
Rumo à Autenticação de Dispositivos IoMT
através da Classificação de Sinais RF

STÉPHANE JOAQUIM LOURENÇO MONTEIRO
julho de 2023

Politécnico do Porto

Instituto Superior de Engenharia do Porto

Towards Authentication of IoMT
Devices via RF Signal Classification

Stéphane Joaquim Lourenço Monteiro

Master in Electrical and Computer Engineering
Specialization Area of Automation and Systems

Departamento de Engenharia Eletrotécnica
Instituto Superior de Engenharia do Porto

July, 2023

This dissertation partially satisfies the requirements of the
Thesis/Dissertation course of the program Master in Electrical and Computer

Engineering, Specialization Area of Automation and Systems.

Candidate: Stéphane Joaquim Lourenço Monteiro, No. 1180697,
1180697@isep.ipp.pt

Scientific Guidance: Dr. Ricardo Severino, rar@isep.ipp.pt

Advisor: Emmanuel António Carvalhido Lomba, emmanuel@airlomba.net

Departamento de Engenharia Eletrotécnica
Instituto Superior de Engenharia do Porto

Rua Dr. António Bernardino de Almeida, 431, 4200–072 Porto

July, 2023

Acknowledgements

To begin, I would like to thank Dr. Ricardo Severino, a thank you will never be
enough for all of the guidance he provided in the various research projects, projects
that provided me with a wealth of knowledge while also allowing me to develop a
professional career, he is a person I greatly admire both professionally and personally.

I want to express my sincere appreciation to Engineer Emmanuel Lomba for all
of his help with this project. His assistance was crucial in assisting us to overcome
many difficulties and barriers.

I would also like to thank the Instituto Superior de Engenharia do Porto (ISEP)
and all of the teachers that taught me all of the essential tools that I use on a daily
basis.

Thank you so much to all of my friends I’ve made in Porto over the last five years;
thank you for making this city my home, for making me laugh, and for assisting me
in the most difficult times.

To all my ISEP friends, thank you for your company and assistance; I hope I did
the same for you when you needed it. Bruno Cunha, Carlos Gonçalves, Francisca
Almeida, Tomás Sousa, João Alves, Bruno Mendes, Diogo Lopes, and Hugo Silva
deserve special gratitude.

To my childhood friends, who have been with me since I arrived in Portugal,
André Guedes, José Soares, Rafael Rodrigues, António Amadeu, Luís Pimenta and
José Loureiro, thank you for everything you have done for me.

To my coworker Filipe Gomes, thank you for these three years, for your support,
and for being someone I consider a brother.

Finally, I want to thank everyone in my family, especially my parents, sister,
brother, and brother-in-law. Thank you for being a source of inspiration and energy
for me, for being people who help me, for being my idols, and for all of your teachings.

Abstract

The increasing reliance on the Internet of Medical Things (IoMT) raises great con-
cern in terms of cybersecurity, either at the device’s physical level or at the com-
munication and transmission level. This is particularly important as these systems
process very sensitive and private data, including personal health data from multiple
patients such as real-time body measurements. Due to these concerns, cybersecu-
rity mechanisms and strategies must be in place to protect these medical systems,
defending them from compromising cyberattacks. Authentication is an essential
cybersecurity technique for trustworthy IoMT communications. However, current
authentication methods rely on upper-layer identity verification or key-based cryp-
tography which can be inadequate to the heterogeneous Internet of Things (IoT)
environments.

This thesis proposes the development of a Machine Learning (ML) method that
serves as a foundation for Radio Frequency Fingerprinting (RFF) in the authen-
tication of IoMT devices in medical applications to improve the flexibility of such
mechanisms. This technique allows the authentication of medical devices by their
physical layer characteristics, i.e. of their emitted signal. The development of ML
models serves as the foundation for RFF, allowing it to evaluate and categorise the
released signal and enable RFF authentication. Multiple feature take part of the pro-
posed decision making process of classifying the device, which then is implemented
in a medical gateway, resulting in a novel IoMT technology.

Keywords: RFF, ML, CNN, IoMT.

i

Resumo

A confiança crescente na IoMT suscita grande preocupação em termos de ciber-
segurança, quer ao nível físico do dispositivo quer ao nível da comunicação e ao
nível de transmissão. Isto é particularmente importante, uma vez que estes siste-
mas processam dados muito sensíveis e dados, incluindo dados pessoais de saúde
de diversos pacientes, tais como dados em tempo real de medidas do corpo. De-
vido a estas preocupações, os mecanismos e estratégias de ciber-segurança devem
estar em vigor para proteger estes sistemas médicos, defendendo-os de ciberataques
comprometedores. A autenticação é uma técnica essencial de ciber-segurança para
garantir as comunicações em sistemas IoMT de confiança. No entanto, os métodos
de autenticação atuais focam-se na verificação de identidade na camada superior ou
criptografia baseada em chaves que podem ser inadequadas para a ambientes IoMT
heterogéneos.

Esta tese propõe o desenvolvimento de um método de ML que serve como base
para o RFF na autenticação de dispositivos IoMT para melhorar a flexibilidade
de tais mecanismos. Isto permite a autenticação dos dispositivos médicos pelas
suas características de camada física, ou seja, a partir do seu sinal emitido. O
desenvolvimento de modelos de ML serve de base para o RFF, permitindo-lhe avaliar
e categorizar o sinal libertado e permitir a autenticação do RFF. Múltiplas features
fazem parte do processo de tomada de decisão proposto para classificar o dispositivo,
que é implementada num gateway médico, resultando numa nova tecnologia IoMT.

Palavras-Chave: RFF, ML, CNN, IoMT.

iii

Contents

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Overview . 1
1.2 Objectives . 5
1.3 Research Context . 6

1.3.1 ForPharmacy Project . 6
1.3.2 iCare4NextG Project . 6

1.4 Thesis Structure . 7

2 Research Background 9
2.1 Overview of Healthcare Communication Security 9

2.1.1 IoMT Requirements . 9
2.1.2 IoMT Architecture Layers . 11
2.1.3 Security Breaches in IoMT 12
2.1.4 Security Solutions . 14

Communication Layer Security Solutions 14
Network Routing Security Solutions 15
Transport and Application Layer Security Solutions 16

2.1.5 Towards New Methods of Authentication 17
2.2 Radio Frequency Fingerprint . 18

2.2.1 Signal Processing . 19
2.2.2 Feature Extraction . 20
2.2.3 Machine Learning Approaches for Identification and Classifi-

cation . 21
Differential Contour Stellar-Based RFF 21
Imaging Time Series for Internet of Things Radio Frequency

Fingerprinting . 22
RF Fingerprint Reconition Based On Spectrum Waterfall Di-

agram . 23

v

2.3 Artificial Intelligence . 23
Unsupervised Learning . 24
Supervised Learning . 24
Reinforcement Learning . 25

2.3.1 Artificial Neural Network . 25
2.3.2 Deep Learning . 26
2.3.3 Deep Neural Networks . 27

Convolutional Neural Network 27
Convolutional Layers . 28
Pooling . 30
Clustering Layers . 30
Activation Function . 31
Batch Normalization . 32
Dropout . 32
Fully connected layer . 33
Data augmentation . 33

2.3.4 Transfer Learning . 34

3 Software and Technologies 35
3.1 Frameworks Used in Machine Learning 35

3.1.1 PyTorch . 36
3.1.2 Anaconda . 37
3.1.3 Keras . 37
3.1.4 Tensorflow . 37
3.1.5 PyTorch And Tensorflow Comparasion 38

3.2 Popular CNN image classification models 40
3.2.1 LeNet . 40
3.2.2 AlexNet . 40
3.2.3 VGG . 41

3.3 IoMT Gateway . 42
3.3.1 RFF Communication Protocol 46
3.3.2 Signal Acquisition and Feature Extraction 46
3.3.3 Devices . 47

4 RFF Machine Learning Framework 49
4.1 IoMT Security RFF Gateway Architecture 49
4.2 Setup . 52

4.2.1 Computer Setup . 52
4.2.2 Virtual Environment . 53

4.3 Dataset . 54
4.4 Features . 54

vi

Constellation . 54
Amplitude . 55
Power Spectral Density . 56
Differential Constellation . 57
Spectrograms . 58

4.4.1 Data augmentation . 59
4.4.2 Data processing . 60
4.4.3 Division of data . 61
4.4.4 Model . 62
4.4.5 Training . 63

Hyperopt . 63
Epochs . 64
Model Compilation and Training 64

4.4.6 Saving Model . 65

5 ML Model Assessment and Classification Results 67
5.1 Class Labels . 67
5.2 Evaluation Metrics . 68
5.3 Assessment of the Experiences . 70

5.3.1 Models performance with the custom block for ER400TRS
devices . 70
Constellation . 70
Power Spectrum Density . 71
Spectrogram . 72
Amplitude . 73
Differential Constellation . 74
Performance Improvement in ER400TRS Devices 75

5.3.2 Models performance with the custom block for WiFi devices 76
Constellation . 76
Power Spectrum Density . 77
Spectrogram . 78
Amplitude . 79
Differential Constellation . 80
Performance Improvement in WiFi Devices 81

5.3.3 Balancing Feature Complexity with Accuracy in Models . . . 82
5.4 Decision Making . 83

5.4.1 Classification . 83
5.4.2 Execution Time Evaluation 85
5.4.3 Final Classification With Weighted Majority 87

vii

6 Conclusions 89
6.1 Discussion . 89
6.2 Future Work . 90

References 91

viii

List of Figures

1.1 Internet of Things (IoT) Devices Statistics by 2025 [3] 2
1.2 Device Level IoT Security Vulnerabilities [5] 3
1.3 Number of active connections in medical IoT in the European Union

[8] . 4

2.1 IoMT Architecture [13]. 11
2.2 Typical RFF identification process. 18
2.3 IQ complex number representation. 19
2.4 Feature Extraction. 20
2.5 Creation of differential Contour Stellar Image [26]. 22
2.6 Scheme for Artificial Intelligence Concepts. 23
2.7 Basic Artificial Neural Network Architecture [36]. 26
2.8 Machine Learning (ML) and Deep Learning (DL) comparison [39]. . 27
2.9 Architecture Convolutional Neural Network (CNN) [42]. 28
2.10 Pixel matrix [45]. 29
2.11 Convolution of the image with a filter [46]. 29
2.12 CNN grouping [49]. 30
2.13 Activation functions [50]. 31
2.14 Dropout [53]. 33

3.1 Most popular programming language for Artificial Intelligence (AI)
[57]. 36

3.2 Tensorboard [68]. 39
3.3 LeNet-5 architecture [69]. 40
3.4 AlexNet architecture [70]. 41
3.5 The Internet of Medical Things (IoMT) landscape [72]. 42
3.6 Medical Gateway. 43
3.7 Edge Gateway. 45
3.8 ESP32. 47
3.9 ER400TRS. 48

4.1 Block diagram of the proposed architecture. 50
4.2 RFF Integration in Medical Gateway. 51
4.3 Constellation of an ESP32 device. 55

ix

4.4 Amplitude of an ESP32 device. 56
4.5 Power Spectral Density (PSD) of an ESP32 device. 57
4.6 Differential Constellation of an ESP32 device. 58
4.7 Spectrogram of an ESP32 device. 59
4.8 Diagram of model used. 62

5.1 Confusion Matrix [81]. 68
5.2 Loss and confusion matrix for constellation model H. 71
5.3 Loss and confusion matrix for PSD model E. 72
5.4 Loss and confusion matrix for spectogram model H. 73
5.5 Loss and confusion matrix for amplitude model G. 74
5.6 Loss and confusion matrix for differential constellation model F. . . 75
5.7 Accuracy Gain in each feature. 75
5.8 Decrease of loss in each feature. 76
5.9 Loss and confusion matrix for constellation model B. 77
5.10 Loss and confusion matrix for PSD model C. 78
5.11 Loss and confusion matrix for spectrogram model B. 79
5.12 Loss and confusion matrix for amplitude model A. 80
5.13 Loss and confusion matrix for differential constellation model H. . . 81
5.14 Accuracy Gain in each feature. 81
5.15 Decrease of loss in each feature. 82
5.16 Execution time in ER400TRS decision making. 86
5.17 Execution time in WiFi decision making. 86
5.18 Final classification with weighted majority for ER400TRS devices. . 87
5.19 Final classification with weighted majority for WiFi devices. 87

x

List of Tables

2.1 IoMT potential attacks at Perception layer and their influence on the
system’s security requirements [12] 12

2.2 IoMT potential attacks at Network layer and their influence on the
system’s security requirements [12] 13

2.3 IoMT potential attacks at Application layer and their influence on
the system’s security requirements [12] 14

2.4 The last layer’s activation functions prioritize the neural network’s
ultimate goal. 32

3.1 Comparison of Deep Learning Frameworks [59, 60] 36

4.1 Physical Machine Comparison . 52
4.2 Experiences model . 63

5.1 Constellation with custom block . 70
5.2 PSD with custom block . 71
5.3 Spectrogram with custom block . 72
5.4 Amplitude with custom block . 73
5.5 Differential Constellation with custom block 74
5.6 Constellation with custom block . 76
5.7 PSD with custom block . 77
5.8 Spectogram with custom block . 78
5.9 Amplitude with custom block . 79
5.10 Differential constellation with custom block 80

xi

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

BRISK Binary Robust Invariant Scalable Keypoints

CNN Convolutional Neural Network

CPU Central Processing Unit

CTF Constellation Trace Figure

cuDNN CUDA Deep Neural Network

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Service

ESP Encapsulation Security Payload

FHIR Fast Healthcare Interoperability Resources

FN False Negative

FP False Positive

FPGA Field-programmable gate array

GPU Graphics Processing Unit

HL7 Health Level Seven International

HOG Histogram of Oriented Gradients

IDS Intrusion Detection System

IMD Implantable Medical Devices

IoMT Internet of Medical Things

IoT Internet of Things

xiii

IQ In-phase/Quadrature

LBP Local Binary Pattern

ML Machine Learning

OvO One-vs-One

OvR One-vs-Rest

PSD Power Spectral Density

QPSK Quadrature phase-shift keying

ReLU Rectified Linear Unit

RF Radio Frequency

RFF Radio Frequency Fingerprinting

RFID Radio Frequency Identification

SDK Software Development Kit

SDR Software-Defined Radio

SURF Speeded-Up Robust Features

SVM Support Vector Machine

TN True Negative

TP True Positive

xiv

Chapter 1

Introduction

1.1 Overview

The IoT is a network of semi-autonomous devices with computational, networking,
sensory, and actuation capabilities that connect to the real environment. It combines
a wide range of technologies, including as wireless sensor networks, radio-frequency
identification, and machine-to-machine communications. The IoT is becoming a
pervasive reality, fueling applications in industries such as healthcare [1].

As the IoT expands, context-awareness will be critical in linking the real world
and digital computer entities. Environmental sensing, network connection, and data
processing approaches are all part of this. These developments pave the way for a
wide range of complex IoT applications, such as intelligent healthcare systems, effi-
cient transportation systems, smart energy infrastructures, and intelligent buildings.
IoT network topology is harmonised, combining intelligent IoT-based application
services with fundamental IoT sensor networks. Wireless networking technologies
and the incorporation of developing technologies such as cloud platforms are driv-
ing global expansion in the IoT industry. The demand for linked IoT devices and
application services is increasing as a result of this trend [2].

While the number of deployed IoT devices continues to grow annually and is
expected to reach 75 billion by 2025 [3], (Figure 1.1), the number of interconnected
devices per network will also grow exponentially. With an expanding number of
IoT devices comes an increased risk of exploitation, particularly in industrial and
medical settings.

1

2 Chapter 1. Introduction

Figure 1.1: IoT Devices Statistics by 2025 [3]

The casual use of devices, the failure to update passwords, and the failure to com-
plete regular device upgrades have increased cybersecurity threats, allowing hostile
programmes access to sensitive data within IoT networks. Data breaches and other
possible risks are made more likely by such inadequate security practises. Given the
lack of security standards and policies in place, the majority of security experts see
IoT as a vulnerable target for cyber attacks. Security rules are weakly documented,
despite the development of several security techniques to protect IoT devices from
cyber threats. As a result, end-users are frequently unable to successfully apply
defensive measures to thwart data intrusions [4].

Hackers have been developing various sorts of malware to infiltrate IoT devices
since 2008. They’ve invented a number of phishing techniques to trick employees or
individuals into disclosing critical information. As a result of these high-profile hacks,
business workstations and personal devices routinely experience privacy breaches.
If device manufacturers and security experts appropriately identify these cyber haz-
ards, they will be able to design and implement effective defensive mechanisms to
either prevent or mitigate these cyber threats [4].

Unfortunately, most internet-connected IoT devices lack the same level of re-
sistance against infiltration, hacking, and sabotage assaults that other computing
devices have evolved over time. They, on the other hand, demonstrate a high level
of susceptibility. Surprisingly, almost 70% of IoT devices have major security flaws,
such as unsecured network services and low password restrictions, (Figure 1.2 [5]).

1.1. Overview 3

Figure 1.2: Device Level IoT Security Vulnerabilities [5]

The IoMT is a network of internet-connected devices aimed to improve healthcare
services. IoMT obtains vital physiological data and monitors patients’ pathological
details using small wearable or implantable sensors. It has a wide range of uses,
from implantable medical devices to wireless body area networks [6].

Furthermore, IoMT has an impact on enhanced drug and equipment control,
telemedicine, mobile healthcare, and health data management. It offers real-time
monitoring, assuring authenticity, and assisting in medical waste management by
utilising technology such as Radio Frequency Identification (RFID) tags. It has im-
proved hospital information administration and plays an important role in health
management. IoMT is revolutionising healthcare services by providing remote pa-
tient monitoring via implantable sensory nodes [7].

Figure 1.3 depicts the increase in the number of active IoT connections in the
healthcare sector in the European Union for 2016, 2019, 2022, and 2025. The graph
shows a steady increase over time. It was predicted that from a base of 0.87 million
connections in 2016, there will be 10.34 million connections by 2025 [8].

4 Chapter 1. Introduction

Figure 1.3: Number of active connections in medical IoT in the Eu-
ropean Union [8]

With improvements in 5G communications and IPv6 addressing, these IoMT
devices have begun to play a key role in extending human lives. The transmission
of sensitive sensor data between medical IoT devices raises a number of security
concerns. These IoMT devices are vulnerable to a number of security risks, in-
cluding eavesdropping, hijacking, denial of service, message manipulation, device
cloning, parameter configuration alteration, and power denial attacks. Typically
IoMT presents restrictions such as limited battery capacity, limited memory, and
poor computing power. These restrictions have the greatest impact on availability
and security. As a result, implementing a safe and secure IoT in the healthcare
business is crucial [9].

These cyberattacks on IoMT equipment have a wide range of serious conse-
quences, from data breaches to life-threatening disinformation. Denial of service
assaults overwhelm the system with excessive traffic, resulting in data inaccessibility
and tampering with patient information, which can result in erroneous treatments
and even patient mortality. Router attacks jeopardise the secure transmission of
vital healthcare information. Select Forwarding attacks entail the selective discard-
ing of data packets, which results in incomplete data at the receiver’s end and the
possibility of misdiagnosis. Sensor assaults can entail attackers replacing sensors
with malicious ones, resulting in data manipulation and fake data insertion. In re-
play assaults, an attacker impersonates legitimate data transmissions, resulting in
false recognitions or duplications. Each of these assaults can result in unauthorised
access, data manipulation, denial of continuous monitoring, data route changes, and
data drops [10].

Hence, the importance of strong authentication techniques cannot be overstated
in the field of IoMT, where sensitive data is transferred on an unprecedented scale.

1.2. Objectives 5

Adoption of Radio Frequency Fingerprinting (RFF), which capitalises on the unique,
intrinsic properties of each transmitter during transmission, is a viable route.

These specific characteristics, caused by manufacturing, distinguish each trans-
mitter regardless of brand, model, or serial number [11]. As a result, datasets
including these distinct emissions from multiple devices may be compiled, providing
a rich foundation for training ML algorithms, that can recognise and categorise de-
vices based on their unique fingerprints, providing strong authentication in a passive
fashion.

The necessity for increased security in IoMT, as well as the promise that RFF of-
fers in this context, motivate this thesis. It proposes the development of RFF-based
techniques and machine learning models for the identification and authentication of
IoMT devices. This work attempts to enhance the security mechanisms of these sys-
tems by incorporating these models into the IoMT infrastructure, thereby offering
a robust mechanism for device authentication that complements existing protocols.
This effort is expected to reduce vulnerabilities in the present IoT ecosystem, creat-
ing a safer environment for the critical services provided by IoMT.

