
Exploring maintainability and performance
in Ballerina Microservices

ANDRÉ FILIPE RIBEIRO ALVES
junho de 2023

Exploring maintainability and
performance in Ballerina

Microservices

André Filipe Ribeiro Alves

A dissertation submitted in partial fulfillment of
the requirements for the degree of Master of Science,

Specialisation Area of Software Engineering

Supervisor: Isabel de Fátima Silva Azevedo

Porto, June 30, 2023

iii

Dedicatory

To my family, who gave me the strength to fulfill my objectives and to not give

up.

To my friends, who stayed on my side during this journey and made it enjoyable.

To my supervisor, who supported and guided me in the right direction.

And finally, to myself, for being able to accomplish this work.

v

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I have not plagiarised or applied any form of undue use of information or falsification

of results along the process leading to its elaboration. Therefore the work presented

in this document is original and authored by me, having not previously been used for

any other end.

I further declare that I have fully acknowledged the Code of Ethical Conduct of

P.PORTO.

ISEP,June 2023

André Filipe Ribeiro Alves

vii

Abstract

Microservices architecture currently is the industry norm for creating applications

since it allows teams to focus on individual services related to specific business func-

tionalities, reducing the overall application complexity and improving its maintainabil-

ity. However, microservices architecture has liabilities regarding service integration,

communication, governance, and data management. To solve these liabilities, the

industry and academic community have focused on creating new frameworks and

solutions. More recently, the focus changed to creating new programming languages

focused on microservices.

This study aims to investigate the effects of language-oriented approaches in de-

veloping microservices. The work focuses on Ballerina, a programming language

created to simplify the creation and integration of microservices. From the litera-

ture’s analysis, Ballerina demonstrates the ability to be more beneficial than the most

common implementations of microservices that use more common frameworks. To

further investigate these statements, an experience based on the migration of ex-

isting microservices developed in Java with the use of the framework Spring Boot

was conducted. This experience used a migration strategy created based on the

language’s specificities.

The resulting Ballerina microservice is compared with its original counterpart. The

experience focused on analyzing both solutions in terms of maintainability and per-

formance. Therefore, the Goals, Questions, Metrics (GQM) approach was used to

obtain metrics for the mentioned quality attributes. From the obtained results, it

was concluded that the Ballerina solution presents differences from the Spring Boot

solution, being superior regarding maintainability and inferior in performance.

Keywords: Microservice Architecture, Ballerina, Language-Based Approach, Spring

Boot

ix

Resumo

A arquitetura baseada em microserviços atualmente é dentro da indústria consid-

erada a norma para a criação de aplicações. A arquitetura baseada em microserviços

apresenta diversas vantagens, como a possibilidade de distribuir as diferentes fun-

cionalidades da aplicação por diversas equipas, possibilitando também o desenvolvi-

mento dos seus serviços em linguagens de programação diferentes. Esta modulariza-

ção traduz-se num acréscimo à independência das equipas, possibilitando a implemen-

tação dos seus próprios processos de trabalho como também reduz a complexidade

total da aplicação, aumentando a sua manutenibilidade.

Contudo, a arquitetura baseada em microserviços, dado o aumento na sua uti-

lização, deu origem a novas questões e preocupações para as equipas de desenvolvi-

mento e para as organizações. As equipas de desenvolvimento encontraram dificul-

dades na integração e comunicação dos seus serviços, principalmente quando estes

eram desenvolvidos em linguagens de programação bastante divergentes. Apesar da

modularidade e desacoplamento dos serviços, começou a ser detetada uma grande

dependência com metodologias de implantação do código, onde o sucesso de mi-

croserviços encontrava-se fortemente dependente do uso de contentores e sistemas

de orquestração. As organizações identificaram um aumento nos seus custos devido

ao aumento de processos, armazenamento em servidores e de software para suporte

às diversas equipas.

Estas dificuldades advêm do facto de as linguagens de programação habitualmente

usadas para a criação de microserviços não terem sido edificadas com o objetivo

de suportar microserviços bem como não salvaguardam algumas das preocupações

identificadas anteriormente. De forma a combater estas dificuldades, a indústria

e a comunidade académica incidiram as suas investigações em novas frameworks e

soluções. Recentemente, dado o novo foco na otimização para o "desenvolvimento",

surgiram novas linguagens de programação orientadas a microserviços.

Este estudo tem como objetivo investigar os efeitos da utilização de linguagens

de programação orientadas a microserviços e subsequentemente a análise do seu

impacto relativamente a atributos de qualidade relevantes para os mesmos. O foco

deste estudo incidirá na linguagem de programação Ballerina, uma linguagem de

x

programação criada com o intuito de facilitar a criação de serviços resilientes capazes

de se integrarem e orquestrarem através de pontos de saída distribuídos. Foi realizada

uma investigação à literatura existente sobre microserviços e sobre Ballerina, com

especial atenção na literatura referente à utilização de Ballerina em microserviços.

Esta investigação objetivou a identificação dos atributos de qualidade relevantes,

de onde se precisou a manutenibilidade e a performance como sendo os atributos a

avaliar. Derivada da análise da literatura, quando confrontada com implementações

de linguagens de programação mais tradicionais, Ballerina demonstra a capacidade

de proporcionar benefícios aquando da sua utilização em microserviços. Ballerina

apresenta vantagens tais como o suporte nativo para a utilização de contentores,

suporte a DevOps e funcionalidades focadas na segurança e resiliência das aplicações.

De forma a aferir estas afirmações, foi efetuada uma experiência controlada baseada

na migração de microserviços desenvolvidos na linguagem de programação Java com

recurso à framework Spring Boot para a linguagem Ballerina. Para a realização

desta experiência, primeiramente foi escolhido um projeto base do qual se realizaria

a migração. O projeto a migrar teria de cumprir alguns requisitos, tais como: ser

open-source, ter atividade recente e um número significativo de microserviços. Com

base nestes requisitos, foi selecionado o projeto Lakeside Mutual, um projeto sobre

uma companhia de seguros fictícia, desenvolvido com o propósito de demonstrar a

utilização de padrões sobre APIs e design orientado ao domínio. Seguidamente, foi

desenhada uma estratégia de migração com base nas especificidades da linguagem.

Dada a implementação da estratégia, foi edificado um serviço em Ballerina à

semelhança do original implementado em Java, mantendo todos os seus atributos

e funcionalidades. As soluções foram comparadas em termos de manutenibilidade

e performance, em que para tal foi utilizada a abordagem Goal, Question, Metrics

(GQM) de forma a obter métricas para os atributos de qualidade previamente men-

cionados. Em termos de manutenibilidade, foram analisados os números de linhas de

código existentes e a complexidade calculada através dos níveis de indentação dado

que Ballerina ainda não suporta ferramentas como o Sonarqube. Relativamente à

performance, foi desenhado e implementado um plano de testes com um número

variado de utilizadores virtuais que executavam um conjunto de pedidos REST.

Dos resultados obtidos, foi concluído que existem diferenças notáveis entre am-

bas as soluções. A solução em Ballerina apresenta melhores resultados do que a

solução em Spring Boot relativamente à manutenibilidade. Contudo, relativamente

à performance, a solução em Spring Boot demonstra obter melhores resultados.

xi

Acknowledgement

Firstly, I want to thank my thesis’ supervisor, Professor Isabel de Fátima Silva

Azevedo, who supported me and for the availability and engagement when discussing

the work for the dissertation.

Secondly, I would like to thank all my family and friends who always supported me

during this dissertation and giving the strength to finish it.

Finally, I want to thank all the professors and colleagues who helped me along my

journey at ISEP for helping me attain success in both my academic and professional

career.

xiii

Contents

List of Figures xvii

List of Tables xix

List of Code Snippets xxi

List of Abbreviations xxiii

1 Introduction 1
1.1 Context . 1

1.2 Problem . 2

1.3 Objectives . 3

1.4 Research Questions . 3

1.5 Approach . 3

1.6 Document Structure . 5

2 Background 7
2.1 Microservices Architecture . 7

2.1.1 Microservices Key Concepts 8

Business Capability Oriented 8

Autonomous: Develop, Deploy, and Scale Independently . . 9

No Central ESB: Smart Endpoints and Dumb Pipes 9

Failure Tolerance . 9

Decentralized Data Management 10

Service Governance . 10

2.1.2 Benefits and liabilities . 11

Benefits . 11

Liabilities . 12

2.2 Ballerina . 13

2.2.1 History . 14

2.2.2 Key features . 14

xiv

Visual-oriented Language 15

Type System . 17

Thread Model . 17

Testing framework . 18

Observability . 18

2.2.3 Industry Use Case . 22

3 State of the Art 25
3.1 Ballerina Microservices . 25

3.1.1 Built-in Container Support 25

3.1.2 Network Awareness . 26

3.1.3 DevOps Support . 26

3.1.4 Security . 27

3.1.5 Resiliency . 27

3.2 Quality Attributes . 28

3.2.1 Maintainability . 30

3.2.2 Performance Efficiency . 30

4 Value Analysis 33
4.1 Innovation Process . 33

4.1.1 New Concept Development 34

4.1.2 Opportunity Identification 35

4.1.3 Opportunity Analysis . 36

4.1.4 Idea Generation & Enrichment 39

4.1.5 Idea Selection . 40

Analytic Hierarchy Process (AHP) 40

Analysis Retification . 47

5 Analysis and Design 48
5.1 Project to Migrate . 48

5.1.1 Business Context . 49

5.1.2 Architecture . 50

5.2 Migration Process . 54

5.2.1 Selected Service . 54

5.2.2 Strategy . 54

6 Implementation 56

xv

6.1 Service Migration . 56

6.1.1 Main structure . 56

6.1.2 Domain . 56

6.2 Test Implementation . 68

6.2.1 Test structure . 68

6.2.2 Unit tests . 69

6.2.3 Integration tests . 69

7 Evaluation and Experimentation 74
7.1 Approach . 74

7.1.1 Maintainability . 77

7.1.2 Performance . 78

7.2 Experiments . 78

7.2.1 Maintainability . 78

7.2.2 Performance . 79

7.3 Summary . 81

8 Conclusion 83
8.1 Achievements . 83

8.2 Difficulties . 83

8.3 Threats to Validity . 84

8.4 Future Work . 84

8.5 Final Considerations . 85

Bibliographic References 86

xvii

List of Figures

2.1 Example of application built using microservices architecture (In-

drasiri and Siriwardena 2018) . 8

2.2 Ballerina Visual Representation Example (WSO2 2022c) 16

2.3 Jaeger Configuration Example (WSO2 2022e) 20

2.4 Prometheus Configuration Example (WSO2 2022e) 20

2.5 prometheus.yml Example (WSO2 2022e) 21

2.6 Grafana HTTP Service Metrics Dashboard (Labs 2022) 21

2.7 Grafana SQL Client Metrics Dashboard (Labs 2022) 22

2.8 Grafana HTTP Client Metrics Dashboard (Labs 2022) 22

2.9 MOSIP’s WebSubHub Implementation (Ratnayake 2022) 24

3.1 ISO 25010 (ISO/IEC JTC 1 2022b) 28

4.1 Innovation Process diagram (Koen et al. 2001) 33

4.2 NCD model (Koen et al. 2001) . 35

4.3 Ranking June 2021 (RedMonk 2021) 37

4.4 Ranking January 2022 (RedMonk 2022b) 38

4.5 Ranking June 2022 (RedMonk 2022c) 39

4.6 Hierarchical Decision Tree . 41

5.1 Service components at Lakeside Mutual and their relationships (Stocker

2021) . 53

7.1 GQM Model Structure (Basili, Caldiera, and Rombach 1994) 75

7.2 Implemented GQM Model . 76

7.3 Apache JMeter test plan . 80

xix

List of Tables

4.1 Saaty fundamental scale (Saaty 1990) 41

4.2 Comparison Matrix between Criteria 42

4.3 Normalized Comparison Matrix and Relative Priority Vector 42

4.4 Random Consistency Index (Adapted from Nicola 2022) 43

4.5 Consistency Matrix Comparison 43

4.6 Comparison Matrix between Time in Alternatives 44

4.7 Comparison Matrix between Adequacy in Alternatives 44

4.8 Comparison Matrix between Simplicity in Alternatives 45

4.9 Normalized Comparison Matrix and Local Priority for the comparison

between Alternatives regarding Time Criteria 45

4.10 Normalized Comparison Matrix and Local Priority for the comparison

between Alternatives regarding Adequacy Criteria 45

4.11 Normalized Comparison Matrix and Local Priority for the comparison

between Alternatives regarding Simplicity Criteria 46

4.12 Criteria/Alternatives Classification Matrix and Composite Priority . 46

5.1 Service Descriptions (Stocker 2021) 50

7.1 GQM . 77

7.2 LOC Metrics . 78

7.3 Indentation Metrics . 79

7.4 Response Time and Throughput Table Report for the Customer Man-

agement Backend . 80

xxi

List of Code Snippets

6.1 Ballerina Implementation of InteractionEntity 57

6.2 Ballerina Implementation of InteractionEntityRecord 58

6.3 Ballerina Implementation of the JDBC Client 58

6.4 Ballerina Implementation of the InteractionLogRepository 59

6.5 Ballerina Implementation of a repository initialization 60

6.6 Ballerina Implementation of a DTO 61

6.7 Ballerina Implementation of an exception 61

6.8 Ballerina Implementation of HTTP service 62

6.9 Ballerina Implementation of CORS 63

6.10 Ballerina Implementation of a call to Customer Core service 64

6.11 Ballerina Implementation of WebSocket 65

6.12 Ballerina Implementation of WebSocket Service 67

6.13 Ballerina Implementation of Unit Test 69

6.14 Ballerina Implementation of HTTP Test 70

6.15 Ballerina Implementation of Database Test 71

6.16 Ballerina Implementation of WebSocket Service Test 72

6.17 Ballerina Implementation of REST Service Test 73

xxiii

List of Abbreviations

AHP Analytic Hierarchy Process.

BVM Ballerina Virtual Machine.

CI Consistency Index.

CLI Command-line Interface.

CORS Cross-Origin Resource Sharing.

CR Consistency Ratio.

DDD Domain Driven Design.

DEI Departamento de Engenharia Informática.

DSL Domain-Specific Language.

DSR Design Science Research.

DSRM Design Science Research Methodology.

DTO Data Transfer Object.

ESB Enterprise Service Bus.

FFE Fuzzy Front End.

GPL General-purpose programming language.

GQM Goal Question Metric.

ISEP Instituto Superior de Engenharia do Porto.

JDBC Java Database Connectivity.

JPA Java Persistence API.

JWT JSON Web Token.

LOC Lines of Code.

xxiv

MEI Mestrado em Engenharia Informática.

MOSIP Modular Open Source Identity Platform.

NCD New Concept Development.

NPD New Product Development.

RI Random Index.

SOA Service-Oriented Architecture.

SRP Single Responsibility Principle.

TCP Transmission Control Protocol.

TMDEI Tese / Dissertação / Estágio Mestrado de En-

genharia Informática.

1

Chapter 1

Introduction

This dissertation illustrates a thesis project developed during the Master’s Degree

in Software Engineering at Instituto Superior de Engenharia do Porto (ISEP). The

document covers all the crucial actions and information that led to its accomplish-

ment.

This chapter contains the document’s introduction. It presents the interpretation

of the problem to be solved and the context of the dissertation. It also outlines the

objectives necessary to resolve the mentioned problem. Next, it describes the chosen

approach.

Lastly, this chapter also provides a summary of the document’s structure.

1.1 Context

In today’s society, applications have taken a significant role in daily life. Appli-

cations are becoming more complex, innovating, and updating to include various

functionalities to satisfy the users’ needs.

For many years, teams created most applications to serve all the needs of an

individual business line. While they could be fully monolithic or separated by services,

they encapsulated all the necessary business requirements and functionalities into a

single unit. With innovation, they became overly complex and difficult to maintain

(Indrasiri and Siriwardena 2018).

A new architecture emerged to solve these issues. It was the microservices ar-

chitecture. This architecture focuses on creating a single microservice related to

one business functionality. The solutions run their processes, and teams develop

and deploy them independently. Microservices architecture allows each service to be

developed in different programming languages since services communicate through

their defined endpoints (Indrasiri and Siriwardena 2018).

2 Chapter 1. Introduction

As time passed, the microservices architecture propelled the creation of new pro-

gramming languages more focused on its use cases and concerns. One of the exam-

ples is the Ballerina programming language, released in 2018 by WSO2.

Ballerina is a programming language and platform that “make it easy to create

resilient services that integrate and orchestrate across distributed endpoints”. It

focuses on “baking integration concepts into a language, including a network-aware

type system, sequence diagrammatic syntax, concurrency workers, being “DevOps

ready”, and environment awareness” (Jewell 2018).

Over the last few years, Ballerina has been going up on the programming languages

popularity rankings, reaching its current ranking of 87th most popular programming

language with around five years of production lifetime. RedMonk describes this in-

crease in popularity as an exception to the rule where newly minted programming lan-

guages are not expected to cause impacts on the overall ranking (RedMonk 2022c).

This exception emphasizes the increasing adoption of this programming language,

making it relevant for possible studies on its use.

1.2 Problem

Microservices architecture caused a shift in the industry, but it also came with lia-

bilities, such as the integration, communication, governance, and data management

of different microservices written in various programming languages (Indrasiri and

Siriwardena 2018).

