|
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO I s e|
MESTRADO EM ENGENHARIA DE INTELIGENCIA ARTIFICIAL |

FuzzTheREST - Intelligent Automated Black-
box RESTful APl Fuzzer

TIAGO FONTES DIAS
setembro de 2023

|
INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO I s e‘
MESTRADO EM ENGENHARIA DE INTELIGENCIA ARTIFICIAL ‘

FuzzTheREST - Intelligent Automated Black-
box RESTful APl Fuzzer

TIAGO FONTES DIAS
Setembro de 2023

32 wm

l S ep Eng!é:;;;n:?i' l'm \t]u M E IA _' l‘

FuzzTheREST - Intelligent Automated Black-box
RESTful API Fuzzer

Tiago Fontes Dias

1180939

Dissertation to obtain the Master’s Degree in Artificial Intelligence
Engineering

Supervisor: Dr. Isabel Cecilia Correia da Silva Praga Gomes Pereira

Co-supervisor: Dr. Eva Catarina Gomes Maia

Jury:
President:

Dr. Ana Almeida, Coordinator Professor, Polytechnic of Porto

Vogais:
Dr. Mério Antunes, Coordinator Professor, Polytechnic of Leiria

Dr. Isabel Praga, Coordinator Professor, Polytechnic of Porto

Porto, September 2023

«To my family for all the love and support they have given me»

Abstract

In recent years, the pervasive influence of technology has deeply intertwined with human life,
impacting diverse fields. This relationship has evolved into a dependency, with software
systems playing a pivotal role, necessitating a high level of trust. Today, a substantial portion of
software is accessed through Application Programming Interfaces, particularly web APls, which
predominantly adhere to the Representational State Transfer architecture. However, this
architectural choice introduces a wide range of potential vulnerabilities, which are available and
accessible at a network level. The significance of Software testing becomes evident when
considering the widespread use of software in various daily tasks that impact personal safety
and security, making the identification and assessment of faulty software of paramount
importance.

In this thesis, FuzzTheREST, a black-box RESTful API fuzzy testing framework, is introduced with
the primary aim of addressing the challenges associated with understanding the context of each
system under test and conducting comprehensive automated testing using diverse inputs.
Operating from a black-box perspective, this fuzzer leverages Reinforcement Learning to
efficiently uncover vulnerabilities in RESTful APIs by optimizing input values and combinations,
relying on mutation methods for input exploration. The system's value is further enhanced
through the provision of a thoroughly documented vulnerability discovery process for the user.
This proposal stands out for its emphasis on explainability and the application of RL to learn the
context of each API, thus eliminating the necessity for source code knowledge and expediting
the testing process. The developed solution adheres rigorously to software engineering best
practices and incorporates a novel Reinforcement Learning algorithm, comprising a customized
environment for API Fuzzy Testing and a Multi-table Q-Learning Agent.

The quality and applicability of the tool developed are also assessed, relying on the results
achieved on two case studies, involving the Petstore APl and an Emotion Detection module
which was part of the CyberFactory#1 European research project. The results demonstrate the
tool's effectiveness in discovering vulnerabilities, having found 7 different vulnerabilities and
the agents' ability to learn different APl contexts relying on APl responses while maintaining
reasonable code coverage levels.

Keywords: Automated Software Testing; Reinforcement Learning; Fuzzy Testing; Software
Quality; RESTful APIs

vi

Resumo

Ultimamente, a influéncia da tecnologia espalhou-se pela vida humana de uma forma
abrangente, afetando uma grande diversidade dos seus aspetos. Com a evolucdo tecnolégica
esta acabou por se tornar uma dependéncia. Os sistemas de software comegam assim a
desempenhar um papel crucial, o que em contrapartida obriga a um elevado grau de confianga.
Atualmente, uma parte substancial do software é implementada em formato de Web APls, que
na sua maioria seguem a arquitetura de transferéncia de estado representacional. No entanto,
esta introduz uma série vulnerabilidade. A importancia dos testes de software torna-se
evidente quando consideramos o amplo uso de software em vdrias tarefas diarias que afetam
a seguranca, elevando ainda mais a importancia da identificacdo e mitigacdo de falhas de
software.