1.2 Objectives

One of the main goals of this thesis is to revolutionise the use of ML in Radio
Frequency (RF) by converting RF signals into images, increasing applications, and
optimising wireless systems. CNN play an important role in this strategy, using their
groundbreaking abilities in image recognition. We utilise the potential of CNN to
find complicated patterns by translating RF signals into image data. Their ability
to understand spatial feature hierarchies makes them a perfect candidate for this
method. Using CNN in this way has a lot of potential for enhancing the reliability
and effectiveness of RFF in device identification and categorization. The process
of converting signals into images is another key aspect. By viewing RF signals in
an image-based representation, we can better leverage the inherent structure and
correlation in the data, providing a more intuitive way for ML algorithms to learn
and make sense of the signals. Furthermore, a new decision-making approach will be
implemented to classify devices using multiple features, introducing a novel aspect
in this field. Thus, our primary goal is to precisely create features/images from
RF signals and develop ML models that enable a reliable classification of devices,
which is a crucial prerequisite for the implementation of RFF. The RFF technique is
supported by these models. It is anticipated that the successful integration of RFF
into a medical gateway will significantly increase its security and offer a strong line
of defence against the frequent attacks that IoMT devices frequently experience.
We anticipate a major gain in security by adding RFF to the medical gateway,
creating a more secure and dependable IoMT environment. This is anticipated to

6 Chapter 1. Introduction

significantly reduce the likelihood of assaults, protect the integrity of IoMT devices
and the sensitive data they manage, and eventually increase public confidence in the
developing field of digital healthcare.

1.3 Research Context

This thesis has been developed inline with the ForPharmacy and Icare4NextG
projects, which are being carried out at the Porto Research, Technology, and Inno-
vation Center (PORTIC) of the Polytechnic Institute of Porto (IPP) with PORTIC
being in charge of designing the medical IoT and cybersecurity technology to be
included in these two IoMT-framed projects.

1.3.1 ForPharmacy Project

Due to their frequent interactions with patients, pharmacists play an important role
as primary healthcare workers. This connection is increasingly important for ad-
dressing present and future health challenges, including the COVID-19 pandemic,
as healthcare expenses increase, the ageing population expands, and chronic diseases
become more prevalent. By allowing pharmacists to treat patients remotely, tele-
pharmacy, a subspecialty of telemedicine in the pharmacy industry, opens up new
opportunities for the delivery of healthcare.

In areas like pharmacovigilance and therapeutic adherence, the ForPharmacy
project seeks to investigate and create telepharmacy solutions. The main goal is to
improve patient safety and increase access to pharmacy treatment through digital-
ization and better interprofessional communication.

1.3.2 iCare4NextG Project

The iCare4NextG project seeks to develop a service framework for better home care
and well-being using data-driven methodologies. To allow flexible user solutions
and foster a supportive business environment for emerging digital business models,
a multi-track strategy that includes service framework development, business mod-
eling, and use case solutions will be put into place. The framework will put an
emphasis on home care, integrated care, personalization, prevention, and involve-
ment. Functional preventive home care is required as the ageing population and
incidence of chronic diseases rise. The platform will be created using the integra-
tion, standardization, modularization, and flexibility principles to handle this. Home
care’s significance has been highlighted by the Covid-19 pandemic, and a number of
contemporary use cases will spur platform development and highlight its efficiency.
The framework includes layers of abstraction for data gathering, administration, and
use, enabling the creation of customised solutions using data from various sources.

1.4. Thesis Structure 7

In this project, we are in charge of creating the medical gateway, connecting med-
ical devices to it, and connecting it to cloud services so that Glintt’s data about
users’ medications can be received, as well as sending medication records and data
from medical devices. RFF is being instantiated in these projects, as a new security
component for the Medical IoT gateways.

1.4 Thesis Structure

This thesis is composed of an introduction Chapter 1, where a theoretical introduc-
tion to the subject is presented, accompanied by the problem in hands, and how this
Thesis addresses the mentioned security concerns. In chapter 2, there is a research
background of the RFF, covering key topics to RFF. Following that, in Chapter 3,
this thesis outlines some of the technologies used to begin the building blocks of ML,
and the description of the medical gateway where the RFF is integrated. Chapter
4 describes how the RFF is integrated and how it functions in the medical gateway.
The features utilised to train the CNN model to achieve the device categorization
required for RFF implementation are also discussed. The results of the CNN mod-
els are shown in Chapter 5. Finally, in Chapter 6, numerous broad inferences are
derived from the acquired results, and a few recommendations for future research
are given.

Chapter 2

Research Background

This chapter provides the fundamental concepts relevant to this thesis and overviews
the most recent work on these topics.

2.1 Overview of Healthcare Communication Security

IoT is a collection of technologies that enable a wide range of applications, de-
vices, and objects to connect with one another via network technology. IoMT is
a primary application of IoT, and it offers a variety of services to the healthcare
business, including Implantable Medical Devices (IMD), RFID Tags, and wearable
medical devices. The transmission of critical IoMT data from one device to another
raises many security concerns. Side-channel attack, tag cloning, denial of service,
tampering devices, rogue access, sniffing, and brute force can target these devices,
violating patient data and also raising safety concerns. However it is challenging
to address these as IoMT has restrictions such as limited battery capacity, memory,
and computational power [9]. We further elaborate on these attacks and prospective
solutions in the next sections.

2.1.1 IoMT Requirements

IoMT is a dynamic ecosystem of linked medical tools, services, and procedures that
collaborate to improve the provision of healthcare. To protect data and guarantee
the system’s efficient operation, it is crucial to create and maintain specific require-
ments as this sophisticated network continues to expand. These specifications are

9

10 Chapter 2. Research Background

intended to protect the privacy and confidentiality of patient data, ensure data in-
tegrity, ensure system availability, confirm user actions through non-repudiation,
verify user identities through authentication, manage user permissions through au-
thorization, and maintain anonymity when necessary. The following are the details
of these needs in further detail [12]:

• Confidentiality: In the context of the IoMT, confidentiality refers to the pro-
tection of patient health data that is exchanged with medical experts. This
information needs to be protected from unauthorised access, suspicious surveil-
lance, and malicious users that might hurt the patient or abuse the data. De-
spite general recommendations from IoMT standard protocols, it is crucial to
implement network access control and data encryption to ensure secrecy.

• Privacy: In the context of IoMT, privacy refers to the safeguarding of con-
fidential patient information against unauthorised disclosure and nefarious
use. Currently, many nations have laws in place governing the gathering and
archiving of patient health data, such as the Health Insurance Portability
and Accountability Act (HIPAA) and the General Data Protection Regulation
(GDPR). IoMT systems uphold these privacy laws and give users access to
their private information.

• Integrity: Protecting patient data from unauthorised additions, deletions, or
revisions is essential for IoMT healthcare systems. By doing this, the data is
protected from manipulation both during wireless transmission and when it is
at rest. Healthcare organisations are becoming more and more aware of the
value of data integrity as medical data is used to depict diagnosis, treatments,
and health problems. This integrity must be preserved through safeguards
against unauthorised data changes.

• Availability: The readiness of servers and medical equipment to offer users ser-
vices and data as needed is referred to as availability. This is especially impor-
tant in healthcare systems because it’s required to monitor patients continu-
ously. Systems should have backup plans in place for uncertain data storage or
transmission routes, especially against Denial of Service (DoS) or Distributed
Denial-of-Service (DDoS) attacks, to ensure availability.

• Non-Repudiation: Non-repudiation describes the system’s capacity to make
users responsible for their deeds and ensure that they cannot retract their
prior system usage. It assesses the system’s capacity to affirm or refute the
occurrence of an action. Digital signature methods are frequently used to
achieve non-repudiation.

• Authentication: A user’s identity must be verified when they log into the sys-
tem. Verifying that a user is really the original source of the delivered data

2.1. Overview of Healthcare Communication Security 11

is the goal of message authentication. The most secure type of authentication
is mutual authentication, which calls for client and server authentication be-
fore secure data transfer. Due to resource restrictions in some IoMT devices,
lightweight authentication techniques are growing in popularity.

• Authorization: It’s critical to prevent unauthorised access given the delicate
nature of medical data. Only reputable parties that possess the required cre-
dentials should be given permission to carry out specified tasks, such giving
commands to IoMT devices or updating their software or security patches.

• Anonymity: This criteria makes sure that the patient’s or doctor’s identity
is kept secret when speaking with unauthorised system users. During their
conversation, the doctor and patient’s names should remain concealed. Attacks
that are passive should only expose a user’s behaviour and not their identity.

2.1.2 IoMT Architecture Layers

Figure 2.1 is a vital reference point in the understanding of the complicated dy-
namics of the IoMT. This diagram depicts the IoMT architectural levels, from the
fundamental perception layer to the critical application layer. Figure 2.1 depicts the
methodical route of raw health data as it is collected, transported, analysed, and
finally used for patient healthcare treatments.

Figure 2.1: IoMT Architecture [13].

12 Chapter 2. Research Background

The perception layer is the foundation of the IoMT structure. It is in charge of
identifying health-related parameters accurately. Sensors of various types, including
those that can be incorporated in or attached to the body, such as pacemakers or
smartwatches, can collect and record patient data. This data, which is acquired
as raw or unprocessed values, is then transferred to the network layer via various
communication mechanisms. The data is then relayed to the processing units, which
are frequently on the cloud, through the second layer via an IoT gateway. The
cloud then does the required analysis. If discrepancies in a patient’s health data
are discovered, this has serious consequences. These changes are then sent to the
application layer and shown to physicians via remote monitoring devices such as
smartphones or a dedicated Access Point. This enables prompt medical intervention,
such as changing drug doses or changing prescriptions. The information can also be
used by the patient for any following steps that are required [12].

2.1.3 Security Breaches in IoMT

There are numerous potential attacks in the IoMT space. These attacks differ not
just in their strategy and methodology but also in how they affect the IoMT re-
quirements. We can group these threats according to the attacked IoMT layer. The
tables that follow give a brief summary of these attacks, their descriptions, and the
areas of the requirements they affect [12]:

Table 2.1: IoMT potential attacks at Perception layer and their in-
fluence on the system’s security requirements [12]

Attack Brief Description Effects
Side-channel at-
tack

The side channels of the encryption device are used
to gather data.

Confidentiality,
Integrity

Tampering de-
vices

To change the data (modification in a device utilising
RFID or a communication link), the IoMT device is
physically accessible.

Confidentiality,
Integrity

Tag cloning An attacker may copy data from a tag that has
already been used or utilise data that was gained
through a successful side-channel attack. The cloned
tag might be used to get access to a restricted loca-
tion or data, including private medical records.

Confidentiality,
Authorization,
Integrity

Sensor tracking This attack violates the privacy of the patients.
Through unprotected devices, attackers may acquire
patient locations or create phoney GPS data. Sen-
sitive patient information may also be revealed by
other sensors, including those for wheelchair man-
agement, fall detection, and remote monitoring sys-
tems.

Confidentiality,
Authoriza-
tion, Integrity,
Privacy

2.1. Overview of Healthcare Communication Security 13

Table 2.2: IoMT potential attacks at Network layer and their influ-
ence on the system’s security requirements [12]

Attack Brief Description Effects
Eavesdropping A hacker intercepts and follows the hardware and

communications needed to get data. There are nu-
merous uses for the data that was taken illegally.

Confidentiality,
Non-
repudiation,
Privacy

Replay An attacker can intercept a signed packet and send it
many times by using an authentication message that
was previously sent between two authorised users.

Authorization

Man-in-the-
middle

In order to gain access to their private data, this cy-
berattack attacks communication between two IoMT
devices. Before the intercepted data is transferred
to its intended recipient, the attacker can see it or
change it.

Confidentiality,
Authorization

Rogue access In this attack, a fake gateway is placed within the
wireless network’s coverage area to grant access to
unauthorised users and intercept traffic.

DoS/DDoS A DDoS assault, which differs from DoS attacks from
a single node in that it comes from several sources,
floods a target with messages or connection requests
in order to prevent genuine users from using the ser-
vice.

Availability

Sinkhole In this attack, a rogue node draws traffic by promis-
ing improved connection quality. Other attacks, in-
cluding eavesdropping or selective forwarding, can be
initiated after a successful execution.

Sniffing Data being exchanged between two nodes is passively
intercepted during a sniffing attack. This enables
the attacker to watch while data is transferred across
system layers.

Confidentiality

Selective For-
warding

A rogue node may change, delete, or only forward
particular messages to other nodes in the network
during an attack. As a result, the recipient only re-
ceives partial information.

All

14 Chapter 2. Research Background

Table 2.3: IoMT potential attacks at Application layer and their
influence on the system’s security requirements [12]

Attack Brief Description Effects
Brute Force Automated programmes are frequently used by at-

tackers to create a variety of password combinations
until they succeed. IoMT devices are seriously vul-
nerable to the dictionary attack.

Confidentiality,
Integrity

SQL injection In this attack, a flawed SQL statement is introduced
into the application’s backend database. Sensitive
patient data may be compromised or changed in a
successful assault.

All

Account hijack-
ing

Many IoT devices interact across networks in trans-
parent text or with poor encryption. An attacker
can steal an account by intercepting the packet dur-
ing end-user authentication.

Confidentiality,
Integrity

Ransomware Ransomware encrypts important data and requests a
ransom to decrypt it. Attackers can encrypt private
data, such as health records, and keep the decryption
key in exchange for money.

Integrity, Avail-
ability

In this thesis we focus on communication cybersecurity, hence we cover by fo-
cusing on this three layers.

2.1.4 Security Solutions

A wide variety of attack tactics are pitted against an equally wide variety of defences
in the complicated world of IoT device security. These defence mechanisms, created
to mitigate or even eliminate such risks, cover four major areas: the communication
layer, network routing, transport layer, and application layer, each of which provides
particular solutions to guarantee strong IoT security.

Communication Layer Security Solutions

A fundamental part of deploying an IoT network is ensuring secure end-to-end con-
nectivity. One proposed method for enabling such security is to use compressed
IP security. Encapsulation Security Payload (ESP) and the Authentication Header
(AH) are used in this method to authenticate and encrypt messages between the reg-
ular internet and the sensor network. The results show that employing established
IPv6 techniques, compressed IPsec can assure message integrity. Furthermore, they
developed an ESP for IPsec/6LoWPAN, which they compared to link-layer security
for IEEE802.15.4.The authors discovered that while IPsec delivers greater security
and has a faster response time than link-layer security, it consumes more energy
than link-layer security when tested on an IEEE 802.15.4 testbed [14].

2.1. Overview of Healthcare Communication Security 15

Another protocol for IoT security was proposed, which included a feasible au-
thentication solution based on elliptic curve cryptography and leveraging a secure
key function. They also implemented Role-Based Access Control (RBAC) in IoT net-
work applications for access control rules. However, the proposed security analysis
was not realistically applied, and IoT sensor nodes had a large connection overhead
[14].

Network Routing Security Solutions

The proliferation of IoT devices has increased the demand for security solutions to
protect these devices from cyber-attacks. Despite the implementation of encryp-
tion and authentication, IoT networks remain vulnerable to a variety of attacks,
including sybil, black-hole, sinkhole, fragmentation, selective-forwarding, and man-
in-the-middle attacks. Intrusion Detection System (IDS) that can be put at every
node of Low-power and Lossy Networks have been proposed to detect these attacks.
However, because the nodes have limited resources, IDS must be optimised for each
physical object [14].

Some researchers have proposed lightweight intrusion detection system based on
harmful pattern detection, which evaluate detection in terms of energy usage and
execution time using two schemes: early detection and auxiliary shifting. Another
option is INTI, a distributed IDS architecture that combines the "watchdog" and
"reputation and trust" approaches to find and mitigate attacks [14].

Others have developed hybrid intrusion detection systems to detect selective
forwarding, sinkhole, and wormhole attacks. These IDS are made up of primary IDS
modules, a 6LoWPAN mapper, and a mini-firewall at constrained devices and border
routers. To identify attacks, the proposed IDS employ a variety of techniques such
as monitoring routing traffic, evaluating signal intensity, and identifying aberrant
activity [14].

While these IDS have yielded encouraging outcomes, they are not without limits.
Some intrusion detection systems, for example, have a high false-positive rate, spend
more energy during an assault, or have decreased accuracy as network size increases.
As a result, the selection of an appropriate IDS is determined by the unique attack
scenario and resource restrictions [14].

Another study proposes an efficient, secure route optimization protocol for the
Proxy Mobile IPv6 (PMIPv6), which improves on the existing routing protocol
(PMIPv6) when it comes to security, specifically when it comes to authentication,
complete forward secrecy, key exchange, and privacy when supporting the protocol
mutual. Their method ensures safe transmission while reducing packet loss, latency,
and delay [14].

A third paper suggests a novel trust mechanism based on the SecTrust-RPL
routing protocol, which was deployed in a test bed experiment. The suggested

16 Chapter 2. Research Background

technique detects both sybil and rank attacks. The authors, however, did not assess
the impact of their approach on performance, energy consumption, and performance
overhead [14].

Another paper describes a wormhole attack detection technique for the RPL
IoT routing protocol. IDS is installed at both the border router and the host sensor
nodes, and they analysed the influence of their IDS on the success rate of detecting
the wormhole assault. The results showed that with eight sensor nodes, the true
positive rate was high, but fell as the number of sensor nodes increased.

Another study presented a hybrid IDS that targets sinkhole and cloneID threats
and analysed its IDS impact in terms of performance and detection. The detection
rate, according to the authors, was 100%. However, the statistics show that as the
number of sensor nodes increased, the detection rate declined, and the energy and
power consumption was higher than the prior IDS they tested [14].

Transport and Application Layer Security Solutions

Some research articles’ authors performed a comparison investigation of the security
aspects of MQTT and CoAP, focusing on the transport protocols used, specifically
MQTT with TLS and CoAP with DTLS. The investigation took into account se-
curity mechanisms such Raw Public Key, Certificates, and Pre-Shared Key. They
discovered that MQTT provides a diverse security alternative to lightweight and
PSK certificates, but certificate-based encryption and authentication remain the
most secure [14].

One of the papers examines the use of RSA cryptography on sensing devices
through the use of trusted-platform modules. The authors used a DTLS cypher
suite TLS-RSA-with-AES-128-CBC-SHA to evaluate the system in terms of latency,
energy usage, and memory. Another publication investigated this proposal further
in wireless sensor networks. Another proposal for a transport layer authentication
security scheme based on the elliptic curve cryptography algorithm [14].

One study developed Lithe, a DTLS/CoAP integrated protocol that uses a com-
pression algorithm to reduce header overhead and is more efficient than conventional
CoAP/DTLS. However, it is vulnerable to DoS attacks. Another paper describes E-
Lithe, a lightweight DTLS for IoT that customises the DTLS packet to reduce energy
consumption and execution time. Another proposed system combines identity-based
encryption and a Diffie-Hellman encryption algorithm to provide authentication and
integrity security without the use of a digital certificate. Another study tries to im-
prove the CoAP protocol’s hash function for integrity security in smart home applica-
tions, and a novel architecture suggests the use of cryptography methods rather than
DTLS to ensure data confidentiality and integrity in CoAP-based smart home apps
[14]. Due to many key obstacles, such as high computational complexity, high com-
munication overheads, high latency, and inadequate security of resource-constrained

2.1. Overview of Healthcare Communication Security 17

mobile IoT devices for healthcare applications, authentication with typical crypto-
graphic approaches does not appear to be always practical. Key management is only
appropriate for classical cryptosystems. More importantly which distributed system
such as IoMT becomes an even more complex challenge. Traditional cryptography
systems’ static properties make it impossible to detect unauthorised organisations
reusing compromised keys. 5G and beyond networks have enabled rapid progress in
the development of IoT devices on diverse platforms. Because of their low cost and
small size, such devices are useful for a wide range of applications [15]. Authenti-
cation is a critical component of cybersecurity architecture, serving as the first line
of defence against unauthorised access to sensitive information systems and data.
It is the process of verifying the legitimacy of users, devices, or systems in order
to prevent potential security concerns from occurring. Passive authentication tech-
nologies such as RFF emerge as effective solutions as cyber threats increase. We
may strengthen our cybersecurity posture by augmenting our security methods with
a layer of continuous and frictionless authentication, ensuring that only authorised
people and devices access vital resources and information.