These liabilities came from the creators of the most conventional programming

languages not designing and creating their languages with microservices in mind,

which resulted in the programmers needing to use more and more of their time to

resolve issues that arose from this transition. As such, it led to the invention of

frameworks and solutions to solve these issues (Guidi et al. 2017). More recently, it

led to the development of new programming languages focused on microservices like

Ballerina.

However, while Ballerina appears as a solution to the problems that are relevant

in applications with multiple microservices, it also leads to the question of how ap-

plications that use it compare with other more conventional approaches in terms of

some quality attributes, a question that remains unexplored.

1.3. Objectives 3

1.3 Objectives

The main objective of this dissertation is to explore the effects of using a program-

ming language such as Ballerina versus a more conventional programming language

regarding maintainability and performance. This objective will be accomplished by

following these steps:

• Study the Ballerina programming language.

• Create a research prototype with microservices architecture using the Ballerina

programming language by migrating an open-source project.

• Explore the effects of using Ballerina in microservices in terms of maintainability

and performance through the analysis of both solutions.

Maintainability and performance are the selected quality attributes to be evaluated

in both solutions. Section 3.2 describes the analysis that led to choosing these quality

attributes.

1.4 Research Questions

The investigation required a starting point, so the following research questions

were established to carry out this research:

• What are the most relevant quality attributes related to microservices archi-

tecture?

• What are the effects of using Ballerina in microservices architecture-based ap-

plications regarding the identified quality attributes?

The first research question focuses on researching the most relevant quality at-

tributes related to the microservices architecture. These quality attributes will be

used as the main points of interest in analyzing the effects of the adoption of Bal-

lerina. The second and last research question concentrates on the research of how

developer teams can use Ballerina to create microservices and what are the impacts

of using this language regarding the identified quality attributes.

1.5 Approach

This dissertation investigates the possible effects of integrating Ballerina in a

project based on the microservices architecture, focusing on a group of quality at-

tributes. Therefore, a research method that provides reliability and accomplishment

is needed.

4 Chapter 1. Introduction

The approach that initially seemed to align best with this dissertation’s context was

the Design Science Research Methodology (DSRM) applied to information systems.

However, considering the nature of the research, an alternative methodology inspired

by DSRM principles was adopted instead.

DSRM is a framework that presents the necessary guidelines for successfully evalu-

ating the present Design Science Research (DSR) in information systems. It includes

the principles, practices, and procedures required to carry out a study and meet its

objectives(Peffers et al. 2007).

It’s important to note that the chosen approach does not have a specific name.

The decision to deviate from DSRM emerged since DSRM predominantly focuses on

delivering a new product, whereas this dissertation centers around the investigation

and subsequent findings related to the migration of an already developed project.

The procedures carried out to ascertain this investigation’s reliability, accomplish-

ment, and optimization are comprised of six steps:

• Problem identification and motivation: this step comprises the definition of

the targeted problem of the research and the justification of how the applied

solution brings value in this context. In this document, section 1.2 details the

problem, and the value of the proposed solution is in Chapter 4;

• Objectives for a solution: this step defines the objectives related to the prob-

lem and its constraints. This step requires a study and assessment of several

available approaches and their assets and drawbacks. The objectives can be

quantitative (where a solution can be more desirable over the current ones) or

qualitative (how a certain artifact can be the solution to a given constraint).

The objectives are defined in section 1.3;

• Design and development: this step represents the design and implementation of

the selected solution. The design unfolds from analyzing the State of the Art,

which details frameworks, patterns, techniques, and technologies that allow

the development of a proof of concept that serves as a representation of the

selected solution and achieves the specified objectives. This step is described

in Chapters 5 and 6;

• Demonstration: this step describes and exhibits how effectively the selected

solution resolves the existing problem. Chapter 7 will describe the experimen-

tation and will show evidence of how well the implemented solution tackles the

known problem.

• Evaluation: this step detects and measures the effectiveness of the implemen-

tation for the chosen solution, utilizing metrics and analyzing the obtained

1.6. Document Structure 5

results. Chapter 7 also describes this effectiveness, comparing the achieved

results in the demonstration with the initial objectives.

• Communication: the final step communicates the delivery of the problem, its

importance, the selected solution, and its effectiveness. As such, Chapter 8 will

communicate the conclusions obtained through the work done in this research.

1.6 Document Structure

The current chapter represents the Introduction. This chapter presents the con-

text and the interpretation of the problem to be solved and defines the objectives to

achieve. It also describes the preferred approach to the problem and ends with the

document structure.

The Background chapter introduces the microservices architecture, listing its main

concepts and enumerating its benefits and liabilities. This chapter also describes the

Ballerina programming language, starting with its history, then focusing on its key

concepts, and ending the chapter with an industry use case of Ballerina.

The State of the Art chapter describes how developers can use Ballerina to cre-

ate microservices, depicting the features that bring benefits to the microservices

architecture-based applications that use this programming language. It also focuses

on the performed analysis of quality attributes, where maintainability and perfor-

mance were identified as the relevant quality attributes for this dissertation.

The following chapter represents the Value Analysis. This chapter describes the

Innovation Process, including its theoretical specification and its implementation in

the context of this dissertation. Also, this chapter represents the utilization of the

Analytic Hierarchy Process (AHP), whose focus is to aid, based on multiple criteria,

in selecting the approach to use for the creation of the proof of concept.

The chapter on Analysis and Design focuses on describing the analysis and creation

of the design of the migration of a selected project using the approach chosen in the

Value Analysis chapter.

The Implementation chapter will showcase the implemented solution. It details

the transition of the base project to Ballerina, with demonstrations of how the code

was migrated.

Next, the chapter Evaluation and Experimentation will validate the implemented

solution based on the Goal Question Metric (GQM) approach and the performed

tests on the implemented solution for maintainability and performance. The chapter

6 Chapter 1. Introduction

finishes with an overall summary of the conclusions obtained from the performed

experiments.

The final chapter of the documents is the Conclusions. This chapter will start

by addressing the achievements related to the defined objectives. Then, it describes

the found limitations and outlines the possible future work. Finally, the chapter ends

with the concluding considerations and contributions.

7

Chapter 2

Background

The following chapter provides some essential knowledge about microservices and

the Ballerina programming language. First, microservices are introduced, mentioning

their key concepts, benefits, and liabilities. Then, Ballerina’s history and key features

are detailed, along with an industry use case.

2.1 Microservices Architecture

For a long time, the monolithic architecture dictated how the software develop-

ment process was designed and implemented. Applications built using this approach

serve as a single unit. This unit is responsible for meeting all the needs and re-

quirements of the business. Also, this unit is often written in a single programming

language, uses a single shared database, and exists in a single repository and host

machine (Madushan 2021).

However, monolithic architecture has many problems, especially with the mainte-

nance of the applications, as they can grow into large, bulky systems. These problems

led to the development of a new architectural approach called Service Oriented Ar-

chitecture (SOA). The core idea of SOA is to create loosely coupled, reusable, and

easily scalable units called services. Then, an application server hosts these services

(Indrasiri and Siriwardena 2018).

SOA solved many of the problems that emerged from the use of monolithic ap-

plications. However, since it is also monolithic by nature, it could not accompany

the evolutions of modern application development needs. The developers wanted to

build more scalable and flexible systems that could take advantage of the various

technologies available and operate more independently with fewer inter-application

dependencies.These requirements led to the microservices architecture (Madushan

2021).

8 Chapter 2. Background

Microservices architecture is an architectural approach for quickly and securely

creating software applications. This approach focuses on building a software system

as a collection of self-contained and independent services that execute their processes

and are developed, deployed, and scaled separately. Integrating all these services and

other systems creates a software application like the one shown in Figure 2.1 (Indrasiri

and Siriwardena 2018).

Figure 2.1: Example of application built using microservices architec-
ture (Indrasiri and Siriwardena 2018)

2.1.1 Microservices Key Concepts

This section will briefly overview some of the main characteristics of the microser-

vices architecture.

Business Capability Oriented

One of the fundamental ideas behind the microservices architecture is a service

per business capability. Doing so will result in each service having a clear set of

responsibilities for a specific business purpose. A given service should concentrate on

performing one specific task exceptionally well (Newman 2021).

As such, the service’s size depends on the scope and the business functionality.

If a service is too small (has a small granularity, segregating a business functionality

into small-scaled services) or too big (like a web service), it is not adequate for the

microservices architecture. For identifying the scope and business functionalities of

2.1. Microservices Architecture 9

a microservice, concepts like the Single Responsibility Principle (SRP) or Domain

Driven Design (DDD) are used (Indrasiri and Siriwardena 2018).

Autonomous: Develop, Deploy, and Scale Independently

Unlike monolithic applications or web services, microservices are developed, de-

ployed, and scaled independently, meaning they do not share execution runtimes

between them. This independence comes from the use of containers, a technol-

ogy that is increasingly used and provides service autonomy that is beneficial to the

success of the microservices architecture (Newman 2021).

This autonomy makes the entire system more resilient by isolating failures within

individual services. In addition, each service scales independently, so the other services

that have more traffic can be managed separately without impacting other services

(Indrasiri and Siriwardena 2018).

No Central ESB: Smart Endpoints and Dumb Pipes

Microservices architecture promotes the elimination of the use of the ESB. Instead

of using an ESB, microservices architecture introduces a new service integration

style called smart endpoints and dumb pipes. This style defines the microservice

as the home of all the business logic, including the inter-service communication

logic, making them smart endpoints. All services are then connected using a simple

messaging infrastructure devoid of any business logic, serving as a dumb pipe. With

this style, all the developed microservices encompass the entire complexity of the

ESB (Indrasiri and Siriwardena 2018).

Failure Tolerance

Due to the increasing number of services and inter-service network communi-

cations, microservices are more prone to failures. A microservice application is a

collection of these services, so the malfunction of one or more services must not

cause the entire application to fail. Therefore, the microservices developed must be

fault-tolerant so that in the event of an unexpected failure, the impact is minimal

(Indrasiri and Siriwardena 2018).

Another aspect to consider is the ability to observe and predict failures in microser-

vices. If failures can be predicted and observed, services can recover faster. Also, the

symptoms can be investigated to avoid them in the future. This capability comes

10 Chapter 2. Background

from a good observability infrastructure with monitoring, tracing, logging, and other

practices (Indrasiri and Siriwardena 2018).

Decentralized Data Management

One of the characteristics of monolithic applications is the existence of a cen-

tralized database responsible for saving all the information needed to implement the

various functionalities of a given application. If the microservices architecture contin-

ued to use this centralized database, the services would not be independent (Indrasiri

and Siriwardena 2018).

Therefore, each microservice must have its private database and database schema

that stores the data required for its particular business capability. The service can

only access its corresponding data and no others. For scenarios where more than

one database needs to be updated, the service must use the appropriate service APIs

(Indrasiri and Siriwardena 2018).

Because the databases are independent, they do not have to use the same man-

agement systems or technologies. Each database can use the system and technology

best suited to its particular business capability (Indrasiri and Siriwardena 2018).

Service Governance

Service Governance in microservices is interpreted as the capability of each enti-

ty/team to govern its domain and its processes however it wants. However, it is not

that simple.

Governance can be divided into two key aspects (Indrasiri and Siriwardena 2018):

• Design-time governance: consists of allowing the owner of the service to decide

how to design, develop, and run the service. The owner can select and use

the best tools for their needs and is not locked into a particular technology

platform. However, the organization should define some common standards

that must be mandatory, such as a review process and a list of technologies to

be used to avoid incompatibilities.

• Runtime governance: consists of the features applied on a runtime that en-

able better management of services. It is often implemented as a centralized

component and includes concepts such as service definition, service discovery,

service versioning, service observability, and others.

2.1. Microservices Architecture 11

2.1.2 Benefits and liabilities

Microservices architecture has its benefits and liabilities. The benefits can be

associated with any distributed system but are better with microservices because

of how the boundaries of the services are defined. The weaknesses can also be

associated with any distributed system since its use increases complexity compared

to a monolithic application (Newman 2021).

Benefits

The benefits of the microservices architecture are the following (Indrasiri and Siri-

wardena 2018; Newman 2021):

• Agile and Rapid Development of Business Functionalities: Each service is au-

tonomous. As such, its development can also be independent, focusing only

on the needs of the service and ignoring the functionality of the entire system.

• Replaceability: Each service focuses on a specific functionality and has a limited

scope and size, making it easier to build and replace with a better implemen-

tation.

• Failure Isolation and Predictability/Robustness: As previously mentioned, the

failure of one service does not cause the entire system to fail. Thus, the

system continues to function while the developers replace the failed service.

Observability also helps predict these failures and speeds up the resolution

process.

• Agile Deployment and Scalability: Using containers makes it very easy to deploy

and scale a service. Because they are autonomous services, developers can use

container technologies to enable agile deployment and scaling processes.

• Align with Organizational Structure: Microservices focus on business capabil-

ities, and organizations are usually structured by business capabilities as well.

Therefore, any team responsible for a business capability can also be responsible

for the associated microservice with a simple and well-defined scope.

• Technology Heterogeneity: Each service can use different technologies, each

of which is better suited to the task at hand. In addition, new technologies

can be adopted quickly, as trying something new does not have much impact

since each service should not affect much of the system.

• Composability: Each service provides functionality that it can use in different

ways. Therefore, developers can create independent code modules that encom-

pass functionalities to cover most use cases for the services. This approach

12 Chapter 2. Background

aims for higher reusability.

Liabilities

The liabilities of the microservices architecture are the following (Indrasiri and

Siriwardena 2018; Newman 2021):

• Inter-Service Communication: Implementing inter-service communication can

be more challenging than developing concrete services because of the complex-

ity of linking microservices to create composite business functionalities.

• Service Governance: Managing a large number of services is a challenge. With-

out a good governance strategy, the identification of services and the detection

of failures becomes a nightmare.

• Heavily Depends on Deployment Methodologies: The success of microservices

is heavily dependent on the use of containers and their orchestration systems.

If these do not exist, developers need to invest time and energy in creating the

infrastructure for container usage.

• Developer Experience: As the number of services increases, the developer’s

experience suffers because they can no longer run the application locally. This

limitation often leads to development in the cloud, which can result in less

regular and reliable feedback. The feedback problem exists because each ser-

vice will output its logs and information, thus complicating the system’s overall

feedback readability. The increase can also limit the services available to devel-

opers to do their work, leading to a concentration of knowledge and the loss of

the "collective ownership" model, where any developer can work on any part

of the project.

• Technology Overload: New technologies have emerged to allow the adop-

tion of the microservices architecture. This increase in technologies becomes

problematic when companies want to introduce these new and often foreign

technologies as requirements. These requirements lead to an overload of chal-

lenges mainly related to the existing knowledge about these new technologies

and the time to understand them. In most cases, there is no need to explore

these technologies as they only add complexity to the overall project and do

not bring any real benefits.

• Cost: Microservices architecture increases costs because, in most cases, it

requires more processes, more storage, and more supporting software. Or-

ganizational changes also have a higher impact, as more things need to be

2.2. Ballerina 13

learned and used effectively when developing new features, causing slowdowns

or requiring more people to work on the project.

• Reporting: With the microservices architecture, reporting on all data became

more difficult because all available services are owners of some part of the data,

not existing a centralized location to obtain it.

• Security: Data flows between different services using the available endpoints.

If these endpoints are not well secured, only making the data available to the

authorized users, the data is more vulnerable to being observed or manipulated.

• Testing: Tests depend heavily on the scope they want to check. The larger

the scope, the harder it is to set up data, the longer the test runs, and the

harder it is to determine the cause of the test’s failure. End-to-end tests are at

the end of the scale in terms of scope because they cover most functionality.

In the microservices architecture, these tests are even more extensive because

they must run across multiple processes that must be well configured for the

test scenarios. These tests also need to be prepared for false positives due

to environmental issues. As a result, these tests do not provide the same

level of assurance in the microservices architecture as they do in monolithic

applications.

• Latency: In the microservices architecture, the data needed for a particular

functionality can be split across multiple services. This partitioning results in

the need to serialize, transfer, and deserialize the data, potentially impacting

the latency of the system.

• Data Consistency: Previously, data was stored and managed in a single database.

With the microservices architecture, the database is broken down into smaller

databases, each for a specific service. This change makes data consistency

harder to manage and maintain, as it is more troublesome to coordinate state

changes between distributed databases.

2.2 Ballerina

Ballerina is an open-source, statically typed, cloud-native programming language

created and supported by WSO2. You can quickly develop microservices, API end-

points and integrations, and any other type of cloud application using Ballerina. In

addition, Ballerina contains every general-purpose feature you’d anticipate from a

modern programming language, making it also be a general-purpose programming

language (GPL) (WSO2 2022b).

14 Chapter 2. Background

Ballerina’s compiler-level built-in support for frequently used data types like JSON

and XML makes it much easier to concentrate on processing structured data, inter-

acting with network services, and managing concurrency. It also offers specialized

linguistic constructions for receiving and sending network services (WSO2 2022b).

Ballerina has concurrency and network interaction ideas and syntax that closely re-

semble sequence diagrams, which makes it possible for any Ballerina function to have

a bidirectional mapping between its textual syntax representation and its graphical

sequence diagram representation (WSO2 2022b).

