Applications

Wireless
Environment

Network
Protocols

Network
Protocols

CPS
Applications

Regular implementation

WSSL implementation

CPS
Applications

Network
Protocols

Network
Protocols

CPS
ApplicationsWSSL WSSL

Figure 3.1: Basic implementation of WSSL.

The WSSL consists of an external layer to be implemented in a general wireless communi-
cation environment. It implements a detection process for relevant communication issues,
establishing a safe and secure connection between each WSSL end-point and providing an
extra level of confidence to the CPS devices. Furthermore, the WSSL implementation in-
creases the trust between the Sender and Receiver. So, it avoids that communication failures
or malicious interactions could cause critical consequences for the involved agents. It focuses



14 Chapter 3. Development

on open communication systems where the transmission is unsafe. The basic implementa-
tion is agnostic, being available for generic use cases independently of the communication
protocol, as illustrated in Fig. 3.1.

Thus, WSSL has as its primary function the detection of communications issues between
CPS devices, whether or not caused by malicious agents. In this way, WSSL detects com-
munication threats and informs the application, delegating to it the responsibility to act on
the problem when necessary. These issues may be message repetition, packet loss, or inter-
message delay. By definition, this is assumed to be the safety layer of WSSL. In addition,
WSSL implements a message signing model, ensuring increased communication security by
allowing the receiver to confirm that the received message comes from the correct Sender
(Shallal and Bokhari 2016). This signature model will guarantee the integrity of the received
messages, discarding those with data loss. In the security layer, WSSL takes on a detect
and discard role for messages with signature problems.

The diagram in Fig. 3.2 exemplifies the network threats and defenses that will be imple-
mented by the WSSL.

Figure 3.2: WSSL covered threats and defense methods.

Considering the variety of devices and applications that involve CPS, the WSSL development
was based on ease of implementation and minimal interference on end devices. Thus, it was
decided to build it as a library compiled in C++, allowing it to be attached to most systems
on specific hardware or as part of the original system. So, its implementation cost is minimal,
and its benefits significant, allowing its application in low-cost or high-performance critical
systems.

Furthermore, although it aims to detect the conditions and problems of the communica-
tions network, WSSL does not alter the operation of the device where it is implemented,
informing the application about the detection of the event so that the device can handle
it. In this model, the WSSL works between two end nodes, defined as Sender Device (SD)
and Receiver Device (RD). Both SD and RD should instantiate the WSSL library, defining a
WSSL_Sender and a WSSL_Receiver . So, the RD receives data from a finite number
of SDs and can also be an SD to other devices.

WSSL library implementation codes are open-source and are available on GitHub repository
(Márcia and Enio 2022).



3.2. WSSL Architecture 15

3.2 WSSL Architecture

msg (string)
id_dest (string)
id_sender (string)
Struct Sender

init_wssl_send()

wssl_send_msg()

entity_safety_send()

Application
Sender

entity_security_send()

wssl_msg (string)
id_sender (string)
Struct Sender

msg (string)
id_dest (string)
id_sender (string)
Struct Sender

msg (string)
id_dest (string)
Struct Sender

Application
Receiver

wssl_msg
(string)

wssl_msg
(string)

init_wssl_rcv()

wssl_rcv_msg()

entity_security_rcv()

entity_safety_rcv()

wssl_msg (string)
id_sender (string)
Struct Receiver

wssl_msg (string)
id_sender (string)
Struct Receiver

Struct
Receiver

YesSecurity
Error?

No
plain_text (string)
id_sender (string)
rcv_TimeStamp (long int)
Struct Receiver

wssl_msg (string)
id_sender (string)
Struct Receiver

Struct
Sender

Figure 3.3: General flow of the WSSL Library.

Safety and security mechanisms are implemented as separate layers in each communica-
tion end node, and each differs depending on the side (SD or RD). The SD containing the
WSSL_Sender uses the message content (msg), the RD_ID, and the SD_ID to gen-
erate the signed message (wsslMsg) and send it to the RD. Conversely, the RD containing
the WSSL_Receiver must receive from the SD the wsslMsg and the SD_ID to retrieve
the data to the application. Both sides must create a memory table object to store the
message information in the WSSL.

This memory table object contains information that can be accessed in the application for
both SD and RD. For example, each sender Identifiers (IDs) last message, timestamp, and
sequence number are stored in the SDs table. Likewise, the last messages of each receiver
ID, its timestamp, sequence number, status, and inter-message delay are stored in the RDs
table.

After receiving the data from the SD, the WSSL_Sender safety layer adds the safety
entities (sequence number and timestamp) to the msg, defining a saf eMsg. Then, the
saf eMsg is transmitted to the WSSL_Sender security layer that signs it, adding informa-
tion about the key and the message size, returning a wsslMsg to the application in the SD.



16 Chapter 3. Development

In the proposed architecture, the SD is responsible for sending the wsslMsg as an ordinary
message. This way, WSSL does not interfere with the device’s communication protocol.

The RD application receives the wsslMsg. It is vital to notice that, with WSSL, it is
impossible to modify the data from the wsslMsg without being detected, guaranteeing
message integrity and increasing the system’s security. So, the RD application calls the
WSSL_Receiver with the wsslMsg. The WSSL_Receiver security layer verifies the
signature key to check the data signature, and if the SD identity is valid, it removes the
signature and gets the saf eMsg. Finally, the WSSL_Receiver safety layer gets the
sequence number and timestamp from the saf eMsg. It returns msg to the application,
together with the safety information, indicating the inter-message delay and the network
status. The general flow of the WSSL Library is illustrated in Fig. 3.3.

After retrieving the safety data from the saf eMsg, theWSSL_Receiver analyses the net-
work message issues from the sequence number and timestamp data received from the SD.
The sequence number indicates the following message states: VALID, OUT-OF-ORDER,
DUPLICATED, or LOST. Finally, the timestamp is used to calculate the inter-message delay.
This delay is calculated only when the message is not out-of-order or if it is not in duplicate.
If the delay value exceeds a threshold, the WSSL_Receiver will warn the application.

Figure 3.4 illustrates the WSSL messages on the Sender and Receiver. In this example,
three equal messages were sent, generating a DUPLICATED status, highlighted in orange.
In yellow, we print the safety message generated by the safety layer on the Sender side.
In blue, we show the appended information containing the signed message size and the
SD_ID. Finally, it is possible to observe the signature appended to the safety message in
red.

Figure 3.4: Illustration of sending three equal messages.

3.2.1 Signature Method

The signature is developed based on a public-key signature using the CryptoIdentity library,
designed by Vortex CoLab using Sodium (Libsodium 2022) library as a base. VORTEX
CoLab (Vortex-CoLab 2022) is a national entity with the title recognition of Collaborative
Laboratory, awarded by the Foundation for Science and Technology (FCT, IP).

In a public-key signature (Mohammed and Varol 2019), a signer generates a key pair con-
sisting of the following:

• A secret key: used to append a signature to any number of messages.



3.2. WSSL Architecture 17

• A public key: used to verify that the signature appended to the message was provided
by the creator of the public key.

Notice that all the receivers, or verifiers, need to know and trust entirely a public key forehand
so they can verify messages signed using this key. Thus, the keys exchange must be made
in a trustable environment. Furthermore, it is essential to underline that adding a signature
does not change the representation of the message itself, so this method does not ensure
confidentiality.

Sodium library offers two modes of public-key signatures, the combined mode and the de-
tached mode. The first prepends the signature to the message and saves the signed message
in an unsigned char pointer. The second saves the signature without attaching a copy of
the original message. In this work, we use the combined mode.

Furthermore, the public key (pk) and secret key (sk) are part of the RD_ID and SD_ID,
which are created and stored inside folders during the process of exchanging keys. These
folders’ path and label are defined by the user when instantiating the library in the SD/RD
(see section 3.3.1 and 3.3.2); otherwise, in case they are not defined forehand, are considered
the default. Listing 3.1 shows how the identities are created.

1 v o i d create_my_id ( s t d : : s t r i n g path , s t d : : s t r i n g
l a b e l )

2 {
3 c r y p t o ID = new C r y p t o I d e n t i t y ( path , l a b e l ) ;
4 c r yp to ID −>save ( ) ;
5 }

Listing 3.1: Fuction responsible to create the
ID file.

To add a new public key (pk) as a "known identity," it is necessary to call the function
add_known_identity, passing the path, the pk, and its creator label as parameters. The
function is illustrated in Listing 3.2.

1 v o i d add_known_ident i ty ( s t d : : s t r i n g path , s t d : :
s t r i n g l a b e l , c on s t u n s i g n e d cha r ∗pk )

2 {
3 c r y p t o ID = C r y p t o I d e n t i t y : : l o a d ( path ) ;
4 c r yp to ID −>addKnown Id en t i t y ( l a b e l , pk ) ;
5 c r yp to ID −>save ( ) ;
6 }

Listing 3.2: Fuction responsible to a new
identity in the known identity list of the ID.

The folders are related to the security identities and contain the knownIdentites folder, which
stores known identities (public keys) of the RD/SD, a pk, an sk, an id, and a label. The
path represents the folder’s path, and the label is a name to facilitate the identification of
the identity, which in this work is used as a synonym of the senderID and destID. Notice
that id is a numeric representation of the identity and is not being used in this work.

The folders are illustrated in Figure 3.5. In this example, the paths are senderFile and rcvFile,
and the labels are SND1 for the SD and RCV1 for the RD.



18 Chapter 3. Development

Figure 3.5: Sender and Receiver files containing the Identities information.

The signature works as a ’hash,’ so it does not change the representation of the message
itself. It has a 64-byte fixed size, verified to ensure the integrity of the message being
exchanged in the SD or RD. Also, because it is based on the creator’s private key, it provides
authenticity, meaning the creator is who it says it is.

In the WSSL library, the SD is responsible for using the method sign, which appends the
signature to the message. This method throws an error in case the sign method fails. Listing
3.3 shows how this method is used inside the SD Security entity:

1 i n t s t r S i z e = safeMsg . l e n g t h ( ) ;
2 s t r S i g n e d = idLoaded −> s i g n ( safeMsg , s t r S i z e ) ;
3

4 i f ( s t r S i g n e d == " e r r o r " )
5 throw s t d : : r u n t ime_e r r o r ( " F a i l e d to s i g n

message ! " ) ;

Listing 3.3: Signing the message coming from
safety.

Conversely, the RD is responsible for using the method verifySignature, which verifies if
the signature appended to the message was issued by the creator of the public key. This
method returns an error in case there are any differences in the message received in the RD
when compared with the message sent by the SD, representing integrity. It also returns an
error if the public keys were not exchanged properly or the identity of the SD/RD is invalid,
representing authenticity.



3.3. WSSL Components 19

Listing 3.4 shows how the method is used inside the RD Security entity:

1 rRe t . p l a i nT e x t = idLoaded −> v e r i f y S i g n a t u r e (
wsslMsg , idLoaded −>getKnownKey ( s e nd e r ID ) ) ;

Listing 3.4: Verifying the signature and
recovering the message coming from the SD.