Nesta tese é apresentado o FuzzTheREST, uma framework de teste fuzzy de APIs RESTful num
modelo caixa preta, com o objetivo principal de abordar os desafios relacionados com a
compreensdo do contexto de cada sistema sob teste e a realizacdo de testes automatizados
usando uma variedade de possiveis valores. Este fuzzer utiliza aprendizagem por reforco de
forma a compreender o contexto da APl que estad sob teste de forma a guiar a geracdo de
valores de teste, recorrendo a métodos de mutacdo, para descobrir vulnerabilidades nas
mesmas. Todo o processo desempenhado pelo sistema é devidamente documentado para que
o utilizador possa tomar acdes mediante os resultados obtidos. Esta explicabilidade e aplicacdo
de inteligéncia artificial para aprender o contexto de cada API, eliminando a necessidade de
analisar cédigo fonte e acelerando o processo de testagem, enaltece e distingue a solugao
proposta de outras. A solugdo desenvolvida adere estritamente as melhores praticas de
engenharia de software e inclui um novo algoritmo de aprendizagem por reforco, que
compreende um ambiente personalizado para testagem Fuzzy de APIs e um Agente de Q-
Learning com multiplas Q-tables.

A qualidade e aplicabilidade da ferramenta desenvolvida também s3o avaliadas com base nos
resultados obtidos em dois casos de estudo, que envolvem a conhecida API Petstore e um
modulo de Detecdo de Emogdes que fez parte do projeto de investigacdo europeu
CyberFactory#l. Os resultados demonstram a eficicia da ferramenta na descoberta de
vulnerabilidades, tendo identificado 7 vulnerabilidades distintas, e a capacidade dos agentes
em aprender diferentes contextos de APl com base nas respostas da mesma, mantendo niveis
de cobertura aceitaveis.

Palavras-chave: Testagem de Software Automatizada; Aprendizagem por Refor¢o; Testagem
Fuzzy; Qualidade de Software; APls RESTful

Vii

viii

Acknowledgements

| would like to express my sincere gratitude to everyone involved in the success of the work
presented in this thesis.

Firstly, | would like to thank my supervisor, Prof.2 Dra. Isabel Praca and co-supervisor, Dra. Eva
Maia, for their guidance and mentorship throughout this research work, and for all the lessons
taught the past two years we’ve worked together. Their expertise in the research field has been
instrumental in shaping the quality of my works. I'm deeply thankful for all the time and effort
they’ve invested in me.

| would also like to thank my mates, Shaq, and Vito for all their support and companionship, for
all the great moments spent together working, reflecting on life, joking and extracurricular
activities. You know what I'm talking about guys... On a more serious note, | could not have
asked for better colleagues, their work method is incredible and so is the outcome of working
with them.

| would also like to thank my GECAD co-workers, who have accompanied me in this journey and
had to put up with my uncertainties and doubts throughout this work, for all the joyful moments
and talks we had about work and life in general. Their presence had undoubtedly positively
impacted my work.

| extend my heartfelt thanks to all MEIA professors for all their teaching and for passing me
great knowledge in the fields of Al.

I’d also like to thank my all my friends, who've always trusted and continue to trust in my
capacities and motivate me to strive for improvement. Their involvement in various aspects of
my life, such as our nights out, shared music interests, shared hobbies bring me immense joy
and makes me appreciate life a bit more.

Last, but definitely not least, | would like to thank my life pillars; My parents Alexandra and
Antdnio for all their love, encouragement, for believing in my capacities, and for all the sacrifices
they’ve made to provide me with the best upbringing and education possible; My brothers
André and Martim for all always tolerating my bad moods and for helping me stay on the right
track, ensuring | don't get too sidetracked by work and other distractions; The rest of my family
for always being there for me. Oh, and of course, Cookie, my trusty 22cm night's watch!