2.1.5 Towards New Methods of Authentication

Wireless communication networks have grown in popularity and development in re-
cent years. Attacks that leverage information security vulnerabilities such as identity
impersonation, replay attacks, and device cloning continue to emerge. Accurately
identifying and authenticating the objects is the primary problem.

Traditional authentication mechanisms are implemented at the application layer,
using cryptographic algorithms to generate numerical results that are difficult for
third parties to counterfeit. Mechanisms like this have risks of protocol security loop-
holes and key leakage. Key leakage and security issues discovered at the application
layer can be mitigated by physical layer authentication.

The use of ML authentication approaches on the physical layer has piqued the
interest of academia and industry. This approach smartly and efficiently secures 5G-
enabled portable devices. For authenticating entities, ML-enabled approaches such
as supervised and unsupervised learning and DL are useful. Because ML approaches
take into account unique multidimensional qualities, they can provide more secure,
better authorised, fairly accessible, highly dependable, dynamic, and self-driven de-
vice verification for an unknown network state. Poor security and lengthy delays
can have an impact on the functioning of vital applications like healthcare. Such
challenges can be addressed with a quick cross-authentication solution that makes
use of SDN-aware joint cryptographic and non-cryptographic features [15].

All of the previously mentioned concepts might be realised by implementing
RFF authentication, which would strengthen the safety measures of those systems
without limiting the performance of the IoMT devices [15].

18 Chapter 2. Research Background

2.2 Radio Frequency Fingerprint

Physical layer authentication technology offers more solutions to wireless commu-
nication security issues. Physical layer security authentication technology research
is still in its early phases, and its core theory has not kept pace with other wire-
less communication technologies’ progress. The method of recognising the hardware
characteristics and specific features or signatures inherent in radio frequency waves
broadcast via a wireless channel is known as RFF. The manufacturing process for
chip components produces hardware flaws that make each emitter unique, regard-
less of brand, model, or serial number [16]. These flaws are necessary to make the
cloning process challenging. Using RFF to discriminate between illicit and legiti-
mate devices is a new physical layer strategy for protecting communication system
security. RFF can be utilised for physical identification and access authentication
of wireless equipment, just like everyone has their own unique biometric fingerprint
characteristics. Figure 2.2 depicts a typical RFF identification.

Figure 2.2: Typical RFF identification process.

The procedure pulls features from a given radiation source from the received
signal time series for classification and recognition, which is fundamentally a pattern
recognition problem, as shown in Figure 2.2. Looking at the diagram again, we may
resume the process as follows [17]:

1. The RF signal segment utilised to extract the radio RFF is intercepted and
preprocessed.

2. Following the acquisition of the signal to be classified, the RFF can be obtained
using various transform domain approaches such as frequency domain analysis,
time-frequency analysis, fractal, high order spectrum, constellations, or RFF
can also be recovered in the modulation domain.

3. The DL method can also be used to process the signal directly. As it can
perform some feature selection or feature dimensionality reduction, as well as
feature extraction and classifier creation.

2.2. Radio Frequency Fingerprint 19

2.2.1 Signal Processing

The RF signal is intercepted and preprocessed, as indicated in Section 2.2. In recent
years, Software-Defined Radio (SDR) have been employed in this step. A SDR is
a programmable transceiver that may operate numerous wireless communication
protocols without the requirement for hardware changes or updates. SDR have two
benefits over lab-grade receivers for RFF. The first is cost; lab-grade receivers can
cost up to twice as much as SDR. The second is general-purpose accessibility. SDR
is made to offer a base and modular capacity that can be improved by building
processing chains out of functional blocks to quickly add or integrate additional
features [18].

The In-phase/Quadrature (IQ) are samples of the obtained representation of the
preprocessed and recorded RF signal, comparing the "in-phase" component to the
"quadrature" component, a phase shift of 90 degrees has occurred. Each sample
can be expressed as a complex number, where the real part increases the in-phase
component and the imaginary part increases the quadrature component.

The IQ convention is an alternate approach to describe magnitude and phase of
a RF signal, which leads to the use of complex numbers and the ability to represent
them on a complex plane. A complex number also has a magnitude and phase, which
makes more sense when viewed as a vector rather than a point. This representation
is better explained with an example. Consider the Figure 2.3 and imagine that the
point 0.7−0.4j is to be transmitted. The following equation can be used to represent
the resulting signal to be transmitted.

x(t) = I cos(2πft) + Q sin(2πft) = 0.7 cos(2πft) +−0.4 sin(2πft).

Figure 2.3: IQ complex number representation.

A trigonometry identity, a cos(x) + b sin(x) = A cos(x − ϕ), can be employed,
where A is our magnitude discovered with

√
I2 + Q2 and ϕ is the phase, equal to

20 Chapter 2. Research Background

tan−1(Q/I), resulting in the equation:

x(t) = 0.806 cos(2πft + 0.519).

Despite the fact that it begins with a complex number, the real component is con-
veyed, which is required because the imaginary component is not transmitted with
electromagnetic waves. The complex numbers are useful for obtaining and plotting
the features required to proceed in the fingerprint process [19]. The SDR collects
the RF signals, but these captures must be passed to a computing device. There
are numerous ways to do this step, ranging from writing code to capture and pro-
cess these data to using software that already includes a major percentage of the
necessary functionality, such as GNU Radio [20].

2.2.2 Feature Extraction

Following the acquisition of the signals, the next phase involves the extraction of
unique features from various portions of the signal. There are various techniques for
extracting multiple elements from an RF signal. According to [21], these features, as
shown in Figure 2.4 can be classified into three types: transient-based, steady-state-
based, and other approaches based on various signal portions employed for feature
extraction.

Figure 2.4: Feature Extraction.

Transient-based RF fingerprinting techniques make use of the transition between
turning on and off a transmitter prior to the actual transfer of signal data. This
method necessitates precise transient extraction (start point and duration). Tran-
sient extraction methods are heavily influenced by signal noise, hardware, and the
distance between the SDR and the device.

Only when the transient is precisely retrieved does transient-based analysis pro-
vide high reliabilty regarding the fingerprint procedure. The lack of transient analy-
sis can make distinguishing devices from the same manufacturer more difficult (same

2.2. Radio Frequency Fingerprint 21

model). For good transient extraction, very high sampling rates are required, neces-
sitating expensive receiver structures, and isolating the transient signal and locating
the start point in channel noise are extremely difficult due to non-stationary prop-
erties [22].

The unique features retrieved from the modulated component of the signal are
the focus of steady state-based techniques. For physical layer identification, mostly
five unique aspects of the modulated signal are used: frequency error, synchronised
correlation, IQ origin offset, and amplitude and phase faults [23]. The following
considerations must be made: The steady-state signal is not shared by all emitters.
The transient signal is constantly there throughout transmission. However, as pre-
viously indicated, a greater sample rate is needed to retrieve the transient signal.
Also, in comparison to the other methods, they usually require unique wireless tech-
nology and/or extract different signal and logical layer features, two of which will
be detailed and explained:

• In [24], a Constellation Trace Figure (CTF) feature is shown. In practise, the
non-linear behaviour of the amplifier at the transmitter will significantly distort
the RF signal, resulting in non-linear signal offset at the receiver, including
IQ offset and phase offset. These characteristics are often taken from the
traditional constellation map. However, there is a flaw in the latter; it only
represents the samples at the decision point. As a result, the CTF method was
introduced, in which the base point of the IQ axis on CTF is established as
a central point and the CTF is equally split by a fixed angle from the central
point.

• A technique was developed in [25] to give further protection against spoofing
attacks. It focuses on identifying authorised objects and using their fingerprints
to detect prospective intruders in the wireless environment by analysing the
PSD of physical signals.

2.2.3 Machine Learning Approaches for Identification and Classifi-
cation

Depending on the ML method and features used during training, different results
will be produced. As a result, modifications to feature extraction, signal processing,
or the machine learning method itself may be required. Below are three examples
that demonstrate this process:

Differential Contour Stellar-Based RFF

The fingerprinting of devices using the WiFi communication protocol is covered in
[26]. They employ images created from signal capture to train a machine learning

22 Chapter 2. Research Background

system to determine which device the image belongs to. These images are created
by a differential process of in-phase and quadrature signals. Following the differen-
tiation of the signal, the production of the designated differential contour stellar, as
shown in Figure 2.5, was carried out.

Figure 2.5: Creation of differential Contour Stellar Image [26].

Following the generation of the images, 400 images were picked at random from
each class, 320 were used to train the Deep Neural Network (DNN), and 80 were
utilised for validation. For the 20 WiFi devices utilised in this testing, this resulted
in a recognition success rate of 90.4%.

Imaging Time Series for Internet of Things Radio Frequency Fingerprint-
ing

The RFF process in IoT communication devices is highlighted in [27], with 9 nRF-
24LU1+ devices used to construct IoT sensor networks. The way authors approach
to fingerprinting is centred on transforming time series into images. The distance
between two locations in the time series, from the start of the burst to a different
amount of samples, is iterative. Three complex number distances were used: order
2 Minkowski distance (Euclidean distance), order 3 Minkowski distance, and the
Chebyshev distance. The generated images are then processed to extract basic image
processing features such as Histogram of Oriented Gradients (HOG), Binary Robust
Invariant Scalable Keypoints (BRISK), Speeded-Up Robust Features (SURF), and
Local Binary Pattern (LBP).

Different accuracies were obtained as a result of the three distances employed in
the complex numbers, as well as the amount of samples used for each class. The
precision for Minkowski order 3 (size 500 samples) was about 98.36%, for Minkowski
order 2 (size 800 samples) was approximately 94.83%, and for Chebyschev (size 200)
was approximately 92.02%. A Support Vector Machine (SVM) was employed as
the machine learning algorithm for these results. Following these experiments, a
comparison was done in which the traditional statistical features used for RFF were
employed instead of the images. They discovered that models trained with images
had higher accuracy, and it is important to note that the disadvantage of image
conversion is related to conversion time.

2.3. Artificial Intelligence 23

RF Fingerprint Reconition Based On Spectrum Waterfall Diagram

According to [28], they proceeded to translate the radio signals into two-dimensional
images based on earlier work. MATLAB simulations were utilised to produce the
dataset used for image conversion. The signal dataset used Quadrature phase-shift
keying (QPSK) modulation, had a sample frequency of 20Mbps, a sampling interval
of 0.05µs, a signal-to-noise ratio of 10dB, and 52 subcarriers. There were four pilot
signals and the rest are data signals, as 20 separate devices were constructed. These
signals were then translated into 300x300 spectrum waterfall diagrams, which were
put into the artificial intelligence programme that they created.

It should be noted that a dataset of 100,000 images was generated for the 20
devices, 80000 of which were used for training and 20,000 for validation. With this
model they were able to obtain an accuracy of 89.01%. To compare their results
with other approaches, they decided to use a different CNN model in which they
fed IQ data in raw format to the model, obtaining an accuracy of only 58.80% and
increasing the training time by about three times.

The essential components required to grasp the notion of AI will be explained
in the following parts. Explaining the fundamental concepts and elements that
underpin the field. From ML algorithms to neural networks, a greater grasp of the
topic is provided, as well as an explanation of CNN, which is critical to the work
performed.

2.3 Artificial Intelligence

As illustrated in the diagram below, Figure 2.6, ML, is a subset of AI. AI encom-
passes all of the techniques that enable machines to "replicate" human intelligence
to some extent [29].

Figure 2.6: Scheme for Artificial Intelligence Concepts.

DL, in turn, employs other techniques that enable machines to benefit from expe-
rience in order to improve their tasks. This AI technique is used when adaptability
is required and the problem is complex at the human level. In this type of learning,

24 Chapter 2. Research Background

training data must be entered and model training must be performed. The more
training data there is, the more experience there is, and the better the result [30].
Learning can be carried out in a variety of ways and classified into various types.
DL is no exception, and it can be classified into different types based on various
parameters.

Unsupervised Learning

There is no supervision of the learning process in unsupervised learning, and the
data is provided without any labelled training data. Instead, through exploration
and analysis, the goal is to discover patterns and relationships in the data. The al-
gorithms are mostly used for association and clustering problems, where the dataset
is subdivided into sets with similar characteristics, due to the nature of this learn-
ing. This type of clustering can then be used to detect anomalies, with the anomaly
identified by being outside of a pattern established by similar characteristics [31, 32].

Supervised Learning

Unlike unsupervised learning, this sort of learning includes extra instructions on
how to catalogue the training data along with it. The purpose of this learning
is to train the algorithm to recognise the relationship between the labels and the
data presented, so that it can catalogue test data without the help information
linked. This type of learning is typically employed for cataloguing problems, which
are classified into two types: regression problems and classification problems. The
regression problems are those that seek to quantify data by attributes such as weight,
price, and quantity. In supervised learning for classification, we can find various sorts
of algorithms, each with its own set of strengths, limitations, and utility distributions
[33].

Linear classifiers make classification decisions based on the linear combination
value of all characteristics. Although the decision tree approach is one of the fastest
classification algorithms, linear classifiers are also employed to handle issues requir-
ing fast classification, particularly when features are considered scattered. These
are most effective when the number of feature dimensions is large, as in document
categorization (number of words per document). The logistic regression technique,
as well as algorithms such as the SVM, are examples of linear classifiers [33].

The decision tree and, by extension, the random forest algorithm are both su-
pervised learning algorithms. This type of algorithm is similar to a real tree in that
the root represents the input, the internal nodes the questions/decisions to be made,
and the branches the rules to reach a final category/decision (leaf). Neural networks
are typically utilised for enormous amounts of data. Other algorithms used in this

2.3. Artificial Intelligence 25

learning include boosting algorithms, quadratic classifiers, Bayesian networks, and
probabilistic classifiers such as Naive Bayes classifiers [33].

Reinforcement Learning

Reinforcement learning is a type of learning in which an agent is trained to make de-
cisions in an environment by performing actions and receiving rewards. The agent’s
goal is to learn a policy that maximises the cumulative reward over time, which
is a mapping from states to actions. The agent explores the environment, gathers
information about the state-action-reward transitions, and updates its policy based
on the observed rewards [34].

2.3.1 Artificial Neural Network

ML is a popular field of study because it provides powerful tools for discovering
patterns in large amounts of complex and unstructured data. Unlike traditional
statistical techniques, machine learning does not rely on assumptions about the
underlying structure of the data. This breakthrough is accomplished by shifting
from a deductive problem of finding a rule to an inductive problem in which the
data is used to inform the best rule characterising it.

Artificial Neural Network (ANN) is a soft computing tool used in ML that mimics
the human mind’s ability to reason and recognise patterns. ANN learn by analysing
the relationships between input and output data provided by training, and they
can generalise their output, making them suitable for non-linear problems requiring
experience and knowledge of the environment [35].

As shown in Figure 2.7, ANN typically has three layers: an input layer, one or
more hidden layers, and an output layer. The number of hidden layers and neurons
in each hidden layer can be changed. Before being used, the network is trained to
achieve a very low error rate. The network is then tested with previously unseen
data to determine the accuracy of the developed model [35].

26 Chapter 2. Research Background

Figure 2.7: Basic Artificial Neural Network Architecture [36].

ANN are modelled after the human nervous system and can be trained to perform
tasks such as data classification and pattern recognition. One of the most significant
advantages of ANN is their ability to learn from large amounts of complex data [37].

2.3.2 Deep Learning

DL is a subset of ML that is concerned with algorithms that are inspired by the
structure and function of the human brain. DL algorithms can process massive
amounts of structured and unstructured data. The core concept of DL is ANN,
which allow machines to make decisions.

The way data is presented to the machine is the key distinction between DL and
ML. DL networks work on multiple layers of ANN, whereas ML algorithms typically
require structured data, as can be seen in Figure 2.8 [38].

In the case of the DL architecture, however, the extraction and processing proce-
dure is completed automatically and without much human effort, which is the inverse
of ML. This architecture is made up of numerous layers in order to accomplish the
entire extraction and classification procedure.

2.3. Artificial Intelligence 27

Figure 2.8: ML and DL comparison [39].

Because of these qualities, this form of neural network architecture is appropriate
for issues involving vast amounts of potentially low-quality and unstructured input,
such as complicated computer vision and natural language analysis tasks. The
performance of these networks, however, is dependent on technology (the usage
of Graphics Processing Unit (GPU) or Field-programmable gate array (FPGA)), a
lengthy training process, and big training data sets. Because large networks require
more training time, they are more prone to overfitting, rendering the model useless
for data outside the training set [40]. Overfitting occurs when a model trains on
the same training data for an excessively lengthy period of time and/or when it is
overly complicated. This causes it to begin memorising noise in the training data
and overfitting itself to it. This issue can be mitigated by increasing the number of
training data, diversifying them, for example, through modifications such as image
rotation, and/or employing regularizer algorithms [41].

2.3.3 Deep Neural Networks

As previously stated, DNN feature several inputs and outputs, as well as multiple
hidden layers between them. Each layer can transform data into meaningful in-
formation for the following layer, allowing for continuous learning alongside data
processing.

Convolutional Neural Network

A CNN is made up of numerous layers that allow for the extraction of features and
then classification, as seen in Figure 2.9.

28 Chapter 2. Research Background

Figure 2.9: Architecture CNN [42].

CNN does not need to manually extract features. CNN architecture is influenced
by visual perception. CNN kernels represent diverse receptors that can respond to
different features; activation functions imitate the function that only neural electric
signals over a specific threshold can be sent to the next neuron. People devised loss
functions and optimizers to train the entire CNN system to learn what we expect.
CNN has various advantages over fully connected systems [43]:

1. Local connections—Each neuron is no longer connected to all neurons from
the preceding layer, but only to a small number of neurons, which helps to
reduce parameters and accelerate convergence.

2. Weight sharing—when a collection of connections share the same weights, pa-
rameters are reduced even further.

3. Dimension reduction through downsampling—a pooling layer uses the notion
of image local correlation to downsample an image, which can minimise the
quantity of data while maintaining important information. It can also decrease
the amount of parameters by deleting unnecessary features.

To be more detailed, four components are normally required to develop a CNN
model. Convolution is a critical phase in the feature extraction process. Convolu-
tional outputs are known as feature maps. We will lose information on the boundary
if we choose a convolution kernel of a given size. As a result, padding is created
to increase the input with a zero value, which can indirectly change the size. Fur-
thermore, the stride is used to modulate the density of convolving. The smaller
the density, the longer the stride. Following convolution, feature maps include a
large number of features, which is prone to overfitting. As a result, pooling (also
known as downsampling) is proposed to eliminate redundancy, including maximum
and average pooling [43].

Convolutional Layers

It is necessary to comprehend the features of the image in order to process them.
Humans have this ability because they can view an image and understand the entity

2.3. Artificial Intelligence 29

and its form that is depicted in the image. This technique is carried out by neural
networks through the pixels of a picture.

As shown in Figure 2.10, a picture can be transformed into a pixel matrix. Each
value of those pixels, as well as the values of his neighbours, helps the network
understand what to look for in the photos [44].

Figure 2.10: Pixel matrix [45].

A higher quality image, has a greater number of pixels. The intensity level can
be represented by pixels ranging from 0 to 255 [44]. The convolution layers use
convolution masks/filters that divide the image into small sections to read out these
pixels and compare them to neighbouring pixels, as seen in Figure 2.11. Other layers
use these small regions known as receptive fields.

Figure 2.11: Convolution of the image with a filter [46].

30 Chapter 2. Research Background

The Convolution Layer is the simplest basic but also the most crucial layer in a
CNN. It essentially convolves or multiplies the pixel matrix generated for the pro-
vided picture or object in order to build an activation map for the given image [47].
Convolution layers are classified as local operations and can be classified according
to the type of convolution operation, filter size, and other factors [48].

Pooling

Pooling is a key step in further lowering the dimensions of the activation map, re-
taining only the important elements and reducing spacial invariance. As a result,
the model’s learnable features are reduced. This contributes to the resolution of the
overfitting issue. Pooling enables CNN to absorb all of the distinct dimensions of
an image, allowing it to effectively recognise the provided object even if its shape is
distorted or at a different angle. Pooling can be classified into several categories, in-
cluding maximum pooling, average pooling, stochastic pooling, and spatial pyramid
pooling. The most prominent of them is max pooling [47].

Clustering Layers

Clustering layers allow you to group similar inputs together, which is important
for a variety of data processing applications. They are also an effective feature
learning technique, as they can learn representations of the input data that are
useful for clustering and, in many cases, other tasks. This minimises the number of
parameters as well as the complexity and size of the map, which reduces overfitting
and improves network performance [44].