3.3 WSSL Components

As mentioned in section 3.2, the WSSL is an algorithm implemented in a layered structure,
which means safety and security mechanisms are implemented as separate layers in each
communication end node: the safety entity and the security entity. Each layer behaves
differently depending on the component (WSSL_Sender or WSSL_Receiver).

Furthermore, for optimization of the algorithm and insurance of access control to some
critical functions, WSSL implementation was based on classes from which the layers heritage
the main characteristics, located in the header file libwssl_class.h.

The application has access to two main elements: a table that stores all the data related to
the message, defined as a pointer to arrays, and the message itself, the signed message in the
RD, and the raw message in the SD. These two elements are inside the class SenderReturn,
if WSSL_Sender , and ReceiverReturn if WSSL_Receiver , illustrated in Listing 3.5.

1 c l a s s Sende rRe tu rn
2 {
3 p u b l i c :
4 s t r u c t PacketSnd ∗ t a b l e ;
5 s t d : : s t r i n g wss lMsg ;
6 } ;
7

8 c l a s s R e c e i v e rR e t u r n
9 {

10 p u b l i c :
11 s t r u c t PacketRcv ∗ t a b l e ;
12 s t d : : s t r i n g p l a i nT e x t ;
13 } ;

Listing 3.5: Return classes of the Sender and
Receiver.

Each component has its packet format, struct PacketSnd, in case of the WSSL_Sender ,
or struct PacketRcv, in case of the WSSL_Receiver . These structures represent the
information stored inside the object tables, such as data, timestamp, sequence number,
SD_ID or RD_ID, inter-message delays, and message status, and retain the information
about the last message sent to an RD or received from an SD, as presented in Listing 3.6.



20 Chapter 3. Development

1 s t r u c t PacketSnd
2 {
3 s t d : : s t r i n g data ;
4 l o n g i n t t imeStamp ;
5 i n t seq_number ;
6 s t d : : s t r i n g d e s t ;
7 i n t s i z e_a r r a y ;
8 } ;
9

10 s t r u c t PacketRcv
11 {
12 s t d : : s t r i n g data ;
13 i n t s t a t u s ;
14 l o n g i n t de l ay_send ;
15 l o n g i n t t imeStamp ;
16 i n t seq_number ;
17 i n t s i z e_a r r a y ;
18 s t d : : s t r i n g s e n d e r ;
19 } ;

Listing 3.6: Packet format of the Sender and
Receiver tables.

The WSSL entities for safety and security are based on the class LibWssl. This class is
responsible for the instantiation of general parameters and the main functions of the WSSL,
mainly the ones in charge of initializing the library, the functions related to the security
identity and exchange of keys, and the delete functions.

The init_wssl_snd(), in case of the SD, and init_wssl_rcv(), in case of the RD, are
functions called in the application to initialize the WSSL library, and are shown in the Listings
3.7 and 3.8.

1 Sende rRe tu rn i n i t_ws s l_snd ( s t d : : s t r i n g msg ,
2 s t d : : s t r i n g sende r ID , s t d : : s t r i n g des t ID ,
3 s t d : : s t r i n g path , Sende rRe tu rn sRet ) ;

Listing 3.7: Init function for the
WSSL_Sender.

1 Re c e i v e rR e t u r n i n i t_w s s l_ r c v ( s t d : : s t r i n g wsslMsg ,
2 s t d : : s t r i n g path , R e c e i v e rR e t u r n rRet ) ;

Listing 3.8: Init function for the
WSSL_Receiver.

In the case of the WSSL_Sender , the init function needs to receive as arguments the
senderID, standing for the Sender label or SD_ID, the destID, standing for the Receiver
label or RD_ID, the Sender path, and the object of type SenderReturn, whose name is
standardized as sRet. In the case of WSSL_Receiver , the init function needs to receive
as arguments the wsslMsg, standing for the signed message, the Receiver path, and the
object of type ReceiverReturn, whose name is standardized as rRet.

The delete functions, see Listings 3.9 and 3.10, work as watchdogs and are responsible for
deleting connections older than 2 seconds from inside the table. The time limit of two
seconds is a fixed parameter called LIM_TIME_SEC, and since it is considered a critical



3.3. WSSL Components 21

parameter, it is not available for the application. Likewise, both delete functions are declared
private and cannot be easily modified.

1 p r i v a t e :
2 v o i d de l e t e_o ld_connex i on s_snd ( Sende rRe tu rn ) ;

Listing 3.9: Functions responsible for deleting old
connexions in the table.

1 p r i v a t e :
2 v o i d de l e t e_o l d_connex i on s_rcv ( R e c e i v e rR e t u r n ) ;

Listing 3.10: Functions responsible for deleting
old connexions in the table.

The variable sizeLabel defines the total size of the label for the SD_ID and RD_ID and
is initialized as members of the class with four as default, which means the senderID or
destID names have a four-letter pattern (e.g., ID01). The label’s size can be changed by
the application whenever necessary. The maximum size of the messages (msgSize) is fixed
in three digits, which means they can vary between 0 - 999 bytes.

Another essential variable is the delimiter. WSSL works with string manipulation, which in-
cludes splitting and concatenating strings. For that, a delimiter was defined and represented
by the standard as two straight slashes ("||").

The declaration of both sizeLabel and delimiter variables is illustrated in Listing 3.11.

1 p u b l i c :
2 i n t s i z e L a b e l = 4 ;
3 s t d : : s t r i n g d e l i m i t e r = " | | " ;

Listing 3.11: Public variables inside the WSSL
class.

This delimiter is flexible and must be changed by the user in case it is used inside the messages
intending to be sent with WSSL. In the scenario where the user sends the same characters
inside the message, WSSL will generate a warning recommending the modification of the
variable, and the message will be discarded. This safety procedure, illustrated in Listing
3.12, is necessary to avoid memory corruption within the code.

1 t r y {
2 seqNumber = s t d : : s t o l ( temp1 . s u b s t r ( pos2+Rcv .

d e l i m i t e r . l e n g t h ( ) ) ) ;
3 }
4 ca t ch ( s t d : : i n v a l i d_a r g umen t con s t& ex )
5 {
6 s t d : : cout << " [ Warning ] I n v a l i d message s y n t a x

. You must not send the d e l i m i t e r i n s i d e you r
message . " << s t d : : e n d l ;

7 r e t u r n rRet ;
8 }

Listing 3.12: Treating the invalid argument
error.



22 Chapter 3. Development

3.3.1 WSSL Sender

The SD only is considered a WSSL_Sender when it instantiates the class WsslSender.
This instance can be created, copied, and overloaded, as illustrated in the five cases in
Listing 3.13.

The first way calls the initialization by default constructor, responsible for defining a default
path, defaultSender, and a default label, defaultLabel. The second and the third ways call
the initialization by copy constructor, allowing an instance of the class to be copied to the
new instance. The fourth case calls the initialization by the parameterized constructor
and enables the application to pass the path and label names as parameters. Finally, the
last way uses the copy assignment operator, allowing the overload of the class instance by
another.

1 Wss lSende r Sende r ;
2 Wss lSende r Sender2 ( Sende r ) ;
3 Wss lSende r Sender3 = Sender2 ;
4 Wss lSende r Sender4 ( " s e n d e r F i l e " , "SND1" ) ;
5 Sender = Sender4 ;

Listing 3.13: Different ways to instantiate the
WSSL Sender.

After successfully instantiating the class and creating the Sender identity, the SD applica-
tion calls the WSSL_Sender through the function init_wssl_snd. First, the msg passes
through the safety function, entity_safety_send, where the safety features are added. Then,
the saf eMsg, the RD_ID, the path, and the SenderReturn object are passed to the se-
curity function, entity_security_send. Finally, the saf eMsg is signed and stored inside
the SenderReturn object to be returned to the WSSL_Sender application. The sequence
diagram presented in Fig. 3.8 illustrates the functionality of the WSSL_Sender .

WSSL Sender entity for safety

The safety entity, entity_safety_send, adds a timestamp and a sequence number to the
msg, creating and updating the WSSL_Sender ’s table. In addition, it returns the Sender-
Return object to be used in the security entity. The timestamp in microseconds is obtained
using C++ Chrono library (Cppreferences 2022), a flexible collection of types that track
time with different degrees of precision. Figure 3.6 illustrates the general safety flow of the
WSSL_Sender .

The SenderReturn object indexes the sent data with the RD_ID. In this architecture, the
last sent message ID is compared with the last received one. This strategy creates a virtual
connection between the SD and the RD while the messages are exchanged. The watchdog
constantly checks old connections and drops them after a threshold. Thus, when a message
for an RD is received in theWSSL_Sender , the Safety entity checks theWSSL_Sender ’s
table, and if there is no connection (previous messages), it creates a new position.

Otherwise, if there is a live connection with this RD, the Safety entity will retrieve the
timestamp and sequence number from the previous message. It will update the message
data, increment the sequence number, and store this information in the SenderReturn object,
waiting for the following message. Finally, the SenderReturn containing the saf eMsg is
returned for use in the WSSL_Sender ’s security entity.



3.3. WSSL Components 23

init_wssl_snd()

get_time_stamp_micro()
timestamp (long int)

Table is
empty?

Yes

Fill the first position of
the table

No

Check if the
destination ID

exists

RD_ID
exists?

Yes

No

Replace info. in
position with the same

RD_ID

Create new
connection inside

the table

Sender Application

msg (string)
SD_ID (string)
RD_ID (string)
path (string)
obj (SenderReturn)

Update msg by adding
the timestamp and the

seq. number

entity_security_send( )

obj (SenderReturn)

safeMsg (string)
SD_ID (string)
path name (string)
obj (SenderReturn)

delete
message

Table
contains old

msg?

Yes

No

entity_safety_snd( )

msg (string)
RD_ID (string)
obj (SenderReturn)

Figure 3.6: WSSL Sender’s safety.

The saf eMsg is a concatenated string with the following format:

Time Stamp || Message data || Sequence Number

WSSL Sender entity for security

WSSL_Sender ’s security entity, entity_security_send, adds a signature to the message
received from the safety entity. Each side of the communication has its own public/private
key pair. These keys are used to sign and remove the message signatures, ensuring message
integrity and authenticity. In this work, we assume the public keys were safely exchanged
between the identities using a safe connection, using the protocol described in (Li et al.
2020). Figure 3.7 illustrates the general security flow of the WSSL_Sender .



24 Chapter 3. Development

In this work, the method sign creates the signature based on the receiver’s public key and
appends the signature to the saf eMsg, creating the wsslMsg. This method works with
messages of any size since it receives a pointer object and size (strSize). This strategy
increases the system’s flexibility due to the non-necessity of padding (Indira, Rukmanidevi,
and Kalpana 2020).

entity_safety_send( )Sender Application entity_security_send( )

Sign message by calling
identity method "sign()" and

store the result inside variable
strSigned

strSigned is
different from message

"error"?