Index

1 1Y o oY 8 Tt 4 o o TR
0 N 00 Y 1] =) TN 1
1.2 Problem Statement ...t it eeeeeeeeeeeeraeanaaann 3
1.3 Research Questions and ObjJeCtiVESuuuereieetiiiiiiereiiiiiiiieeeeeeeeeeeeeeennnnns 4
1.4 Scientific ContribULIONS ...iiiiiiiiiiiiiiii i e e e ee ettt eeerenennnnns 5
S T © 11 1 [T 6
2 R i Lo 1 V=Y o
Rt B (=T =T=Y ol T (= T Y 7
2.2 Automated SOftware TeStiNg ..cuieiiiiiiiiiii ittt e eeeeeiinnaaaas 9
2.2.1 Principles and Levels of TeStiNg......c.ccuveiiiiiiiiiiiiiiiiiiiiiiiiieeeerereeeannnnns 11
2.2.2 Black-boxX Testing .uuveiiiiiiiiiiiiiiiiiiiiii it i ettt ittt e eeaaaaaanas 13
2.2.3 FUZZY TeSTING . trrtiiiiiiiii ittt ittt et eeeeeeeaiiseeeaeeeeeeeesesaannnnnn 18
2.3 Artificial INtelli@eNnCe ..vvviiiiiiiiiii i e ettt et e e e eeaaaaannns 21
2.3.1 Reinforcement Learning......cvviiiiiiiiiiiitiiiiiiiiiiiiiiiieeeeeeeeeseseennnnns 22
R S (=T 1] o 1 27
3 FUZZTRERES T . e iitttiiiiieeieeeeneieeeeeessneeeseeessssssssssscesssssssssssssssnnsnnns
K I B 00 g Tl <] o1 (U T= 11 13- 4 (o IR PP 29
3011 Target AUAIENCE .ottt e ettt et e e aaaas 30
3.1.2 Ethical and Security Considerationsccoeiiiiiiiiiieeieiiiieieeiiiiinnnnnnns 30
3.2 SOftWare ENgGiNEering ..oviiiiiiiiiiieteeetetereeeeeennnnnneeeeeeeesssesssssnnnnnnnnnnes 31
3.2.1 Requirements ENGINEeIriNgGuuuuiiiiiiieieitiiiiiiieeeeeeeeeeeeeenennnnnnnnnns 32
3.2.2 Practical Software Engineering PrinCiplescooeeieiiiiiiiiiiiiiiiinnnnnnns 33
3.2.3 Architectural DeSignuuuni it ieeeiieiiiiieeeeeeeeeeseaeennnnnnnnnneees 34
3.3 FuzzCore: Reinforcement Learning Designcoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaeenes 39
3.3.1 Data Acquisition and ProCessingcceeveeeeiiiiinneeeeeeeeeereseensnnnnnnnneees 40
3.3.2 Reinforcement Learning Environment........ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieenes 42
3.3.3 Multi-table Q-Learning AGeNnt......cviiiiiiiiiiiiiiiiiiiiiiiieeeeteteeieiiiiinaaaes 44
I T (Y U o 46
4 [DT=T1000] 131 -1 6 o] o TP PPN
4.1 Petstore API Case StUAY ..vvvviiiiiiiiiiiiiiiiiiiiiiiei e eteeeeeitineseeeeeeeeseseannnnns 48
4.1.1 EXxecution and RESULES ...vuuiiiiiiiiiiiiiiiii ittt iiii e ciiieeeeiteeeernieeeens 50
4.2 CyberFactory#1 Case StUAY ..cvviiiiiiiiiiiiiiiiiieeetereeeeennnnereeeeseesseseannnnns 55
4.2.1 EXecution and RESULES ...uuueiiiiiiiii ittt it eetiieeeernneeeennnneeenns 56
4.3 DiSCUSSTON Of RESULLS . .uuteiiiiitiiiii ittt ittt i iii et eiieeeeennteeennnnnaes 58
44 RESUMI 1 uiitttiiiietttieeeeraeeeeennneeeessnseeessanesesssssseessssseesssnsessssnsesesnsnnnes 59

Xi

T 00 Tl 101 o o
5.1 SUMMANY Of FESULES «uuvutetititititieieiiiiiiiiiiieeeeeeeeeeeeeennnnnnaseeeeseseeesenannns 61
5.2 Objectives AChievedcoiiiiiiiiiiiiiiiiiiiiiiiii it i ettt eiiirreeeeeeeeeaaannns 62
5.3 Research QUestions ANSWErEd.....ccuueiiiiiiitiiiiiiteiieiieeeeiieeeeeenneeeeeannneeens 62
5.3.1 RQ1 - What are the main flaws of current automated Software testing
= 0] 0] A LoF- Y o] 4 1Y PPN 63
5.3.2 RQ2 - Which specifications/methods can be utilised to avoid exhaustive web
i o IR =Y = 63
5.3.3 RQ3 - Which are the methods utilised for test/input generation? 63
5.3.4 RQ4 - Is Reinforcement Learning an alternative solution to what would be
considered a search-based problem?.......ccceiiiiiiiiiiiiiiiiiiiiiiiiiiiieeaeenns 64
5.4 Limitations and FULUrEe WOrK ... iiiiiiiiieiiiieiee e reaeeannnnnnas 64
APPENAIXES .« iiiiiiiiieiiiiiiiiiieetitiiiiiinasttteeessnnssssscessssnsnssssccssssnnnsssaces
APPENIX A - PrOCESS VIBW 1eiiiiiitiiiiiiiiiiiitttteteeereeeannnnnnnaneesesessssssseassnnnnns 78
Appendix B- Agent Training ProCess VIEWiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeteneennnnnnnnnes 79
Appendix C - Petstore APl ReSULL PlOtSuueeeriiiiiiiiiiiiiiiiiiiiiiiiiiei e eeeeeeeenanas 80
O T Ve | == N 80
ORI ¥ o e 1 £l o= PPN 82
LOT T €T= o o= 21/ [N 84
C.4 - FINAPetsBYStatus . .uuneriit ittt reeeeeenianeeeeaaeesssennns 86
C.5 - FINAPEESBY TagS tittt i iei ittt et teeeeeeainnsesaeeseesesennnnnn 88
O T ¥ o 1o - Ve | 1 1= 2 PPN 90
C.7 - UpdatePetWithFOrmciiiiiiiiiiiiiiiiiiiiiiiiiii it i ettt ei e ee e e e eaaans 92
O I D = U] (] o PP 94
O B O == L =10 96
(O L o | U L= N 98
(O I B U 0T = 1 = U P 100
(O 7 A o 1o 111 { U Y= (P 102
C.13 - GetUserBYNaME .« vvriiiii ittt ittt ettt ee ettt eeetannneneeeaaaaaseeasananes 104
O I T U= = U 1 e 106
O B T = Tal <0 = N 108
C.16 - GEtOrderBYId ... ettt et et e e et e e e e eaaan 110
O A €T 117 3] P P 112
(OG0 b I D T (=1 =10 o L= PP 114
Appendix D - Status Codes Function Distributioncccoiiiiiiiiiiiiiiiiiiiiiiiiiiia, 116