Clustering by maximum value, average, L2 norm, overlapping, and spatial pyra-
mid clustering are some of the clustering methods that can be used on these layers.
Clustering by maximum value is the most commonly used method, and it filters
matrices by the maximum values in each quadrant, as shown in Figure 2.12.

Figure 2.12: CNN grouping [49].

Regardless of the type of operation, clustering can be expressed by the following
equation, where Zk

i denotes the clustering map of layer i of feature map k, F k
i . The

2.3. Artificial Intelligence 31

clustering type is represented by gp() [48]:

Zk
i = gp(F k

i)

Activation Function

The activation function is a nonlinear function that aids in learning and decision
making, particularly in complex patterns. This function can be represented mathe-
matically as follows [44, 48]:

T k
i = ga(F k

i)

Where F k
i denotes the feature map (receptive field), ga() denotes the use of a nonlin-

ear function-activation, and T k
i the due converted output [48]. The graphs in Figure

13 demonstrate various activation methods, such as Rectified Linear Unit (ReLU),
sigmoid, and hyperbolic tangent [48].

Figure 2.13: Activation functions [50].

However, the former is preferable due to its simpler computation and lack of
convergence issues or abrupt variation of the derivative as seen in others [48]. Using
the following function [44], the ReLU function sets the maximum threshold to 0,
implying that negative values become zero without modifying the volume:

f(x) = max(0, x)

This function is typically used after a convolution (linear transformation) layer, but
it is also useful in the final layer. Another sort of activation function is chosen
for this based on the algorithm’s demand and goal. Table 2.4 shows the types of
functions most commonly used in the last layer based on the purpose [44].

32 Chapter 2. Research Background

Table 2.4: The last layer’s activation functions prioritize the neural
network’s ultimate goal.

Objective Activation function
Binary classification Sigmoid

OvR multiclass classification SoftMax
OvO multiclass classification Sigmoid
Continuous value regression Identity

There are two types of multiclass classification: One-vs-Rest (OvR), which sep-
arates multiclass classification into binary classifications per class, and One-vs-One
(OvO), which performs binary classifications for each pair of classes [51].

Batch Normalization

Batch normalisation is a regularisation function that is used to overcome problems
caused by changes in the distribution of hidden unit values, which can pose conver-
gence constraints. The batch normalisation of a changed feature map, F k

i , can be
described by the following formula [48]:

Nk
i = F k

i − µB√
+ε

Where Nk
i denotes the normalised map, µB the batch map mean, σ2

B the variance,
and is utilised to avoid division by zero [48].

Dropout

Dropout is a popular method for regularising neural networks in which specific
units and linkages are randomly eliminated with a given frequency. As seen in
the initial schematic of Figure 2.14, this type of network frequently includes a large
number of connections, which can lead to overfitting. This strategy is critical because
it reduces the amount of connections, which improves network performance and
combats overfitting [52].

2.3. Artificial Intelligence 33

Figure 2.14: Dropout [53].

Fully connected layer

Unlike the previous layers, the completely connected layer, which is usually the last
layer of the network, is a global process (convolution and clustering layers). This
layer’s primary job is classification, for which it does a global analysis of the feature
maps collected by the previous layers [48].

Data augmentation

Data augmentation is a technique used in DNN to artificially increase the size of
the training dataset by performing modifications to existing data. This prevents
overfitting and enhances model generalisation. Three fundamental components of
data augmentation in DNN are as follows [54]:

1. A common type of augmentation is flipping, rotating, scaling, cropping, and
adding noise to the raw data. These augmentations seek to imitate data vari-
ations that may arise in real-world circumstances. For example, turning the
image horizontally aids the model in learning the image’s invariances [54].

2. Use of augmentations: Data augmentation is typically used during the model’s
training phase. In addition to the original data, the augmented data is utilised
to train the model, allowing the model to learn from a bigger and more diver-
sified dataset. The parameters of augmentations are usually decided through
testing and fine-tuning [54].

3. Augmentation restrictions: While data augmentation can be a beneficial tool,
it does have some limitations. For example, it may not be suited for all sorts of
data, such as audio or text data, and the augmentations used must be carefully
chosen to ensure that they are relevant to the problem at hand. Furthermore,

34 Chapter 2. Research Background

augmentations can be computationally expensive, especially for large datasets,
and may necessitate a significant amount of computing power [54].

2.3.4 Transfer Learning

Transfer learning is a machine learning technique in which a model generated for
one project is utilised as the foundation for a model on a different task. The concept
is that the features and knowledge obtained by the model on the first job can be
used as a starting point for the second assignment, rather than training a model
from scratch. This may result in shorter training times, improved performance, and
the capacity to use less data [55].
There are numerous types of transfer learning, including instance-based, feature-
based, and fine-tuning. Instance-based transfer learning occurs when the model’s
parameters and architecture are reused but the model is trained on new data. This
is effective when the new work has a substantial amount of labelled data and is
similar to the old task [55].

Feature-based transfer learning occurs when the model’s learnt features are used
as input to a new model rather than the raw input data. This is useful when the
new task differs from the original task but the model’s features are applicable to the
new assignment [55].

Fine-tuning is the process of modifying the model’s parameters and retraining it
on new data. This is useful when the new work is comparable to the original task
but the model needs to be modified to accommodate the new task [55].

The emphasis in the next chapters will be on the application and framing of ML
for RFF. A portion of the thesis will be devoted to integrating the RFF process into
the medical gateway, thereby broadening the practical application of this technol-
ogy in the healthcare industry. Furthermore, it will be explained the CNN model’s
design, emphasising how this specific model was important in achieving device cat-
egorization. Finally, a thorough assessment of the features employed in training
these models will be presented, followed by a detailed interpretation of the results.
The order of these chapters will eventually provide an in-depth grasp of the RFF
application potential inside a machine learning framework.

Chapter 3

Software and Technologies

3.1 Frameworks Used in Machine Learning

Python is a popular choice for ML, computer vision, and DNN due to its ease of use,
versatility, and big developer community. For starters, Python features an easy-to-
learn and read syntax, making it suitable for both novice and expert developers.
This allows academics to swiftly prototype their ideas without becoming caught
down in the complexity of low-level languages like as C++ or Java [56].

Python also has a robust ecosystem of libraries and tools for ML, computer
vision, and DL. As seen in Figure 3.1, Python leads searches for programming lan-
guages used in AI. These libraries include pre-built, tested, and optimised functions
and models that can be quickly incorporated into the development process. Popular
frameworks such as TensorFlow, PyTorch, and Keras, for example, have made it
easy to design and train sophisticated deep neural networks with only a few lines
of code. This allows researchers to concentrate on the high-level aspects of their
models rather than having to build the low-level functions themselves [56].

35

36 Chapter 3. Software and Technologies

Figure 3.1: Most popular programming language for AI [57].

There are numerous DL frameworks available today, including Caffe from UC
Berkeley, TensorFlow from Google, PyTorch from Facebook, and CNTK from Mi-
crosoft. TensorFlow and PyTorch are now the most popular frameworks. Tensor-
Flow is interesting due to its active community and excellent visualisation, whereas
PyTorch is popular due to its ease of programming and debugging [58]. A resumed
comparison between these frameworks can be seen in table 3.1.

Table 3.1: Comparison of Deep Learning Frameworks [59, 60]

Categories TensorFlow CNTK PyTorch Caffe
Developed By Google Microsoft Facebook Berkeley AI Research
Computation Graphs Static and Dynamic Symbolic Dynamic Static
Primary Language Python, C++ Python, C++ Python, C++ C++, Python
Mobile Support Yes Limited Yes Limited
Special Features TensorBoard, TPUs Easy cloud deployment Dynamic graphs Image focused

Before discussing the two most well-known frameworks, it is necessary to note
that both Tensorflow and PyTorch support the use of GPU. In general, GPU are
chosen over Central Processing Unit (CPU) for CNN because of the performance
benefit they can provide. GPU acceleration was provided through the CUDA Deep
Neural Network (cuDNN) package, which was released in 2014 and provided highly
optimised access to typical CNN algorithms. It is vital for development because
shorter testing times result from shorter training sessions.

3.1.1 PyTorch

PyTorch, which was released in 2016, is a library that achieves a balance between
usability and speed by following to four key principles. The first is familiarity with
Python’s method of designing simple interfaces for the modules it provides. The
same simplicity approach is evident in the way the complexity of ML is disguised,
which serves as another principle and aids in readily identifying and applying neural
network concepts. Sacrificing speed for a simpler design is another core fundamen-
tal that is allowed if the impact on performance is not significant. This allows the
library to remain competitive while maintaining a simpler, more user-friendly ap-
proach. The same idea of keeping the API simple also allows for the easy addition

3.1. Frameworks Used in Machine Learning 37

or modification of functionalities, which is PyTorch’s last premise, and with it, the
library can stay up with new breakthroughs in the field of AI. This general approach
to development assures that any network design, unique or not, may be simply de-
veloped since layers or even losses are easily represented in a class structure [61].

3.1.2 Anaconda

Anaconda is a prominent open-source Python and R distribution for scientific com-
puting and data science. Its fundamental significance in ML arises from capabilities
like environment management, package management, cross-platform compatibility,
integration with IDEs and notebooks, and project repeatability support. Anaconda’s
environment management aids in dependency management by allowing developers
to build various environments with distinct package versions. Conda, its package
manager, makes it easier to install multiple libraries and tools. ML models can
be deployed smoothly across different operating systems thanks to the platform’s
cross-compatibility [62, 63].

3.1.3 Keras

Keras is a Python-based high-level neural networks API that allows for rapid ex-
perimentation and simplifies the creation and training of DL models. Its main
advantages in ML are its simplicity, modularity, versatility, and interaction with
TensorFlow. Keras user-friendly interface and Pythonic idioms make it easy to
build sophisticated models. The API is designed in a modular manner, allowing
developers to build models with pluggable and configurable modules such as layers,
optimizers, and functions. Despite being a high-level tool, Keras provides surpris-
ing flexibility by allowing customisation of layers, loss functions, and optimizers,
allowing complex architectures and learning approaches to be implemented [64, 65].

3.1.4 Tensorflow

TensorFlow version 1.0 was launched in 2015, with the goal of allowing any ML
algorithm to be executed on a number of platforms. This method resulted in a
lot of development flexibility because a number of tools that could result in the
same output were made available to the user. A neural network model, for example,
might be developed using Contrib, Keras, or by specifying them manually via layers.
However, for a new user, the fact that there were so many alternatives to choose
from caused a lot of uncertainty when they first started developing on the library.
Another disadvantage of this approach was that in order to train the network, a
separate function that generated a session had to be constructed. Debugging became
more complex as errors had to be searched for both during definition and execution,
resulting in a less user-friendly library.

38 Chapter 3. Software and Technologies

When TensorFlow 2.0 was released in 2019 all of the issues listed above were
addressed. The latest edition included significant changes aimed at bringing the
library in line with other solutions on the market. First, many libraries were elimi-
nated from the framework with the goal of reducing the number of alternatives a user
had when constructing a model and, as a result, removing the confusion that had
been created. The two-step approach of constructing and executing utilising sessions
was then revised, with the execution phase now being called automatically, resulting
in a much more traceable one-step building process. In addition, the library pro-
vided a more "Pythonic" manner of building neural networks through classes, similar
to PyTorch, making TensorFlow more user-friendly. Another novel aspect was the
model’s abstraction, which enabled the same described system to be executed on a
local PC or a multi-GPU server environment. Finally, by establishing a simplified
pipeline, the way input data is processed has been considerably improved. Origi-
nally, dummy variables had to be constructed to feed data into the network, which
would later be filled with real data during session execution. This caused confusion
once more, therefore it was replaced with the TensorFlow Datasets module, which
gave a better way to use and even add data.

With all of the new enhancements, TensorFlow now provides a comparable expe-
rience to PyTorch, namely a simple, beginner-friendly interface that is also efficient
in terms of speed [61].

3.1.5 PyTorch And Tensorflow Comparasion

The two libraries are compared in article [61], in which the same neural network
architecture was constructed, the same type of data was fed into them, and the
same hardware specifications were used. Based on a pair of stereo images of the
same size, one taken from a right perspective and the other from a left perspective,
and both describing the same scenario, the neural model developed is intended to be
used in deep estimation applications. The network produces a matrix corresponding
to the size of the images describing the depth of the objects in the image.

The images used to train the model were taken from the KITTI 2015 dataset.
The system was also designed in such a way that the libraries could be swapped out,
allowing it to run on the same hardware without the need for another project. The
following hardware specifications were provided [61]:

• CPU: AMD Ryzen 7 1700X, 3.80 GHz

• GPU: ASUS GeForce GTX 1070 Ti A8G, 8GB GDDR5

• RAM: 16 GB 3200 MHz

• STORAGE: 500GB SSD

3.1. Frameworks Used in Machine Learning 39

PyTorch features a more user-friendly API, making components like models, loss
functions, optimizers, and schedulers easier to comprehend and construct. Tensor-
Flow, on the other hand, has a more complicated API but more advanced capabilities
and flexibility. Both libraries included several answers to problems caused by user
error, as well as detailed explanations of components and usage.

The study indicates a difference in accuracy between Tensorflow and PyTorch,
with Tensorflow guaranteeing 1.16% greater accuracy [61].

However, as stated in this article [66] , accuracy and training times might vary
based on the neural network models and datasets employed. Depending on the
dataset, the accuracies in Tensorflow were higher than in Pytorch in some instances,
while the inverse occurred in others.

Both systems are currently recognised as excellent ML frameworks. TensorFlow
is a more comprehensive framework in terms of capabilities, libraries, and commu-
nity, whereas PyTorch is a more simplistic tool in ongoing development. Tensorflow
is a more appropriate choice for this project, however it is not mentioned that Py-
Torch will not be a good choice. Tensorflow is picked because it appears to have
more community support and is more mature than PyTorch [67].

The existence of tensorboard was the final factor in selecting TensorFlow. Ten-
sorBoard is a visualisation tool that aids in the understanding and debugging of
TensorFlow scripts. TensorBoard allows users to readily visualise a model’s compu-
tation graph, training metrics, and parameter values. As illustrated in Figure 3.2,
in which is illustrated the loss of the model deployed [68].

Figure 3.2: Tensorboard [68].

40 Chapter 3. Software and Technologies

3.2 Popular CNN image classification models

Three CNN models are described, which resulted in major alterations to the con-
structions of CNN architectures as well as the obtained outcomes.

3.2.1 LeNet

LeNet, the first CNN that achieved state-of-the-art performance on hand digit iden-
tification tasks, was proposed by LeCun. LeNet’s capacity to categorise digits with-
out being influenced by minor distortions, rotation, and position and scale variations
made it famous for its historical significance. The network is a feed-forward neural
network with five alternating layers of convolutional and pooling, followed by two
fully connected layers, as can be seen in Figure 3.3. Traditional multilayered fully
connected neural networks considered each pixel as a separate input, which was com-
putationally expensive at the time. LeNet addressed this issue by taking use of the
association between neighbouring pixels and dispersing feature patterns across the
entire image, using convolution with learnable parameters to extract similar features
with few parameters. The use of sharable parameters by LeNet revolutionised the
usual approach of training, and it was the first CNN architecture to automatically
learn features from raw pixels, lowering the amount of parameters necessary [48].

Figure 3.3: LeNet-5 architecture [69].

3.2.2 AlexNet

Although the first CNN, LeNet, performed well on hand digit recognition tests, it
had limitations in classifying other sorts of images. However, AlexNet is widely
regarded as the first deep CNN architecture to reach breakthrough results in image
classification and recognition applications. To improve its learning capacity, AlexNet
extended the depth of the CNN from 5 to 8 layers and used different parameter op-
timization procedures. It was trained in parallel on two NVIDIA GTX 580 GPU
to overcome hardware limitations. Despite the benefits of depth in enhancing gen-
eralisation, overfitting was addressed by randomly skipping transformational units
during training.

3.2. Popular CNN image classification models 41

In addition, to increase convergence rate, ReLU was utilised as a non-saturating
activation function, while overlapping subsampling and local response normalisation
were used to prevent overfitting. Other changes included the use of larger-sized filters
(11x11 and 5x5) in the initial layers. AlexNet’s efficient learning approach has played
a crucial role in the advancement of CNN architectures, ushering in a new era of
study in this subject. Figure 3.4 depicts AlexNet’s core architectural design [48].

Figure 3.4: AlexNet architecture [70].

3.2.3 VGG

Simonyan et al. presented the VGG design approach for CNN architectures, which
was modular in layers pattern. In comparison to AlexNet, VGG was created 19
layers deep to investigate the relationship between depth and the network’s rep-
resentational capabilities. VGG proved that contemporaneous placement of small
filters can generate the effect of larger filters by replacing larger filters with a stack
of smaller 3x3 filters. This trend of utilising smaller filters in CNN not only bene-
fits from reduced computational cost but also minimises the number of parameters.
VGG additionally controls network complexity by inserting 1x1 convolutions be-
tween convolutional layers that learn a linear mixture of feature-maps. To tune
the network, max-pooling is applied after the convolutional layer, while padding
maintains spatial resolution. VGG has demonstrated good results for both picture
classification and localization problems; nevertheless, its fundamental disadvantage
is the use of 138 million parameters, which makes it computationally expensive and
difficult to deploy on low-resource platforms [48].

The next section focuses on the implemented medical gateway architecture, in
which will be employed the RFF authentication for increasing the security in IoMT
systems. The general design for most IoMT systems is outlined in section 3.3.

42 Chapter 3. Software and Technologies

3.3 IoMT Gateway

The Open Web Application Security Project (OWASP) defines the typical compo-
nents of IoMT solutions as depicted in Figure 3.5 [71]:

1. Objectives: According to the FDA, connected medical devices (also known
as IoMT endpoints) are medical devices that are linked to hospital networks,
the Internet, or other medical devices. For completeness, the current work
examines non medical devices that can be employed in IoMT situations, such
as environmental sensors.

2. Gateways: These are networking devices that help connect weak endpoints to
the backend by acting as a bridge network.

3. Back-end: Current IoT systems rely on back-end servers to run the IoMT
solution, as well as process and store data.

4. Mobile devices/applications: Mobile devices/applications are often used in IoT
systems to provide remote control of endpoints and back-end management as
well as rapid notifications.

Figure 3.5: The IoMT landscape [72].

3.3. IoMT Gateway 43

The components required in an IoMT solution vary based on the solution. As
illustrated in Figure 3.5, IoMT solutions are categorised as follows [71].

• Wearable (e.g., heart monitors), implantable (e.g., embedded cardiac function
monitors), ambient (e.g., door sensors), or fixed devices (e.g., computerised to-
mography scanners). Most current endpoints include networking capabilities,
but some do not and, as a result, require a gateway.

• Platforms, which are typically cloud-based platforms designed to make smart
devices and apps more accessible. IoMT solutions provide administrators with
centralised back-end management features such as ecosystem administration,
backup of reports and analytics, and online interfaces.

• Edge computing is used to evaluate acquired data (e.g., medical analytics)
and interface with other systems via services (i.e., mobile or web applications)
(e.g., accounting and insurance). IoMT solutions are typically a combination
of these sorts.

The development of a medical gateway is critical in the context of IoMT because
it is the primary component in achieving the establishment of IoMT in the first
place. To better understand the medical gateway, consider Figure 3.6. Medical
devices are responsible for collecting medical measurements from users, and the edge
IoT gateway is responsible for connecting to these devices and storing the acquired
data. The data is then structured in order to be delivered to the appropriate cloud
services or API, where the sensitive data is debited for further study by the medical
team. The medical team, in turn, visualises the data and offers information or alerts
about the data it has processed; these alerts are transmitted from the cloud/API to
the various gateways, allowing users or healthcare assistants to take the right action.

Figure 3.6: Medical Gateway.

Medical devices can now communicate via Bluetooth. Software Development
Kit (SDK) that enable the integration of the device into the appropriate gateway,
allowing data to be received and then delivered to cloud services, are necessary to
establish communication between a medical gateway and the medical devices. To
accomplish this, the gateway must support an operating system capable of running
these SDK. In the case of our built gateway, the ASUS ThinkerBoard Edge R, it
supports the Android operating system, which is essential for integration because

44 Chapter 3. Software and Technologies

the medical devices we utilise include the Android SDK. When measurements are
done, the SDK offered allow to terminate the corresponding connections. Allowing
these devices to connect to the medical gateway only when measurements from the
user are required.