2.2.1 History

WSO2 is a company that specializes in API integration (Oram 2019). It provided

ESB solutions for SOA-based services integration for over a decade. WSO2 ESB’s

core mediation engine is an adaptation of Apache Synapse from WSO2. Synapse

grants an XML-based Domain-Specific Language (DSL) to describe message pro-

cessing and transformation logic. In SOA, communication between services uses

SOAP requests. XML message processing mainly employs Xpath. However, it might

be challenging to perform sophisticated messaging and transformation scenarios with

a DSL; therefore, standard programming languages such as Java are adopted.

For this reason, and because of the need to improve the ESB, the CEO, and

founder of WSO2, Dr. Sanjiva Weerawarna, decided to develop a programming lan-

guage called Ballerina. This programming language was to focus primarily on provid-

ing a more efficient method of writing switching logic and deviating from the Synapse

DSL. Dr. Sanjiva Weerawarna designed the programming language to "bridge the

gap between integration and general programming languages." (Madushan 2021),

which became very apparent when using ESB and other programming languages in

the complete integration of business processes.

With these capabilities, Ballerina also proved to be a good option for microservices

implementation, as it enabled the implementation of business logic in an agile manner

and has strong integration support that allows the use of dumb pipes and smart

endpoints, one of the patterns of microservices architecture (Madushan 2021).

2.2.2 Key features

This section gives a brief overview of some of the main features of the Ballerina

programming language.

2.2. Ballerina 15

Visual-oriented Language

WSO2 created Ballerina to facilitate the creation of integration solutions. In

the industry, these integration solutions are explained using sequence diagrams. Se-

quence diagrams are visual representations that make the solution to a problem

understandable to both stakeholders and developers.

Therefore, Ballerina also provides the ability to use sequence diagrams to create

solutions. The Ballerina editor offers a side-by-side visual and textual perspective.

Developers can switch between the views as they work, and when they make changes

in one of the views, the editor immediately converts the changes to the other without

loss. As such, Ballerina includes code generation with its visual support, thus allowing

the possibility to create the bal files only using the graphical representation.

This editor allows the developer to create integration logic with a textual or visual

syntax. Additionally, Ballerina introduces a new extension for sequence diagrams that

permits them to describe transport-specific properties such as REST APIs, OpenAPI

standards, HTTP, and JMS access specifications (Weerawarana et al. 2018). Figure

2.2 shows an example of a visual representation of a process.

16 Chapter 2. Background

Figure 2.2: Ballerina Visual Representation Example (WSO2 2022c)

2.2. Ballerina 17

Type System

Ballerina provides a rich set of types that allow the natural implementation of

integration scenarios. It includes simple types like Booleans and Integers, structured

types like maps and arrays, and behavioral types like functions. Ballerina supports

(Weerawarana et al. 2018):

• JSON and XML natively through the json and xml types. These types al-

low easy development of integration scenarios where developers need to apply

transformations to the messages received in XML or JSON formats.

• Operations with SQL databases through the record and table types. The record

type is a collection of fields. It also works as an SQL record. The table type is

a collection of records. Each of them has an immutable key.

• Asynchronous operations through the future type. This type represents a con-

struct responsible for storing the result of an action that is not finished and

will return a value in the future.

• Data streaming through the stream type. A stream represents a sequence of

values that is available over time and has a final value that indicates no more

information to be obtained.

• Variable multi-typing through the use of union types. Union types are the

junction of two base types represented by the type definitions with a pipe

separating them. This type is helpful in situations where the variable can vary

between the two defined types, like when a function can return a value of a

string or can return an error.

• Value omission through the use of optional types. Optional types allow for

variables to be of the desired type or Nil. An optional type uses a question

mark after the required type definition. A union type of the desired type and

the representation of Nil in Ballerina (()) can also represent an optional type.

• Type ignorance through the use of any type. The type any represents the

union of the base types, except for error. To allow a variable to take any value,

the developer can use the union of any and error. This union is helpful for

cases where the type the developer wants to use is unknown at development

time.

Thread Model

Ballerina presents itself as a parallel language that natively supports parallel exe-

cutions. This is achieved through the use of workers. Workers are sets of Ballerina

18 Chapter 2. Background

instructions that have independent storage to store variables, can input arguments,

and also output values. Workers can talk safely among themselves, can synchronize

data, and support complex scenarios such as forks and joins. Workers can be run syn-

chronously, running on the same thread of the function that invoked them, or can be

run asynchronously, by having threads taken from the available thread pool assigned

to them by the Ballerina Virtual Machine (BVM). When running asynchronously, the

worker runs until it reaches a blocking instruction. At this point, BVM releases the

designated thread and saves the worker’s context in an appropriate callback func-

tion. When the blocking instruction returns a response and the callback is invoked,

the callback function obtains the saved worker context and lets BVM go back to

executing the worker by assigning it a new thread.

Besides parallelism, non-blocking I/O is supported by Ballerina with no additional

programming effort required. I/O calls operate in a blocking way from the perspective

of a programmer, meaning that the statement that follows the I/O call is only

executed after the I/O call returns with a response. However, per the thread model

mentioned above, whenever an I/O call is performed, BVM releases the underlying

thread and saves the program state together with the next instruction pointer in a

memory structure. The saved program state is continued by a new thread that BVM

creates from its thread pool once the I/O call’s outcome is available. Thus, to the

developer, it seems that it is a blocking I/O call although threads are not blocked.

Testing framework

Ballerina provides a testing framework that allows for the creation of unit and

integration tests. Ballerina provides a testing module that gives access to a variety of

assertion functions that allow for the correct evaluation of the function’s execution.

This module also provides ways to configure data providers, mocking, and code

coverage features to be used to test the Ballerina application. Tests can be done

to functions or the services themselves, as well as to defined clients by using the

mentioned mocking capabilities. Tests can also be run in groups, making that if

changes are made in the application, only the affected part of the full application can

be tested, being the developer the one who decides (WSO2 2022g).

Observability

Observability has three main pillars, each consisting of a method that can collect

data that allows one to observe the system. These methods are logs, traces, and

2.2. Ballerina 19

metrics. Ballerina grants the implementation of all of these methods (Madushan

2021).

For logging, Ballerina has a built-in module that allows for the printing of logs to

the standard output of the terminal. Four logging levels can be used (Madushan

2021):

• DEBUG logs: used to debug the code flow and log issues.

• INFO logs: used to log the normal flow of the code.

• WARN logs: used to log possible failures that can make the program fail.

These normally are used to warn the user before the system fails.

• ERROR logs: Used to log errors. Usually, error logs indicate serious problems

in the Ballerina application.

Ballerina allows filtering logs by level and defining the output format through con-

figurations in the Config.toml file. The Config.toml file is a file that contains the

values needed by the configuration variables. A variety of Ballerina-provided packages

use these variables. Therefore these need to be available for direct configuration. Ad-

ditionally, developers can create new configuration variables if necessary (Madushan

2021).

To collect the logs, developers can use tools like Logstash, Filebeat, Elasticsearch,

and Kibana. These tools allow the collection of the Ballerina logs for further pro-

cessing or persistence in a database, for example (Madushan 2021).

For tracing, Ballerina supports OpenTelemetry. "OpenTelemetry is an open source

observability framework that we can use to observe cloud native systems with traces.

Traces can be used to track how a request flows through the system over different

services.". With this support, developers can utilize implementations of OpenTeleme-

try like Jaeger to trace Ballerina applications (Madushan 2021). The Config.toml file

must enable the tracing using the option "tracingEnabled=true" to use tracing. Also,

the file must specify the tracer using the option "tracingProvider".Using Jaeger, the

"tracingProvider" option equals "jaeger". The file also includes the configuration for

Jaeger, with an example present in Figure 2.3. After configuring, the Ballerina pro-

gram must be run using the command bal run and the flag "–observability-included"

or by including the build options section with the configuration of "observabilityIn-

cluded=true" in the Ballerina.toml file, which is responsible for containing metadata

for the Ballerina packages. Finally, developers can use a docker container running

Jaeger to see the traces of the Ballerina application (WSO2 2022e).

20 Chapter 2. Background

Figure 2.3: Jaeger Configuration Example (WSO2 2022e)

For measuring metrics, Ballerina exposes an HTTP endpoint (/metrics) which

exposes internal metrics that developers can use with tools like Prometheus to col-

lect and Grafana to visualize, allowing the measurement of performance and the

load of the program. To use this endpoint, developers must add the option "met-

ricsEnabled=true" in the Config.toml file. It also must be specified which metrics

reporter they will employ using the option "metricsReporter". Using Prometheus,

the "metricsReporter" option equals "prometheus" and in the file is also included

the configuration for Prometheus, which an example can be seen in Figure 2.4.

Figure 2.4: Prometheus Configuration Example (WSO2 2022e)

Just like Jaeger, after configuring, the Ballerina program must be run using the

command bal run and the flag "–observability-included" or by including the build

options section with the configuration of "observabilityIncluded=true" in the Balle-

rina.toml file. To use Prometheus, developers must create a configuration file named

"prometheus.yml" with the specification of the service to be measured. This file will

be specified when running Prometheus, whether locally or using a Docker container.

An example of this configuration is represented in Figure 2.5.

2.2. Ballerina 21

Figure 2.5: prometheus.yml Example (WSO2 2022e)

While Prometheus provides some dashboards, developers can enhance the data

visualization using Grafana. To use Grafana, developers can install it locally or run

it on a Docker container. With Grafana running, the user specifies the data source,

in this case, Prometheus, from where Grafana will get the measures. With the data

source configured, the developer can create dashboards to see the information the

way he wants (Madushan 2021). WSO2 already provides some dashboards specific

to Ballerina, which they published on the Grafana website for public use (WSO2

2022e). Examples of these dashboards can be seen in Figures 2.6, 2.7, and 2.8.

Figure 2.6: Grafana HTTP Service Metrics Dashboard (Labs 2022)

22 Chapter 2. Background

Figure 2.7: Grafana SQL Client Metrics Dashboard (Labs 2022)

Figure 2.8: Grafana HTTP Client Metrics Dashboard (Labs 2022)

2.2.3 Industry Use Case

This section describes the example of the Modular Open Source Identity Platform

(MOSIP). MOSIP is "a foundational identity platform that helps governments and

2.2. Ballerina 23

other organizations implement digital and foundational identity systems in a cost-

effective way." (Ratnayake 2022). Countries are free to adopt MOSIP to construct

their identity systems to meet common implementation challenges such as guaran-

teeing system uniqueness, interoperability, privacy by design, scalability, no vendor

lock-in, and affordability. When a nation has a database of identities, that nation

can use MOSIP for identity issuance, verification, and integration with numerous ser-

vice providers that supply multiple goods and services to organizations and countries

(Ratnayake 2022).

These identity systems have several operations, like registering new users, authen-

ticating them for them to use other services, or updating the user’s information,

for example. These operations trigger changes in other services and applications.

To communicate these changes, MOSIP decided that it needed to be able to use

event-driven communication between different systems. To maintain the integration

and deployment of its services, MOSIP also chose to use HTTP to transmit events

instead of using a message broker like Kafka (Ratnayake 2022).

MOSIP used Ballerina to achieve their needs, integrating event-driven commu-

nication over HTTP. It adopted Ballerina mainly for two reasons: the language

is open-source and allows customizations for specific requirements, like data persis-

tence, security, and reliable data delivery. MOSIP achieved these customizations with

the collaboration of the Ballerina team. MOSIP utilized the WebSubHub package of

Ballerina. This package provides APIs that allow the usage of WebSubHub, which is

an implementation of WebSub, an "open protocol for distributed pub/sub commu-

nication" (Ratnayake 2022) which allows for data to be published and subscribed in

real-time and in a secure way. MOSIP currently uses this implementation for event-

based communication between their internal systems, where an ID repository and

an identity authentication service exist. MOSIP also utilizes this implementation for

communication between printing partners, where the information to be printed in ID

cards is transmitted (Ratnayake 2022).

Figure 2.9 illustrates the implementation of the MOSIP WebSubHub. The hub

is the main component, responsible for talking with the subscribers and publishers,

maintaining data persistence, resuming message delivery whenever a subscriber re-

covers from downtime, authenticating and authorizing hub operations, and scaling

based on the number of subscribers. It also exists an event consolidator to remove

duplicate events of the system and an implementation of a Kafka message bro-

ker responsible for enabling data persistence and managing subscriptions (Ratnayake

2022).

24 Chapter 2. Background

Figure 2.9: MOSIP’s WebSubHub Implementation (Ratnayake 2022)

25

Chapter 3

State of the Art

The following chapter details the results obtained from the research done for

this dissertation. This chapter divides itself into two sections. Firstly, the chapter

focuses on the Ballerina features recognized as beneficial and that support the use of

microservices architecture. Next, it presents the conducted research to identify the

relevant quality attributes to the microservices architecture and this dissertation.

3.1 Ballerina Microservices

This section presents how implementing Ballerina can change the use of microser-

vices. Also, it describes some of the features of Ballerina that bring advantages or

help with some liabilities of the use of microservices.

3.1.1 Built-in Container Support

Ballerina supports the use of Docker containers. Ballerina has a built-in Docker

image that contains the Ballerina runtime, which can be used to create containers

by using the image and including the Ballerina executable. In addition, Ballerina can

generate the required artifacts itself. Ballerina provides a code-to-cloud feature that

allows the creation of a Docker image from Ballerina code. To use this feature,

the developer defines the container image, tags, and repository in a configuration

file called Cloud.toml. This file overrides the default values of the code-to-cloud

feature. To create the artifacts, the developer builds the project using the bal build

command with the additional configuration –cloud=docker to indicate to the Ballerina

compiler that Docker is the selected cloud option. The result is an image stored in

the developer’s local Docker repository and a Dockerfile found in <project_home>

/target/docker/<package_name>/Dockerfile (Madushan 2021).

Ballerina also supports the use of Kubernetes container orchestration. Like the

creation of Docker artifacts, the code-to-cloud function also supports Kubernetes

26 Chapter 3. State of the Art

artifact creation, found in the <project_home>/target/kubernetes/<package_

name>/<package_name>.yaml file. When created, this file contains default Kuber-

netes instructions and values for deploying a Ballerina program. If the developer

needs to override these values, he can define the new values in the Cloud.toml file

mentioned earlier. To create the Kubernetes artifacts, the developer uses the same

command as for Docker, with the same additional configuration, but with the value

for cloud as k8s (Madushan 2021).

3.1.2 Network Awareness

Ballerina comes with an HTTP module. This module comes with all the usual

operations like GET and POST, but it also allows the creation of services or clients.

Services are collections of entry points that resolve tasks using resource functions

declared on the Ballerina program. Clients are endpoints used to connect and interact

with external HTTP servers (Fernando and Warusawithana 2020).

Ballerina also has access to connectors to services such as Salesforce or Twilio

through modules available in Ballerina Central. Ballerina Central is a hub of available

packages of reusable Ballerina code (Oram 2019; WSO2 2022a).

3.1.3 DevOps Support

Ballerina provides a testing framework, a build tool, and a packaging system to

facilitate automated deployment. The testing framework allows the creation of test

cases for Ballerina programs which the developer can automate (Madushan 2021).

The Ballerina command-line interface (CLI) allows developers to create deploy-

ment artifacts and run automated tests before each deployment. When used in

conjunction with other Ballerina build tools, the CLI permits the creation of deploy-

ment artifacts and code checkout from GitHub as part of the automated deployment

process (Madushan 2021).

For package versioning, Ballerina adheres to semantic versioning (SemVer). Se-

mantic versioning is a frequently used versioning specification where the version num-

ber is generated in the format <major>.<minor>.<patch>, meaning, for example,

that version 1.2.13 has a major version of one, a minor version of two, and a patch

version of thirteen (Madushan 2021).

Ballerina manages dependencies using a tight versioning mechanism with strict de-

pendency management policies to reduce conflicts between package versions. When

3.1. Ballerina Microservices 27

using a library, the developer must be particular about the version, unlike in other

programming languages (Madushan 2021).

3.1.4 Security

Ballerina offers modules that allow for the straightforward use of familiar forms of

authorization like basic web authorization, JSON Web Token (JWT), and OAuth2.

In addition, Ballerina also offers an encryption module and a feature called taint

checking (Oram 2019).

Taint checking consists of tracing data flow through each function and determining

whether the data has malicious content. This feature is beneficial for common

dangers like SQL injection, which consists of inserting malicious database commands

in the data that goes to a database, or HTML injection, where the content uploaded

to a public website contains harmful code (Oram 2019).

The data received from outside the program is marked as unsafe, meaning it is

tainted. To use that data, it must be untainted, meaning it must go through a check.

These checks can be diverse. For example, the check can match the data against a

regular expression to check if it contains SQL commands or HTML tags that can be

harmful. These checks must exist in sensitive functions, responsible for running the

checks, issuing errors, and fixing or rejecting the data (Oram 2019).

3.1.5 Resiliency

Ballerina provides resiliency features to make the developed applications more

robust. Ballerina offers circuit breaking, fail-over, load-balancing, and retry. Circuit

breaking enables programmers to link connectors to suspension policies such that,

if the suspension requirements are satisfied, connectors cease sending messages to

non-responsive endpoints. For instance, if more than five percent (5%) of requests

fail within thirty seconds, an HTTP connection can be set to halt new requests

for five minutes. Similar to this, connections may be coupled with fail-over setups

to choose backup endpoints in the event of an endpoint failure. Load balancing

configuration provides a set of endpoints and a load-balancing algorithm so that

requests are dispersed across the defined endpoints according to the given algorithm.