Yes

No
Doest not update SenderReturn obj.

strSigned size
 (fullSize) is smaller

 than 100?Yes
Format strSigned to wsslMsg:

"0 + fullSize + senderID + strSigned"

No

Format strSigned to wsslMsg:
"fullSize + senderID + strSigned"

obj (SenderReturn)

Update wsslMsg and
table inside

SenderReturn obj

obj
(SenderReturn)

safeMsg (string)
SD_ID (string)
path (string)
obj (SenderReturn)

msg (string)
SD_ID (string)
RD_ID (string)
path (string)
obj (SenderReturn)

Figure 3.7: WSSL Sender’s security.

Moreover, as the WSSL_Receiver will need the message size, the Security Entity adds
to the wsslMsg the wsslMsg size (fullSize) and the SD_ID. Finally, the message ap-
pended with this information is stored in the sSenderReturn object, which is returned to the
application.



3.3. WSSL Components 25

Application Safety

Check table status

Check num. connect.

Get seq. number

Get safeMsg

SenderReturn sRet

Security

entity_security_send
Load identities 

Sign safeMsg

Get wsslMsg

SENDER

SenderReturn sRet

(msg, path, label, destID, sRet) 

(msg, destID, timeStamp, sRet) 

init_wssl_send

(safeMsg, senderID, path, sRet) 

Class: WsslSender

Get timestamp

Delete old connect.

entity_safety_send

Class WsslSender instance call 
Create Sender Identity

SenderReturn sRet

(path, label) 

Figure 3.8: WSSL Sender sequence diagram.

3.3.2 WSSL Receiver

The RD only is considered aWSSL_Receiver when it instantiates the class WsslReceiver.
Equivalently to the WSSL_Sender , this instance can be created, copied, and overloaded,
allowing the initialization by default constructor, responsible for defining a default path,
defaultReceiver, and a default label, defaultLabel2. The initialization by copy constructor,
parameterized constructor, and copy assignment operator is also available, as illustrated in
Listing 3.14.

1 Wss lR e c e i v e r R e c e i v e r ;
2 Wss lR e c e i v e r R e c e i v e r 2 ( R e c e i v e r ) ;
3 Wss lR e c e i v e r R e c e i v e r 3 = Re c e i v e r 2 ;
4 Wss lR e c e i v e r R e c e i v e r 4 ( " r c v F i l e " , "RCV1" ) ;
5 Re c e i v e r = Re c e i v e r 4 ;

Listing 3.14: Different ways to instantiate the
WSSL Receiver.

The RD application calls the WSSL_Receiver , through the function init_wssl_rcv. First,
the wsslMsg passes through the security function, entity_security_rcv, where the signature
is removed, and if the SD_ID and the signature are correct, the saf eMsg is recovered.



26 Chapter 3. Development

Otherwise, if the security does not succeed in removing the signature, it returns to the
application without executing the safety entity.

Assuming the security succeeded, the saf eMsg is passed to the safety function, en-
tity_safety_rcv, where the msg is separated from the timestamp and the sequence number
and retrieved to the WSSL_Receiver application. The sequence diagram (Fig. 3.11)
illustrates the WSSL_Receiver functionalities.

WSSL Receiver entity for security

WSSL_Receiver ’s security entity, entity_security_rcv, is responsible for removing the
signature from the received wsslMsg. The signature has a fixed 64-byte size, and fullSize
is obtained from the data appended by the Sender to the wsslMsg. The general flow of
the WSSL_Receiver ’s security entity is shown in Fig. 3.9.

Receiver Application

wsslMsg (string)
SD_ID (string)
path (string)
obj (ReceiverReturn)

entity_safety_send( )

obj (ReceiverReturn)

Try to get safeMsg by calling identity method
"verifySignature()" and store the result inside

the ReceiverReturn obj

wsslMsg (string)
pk (string)

SD_ID (string)

safeMsg is
different from

message
"error"?

Yes

No

obj (ReceiverReturn)

safeMsg (string)
SD_ID (string)
timestamp (long int)
obj (ReceiverReturn)

Sender Application

wsslMsg (string)

entity_security_send( )

Get public key (pk) of the
Sender by calling identity
method "getKnownKey()"

delete
message

Table
contains old

msg?

Yes

No

get_time_stamp_micro()
timestamp (long int)

init_wssl_snd()

wsslMsg (string)
path (string)
obj (ReceiverReturn)

Warn application about
security error

Figure 3.9: WSSL Receiver’s security.

Afterward, the method verifySignature is used to remove the signature. This method
verifies if the SD_ID is correct and, if everything is veracious, uses this ID to remove the



3.3. WSSL Components 27

signature from the wsslMsg. At last, the saf eMsg is retrieved and returned for use in the
WSSL_Receiver ’s safety entity.

WSSL Receiver entity for safety

WSSL_Receiver ’s safety entity, entity_safety_rcv, has a few different functionalities
compared to WSSL_Sender ’s safety, whereas it is necessary to make some treatment
related to the message’s integrity. These differences are in the check conditions, where
each received message is designated with a status related to the sequence number, and in
the inter-message delay. The general flow of the WSSL_Receiver ’s safety entity is shown
in Fig. 3.10.

entity_safety_rcv( )

Table is
empty?Yes

Fill the first position
of the table

No

Check if the
destination ID

exists

SD_ID
 exists?Yes

No

Replace info. in
position with the

same SD_ID

Create new
connection inside

the table

Receiver Application

Check
message
integrity

Seq. Number
less than 0?Yes

No

status = 2

Seq. Number
equal to 0?Yes

No

status = 1

No

Yes
delaySend >
threshold?

Yes
No

Seq. Number
equal to 1?

status = 0

No

Yes
Seq. Number
is any other

option?

status = 3

Update msg and
table inside

SenderReturn obj

Neither update 
ReceiverReturn obj

 nor calculate delays

entity_security_rcv( )

wsslMsg (string)
SD_ID (string)
path (string)
obj (ReceiverReturn)

safeMsg (string)
SD_ID (string)
timestamp (long int)
obj (ReceiverReturn)

obj
(ReceiverReturn)

obj
(ReceiverReturn)

obj
(ReceiverReturn)

Figure 3.10: WSSL Receiver’s safety.

The inter-message delay, delaySnd, represents the time delay between the last two received
messages. This delay is quantified when the table is not empty, and the SD_ID is equal
to any ID inside the table; Otherwise, the delay is set to zero. This delay is calculated
by subtracting the msg timestamp from the virtual connection timestamp with the same
SD_ID. When the delay value is bigger than a defined threshold, a warning is generated
for the application, but the status of the message is not changed. In this way, WSSL leaves
the decision to the application to use or not the message.



28 Chapter 3. Development

Similarly to the WSSL_Sender ’s safety entity, when a message is received in the
WSSL_Receiver , if there is no connection inside the table, the safety entity creates a
new position, filling it with the retrieved data.

Both inter-message delay and sequence number are checked depending on the table status.
If the table is empty or it is the first connection with the corresponding SD_ID, the only
status checked is LOST. Alternatively, if the table has live connections, the sequence number
is checked for all the cases introduced in section 3.2. Also, only the last message of each
SD_ID is stored inside the table.

If the RD_ID differs from the existing IDs and there is no DUPLICATED or OUT-OF-
ORDER message status, a new connection is created inside the table, and a new delay is
calculated. A VALID status occurs if the delay is not bigger than the threshold and the
difference between the received and the last sequence numbers equals 1. A DUPLICATED
status is set when the difference between the sequence numbers equals 0. An OUT-OF-
ORDER status is defined when the difference between the sequence numbers is less than
zero (0). Last, LOST status happens when the difference between the sequence numbers
is different from the other cases.

Each message status generates a unique table event, which is returned to the
WSSL_Receiver application. DUPLICATED messages generate status 1, OUT-OF-
ORDER messages generate status 2, and LOST messages generate status 3.

The data inside the table is organized in the following format:

Timestamp || Msg. data || Seq. Number || Status || delay



3.3. WSSL Components 29

Application Safety

Get msg status

Check seq. number

init_wssl_rcv

Security

Get timestamp

Delete old connect.

Load identities

Get safeMsg

RECEIVER

alt

[Message error]

[Success]
Get msg data
Get msg timestamp
Get seq. number

alt

(wsslMsg, Name.path, Name.rRet) 

Class : WsslReceiver

Class WsslReceiver instance call
Create Receiver Identity

ReceiverReturn rRet

entity_security_send

(wsslMsg, senderID, path,
timeStamp, rRet) 

Check safeMsg

SenderReturn sRet

Detect security error

ReceiverReturn rRet

entity_safety_rcv

(safeMsg, senderID, timeStamp, rRet) 

ReceiverReturn rRet

ReceiverReturn rRet

Get inter-msg delay 

Get msg

ReceiverReturn rRet

[Network error]

[Network ok]

(path, label) 

Figure 3.11: Receiver sequence diagram.





31

Chapter 4

Evaluation

This chapter presents the methodology, analysis, and results of the evaluation tests. Section
4.1 reveals the laboratory setup, techniques, and tools that will be used during the devel-
opment of these tests. Next, Section 4.2 explains the methods to evaluate WSSL using
MQTT protocol, testing the error detection and costs related to the library implementation,
presenting the gathered data, and analyzing the results. Finally, Section 4.4 summarizes the
results and concludes the chapter.

4.1 Methodology

Since this work is developed for Critical Systems, it is crucial to evaluate WSSL’s efficiency
and reliability, calculate its implementation costs, and show its capability to detect errors. To
assess the WSSL’s efficiency, and because WSSL_Receiver must not fail when treating
and verifying the integrity of the message, some errors will be forced into the library.

The evaluation tests will be based on two steps. In this chapter, we cover the first step, that
is, integrate WSSL in a more controlled environment by implementing the MQTT protocol
to establish two-way communication between two desktops, as illustrated in Fig. 4.1.

Figure 4.1: Laboratory using MQTT and WSSL



32 Chapter 4. Evaluation

During the second step, presented in Chapter 5, WSSL will be implemented inside the ap-
plication covering an authority Handover in the ADACORSA project. Both cases will test
WSSL implementation costs and its ability to detect network errors and warn the applica-
tion efficiently: the first in a more controlled environment and the second in a simulation
environment.

For this purpose, a laboratory setup will be put together using two desktops running Ubuntu
version 20.04. Each desktop will be responsible for a communication end node, where a
desktop with an Intel Pentium CPU G645 2.90 GHz processor and 4 GB of memory RAM
will contain the WSSL_Sender and a desktop with an Intel Core i5-9300H 2.40 Ghz
processor and 16 GB of memory RAM will contain the WSSL_Receiver .