xii

List of Figures

Figure 1 — Software Testing WoOrkfloW.........coocuiiiiiiii i 2
FIUIE 2 — SEAICH QUUETY ...vveiiiiiee ettt ettt ettt e e et e e et e e e et e e e s sabee e e esabeeessanbeeesesabeeeesnnsens 8
FIgUre 3 - PRISIMA Diagram cocce e 9
Figure 4 — A model of the Software testing Process [2]......cccecvuvieiiciiee e e 10
Figure 5 — Equivalence Partitioning and Boundary-value Examples [2]ccccocvveeivciieeiicieeennns 14
Figure 6 — Fuzzy Testing FIOWCRAITccovuiiii ettt et e e e e 18
Figure 7 — Artificial INtelligence FIieldsooooieii it 21
Figure 8 — RL Algorithms FIOWChArt [70]ccoccviiiiiiiiieceiiee ettt e e st e s saree e 23
Figure 9 — Reinforcement Learning algorithms Taxonomycccccueeeeeciieeieciiee e et 24
Figure 10 — Deep Q-Network Architecture [80]......cueeeeeciiiieieiiiee ettt e erree e 26
Figure 11 - 4+1 VIEW MOAEI [93].eueeiiii ettt e esttree e e e e e e e raree e e e e e e e s eaabaraeeeeeesennnns 34
Figure 12 - C4 Models and 4+1 Architectural View Crossover MatriXcccocoveeeecieeececieeeennns 35
Figure 13 — Level 2 logic View of FUZZTRERESTvviiiiieee ettt 36
Figure 14 — Level 3 LOgIC VIeW Of FUZZCOIE.......ueiiiiiieeiieiieee ettt eetee e st e e st e e s svtae e 37
Figure 15 — Petstore API OAS file [109]......cii ittt e et e e e e ate e e e entaeeeeans 40
Figure 16 - OAS File Data EXLraCtioNnccueeeeeciiiieiciieeeeeitee et ette e e e etee e e e eaee e e s erteeeeenraneaeenns 41
Figure 17 - FuzzZTheREST Data SCheMAciiiiiiiiiiciiiec ettt ettt e e s e atee e st e e 41
Figure 18 — Reinforcement Learning Environment and Agent OVervieWccceccveeeeecvieeeenns 43
Figure 19 - Q-Value Convergence of addPet FUNCLION........ccoociiiiiiiiiii i 51
Figure 20 - Total HTTP Code Status RECEIVEccccuveiiiiiiiii ettt 51
Figure 21 - JaCoCo's Code COVErage REPOITeiiiiiieeeeeiiiee ettt e cecttee e e ectre e e e etre e e e eateeeesntaeaeeans 54
Figure 22 — Human Behaviour Analyzer architecture [9].......ccooviiviiiiiiciiiee e 55
Figure 23 — DetectEmotion Agent’s Q-Value CONVEIZENCEoevvvcvieeeieciieeeeecieeeeccieeeeseinee e 56
Figure 24 - Randomly Generated TeSt Framecccviiiieiiiiie ettt etee e 57
Figure 25 - DetectEmotion Agent’s State Visitscccueiiiiciiiiieciiee et 57
Figure 26 — LEVEI 3 ProCESS VIBWuuiiiiiiiiiiiiciieeecciieee sttt e st e e s ette e e e stte e e s sateeessbteeessnsaeeaennns 78
Figure 27 — Agent Training Process VIEWcoooeviiiiiiii e, 79
Figure 28 — AddPet Agent’s Action DistribUtionccovciiiiieciiii e 80
Figure 29 - AddPet Agent’s Q-Value Convergence and State VisitS........cocccevvcieeeiicieeeiicieeennns 81
Figure 30 - UpdatePet Agent’s Action Distribution.........cccceeeeciiieieciiec e 82
Figure 31 - UpdatePet Agent’s Q-Value Convergence and State Visitscccoveeevvciieeiicieeennns 83
Figure 32 - GetPetByld Agent’s Action Distribution........cccccoevciiiiiiciiii e 84
Figure 33 - GetPetByld Agent’s Q-Value Convergence and State Visitsccocceeeeciieeeecieeeenns 85
Figure 34 - FindPetsByStatus Agent’s Action Distributionccecovveiiiiiii i 86
Figure 35 - FindPetsByStatus Agent’s Q-Value Convergence and State Visits........cccccevcvveeennns 87
Figure 36 - FindPetsByTags Agent’s Action DistribUutionc.cceeeciieeieiiiiecccieee e 88
Figure 37 — FindPetsByTags Agent’s Q-Value Convergence and State Visits..........ccccevvcveeennns 89
Figure 38 - UploadFile Agent’s Action Distribution.........cccceevciiiiiiciiii e 90
Figure 39 - UploadFile Agent’s Q-Value Convergence and State Visitsccccoceeeeecieeeeecieeeenns 91