This is useful to prevent the overloading of back-end services. Last but not least,

retry configurations for connections can be defined to make the connector deliver

the request again if it fails (Weerawarana et al. 2018).

28 Chapter 3. State of the Art

3.2 Quality Attributes

As explained in the section 1.3, the main objective of this document is to analyze

the effects of using the Ballerina programming language versus more traditional

programming languages when creating microservices in terms of quality attributes.

Therefore, this section describes the discussion and search realized regarding the

quality attributes chosen to evaluate both solutions.

The quality of a product depends on the extent to which it meets the needs of

stakeholders and creates value for them. These needs are usually represented through

a quality model. The quality model determines product quality in terms of several

quality attributes and sub-attributes that are considered when evaluating product

quality (ISO/IEC JTC 1 2022b).

The ISO/IEC 25000, also known as System and Software Quality Requirements

and Evaluation (SQuaRE), consists of a series of quality standards that is still in

development and whose objective is to guide developers in the creation of software

that attends to a variety of quality requirements and characteristics (ISO/IEC JTC

1 2022a). In this series, the ISO 25010 stands out as a standard created to specify a

framework for software quality evaluation. This framework refers to a quality division

model that consists of the quality attributes that evaluators need to consider in their

software evaluation processes. This model is divided into eight quality attributes

(Figure 3.1), each with sub-attributes (ISO/IEC JTC 1 2022b).

Figure 3.1: ISO 25010 (ISO/IEC JTC 1 2022b)

This dissertation analyzes some studies regarding microservices to identify the

quality attributes that have the most interest when comparing solutions with tra-

ditional programming languages and the Ballerina programming language. In these

studies, one of the most noticed affirmations is that the microservices architecture

improves many quality attributes. However, these studies also acknowledge that

3.2. Quality Attributes 29

the microservices architecture still neglects several relevant quality attributes or that

insufficient research has been conducted on them.

According to a study carried out by Li et al., there are a variety of quality attributes,

like maintainability, reusability, or scalability, that developers need to prioritize when

working with the microservices architecture. As such, the authors researched to

identify the most mentioned quality attributes in works related to microservices ar-

chitecture. This study showed that exist six quality attributes that stand above the

rest. These quality attributes are scalability, performance, availability, monitorabil-

ity, security, and testability. However, this study also highlights the need for more

empirical research on other quality attributes that are also important, such as main-

tainability (Li et al. 2021).

In another article, Bushong et al. conducted a study to identify approaches and

techniques that allow a better analysis of systems that use microservices since de-

signing these services continues to be challenging. This study analyzed the evolution

of microservices systems. From this analysis, the authors identified that the ap-

proaches target various challenges. One of the targeted challenges is the existence

of some hard-to-analyze quality attributes. The study pinpointed that engineers have

difficulties analyzing quality attributes like maintainability, security, and performance

in microservices systems (Bushong et al. 2021).

Two studies on patterns related to microservices architecture identified a group of

quality attributes influenced by the use of these patterns in the design or development

of microservices. The first study found that the quality attributes most mentioned

in works were maintainability, reliability, security, performance, compatibility, and

portability. Maintainability was the most referenced quality attribute. The security

attribute surprised the authors because it is not directly related to microservices

architecture (Jose A. Valdivia, Limon, and Cortes-Verdin 2019). The second study,

done one year after by the same authors with other researchers, and using a multivocal

literature review, enforces more of the affirmations of the first study, identifying more

works that give the same conclusions (J. A. Valdivia et al. 2020).

According to an industry study on the challenges of microservices, maintainability

is a crucial quality trait and one of the primary reasons for the adoption of microser-

vices. Also, issues related to maintainability are related to most of the concerns

of developers from various companies. The developers are concerned about code

management, particularly when making changes that may break the entire system.

Furthermore, developers spend most of their time thinking about ways to prevent and

deal with these breaking changes, stating that they only make them when necessary

30 Chapter 3. State of the Art

(Wang, Kadiyala, and Rubin 2021).

Following the analysis, the quality attributes that bring more relevance and interest

to study are maintainability and performance efficiency. Therefore, the dissertation

will concentrate on these two quality attributes.

3.2.1 Maintainability

Maintainability reflects the degree of efficacy and efficiency with which developers

can alter a system or product to upgrade, fix, or adapt it to the changes in the

environment and user needs. It encompasses sub-attributes like (ISO/IEC JTC 1

2022b):

• Modularity - The degree to which a system or computer program is composed

of distinct parts, such that changing one part barely affects the rest.

• Reusability - The extent to which a resource can be reused in several systems

or to create additional resources.

• Analysability - The degree of efficacy and efficiency with which it is feasible

to evaluate the effects of a planned change to one or more of a product’s

components, to diagnose a product for flaws or failure causes, or to identify

pieces that need to be modified.

• Modifiability - The extent to which a system or product can be effectively and

efficiently updated without introducing flaws or lowering the quality of the final

product.

• Testability - The efficiency and effectiveness with which test criteria for a

system, product, or component can be developed and used to verify that those

criteria have been satisfied.

3.2.2 Performance Efficiency

Performance efficiency represents the level of performance of a system concerning

the resources it uses in a specific set of conditions. This quality attribute includes

sub-attributes like (ISO/IEC JTC 1 2022b):

• Time behaviour - The degree to which a product or system satisfies spec-

ifications when performing its functions regarding response, processing, and

throughput rates.

• Resource utilization - The extent to which the types and quantities of resources

employed by a system or product to carry out its functions comply with speci-

fications.

3.2. Quality Attributes 31

• Capacity - The extent to which a product or system parameter’s upper bounds

comply with specifications.

33

Chapter 4

Value Analysis

This chapter focuses on Value Analysis. Value analysis is a systematic assessment

method performed on product designs to compare how well they serve the functions

that customers demand at the lowest possible cost while maintaining the required

performance and dependability (Rich and Holweg 2000).

This chapter opens with a section on business processes and innovation. Next, the

chapter focuses on applying the New Concept Development (NCD) model with its

phases. Firstly, it identifies and analyzes the opportunity. Then, it generates some

ideas. Finally, one of the ideas will be selected using the Analytic Hierarchy Process

(AHP).

4.1 Innovation Process

When describing the innovation process, Koen et al. refers that the process is

divided into three main parts: the Fuzzy Front End (FFE), the New Product Devel-

opment (NPD), and the Commercialization. Figure 4.1 shows a diagram with this

process (Koen et al. 2001).

Figure 4.1: Innovation Process diagram (Koen et al. 2001)

The Fuzzy Front End represents the phase where activities that are less predictable

and less structured but more innovative, profitable, risky, and chaotic are executed.

34 Chapter 4. Value Analysis

This phase is seen as the experimental part of the process since it is highly ambiguous

and unpredictable. However, it is also seen as one of the best opportunities for

improvements in the whole innovation process because the choices made in this phase

have a high impact on the subsequent ones, meaning that increasing the attention

given to this phase increases the overall value and quality of the generated outputs

(Koen et al. 2001).

The New Product Development is the next phase of the innovation process. This

phase consists of a group of formal and structured activities with specific goals,

well-defined dates, and goal-oriented plans (Koen et al. 2001).

The Commercialization is the last phase of the innovation process. This phase

symbolizes the innovation process reaching its end, with the culmination of the pre-

vious steps. This phase aims to take the generated outputs that form a final product

and commercialize it (Koen et al. 2001).

With the Fuzzy Front End being one of the best phases to improve, Koen et al.

wanted to compare the FFE practices between companies. However, since there were

no uniform definitions or terms, Koen et al. could not make the comparison. Without

a common language and terminology, it is impossible to create new knowledge and

distinguish the different stages of the process. Even when using the same terms,

if both parties mean opposite things, knowledge transfer becomes more challenging

and ineffective (Koen et al. 2001).

Because of this shortcoming, Koen et al. developed a new model, the New Con-

cept Development (NCD), intending to create a common terminology that could be

universally understood to achieve an overall better understanding of the FFE (Koen

et al. 2001).

4.1.1 New Concept Development

The NCD model shown in Figure 4.2 consists of three key parts (Koen et al. 2001):

• Engine: This part represents the organization’s leadership, culture, and busi-

ness strategy that drives the five essential factors that are controllable by the

corporation.

• Inner spoke: This part represents the FFE’s five controlled activity elements,

which consist of opportunity discovery, opportunity analysis, idea generation

and enrichment, idea selection, and concept definition.

• Influencing Factors: This part represents the organizational capabilities, the

factors of the outside world like distribution channels, law, government policy,

4.1. Innovation Process 35

customers, competitors, the political and economic climate, and the internal

and external enabling sciences that may be involved in the process. These

factors are mostly uncontrollable by the corporation and influence the entire

innovation process.

Figure 4.2: NCD model (Koen et al. 2001)

The NCD model has a circular shape, which hints at the idea that ideas flow

between all five elements. The two arrows pointing to the Opportunity Identification

and Idea Generation & Enrichment indicate that these are the most common starting

points for projects and ideas (Koen et al. 2001).

4.1.2 Opportunity Identification

Opportunity Identification is the element where an organization identifies which

opportunities are most relevant to them (Koen et al. 2001).

As stated in section 1.2, the microservices architecture came to revolutionize the

industry of software development. However, it also came with its challenges. While

developers were able to solve these challenges with the most common programming

languages, the next evolution seems to be toward the utilization of programming

languages whose purpose is to facilitate the solving of the challenges presented by

microservices, like the Ballerina programming language. The creators of Ballerina

36 Chapter 4. Value Analysis

describe it as a language of easy use and understanding for developers and stakehold-

ers (WSO2 2022b). However, after studying the market and verifying some of the

current solutions that adhered to Ballerina, those involved in this dissertation have

deemed the necessity to investigate the advantages Ballerina offers. Ballerina is also

a language that has been increasing in popularity (this popularity will be depicted in

section 4.1.3).

As such, this research focuses on the need to better understand Ballerina and its

advantages by comparing how applications that use Ballerina fare against applications

that use common programming languages.

4.1.3 Opportunity Analysis

Opportunity Analysis is the element where an opportunity is analyzed. The op-

portunity identified in the Opportunity Identification element is checked to see if its

development is worthwhile pursuing (Koen et al. 2001).

Over the years, the ranking of programming languages has been changing. Since

2011, RedMonk has been constructing a ranking of programming languages, com-

paring their popularity in Github and StackOverflow. RedMonk is an analyst firm

created to help developers and organizations understand themselves and help them

with technical decisions, crunching data to make recommendations. Software giants

like Google, LinkedIn, and Twitter have used their analyzes (RedMonk 2022a).

In the rankings of RedMonk, languages like Java, Python, and C# have established

themselves as some of the most popular for developers and organizations to use in

their projects. In more recent years, while the top ranks do not change much, the

lower ones are constantly updating. In 2021, Ballerina entered the rankings, marking

its presence as one of the languages that were rising in popularity, as can be seen

in Figure 4.3 (RedMonk 2021). Since entering the rankings, its popularity has been

growing, as can be seen in Figures 4.4 and 4.5, with the last one corresponding to

their current ranking analysis (RedMonk 2022b,c).

4.1. Innovation Process 37

Figure 4.3: Ranking June 2021 (RedMonk 2021)

38 Chapter 4. Value Analysis

Figure 4.4: Ranking January 2022 (RedMonk 2022b)

4.1. Innovation Process 39

Figure 4.5: Ranking June 2022 (RedMonk 2022c)

4.1.4 Idea Generation & Enrichment

The element responsible for the emergence, development, and maturation of a

concrete idea is Idea Generation & Enrichment. This creative process of generat-

ing ideas is based on building, tearing down, combining, reshaping, modifying, and

upgrading ideas. An idea can go through many cycles, being reviewed, studied, dis-

cussed, and developed concerning other aspects of the NCD model. Keeping contact

with customers and collaborating with other companies and organizations frequently

enhances idea generation (Koen et al. 2001).

Section 1.4 defined the research questions this dissertation intends to answer. As

such, to respond to the questions, it is necessary to compare two implementations of

an application, one being in Ballerina, with the same domain between them. Thus,

based on this idea, the following alternatives were created:

• Alternative 1: Development of an application using microservices architecture

40 Chapter 4. Value Analysis

in a common programming language and migration of the application to Bal-

lerina.

• Alternative 2: Migration of some of the microservices of an existing microser-

vices architecture-based application developed using a common programming

language to Ballerina.

• Alternative 3: Total migration of an existing microservices architecture-based

application developed using a common programming language to Ballerina.

4.1.5 Idea Selection

Idea Selection is the element where an idea created from the Idea Generation &

Enrichment is selected to be implemented. Since businesses must choose the idea

that will maximize their earnings, this is one of the more difficult decisions they

must make. Picking the right idea is crucial to an enterprise’s health and success.

However, it does not exist a single process that guarantees a good selection. Most

idea selection processes need many runs on the previously mentioned elements, with

new insights from influencing factors and further instructions from the engine (Koen

et al. 2001).

Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) was used to choose one of the options

mentioned in the preceding section. The AHP is one of the main methods developed

regarding Multi-criteria decision analysis and was created by professor Thomas L.

Saaty in 1980. This method allows the use of qualitative or quantitative criteria in

the evaluation process and works by dividing the problem into hierarchical levels to

facilitate their evaluations (Nicola 2022).

To start using the AHP, firstly, it is necessary to create a Hierarchical Decision

Tree, which presents the objective, the decision criteria, and the alternatives (Nicola

2022). Regarding alternatives, the ones to be used are the ones mentioned in the

section 4.1.4. In terms of criteria, the following were chosen:

• Time: The time criteria will determine which alternative is the best to imple-

ment, keeping in mind the time constraints of this dissertation.

• Adequacy: The adequacy criteria will determine which alternative is more ap-

propriate to answer the research questions previously defined.

• Simplicity: The simplicity criteria will determine which alternative is simpler to

implement, given the possible number of implementations to develop.

4.1. Innovation Process 41

Figure 4.6 contains the representation of the Hierarchical Decision Tree.

Figure 4.6: Hierarchical Decision Tree

After creating the decision tree, the next phase of the AHP is to create a com-

parison matrix to assess the importance of the criteria. Each criterion is going to be

assigned a priority level, following the Saaty fundamental scale, represented in Table

4.1 (Nicola 2022).

Table 4.1: Saaty fundamental scale (Saaty 1990)

Based on the previously defined criteria, the following comparison matrix (Table

4.2) was created.

42 Chapter 4. Value Analysis

Table 4.2: Comparison Matrix between Criteria

Time Adequacy Simplicity

Time 1.000 0.250 0.500

Adequacy 4.000 1.000 4.000

Simplicity 2.000 0.250 1.000

Sum 7.000 1.500 5.500

Following the criteria comparison matrix, the third phase of the AHP consists of

normalizing all the values of the previous matrix and calculating the priority vector.

Each value is divided by the total of the column in which it appears to normalize the

values. Each line of normalized values’ arithmetic average is utilized to calculate the

priority vector (Table 4.3) (Nicola 2022).

Table 4.3: Normalized Comparison Matrix and Relative Priority Vector

Time Adequacy Simplicity Priority Vector

Time 0.143 0.167 0.091 0.133

Adequacy 0.571 0.667 0.727 0.655

Simplicity 0.286 0.167 0.182 0.211

With the normalized comparison matrix created, the next phase is applied. In this

phase, it is calculated the Consistency Ratio (CR), which ensures that the consistency

of the obtained priority vector is satisfactory. To achieve this, the value of the CR

must be less than 0.1 (Nicola 2022).

The Consistency Ratio (CR) is calculated last in the next phase to assess the

consistency of the judgments. If the value of CR is less than 0.1, the judgments

are regarded as reliable. To calculate the CR, the Consistency Index (CI) is divided

by the Random Index (RI) (Nicola 2022). The formula to calculate the CR is the

following :

CR =
CI

RI
(4.1)

Table 4.4 provides the value of the RI. The value to select depends on the number

of criteria utilized in the analysis. Since three criteria are used, the chosen RI value

is 0.58.

4.1. Innovation Process 43

Table 4.4: Random Consistency Index (Adapted from Nicola 2022)

Nº of criteria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Index value 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

To obtain the value of the CI, the following formula is used:

CI =
λmax − n
n − 1 (4.2)

To obtain the λmax it is used the formula:

Ax = λmaxx (4.3)

The A corresponds to the normalized comparison matrix and x corresponds to the

priority vector (which values are calculated in Table 4.3). Multiplying A with x we

obtain the values in Table 4.5.

Table 4.5: Consistency Matrix Comparison

Time 0.402

Adequacy 2.035

Simplicity 0.642

With the values from Table 4.5, the following formula can be used to infer the

value of the λmax:

λmax =
0.402/0.133 + 2.035/0.655 + 0.642/0.211

3
≈3.054 (4.4)

Substituting all the values in the formula of the CI, we obtain the following value:

CI =
3.054− 3
3− 1 ≈0.027 (4.5)

With both the CI and the RI, the value of the CR can be calculated. Replacing

the values in the formula, it is obtained an approximate value of 0.047, which is less

than 0.1, which means it is possible to infer that the priority values are regarded as

reliable.