4.2 Evaluation using MQTT

To evaluate the algorithm in this controlled environment, two metrics and an error injection
model for sending and receiving messages were defined. Thus, we initially assessed the cost
of adding WSSL in sending and receiving messages, comparing the original system and the
same system with WSSL. In this same scenario, we evaluated the time between messages,
given the importance of this metric in validating CPS. Finally, we define a set of errors to be
inserted into the communication system and show how WSSL can detect and handle these
events.

The following tests were made using the MQTT messaging protocol over the Transport Layer
(Silva et al. 2018), with the Mosquitto Broker, an open-source and lightweight message
broker suitable for use on all devices. Using MQTT, the publisher must be configured as the
WSSL_Sender , as illustrated in Listing 4.1, and the subscriber as the WSSL_Receiver ,
as illustrated in Listing 4.2.

1 v o i d pub l i s h_mes sage s ( Wss lSende r ∗Sender , s t r u c t mosqu i t t o
∗mosq )

2 {
3 Sender −>sRet = Sender −> i n i t_ws s l_snd ( myMessage ,

Sender −> l a b e l , des t ID , Sender −>path , Sender −>sRet
) ;

4 . . .
5

6 mosqu i t t o_pub l i s h (mosq , NULL , " w s s l " ,
Sender −>sRet . wss lMsg . l e n g t h ( ) , ( c on s t v o i d ∗ )

Sender −>sRet . wss lMsg . c_st r ( ) , 0 , f a l s e
) ;

7 }

Listing 4.1: Function publishing in topic "wssl" in
Mosquitto broker.



4.2. Evaluation using MQTT 33

1 v o i d on_message ( s t r u c t mosqu i t t o ∗mosq , v o i d ∗ ob j , c on s t
s t r u c t mosqu i t to_message ∗msg )

2 {
3 s t r i n g wss lMsg ( s t a t i c_c a s t <con s t cha r ∗>(msg−>pay l o a d ) ,

msg−>p a y l o a d l e n ) ;
4 . . .
5

6 Re c e i v e r . rRe t = R e c e i v e r . i n i t_w s s l_ r c v ( wsslMsg ,
R e c e i v e r . path , R e c e i v e r . rRe t ) ;

7 }

Listing 4.2: Function subscribed in topic "wssl" in
Mosquitto broker.

To validate error detection, the highest frequency was chosen with a guarantee of no data
loss. The goal was deliberately sabotaging the message to check if everything was working
as it should. For example, delaying a message and checking whether the WSSL will detect
it could prove that WSSL will alert the application if it exceeds the defined delay thresh-
old. Then, using statistical methods, it will be possible to analyze whether the results are
admissible for CPS.

Six types of security errors are going to be tested:

• Invalid signature;

• Invalid SD;

• Inter-message delay bigger than the threshold;

• DUPLICATED message;

• OUT-OF-ORDER message;

• LOST message.

WSSL involves time-critical messages and has to fulfill real-time constraints. Besides, it
aims to be lightweight and interfere as little as possible in the system. Therefore, the time
to send all messages, the time to receive all messages, and the inter-message delay must be
evaluated.

The tests for measuring the time to send all messages and to receive all messages were
repeated ten times for each of the following cases:

• Using the WSSL entities (Safety and Security) together;

• Using only the safety entity;

• Using only the security entity;

• Using only the application without WSSL;

On the other hand, to evaluate the inter-message delay, some messages were purposely
delayed, and the graph of WSSL detection capability was analyzed.



34 Chapter 4. Evaluation

4.2.1 WSSL Cost

WSSL involves time-critical messages and has to fulfill real-time constraints. Besides, it
aims to be lightweight and interfere as little as possible in the system. Therefore, WSSL
costs and its capability to keep track of the inter-message delay must be evaluated.

WSSL costs are evaluated with tests based on the overhead that WSSL adds to the applica-
tion and are calculated considering the time to send all messages and the time to receive all
messages. An overhead investigation is vital to trace an acceptable cost region to use WSSL
in different applications, depending on its criticality and real-time parameters. The relevant
data containing the sent and reception time when adding WSSL into the communication
between devices are described in a database also found in the GitHub Repository (Márcia
and Enio 2022) in the Excel Sheets inside the folder "dataBase".

Table 4.1 is an example of the gathered data using a frequency of 1000 Hz while sending
fifty thousand messages. The sent time is considered the total time the WSSL_Sender
takes to send all messages, and the reception time is the total time the WSSL_Receiver
takes to receive all messages. Both are calculated by subtracting the timestamp of the first
message from the last message being sent (or received).

Table 4.1: Sent and reception time costs when sending fifty thousand msgs
with the frequency of 1000 Hz.

MQTT Safety Security Safe. and Sec.

Tests
Sent
time
(ms)

Rcpt.
time
(ms)

Sent
time
(ms)

Rcpt.
time
(ms)

Sent
time
(ms)

Rcpt.
time
(ms)

Sent
time
(ms)

Rcpt.
time
(ms)

T1 55928 55929 +515 +514 +8239 +8238 +8403 +8405
T2 55940 55941 +485 +486 +8320 +8324 +8472 +8474
T3 55858 55859 +545 +546 +8334 +8338 +8419 +8419
T4 55825 55825 +554 +557 +8372 +8378 +8484 +8490
T5 55885 55886 +523 +523 +8284 +8287 +8470 +8475
T6 55876 55878 +622 +621 +8249 +8256 +8474 +8476
T7 55879 55880 +543 +543 +8197 +8202 +8559 +8563
T8 55883 55884 +477 +477 +8239 +8241 +8376 +8381
T9 55948 55949 +522 +519 +8175 +8179 +8290 +8293
T10 55867 55867 +601 +603 +8260 +8264 +8394 +8396

Avg 55889 55890 +539 +539 +8267 +8271 +8434 +8437

% 100,0 100,0 +1,0 +1,0 +14,8 +14,8 +15,1 +15,1

These tests were repeated for different amounts of messages and frequencies to analyze the
performance of WSSL in different situations. Therefore, a thousand, ten thousand, fifty
thousand, and a hundred thousand messages were sent at four different frequencies: 1000
Hz, 2000 Hz, 5000 Hz, and 10000 Hz. The results are described in Section 4.4, which
shows in Fig. 4.5, 4.6, and 4.7, the costs of the safety entity, security entity, and of WSSL,
that is, both layers together. Furthermore, the charts in Figure 4.4 summarize the average
time costs progression regarding the number of messages in milliseconds of WSSL, taking
the MQTT results as a reference. During the tests, there were no lost messages.



4.3. Inter-message delay 35

4.3 Inter-message delay

WSSL’s ability to detect the inter-message delay, which is the delay between the message
saved in an existing connection inside the table and the last message received with the same
ID, was also evaluated. The purpose is to show that WSSL is aware of the network overhead
and will alert the application if the delay exceeds the defined delay threshold.

The delay detection accuracy was tested by sending 100 messages at a frequency of 10000
Hz and a threshold of 10 ms. The messages multiples of eleven were delayed by 11 ms, so
it would be possible to simulate an inter-message delay in WSSL_Receiver . The results
of the delay detection are plotted in Fig. 4.2.

Figure 4.2: WSSL’s delay detection - MQTT.

4.3.1 Error detection

For evaluation of the WSSL’s efficiency, some errors were forced into the library. Because
WSSL_Receiver must not fail when treating and verifying the integrity of the message,
in this step of the project, the goal was deliberately sabotaging the message to check if
everything was working correctly.

During the tests, we sent twenty messages with the same SD_ID; within these messages,
some samples were chosen to be purposely "sabotaged", as shown in Fig. 4.3. The delay
threshold was considered ten milliseconds, and the following six types of security errors were
tested:

• (A) Invalid signature (Security error) at message 2;

• (B) Invalid SD_ID (Security error) at message 4;

• (C) Inter-message delay bigger than the threshold (status = 4) at message 6;

• (D) DUPLICATED (status = 1) at message 8;

• (E) OUT-OF-ORDER (status = 2) at message 9;



36 Chapter 4. Evaluation

• (F) LOST (status = 3) at message 15.

Figure 4.3: Log file of generated errors.

Notice that the statuses are WSSL’s method for notifying the application about the message
condition, so handling the error must be the application’s responsibility. Also, the statuses
related to the delay are assigned as four. They are only printed to illustrate the system
behavior since the delay is analyzed separately by WSSL_Receiver and does not change
the message status. When it arises simultaneously with the other warnings, it generates two
different prints for the same message, which is the case of messages 6 and 12. Conversely,
when the message is sent twice, it ends with DUPLICATED status, which is visible in
message 8.

Finally, each error can consequently trigger other errors. For instance, it can be noticed in
messages 3 and 5 once Security invalidated messages 2 and 4. Also, message 12 took too
long to arrive because the previous messages were out of order and were not being saved
into the WSSL_Receiver table.



4.4. Tests Results and Conclusions 37

4.4 Tests Results and Conclusions

The evaluation presented in the last section allowed us to asses and gather significant results
regarding WSSL. The analysis of Fig. 4.3 demonstrates the ability of WSSL to detect all
possible attacks, caused or not by malicious agents, on the receiving device. Furthermore,
it is capable of detecting and informing the application about network threats arising from
these attacks or even network congestion.

Figure 4.4: WSSL average costs versus frequency and number of messages
when integrated with MQTT.

Additionally, when analyzing the data and the graphics 4.5 and 4.6, it is possible to conclude
that most of the overhead comes from WSSL’s security entity. In contrast, the safety entity
increases a little less than 5% of the overhead in the worst-case scenario. This behavior
was expected, considering we use a public-key signature, and related cryptography methods
usually have a high overhead.

The analysis of the graph 4.7 allowed us to determine that starting with 1000 Hz, WSSL
only costs around 15% to 17% of overhead and that the costs tend to decrease to less than
10% when using lower frequencies. This tendency can be noticed even better during the
tests made with ADACORSA, which will be described in the next chapter.

Although, even with costs around 17%, the frequencies used during the tests were way higher
than the necessary to fulfill hard real-time systems, such as automotive (ETSI TR 102 638
2009) and aerial applications (Yildiz et al. 2021). For example, the European Telecom-
munications Standards Institute (ETSI) standard TR 102 638, a document that defines a
Basic Set of Applications mainly focusing on communications in the Vehicle-to-Everything
(V2X) dedicated frequency band, defines several critical parameters for cooperative road
safety related to different situations: Cooperative awareness (e.g., Signal violation warn-
ing, Overtaking vehicle warning, Lane change assistance), Cooperative collision avoidance



38 Chapter 4. Evaluation

or mitigation (e. g. Across traffic turn collision risk warning), Road hazard warning (e.g.,
Hazardous location notification), and many others. Regardless of the application, the min-
imum frequency of the periodic messages is between 1 Hz to 10 Hz, much less than used
during tests.

Finally, the graph analysis plotted in Fig. 4.2 shows efficiency and precision in detecting
inter-message delay variations, which is important for monitoring the network quality and
out-of-pattern behaviors.