After receiving data from the appropriate devices, these are stored in the medical
gateway for two reasons: first, to allow the user to view the most recent measure-
ments, and second, in the event that it is not possible to send medical data to
cloud/API services, to be saved for when the network conditions are reunified. It
will also be possible to get alerts or messages from medical equipment originating
from cloud or API services, informing the user of procedures or medication dosages.

All gateway data will be received here, in relation to the cloud service. Following
receipt of these data, they are formatted for Fast Healthcare Interoperability Re-
sources (FHIR) format for interoperability purposes, allowing them to be sent to the
appropriate medical equipment and API. If it is necessary to install data analysis
modules, such as certain values that do not fall within the established norms for a
specific user, notifications will be sent to the user or directly to medical teams in
the event that an immediate response is required. FHIR is a standard designed by
Health Level Seven International (HL7) for the exchange, integration, sharing, and
retrieval of electronic health information. These standards aid clinical practise as
well as the management, delivery, and evaluation of health care services. One of the
most appealing aspects of FHIR is its interoperability with RESTful APIs, which al-
lows it to exploit modern web-based communication mechanisms. This combination
enables FHIR to ease the sharing of healthcare information over popular internet
technologies such as HTTP and JSON. This means that healthcare systems that
support FHIR can communicate with other health and non-health systems more
readily [73].

After receiving the data sent by the appropriate cloud services, medical teams
can perform the necessary analyses by sending feedback, or even the names of the
medications and dosages that patients must take, allowing these teams to work from
a distance, reducing the burden placed on hospital staff.

A medical gateway is divided into two sections: the edge and the cloud. The
edge component, which I created, whereas the other cloud component was created
by another project participant. The usage of SDK is crucial in the creation of the
Edge Gateway to enable extensive interaction with the Android application. This
integration was critical in obtaining and processing data from numerous medical
devices, considerably improving the functioning of the programme.

These devices connected with the application via Bluetooth, ensuring a depend-
able, real-time data interchange. The data from the medical equipment was saved
in the programme for two purposes. First, it provided users with access to their
most recent health indicators, allowing them to track their health state over time.

3.3. IoMT Gateway 45

Second, the programme was meant to retain data locally if an internet connection
was absent. When the link was restored, the stored data was transmitted to the
cloud, ensuring that no essential health information was lost.

OAuth2 procedures, a standard authorisation framework, were deployed as part
of data security precautions. This system ensured that both user information and
medical data were safely sent to the cloud. It also managed individual data access
permissions, ensuring user privacy and data integrity.

A user-friendly software interface and a graphic user interface was also created.
This feature allowed users to easily access previously collected data from medical
equipment, presenting it in a clear manner and eliminating the possibility of data
misunderstanding.

Finally, the gateway construction included a notification system to keep con-
sumers and their healthcare professionals in continual communication. This system
allowed medical teams to send users important health-related notifications such as
prescription reminders and updates. This feature encouraged user participation and
proactivity in health management.

Figure 3.7 depicts all of the components of the Edge Gateway development. This
diagram provides a detailed overview of the system, allowing for a more in-depth
understanding of its structure and functions.

Figure 3.7: Edge Gateway.

The cloud gateway component created by another colleague matches to the full
cloud environment of the established medical gateway. The cloud gateway collects
health data from the Edge Gateway and performs all communication operations
with external systems into which the medical gateway can be linked. The cloud
environment is built on Microsoft Azure services, and communication with the edge
gateway is done securely through the Azure IoT Hub platform.

After establishing a secure HTTPS connection using the POST method, the
collected data can be transferred to external medical monitoring systems. Data is
sent via the FHIR format, which is designed for health data exchange. The FHIR
data is subsequently transferred to the external system, which should have an FHIR
database, as a JSON object.

46 Chapter 3. Software and Technologies

In conclusion, the creation of the Edge Gateway was a big step towards a more
user-centric and interactive healthcare system. The incorporation of modern tech-
nologies served to improve healthcare service delivery while assuring secure and
efficient health data administration.

3.3.1 RFF Communication Protocol

The IoMT Gateways sensitive data is protected by a strong communication proto-
col that uses RFF for authentication. To ensure reliability, this protocol provides
numerous messages for device authentication, ongoing authentication process com-
munication, and final conclusion communication, as well as acknowledgement re-
sponses. There are provisions in place to combat threats such as spoofing, to ensure
information transfers are secure and dependable, and to protect the integrity of med-
ical measures. Furthermore, packet monitoring, often known as "packet sniffing," is
crucial in detecting unauthorised network activities. It detects unknown devices, de-
tects duplicate MAC addresses suggestive of spoofing efforts, and analyses real-time
traffic to prevent security vulnerabilities.

In practise, successful authentication comprises the secure transmission of patient
health data from a medical device to a medical gateway. In the meantime, the RFF
platform begins device authentication, and after successful validation, the acquired
medical data is delivered to a cloud service. A failed authentication scenario, on the
other hand, involves a rogue device, detected by RFF procedures and MAC Level
Authentication, delivering modified data. If this device fails the authentication
process, its data is ignored and is not transmitted to the cloud service. The system
leverages 433MHz transceivers via the ER400TRS devices as a last line of defence.
If a device fails to authenticate after three signal readings (WiFi devices), a selected
ER400TRS in the gateway delivers a signal that is assessed via the RFF process;
if it passes, the data is delivered to the cloud; otherwise, the system suspects an
attack and prevents measurements at the medical gateway.

3.3.2 Signal Acquisition and Feature Extraction

A project colleague created an Out-Of-Tree block to satisfy the project’s unique
requirements including WiFi signal bursts reception from an ADALM-Pluto SDR.
Beyond the capabilities of pre-existing GNU Radio blocks, the block optimises data
storage by processing signal bursts and removing non-transmission intervals. No-
tably, the block uses a configurable cutoff technique to maintain crucial transient
phenomena in signal bursts. This ensures that extensive signal attributes are cap-
tured, which is critical for creating an adequate dataset. The colleague’s dataset
attempted to collect RF, with a concentration on WiFi and 433 MHz signals. The

3.3. IoMT Gateway 47

procedure involved gathering data in an office setting to simulate real-world situ-
ations such as background noise and signal interference. For signal receiving, an
ADALM-Pluto SDR and a 2.4 GHz antenna were utilised, while signal emitters
included ESP32 2.4GHz Dual-Mode WiFi and Bluetooth Development Boards, a
Microsoft Surface Book 2 computer, and ER400TRS transmitters. GNU Radio was
used to receive and handle data. For WiFi data collection, a private WLAN was es-
tablished up, and devices pinged an access point while the SDR collected the signals
at varied distances. The ER400TRS transceivers emitted signals captured by the
SDR using a similar distance variation approach for 433 MHz transmissions. Each
approach produced 500-sample datasets per device.

3.3.3 Devices

Espressif Systems created the ESP32 that can be seen in Figure 3.8, a very powerful
and adaptable microcontroller. It has WiFi and Bluetooth capabilities, making it
excellent for IoT applications. The chip has a dual-core CPU, a plethora of GPIO
pins, and support for a number of peripheral interfaces, which increases its flexibility
[74].

Figure 3.8: ESP32.

The easyRadio ER400TRS transceiver Figure 3.9, which incorporates ’easyRa-
dio’ technology, provides high-performance data transmission up to 250m. It boasts
minimal voltage and power consumption, as well as a crystal controlled synthesiser
for frequency stability. Users can configure the frequency, data rate, output power,
RS232 BAUD rate, and encryption, which is supported by a 16-bit CRC [75].

48 Chapter 3. Software and Technologies

Figure 3.9: ER400TRS.

In RFF authentication operations developed in this thesis, both the ER400TRS
transceiver and the ESP32 microcontroller play critical roles. Because of their pro-
grammability and powerful data transfer capabilities, they are suitable for developing
secure, configurable authentication systems. These devices provide the flexibility and
efficiency required to keep wireless communication networks secure and dependable.

Chapters 4 and 5 provide a thorough overview of the CNN model’s development,
highlighting the characteristics used for training the models, the resulting model
performance, and the combining of some aspects in the device categorization for
authentication reasons.

Chapter 4

RFF Machine Learning
Framework

This part describes the project’s implementation, beginning with a description of
security RFF gateway architecture, the installation and configuration of the essential
tools, moving on to the dataset, pre-processing of the dataset data, and the building
and training of the models.

4.1 IoMT Security RFF Gateway Architecture

Consider the following scenario: a genuine user is operating an authorised medical
device that is linked to the Edge Gateway. Simultaneously, an unauthorised entity
attempts to exploit this active session by connecting a rogue device to the Edge
Gateway in order to inject fake data into the system.

The authorised medical device connects to the Edge Gateway and begins com-
munication. The Edge Gateway sends a request for authentication of this device to
the PC in accordance with the defined communication protocol. In response, the PC
authenticates the device, notifies the Edge Gateway that the authentication process
is in progress, and eventually communicates the successful authentication result.
The unauthorised entity attempts to connect its rogue device to the Edge Gate-
way during this ongoing authorised session. The goal is to bypass authentication
and introduce unauthorised data directly. The security gateway must include se-

49

50 Chapter 4. RFF Machine Learning Framework

curity mechanisms to counter such threats, notifying the IoMT gateway that the
communication was not validated.

The architecture we propose consists of a security gateway that employs RFF
technology and works in conjunction with an IoMT gateway. The IoMT gateway is in
charge of receiving data from medical devices such as oximeters and thermometers, as
well as further analysing this data. The gateway can be divided into edge and cloud
stages, with the cloud performing more demanding computation. The security RFF
gateway is designed to deal with IoMT system security threats making use of RFF
and ML techniques. It must capture and recognise the signals that the devices send
to the IoMT Gateway. If a rogue device attempts to communicate with the gateway,
the security gateway must notify the IoMT gateway that the communication was not
validated. This process should take place in real time to detect security threats as
soon as possible. The system should also have an active mode that can demand the
device to communicate based on specific parameters for better identity detection.

The proposed RFF Security Gateway block diagram is depicted in Figure 4.1.
It begins with signal capture using an SDR (ADALM-PLUTO), followed by feature
extraction using SDR software (GNU Radio in this case). The first loopback, sig-
nal acquisition controller, refers to the previously described active mode concept.
Following the feature extraction stage, the system proceeds to the generation of fin-
gerprints, where the device identity should be present. This fingerprint is classified
based on the device emitting the signal using ML. Finally, a second loopback is
in charge of controlling the fingerprint generator for better classification results.
Seeing Figure 4.1 again, there are three green blocks on which this thesis is centred,
which are detailed in the rest of this chapter and chapter 5, providing for a better
knowledge of how they work to generate the final output. The loopbacks depicted
in the diagram have not yet been built and are regarded as future development.

Figure 4.1: Block diagram of the proposed architecture.

Figure 4.2 depicts the process of incorporating RFF into the medical gateway.
In our example, the SDR, represented by the ADALM-PLUTO, takes the lead in
recording signals sent by the device attempting to authenticate. These signals are
then promptly received and processed.

4.1. IoMT Security RFF Gateway Architecture 51

The computer manages the features of these signals, which are subsequently cat-
egorised using CNN models. The results of the CNN models are compared to the
device specified by the medical gateway. This process provides secure exchanges and
the implementation of additional security procedures, allowing for reliable authen-
tication.

As previously described, the RFF integration procedure into the medical gateway
is extremely relevant to a wide range of systems that integrate similar architectural
aspects, particularly those that use a gateway for communication. The use of an
SDR for signal capture, along with computer-based signal management, guarantees
a dependable and dynamic solution.

Furthermore, the development of a different communication protocol strengthens
the system. This protocol not only provides for easy network interactions, but it
also supports secure exchanges, which is critical for system integrity.

As a result, this integrated model provides a customizable template that can be
changed to strengthen security and increase efficiency in a variety of systems centred
on a gateway architecture. It emphasises the potential for scalability and adaptabil-
ity in similar or related sectors, hence accelerating the further implementation of
such technology integrations.

Figure 4.2: RFF Integration in Medical Gateway.

Relative to the RFF authentication module shown in Figure 4.2, it is responsible
for transforming RF signals into features, allowing them to be used by CNN models
for classification, in conjunction with a decision-making mechanism that combines
the results of various CNN models, as it is explained in the rest of this Chapter and

52 Chapter 4. RFF Machine Learning Framework

Chapter 5. Looking again at Figure 4.2 the MAC level authentication module is in
charge of determining whether any unauthorised or "rogue" devices are attempting
to connect to the network. This is especially critical when devices try to mimic
MAC addresses. When a rogue access is detected via the MAC address, the data
supplied to the medical gateway is not validated.

4.2 Setup

This section overviews the many stages required to work with the ML models, such
as the tools and frameworks to be installed, and essential configurations. In our
work, we relied on the TensorFlow framework setup in a virtual environment.

4.2.1 Computer Setup

We had both physical computer systems and virtual machines available to deploy
the ML framework. The physical machines that are available for this project are
shown in the table 4.1.

In the case of the free virtual machine industry, we have Google collab and
Kaggle Kernel, both from Google. The issue here is twofold: the time limit for
use in each session, as well as its performance when compared to, say, the personal
desktop [76] in table 4.1. Of course, the virtual machines provide significantly higher
performance when compared to the laptop in the same table, but this is not the case
when compared to the personal desktop.

Taking these criteria into account, it is clear that the personal desktop is the
better option, as it has better graphics, a faster CPU, more RAM, and more memory,
the latter of which is significant because RFF databases take up a lot of space. The
final reason is that the personal desktop does not have the time usage constraint
that virtual machines do.

Table 4.1: Physical Machine Comparison

Personal Desktop
Computer

Personal Laptop

Processor
AMD Ryzen 1600 Hexa-Core

3.2 GHz
i5-7300U dual-core processor,

3.5GHz Max Turbo
RAM 16.0 GB 8.0 GB
Disk

Memory
SSD 512 GB

HDD 1024 GB
SSD 256 GB

Graphics
Card

NVIDIA GeForce GTX 1060
(6.0 GB dedicated)

Intel® HD Graphics 620
integrated GPU

4.2. Setup 53

4.2.2 Virtual Environment

Anaconda is used to eliminate various problems that may come from the PC’s work-
ing environment. It is possible to establish a virtual environment/profile where the
necessary packages and dependencies are allocated.

1 conda create -n tf_gpu pyhton ==3.8
2 conda activate tf_gpu
3 conda install cudatoolkit =11.0 cudnn =8.0 -c=conda -forge
4 pip install --upgrade tensorflow -gpu ==2.4.1

Listing 4.1: Anaconda Virtual Environment

The implementation of the virtual environment begins after installing Anaconda
and accessing one of the terminals. As shown in Listing 4.1, the first line allows the
development of the desired profile/virtual environment with the Python version. The
second line activates this profile in any instance to activate this virtual environment.
Further installations for the setup of the virtual environment, such as cuDNN, are
required to use the GPU. This library is in charge of accelerating the GPU during the
training, compilation, and evaluation of deep neural networks. The third command
line is used for that, and the fourth command line is required to install the more
reliable tensorflow version with the cuDNN version utilised [77].

The first line of listing 4.2 lists all of the physical devices available, specifically
the GPU. The if statement determines whether any physical devices are available. If
there are, the code loops through each physical device and uses the set virtual device
configuration function to set the memory limit for the virtual device configuration
to 4 GB. This code is useful because it activates the GPU to be used for the code; it
was configured with 4GB of memory because it was the configuration that permitted
higher system stability for all model training.

1 physical_devices = tf. config . list_physical_devices (’GPU ’)
2 if physical_devices :
3 for device in physical_devices :
4 tf. config . experimental . set_virtual_device_configuration (

device , [tf. config . experimental . VirtualDeviceConfiguration (
memory_limit =4000*1024*1024)])

Listing 4.2: Set GPU memory limit

54 Chapter 4. RFF Machine Learning Framework

4.3 Dataset

Since the availability of datasets for this technology is limited, the dataset devel-
oped by another project colleague was used, mostly for the ESP32 devices used
in the WiFi communication protocol and the ER400TRS devices that interact in
the 433 MHz region. In this case, his work focuses on minimizing the captures of
RF signals as much as possible so that they are only, or as reduced as feasible to
present the signal sample that concerns only actual messages provided by the de-
vice. The dataset consists of eight devices that have been categorised according to
their inherent characteristics. Four devices are categorised as belonging to the WiFi
protocol category, and the remaining four are categorised as belonging to the 433
MHz frequency band. Three ESP32 devices in the WiFi category are identical, and
the fourth device is a Surface Book 2. The four ER400TRS devices in the 433 MHz
category are also all the same model. An average of 500 files per class are present
on each device in the dataset.

4.4 Features

The RFF approach provided in this thesis focuses on translating the electromagnetic
waves transmitted by the devices into images that can then be employed in CNN
models, a quick description of how these image transformations are achieved follows.

Constellation

The constellation images can aid in the analysis of minor variations in signal be-
haviour that can be used as RFF features. The constellation plots can indicate
unique patterns or anomalies in the signal that can be ascribed to a specific trans-
mitter by viewing the real (I) and imaginary (Q) components of the complex-valued
data points. These distinct patterns can be utilised as input features for ML algo-
rithms, allowing devices to be identified and classified based on their RFF.

Listing 4.3 code reads complex-valued IQ data files and generates a constellation
plot to view the data. A constellation plot is a scatter plot of the complex-valued
data points’ real (I) and imaginary (Q) components.

1 data = np. fromfile (filename , np. complex64)
2 plt. rcParams [" figure . figsize "] = (100 ,100)
3 plt.plot(np.real(data), np.imag(data), ’.’)
4 plt.grid(True , which=’both ’))

Listing 4.3: Constellation Plot

4.4. Features 55

Figure 4.3 shows an example created by the code, in which the real and imaginary
components of the IQ file is plotted, giving origin to an image capable of being used
for ML.

Figure 4.3: Constellation of an ESP32 device.

Amplitude

The amplitude-time images can aid in the analysis of subtle variations in the am-
plitude of the signal over time, which can be used as features for RFF. These plots
show the amplitude fluctuations of the signal, displaying unique patterns or anoma-
lies that can be linked to certain devices or transmitters.

Listing 4.4 contains code that loads complex-valued IQ data, calculates signal
amplitude, and graphs amplitude over time; an example of this plot is shown in
figure 4.4.

1 data = np. fromfile (f, np. complex64)
2 signal = np.abs(dat.real + 1j * dat.imag)
3 plt. rcParams [" figure . figsize "] = (100 ,100)
4 plt.plot(signal)

Listing 4.4: Amplitude Plot

56 Chapter 4. RFF Machine Learning Framework

Figure 4.4: Amplitude of an ESP32 device.

Power Spectral Density

The PSD is an element for RFF since it reveals the unique properties of each wire-
less devices by exposing the distribution of the signal’s strength across a range of
frequencies.

Listing 4.5 provides an effective approach for computing and displaying the PSD
of RF signals, which is an important aspect for RFF.

1 data = np. fromfile (filename , np. complex64)
2 PSD = np.abs(np.fft.fft(data))**2 / (N*Fs)
3 PSD_log = 10.0* np.log10(PSD)
4 PSD_shifted = np.fft. fftshift (PSD_log)
5 f += center_freq
6 plt. rcParams [" figure . figsize "] = (100 , 100)
7 plt.plot(f, PSD_shifted)

Listing 4.5: Power Spectral Density Plot

4.4. Features 57

Figure 4.5: PSD of an ESP32 device.

Differential Constellation

Differential constellations are also used in CNN models [78]. In Listing 4.6, the
complex data is loaded via the IQ file, then the differential signal is calculated by
multiplying each sample with the complex conjugate of the next sample, followed
by a scatter plot of the real and imaginary parts of the differential signal, resulting
in the image shown in Figure 4.6.

1 I_data = data.real
2 Q_data = data.imag
3 differential_signal = []
4 for i in range(len(I_data) - n):
5 X_t = I_data [i] + 1j * Q_data [i]
6 X_tn = I_data [i+n] + 1j * Q_data [i+n]
7 D_t = X_t * np.conj(X_tn)
8 differential_signal . append (D_t)
9 plt. rcParams [" figure . figsize "] = (100 ,100)

10 plt. scatter (np.real(differential_signal), np.imag(
differential_signal))

Listing 4.6: Differential Constellation Plot

58 Chapter 4. RFF Machine Learning Framework

Figure 4.6: Differential Constellation of an ESP32 device.

Spectrograms

Spectrograms can provide useful insights into a wireless signal’s frequency content
and modulation properties, which can aid in the process of creating and evaluat-
ing RFF. The code in Listing 4.7 reads the complex number and then plots the
spectrogram, resulting in the image shown in Figure 4.7.