CR =
CI

RI
=
0, 027

0, 58
≈0.047 (4.6)

The next step is to create comparison matrices for each criterion after confirming

44 Chapter 4. Value Analysis

the consistency. These matrices will measure the significance of the choices con-

cerning each criterion. The procedure consists of repeating the construction of the

comparison matrices between each criterion and all alternatives, repeating the de-

velopment of the normalizing matrix, and repeating the computation of the priority

vector to create these matrices (Nicola 2022).

Starting with the comparison matrices between criteria and alternatives, the Tables

4.6, 4.7 and 4.8 show the comparison using the fundamental scale (Table 4.1). To

create the matrices, the headers will be shortened to the values Alt 1, Alt 2, and Alt

3.

Table 4.6: Comparison Matrix between Time in Alternatives

Time

Alt 1 Alt 2 Alt 3

Alt 1 1.000 0.200 0.333

Alt 2 5.000 1.000 3.000

Alt 3 3.000 0.333 1.000

Sum 9.000 1.533 4.333

Table 4.7: Comparison Matrix between Adequacy in Alternatives

Adequacy

Alt 1 Alt 2 Alt 3

Alt 1 1.000 2.000 1.000

Alt 2 0.500 1.000 0.333

Alt 3 1.000 3.000 1.000

Sum 2.500 6.000 2.333

4.1. Innovation Process 45

Table 4.8: Comparison Matrix between Simplicity in Alternatives

Simplicity

Alt 1 Alt 2 Alt 3

Alt 1 1.000 0.143 0.250

Alt 2 7.000 1.000 3.000

Alt 3 4.000 0.333 1.000

Sum 12.000 1.476 4.250

Next, the normalizing matrices are calculated along with the local priority vectors

for each criterion. The final results are displayed in Tables 4.9, 4.10, and 4.11.

Table 4.9: Normalized Comparison Matrix and Local Priority for the
comparison between Alternatives regarding Time Criteria

Time

Alt 1 Alt 2 Alt 3 Local Priority

Alt 1 0.111 0.130 0.077 0.106

Alt 2 0.555 0.652 0.692 0.633

Alt 3 0.333 0.217 0.231 0.260

Table 4.10: Normalized Comparison Matrix and Local Priority for the
comparison between Alternatives regarding Adequacy Criteria

Adequacy

Alt 1 Alt 2 Alt 3 Local Priority

Alt 1 0.400 0.333 0.429 0.387

Alt 2 0.200 0.167 0.143 0.170

Alt 3 0.400 0.500 0.429 0.443

46 Chapter 4. Value Analysis

Table 4.11: Normalized Comparison Matrix and Local Priority for the
comparison between Alternatives regarding Simplicity Criteria

Simplicity

Alt 1 Alt 2 Alt 3 Local Priority

Alt 1 0.083 0.097 0.059 0.080

Alt 2 0.583 0.677 0.706 0.656

Alt 3 0.333 0.226 0.235 0.265

With all the matrices created and with the obtained local priority vectors, the

final phase is reached. In this phase, it is calculated the composite priority for the

alternatives, through the merging of the local priority vectors (Tables 4.6, 4.7 and

4.8), creating a matrix that is multiplied with the priority vector of the criteria (Table

4.3) (Nicola 2022). The results of this multiplication are found in Table 4.12.

Table 4.12: Criteria/Alternatives Classification Matrix and Composite
Priority

Time Adequacy Simplicity Composite Priority

Alt 1 0.106 0.387 0.080 0.285

Alt 2 0.633 0.170 0.656 0.334

Alt 3 0.260 0.443 0.265 0.381

Table 4.12 verifies that Alternative 3: the total migration of an existing microser-

vices architecture-based application developed using a common programming lan-

guage to Ballerina is considered the best alternative to implement with a value of

approximately 0.381. However, it is noteworthy that the result of Alternative 2, with

a rough value of 0.334, is very near the highest value, with an approximate difference

of only 0.047. The reason behind this difference resides in the fact that the criterion

with the highest weight is Adequacy (with an approximate value of 0.655), and for

this criterion, Alternative 3 outweighs the other two alternatives (with a value of

0.443).

4.1. Innovation Process 47

Analysis Retification

Due to the original projects complexity and time related issues, the result obtained

from the application of the AHP method, which resulted in the total migration of

an existing microservices architecture-based application developed using a common

programming language to Ballerina, is not viable. Time was not the most relevant

criteria during the application of the AHP, which resulted in the selection of an

alternative which was not viable for the time available for the project. For the scope

of this project, the alternative that was effectively implemented was Alternative 2,

the Migration of some of the microservices of an existing microservices architecture-

based application developed using a common programming language to Ballerina,

which was possible for the time-frame available for the project.

48

Chapter 5

Analysis and Design

This chapter details the analysis and design of the developed implementation. As

mentioned in section 1.3, the solution started from an open-source microservices

architecture-based project that uses a conventional programming language. After,

this project was migrated to the Ballerina programming language to help discover the

effects of using Ballerina regarding maintainability and performance. Therefore, the

chapter starts by explaining the design of the initial project, mentioning the business

context and the defined architecture. Then, it describes the process that will be used

for the migration into Ballerina.

5.1 Project to Migrate

As mentioned in section 1.3, a project will be migrated to analyze the effects of

adopting the Ballerina programming language. When selecting the project, a few

criteria were taken into account. As such, the project must have:

• The code available to everyone (Open-source).

• Recent activity, with commits less than a year ago.

• A significant number of microservices, to facilitate the investigation regarding

Ballerina service integration.

• Documentation that should include its architecture and how it is used.

• Tests that prove its credibility.

• Characteristics like API Gateway and/or service discovery implemented.

The selected project was Lakeside Mutual, a made-up insurance company project

on GitHub. This project is a sample application to show off API patterns and domain-

driven design using microservices (Stocker 2021). The author selected this project

because of its good documentation, dimension, and containing an implementation of

service discovery.

The characteristics of the project are the following:

5.1. Project to Migrate 49

• Created on February 26th of 2021.

• Has commits dated to the last three months.

• Eight microservices developed in Java (Spring Boot) and Node.

• Three front-end applications using React and Vue.js.

• Tests for each of the microservices.

• Documentation of the architecture and patterns used.

• Documentation of the APIs (Springdoc Open API)

The project is also under the second version of the Eclipse Public License. There-

fore, all code and documentation created regarding this project must be available as

open-source code under the same license. The license is available on the project’s

repository (Stocker 2021).

5.1.1 Business Context

Lakeside Mutual has tasked one of its IT teams to extend a customer application

with a self-service capability. The team identified the need for customer and policy

data on demand in their first analysis. This data exists across several back-end

systems that do not have suitable Web APIs or message channels to provide such

data (Zimmermann et al. 2022).

The application’s newest version will have to support various self-service features,

such as allowing the customers of Lakeside Mutual to update their contact infor-

mation without needing to contact an agent of the company (Zimmermann et al.

2022).

The team also gathered requirements in terms of quality (performance, availability,

maintainability). For example, the contact update should take no more than two

seconds in eighty percent of the cases. The application must handle around ten

thousand users, which is what the company expects in terms of customers who will

use these new functionalities. Also, about ten percent of these users will use the

application concurrently (Zimmermann et al. 2022).

The company also has usability concerns. Lakeside Mutual might need to use more

expensive channels, contradicting the development of these new functionalities, if

the new application fails to meet the customers’ self-service requirements effectively.

Also, the application must be reliable and capable of being used during extended

periods (working hours) and through all days, making the application available all

the time for the users to take care of their insurance contracts (Zimmermann et al.

2022).

50 Chapter 5. Analysis and Design

5.1.2 Architecture

To provide the new features to their customers, the IT team of Lakeside Mutual

created the following architecture, represented in Figure 5.1.

Table 5.1 contains a brief description of each of the components that constitute

the architecture of the solution, which purpose is to provide the company’s customers

and employees the services they need.

Table 5.1: Service Descriptions (Stocker 2021)

Service Name Description
Customer Core The Customer Core backend is a Spring Boot

application that manages the personal data

about individual customers. It provides this

data to the other backend services through an

HTTP resource API.

Customer Self-Service Backend The Customer Self-Service backend is a Spring

Boot application that provides an HTTP re-

source API for the Customer Self-Service fron-

tend.

Customer Self-Service Frontend The Customer Self-Service frontend is a React

application that allows users to register them-

selves, view their current insurance policy and

change their address.

Customer Management Backend The Customer Management backend is a

Spring Boot application that provides an

HTTP resource API for the Customer Man-

agement frontend and the Customer Self-

Service frontend. In addition, WebSockets are

used to implement the chat feature to deliver

chat messages in realtime between the call-

center agent using the Customer Management

frontend and the Customer logged into the

Self-Service frontend.

5.1. Project to Migrate 51

Service Name Description

Customer Management Frontend The Customer Management frontend is a Re-

act application that allows Customer-Service

operators to interact with customers and help

them resolve issues related to Lakeside Mu-

tual’s insurance products.

Policy Management Backend The Policy Management backend is a Spring

Boot application that provides an HTTP re-

source API for the Customer Self-Service fron-

tend and the Policy Management frontend. It

also sends a message (via ActiveMQ messag-

ing) to the Risk Management Server whenever

an insurance policy is created / updated.

Policy Management Frontend The Policy Management frontend is a Vue.js

application that allows Lakeside Mutual em-

ployees to view and manage the insurance poli-

cies of individual customers.

Risk Management Server The Risk-Management server is a Node.js ap-

plication that gathers data about customers /

policies and can generate a customer data re-

port on demand.

Risk Management Client The Risk-Management client is a command-

line tool built with Node.js. It allows the pro-

fessionals of Lakeside Mutual to periodically

download a customer data report which helps

them during risk assessment.

Eureka Server Eureka Server provides a service registry. It

is a regular Spring Boot application to which

all other Spring services can connect to access

other services. For example, the Customer

Self-Service Backend uses Eureka to connect

to the Customer Core. Usage of Eureka is op-

tional.

52 Chapter 5. Analysis and Design

Service Name Description

Spring Boot Admin Spring Boot Admin is an open source software

for managing and monitoring Spring Boot ap-

plications. It is a Spring Boot application too.

Usage within the Lakeside Mutual services is

optional and only included for convenience with

all security disabled.

Currently, since Ballerina has its own service discovery implementation, it does not

provide native support for the transition of Eureka Server to Ballerina (there are no

available libraries for Eureka in Ballerina). As such, this service will not be considered

for the scope of this work. Also, the Spring Boot Admin service is not something

valuable in Ballerina, so it will also not be considered.

5.1. Project to Migrate 53

Figure 5.1: Service components at Lakeside Mutual and their relationships (Stocker 2021)

54 Chapter 5. Analysis and Design

5.2 Migration Process

The migration to Ballerina will maintain the requirements of the base project. For

migrating the solution to Ballerina, two main topics need to be addressed:

• Selected Service: The service that will be migrated, based on criteria like

difficulty, importance, and interest.

• Strategy: The way the service will be converted. The service will be separated

into different parts, with an explanation of how each of them will be migrated.

5.2.1 Selected Service

The first main decision is the selection of which service to migrate. Due to time

and complexity constraints, only a single service will be migrated. The factors that

will impact the choice of the service are the technology used to develop them and

the aspects of those services that garner the most interest.

In terms of technology, the front-end services are excluded since Ballerina does not

provide front-end capabilities, putting them outside of the scope of this work. For

the back-end services, the Java Spring Boot services will be considered since these

are more in number and contain the core of the project.

Regarding importance/interest, the services with some noteworthy characteristics

besides the basic REST implementation will be the first focus of the migration.

With these factors in mind, the Customer Management Backend service was se-

lected since it uses Spring Boot and it contains an implementation of WebSockets,

a TCP-based protocol created for two-way communication between the client and

the server (Madushan 2021), besides its REST implementation.

5.2.2 Strategy

The service consists of a domain, an infrastructure, and a group of interfaces for

its main code. It also contain tests and documentation.

Firstly, the domain will be migrated. The Ballerina class definition, which is the

closest representation of a Java object class definition, will be used for representing

the entity and value object definitions. Additionally, as Ballerina interacts with its

database implementations through records, a record definition is constructed for each

object related to the database.

Next, the focus is the infrastructure. Ballerina’s main file contains methods equiv-

alent to each of the Java classes’ methods, meaning all business logic exists in this

5.2. Migration Process 55

file. For instance, several functions are created from the Repository specifications to

enable CRUD activities in the database.

After, the emphasis shifts to the interfaces. All the DTOs are converted into

records. The remaining classes are changed into methods in either the main file or

the service file, which contains the definition of the service endpoints. Configuration

classes are also migrated, when possible, to service configurations in Ballerina, like

the CORS configuration.

56

Chapter 6

Implementation

This chapter describes the implementation process of the solution using the Balle-

rina programming language. It describes the Ballerina implementation of the selected

service, following the process described in the Analysis and Design (Chapter 5).

6.1 Service Migration

This section describes the technical details of the migration of the Customer

Management Backend service into Ballerina. First, it starts by explaining the main

structure of the service in Ballerina. Then, the following subsections focus on the

different steps defined for the migration strategy created in the section 5.2.2. All the

code presented in the following sections can be consulted on the public repository

named Ballerina-Lakeside-Mutual-Customer-Management-Backend (Alves 2023).

6.1.1 Main structure

The service conversion is mainly into two files: the main.bal and the service.bal.

The main.bal contains the definitions of the objects, records, and all the functions

related to the business logic. The service.bal contains the services responsible for

listening to requests and answering accordingly.

Some of the configurations are in the Config.toml file. The microservice port,

authorization key, database username, and password are some examples of configu-

rations in this file.

6.1.2 Domain

The domain classes were transformed into Ballerina objects, which use the "class"

type. The functions of the objects utilize the "isolated" definition to provide concurrency-

safe access to its attributes. Code Snippet 6.1 represent the Ballerina implementation

6.1. Service Migration 57

of the InteractionEntity, an example of a domain class.

1 pub l i c c l a s s I n t e r a c t i o n E n t i t y {

2 p r i v a t e s t r i n g ? i d ;

3 p r i v a t e s t r i n g ? da te ;

4 p r i v a t e s t r i n g ? con t en t ;

5 p r i v a t e boolean ? sen tByOpe ra to r ;

6

7 pub l i c i s o l a t e d func t i on i n i t (s t r i n g ? id , s t r i n g ? date , s t r i n g ?

content , boolean ? sen tByOpe ra to r) {

8 s e l f . i d = i d ;

9 s e l f . da t e = da te ;

10 s e l f . c on t e n t = con t en t ;

11 s e l f . s en tByOpe ra to r = sen tByOpe ra to r ;

12 }

13

14 pub l i c i s o l a t e d func t i on g e t I d () r e t u r n s s t r i n g ? {

15 r e tu rn s e l f . i d ;

16 }

17

18 pub l i c i s o l a t e d func t i on s e t I d (s t r i n g ? i d) {

19 s e l f . i d = i d ;

20 }

21

22 . . .
23

24 pub l i c i s o l a t e d func t i on toJ son () r e t u r n s j son {

25 r e tu rn {

26 "id" : s e l f . i d ,

27 "date" : s e l f . da t e . t oJ son () ,

28 "content" : s e l f . content ,

29 "sentByOperator" : s e l f . s en tByOpe ra to r

30 } ;

31 }

32 } ;

Code Snippet 6.1: Ballerina Implementation of InteractionEntity

A record was also made to enable accessibility to database operations. For exam-

ple, the InteractionEntity object originated the InteractionEntityRecord, which can

be seen in Code Snippet 6.2.

58 Chapter 6. Implementation

1 pub l i c type I n t e r a c t i o n E n t i t y R e c o r d reco rd { |

2 s t r i n g i d ? ;

3 s t r i n g da te ? ;

4 s t r i n g con t en t ? ;

5 boolean sent_by_operato r ? ;

6 | } ;

Code Snippet 6.2: Ballerina Implementation of InteractionEntityRecord

The repository of the service is implemented in the base implementation using the

JpaRepository interface, meaning the database implementation on the code uses the

Java Persistence API (JPA) for managing the database schema. In Ballerina, it’s

not possible to use JPA.

As such, it was used the Java Database Connectivity (JDBC) module available

for Ballerina, thus the necessity to implement all the essential methods necessary for

managing data with the use of SQL commands. Code Snippet 6.3 represents the

instation of the JDBC client necessary to access the database. Code Snippet 6.4

contains a representation of one of the methods developed in Ballerina relative to

the implementation of a repository. The rest of the methods can be consulted on

the projects GitHub repository (Alves 2023).