Therefore, implementing WSSL over a commonly used protocol for IoT applications such as
MQTT reinforces its flexible character for other protocols and possible use in different con-
ditions. In this sense, the results obtained by sending a large packet of sequential messages
without a significant increase in communication delay show the viability of its application
based on the architecture proposed in this work.

Figure 4.5: WSSL’s safety entity costs in percentage versus frequency and
number of messages.



4.4. Tests Results and Conclusions 39

Figure 4.6: WSSL’s security entity costs in percentage versus frequency and
number of messages.

Figure 4.7: WSSL costs in percentage versus frequency and number of mes-
sages.





41

Chapter 5

Applications

As mentioned in the last chapter, WSSL was implemented and integrated with an Authority
Handover related to the project ADACORSA. This integration allowed it to be tested in a
more unconstrained environment, allowing future implementation from the simulation to an
actual application. As a result, new tests regarding WSSL latency had to be implemented
to evaluate the impact of integrating both systems. Similarly to the tests using MQTT,
it includes qualitative and quantitative methods, measuring WSSL costs, the capability to
detect the delay between messages, and others. Section 5.1 will clarify why the initial idea
regarding the WSSL integration and evaluation within CopaDrive changed to the current
ADACORSA project described later in this chapter. Section 5.2 presents the new idea
and describes the implementation within ADACORSA project, going deeply into the tests
developed to assess the viability of this integration.

5.1 WSSL and CopaDrive

Initially, WSSL would be integrated with CopaDrive. CopaDrive is a framework for simulating
and validating vehicle control and communication strategies, using the Robot Operating Sys-
tem (ROS) as a base. Intending to evaluate vehicle communication capabilities, CopaDrive
simulates vehicles in 3D using Gazebo and simulates communications using OMNET++, as
illustrated in Fig. 5.1. The communication is modeled on ETSI ITS-G5, based on IEEE
802.11p, adopted in Europe as a standard (ETSI EN 302 663 2012). In this standard,
vehicle information is exchanged through messages called Cooperative Awareness Message
(CAM), implemented through the Artery project (Riebl 2020).

WSSL would act as an intermediate layer responsible for establishing and guaranteeing vehicle
connection, as illustrated in 5.2. Also, a defensive countermeasure if WSSL detects a
problem was thought to be implemented into the CopaDrive simulation. However, during
the implementation of CopaDrive, it was noticed that some limitations would be reached
regarding the time for developing this thesis.

The CAM protocol from ITS-G5, used inside CopaDrive aimed to be integrated with WSSL,
demonstrated some characteristics that would represent a challenge when working with
WSSL. First, CAM has a specific package format that would be necessary to modify and
create new messages to be exchanged to allow integration. The main drawback was that
between the data being shared with Omnetpp and ROS, there is a mixing between code in
C and C++, demonstrating some limitations on creating a new field inside the platooning
CAM data. The intercommunication between several structs makes it difficult to modify the
codes in C to C++ so that they would accept the messages type from C++, in this case,
the string format.



42 Chapter 5. Applications

Figure 5.1: CopaDrive Architecture (Filho, Severino, Rodrigues, et al. 2021).

Within the limited time to develop this work, this kind of modification was thought to be
unfeasible or to limit the time supposed to be invested in a more extensive evaluation. For
instance, there was a possibility of modifying WSSL to work with char arrays. However,
when working with a char array in C, we would be limiting WSSL since it would be necessary
to allocate memory for the message, requiring the application to define the message size
from the beginning or define a specific and fixed size for the array inside the library. This
constraint does not make sense since WSSL aims to be generic and cover a variable message
size.

Figure 5.2: How WSSL was planned to be integrated with CopaDrive.

At last, CopaDrive demonstrated some requirements regarding the Operating System and
the Omnetpp version installed. It only worked under Ubuntu 18.04 with Omnetpp version
5. Ubuntu 18 presents limitations regarding the C++ compiler, even requiring modifica-
tions inside the library and compilation flags to allow WSSL to work correctly. Also, bugs
in the functionality of Visual Studio Code and other workspaces make it more complex to
understand the errors and require more time to understand the sophisticated system func-
tionalities. These and other issues made the integration between CopaDrive and WSSL
impractical for now.



5.2. WSSL and ADACORSA 43

5.2 WSSL and ADACORSA

In this work, WSSL was integrated into ADACORSA implementation in the telemetry mes-
sages between a simulated drone and a GCS. The software regarding the Authority Handover
and the communication between a drone and a GCS, happening via sockets, is developed
primarily on C++, facilitating the integration with WSSL.

Moreover, other relevant works were already developed on drone communication and simula-
tion frameworks inside ADACORSA, showing the viability of integrating safety and security
methods in such systems. For instance, the work (Silva Borges 2021) presents solutions
in terms of security by adding encryption to the communication protocols in the Handover
processes between two trusted GCS. The work (Lopes 2021) proposes a drone simulation
testbed capable of offering an authority transfer between GCS mid-flight. Last, work (Mon-
teiro 2021) and (Gomes 2021) present a UAV-Based Safety Layer Architecture for the drone
and the GCS point of view, respectively.

The drone telemetry is defined inside the Handover software as a struct containing several
helpful information for UAVs’s, such as the drone battery level in volts, longitude and latitude
degree, altitude in meters, pitch, roll and yaw in rad per seconds, and velocity in different
directions: north, east and down. This struct is illustrated in Listing 5.1.

1 s t r u c t t e l emet r y_ho {
2 f l o a t ba t t e r y_v ;
3 doub l e l a t_deg ;
4 doub l e long_deg ;
5 f l o a t a l t i t ude_m ;
6 f l o a t p i tch_rad_s ;
7 f l o a t r o l l_ r ad_s ;
8 f l o a t yaw_rad_s ;
9 f l o a t vel_north_m_s ;

10 f l o a t vel_east_m_s ;
11 f l o a t vel_down_m_s ;
12 } ;

Listing 5.1: Definition of the drone telemetry
struct.

In this work, the GCS was created in a simulated environment using the QGroundControl,
the simulation tool, and running connected to Ardupilot, the firmware. This firmware is also
intended to be installed in the physical drone. For the tests, two desktops were connected
via socket using an Ethernet cable, similar to the MQTT setup, and the tests were made
with the simulation running. The QGroundControl application was updated with a simple
mission to fly the drone from point A to point B, and the values of the drone telemetry
were sent to the GCS with different frequencies. Figure 5.3 illustrates the setup used in the
evaluation tests.

This thesis will focus on two main emergency situations: the system’s behavior in case of
a network failure and the system’s behavior when receiving a malicious message. In the
first scenario, WSSL helps to detect a network failure by monitoring the inter-message delay
and sending these values to the GCS. In the second scenario, it detects possible malicious
messages by tracking the message’s status and protecting the system by discarding invalid
ones.



44 Chapter 5. Applications

Figure 5.3: Laboratory setup for evaluating WSSL in the Handover code.

In case of a network failure, the GCS is responsible for checking the network parameters, so
if the inter-message delay increases and surpasses an acceptable value, the GCS will detect
that something is wrong with the connection and send an emergency command to the drone.
The emergency command defined in this case is returnToLaunch, meaning the drone must
return to the launch point and land. The system behavior in this emergency scenario and
how the WSSL is integrated within the communication is detailed in a sequence diagram in
Fig. 5.7

The system’s behavior when receiving a malicious message will be tested and explained in
Section 5.2.2, with the tests about error detection.

5.2.1 WSSL Cost

WSSL costs were calculated by sending a thousand, ten thousand, fifty thousand, and a
hundred thousand messages, respectively. Similarly to the tests using MQTT, each one of
the tests was also repeated for different frequencies.

Later tests showed that the safety layer does not have a significant increase in the overhead
and that the security layer is responsible for most of the costs, having similar results as using
WSSL with both layers. Thus, to save time, the individual costs for each of WSSL layers
were only measured for lower amounts of messages.

Moreover, higher frequencies, such as 10000 Hz, already demonstrated unsatisfactory re-
sults. So, with that in mind and aiming to improve the tests, besides the frequencies used
in the tests with MQTT, the tests were also made to 333 Hz. The results are presented in
Figure 5.4.



5.2. WSSL and ADACORSA 45

Figure 5.4: WSSL’s costs in percentage for different frequencies - ADA-
CORSA.

5.2.2 Error detection

The telemetry contains critical parameters of the drone, and one wrong parameter can
change how the system will act next, which may cause a disruption in the service, emer-
gency landing, and other unexpected behaviors. With that in mind, WSSL is responsible for
discarding any malicious message or attempting to sabotage the system.

Therefore, the capability of WSSL to detect message errors must also be evaluated for
the Handover simulation. For that, malicious messages were purposely sent to the GCS.
Twenty messages were sent, and their velocity parameters heading north, east, and down
were monitored. Then, two extra messages, messages 3 and 10, had their velocity parameter
heading north (vel_north_m_s), purposely changed by a malicious sender to a dangerous
velocity of 9 m/s.

The system velocity during sending messages without WSSL is plotted in Fig. 5.5. Since
the system does not have any protection against malicious attacks, it is possible to see that
the velocity parameter heading north (Vel. North) had a huge deviation because of the
sabotaged message.

The system velocity using WSSL is plotted in Fig. 5.6. Notice that the malicious messages
were successfully discarded, meaning that the system could continue working without signif-
icant differences and that the delay caused by the discarded messages is very low and would
not damage the system’s performance.



46 Chapter 5. Applications

Figure 5.5: Telemetry velocities without WSSL.

Figure 5.6: Telemetry velocities with WSSL.



5.3. Tests Results and Conclusions 47

Drone
 (Mission Computer) WSSL_Drone

send('Telemetry')

rcv('fromGCSA')'

WSSL_GCSA

get_msg( )

get_status( )

get_delay( )

Drone and Ground Control Station operation with WSSL

Ground Control Station A
(GCSA)

get_wssl_msg( )

send('OK')

transmit( )

[Network error]

[Network ok]

check_network( )
rcv_return( 'Telemetry')

rcv_return('returnToLaunch')

send('returnToLaunch')

get_wssl_msg( )

transmit( )

get_msg( )

rcv('fromDrone')

return_to_launch( )

alt

get_wssl_msg( )

transmit( )

rcv_return('OK')

get_msg( )

keep_route( )

Figure 5.7: Sequence diagram illustrating the communication between Drone
and GCS using WSSL.

5.3 Tests Results and Conclusions

In this chapter, the evaluation tests were based on sabotaging the network, analyzing the
relation between increasing message frequency and message loss, and analyzing the results.
Figure 5.8 presents charts with the performance of the system with and without WSSL.
These charts illustrate the behavior and the system costs with the increase in the number
of messages and frequency variation.

By sabotaging a message within the telemetry data and testing the system’s behavior with
and without WSSL, it was possible to assess the efficiency of WSSL in handling a malicious
message. As shown in Fig. 5.5, the velocity suffered a deviation because of the sabotaged
message when the system did not use WSSL. On the other hand, it was possible to see
in Fig. 5.6 that malicious messages were successfully discarded without compromising the
system’s performance.