1 data = np. fromfile (f, np. complex64)
2 plt. specgram (data , NFFT =1024 , Fs =2000000)

Listing 4.7: Spectrograms Plot

4.4. Features 59

Figure 4.7: Spectrogram of an ESP32 device.

To determine whether the above listed features are appropriate for accurate
characterization of the real devices within each protocol, their effectiveness and
performance will be assessed. In order to distinguish between various devices, this
evaluation aims to determine how reliable and sturdy the features are. The objective
is to determine which aspects for each protocol perform best by examining how well
they perform. Additionally, the research will show the potential of the ADALM-
PLUTO device for integration in RFF systems and evaluate its capacity to handle
these kinds of signals.

4.4.1 Data augmentation

This section describes the data augmentation method used to enhance the CNN
model’s performance. In the realm of DL, data augmentation is a widely used
technique, especially for image-based tasks because it helps improve the diversity
and size of the training dataset. By applying various changes to the input images,
it is possible to generate new training examples that aid in the learning of more
generalized features by the CNN model. This approach also helps mitigate the risk
of overfitting [79].
The technique for implementing data augmentation is described below, and it is also
shown in listing 4.8:

1. Using the Python Imaging Library (PIL) function "Image.open," the input
image file is first opened.

2. Use the ’resize()’ function to resize the image to the appropriate dimensions
(224 x 224). The CNN model will always get images with the same input
shape thanks to this standardisation.

60 Chapter 4. RFF Machine Learning Framework

3. Three new augmented images are produced for each image by rotating the
existing one 90 degrees three times. This is accomplished by executing the
’rotate()’ function with an angle of ’90 * (i+1)’ degrees while iterating through
a range of three (i=0,1,2). As a result, the original image is produced in three
rotated variants at 90, 180, and 270 degrees.

4. Using the ’save()’ function, the rotated photos are then saved with a new file
name that contains the augmentation index.

1 im = Image .open(file_name)
2 im = im. resize ((224 , 224))
3

4 for i in range (3):
5 rotated_im = im. rotate (90 * (i+1))
6 save_path = os.path. splitext (file_name)[0] + f’_augmented_ {i}.

png ’
7 rotated_im .save(save_path)

Listing 4.8: Data augmentation

This augmentation caused each feature to have 2000 images per device, which is
four times more than it did previously. This kind of rotation is employed to make
sure that there is no cut in the images generated.

4.4.2 Data processing

Before feeding the images into the CNN model, the images must be pre-processed to
verify that they are all formatted in the same way. This phase should be conducted
to both the training and validation data to ensure that they are equivalent.

Several standards have been maintained for the various types of images in order
to aid implementation:

• The various sorts of images linked with a feature type are segregated into
different directories, resulting in improved data organisation. The images are
kept in a separate directory with the names of the devices they refer to in each
features directory.

• It is assured that the images are loaded with the same height and length (224
by 224).

In listing 4.9, it is possible to verify that in this case is performed for features of
WiFi devices, is iterated by the different class labels of the devices, and loaded the
images from each class subdirectory within the "basedata", the only thing to change
if it was for the ER400TRS devices would be the name of the labels. These are

4.4. Features 61

then scaled to 224x224 pixels and transformed to numpy arrays. Divide the pixel
values by 255 to normalise them, and save each image with its matching label in a
list called data.

1 for label in ["esp1", "esp2", "espap", "surf"]:
2 for image_path in os. listdir (f" basedata /{ label }/"):
3 img = load_img (f" basedata /{ label }/{ image_path }",

target_size =(224 ,224))
4 img = img_to_array (img) / 255
5 data. append ([img , label])

Listing 4.9: Loading and preprocessing images

4.4.3 Division of data

The dataset in Listing 4.10 is first treated to random shuffling to guarantee an equal
distribution of data points between the training and validation sets. The split index
is computed using 80% of the training set of the dataset. The data is then split
into train data and validation data using slicing. The input features (X) and target
labels (Y) for each of these subsets are extracted and saved individually in the files
X train, y train, X val, and y val.

To map string labels to their associated integer values, a label map dictionary is
built. The string labels on the y train and y val lists are then changed to numbers
using the label map. The integer labels in y train and y val are then one-hot encoded
using TensorFlow’s tf.keras.utils.tocategorical function. ML models frequently em-
ploy one-hot encoding to represent categorical variables because it makes it simpler
for the algorithm to distinguish between distinct categories.

1 np. random . shuffle (data)
2

3 split_index = int(len(data) * 0.80)
4 train_data = data [: split_index]
5 validation_data = data[split_index :]
6

7 X_train = np.array ([i[0] for i in train_data])
8 y_train = [i[1] for i in train_data]
9 X_val = np.array ([i[0] for i in validation_data])

10 y_val = [i[1] for i in validation_data]
11

12 label_map = {"esp1": 0, "esp2": 1, "espap": 2, "surf":3}
13 y_train = [label_map [i] for i in y_train]
14 y_val = [label_map [i] for i in y_val]
15

16 y_train = tf.keras.utils. to_categorical (y_train)

62 Chapter 4. RFF Machine Learning Framework

17 y_val = tf.keras.utils. to_categorical (y_val)

Listing 4.10: Division of data

4.4.4 Model

As shown in Figure 4.8, the CNN used for image classification has five convolutional,
three max-pooling, and three fully connected layers. The need to successfully acquire
complex features and patterns from input images while managing computational
constraints influenced the choice to use this architecture. The colour channels are
represented by pictures with dimensions of 224x224x3. (RGB).

The model is made up of five convolutional layers, the first, second, and fifth of
which are followed by a max-pooling layer, which reduces dimensionality and im-
proves robustness. Following feature extraction, the model utilises fully connected
layers to learn non-linear feature combinations and construct a more abstract repre-
sentation. An output layer with the softmax activation function produces probability
scores for each class to complete the classification.

Figure 4.8: Diagram of model used.

This model was built using the design described in article [26]. This model is
built on AlexNet, with the following distinctions:

• In this model, the image input size is 224x224x3, whereas in the AlexNet
model, the image input size is 227x227x3.

• This algorithm has four output layers compared to Alexnet’s thousand. The
model only has four devices because only four devices were categorised in each
of the WiFi and ER400TRS devices.

4.4. Features 63

• In the end, 8 experiments were performed in which the filters of the con-
volutional layers were changed, and the impact of the dropout (fixed at the
rate of 20%) was evaluated for each of these changes; the differences in filters
and dropout are listed in table 4.2, with the goal of determining if this is an
improvement and using the better experiment.

Table 4.2: Experiences model

Experiment Filters (Conv Layers) Dropout
A 96-256-384-384-256 No
B 96-256-384-384-256 Yes
C 48-128-192-192-128 No
D 48-128-192-192-128 Yes
E 144-384-576-576-384 No
F 144-384-576-576-384 Yes
G 192-512-768-768-512 No
H 192-512-768-768-512 Yes

4.4.5 Training

The features stated earlier in the chapter are trained on the model using the changes
listed in table 4.2.

Hyperopt

The code in Listing 4.11 makes use of the python library hyperopt [80], which is
used to optimise hyperparameters, in this case to find the optimal learning rate. A
learning rate search space is specified. After determining the optimal learning rate,
the model is recompiled and trained again using the training data. The optimal
learning rate is used during the training process to improve the model’s performance
on validation data, eventually improving the overall model quality.

1 from hyperopt import fmin , tpe , hp , STATUS_OK
2

3 def objective (learning_rate):
4

64 Chapter 4. RFF Machine Learning Framework

5 model. compile (optimizer =Adam(lr= learning_rate), loss=’
categorical_crossentropy ’, metrics =[’accuracy ’])

6

7 model_fit = model.fit(X_train , y_train , epochs =45, batch_size
=64, validation_data =(X_val , y_val))

8 val_loss = model_fit . history [’val_loss ’][-1]
9 val_acc = model_fit . history [’val_accuracy ’][-1]

10

11 return {’loss ’: val_loss , ’accuracy ’: val_acc , ’status ’:
STATUS_OK }

12

13 search_space = hp. uniform (" learning_rate ", 0.00001 ,0.00005)
14

15 best = fmin(objective , search_space , algo=tpe.suggest , max_evals
=30, rstate =np. random . default_rng (123))

Listing 4.11: Hyperopt

Epochs

Based on preliminary testing, which demonstrated that exceeding a particular num-
ber of epoches resulted in overfitting, a fixed epoch limit was specified to prevent
overfitting in CNN models and their corresponding features. The epoch limit for
Constellation is 45, 30 for Diferential Constellation, 10 for Amplitude, 15 for PSD,
and 20 for Spectogram. Models are effectively taught to spot patterns using this
technique without becoming unduly specialised to the training set, enhancing gen-
eralizability and performance.

Model Compilation and Training

Before training the model, it was necessary to configure the metrics, optimizer, and
loss function through the model compilation process. Due to the use of the softmax
activation function in the last layer of the model, the categorical_crossentropy loss
function was chosen. The Adam optimizer and accuracy metric were used, as can
be seen in Listing 4.12.

1 model. compile (optimizer =Adam(lr=best[’learning_rate ’]), loss=’
categorical_crossentropy ’, metrics =[’accuracy ’])

Listing 4.12: Model Compile

In Listing 4.13 the model was trained using the fit() function, incorporating
the optimal learning rate found using Hyperopt, as well as other hyperparameters
like the number of epochs and batch size. The validation data (validation set and
corresponding labels), and the training data (training set with associated labels)

4.4. Features 65

were also specified during the training process. This approach ensures a robust and
well-trained model that can effectively generalize to new data.

1 model_fit = model.fit(X_train , y_train , epochs =10, batch_size =64,
validation_data =(X_val , y_val))

Listing 4.13: Model Fit

4.4.6 Saving Model

Each training was saved in a file that specified which experiment it was after training
and validation. The Keras load_model() function was used for later use of these
models, particularly considering their performance. Additionally, measures such
as the confusion matrix, accuracy, loss, precision, recall, and F-score were used to
justify which of the experiments produced better results to be chosen as a model for
the RFF process.

Chapter 5

ML Model Assessment and
Classification Results

This chapter carefully examines the performance of several RFF features. Finding
the effects of custom blocks on each RFF feature and selecting the most successful
experiment for each situation are the main goals of this investigation. The advan-
tages provided by the custom block are then investigated, indicating the optimal
experiment for each RFF feature.

5.1 Class Labels

Categorization is an important element of ML, as it involves predicting class tags
from supplied data. Classifiers effectively assign class tags to new samples by study-
ing and digesting the data, allowing for intelligent decision making. We consider the
following, as shown in Figure 5.1.

67

68 Chapter 5. ML Model Assessment and Classification Results

Figure 5.1: Confusion Matrix [81].

Some key concepts can be extracted from the confusion matrix, as shown in
Figure 5.1 [82]:

• True Positive (TP): the number of instances that were correctly accepted,
predicted, or classed as positive.

• True Negative (TN): the number of cases that were accurately rejected or
forecasted as negative.

• False Positive (FP): the number of positive events that were wrongly accepted
or predicted/classified.

• False Negative (FN): the number of cases that were rejected or predicted/clas-
sified as negative wrongly.

5.2 Evaluation Metrics

There are numerous performance indicators available for comparing and evaluating
CNN models. However, which metric is best for the problem must be considered.
Given that there are numerous measures for measuring categorization performance,
here are several examples, according to [83]:

• Average Accuracy: ∑l
i=1

T Pi+T Ni
T Pi+F Pi+F Ni+T Ni

l

• Precision µ(Micro-average Precision). The micro-average precision, which is
derived from the sums of images decisions, assesses the average agreement
of the data class labels with those of a classifier. The total number of true

5.2. Evaluation Metrics 69

positives (TPi) divided by the total number of false negatives (FNi) across all
classes: ∑l

i=1 TPi∑l
i=1(TPi + FNi)

• Recall µ(micro-average), which is determined from the sums of individual im-
age judgements, assesses the average ability of a classifier to identify class
labels. The total number of true positives (TPi) divided by the total number
of false positives (FPi) across all classes.

∑l
i=1 TPi∑l

i=1(TPi + FPi)

• The link between the positive labels assigned by a classifier based on the
sums of per-image judgements and those given by the data is measured by
the micro-average F-score. With a weighting factor of 2, the F-score is a
weighted harmonic mean between Precision µand Recall µ.

(β2 + 1)× Precisionµ ×Recallµ
(β2 × Precisionµ + Recallµ)

• Precision M (Macro-average Precision) assesses the average per-class agree-
ment between the data class labels and the labels assigned by a classifier. It
divides the true positives (TPi) by the total of true positives (TPi) and false
negatives (FNi) for each class Ci. After that, the total number of classes (l) is
divided by the sum of all classes.

∑l
i=1

T Pi
T Pi+F Ni

l

• Recall M (Macro-average Recall) assesses how well a classifier performs on
average for each class in identifying class labels. It divides the true positives
(TPi) by the total of true positives (TPi) and false positives (FPi) for each
class Ci. After that, the total number of classes (l) is divided by the sum of
all classes. ∑l

i=1
T Pi

T Pi+F Pi

l

• Fscore M (Macro-average F-score): The macro-average F-score evaluates the
correspondence between the positive labels provided by the data and the clas-
sifier’s per-class averaged labels. With a weighting factor of 2, the F-score is
a weighted harmonic mean between Precision M and Recall M.

(β2 + 1)× PrecisionM ×RecallM
(β2 × PrecisionM + RecallM)

70 Chapter 5. ML Model Assessment and Classification Results

5.3 Assessment of the Experiences

Before delving into the model results, there are a few things to consider. First, the
hyperparameters used to obtain the results for each feature. Following that, the
metrics for the values of the experiments for each feature.

Validation accuracy, validation loss, micro-average of precision, recall, and F1-
score, as well as macro-average of precision, recall, and F1-score, are all included in
the tables. It should be noted that in a multiclass task, the micro-average values
and the validation accuracy value produce the same results [84]. The best model for
each table will be represented in bold, to make it easier to visualize.

For each feature, the confusion matrix of the best model, as well their as graphs of
training and validation loss, will be presented. The custom block, carefully created
by a project team member, represents a significant advancement in the field of radio
frequency signal processing. Its primary goal is to significantly minimise the noise
associated with these signals, therefore improving the purity of the collected data.
The custom block ensures a higher level of signal capture accuracy by successfully
isolating and recognising bursts or signals legitimately originating from the device.

5.3.1 Models performance with the custom block for ER400TRS
devices

Constellation

In terms of hyperparameters, a batch size of 64 was employed, as well as a learning
rate of 0.0003, acquired by using the hyperopt library. A detailed review of table
5.1 reveals that model H, which is equipped with a greater number of filters, is the
most effective model for providing good performance for the constellation feature in
the ER400TRS devices.

Table 5.1: Constellation with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 96,25% 0,0812 96,25% 96,25% 96,25% 95,00% 94,66% 96,65%
B 97,15% 0,0956 97,15% 97,15% 97,15% 97,56% 98,27% 97,55%
C 94,77% 0,1358 94,77% 94,77% 94,77% 94,90% 94,76% 94,84%
D 96,92% 0,0904 96,92% 96,92% 96,92% 97,01% 96,92% 96,97%
E 95,70% 0,1520 95,70% 95,70% 95,70% 96,31% 95,70% 96,02%
F 95,07% 0,0777 95,07% 95,07% 95,07% 95,39% 95,07% 95,23%
G 95,45% 0,1356 95,45% 95,45% 95,45% 95,64% 95,45% 95,55%
H 98,37% 0,0430 98,37% 98,37% 98,37% 98,38% 98,37% 98,37%

Figure 5.2 depicts the confusion matrix, which demonstrates that the model
cannot distinguish between devices 15 and 16 as well as it does between devices 13
and 14 from the ER400TRS devices, a trend that is maintained in the other features.
The training and validation losses are decreasing and have values that are close to
one another, indicating that the model is learning well.

5.3. Assessment of the Experiences 71

(a) Loss in constellation model H.
(b) Confusion matrix for constellation

model H.

Figure 5.2: Loss and confusion matrix for constellation model H.

Power Spectrum Density

In terms of hyperparameters, a batch size of 16 was employed, as well as a learning
rate of 0.0002, acquired by using the hyperopt library. Following a thorough ex-
amination, it is obvious that model E exhibits beneficial proficiency, particularly in
regard to the PSD feature, as shown in table 5.2.

Table 5.2: PSD with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 88,25% 0,2260 88,25% 88,25% 88,25% 88,26% 88,25% 88,25%
B 88,81% 0,3283 88,81% 88,81% 88,81% 89,14% 88,87% 89,01%
C 90,08% 0,2436 90,08% 90,08% 90,08% 90,12% 90,07% 90,06%
D 90,73% 0,1735 90,73% 90,73% 90,73% 90,74% 90,72% 90,73%
E 95,00% 0,1608 95,00% 95,00% 95,00% 95,16% 95,00% 94,99%
F 88,40% 0,3642 88,40% 88,40% 88,40% 92,08% 88,40% 87,74%
G 87,55% 0,3386 87,55% 87,55% 87,55% 89,80% 87,55% 88,66%
H 91,12% 0,2990 91,12% 91,12% 91,12% 91,14% 91,12% 91,13%

As shown in figure 5.3, the PSD feature has more difficulty distinguishing be-
tween devices 15 and 16. The model is learning as the training and validation losses
decrease.

72 Chapter 5. ML Model Assessment and Classification Results

(a) Loss in PSD model E. (b) Confusion matrix for PSD model E.

Figure 5.3: Loss and confusion matrix for PSD model E.

Spectrogram

In terms of hyperparameters, a batch size of 16 was employed, as well as a learning
rate of 0.0004, acquired by using the hyperopt library. As demonstrated in table 5.3,
the spectrogram feature benefits from a greater number of filters because model H
produced better results and has a smaller loss when compared to the other models.

Table 5.3: Spectrogram with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 83,22% 0,2843 83,22% 83,22% 83,22% 84,44% 83,22% 83,82%
B 83,60% 0,3150 83,60% 83,60% 83,60% 84,26% 83,60% 83,93%
C 81,35% 0,3046 81,35% 81,35% 81,35% 81,53% 81,35% 81,44%
D 86,37% 0,3034 86,37% 86,37% 86,37% 89,34% 86,37% 87,83%
E 82,90% 0,2705 82,90% 82,90% 82,90% 82,94% 82,90% 82,92%
F 81,38% 0,2966 81,38% 81,38% 81,38% 82,44% 81,29% 81,36%
G 83,57% 0,3082 83,57% 83,57% 83,57% 86,64% 83,30% 84,94%
H 88,00% 0,2480 88,00% 88,00% 88,00% 88,02% 88,00% 88,01%

Figure 5.4 confusion matrix show that the CNN model has even more difficulty
distinguishing between devices 15 and 16 of the ER400TRS devices in this feature
than it does in the constellation and PSD features.

5.3. Assessment of the Experiences 73

(a) Loss in spectrogram model H.
(b) Confusion matrix for spectogram

model H.

Figure 5.4: Loss and confusion matrix for spectogram model H.

Amplitude

In terms of hyperparameters, a batch size of 8 was employed, as well as a learning
rate of 0.0001, acquired by using the hyperopt library. Table 5.4 demonstrates that,
despite the fact that the model performed better in G, which has a bigger number
of filters, the loss values remain relatively high across the models, showing that the
amplitude feature may not be as well matched as the other three previously stated
features.

Table 5.4: Amplitude with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 83,00% 0,5359 83,00% 83,00% 83,00% 83,54% 83,00% 83,26%
B 78,95% 0,5764 78,95% 78,95% 78,95% 79,35% 78,95% 79,15%
C 69,24% 0,6724 69,24% 69,24% 69,24% 70,73% 69,24% 69,33%
D 73,13% 0,5647 73,13% 73,13% 73,13% 74,42% 73,14% 73,77%
E 76,23% 0,6780 76,23% 76,23% 76,23% 76,37% 76,20% 76,29%
F 78,98% 0,9549 78,98% 78,98% 78,98% 79,63% 78,97% 79,30%
G 80,62% 0,5137 80,62% 80,62% 80,62% 80,44% 80,62% 80,63%
H 80,22% 0,7328 80,22% 80,22% 80,22% 80,12% 80,22% 80,17%

As illustrated in Figure 5.5, the model now begins to have greater difficulty dis-
tinguishing between devices 13 and 14, which did not occur in the previous features.
The training and validation loss demonstrates the CNN model’s inability to learn
well this feature.