Figure 40 - UpdatePetWithForm Agent’s Action Distributioncccccoecveeeiiiiieeecciiee e 92

Figure 41 - UpdatePetWithForm Agent’s Q-Value Convergence and State Visitsccccu.eee. 93

Figure 42 - DeletePet Agent’s Action Distributioncccccvieiiiiiii i, 94
Figure 43 - DeletePet Agent’s Q-Value Convergence and State VisitS.......cccoceeevciieeeicciieeeeennen. 95
Figure 44 - CreateUser Agent’s Action Distributioncccccceeiiiiiieiiiicien e, 96
Figure 45 - CreateUser Agent’s Q-Value Convergence and State Visits.......cccccceevveeeiicieeeennen. 97
Figure 46 - LoginUser Agent’s Action DistribUtioncccocvieiiiiiiieiicciee e e 98
Figure 47 - LoginUser Agent’s Q-Value Convergence and State VisitS.........cccccevvvveriiicieeennnnnen, 99
Figure 48 - UpdateUser Agent’s Action Distribution........ccccccuveeiiiiiiiicciiee e 100
Figure 49 - UpdateUser Agent’s Q-Value Convergence and State VisitS.......cccccovevveeircieeennns 101
Figure 50 - LogoutUser Agent’s Action Distribution........cccoccveeiiiiiiiiiiciiee e 102
Figure 51 — LogoutUser Agent’s Q-Value Convergence and State VisitS........cccceeeveeeeecveeennnns 103
Figure 52 - GetUserByName Agent’s Action Distributioncccccoveeivciiiiiicieee e 104
Figure 53 — GetUserByName Agent’s Q-Value Convergence and State Visitsccccoceeennneen. 105
Figure 54 - DeleteUser Agent’s Action Distributioncccccuveiiiiiiii e 106
Figure 55 - DeleteUser Agent’s Q-Value Convergence and State VisitS.......cccccevvciveeiicieeennns 107
Figure 56 - PlaceOrder Agent’s Action Distributioncccccuveiiiiiiiiicciiie e 108
Figure 57 — PlaceOrder Agent’s Q-Value Convergence and State VisitScccccoecveeeiecieeennnns 109
Figure 58 - GetOrderByld Agent’s Action Distribution.........c.ccceveveeiiiciiie e 110
Figure 59 - GetOrderByld Agent’s Q-Value Convergence and State Visits.........ccoccevvriieeennnnns 111
Figure 60 — Getlnventory Agent’s Action Distributionccccoeeevieiieciiee e 112
Figure 61 - Getlnventory Agent’s Q-Value Convergence and State Visits.......ccccocovevevrcieeennnns 113
Figure 62 - DeleteOrder Agent’s Action Distributioncccveiiiciiiiiicieee e 114
Figure 63 - DeleteOrder Agent’s Q-Value Convergence and State Visitccccoecveeeeeciieennns 115
Figure 64 - Functions Contributions to 2XX Status Codecccveiiiiivciiiiiccieee e 116
Figure 65 - Functions Contributions to 4XX Status Codecccoveviiiivciiieeccieee e 116
Figure 66 - Functions Contributions to 5XX Status Codeccccecuiieeeciieeeecieee e 117