48 Chapter 5. Applications

Figure 5.8: WSSL average costs versus frequency and number of messages
when integrated with ADACORSA.

Regarding WSSL costs, it is possible to notice that for higher frequencies where the time
was really short, the precision is not enough to show stable results, as it seeing using the high
frequency of 10000 Hz where WSSL had costs of 100%. The costs start to be acceptable
with a frequency of 2000 Hz, representing 35% of overhead. The best results are reached
with the frequency of 333 Hz, where the costs are around 8%, and are stable even with
a considerable amount of messages, such as a hundred thousand messages. Table 5.1
compares sending fifty messages with 1000 Hz and 333 Hz frequencies.

Table 5.1: Sent and reception time costs when sending fifty thousand msgs
with the frequency of 1000 Hz and 333 Hz.

1000 Hz 333 Hz

Without WSSL With WSSL Without WSSL With WSSL

Tests
Sent
time
(ms)

Rcpt.
time
(ms)

Sent
time
(ms)

Rcpt.
time
(ms)

Sent
time
(ms)

Rcpt.
time
(ms)

Sent
time
(ms)

Rcpt.
time
(ms)

T1 54150 54150 +11013 +11014 154813 154809 +12025 +12028
T2 54188 54187 +11037 +11039 154827 154823 +11945 +11947
T3 54204 54203 +10952 +10955 154829 154825 +11919 +11922
T4 54142 54141 +11023 +11024 154863 154858 +12020 +12024
T5 54199 54197 +11037 +11039 154827 154824 +12044 +12046
T6 54203 54202 +11010 +11013 154844 154840 +12046 +12049
T7 54330 54329 +10797 +10799 154840 154837 +12115 +12117
T8 54212 54210 +10799 +10802 154852 154849 +11969 +11971
T9 54146 54148 +10869 +10868 154834 154831 +12068 +12070
T10 54146 54148 +10869 +10868 154834 154831 +12068 +12070

Avg 54197 54197 +10945 +10947 154834 154830 +12025 +12028

% 100,0 100,0 +20,2 +20,2 100,0 100,0 +7,8 +7,8

The acceptable frequency for exchanging messages for UAVs still needs to be defined by
standards since BVLOS is still not developed enough, and this kind of operation was still not
allowed when this thesis was developed. The European standard (European Union Aviation



5.3. Tests Results and Conclusions 49

Safety Agency 2022) defines the rules and procedures for the operation of UAVs, but many
challenges are still to be covered. So, to compare and analyze the results, we used the
safety standards of other real-time applications, such as cooperative vehicles and avionics,
as a basis. With that in mind, it is possible to say that WSSL fulfills safety requirements,
working for higher frequencies and being promising for other real-time critical applications,
such as the operation of UAVs.

At last, WSSL capability to detect the inter-message delay was also evaluated for this
application. Equivalently to the previous chapter, a hundred messages were sent with a
frequency of 10000 Hz, and the multiples of eleven were delayed by 11 ms. Figure 5.9
shows that WSSL can also successfully detect the delay in this application.

Figure 5.9: WSSL’s inter-message delay detection in ADACORSA.





51

Chapter 6

Conclusions

This thesis describes the architecture and the implementation of a Wireless Safety and
Security Layer (WSSL) to improve the applicability of Cyber-Physical Systems (CPS) devices
by covering the main measures to detect possible faults and threads or keeping the error
probability under a specific limit. WSSL aims to fill the necessity of practical applications
related to Critical CPS devices and mitigate problems that must be urgently addressed in
unsecured and unsafe wireless communication systems.

An extensive overview and analysis of the literature were necessary to develop this thesis.
First, safety and security concepts had to be defined, and their impact on CPS had to be
investigated. Next, a survey was conducted about the various challenges regarding CPS
design, implementation, and communication between devices, including hard real-time and
safety-critical systems. This work also examined the communication protocols related to
CPS, their differences, limitations, and applications, analyzing how to increase safety and
security on both ends of the communication between CPS. Finally, the existing solutions
found in the literature were examined, defining strengths and weaknesses to define and
justify WSSL’s fundamentals.

This work’s contributions are divided into three main aspects. First, according to the in-
creased necessity to integrate CPS security in the safety domain, this thesis introduced the
WSSL definition, describing its architecture, expected behavior, and essential concepts. A
tutorial guide explaining how to install and use the library is also included, aiming to ease
the integration of WSSL in future works.

Second, we evaluate the impact of WSSL on the data network in a controlled environment
using MQTT. Implementing WSSL over a commonly used protocol for IoT applications such
as MQTT reinforces its flexible character for other protocols and possible use in different
conditions. Furthermore, the evaluation tests proved that the implementation costs of
using WSSL do not imply high computational costs to the system and do not significantly
increase the processing time for considerably high frequencies. Likewise, it was possible to
demonstrate the ability of WSSL to successfully detect attack actions on the CPS, monitor
network problems, and report them to the application.

Third, in a simulation environment, the evaluation tests when integrating WSSL with UAVs
telemetry proved that the implementation costs of using WSSL were once more acceptable,
even for considerable amounts of messages. Additionally, by monitoring the system inter-
message delay efficiently, WSSL can be a safety ally in emergencies such as a network failure.
Finally, It was also demonstrated that WSSL can detect and discard malicious messages,
increasing the system’s security.



52 Chapter 6. Conclusions

Future research must focus on the enhancement of the safety and security layers. For exam-
ple, a cryptography method could improve the security layer, increasing WSSL dependability.
Also, the public-key signature could be evaluated regarding the performance, comparing the
impact of different key sizes and signature sizes. There is also space to add parallelism to
the code, which at this moment is entirely sequential, and test the impact of multithreading
for cryptography.

Finally, future work should aim to integrate and evaluate WSSL in different projects that
would allow a transition from the simulation to a real application, where WSSL could be
proved efficient to supply security and safety in a practical way for CPS. Thus, the safety layer
methods used for hazard identification may be tested in different environments, not only in
simulators but in real applications, such as CPS applications implemented in aerial vehicles,
cars, residential automation, and others. For instance, integrating WSSL into CopaDrive
could change the paradigms of the project since quickly detecting a delay, message loss,
or a message out-of-order in the platooning can be essential to avoid an accident. Thus,
WSSL would be proved as a vital approach capable of guaranteeing vehicle connection and
protecting communication.



53

Bibliography

ADACORSA (2023). Airborne Data Collection on Resilient System Architectures. Accessed
17 January 2023. url: https://adacorsa.eu/.

Aijaz, Adnan and A. Hamid Aghvami (2015). “Cognitive Machine-to-Machine Communica-
tions for Internet-of-Things: A Protocol Stack Perspective”. In: IEEE Internet of Things
Journal 2.2, pp. 103–112. doi: 10.1109/JIOT.2015.2390775.

Akerberg, Johan et al. (Sept. 2011). “Efficient integration of secure and safety critical
industrial wireless sensor networks”. In: EURASIP Journal on Wireless Communications
and Networking 2011, pp. 1–13. doi: 10.1186/1687- 1499- 2011- 100. url: https:
//doi.org/10.1186/1687-1499-2011-100.

Alguliyev, Rasim, Yadigar Imamverdiyev, and Lyudmila Sukhostat (2018). “Cyber-physical
systems and their security issues”. In: Computers in Industry 100, pp. 212–223. issn:
0166-3615. doi: https://doi.org/10.1016/j.compind.2018.04.017. url: https:
//www.sciencedirect.com/science/article/pii/S0166361517304244.

Analytics Market Research (Apr. 2023). Cyber Physical System Market Consumption Anal-
ysis, Business Overview and Upcoming Trends 2032. url: https://www.openpr.com/
news/2870080/cyber-physical-system-market-consumption-analysis-business.

ArduPilot (July 2023). ArduPilot Documentation. Accessed 10 July 2023. url: https://
ardupilot.org/ardupilot/.

Asplund, Fredrik et al. (2019). “Rapid Integration of CPS Security and Safety”. In: IEEE
Embedded Systems Letters 11.4, pp. 111–114. doi: 10.1109/LES.2018.2879631. url:
https://doi.org/10.1109/LES.2018.2879631.

Atlam, Hany F. and Gary B. Wills (July 2020). “IoT Security, Privacy, Safety and Ethics”.
In: Digital Twin Technologies and Smart Cities. 2nd. Internet of Things. Cham: Springer
International Publishing, pp. 123–149. isbn: 978-3-030-18732-3. doi: 10.1007/978-3-
030-18732-3_8. url: https://doi.org/10.1007/978-3-030-18732-3_8.

Baheti, Radhakisan Sohanlal and Helen Gill (Mar. 2019). “Cyber-Physical Systems”. In: 2019
IEEE International Conference on Mechatronics (ICM).

Balador, Ali et al. (Nov. 2018). “Wireless Communication Technologies for Safe Cooperative
Cyber Physical Systems”. In: Sensors 18. doi: 10.3390/s18114075. url: https://doi.
org/10.3390/s18114075.

Bilenko, Pavel et al. (2020). “Evaluation of investment efficiency in cyber-physical systems
and technologies in the construction industry”. In: IOP Conference Series: Materials Sci-
ence and Engineering 869. doi: 10.1088/1757- 899X/869/6/062019. url: https:
//iopscience.iop.org/article/10.1088/1757-899X/869/6/062019.

Carreras Guzman, Nelson H., Igor Kozine, and Mary Ann Lundteigen (Dec. 2021). “An inte-
grated safety and security analysis for cyber-physical harm scenarios”. In: Safety Science
144. doi: 10.1016/j.ssci.2021.105458. url: https://doi.org/10.1016/j.ssci.
2021.105458.



54 Bibliography

Cecchetti, Gabriele et al. (2013). “An Implementation of EURORADIO Protocol for ERTMS
Systems”. In: World Academy of Science, Engineering and Technology, International Jour-
nal of Computer, Electrical, Automation, Control and Information Engineering 7.6, pp. 693–
702.

Chen, Li-jie et al. (2011). “Performance analysis and verification of safety communication
protocol in train control system”. In: Computer Standards & Interfaces 33.5, pp. 505–518.
doi: 10.1016/j.csi.2011.02.006. url: https://doi.org/10.1016/j.csi.2011.02.
006.

Coopmans, Calvin et al. (Jan. 2015). “Cyber-Physical Systems Enabled by Small Unmanned
Aerial Vehicles”. In: 2nd. Chicago: Springer Netherlands, pp. 2835–2860. isbn: 978-90-481-
9706-4. doi: 10.1007/978-90-481-9707-1_106. url: https://doi.org/10.1007/978-
90-481-9707-1_106.

Cppreferences (2022). Date and time utilities. Accessed 08 June 2022. url: https://en.
cppreference.com/w/cpp/chrono.