1 j d b c : C l i e n t j d b c C l i e n t = check new (

2 u r l = da t a sou r c e ,

3 u s e r = username , pas sword = password ,

4 o p t i o n s = {

5 p r o p e r t i e s : {"connectionTimeout" : "300000"}

6 } ,

7 c o nn e c t i o nPoo l = {

8 maxOpenConnect ions : 10000

9 }

10) ;

Code Snippet 6.3: Ballerina Implementation of the JDBC Client

6.1. Service Migration 59

1 pub l i c f unc t i on g e t I n t e r a c t i o n L o g (s t r i n g cu s t ome r I d) r e t u r n s
I n t e r a c t i o n LogAgg r e g a t eRoo t | e r r o r {

2 I n t e r a c t i o nLogAgg r e g a t eRoo tRe co r d r e c = check j d b c C l i e n t −>

queryRow (‘SELECT CUSTOMER_ID , USERNAME ,

LAST_ACKNOWLEDGED_INTERACTION_ID FROM INTERACTIONLOGS WHERE

CUSTOMER_ID = ${customerId}‘) ;

3 stream< I n t e r a c t i o n E n t i t y R e c o r d , e r r o r ?> i n t e r a c t i o n s E n t r i e s =

j d b c C l i e n t −>que r y (‘SELECT ID ,DATE ,CONTENT ,SENT_BY_OPERATOR FROM

INTERACTIONS WHERE ID IN (SELECT INTERACTIONS_ID FROM

INTERACTIONLOGS_INTERACTIONS WHERE

INTERACTION_LOG_AGGREGATE_ROOT_CUSTOMER_ID = ${rec.customer_Id })

‘) ;

4 I n t e r a c t i o n E n t i t y [] i n t e r a c t i o n s = [] ;

5 check from I n t e r a c t i o n E n t i t y R e c o r d i tem2 i n i n t e r a c t i o n s E n t r i e s

6 do {

7 i n t e r a c t i o n s . push (new (i t em2 . i d , i t em2 . date , i t em2 . content , i t em2

. sent_by_operato r)) ;

8 } ;

9 check i n t e r a c t i o n s E n t r i e s . c l o s e () ;

10 r e tu rn new (r e c . customer_Id , r e c . username , r e c .

l a s t_acknow l e dg ed_ i n t e r a c t i o n_ i d , i n t e r a c t i o n s) ;

11 }

Code Snippet 6.4: Ballerina Implementation of the

InteractionLogRepository

The use of JDBC comes with an extra step regarding database initialization. The

base project uses an H2 database that, by default, is dropped and created every time

the service starts. By using JPA, the schema is rebuilt and automatically creates the

tables. Since the JDBC Ballerina module provides no automation for table creation,

the manual initialization of the tables necessary for the respective service is in the

main.bal file. Code Snippet 6.5 shows the implementation of the initialization of the

tables.

60 Chapter 6. Implementation

1 pub l i c f unc t i on main () r e t u r n s e r r o r ?{

2 l o g : p r i n t I n f o ("--- Customer Management backend started ---") ;

3 l o g : p r i n t I n f o ("Start of main function .. ") ;

4

5 i f (dd l_auto == "drop_and_create") {

6 _ = check j d b c C l i e n t −>e x e cu t e (‘DROP TABLE IF EXISTS

INTERACTIONLOGS_INTERACTIONS ‘) ;

7 _ = check j d b c C l i e n t −>e x e cu t e (‘DROP TABLE IF EXISTS

INTERACTIONLOGS ‘) ;

8 _ = check j d b c C l i e n t −>e x e cu t e (‘DROP TABLE IF EXISTS

INTERACTIONS ‘) ;

9 }

10

11 _ = check j d b c C l i e n t −>e x e cu t e (‘CREATE TABLE IF NOT EXISTS

INTERACTIONS(

12 ID VARCHAR (255) NOT NULL ,

13 DATE TIMESTAMP ,

14 CONTENT VARCHAR (255),

15 SENT_BY_OPERATOR BOOLEAN NOT NULL ,

16 PRIMARY KEY (ID)

17)‘) ;

18

19 _ = check j d b c C l i e n t −>e x e cu t e (‘CREATE TABLE IF NOT EXISTS

INTERACTIONLOGS(

20 CUSTOMER_ID VARCHAR (255) NOT NULL ,

21 USERNAME VARCHAR (255) ,

22 LAST_ACKNOWLEDGED_INTERACTION_ID VARCHAR (255),

23 PRIMARY KEY (CUSTOMER_ID)

24)‘) ;

25

26 _ = check j d b c C l i e n t −>e x e cu t e (‘CREATE TABLE IF NOT EXISTS

INTERACTIONLOGS_INTERACTIONS(

27 INTERACTION_LOG_AGGREGATE_ROOT_CUSTOMER_ID VARCHAR (255) NOT

NULL ,

28 INTERACTIONS_ID VARCHAR (255) NOT NULL ,

29 CONSTRAINT FKNRLR4POAGW2DTE8QMGEWNL9EU_INDEX_B FOREIGN KEY

(INTERACTION_LOG_AGGREGATE_ROOT_CUSTOMER_ID) REFERENCES

INTERACTIONLOGS(CUSTOMER_ID),

30 CONSTRAINT UK_F9MORY4MPI8W7CI4IBSS33M11_INDEX_B UNIQUE (

INTERACTIONS_ID)

31)‘) ;

32

33 l o g : p r i n t I n f o ("End of main function .. ") ;

34 }

Code Snippet 6.5: Ballerina Implementation of a repository initialization

6.1. Service Migration 61

The Data Transfer Objects (DTO) were mapped into records. The record con-

tains each of the fields of the respective DTO. This record, however, varies from

the original Java DTO in that it lacks associated methods like getters and setters,

allowing each field to be changed by just replacing it with the new intended value.

Additionally, whereas the original has a private access modifier in the Java implemen-

tation, the access to the record is public. Code Snippet 6.6 represents the Ballerina

implementation of a DTO.

1 pub l i c type Pag inatedCustomerResponseDto reco rd {

2 s t r i n g f i l t e r ;

3 i n t ’ l i m i t ;

4 i n t o f f s e t ;

5 i n t s i z e ;

6 CustomerDto [] cu s tome r s ;

7 } ;

Code Snippet 6.6: Ballerina Implementation of a DTO

The exceptions were also mapped into records. Each record of an exception in-

cludes the type of the correspondent HTTP error. This inclusion allows this record

to use the fields of the HTTP error. Code Snippet 6.7 shows the Ballerina imple-

mentation of an exception.

1 pub l i c type Cu s t ome rCo r eNo tAva i l a b l eE x c e p t i o n reco rd { |

2 ∗ h t t p : BadGateway ;

3 | } ;

Code Snippet 6.7: Ballerina Implementation of an exception

The REST controllers were all mapped into a single Ballerina REST service cre-

ated with an HTTP listener. This HTTP listener was created by passing the port it

must listen to and the version of the HTTP protocol it will use (lines 1 to 3 of the

Code Snippet 6.8). All the operations of the REST controllers were converted to

service resource functions, each with its request mapping. This functions also have

a Ballerina HTTP Caller that saves the information of the endpoint requester and

an HTTP Request that contains the request information. The resources can also

have path and query parameters that allow sending information like, for example,

ids or filters (line 7 of the Code Snippet 6.8). Each resource then responds with an

HTTP Response that contains a status code and a body containing the information

requested or a message to the caller. When the resources utilize functions that need

concurrent access, it is utilized the "lock" statement, which allows for safe access to

62 Chapter 6. Implementation

mutable variables. Code Snippet 6.8 shows the equivalent of the REST controllers

of a service migrated into a single HTTP service, with one of the available endpoints.

The full service code can be seen on the project’s GitHub repository (Alves 2023).

1 l i s t e n e r h t t p : L i s t e n e r h t t p L i s t e n e r = check new (por t , {

2 h t t pV e r s i o n : h t t p :HTTP_1_1

3 }) ;

4

5 s e r v i c e / on h t t p L i s t e n e r {

6

7 r e sou rce f unc t i on ge t cu s tome r s (h t t p : C a l l e r c a l l e r , h t t p : Reques t

r e qu e s t , s t r i n g f i l t e r = "" , i n t ’ l i m i t = 10 , i n t o f f s e t = 0)

r e t u r n s e r r o r ? {

8 h t t p : Response r e s p o n s e = new ;

9 l o ck {

10 Pag inatedCustomerResponseDto | e r ro r <

Cus t ome rCo r eNo tAva i l a b l eE x c ep t i o n > r e s u l t = getCus tomer s (f i l t e r

, ’ l i m i t , o f f s e t) ;

11 i f (r e s u l t i s Pag inatedCustomerResponseDto) {

12 r e s p o n s e . s t a t u sCode = 200 ;

13 r e s p o n s e . s e t J s o nPa y l o a d (r e s u l t . t oJ son ()) ;

14 } e l s e {

15 r e tu rn r e s u l t ;

16 }

17 }

18 check c a l l e r −>r e spond (r e s p o n s e) ;

19 r e tu rn ;

20 }

21

22 . . .
23

24 }

Code Snippet 6.8: Ballerina Implementation of HTTP service

The REST controllers have security configurations where the Cross-Origin Re-

source Sharing (CORS) settings are defined. In Ballerina, this was implemented

using the available ServiceConfig annotation from the HTTP module, which has a

"cors" attribute that can be configured with several options like allowed methods,

allowed origins, and other configurations like the base implementation. Code Snippet

6.9 demonstrates the CORS implementation in Ballerina.

6.1. Service Migration 63

1 @http : S e r v i c e C o n f i g {

2 c o r s : {

3 a l l o w O r i g i n s : ["∗"] ,

4 a l l o w C r e d e n t i a l s : t r u e ,

5 a l l owMethods : ["GET" , "POST" , "PUT" , "PATCH" , "DELETE" , "

OPTIONS"] ,

6 a l l owHead e r s : ["authorization" , "content -type" , "x-auth -token"

] ,

7 e xpo s eHeade r s : ["x-auth -token"]

8 }

9 }

Code Snippet 6.9: Ballerina Implementation of CORS

The calls to the Customer Core service were transformed into methods that han-

dle the response after calling the service using a Ballerina HTTP client. This HTTP

client is the equivalent of the Feign Client used on the base project. The Customer

Core service may return an error or a message mapped into a DTO, represented by

a record in Ballerina. In Ballerina, it was used the "auth" attribute of the Ballerina

HTTP client to implement the interceptor used by the client for setting the token

needed for authorization. Code Snippet 6.10 the Ballerina implementation of the

HTTP Client and one of calls to the Customer Core service to get information of

the customers. The other calls can be consulted on the projects GitHub repository

(Alves 2023).

64 Chapter 6. Implementation

1 h t t p : C l i e n t c o r e C l i e n t = check new ("http ://"+ba s eU r l ,

2 auth = {

3 token : ap iKeyVa l u e

4 }

5) ;

6

7 pub l i c f unc t i on getCustomer (Cus tomer Id c u s t ome r I d) r e t u r n s (() |

CustomerDto | e r ro r <Cus t ome rCo r eNo tAva i l a b l eE x c ep t i o n >) {

8 s t r i n g ? c u s t om e r I d S t r i n g = cu s t ome r I d . g e t I d () ;

9 i f (c u s t om e r I d S t r i n g i s s t r i n g) {

10 CustomersDto | e r r o r r e s p o n s e = c o r e C l i e n t −>get ("/customers/" +

c u s t ome r I d S t r i n g) ;

11 i f (r e s p o n s e i s CustomersDto) {

12 i f (r e s p o n s e . cu s tome r s . l e n g t h () == 0) {

13 r e tu rn () ;

14 } e l s e {

15 r e tu rn r e s p o n s e . cu s tome r s [0] ;

16 }

17 } e l s e {

18 l o g : p r i n t I n f o (e r r o rMes sage , r e s p o n s e) ;

19 e r ro r <Cus t ome rCo r eNo tAva i l a b l eE x c ep t i o n > e r r = e r r o r (

e r r o rMe s s ag e) ;

20 r e tu rn e r r ;

21 }

22 } e l s e {

23 l o g : p r i n t I n f o (e r r o rMes sage , c u s t om e r I d S t r i n g) ;

24 e r ro r <Cus t ome rCo r eNo tAva i l a b l eE x c ep t i o n > e r r = e r r o r (

e r r o rMe s s ag e) ;

25 r e tu rn e r r ;

26 }

27 }

Code Snippet 6.10: Ballerina Implementation of a call to Customer

Core service

As stated in the description in Table 5.1, this service has a Websocket service

implementation which is accountable for managing the chat feature and responsible

for delivering chat messages in real time between a Lakeside Mutual agent and a

customer.

WebSocket is a TCP-based protocol that enables two-way communication between

the client and the server. WebSocket establishes and maintains a TCP (Transmission

Control Protocol) connection with the server, allowing the server to send messages to

the client on any occasion. This two-way communication is essential when the server

6.1. Service Migration 65

needs to update the client application in real time. The majority of web browsers

also support WebSocket communication on web pages (Madushan 2021).

In Ballerina, a WebSocket service was implemented, which listens on a WebSocket

listener created with the HTTP listener utilized in the REST service. The HTTP

listener, which was modified to include HTTP version 1.1, was used to allow the

REST and WebSocket services to listen on the same port. The WebSocket service

has a single resource function responsible for responding to the HTTP upgrade re-

quest with the definition of a WebSocket service or an appropriate error message.

Depending on the endpoint path, the resource function response is different. Code

Snippet 6.11 shows the implementation of Websocket in Ballerina.

1 l i s t e n e r websocket : L i s t e n e r w s L i s t e n e r = new websocket : L i s t e n e r (

h t t p L i s t e n e r) ;

2

3 s e r v i c e /ws on w s L i s t e n e r {

4 r e sou rce func t i on ge t . (h t t p : Reques t r eq) r e t u r n s websocket :

S e r v i c e | websocket : Upg r adeE r r o r {

5 l o g : p r i n t I n f o (r eq . rawPath) ;

6 i f (r eq . rawPath . i n c l u d e s ("/chat/messages")) {

7 r e tu rn new WsServ i ce () ;

8 } e l s e {

9 r e tu rn s e r v i c e o b j e c t websocket : S e r v i c e {

10 remote f unc t i on onMessage (websocket : C a l l e r c a l l e r , j s on
message) r e t u r n s websocket : E r r o r ? | e r r o r ?{

11 l o g : p r i n t I n f o (message . t o J s o n S t r i n g ()) ;

12 }

13 } ;

14 }

15 }

16 }

Code Snippet 6.11: Ballerina Implementation of WebSocket

The Websocket service was defined as a service class that includes the Service

class from the Websocket Ballerina module. The service overrides the onMessage

method that treats the requests received by a WebSocket Caller. In the context of

this service, the onMessage listens to a message from a customer that is converted

into an interaction. This interaction is then associated with the customers’ inter-

action log if it exists. If it does not exist, a new interaction log is created. When

the interaction log is created/updated, a notification is broadcasted for WebSocket

66 Chapter 6. Implementation

clients listening on the "notification" endpoint, and a message is sent to the clients

listening on the "message" endpoint. Code Snippet 6.12 shows the implementation

of the WebSocket Service.

6.1. Service Migration 67

1 s e r v i c e c l a s s WsServ i ce {

2 ∗websocket : S e r v i c e ;

3

4 remote f unc t i on onMessage (websocket : C a l l e r c a l l e r , MessageDto

message) r e t u r n s websocket : E r r o r ? | e r r o r ?{

5 l o g : p r i n t I n f o ("Processing message from " + message . username) ;

6 s t r i n g c l i e n t U r l = "ws:// localhost:"+po r t . t o S t r i n g ()+"/ws/topic

/messages" ;

7 f i n a l s t r i n g ? cu s t ome r I d = message . c u s t ome r I d ;

8 f i n a l s t r i n g i d = uu i d : c r e a t eTyp e1A sS t r i n g () ;

9 s t r i n g da te = t ime : u t cToS t r i n g (t ime : utcNow ()) ;

10 f i n a l I n t e r a c t i o n E n t i t y i n t e r a c t i o n = new (i d , date , message .

content , message . s en tByOpe ra to r) ;

11

12 I n t e r a c t i o nLogAgg r e g a t eRoo t | e r r o r o p t I n t e r a c t i o n L o g =

g e t I n t e r a c t i o n L o g (message . c u s t ome r I d) ;

13 I n t e r a c t i o nLogAgg r e g a t eRoo t i n t e r a c t i o n L o g ;

14 i f (o p t I n t e r a c t i o n L o g i s I n t e r a c t i o nLogAgg r e g a t eRoo t) {

15 I n t e r a c t i o n E n t i t y [] ? i n t e r a c t i o n s = o p t I n t e r a c t i o n L o g .

g e t I n t e r a c t i o n s () ;

16 i f (i n t e r a c t i o n s i s I n t e r a c t i o n E n t i t y []) {

17 i n t e r a c t i o n s . push (i n t e r a c t i o n) ;

18 i n t e r a c t i o n L o g = new (o p t I n t e r a c t i o n L o g . ge tCus tome r I d () ,

o p t I n t e r a c t i o n L o g . getUsername () , o p t I n t e r a c t i o n L o g .

g e t L a s t A c k n o w l e d g e d I n t e r a c t i o n I d () , i n t e r a c t i o n s) ;

19 _ = check u p d a t e I n t e r a c t i o n L o g (i n t e r a c t i o n L o g) ;

20 }

21 } e l s e {

22 I n t e r a c t i o n E n t i t y [] i n t e r a c t i o n s = [] ;

23 i n t e r a c t i o n s . push (i n t e r a c t i o n) ;

24 i n t e r a c t i o n L o g = new (cu s tomer I d , message . username , () ,

i n t e r a c t i o n s) ;

25 _ = check a d d I n t e r a c t i o n L o g (i n t e r a c t i o n L o g) ;

26 }

27 _ = check b r o a d c a s t N o t i f i c a t i o n s () ;

28 websocket : C l i e n t w sC l i e n t = check new (c l i e n t U r l) ;

29 MessageDto dto = { i d : i d , da te : date , c u s t ome r I d : message .

cu s tomer I d , username : message . username , con t en t : message . content ,

s en tByOpe ra to r : message . s en tByOpe ra to r } ;

30 check wsC l i e n t −>wr i t eMes s age (dto) ;

31 }

32 }

Code Snippet 6.12: Ballerina Implementation of WebSocket Service

68 Chapter 6. Implementation

6.2 Test Implementation

This section describes the implementation of unit and integration tests that were

created to verify the solution created in Ballerina. First, it will be given a brief

description of how to generally implement tests in Ballerina. Then, each of the

following subsections will focus on each of the types of test, giving a brief explanation

of the tests and an example.