Xiv

List of Tables

Table 1 — Inclusion and EXCIUSION Crteria.......cocuiircieeriieiiieereeeriee st st see e see s seee e sree e 8
Table 2 — Methods for black-box Software testing.......cccccevvcieiiiiciee e 15
Table 3 — Level 3 Fuzzer components responsibilitiescccoceeeecieeiicciee e, 38
Table 4 — FuzzTheREST data generation/mutation methods [60], [110]......c.ccccvveevveeeceeenneenns 42
Table 5 — HTTP status codes description [111]cceeeeeieeiiiiiieeeeeeeeeecirreeee e e e eecrerreeee e e e e eanraneeas 43
Table 6 - Case Study Algorithm Parameters.......ccccueeeieiiee e e e e e e e 48
Table 7 - Petstore APl Pets MEthOdScociiiiiiiiiiiicie ettt e e e e saae e 49
Table 8 - Petstore APl Store Methods........coccuviiiiiiiii i 49
Table 9 - Petstore APl Users Methodscccuvieciiiiiiiiiie et e s sae e 50
Table 10 - Petstore VUINErabilities.......ccveiiiecieei et 52
Table 11 — Objectives fUlfilled..........ooi i e 62

XV

XVi

Acronyms

Acronyms
ACM DL
AFL
Al
API
AST
AUTH
BMP
CRUD
csv
DFA
DQN
EC
FoF
GA
GRASP
HBA
HTML

HTTP

Association for Computing Machinery Digital Library
American Fuzzy Lop

Artificial Intelligence

Application Programming Interfaces
Automated Software Testing

Authentication

Basic Multilingual Plane

Create, Read, Update and Delete

Comma Separated Values

Deterministic Finite Automaton

Deep Q-Network

Exclusion Criteria

Factories of the Future

Genetic Algorithm

General Responsibility Assignment Software Patterns
Human Behaviour Analyzer

HyperText Markup Language

Hypertext Transfer Protocol

Inclusion Criteria

Institute of Electrical and Electronics Engineers
Information Technology

Internet of Things

JSON JavaScript Object Notation

JVM Java Virtual Machine

MCC Monte Carlo Control

MDP Markov Decision Processes

MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning

NIST National Institute of Standards and Technology
o Objective

OAS OpenAPI Specification

00D Object-Oriented Design

oS Operating System

PPO Proximal Policy Optimization

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
REST Representational State Transfer

RL Reinforcement Learning

ROI Return Of Investment

RQ Research Question

SARSA State-Action-Reward-State-Action

saL Structured Query Language

SUT Software Under Test

Ul User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

us United States

V&V Verification and Validation

XML eXtensible Markup Language

XViii

Symbols
5

*

S/s

A/a

T/t

Likelyhood of Transictioning States
Optimal Policy

Finite Number of States

Finite number of Actions
Transaction

Reward

Learning Rate

Discount Factor

Q-values

XiX

1 Introduction

This chapter consists of a description of the problem addressed in this thesis along with the
motivations to do so, whilst providing contextual information on the topic. Research questions,
objectives and contributions are also described along with the document's outline.

1.1 Context

Over the years, humans have found a relationship with technology. Technology has affected
human lives in the most various fields, such as communication, education, medicine,
transportation, and work, amongst others. However, this relationship has become somewhat
of a dependency. Software systems have become so crucial from a professional and personal
standpoint that human interaction is unavoidable. Consequently, people have to fully trust
these systems. The trustiness of Software directly relates to its quality [1].

Software Testing is the process that assesses and ensures Software quality. It involves
evaluating a Software application or system to determine if it works correctly and meets the
specified requirements [1]. Typically, it consists of executing the Software Under Test (SUT) and
monitoring it for errors, bugs, and other issues. It is usually performed by specialised teams or
organisations that are dedicated to testing Software applications and systems. These teams
typically use a variety of tools and techniques to test the Software, including automated testing
tools, management tools, and testing frameworks. The goal of Software testing is to identify
any problems or defects in the Software so that they can be addressed and resolved, preferably
before its release, to ensure its success and increase longevity [1]. This is extremely important
to guarantee the Software's quality and discourage malicious users of exploiting these systems,
which can be extremely disruptive to other person’s lives.