Cunha Rocha, Marcia et al. (2023). “A WSSL Implementation for Critical Cyber-Physical
Systems Applications”. In: Proceedings of Cyber-Physical Systems and Internet of Things
Week 2023. CPS-IoT Week ’23. San Antonio, TX, USA: Association for Computing
Machinery, pp. 192–197. doi: 10.1145/3576914.3587507. url: https://doi.org/10.
1145/3576914.3587507.

Eclipse (2022). Eclipse Mosquitto homepage. Accessed 19 January 2023. url: https://
mosquitto.org/.

Ell, Maddy and Robbie Gallucci (July 2022). Official Statistics. Cyber Security Breaches
Survey 2022. url: https://www.gov.uk/government/statistics/cyber-security-
breaches-survey-2022/cyber-security-breaches-survey-2022.

EN 50159 (2010). Railway applications. Communication, signaling and processing systems.
Safety-related communication in transmission systems. European Standards. url: https:
//www.en-standard.eu/ilnas-en-50159-railway-applications-communication-
signalling - and - processing - systems - safety - related - communication - in -
transmission-systems/.

Esterle, Lukas and Radu Grosu (Nov. 2016). “Cyber-physical systems: challenge of the
21st century”. In: e & i Elektrotechnik und Informationstechnik 133, pp. 299–303. doi:
10.1007/s00502-016-0426-6. url: https://doi.org/10.1007/s00502-016-0426-6.

ETSI EN 302 663 (Nov. 2012). ETSI EN 302 663 V1.2.0. Intelligent Transport Systems
(ITS); Access layer specification for Intelligent Transport Systems operating in the 5 GHz
frequency band. Tech. rep. V1.2.0. European Telecommunications Standards Institute.
url: https://www.etsi.org/deliver/etsi_en/302600_302699/302663/01.02.00_
20/en_302663v010200a.pdf.

ETSI TR 102 638 (June 2009). ETSI TR 102 638 V1.1.1. Intelligent Transport Sys-
tems (ITS); Vehicular Communications; Basic Set of Applications; Definitions. Tech. rep.
V1.1.1. European Telecommunications Standards Institute. url: https://www.etsi.org/
deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf.

European Global Navigation Satellite Systems (EGNSS) for drones operations: white paper
(2020). Publications Office. doi: doi/10.2878/52219.

European Union Aviation Safety Agency (Sept. 2022). Easy Access Rules for Unmanned
Aircraft Systems (Regulations (EU) 2019/947 and 2019/945). Tech. rep. V1.3.1. Euro-
pean Union Aviation Safety Agency (EASA). url: https://www.easa.europa.eu/en/
document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-
systems-regulations-eu.



Bibliography 55

Filho, Enio Vasconcelos, Nuno Guedes, et al. (Apr. 2020). “Towards a Cooperative Robotic
Platooning Testbed”. In: IEEE International Conference on Autonomous Robot Systems
and Competitions (ICARSC), 2020. Ponta Delgada, Portugal: IEEE, pp. 332–337. isbn:
978-1-72817-078-7. doi: 10.1109/ICARSC49921.2020.9096132. url: https://doi.
org/10.1109/ICARSC49921.2020.9096132.

Filho, Enio Vasconcelos, Ricardo Severino, Anis Koubaa, et al. (June 2021). “A Wireless
Safety and Security Layer Architecture for Reliable Co-CPS”. In: DCE21- Symposium on
Electrical and Computer Engineering: Book of Abstracts. Vol. 1. Porto, Portugal: FEUP.
isbn: 978-972-752-276-7.

Filho, Enio Vasconcelos, Ricardo Severino, Joao Rodrigues, et al. (July 2021). “CopaDrive:
An Integrated ROS Cooperative Driving Test and Validation Framework”. In: Robot Op-
erating System (ROS). Vol. 962. Studies in Computational Intelligence. Cham: Springer
International Publishing, pp. 121–174. isbn: 978-3-030-75472-3. doi: 10.1007/978-3-
030-75472-3_4. url: http://link.springer.com/10.1007/978-3-030-75472-3_4.

FLY-PT (2023). Mobilize the national aviation industry to transform the future urban air
transport. Accessed 28 July 2023. url: http://flypt.pt/.

Gódor, Győző et al. (2015). “A survey of handover management in LTE-based multi-tier
femtocell networks: Requirements, challenges and solutions”. In: Computer Networks 76,
pp. 17–41. issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2014.10.016.
url: https://www.sciencedirect.com/science/article/pii/S1389128614003715.

Gomes, Filipe Manuel Moura (Sept. 2021). “UAV-Based Safety Layer Architecture: A Con-
trol Station Point Of View”. In: Bachelor’s dissertation.

Greer, Christopher et al. (Mar. 2019). “Cyber-Physical Systems and Internet of Things”. en.
In: doi: https://doi.org/10.6028/NIST.SP.1900-202.

Heinrich, Markus et al. (July 2019). “Security Requirements Engineering in Safety-Critical
Railway Signalling Networks”. In: Security and Communication Networks 2019, pp. 1–14.
doi: 10.1155/2019/8348925. url: https://doi.org/10.1155/2019/8348925.

Hermann, Mario, Tobias Pentek, and Boris Otto (2016). “Design Principles for Industrie 4.0
Scenarios”. In: 2016 49th Hawaii International Conference on System Sciences (HICSS).
Koloa, HI, USA: IEEE, pp. 3928–3937. isbn: 978-0-7695-5670-3. doi: 10.1109/HICSS.
2016.488. url: https://doi.org/10.1109/HICSS.2016.488.

Hoffmann, Javier et al. (2018). “Towards a Safety and Energy Aware protocol for Wireless
Communication”. In: 2018 13th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC). Lille, France: IEEE, pp. 1–6. isbn: 978-1-5386-
7957-9. doi: 10.1109/ReCoSoC.2018.8449380. url: https://doi.org/10.1109/
ReCoSoC.2018.8449380.

IEC 61508 (2010). Functional safety for electrical/electronic/programmable electronic sys-
tems. 2nd. International Electrotechnical Commission. url: https://www.61508.org/
index.php.

Indira, N., S. Rukmanidevi, and A.V. Kalpana (2020). “Light Weight Proactive Padding
Based Crypto Security System in Distributed Cloud Environment:” en. In: International
Journal of Computational Intelligence Systems 13.1, p. 36. issn: 1875-6883. doi: 10.
2991/ijcis.d.200110.001. url: https://www.atlantis- press.com/article/
125931996.

ISO/IEC 27001:2013 (2013). Information technology — Security techniques — Information
security management systems — Requirements. ISO. url: https://www.iso.org/
standard/54534.html.

Ji, Zuzhen et al. (Apr. 2021). “Harmonizing safety and security risk analysis and prevention in
cyber-physical systems”. In: Process Safety and Environmental Protection 148, pp. 156–



56 Bibliography

178. doi: 10.1016/j.psep.2021.03.004. url: https://doi.org/10.1016/j.psep.
2021.03.004.

Johnson, Chris (2012). “CyberSafety: CyberSecurity and Safety-Critical Software Engineer-
ing”. In: Achieving Systems Safety. Ed. by Chris Dale and Tom Anderson. London: Springer
London, pp. 85–95. isbn: 978-1-4471-2494-8. url: https://doi.org/10.1007/978-1-
4471-2494-8_8.

Kabir, Sohag (2021). “Internet of Things and Safety Assurance of Cooperative Cyber-
Physical Systems: Opportunities and Challenges”. In: IEEE Internet of Things Magazine
4.2, pp. 74–78. doi: 10.1109/IOTM.0001.2000062.

Kavallieratos, Georgios, Sokratis Katsikas, and Vasileios Gkioulos (Apr. 2020). “Cybersecu-
rity and Safety Co-Engineering of Cyberphysical Systems—A Comprehensive Survey”. In:
Future Internet 12, pp. 505–518. doi: 10.3390/fi12040065. url: https://doi.org/
10.3390/fi12040065.

Kriaa, Siwar et al. (July 2015). “A survey of approaches combining safety and security for
industrial control systems”. In: Reliability Engineering & System Safety 139, pp. 156–178.
doi: 10.1016/j.ress.2015.02.008. url: https://doi.org/10.1016/j.ress.2015.
02.008.

Li, Kai et al. (Apr. 2020). “Design and Implementation of Secret Key Agreement for Platoon-
based Vehicular Cyber-physical Systems”. In: ACM Transactions on Cyber-Physical Sys-
tems 4.2, pp. 1–20. issn: 2378-962X, 2378-9638. doi: 10.1145/3365996. url: https:
//doi.org/10.1145/3365996.

Libsodium (2022). Introduction - Libsodium. Accessed 07 September 2022. url: https:
//doc.libsodium.org/.

Lind, Oskar (2020). “Defending against denial of service attacks in ETSI ITS-G5 networks
(Master’s thesis)”. MA thesis. Linköping, SE: Linköpings universitet.

Lopes, Gustavo Castro (Sept. 2021). “Drone Handover: Missions Overview”. In: Bachelor’s
dissertation.

Lyu, Xiaorong, Yulong Ding, and Shuang-Hua Yang (Apr. 2019). “Safety and Security Risk
Assessment in Cyber-Physical Systems”. In: IET Cyber-Physical Systems: Theory & Ap-
plications 4 (3). doi: 10.1049/iet-cps.2018.5068. url: https://doi.org/10.1049/
iet-cps.2018.5068.

Magro, Micaela Caserza, Paolo Pinceti, and Luca Rocca (2016). “Can we use IEC 61850 for
safety related functions?” In: 2016 IEEE 16th International Conference on Environment
and Electrical Engineering (EEEIC). Florence, Italy: IEEE. isbn: 978-1-5090-2320-2. doi:
10.1109/EEEIC.2016.7555402. url: https://doi.org/10.1109/EEEIC.2016.
7555402.

Márcia, C. Rocha and Vasconcelos Filho Enio (Oct. 2022). WSSL_Library. Version 1.0.0.
CISTER Research Centre. url: https://github.com/marciacr/WSSL_Library.

Marwedel, Peter (Jan. 2021). Embedded System Design. Embedded Systems Foundations
of Cyber-Physical Systems, and the Internet of Things. 4th. Embedded Systems. Chicago:
Springer Cham, pp. 01–20. isbn: 978-3-030-60910-8. doi: 10.1007/978-3-030-60910-
8. url: https://doi.org/10.1007/978-3-030-60910-8.

Mohammed, Abdalbasit and Nurhayat Varol (June 2019). “A Review Paper on Cryptogra-
phy”. In: pp. 1–6. doi: 10.1109/ISDFS.2019.8757514.

Monteiro, Stéphane Joaquim Lourenço (Sept. 2021). “UAV-Based Safety Layer Architec-
ture: A Drone Point Of View”. In: Bachelor’s dissertation.

Moore, Susan (Sept. 2020). Gartner Predicts 75% of CEOs Will be Personally Liable
for Cyber-Physical Security Incidents by 2024. url: https://www.gartner.com/en/



Bibliography 57

newsroom/press-releases/2020-09-01-gartner-predicts-75--of-ceos-will-
be-personally-liabl.