6.2.1 Test structure

The Ballerina Test Framework utilizes resources and configurations to test code

under diverse circumstances. It adheres to a general, ordered framework (WSO2

2022f).

A subdirectory called "tests" must be created inside the module for unit tests

that are related to it. This module is typically linked to a test suite. The tests in

this subdirectory are all regarded as belonging to the same test suite. Any name is

permissible for the test source files (WSO2 2022f).

The test functions are merely Ballerina functions marked as tests using a unique

annotation. There is no constraint on the test function name. However, test func-

tions must be defined with the "@test:Config" annotation. A module’s defined func-

tions, services, and global variables are reachable from the test files. Therefore, if a

symbol has already been declared in the module, you cannot redefine it in the test

files. However, symbols defined in test files won’t be visible inside module source

files (WSO2 2022f).

Any files or resources solely for testing should be kept in the "resources" subfolder

inside the "tests" directory. An absolute or relative path can be used to access these

resource files (WSO2 2022f).

Configurable variables can be used to give testing configurations. A file called

Config.toml, which is stored in the testing directory, can be used to supply the

values for configurable variables (WSO2 2022f).

For the Customer Management Backend, it was created two test files, the ser-

vice_test.bal for the service.bal file and main_test.bal for the main.bal file. This

files test the functions and services of their counterparts.

6.2. Test Implementation 69

6.2.2 Unit tests

The unit tests are the most simple of the implemented tests. Therefore, as ob-

served in Code Snippet 6.13, the unit tests are composed of the necessary elements,

like object instances, to test the diverse functions available. However, to make the

tests more focused on the function’s code, stubs like the one in line 6 were used to

remove the dependencies of related functions.

1 import b a l l e r i n a / t e s t ;

2

3 @test : Conf ig
4 f unc t i on t e s tGe tNumbe rO fUnacknow l e dg ed I n t e r a c t i o n s () {

5 I n t e r a c t i o n E n t i t y mockEnt i t y = t e s t : mock (I n t e r a c t i o n E n t i t y) ;

6 t e s t : p r e p a r e (mockEnt i t y) . when ("isSentByOperator") . t h enRe tu rn (

f a l s e) ;

7 I n t e r a c t i o nLogAgg r e g a t eRoo t l o g = new
I n t e r a c t i o n LogAgg r e g a t eRoo t ("bunlo9vk5f" , "test" , "" , [mockEnt i t y])

;

8 t e s t : a s s e r t E q u a l s (l o g . g e tNumbe rO fUnacknow l edged I n t e r a c t i o n s ()

, 1) ;

9 }

Code Snippet 6.13: Ballerina Implementation of Unit Test

6.2.3 Integration tests

Integration tests were created to test the communication between the Ballerina

service with outside sources. In the case of this work, these tests verify the connec-

tions with the service database and the Customer Core service. JDBC and HTTP

clients are responsible for establishing these connections, respectively. The responses

obtained from these clients are mocked with stubs to reduce complexity. They func-

tion by specifying the expected result for distinct method executions with specific

arguments. Code Snippets 6.14 and 6.15 show the implementation of a test for a

function with HTTP and JDBC clients, respectively.

70 Chapter 6. Implementation

1 import b a l l e r i n a / t e s t ;

2 import b a l l e r i n a / h t t p ;

3

4 @test : BeforeSu i te
5 f unc t i on b e f o r e S u i t e () {

6 c o r e C l i e n t = t e s t : mock (h t t p : C l i e n t) ;

7 }

8

9 @test : Conf ig {}

10 f unc t i on t e s tGe tCus tome r () {

11 Customer Id i d = new Customer Id ("bunlo9vk5f") ;

12

13 CustomerDto e xp e c t e d = {

14 "customerId" : "bunlo9vk5f" ,

15 "firstname" : "Ado" ,

16 "lastname" : "Kinnett" ,

17 "birthday" : "1975 -06 -13 T23 :00:00.000+00:00" ,

18 "streetAddress" : "2 Autumn Leaf Lane" ,

19 "postalCode" : "6500" ,

20 "city" : "Bellinzona" ,

21 "email" : "akinnetta@example.com" ,

22 "phoneNumber" : "055 222 4111" ,

23 "moveHistory" : []

24 } ;

25 CustomersDto mockDto = { cus tome r s : [e x p e c t ed] } ;

26

27 t e s t : p r e p a r e (c o r e C l i e n t) . when ("get") . w i thArguments ("/customers/

bunlo9vk5f") . t h enRe tu rn (mockDto) ;

28 t e s t : a s s e r t E q u a l s (getCustomer (i d) , e x p e c t e d) ;

29 }

Code Snippet 6.14: Ballerina Implementation of HTTP Test

6.2. Test Implementation 71

1 import b a l l e r i n a / t e s t ;

2 import b a l l e r i n a x / j a v a . j d b c ;

3 import b a l l e r i n a / s q l ;

4

5 @test : BeforeSu i te
6 f unc t i on b e f o r e S u i t e () {

7 j d b c C l i e n t = t e s t : mock (j d b c : C l i e n t) ;

8 }

9

10 @test : Conf ig
11 f unc t i on t e s t G e t I n t e r a c t i o n L o g () {

12 I n t e r a c t i o nLogAgg r e g a t eRoo t e xp e c t ed = new
I n t e r a c t i o n LogAgg r e g a t eRoo t ("bunlo9vk5f" , "test" , "" , []) ;

13

14 stream< I n t e r a c t i o n E n t i t y R e c o r d , s q l : E r r o r ?> moc kEn t i t i e s = new
() ;

15

16 I n t e r a c t i o nLogAgg r e g a t eRoo tRe co r d mockLog = {

17 "customer_Id" : "bunlo9vk5f" ,

18 "username" : "test" ,

19 "last_acknowledged_interaction_id" : "" ,

20 "interactions" : []

21 } ;

22

23 t e s t : p r e p a r e (j d b c C l i e n t) . when ("queryRow") . t h enRe tu rn (mockLog) ;

24 t e s t : p r e p a r e (j d b c C l i e n t) . when ("query") . t h enRe tu rn (mo c kEn t i t i e s)

;

25 I n t e r a c t i o nLogAgg r e g a t eRoo t | e r r o r r e s u l t = g e t I n t e r a c t i o n L o g ("

bunlo9vk5f") ;

26 i f (r e s u l t i s I n t e r a c t i o nLogAgg r e g a t eRoo t) {

27 t e s t : a s s e r t E x a c t E q u a l s (r e s u l t . g e tCus tome r I d () , e x p e c t e d .

g e tCus tome r I d ()) ;

28 t e s t : a s s e r t E x a c t E q u a l s (r e s u l t . getUsername () , e x p e c t e d .

getUsername ()) ;

29 t e s t : a s s e r t E x a c t E q u a l s (r e s u l t .

g e t L a s t A c k n o w l e d g e d I n t e r a c t i o n I d () , e x p e c t ed .

g e t L a s t A c k n o w l e d g e d I n t e r a c t i o n I d ()) ;

30 t e s t : a s s e r t E q u a l s (r e s u l t . g e t I n t e r a c t i o n s () . t o S t r i n g () ,

e x p e c t e d . g e t I n t e r a c t i o n s () . t o S t r i n g ()) ;

31 }

32 }

Code Snippet 6.15: Ballerina Implementation of Database Test

72 Chapter 6. Implementation

Furthermore, some integration tests for the REST and WebSocket services were

created. In addition to the previous definition, these tests utilize a Client to call the

service exposed method to simulate a request from an actual real client. The most

relevant difference resides in the additional assert on the response status code to

confirm that the service responded as intended. Code Snippets 6.17 and 6.16 are an

example of the implementation of a test to the WebSocket and REST services.

1 import b a l l e r i n a / t e s t ;

2 import b a l l e r i n a / h t t p ;

3 import b a l l e r i n a / websocket ;

4

5 @test : Conf ig
6 pub l i c f unc t i on t e s tWebsocke t () r e t u r n s e r r o r ? {

7 websocket : C l i e n t w sTe s tC l i e n t = check new ("ws:// localhost

:8100/ ws") ;

8 v a r r e s p = w sTe s tC l i e n t . ge tHt tpResponse () ;

9 i f r e s p i s h t t p : Response {

10 t e s t : a s s e r t E q u a l s (r e s p . s ta tusCode , h t t p :

STATUS_SWITCHING_PROTOCOLS) ;

11 } e l s e {

12 t e s t : a s s e r t F a i l ("This test failed due to not receiving an

HTTP Response.") ;

13 }

14 }

Code Snippet 6.16: Ballerina Implementation of WebSocket Service

Test

6.2. Test Implementation 73

1 import b a l l e r i n a / t e s t ;

2 import b a l l e r i n a / h t t p ;

3

4 @test : BeforeSu i te
5 f unc t i on b e f o r e S u i t e R e s t () {

6 c o r e C l i e n t = t e s t : mock (h t t p : C l i e n t) ;

7 }

8

9 h t t p : C l i e n t t e s t C l i e n t = check new ("http :// localhost :8100") ;

10

11 @test : Conf ig {}

12 f unc t i on t e s tGe tCus tome rRe s t () r e t u r n s e r r o r ?{

13 CustomerDto cus tomer = {

14 "customerId" : "bunlo9vk5f" ,

15 "firstname" : "Ado" ,

16 "lastname" : "Kinnett" ,

17 "birthday" : "1975 -06 -13 T23 :00:00.000+00:00" ,

18 "streetAddress" : "2 Autumn Leaf Lane" ,

19 "postalCode" : "6500" ,

20 "city" : "Bellinzona" ,

21 "email" : "akinnetta@example.com" ,

22 "phoneNumber" : "055 222 4111" ,

23 "moveHistory" : []

24 } ;

25

26 CustomersDto mockDto = { cus tome r s : [cus tomer] } ;

27

28 j s on e xp e c t e d = cus tomer . t oJ son () ;

29

30 t e s t : p r e p a r e (c o r e C l i e n t) . when ("get") . w i thArguments ("/customers/

bunlo9vk5f") . t h enRe tu rn (mockDto) ;

31 h t t p : Response r e s u l t = check t e s t C l i e n t −>get ("/customers/

bunlo9vk5f") ;

32 t e s t : a s s e r t E q u a l s (r e s u l t . s ta tusCode , h t t p :STATUS_OK) ;

33 t e s t : a s s e r t E q u a l s (r e s u l t . g e tTex tPay l oad () , e x p e c t e d . t o J s o n S t r i n g

()) ;

34 }

Code Snippet 6.17: Ballerina Implementation of REST Service Test

74

Chapter 7

Evaluation and Experimentation

This chapter documents the performed evaluation and experimentation.

After having a better understanding of the project from the research of the Bal-

lerina programming language and microservices, and based on the main objective

specified in the section 1.3, the author identified the premise for this project. The

hypothesis is: the solution implemented in Ballerina will have better effects on mi-

croservices architecture-based applications when compared to the solution imple-

mented using a more conventional programming language regarding maintainability

and performance. Maintainability and performance are the quality attributes identi-

fied in the State of the Art (Chapter 3) as the ones to be evaluated.

To prove the hypothesis, the author of this dissertation selected a project that

used a common programming language. This project needed to fulfill some criteria

like being open-sourced, the number of existing microservices, having documentation,

and the application of some patterns like API gateway and service discovery. Then,

the author refactored the project using the Ballerina programming language. After

having both solutions, the author will use an approach to help him understand how

Ballerina influences maintainability and performance. The selected approach for the

evaluation is the Goal Question Metric (GQM) paradigm.

This dissertation will provide information for future developers to help them make

informed decisions when selecting Ballerina as one of the programming languages for

their projects.

7.1 Approach

The evaluation method used to analyze both solutions is Goal Question Metric

(GQM). Victor Basili and David Weiss suggested the GQM paradigm as an analysis

method to assist teams in determining how to quantify and assess challenging issues

in software development (Ciceri et al. 2022).

7.1. Approach 75

The fundamental principle of GQM is straightforward: one must comprehend the

reasons for measuring something to measure it effectively. Understanding the motives

- the goals to achieve and the questions to answer to assess progress - allows the

discovery and selection of optimal metrics. Teams are more likely to trust the metrics

and use them as the basis for future decisions if they know the reasons behind them.

GQM can transform goals from vague wishful statements into models that can be

measured and verified (Ciceri et al. 2022).

The models have three levels (Basili, Caldiera, and Rombach 1994):

• Conceptual level (Goal): A goal is specified for an object (products, processes,

or resources), for different reasons, concerning various quality models, from

diverse points of view, and concerning a particular environment.

• Operational level (Question): A series of questions describes how a particular

goal is achieved based on a characterizing model. The questions attempt to

characterize the object of measurement with a chosen quality problem and

determine its quality from the selected point of view.

• Quantitative level (Metric): A set of metrics are related to every question

to answer it quantitatively. The metrics can be objective, meaning they only

depend on the object of measurement, or subjective, depending on the target

and the point of view.

Figure 7.1: GQM Model Structure (Basili, Caldiera, and Rombach
1994)

A GQM model consists of a hierarchical structure, as shown in Figure 7.1. To

create a model, first, it is identified a set of quality goals. From these goals, the

evaluator specifies the questions. The following step is the definition of the measures

(metrics) needed to answer the questions. After having the model, the evaluator

needs to identify the data collection solutions that will gather data for the metrics.

As stated at the beginning of this chapter, the GQM will be used to identify the

76 Chapter 7. Evaluation and Experimentation

metrics necessary to reach a defined goal. Figure 7.2 and Table 7.1 display the imple-

mented GQM model with the definition of the goal, questions, and metrics related to

the project. The goal is to discover the effects of adopting the Ballerina programming

language for microservices. The obtained results will allow engineering teams to make

informed decisions. The questions are derived from the research questions described

in the section 1.4. Therefore, the question "What are the effects of using Balle-

rina in microservices architecture-based applications regarding the identified quality

attributes?" was used as a reference target for the performance and maintainability,

which were the quality attributes identified as the answer for the question "What

are the most relevant quality attributes related to microservices architecture?". The

metrics are related to one of the questions of each quality attribute. Each question

has two metrics for which data will be gathered for both solutions, allowing for a

comparison between them. This comparison will help reach an understanding of the

effects of using Ballerina.

Figure 7.2: Implemented GQM Model

7.1. Approach 77

Table 7.1: GQM

G1: Discover the effect of adopting Ballerina for an application with a mi-

croservices architecture to allow an engineering team to make informed de-

cisions

Q1: What are the effects of using Bal-

lerina in microservices architecture-

based applications regarding maintain-

ability?

Q2: What are the effects of using Bal-

lerina in microservices architecture-

based applications regarding perfor-

mance?

M1: LOC

M2: Indentation Debt Complexity

M3: Average Response Time

M4: Throughput

The data for the metrics can be obtained by using some tools or by manually

analyzing the solutions. Each of the following sections will describe the methods

used to obtain the necessary data, along with the scales or values that are considered

acceptable. The sections are divided by quality attributes and address all the decided

metrics related to the said attribute.

7.1.1 Maintainability

For maintainability, the evaluated metric will be the lines of code (LOC) and

the Indentation Debt of both solutions. At the moment of writing this document,

Ballerina does not have support for any maintainability measuring tools. However,

the team behind the language is studying the use of some tools like Sonarqube to

support them in the future. This was confirmed by one of the instructors of the

official Ballerina discord server, which can be joined from the official community

page (WSO2 2022d).

LOC consists on counting every line of code that contains actual code, skipping

empty lines and comment lines. It counts as a complexity metric, where the biger

the size, the more complex it is (Ciceri et al. 2022). To obtain the values of LOC for

both solutions it will be used the VS Code Counter extension (Ushiyama and Mayhé

2020).

Indentation Debt is a metric that focus on the maximum indentation levels in

functions and methods. The more indentation a function or method has, the more

complex it is. To know the overall complexity of a file or class, it can be used a

weighted average of the complexities of all functions and/or methods of a class or

78 Chapter 7. Evaluation and Experimentation

file. To calculate the complexity based on the indentation debt, it will be used a

python script that reads the content of the files of each solution, calculates the

number of indentations and then calculates the complexity (Markus 2018).

7.1.2 Performance

In terms of performance, what is going to be evaluated is the average response

time and the throughput in both solutions.

The average response time is the mean average of a group of requests’ response

times. Response Time is the difference in milliseconds between the start and end of

a request (Apache 2023).

Throughput corresponds to the number of requests divided by a time unit. The

time to consider is the difference between the start of the first request to the end of

the last (Apache 2023).

To obtain the necessary values, the tool used is JMeter since it provides dashboards

that show these metrics, as well as allows the creation of tests where multiple requests

can be performed concurrently (Apache 2023).

7.2 Experiments

7.2.1 Maintainability

Lines of code (LOC), as previously discussed, is used to measure maintainability.

The results are shown in Table 7.2, obtained from using the VS Code Counter

extension (Ushiyama and Mayhé 2020) on the Spring Boot and Ballerina services

folders.