Planning

Reporting Execution

Figure 1 — Software Testing Workflow

Considering the Software development process, Software testing is typically performed at
various stages, starting with individual units or components of the Software and progressing to
larger, more complex systems. This helps ensure the correctness of the Software whilst meeting
the specified requirements at every stage of the development process. As shown in Figure 1, it
can be divided into five distinct steps, with some stages overlapping or being performed
iteratively depending on the specific needs and goals of the testing effort [2]:

e Planning: This is the first stage of Software testing and involves defining the scope,
objectives, and approach for the testing effort;

e Design: In this phase, test cases and scenarios are designed and developed to test the
Software;

e Execution: After producing the test cases and scenarios, these are executed, and their
results are recorded;

e Reporting: This stage involves documenting and reporting the results of the testing,
including any errors, bugs, or other issues that were discovered;

o Release: Once the testing is complete and any necessary fixes have been made, the
Software is ready for release. This stage typically involves performing final checks and
quality assurance processes to ensure that the Software is ready for use.

Nowadays, most Software is available via Application Programming Interfaces (APIs) for its
ability to provide web services in a lightweight, maintainable, and scalable way. These APIs can
be of many types, but the most common are web APIs [3]. These usually follow a
Representational State Transfer (REST) API architecture, and their communication occurs in the
network via Hypertext Transfer Protocol (HTTP) requests. This architecture opens more
opportunities to exploit the backend systems, ranging from security vulnerabilities to data
integrity, performance, and compatibility issues.

2

GECAD [4] is an R&D unit having as its mission the development of scientific research and
innovation for incorporating intelligence in engineering and computing complex systems.
GECAD research areas like Affective Computing, Ambient Intelligence, Artificial Intelligence,
Cyber-physical Systems, Group Decision Support, and the Internet of Things (loT). Energy is the
main field of application in this R&D area. However, other areas such as Industry, Cities, Security
and Tourism are also considered. GECAD has proposed the project tackled by this thesis within
the scope of “Cyber SeC IP”.

This thesis tackles the quality of Software, specifically web APIs, by introducing an automated
tool for Software testing in a black-box setting, meaning that it has no knowledge nor access to
the system's inner workings. This test setting aims to identify Software defects that white-box
testing performed by developers may not have caught, resorting to fuzzy testing. However,
being black-box, the input values search and combinatorial spaces are enormous. To reduce the
complexity of this search, Artificial Intelligence (Al) methods such as metaheuristics are capable
of exploring this search space with the goal of finding the right input values and combinations.
This thesis considers the use of Reinforcement Learning to help solve this problem by getting
to know the environment and take better actions to obtain the faulty input necessary to find
vulnerabilities. Therefore, this tools's goal is to automate black-box testing by generating test
cases resorting to Reinforcement Learning (RL) to solve the search and combinatorial problem
that is generating and combining input parameters to interact with functionalities provided by
a web API. Parameterised via configuration files that are both automatically and manually
generated, the objective is also to cover the more hard-to-reach paths.

Tackling a project of this dimension, with such high learning curve, at the forefront of the future
of technology is no easy task. However, it greatly increases one's research and engineering skills.

1.2 Problem Statement

A Software can be evaluated by its quality. Higher Software quality usually leads to more correct
and secure systems, which reflects on the confidence with which users interact with it. Software
testing is one of the main factors in increasing Software quality. However, this step is often
rushed or even skipped, because it takes a lot of time and costs a lot of money. Nonetheless,
the lack of testing has also shown to be quite expensive [5].

As determined by Consortium for Information and Software quality [6], the total cost of poor
Software quality in the United States (US) was around 2 trillion dollars. The identification and
revision of Software vulnerabilities ahead of its release helps avoid problems that could lead to
user dissatisfaction, financial losses, or even legal issues. As reported by the National Institute
of Standards and Technology (NIST), an average bug found in early development stages takes
approximately 5 hours to be fixed, whereas, in a post-product release, it takes around 15.3
hours. Therefore, in addition to improving the quality of the Software, testing decreases
development time and costs. Additionally, release delays can be avoided if issues are identified
and addressed early in the development stage.

Moreover, with Software development quickly increasing and becoming more complex over the
years, automated Software testing tools have been developed to assist testers in detecting
possible vulnerabilities by executing automatically generated test cases on Software
applications. One of the key benefits of automated testing is that it saves time and resources
by automating many of the tasks that would otherwise need to be performed manually. As
stated in [7], 44% of Information Technology (IT) companies automated 50% of testing in the
year of 2020, with 24% seeing an increase in Return Of Investment (ROI). Although the test
suites may not always be reliable, as there is a certain randomness associated with the
generated test cases, they have proven to be quite helpful in uncovering previously unknown
Software vulnerabilities often missed by testers [1].