MQTT (2022). MQTT homepage. Accessed 19 January 2023. url: https://mqtt.org/.
Munoz, Antonio and Antonio Mafia (2014). “Software and hardware certification techniques

in a combined certification model”. In: 2014 11th International Conference on Security
and Cryptography (SECRYPT), pp. 1–6. isbn: 978-9-8985-6595-2.

Nandi, Giann Spilere, David Pereira, and José Proença (2021). Cyber-Physical Systems –
Addressing Safety and Security Aspects in the Presence of Runtime Monitors. Accessed
22 July 2023. url: https://valu3s.eu/cyber- physical- systems- addressing-
safety-and-security-aspects-in-the-presence-of-runtime-monitors/.

Navet, Nicolas and Stephan Merz, eds. (Mar. 2013). Modeling and Verification of Real-
time Systems: Formalisms and Software Tools. 1st. Wiley-ISTE, p. 448. isbn: 978-1-118-
62395-4.

Pivoto, Diego G.S. et al. (2021). “Cyber-physical systems architectures for industrial internet
of things applications in Industry 4.0: A literature review”. In: Journal of Manufacturing
Systems 58, pp. 176–192. doi: 10.1016/j.jmsy.2020.11.017. url: https://doi.org/
10.1016/j.jmsy.2020.11.017.

Politi, Elena et al. (2022). “The future of safe BVLOS drone operations with respect to sys-
tem and service engineering”. In: 2022 IEEE International Conference on Service-Oriented
System Engineering (SOSE), pp. 133–140. doi: 10.1109/SOSE55356.2022.00022.

QGroundControl (2023). QGroundControl User Guide. Accessed 10 July 2023. url: https:
//docs.qgroundcontrol.com/master/en/index.html.

Rastocny, Karol et al. (Jan. 2016). “Modelling of hazards effect on safety integrity of open
transmission systems”. In: 35, pp. 470–496. url: https://www.cai.sk/ojs/index.php/
cai/article/view/3232.

Rawat, Danda B. and Chandra Bajracharya (2017). Vehicular Cyber Physical Systems. Adap-
tive Connectivity and Security. 1st. USA: Springer Cham. isbn: 978-3-319-44494-9. doi:
10.1007/978-3-319-44494-9.

Riebl, Raphael (2020). Artery. V2X Simulation Framework. Accessed 29 July 2023. url:
http://artery.v2x-research.eu/.

ROS - Robot Operating System (2022). Accessed 14 January 2023. url: https://www.
ros.org/.

Schmittner, Christoph et al. (2016). “Using SAE J3061 for Automotive Security Requirement
Engineering”. In: Computer Safety, Reliability, and Security. Vol. 9923. Lecture Notes in
Computer Science. Cham: Springer International Publishing, pp. 157–170. isbn: 978-3-
319-45480-1. doi: 10.1007/978-3-319-45480-1_13. url: http://link.springer.
com/10.1007/978-3-319-45480-1_13.

Shallal, Qahtan and Mohammad Bokhari (Aug. 2016). “A Review on Symmetric Key En-
cryption Techniques in Cryptography”. In: International Journal of Computer Applications,
p. 43.

Shayea, Ibraheem et al. (2022). “Handover Management for Drones in Future Mobile Net-
works - A Survey”. In: Sensors 22.17. issn: 1424-8220. doi: 10.3390/s22176424. url:
https://www.mdpi.com/1424-8220/22/17/6424.

Silva, Diego R. C. et al. (June 2018). “Latency evaluation for MQTT and WebSocket
Protocols: an Industry 4.0 perspective”. en. In: 2018 IEEE Symposium on Computers and
Communications (ISCC). Natal: IEEE, pp. 01233–01238. isbn: 978-1-5386-6950-1. doi:
10.1109/ISCC.2018.8538692. url: https://ieeexplore.ieee.org/document/
8538692/ (visited on 10/30/2022).

Silva Borges, Eduardo da (Sept. 2021). “Drone Testbed”. In: Bachelor’s dissertation.



58 Bibliography

Statista (Aug. 2022). Cyber crime: number of compromises and victims in U.S. 2005-H1
2022. url: https : / / www . statista . com / statistics / 273550 / data - breaches -
recorded - in - the - united - states - by - number - of - breaches - and - records -
exposed/.

Törngren, Martin and Ulf Sellgren (July 2018). “Complexity Challenges in Development of
Cyber-Physical Systems”. In: ed. by Marten Lohstroh, Patricia Derler, and Marjan Sirjani.
Vol. 10760, pp. 478–503. isbn: 978-3-319-95245-1. doi: 10.1007/978-3-319-95246-
8_27. url: https://doi.org/10.1007/978-3-319-95246-8_27.

Vieira, Bruno et al. (2019). “COPADRIVe - A Realistic Simulation Framework for Coop-
erative Autonomous Driving Applications”. In: 2019 IEEE International Conference on
Connected Vehicles and Expo (ICCVE). Graz, Austria: IEEE, pp. 1–6. isbn: 978-1-7281-
0142-2. doi: 10.1109/ICCVE45908.2019.8965161. url: https://doi.org/10.1109/
ICCVE45908.2019.8965161.

Vinel, Alexey, Nikita Lyamin, and Pavel Isachenkov (2018). “Modeling of V2V Communi-
cations for C-ITS Safety Applications: A CPS Perspective”. In: IEEE Communications
Letters 22.8, pp. 1600–1603. doi: 10.1109/LCOMM.2018.2835484. url: https://doi.
org/10.1109/LCOMM.2018.2835484.

Vortex-CoLab (2022). WHO WE ARE, ORGANISATION. Accessed 08 June 2022. url:
https://www.vortex-colab.com/organisation/.

Wolf, Marilyn and Dimitrios Serpanos (2018). “Safety and Security in Cyber-Physical Sys-
tems and Internet-of-Things Systems”. In: Proceedings of the IEEE 106.1, pp. 9–20. doi:
10.1109/JPROC.2017.2781198.

Xiao, Yang, Hsiao-Hwa Chen, et al. (Oct. 2006). “MAC Security and Security Overhead
Analysis in the IEEE 802.15.4 Wireless Sensor Networks”. In: EURASIP Journal on Wire-
less Communications and Networking 2006.2, p. 81. doi: 10.1155/WCN/2006/93830. url:
https://doi.org/10.1155/WCN/2006/93830.

Xiao, Yang, S. Sethi, et al. (2005). “Security services and enhancements in the IEEE 802.15.4
wireless sensor networks”. In: GLOBECOM ’05. IEEE Global Telecommunications Con-
ference, 2005. Vol. 3. St. Louis, MO, USA: IEEE, pp. 5–. isbn: 0-7803-9414-3. doi: 10.
1109/GLOCOM.2005.1577958. url: https://doi.org/10.1109/GLOCOM.2005.1577958.

Yildiz, Melih et al. (May 2021). “Experimental Investigation of Communication Performance
of Drones Used for Autonomous Car Track Tests”. en. In: Sustainability 13.10, p. 5602.
issn: 2071-1050. doi: 10.3390/su13105602. url: https://www.mdpi.com/2071-
1050/13/10/5602 (visited on 10/30/2022).

Zhang, Dan et al. (Oct. 2021). “A survey on attack detection, estimation and control of
industrial cyber-physical systems”. In: ISA Transactions 116, pp. 1–16. doi: 10.1016/j.
isatra.2021.01.036. url: https://doi.org/10.1016/j.isatra.2021.01.036.

Zhang, Junqing et al. (Aug. 2017). “Securing Wireless Communications of the Internet of
Things from the Physical Layer, An Overview”. In: Entropy 19. doi: 10.3390/e19080420.
url: https://doi.org/10.3390/e19080420.

Zhou, Xiang-Yu et al. (Feb. 2021). “A system-theoretic approach to safety and security co-
analysis of autonomous ships”. In: Ocean Engineering 222. doi: 10.1016/j.oceaneng.
2021.108569. url: https://doi.org/10.1016/j.oceaneng.2021.108569.



59

Chapter 7

Appendix A - WSSL Instalation
Tutorial

7.1 How do I get set up?

This work was developed using Ubuntu version 20.04, so the command lines are based on
Linux bash.

In this tutorial, we will cover the following:

• Environment configured with C++ compilators (g++);

• Install dependencies and third-party libraries;

• Install MQTT using libmosquitto broker;

• Build the library using Make and CMake;

7.1.1 Make and CMake

Install and build essential packages and libraries:

1 $ sudo apt i n s t a l l b u i l d − e s s e n t i a l

To install Make in Ubuntu OS, use the following commands:

1 $ sudo apt i n s t a l l make

Check if Make is installed and update it to the last version:

1 $ sudo apt update make − v e r s i o n

WSSL requires cmake version 3.10. If the installation was successful, proceed to the next
section.



60 Chapter 7. Appendix A - WSSL Instalation Tutorial

7.1.2 CryptoIdentity library

Requires sodium library. To install it via the command line:

1 $ sudo apt i n s t a l l l i b s o d i um −dev

You may also install it via similar installers or through local building:

https://libsodium.gitbook.io/doc/installation

The next step is going to the location of WSSL and including on your project build files the
CryptoLib and sodium to the CMakeList.txt file:

1 cmake :
2 add_execu tab l e (< e x e c u t a b l e −name> ${HEADERS} < f i l e .

cpp >)
3 t a r g e t _ l i n k _ l i b r a r i e s (< p r o j e c t name> Cr yp t oL i b

sod ium )

To build the library, use the following command:

1 $ cmake −Bbu i l d −H. && cmake −− b u i l d b u i l d

7.1.3 Using WSSL with MQTT Libmosquitto

First, install libmosquitto:

1 $ sudo apt −add− r e p o s i t o r y ppa : mosqu i t to −dev /
mosqu i t to −ppa

2 $ sudo apt −ge t update sudo apt −ge t i n s t a l l
l i bmo s q u i t t o −dev

Then, install mosquitto clients:

1 $ sudo apt −ge t i n s t a l l mosqu i t t o
2 $ sudo apt −ge t i n s t a l l mosqu i t to − c l i e n t s
3 $ sudo apt c l e a n

Include the library in your code:

1 #i n c l u d e <mosqu i t t o . h>

Create a custom configuration file inside mosquitto path and modify it:



7.1. How do I get set up? 61

1 $ sudo nano / e t c / mosqu i t t o / con f . d/ custom . con f

Change the default listener port from 1883 to 1885 and allow anonymous authentication by
adding the following lines:

1 l i s t e n e r 1885
2 al low_anonymous t r u e

Restart the service broker:

1 $ s e r v i c e mosqu i t t o r e s t a r t

Check if the broker status is running:

1 $ s e r v i c e mosqu i t t o s t a t u s

You can now run your code using libmosquitto. More information can be found in the
following link: https://mosquitto.org/download/