74 Chapter 5. ML Model Assessment and Classification Results

(a) Loss in amplitude model G.
(b) Confusion matrix for amplitude

model G.

Figure 5.5: Loss and confusion matrix for amplitude model G.

Differential Constellation

In terms of hyperparameters, a batch size of 64 was employed, as well as a learning
rate of 0.0005, acquired by using the hyperopt library. According to table 5.5, model
F performs the best for the differential constellation in the ER400TRS devices.

Table 5.5: Differential Constellation with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 79,27% 0,3805 79,27% 79,27% 79,27% 79,27% 79,28% 79,28%
B 70,62% 0,5079 70,62% 70,62% 70,62% 71,64% 71,62% 71,12%
C 76,05% 0,4603 76,05% 76,05% 76,05% 76,14% 76,05% 76,09%
D 75,90% 0,4272 75,90% 75,90% 75,90% 74,24% 75,90% 75,06%
E 76,02% 0,4477 76,02% 76,02% 76,02% 76,11% 76,02% 76,06%
F 85,58% 0,3986 85,58% 85,58% 85,58% 85,58% 85,57% 87,57%
G 79,44% 0,4877 79,44% 79,44% 79,44% 78,62% 79,43% 79,03%
H 75,65% 0,4218 75,65% 75,65% 75,65% 76,21% 75,65% 75,93%

Figure 5.6 depicts how the CNN model struggles to distinguish between ER400TRS
devices 15 and 16. The model is learning as the training and validation losses de-
crease.

5.3. Assessment of the Experiences 75

(a) Loss in differential constellation model F.
(b) Confusion matrix for differential

constellation model F.

Figure 5.6: Loss and confusion matrix for differential constellation
model F.

Performance Improvement in ER400TRS Devices

The block has helped to improve the performance of different system functionali-
ties by efficiently reducing noise interference. Figure 5.7 indicates that significant
accuracy gains in Constellation (1.61%), PSD (1.25%), Spectrograms (2.5%), Ampli-
tude (1.62%), and, most importantly, Differential Constellation (7.11%) have been
recorded.

Figure 5.7: Accuracy Gain in each feature.

After reviewing Figure 5.8 the block has considerably contributed to the drop
in loss values for most features, highlighting its significance in optimizing the sys-
tem’s performance. Furthermore, the Amplitude feature’s performance emphasises
the need of selecting appropriate features for RFF systems to ensure optimal per-
formance.

76 Chapter 5. ML Model Assessment and Classification Results

Figure 5.8: Decrease of loss in each feature.

5.3.2 Models performance with the custom block for WiFi devices

Constellation

In terms of hyperparameters, a batch size of 64 was employed, as well as a learning
rate of 0.0003, acquired by using the hyperopt library. As can be seen in Table 5.6,
all models have comparable performance characteristics; nonetheless, there are clear
differences. Notably, the models with higher filter specifications, notably models D
and E, show an increased rate of losses, implying a decrease in efficiency. Model B
appears as the most capable of all the models examined.

Table 5.6: Constellation with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 89,67 % 0,2947 89,67% 89,67% 89,67% 89,67% 89,62% 89,65%
B 90,87% 0,2566 90,87% 90,87% 90,87% 91,08% 90,88% 90,89%
C 86,10% 0,2785 86,10% 86,10% 86,10% 87,86% 86,10% 86,15%
D 85,92% 0,3654 85,92% 85,92% 85,92% 86,63% 85,92% 86,27%
E 88,87% 0,3511 88,87% 88,87% 88,87% 88,98% 88,98% 88,93%
F 90,22% 0,2654 90,22% 90,22% 90,22% 90,46% 90,22% 90,34%
G 90,18% 0,2980 90,18% 90,18% 90,18% 90,15% 90,18% 90,14%
H 90,32% 0,3004 90,32% 90,32% 90,32% 90,54% 90,32% 90,43%

The confusion matrix in Figure 5.9 reveals that the surface device has greater
rates than the ESP32 devices, which makes reasonable given that they are different
devices. The training and validation losses indicate that the model is learning well
because the values are lowering and close to one another.

5.3. Assessment of the Experiences 77

(a) Loss in constellation model B.
(b) Confusion matrix for constellation

model B.

Figure 5.9: Loss and confusion matrix for constellation model B.

Power Spectrum Density

In terms of hyperparameters, a batch size of 64 was employed, as well as a learning
rate of 0.0005, acquired by using the hyperopt library. A careful analysis of Table
5.7 reveals that model C is the most proficient of its counterparts. Surprisingly, a
common feature shared by all of the examined models is a high rate of loss. This
high frequency of losses highlights the difficulties that the CNN model faces when
learning this specific feature of the WiFi spectrum.

Table 5.7: PSD with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 71,71% 0,6908 71,71% 71,71% 71,71% 72,81% 71,71% 72,25%
B 71,61% 0,6844 71,61% 71,61% 71,61% 72,87% 71,61% 72,70%
C 76,58% 0,5781 76,58% 76,58% 76,58% 76,69% 76,57% 76,62%
D 67,90% 0,7239 67,90% 67,90% 67,90% 69,40% 67,90% 68,64%
E 72,65% 0,5918 72,65% 72,65% 72,65% 72,85% 72,65% 72,75%
F 71,21% 0,7383 71,21% 71,21% 71,21% 73,56% 71,20% 72,36%
G 64,65% 0,8832 64,65% 64,65% 64,65% 66,77% 64,65% 64,98%
H 70,85% 0,7951 70,85% 70,85% 70,85% 75,57% 70,85% 73,13%

Figure 5.10 shows that it is difficult to identify between ESP32 devices in this
feature, showing that the feature has significant restrictions in this protocol. Despite
the difficulties, the model appears to be learning, as the training and validation losses
are decreasing.

78 Chapter 5. ML Model Assessment and Classification Results

(a) Loss in PSD model C. (b) Confusion matrix for PSD model C.

Figure 5.10: Loss and confusion matrix for PSD model C.

Spectrogram

In terms of hyperparameters, a batch size of 16 was employed, as well as a learning
rate of 0.0004, acquired by using the hyperopt library. Table 5.8 shows a clear
visual illustration of the prevalence of significant losses across all models. Even
the best-performing model, model B, is susceptible to this trend, with a somewhat
high degree of loss. This consistency highlights a common challenge that all models
appear to confront during the optimisation process.

Table 5.8: Spectogram with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 66,07% 0,8139 66,07% 66,07% 66,07% 70,25% 66,07% 68,10%
B 71,53% 0,7213 71,53% 71,53% 71,53% 71,99% 71,52% 71,66%
C 66,17% 0,7107 66,17% 66,17% 66,17% 64,16% 66,17% 65,15%
D 61,66% 0,7722 61,66% 61,66% 61,66% 61,37% 61,66% 61,51%
E 68,14% 0,8184 68,14% 68,14% 68,14% 68,63% 68,14% 68,38%
F 66,74% 0,8308 66,74% 66,74% 66,74% 67,28% 66,74% 67,01%
G 66,54% 0,8536 66,54% 66,54% 66,54% 68,98% 66,53% 67,73%
H 64,96% 0,8079 64,96% 64,96% 64,96% 63,44% 64,96% 64,19%

A deeper examination of the confusion matrix in Figure 5.11 reveals that, the
feature causes difficulty in categorising identical devices. The training and validation
loss, especially the validation loss shows some signs of overfit.

5.3. Assessment of the Experiences 79

(a) Loss in spectrogram model B.
(b) Confusion matrix for spectrogram

model B.

Figure 5.11: Loss and confusion matrix for spectrogram model B.

Amplitude

In terms of hyperparameters, a batch size of 8 was employed, as well as a learning
rate of 0.0001, acquired by using the hyperopt library. Table 5.9 reveals a repeating
pattern in which all models connected with the amplitude feature register large
losses. This pattern shows that the amplitude feature may be ineffective for device
categorization during the RFF procedure.

Table 5.9: Amplitude with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 74,90% 0,7790 74,90% 74,90% 74,90% 76,03% 75,88% 75,46%
B 72,50% 0,7901 72,50% 72,50% 72,50% 75,16% 72,50% 73,80%
C 70,82% 0,8065 70,82% 70,82% 70,82% 68,59% 70,82% 69,69%
D 67,44% 0,8411 67,44% 67,44% 67,44% 70,13% 67,44% 68,76%
E 71,21% 0,6648 71,21% 71,21% 71,21% 71,57% 71,21% 71,39%
F 70,15% 0,7530 70,15% 70,15% 70,15% 73,49% 70,15% 71,78%
G 67,83% 0,7751 67,83% 67,83% 67,83% 69,15% 67,83% 68,48%
H 72,52% 0,7535 72,52% 72,52% 72,52% 73,24% 72,57% 72,90%

Visualising Figure 5.12 demonstrates that the system has difficulty distinguishing
the categorization between the various devices, suggesting that this feature is not
the best for classifying the devices.

80 Chapter 5. ML Model Assessment and Classification Results

(a) Loss in amplitude model A.
(b) Confusion matrix for amplitude

model A.

Figure 5.12: Loss and confusion matrix for amplitude model A.

Differential Constellation

In terms of hyperparameters, a batch size of 64 was employed, as well as a learning
rate of 0.0005, acquired by using the hyperopt library. Table 5.10 shows a clear pat-
tern in which models with lower filters display more losses than models with higher
filters. This clearly demonstrates the importance of filter size in the performance of
these models. Model H is the best performer among all of the models tested.

Table 5.10: Differential constellation with custom block

Experience Accuracy Loss Precision µ Recall µ F-Score µ Precision M Recall M F-Score M
A 73,96% 0,5951 73,96% 73,96% 73,96% 74,12% 73,96% 74,04%
B 76,56% 0,5367 76,56% 76,56% 76,56% 75,86% 76,55% 76,21%
C 70,77% 0,7126 70,77% 70,77% 70,77% 70,86% 71,56% 71,22%
D 70,35% 0,7961 70,35% 70,35% 70,35% 69,73% 69,51% 69,62%
E 79,53% 0,5952 79,53% 79,53% 79,53% 80,26% 79,53% 79,89%
F 79,38% 0,6959 79,38% 79,38% 79,38% 79,61% 79,38% 79,50%
G 71,70% 0,5832 71,70% 71,70% 71,70% 73,14% 71,70% 72,41%
H 80,47% 0,5127 80,47% 80,47% 80,47% 80,69% 80,47% 80,30%

In Figure 5.13 it is possible to visualise that the differential constellation is
capable of identifying devices better than the PSD, amplitude and spectrogram
feature.

5.3. Assessment of the Experiences 81

(a) Loss in differential constellation model H.
(b) Confusion matrix for differential

constellation model H.

Figure 5.13: Loss and confusion matrix for differential constellation
model H.

Performance Improvement in WiFi Devices

In Figure 5.14, the block has effectively contributed to large accuracy gains in many
system aspects, emphasising its importance in performance optimisation. Notably,
accuracy increases in Constellation (1.87%), PSD (4.74%), Spectrograms (8.58%),
and Differential Constellation (6.05%) have been recorded. However, the drop in
accuracy for the Amplitude characteristic (-1.42%) indicates that it may not be the
best option for RFF.

Figure 5.14: Accuracy Gain in each feature.

82 Chapter 5. ML Model Assessment and Classification Results

Figure 5.15 shows that the loss has decreased for Constellation (0.0801), PSD
(0.1653), Spectrograms (0.1712), Amplitude (0.197), and Differential Constellation
(0.1484).

Figure 5.15: Decrease of loss in each feature.

5.3.3 Balancing Feature Complexity with Accuracy in Models

A comparison of the complexity of feature generation - in terms of time - and the ac-
companying validation accuracy findings was performed to determine any potential
association between the two. Several tests were performed throughout the develop-
ment of these functionalities. Notably, the average time for constellation was 6.38
seconds, whereas the average time for amplitude was roughly 27.82 seconds. The
spectrogram took around 12.12 seconds, the differential constellation took about
11.87 seconds, and the PSD took about 9.12 seconds. Visual examination of the
ER400TRS results revealed that the constellation feature produced the best accu-
rate results while using the least amount of time for image production. PSD came in
second place in terms of accuracy while also retaining a reasonable image generating
time. Spectrogram and the differential constellation were then used, with compara-
ble results and mean feature creation durations. Despite requiring the longest mean
time for feature development, amplitude produced the least stunning outcomes.
Specifically for WiFi devices, the constellation delivered improved outcomes despite
being the shortest in terms of feature building time. The differential constellation
followed quickly behind. These findings imply that there is an inverse relationship
between feature complexity and the time required to obtain superior outcomes on the
CNN. This suggests that signal quality may deteriorate as the feature’s complexity
increases.

5.4. Decision Making 83

5.4 Decision Making

It is important to highlight a procedure that plays a role in the decision-making
process for the final architecture and communication protocol with regard to the
device to authenticate. Multiple features in both ER400TRS and WiFi devices are
investigated, and their effectiveness is assessed for the accurate identification of the
device. Given that several features perform well, there is interest in employing these
features in combination for device authentication. It is vital to set up a method that
permits the features with superior performance to have a more substantial weight in
the final selection because each of the features has a varied proportion of validations.
In order to authenticate the device, Weighted Majority Voting is used as the final
decision-making method.

The weighted majority vote is a technique used in ensemble classification to pro-
duce a final conclusion by combining different classifiers. The classifiers in the en-
semble are given varying weights based on their individual accuracies in this method,
giving more competent classifiers more influence in the final choice. The weighted
majority vote concept can be mathematically stated as follows [85]:

di,j =

1, if Di labels x in ωj ,

0, otherwise.
(5.1)

The discriminant function for class ωj obtained through weighted voting is given by
[85]:

gj(x) =
L∑

i=1
bidi,j (5.2)

Where bi is a classifier Di coefficient. The discriminant function’s value (3.2) is the
sum of the coefficients for ensemble members whose output for x is ωj .

5.4.1 Classification

The features that will be employed are decided upon after selecting the joining
process. In order to do this, CNN models with validation accuracy higher than 80%
are picked. This decision was made in an effort to reduce the likelihood that the final
system will contain errors, as higher validation tends to be associated with better
results. The CNN model produces extremely unstable results with the amplitude
feature, so it is not regarded as a feature capable of being used for authentication
by RFF. The amplitude feature will not be placed in both the Weighted Majority
Voting of ER400TRS and WiFi devices.

The following Pseudo Code 1 shows the logic to implement the weighted majority
in the case of the WiFi classification:

84 Chapter 5. ML Model Assessment and Classification Results

Algorithm 1 Weighted Classification
1: constellation← Y
2: differential_constellation← X
3: predictions← [y_pred_constellation, y_pred_differential_constellation]
4: weights← [constellation, differential_constellation]
5: Normalize weights: weights← weights/sum(weights)
6: Identify unique class labels in predictions array: unique_classes ←

unique(predictions)
7: Initialize weighted votes: weighted_votes← zeros(len(unique_classes))
8: Construct a mapping from class labels to indices: class_to_index ←
{class_label: index | index, class_label ∈ enumerate(unique_classes)}

9: for each prediction in predictions do
10: weighted_votes[class_to_index[prediction]]← weights[i]
11: end for
12: Identify class with highest vote in weighted votes: y_pred_weighted ←

unique_classes[argmax(weighted_votes)]
13: Print out y_pred_weighted

For ER400TRS devices Weighted Majority Voting the models chosen are the
ones trained after the noise reduction block, as can be seen in subsection 5.3.1 of
chapter 5, where in the constellation the H model is used, for the PSD the E model,
for the spectogram the H model is used and for the differential constellation the F
model is used.

The code shown in Listing 5.1 demonstrates the way weighted majority voting
is used in ensemble classification. 4 models are present in the case of ER400TRS
devices, as was already mentioned. These classifiers (models) are given a weight
based on each one’s accuracy. This illustrates the notion that, as stated in 5.4,
classifiers with higher levels of expertise ought to be given more consideration when
making a choice. After that, the weights are normalised to guarantee that the
sum of all weights equals 1, suggesting that each weight now indicates the relative
importance of each classifier. The voting process is then carried out, in which each
classifier casts a vote for the anticipated class, with the weight of the vote being
determined by the significance of the classifier.

1 constellation = 0.9837
2 psd = 0.95
3 spectogram = 0.88
4 differential_constellation = 0.8858
5

6 predictions = np.array ([y_pred_constellation , y_pred_psd ,
y_pred_spectogram , y_pred_differential_constellation])

7 weights = np.array ([constellation , psd , spectogram ,
differential_constellation])

8 weights = weights / weights .sum ()

5.4. Decision Making 85

9

10 unique_classes = np. unique (predictions)
11 weighted_votes = np.zeros(len(unique_classes), dtype=np. float64)
12

13 class_to_index = { class_label : index for index , class_label in
enumerate (unique_classes)}

14

15 for i, pred in enumerate (predictions):
16 weighted_votes [class_to_index [pred]] += weights [i]
17

18 y_pred_weighted = unique_classes [np. argmax (weighted_votes)]
19 print(f" Weighted classification : { y_pred_weighted }")

Listing 5.1: Weighted Majority Voting 433

Using the same methodology for WiFi devices, only models that score above 80%
are picked, and since there are fewer features in this case, model B is selected for
the constellation and model H for the differential constellation, resulting in the code
shown in Listing 5.2.

1 constellation = 0.9087
2 differential_constellation = 0.8047
3

4 predictions = np.array ([y_pred_constellation ,
y_pred_differential_constellation])

5 weights = np.array ([constellation , differential_constellation])
6 weights = weights / weights .sum ()
7

8 unique_classes = np. unique (predictions)
9 weighted_votes = np.zeros(len(unique_classes), dtype=np. float64)

10

11 class_to_index = { class_label : index for index , class_label in
enumerate (unique_classes)}

12

13 for i, pred in enumerate (predictions):
14 weighted_votes [class_to_index [pred]] += weights [i]
15

16 y_pred_weighted = unique_classes [np. argmax (weighted_votes)]
17 print(f" Weighted classification : { y_pred_weighted }")

Listing 5.2: Weighted Majority Voting WiFi

5.4.2 Execution Time Evaluation

A CNN model’s success is strongly dependent on its execution time, specifically how
rapidly it can load and classify input. Minimising the time it takes a CNN to load and
analyse information can make a big impact in real-time decision making. This test

86 Chapter 5. ML Model Assessment and Classification Results

analyses the execution time in two classification cases: WiFi devices and ER400TRS
devices, each with over 40 separate tests. The times for each execution refer to the
process between loading the model and the respective feature, classification, and
then using the weighted majority to obtain the final result.

As shown in Figure 5.16, the decision making in ER400TRS devices included
four CNN models, each of which was related to a feature. We discovered a mean
execution time of 7.21 seconds after analysing over 40 experiments.

Figure 5.16: Execution time in ER400TRS decision making.

In WiFi devices Figure 5.17, as opposed to ER400TRS devices, decision making
involved two unique CNN models and the same amount of experiments. These tests
offered useful information on execution times in a different arrangement than the
first example. Notably, the average execution time across all tests was 3.82 seconds,
which was much shorter than in the first case. This reduction was ascribed to the
adoption of fewer CNN models, which presumably reduced overall complexity and
thus shortened execution time.

Figure 5.17: Execution time in WiFi decision making.

5.4. Decision Making 87

5.4.3 Final Classification With Weighted Majority

To evaluate the weighted majority’s performance, the following test was performed:
40 authentications were performed on each device to determine the final result that
the weighted majority provided. As can be seen in Figure 5.18 devices 13 and
14 outperformed the other ER400TRS devices, scoring the same number of true
positives and false positives. These two devices identified positive instances with
more precision and generated fewer errors (false positives) than the other two devices.
Devices 15 and 16 had the most false positives, with device 15 having the most.
However, device 16 properly identified a higher proportion of true positives than
device 15.

Figure 5.18: Final classification with weighted majority for
ER400TRS devices.

Figure 5.19 depicts the weighted majority utilised in the WiFi device results.
Because it is a completely different device, the device surface had the highest number
of true positives, which means it correctly detected the positive cases the most
frequently. The ESPAP had the most false positives.

Figure 5.19: Final classification with weighted majority for WiFi
devices.

Chapter 6

Conclusions

6.1 Discussion

In conclusion, this thesis has demonstrated that the transformation of RF signal
features into images is a valid approach for training CNN models capable of clas-
sifying various devices, as evidenced by some of the models achieving accuracies in
the feature constellation of 98,37% in the ER400TRS devices and 90,82% for WiFi
devices. We’ve shown that features like the constellation and differential constel-
lation can produce promising results in a variety of spectrum regions. Despite not
resulting in optimal results for WiFi the spectogram and PSD, wielded good results
for the ER400TRS devices, with 88,00% for the spectogram feature and 95,00% for
the PSD feature. The ADALM-PLUTO demonstrated acceptable validation rates in
WiFi context, lowering expenses associated with RFF authentication system adop-
tion.