Table 7.2: LOC Metrics

Solution LOC

Spring Boot 1150

Ballerina 677

As previously stated, a python script was used to calculate the indentation debt

complexity. Before doing the calculations, it is required to ascertain the meaning of

an indent for each project. By analyzing the code of both solutions, an indent was

7.2. Experiments 79

characterized by a single tab. With the meaning of an indent identified, the python

script can be applied. The steps for the script are the following:

• Get all the files of a solution;

• Read the content of each file and concatenate the data in a single structure;

• Calculate relevant information (number of lines, if a line is a comment or empty,

indents per line)

• Filter out the comments and empty lines and aggregate the indents by files

• Calculate the complexity of a file based on the lines and indents

• Calculate the full complexity of the solution

By applying the python script, the results in Table 7.3 were obtained.

Table 7.3: Indentation Metrics

Solution Total Indentation Min Max Complexity

Spring Boot 1176 0 6 31.2

Ballerina 1061 0 6 5.84

Based on the examination of Table 7.2 the original Spring Boot-based solution

has around 69.9% more LOC than the Ballerina-based version. From the analysis of

Table 7.3 the Ballerina solution is 81,3% less complex than the Spring Boot-based

solution. Since the LOC measurement and the indentation debt complexity for the

Ballerina-based solution is lower than the one for Spring Boot, it is thought to have

greater maintainability.

7.2.2 Performance

Apache JMeter (Apache 2023) is the tool used to automate the procedure for

performance metrics. The scenarios were modified to fit the capabilities of the

developer’s system. The test plan for the service can be seen in Figure 7.3. In this

test plan, the users execute all the HTTP requests of the Thread Group several

times as defined in the configuration. The different configurations that were applied

on the Ballerina and Spring Boot solutions are:

• 10 virtual users executing the plan 10 times;

• 100 virtual users executing the plan 10 times;

• 1000 virtual users executing the plan 10 times.

80 Chapter 7. Evaluation and Experimentation

Figure 7.3: Apache JMeter test plan

Table 7.4 shows the performance metrics obtained for the different configurations

for both services. The tests were done on the same computer, with only the necessary

programs running. The computer has a 12th Gen Intel(R) Core(TM) i7-12700H CPU

processor, 16GB of RAM and runs Windows 11 Pro.

Table 7.4: Response Time and Throughput Table Report for the Cus-
tomer Management Backend

Solution Number of Virtual Users Min. Max. Avg. Throughput

Ballerina 10 1 14 3 519.9

Ballerina 100 1 323 39 1289.8

Ballerina 1000 1 12360 721 1769.4

Spring Boot 10 1 25 4 522.6

Spring Boot 100 1 121 24 2360.3

Spring Boot 1000 1 700 396 2384.6

From a brief analysis of the results, for a low and medium number of virtual users

both solutions perform almost the same in terms of response time. However, when

the number of virtual users increases drastically, the Spring Boot solutions presents

better results. In terms of throughput, the Spring Boot solution is able to transfer

more data per second than the Ballerina solution.

7.3. Summary 81

7.3 Summary

Both solutions are very different in terms of the technologies they use. The service

in Ballerina uses the modules available on the Ballerina Central while the Spring Boot

service developed in Java uses the Spring Boot framework with its libraries. However,

both solutions have the same functionalities available for use. Therefore, the tests

done on those functionalities allow the comparison of both solutions using the same

tests and metrics.

During the analysis of the literature in the State of the Art (Chapter 3), the qual-

itie attributes performance and maintainability were identified as the answer for the

research question "What are the most relevant quality attributes related to microser-

vices architecture?".

The evaluation findings presented in this chapter shed light on the previously

developed research question: "What are the effects of using Ballerina in microservices

architecture-based applications regarding the identified quality attributes?", from

which derived the two questions of the GQM.

Performance-wise, it is stated that the Spring Boot-based solution exhibits better

performance compared to Ballerina when a higher number of virtual users (1000)

execute service requests. The results for this number of users have the most dis-

crepancy, with the maximum response time in Spring Boot being almost 95% lower

than the max response time in Ballerina, the average response time in Ballerina be-

ing around 80% higher and the throughput being around 25% lower. However, for

a smaller number of virtual users, there were no noticeable differences. Therefore,

it indicates that choosing Ballerina as the technology for microservices architecture

may impact performance, especially when dealing with larger volumes of data.

In terms of maintainability, this chapter highlights that the Ballerina solution sur-

passes Spring Boot by having a lower line of code (LOC) and a lower indentation

debt complexity. As such, it suggests that Ballerina offers better maintainability in

the context of microservices architecture-based applications, as it requires less code

to achieve similar functionality and has an overall lower complexity.

The evaluation findings demonstrate that both Ballerina and Spring Boot services

are capable of meeting the crucial quality requirements for microservices architecture.

As stated in section 5.1.1, the original solution had some requirements in terms of

performance and maintainability. This requirements were achieved by both solutions,

with both solutions being capable of handling 1000 users concurrently and having at

least 80% of the requests answered in less than two seconds. However, there are

82 Chapter 7. Evaluation and Experimentation

notable differences between the two services. Spring Boot outperforms Ballerina in

terms of performance when handling a higher number of virtual users, while Balle-

rina excels in maintainability due to its lower LOC and indentation debt complexity

compared to Spring Boot.

83

Chapter 8

Conclusion

This chapter details all of the findings made during this dissertation. Firstly, it

details what has been achieved. Next, it describes the found limitations and the

threats to validty. Finally, the chapter delineates the possible future work and ends

with a section dedicated to the study, concluding considerations and contributions.

8.1 Achievements

This thesis provides information about the current state of the art of microservices-

based systems and the evolution toward language-based solutions with the example

of Ballerina. The thesis also analyzes the migration of an existing Spring Boot-

based solution into a Ballerina solution, which is available on GitHub (Alves 2023).

Additionally, it was performed a comparison between the solutions regarding main-

tainability and performance.

The outputs of the document are an assessment of the benefits and liabilities of

using Ballerina in contrast to Spring Boot. The document also provides a possible

strategy to convert existing microservices into Ballerina equivalents.

8.2 Difficulties

During the thesis development, there were some challenges related to the inno-

vative factor of using language-based approaches, specifically with using Ballerina,

which is a very recent programming language. Therefore, there were some difficulties

in finding literature about the use of Ballerina when most of the focus is on using

frameworks like Spring Boot.

There were also some difficulties with the implementation. Ballerina is an inno-

vative programming language with user-friendly official documentation that provides

84 Chapter 8. Conclusion

explanations and examples of utilizing the language to create several microservice-

oriented use cases. However, due to the unfamiliarity with the programming language

and the implementation of some edge cases not often used, some issues took more

time to figure out how to solve and overcome.

8.3 Threats to Validity

Firstly, the experiments were performed in a local environment with limited re-

sources and availability. Therefore, there was no possibility of doing tests on a larger

scale. For the tests performed, the maximum number of virtual users used was 1000.

If the tests were to be done in an actual production environment, the results would

probably be different.

In addition, it is noteworthy that the developer is unfamiliar with Ballerina. Should

the developer have had more knowledge of how to use and the good practices of

Ballerina, the results could vary.

8.4 Future Work

For the context of this project, only a single service was migrated. In the future,

it would be interesting to migrate more services to see the possible difficulties of

implementing other functionalities like messaging and to discover the impacts on the

orchestration of multiple Ballerina services.

The tests performed for the performance metrics were done to a finite number

of virtual users that made a finite number of requests. It would be interesting to

do a ramp up test were the number of users increases over a period of time while

always making requests. It also would be interest to develop stress tests do discover

at which point the solutions are not able to handle the load of requests they are

receiving.

Additionally, the original service was created in Spring Boot. It would be notewor-

thy to migrate services of other frameworks or languages to Ballerina to investigate

how Ballerina fares against other technologies regarding maintainability and perfor-

mance.

8.5. Final Considerations 85

8.5 Final Considerations

Firstly, the objective of the thesis has been achieved. As such, the author con-

siders the thesis’s overall development a success. The author had to interact with a

language-based approach for developing microservices, which was a new experience

since the author was unknowledgeable before the thesis execution. Language-based

approaches for developing microservices are a concept that is becoming more and

more interesting in the microservices community, and the author expects it to be

further explored in the future by the research community, along with the expansion

of this experience.

The project has challenged the author to think and discover how to conduct re-

search and manage a thesis. Additionally, the project challenged the author to test

and develop something unknown to him. The experience is of much value to the

author since it provided him with valuable experience in microservices, which can be

beneficial to his future career.

86

Bibliographic References

Alves, Andre (2023). Ballerina-Lakeside-Mutual-Customer-Management-Backend. url:

https://github.com/AndreAlves1171068/Ballerina-Lakeside-Mutual-

Customer-Management-Backend (visited on 06/04/2023).

Apache (2023). Glossary. url: https://jmeter.apache.org/usermanual/glossary.

html (visited on 01/14/2023).

Basili, Victor R., Gianluigi Caldiera, and H. Dieter Rombach (1994). “The goal ques-

tion metric approach”. In: Encyclopedia of software engineering, pp. 528–532.

Bushong, Vincent et al. (Aug. 2021). “On Microservice Analysis and Architecture

Evolution: A Systematic Mapping Study”. In: Applied Sciences 11 (17). issn: 2076-

3417. doi: 10.3390/app11177856.

Ciceri, Christian et al. (May 2022). Software Architecture Metrics. Ed. by Melissa

Duffield, Sarah Grey, and Katherine Tozer. 1st ed. O’Reilly Media, Inc., pp. 171–

172. isbn: 9781098112233.

Fernando, Anjana and Lakmal Warusawithana (2020). Beginning Ballerina Program-

ming. 1st ed. Apress. isbn: 978-1-4842-5138-6. doi: 10.1007/978- 1- 4842-

5139-3. url: http://link.springer.com/10.1007/978-1-4842-5139-3.

Guidi, Claudio et al. (Apr. 2017). “Microservices: a Language-based Approach”. In:

Computing Research Repository abs/1704.08073. url: http://arxiv.org/abs/

1704.08073.

Indrasiri, Kasun and Prabath Siriwardena (Dec. 2018). Microservices for the En-

terprise. Ed. by Jonathan Gennick, Laura Berendson, and Jill Balzano. 1st ed.

Apress. isbn: 978-1-4842-3857-8. doi: 10.1007/978-1-4842-3858-5. url: http:

//link.springer.com/10.1007/978-1-4842-3858-5.

ISO/IEC JTC 1 (2022a). ISO 25000 Portal. url: https://iso25000.com/index.

php/en/ (visited on 01/29/2023).

– (2022b). ISO/IEC 25010. url: https://iso25000.com/index.php/en/iso-

25000-standards/iso-25010 (visited on 01/29/2023).

Jewell, Tyler (May 2018). Ballerina Microservices Programming Language: Introduc-

ing the Latest Release and "Ballerina Central". url: https://www.infoq.com/

articles/ballerina-microservices-language-part-1/.

Bibliographic References 87

Koen, Peter et al. (2001). “Providing Clarity and A Common Language to the

“Fuzzy Front End””. In: Research-Technology Management 44.2, pp. 46–55. doi:

10.1080/08956308.2001.11671418. eprint: https://doi.org/10.1080/

08956308.2001.11671418. url: https://doi.org/10.1080/08956308.2001.

11671418.

Labs, Grafana (2022). Ballerina Metrics. url: https://grafana.com/grafana/

dashboards/5841-ballerina-metrics/ (visited on 12/27/2022).

Li, Shanshan et al. (2021). “Understanding and addressing quality attributes of mi-

croservices architecture: A Systematic literature review”. In: Information and Soft-

ware Technology 131, p. 106449. issn: 0950-5849. doi: https://doi.org/

10.1016/j.infsof.2020.106449. url: https://www.sciencedirect.com/

science/article/pii/S0950584920301993.

Madushan, Dhanushka (Sept. 2021). Cloud Native Applications with Ballerina. Ed.

by Rohit Singh et al. 1st ed. Packt Publishing Ltd. isbn: 9781800200630.

Markus (2018). Calculating Indentation-based Complexity. url: https://www.feststelltaste.

de/calculating-indentation-based-complexity/ (visited on 06/26/2023).

Newman, Sam (July 2021). Building Microservices. Ed. by Melissa Duffield et al.

2nd ed. O’Reilly Media, Inc. isbn: 9781492034025.

Nicola, Susana (2022). ANÁLISE DE VALOR. url: https://moodle.isep.ipp.pt/

pluginfile.php/240297/mod_resource/content/1/An%C3%A1lise_Valor_

Aula_4_21NOV_2018_1hora_AHP.pdf (visited on 12/28/2022).

Oram, Andy (Aug. 2019). Ballerina: A Language for Network-Distributed Applica-

tions. Ed. by Ryan Shaw et al. 1st ed. O’Reilly Media, Inc. isbn: 9781492061151.

url: https://wso2.com/wso2_resources/ballerina- a- language- for-

network-distributed-applications.pdf.

Peffers, Ken et al. (2007). “A Design Science Research Methodology for Information

Systems Research”. In: Journal of Management Information Systems 24.3, pp. 45–

77. doi: 10.2753/MIS0742-1222240302. eprint: https://doi.org/10.2753/

MIS0742-1222240302. url: https://doi.org/10.2753/MIS0742-1222240302

(visited on 11/19/2022).

Ratnayake, Dakshitha (June 2022). How MOSIP Uses Ballerina WebSubHub for

Event-Driven Integration. url: https://thenewstack.io/how-mosip-uses-

ballerina-websubhub-for-event-driven-integration/.

RedMonk (2021). The RedMonk Programming Language Rankings: June 2021. url:

https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/

(visited on 12/28/2022).

88 Bibliographic References

RedMonk (2022a). About. url: https://redmonk.com/about/ (visited on 12/28/2022).

– (2022b). The RedMonk Programming Language Rankings: January 2022. url:

https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/

(visited on 12/28/2022).

– (2022c). The RedMonk Programming Language Rankings: June 2022. url: https:

//redmonk.com/sogrady/2022/10/20/language-rankings-6-22/ (visited on

12/28/2022).

Rich, Nick and Matthias Holweg (2000). “Value analysis”. In: Value engineering.

(Visited on 02/12/2022).

Saaty, Thomas L. (1990). “How to make a decision: The analytic hierarchy pro-

cess”. In: European Journal of Operational Research 48.1. Desicion making by

the analytic hierarchy process: Theory and applications, pp. 9–26. issn: 0377-

2217. doi: https://doi.org/10.1016/0377-2217(90)90057-I. url: https:

//www.sciencedirect.com/science/article/pii/037722179090057I (vis-

ited on 12/28/2022).

Stocker, Mirko (2021). Lakeside Mutual. url: https://github.com/Microservice-

API-Patterns/LakesideMutual (visited on 02/21/2023).

Ushiyama, Kentaro and Junior Mayhé (2020). VScode Counter. url: https : / /

github.com/uctakeoff/vscode-counter (visited on 06/17/2023).

Valdivia, J. A. et al. (Dec. 2020). “Patterns Related to Microservice Architecture: a

Multivocal Literature Review”. In: Programming and Computer Software 46 (8),

pp. 594–608. issn: 0361-7688. doi: 10.1134/S0361768820080253.

Valdivia, Jose A., Xavier Limon, and Karen Cortes-Verdin (Oct. 2019). “Quality

attributes in patterns related to microservice architecture: a Systematic Litera-

ture Review”. In: IEEE, pp. 181–190. isbn: 978-1-7281-2524-4. doi: 10.1109/

CONISOFT.2019.00034.

Wang, Yingying, Harshavardhan Kadiyala, and Julia Rubin (July 2021). “Promises

and challenges of microservices: an exploratory study”. In: Empirical Software En-

gineering 26 (4). issn: 1382-3256. doi: 10.1007/s10664-020-09910-y.

Weerawarana, Sanjiva et al. (Sept. 2018). “Bringing Middleware to Everyday Pro-

grammers with Ballerina”. In: ed. by Mathias Weske et al. 1st ed. Springer Cham,

pp. 12–27. doi: 10.1007/978-3-319-98648-7_2. url: http://link.springer.

com/10.1007/978-3-319-98648-7_2.

WSO2 (2022a). Ballerina Central. url: https://central.ballerina.io (visited

on 12/26/2022).

Bibliographic References 89

– (2022b). Ballerina GitHub. url: https://github.com/ballerina-platform

(visited on 12/19/2022).

– (2022c). Ballerina.io. url: https://ballerina.io (visited on 12/27/2022).

– (2022d). Community. url: https : / / ballerina . io / community/ (visited on

06/17/2023).

– (2022e). Observe Ballerina programs. url: https : / / ballerina . io / learn /

observe-ballerina-programs/ (visited on 12/26/2022).

– (2022f). Structure tests. url: https://ballerina.io/learn/test-ballerina-

code/structure-tests/ (visited on 06/17/2023).

– (2022g). Test Ballerina Code. url: https : / / ballerina . io / learn / test -

ballerina-code/test-a-simple-function/ (visited on 12/29/2022).

Zimmermann, Olaf et al. (Nov. 2022). “Lakeside Mutual Case Study”. In: Patterns

for API-Design: Simplifying Integration with Loosely Coupled Message Exchanges.

1st ed. Vol. 1. Addison-Wesley, pp. 85–99. isbn: 9780137670093.