Furthermore, this thesis supports the major advantages of using custom blocks in
signal processing for SDR and RFF. This technique, created by a project colleague,
has shown promising results in improving noise reduction in the collected signal as
well as more precise collection of bursts/signals from the corresponding devices. The
use of the custom block technique resulted in significant increases in signal quality,
which improved the performance of the CNN models in our investigation. As a
result, optimising signal capture and processing through the use of custom blocks
is a beneficial method for increasing the effectiveness of CNN models and overall
RF signal analysis. It should be noted, however, that the amplitude feature proved

89

90 Chapter 6. Conclusions

unstable and should not be used for device authentication. It would have been
incredibly difficult to effectively realise the notion of RFF without the application
of ML techniques.

Based on the findings of this thesis, an important element has been discovered
that exerts a significant influence the performance of CNN models in RFF. The
findings show that the amount of processing and calculation needed to generate the
feature/image in RFF is inversely proportional to the success of the CNN models.
The lower the complexity of the transformation and extraction procedure, the better
the performance of the CNN models, as evidenced by greater accuracy scores. Fea-
tures or images that needed more intense processing and calculation, on the other
hand, resulted in inferior model performance. As features like constellation and
differential constellation yielded better results and where the features that required
less time to generate from the obtained singals. This implies that the simplicity
and efficiency of RFF feature extraction and transformation can indeed improve the
efficacy of CNN models. It emphasises the significance of optimising the processing
stage, with a focus on attaining the desired outputs with the least amount of com-
putation. This minimum calculation is additionally aided by custom blocks that
minimise noise and obtain bursts from the device’s signal to be authenticated.

Another notable achievement of this research is the successful integration of
this RFF mechanism into the medical gateway. This result not only represents a
significant milestone in our project, but it also paves the way for the application
of RFF mechanisms in the larger realm of medical technology. RFF authentication
can be used to other systems similar to the medical gateway, particularly systems
with edge gateways, demonstrating that RFF techniques can be applied to a wide
range of systems.

6.2 Future Work

Regarding CNN models, there is a constraint inherent in their design: if the model
was developed to categorise four devices, any device that is not one of those four
devices will be classified as one of those four devices. As a result, if there is a need
in the future of adding a new device, there will be a need to capture enough samples
to train the model again by adding classes equal to the number of new devices that
are supposed to be within the CNN model’s knowledge. To put it another way, as
new devices are introduced, it should be created a process to add datasets and train
them to add the correct class to the device, allowing the system to become really
adaptive to new devices.

References

[1] F. Al-Turjman, M. H. Nawaz, and U. D. Ulusar, “Intelligence in the inter-
net of medical things era: A systematic review of current and future trends,”
Computer Communications, vol. 150, pp. 644–660, 2020. [Cited on page 1]

[2] R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi,
“An overview of iot sensor data processing, fusion, and analysis techniques,”
Sensors, vol. 20, no. 21, 2020. [Cited on page 1]

[3] Statista1, “Internet of things - number of connected devices worldwide
2015-2025.” Available at https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/, 2023. (Last accessed in
06/05/2023). [Cited on pages ix, 1, and 2]

[4] L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “Iot privacy and
security: Challenges and solutions,” Applied Sciences, vol. 10, no. 12, 2020.
[Cited on page 2]

[5] A. M. Gamundani, A. Phillips, and H. N. Muyingi, “An overview of poten-
tial authentication threats and attacks on internet of things(iot): A focus on
smart home applications,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 50–57, 2018. [Cited on pages ix, 2, and 3]

[6] W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, “Security and privacy
in the medical internet of things: a review,” Security and Communication Net-
works, vol. 2018, pp. 1–9, 2018. [Cited on page 3]

[7] S. S. Mishra and A. Rasool, “Iot health care monitoring and tracking: A survey,”
in 2019 3rd International Conference on Trends in Electronics and Informatics
(ICOEI), pp. 1052–1057, 2019. [Cited on page 3]

[8] Statista, “Number of internet of things (iot) active connections in
healthcare in the european union (eu) in 2016, 2019, 2022 and
2025.” Available at https://www.statista.com/statistics/691848/

iot-active-connections-in-healthcare-in-the-eu/, 2023. (Last ac-
cessed in 07/05/2023). [Cited on pages ix, 3, and 4]

91

92 REFERENCES

[9] R. Somasundaram and M. Thirugnanam, “Review of security challenges in
healthcare internet of things,” Wireless Networks, vol. 27, pp. 5503–5509, 2021.
[Cited on pages 4 and 9]

[10] S. A. Butt, J. L. Diaz-Martinez, T. Jamal, A. Ali, E. De-La-Hoz-Franco, and
M. Shoaib, “Iot smart health security threats,” in 2019 19th International Con-
ference on Computational Science and Its Applications (ICCSA), pp. 26–31,
2019. [Cited on page 4]

[11] E. Lomba, R. Severino, and A. F. Vilas, “Work in progress: Towards adaptive
rf fingerprint-based authentication of iiot devices,” in 2022 IEEE 27th Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1–4, IEEE, 2022. [Cited on page 5]

[12] R. Hireche, H. Mansouri, and A.-S. K. Pathan, “Security and privacy manage-
ment in internet of medical things (iomt): A synthesis,” Journal of Cybersecu-
rity and Privacy, vol. 2, no. 3, pp. 640–661, 2022. [Cited on pages xi, 10, 12, 13,

and 14]

[13] mPython, “Internet of things.” Available at https://mpython.readthedocs.

io/en/master/tutorials/advance/iot/index.html, 2022. (Last accessed in
25/05/2023). [Cited on pages ix and 11]

[14] P. K. Sadhu, V. P. Yanambaka, and A. Abdelgawad, “Internet of things: Secu-
rity and solutions survey,” Sensors, vol. 22, no. 19, 2022. [Cited on pages 14, 15,

and 16]

[15] A. H. Sodhro, A. I. Awad, J. van de Beek, and G. Nikolakopoulos, “Intelligent
authentication of 5g healthcare devices: A survey,” Internet of Things, vol. 20,
p. 100610, 2022. [Cited on page 17]

[16] J. A. Gutierrez del Arroyo, B. J. Borghetti, and M. A. Temple, “Considerations
for radio frequency fingerprinting across multiple frequency channels,” Sensors,
vol. 22, no. 6, 2022. [Cited on page 18]

[17] S. Wang, H. Jiang, X. Fang, Y. Ying, J. Li, and B. Zhang, “Radio frequency fin-
gerprint identification based on deep complex residual network,” IEEE Access,
vol. 8, pp. 204417–204424, 2020. [Cited on page 18]

[18] T. R. Smith, “Comparing rf fingerprinting performance of hobbyist and
commercial-grade sdrs,” Master’s thesis, Wright State University, Ohio, 2020.
[Cited on page 19]

[19] M. Lichtman, “Iq sampling.” Available at https://pysdr.org/content/

sampling.html, 2022. (Last accessed in 11/12/2022). [Cited on page 20]

REFERENCES 93

[20] S. Katz and J. Flynn, “Using software defined radio (sdr) to demonstrate con-
cepts in communications and signal processing courses,” in 2009 39th IEEE
Frontiers in Education Conference, (San Antonio, TX, USA), pp. 1–6, October
2009. [Cited on page 20]

[21] N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, “A review of radio
frequency fingerprinting techniques,” IEEE Journal of Radio Frequency Identi-
fication, vol. 4, no. 3, pp. 222–233, 2020. [Cited on page 20]

[22] C. Zhao, T.-Y. Chi, L. Huang, Y. Yao, and S.-Y. Kuo, “Wireless local area
network cards identification based on transient fingerprinting,” Wireless Com-
munications and Mobile Computing, vol. 13, no. 7, pp. 711–718, 2013. [Cited on

page 21]

[23] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identification
with radiometric signatures,” in Proceedings of the 14th ACM International
Conference on Mobile Computing and Networking, MobiCom ’08, (New York,
NY, USA), p. 116–127, Association for Computing Machinery, 2008. [Cited on

page 21]

[24] L. Peng, A. Hu, J. Zhang, Y. Jiang, J. Yu, and Y. Yan, “Design of a hybrid
rf fingerprint extraction and device classification scheme,” IEEE Internet of
Things Journal, vol. 6, no. 1, pp. 349–360, 2019. [Cited on page 21]

[25] F. Galtier, R. Cayre, G. Auriol, M. Kâaniche, and V. Nicomette, “A psd-
based fingerprinting approach to detect iot device spoofing,” in 2020 IEEE
25th Pacific Rim International Symposium on Dependable Computing (PRDC),
pp. 40–49, 2020. [Cited on page 21]

[26] J. Li, Y. Ying, C. Ji, and B. Zhang, “Differential contour stellar-based radio
frequency fingerprint identification for internet of things,” IEEE Access, vol. 9,
pp. 53745–53753, 2021. [Cited on pages ix, 21, 22, and 62]

[27] G. Baldini, G. Steri, R. Giuliani, and C. Gentile, “Imaging time series for inter-
net of things radio frequency fingerprinting,” in 2017 International Carnahan
Conference on Security Technology (ICCST), pp. 1–6, IEEE, 2017. [Cited on

page 22]

[28] D. Liu, M. Wang, and H. Wang, “Rf fingerprint recognition based on spec-
trum waterfall diagram,” in 2021 18th International Computer Conference on
Wavelet Active Media Technology and Information Processing (ICCWAMTIP),
pp. 613–616, IEEE, 2021. [Cited on page 23]

[29] Microsoft, “Deep learning vs. machine learning in azure machine
learning.” Available at https://learn.microsoft.com/en-US/azure/

94 REFERENCES

machine-learning/concept-deep-learning-vs-machine-learning, 2022.
(Last accessed in 28/12/2022). [Cited on page 23]

[30] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014. [Cited on page 24]

[31] B. Mahesh, “Machine learning algorithms-a review,” International Journal of
Science and Research (IJSR).[Internet], vol. 9, pp. 381–386, 2020. [Cited on page

24]

[32] J. Brownlee, “Supervised and unsupervised machine learning al-
gorithms.” Available at https://machinelearningmastery.com/

supervised-and-unsupervised-machine-learning-algorithms/, 2020.
(Last accessed in 2/1/2022). [Cited on page 24]

[33] R. Saravanan and P. Sujatha, “A state of art techniques on machine learning
algorithms: a perspective of supervised learning approaches in data classifi-
cation,” in 2018 Second international conference on intelligent computing and
control systems (ICICCS), pp. 945–949, IEEE, 2018. [Cited on pages 24 and 25]

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018. [Cited on page 25]

[35] P. Kulkarni, S. Londhe, and M. Deo, “Artificial neural networks for construction
management: a review,” Journal of Soft Computing in Civil Engineering, vol. 1,
no. 2, pp. 70–88, 2017. [Cited on page 25]

[36] G. MALATO, “How many neurons for a neural network.”
Available at https://www.yourdatateacher.com/2021/05/10/

how-many-neurons-for-a-neural-network/, 2021. (Last accessed in
3/01/2023). [Cited on pages ix and 26]

[37] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and
H. Arshad, “State-of-the-art in artificial neural network applications: A survey,”
Heliyon, vol. 4, no. 11, p. e00938, 2018. [Cited on page 26]

[38] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,”
Electronic Markets, vol. 31, no. 3, pp. 685–695, 2021. [Cited on page 26]

[39] S. T. Help, “Data mining vs machine learning vs artificial intelligence
vs deep learning.” Available at https://www.softwaretestinghelp.com/

data-mining-vs-machine-learning-vs-ai/, 2023. (Last accessed in
5/01/2023). [Cited on pages ix and 27]

[40] A. Rosebrock, Deep Learning for Computer Vision with Python: Starter Bun-
dle. PyImageSearch, 2017. [Cited on page 27]

REFERENCES 95

[41] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics:
Conference Series, vol. 1168, p. 022022, feb 2019. [Cited on page 27]

[42] A. Hidaka and T. Kurita, “Consecutive dimensionality reduction by canon-
ical correlation analysis for visualization of convolutional neural networks,”
vol. 2017, pp. 160–167, 12 2017. [Cited on pages ix and 28]

[43] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural
networks: Analysis, applications, and prospects,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019, 2022. [Cited on

page 28]

[44] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural
networks: an overview and application in radiology,” Insights into imaging,
vol. 9, no. 4, pp. 611–629, 2018. [Cited on pages 29, 30, and 31]

[45] M. B. A. Miah, S. Akter, and C. Bonik, “Automatic bangladeshi vehicle number
plate recognition system using neural network,” Am. Int. J. Res. Sci. Technol.
Eng. Math, pp. 62–66, 2015. [Cited on pages ix and 29]

[46] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” arXiv preprint arXiv:1603.07285, 2016. [Cited on pages ix and 29]

[47] A. Ajit, K. Acharya, and A. Samanta, “A review of convolutional neural net-
works,” in 2020 International Conference on Emerging Trends in Information
Technology and Engineering (ic-ETITE), pp. 1–5, 2020. [Cited on page 30]

[48] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial intelligence re-
view, vol. 53, no. 8, pp. 5455–5516, 2020. [Cited on pages 30, 31, 32, 33, 40, and 41]

[49] S. University, “Cs231n convolutional neural networks for visual recogni-
tion).” Available at https://cs231n.github.io/convolutional-networks/

conv, 2022. (Last accessed in 07/01/2023). [Cited on pages ix and 30]

[50] R. Jin and Q. Niu, “Automatic fabric defect detection based on an improved
yolov5,” Mathematical Problems in Engineering, vol. 2021, 2021. [Cited on pages

ix and 31]

[51] E. Alpaydin, Introduction to machine learning. MIT press, 2020. [Cited on page

32]

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014. [Cited

on page 32]

96 REFERENCES

[53] C. Reddy, “Convolutional neural networks.” Available at Source, 2020. (Last
accessed on 8/01/2023). [Cited on pages ix and 33]

[54] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019. [Cited on

pages 33 and 34]

[55] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A
comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109,
no. 1, pp. 43–76, 2021. [Cited on page 34]

[56] A. Reustle, T. Rabbani, and F. Huang, “Fast gpu convolution for cp-
decomposed tensorial neural networks,” in Intelligent Systems and Applications
(K. Arai, S. Kapoor, and R. Bhatia, eds.), (Cham), pp. 468–487, Springer In-
ternational Publishing, 2021. [Cited on page 35]

[57] Google, “Trends.” Available at https://trends.google.pt/trends/?geo=PT,
2023. (Last accessed in 11/02/2023). [Cited on pages ix and 36]

[58] H. Dai, X. Peng, X. Shi, L. He, Q. Xiong, and H. Jin, “Reveal training perfor-
mance mystery between tensorflow and pytorch in the single gpu environment,”
Science China Information Sciences, vol. 65, pp. 1–17, 2022. [Cited on page 36]

[59] M. Shivanandhan, “Deep learning frameworks compared: Mxnet vs tensorflow
vs dl4j vs pytorch.” Available at Source, 2023. (Last accessed on 08/05/2023).
[Cited on pages xi and 36]

[60] Imaginghub, “Comparing deep learning frameworks: Tensorflow, cntk, mxnet,
and caffe.” Available at Source, 2023. (Last accessed on 08/05/2023). [Cited on

pages xi and 36]

[61] M. C. Chirodea, O. C. Novac, C. M. Novac, N. Bizon, M. Oproescu, and C. E.
Gordan, “Comparison of tensorflow and pytorch in convolutional neural network
- based applications,” in 2021 13th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), pp. 1–6, 2021. [Cited on pages 37,

38, and 39]

[62] DOMINO, “What is anaconda?.” Available at https://www.dominodatalab.

com/data-science-dictionary/anaconda, 2023. (Last accessed in
11/06/2023). [Cited on page 37]

[63] Anaconda, “Anaconda documentation.” Available at https://docs.anaconda.

com/, 2023. (Last accessed in 12/06/2023). [Cited on page 37]

[64] Keras, “Keras.” Available at https://keras.io/, 2023. (Last accessed in
13/06/2023). [Cited on page 37]

REFERENCES 97

[65] C. Francois, “Deep learning with python, manning publications,” 2017. [Cited

on page 37]

[66] R. Elshawi, A. Wahab, A. Barnawi, and S. Sakr, “Dlbench: a comprehen-
sive experimental evaluation of deep learning frameworks,” Cluster Computing,
vol. 24, pp. 2017–2038, 2021. [Cited on page 39]

[67] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning with tensorflow: A review,”
Journal of Educational and Behavioral Statistics, vol. 45, no. 2, pp. 227–248,
2020. [Cited on page 39]

[68] Edward, “Tensorboard.” Available at http://edwardlib.org/tutorials/

tensorboard/, 2020. (Last accessed in 10/02/2023). [Cited on pages ix and 39]

[69] N. Gómez, L. López, A. Albert, and J. Llamas, “Image classification with con-
volutional neural networks using gulf of maine humpback whale catalog,” Elec-
tronics, vol. 9, p. 731, 04 2020. [Cited on pages ix and 40]

[70] N. Strisciuglio, M. Lopez Antequera, and N. Petkov, “Enhanced robustness of
convolutional networks with a push–pull inhibition layer,” Neural Computing
and Applications, vol. 32, pp. 1–15, 12 2020. [Cited on pages ix and 41]

[71] F. Alsubaei, A. Abuhussein, V. Shandilya, and S. Shiva, “Iomt-saf: Internet
of medical things security assessment framework,” Internet of Things, vol. 8,
p. 100123, 2019. [Cited on pages 42 and 43]

[72] Z. B. Caldwell, “The case for a security metric framework to rate cyber se-
curity effectiveness for internet of medical things (iomt),” in Women Securing
the Future with TIPPSS for Connected Healthcare: Trust, Identity, Privacy,
Protection, Safety, Security, pp. 63–81, Springer, 2022. [Cited on pages ix and 42]

[73] D. Bender and K. Sartipi, “Hl7 fhir: An agile and restful approach to healthcare
information exchange,” in Proceedings of the 26th IEEE International Sympo-
sium on Computer-Based Medical Systems, pp. 326–331, 2013. [Cited on page

44]

[74] E. Systems, “Esp32.” Available at https://www.espressif.com/en/

products/socs/esp32, 2023. (Last accessed in 13/06/2023). [Cited on

page 47]

[75] DatasheetsPDF, “Er400trs transceiver datasheet pdf.” Available at https:

//datasheetspdf.com/datasheet/ER400TRS.html, 2014. (Last accessed in
13/06/2023). [Cited on page 47]

[76] O. Kröger, “Google colab vs own gtx 1060.” Available at https://opensourc.

es/blog/colab-vs-gtx/. (Last accessed in 26/2/2023). [Cited on page 52]

98 REFERENCES

[77] Google, “Installation.” Available at https://www.tensorflow.org/install/

source_windowshl=pt-br. (Last accessed in 26/2/2023). [Cited on page 53]

[78] L. Peng, J. Zhang, M. Liu, and A. Hu, “Deep learning based rf fingerprint
identification using differential constellation trace figure,” IEEE Transactions
on Vehicular Technology, vol. 69, no. 1, pp. 1091–1095, 2020. [Cited on page 57]

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017. [Cited on page 59]

[80] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn,” Automated Ma-
chine Learning: Methods, Systems, Challenges, pp. 97–111, 2019. [Cited on page

63]

[81] C. Vaddepally, “Confusing with confusion ma-
trix.” Available at https://charan316-cv.medium.com/

confusing-with-confusion-matrix-dbc69d0cd57b, 2021. (Last accessed in
15/01/2023). [Cited on pages x and 68]

[82] M. Heydarian, T. E. Doyle, and R. Samavi, “Mlcm: Multi-label confusion ma-
trix,” IEEE Access, vol. 10, pp. 19083–19095, 2022. [Cited on page 68]

[83] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures
for classification tasks,” Information processing & management, vol. 45, no. 4,
pp. 427–437, 2009. [Cited on page 68]

[84] scikit learn, “Metrics and scoring: quantifying the quality of predictions.” Avail-
able at https://scikit-learn.org/stable/modules/model_evaluation.

html#multilabel-ranking-metrics, 2023. (Last accessed in 02/05/2023).
[Cited on page 70]

[85] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms. John
Wiley & Sons, 2014. [Cited on page 83]