Despite the integration of automated Software testing tools as part of the Software testing
process, during the first quarter of 2022, over 8000 vulnerabilities were discovered and
documented [8]. Especially for internet-facing applications, [8] found that one in ten
vulnerabilities is considered of high or critical risk.

In retrospect, the failures in Software testing, described by the numbers, are scary since
Software is used for diverse daily tasks that may include the safety or security of people. The
existence of vulnerabilities in these systems can motivate hackers to exploit them and interfere
with personal lives. Moreover, the lack of correctness discourages the use of Software or, when
undetected, may even produce catastrophic results depending on the severity of the defect. As
such, there is an urge to uncover and assess these and other unknown Software vulnerabilities.

1.3 Research Questions and Objectives

This thesis presents the work developed to address the automation of Software testing for
Software defect discovery of RESTful APIs. To serve as guidance for this work, four Research
Questions (RQ) were formulated. These are as follows:

e RQ1 - What are the main flaws of current automated Software testing applications?

e RQ2-Which specifications/methods can be utilised to avoid exhaustive web APl testing?

e RQ3 - Which are the methods utilised for test/input generation?

e RQ4 - Is Reinforcement Learning an alternative solution to what would be considered
a search-based problem?

The main objective of this dissertation is the development of an automated Software testing
tool that uses RL for test case generation to test RESTful APIs. Nonetheless, it also outputs other
Objectives (0O) ranging from the state of the art to design, implementation, and vulnerability
discovery. These can be defined as follows:

e 01 - Investigate the current state of the art of automated Software testing;
e 02 - Investigate the current state of the art of constrained input generation;

e 03 - Identify the current flaws of automated Software testing tools and proposed
solution;

e 04 -Propose a RL environment in the context of Software testing;

e 05 -Design and implement a RL-based automated Software testing tool equipped with
methods for fuzzy black-box testing;

e 06 - In a case study, evaluate the developed work in a well-known public APl and in a
private APl which integrates a GECAD project for vulnerability discovery.

1.4 Scientific Contributions

The completion of the previously established objectives presents multiple scientific
Contributions (C):

e C1-Asurvey about automated Software testing;

e C2- An analysis of the methods to achieve automated black-box testing of web APIs;
e (3 - Asurvey about input/test generation;

e C4-The definition of a RL approach in the Software testing field;

e (5 -The benefits of interpreting a search-based problem as a RL problem;

e (€6 - A functional RL-based automated Software black-box testing tool;

e C7 - Application of the tool in two real-world case study.

Besides the scientific contributions presented by the completion of the referred objectives,
throughout the development of this work, a total of four related scientific papers were
published:

e [Conference] Dias, T., Maia, E., Praga, |. (2023). FuzzTheREST: Intelligent Automated
Black-box RESTful APl Fuzzer, to be submitted to International Symposium on
Foundations & Practice of Security 2023 conference.

e [Conference] - Dias, T., Batista, A., Maia, E., Praca, |. (2023). TestLab: An Intelligent
Automated Software Testing Framework. In: Mehmood, R., et al. Distributed
Computing and Artificial Intelligence, Special Sessions |, 20th International Conference.
DCAI 2023. Lecture Notes in Networks and Systems, vol 741. Springer, Cham.
https://doi.org/10.1007/978-3-031-38318-2 35 [12]

e [Conference] Dias, T., Maia, E., Praga, |. (2023). RESTful APl Automated Software
Testing: A Systematic Review, to be submitted to Computers and Security Journal.

e [Journal — Under review] - Vitorino, J., Dias, T., Fonseca, T., Maia, E., & Praca, |. (2023).
Constrained Adversarial Learning and its applicability to Automated Software Testing:
a systematic review. https://doi.org/10.48550/arXiv.2303.07546 [11]. Submitted to
Information and Software Technology Journal, currently under review.

e [Conference] - Wannous, S., Dias, T., Maia, E., Praca, I., Faria, A.R. (2022). Multiple
Domain Security Awareness for Factories of the Future. In: Gonzalez-Briones, A., et

al. Highlights in Practical Applications of Agents, Multi-Agent Systems, and Complex
Systems Simulation. The PAAMS Collection. PAAMS 2022. Communications in
Computer and Information Science, vol 1678. Springer, Cham.
https://doi.org/10.1007/978-3-031-18697-4 3 [9]

e [Journal] - Maia, E.; Wannous, S.; Dias, T.; Praca, |.; Faria, A. Holistic Security and Safety
for Factories of the Future. Sensors 2022, 22, 9915.
https://doi.org/10.3390/s22249915 [10]

e [Conference] - Dias T., Vitorino, J., Fonseca, T., Maia, E., Praca, |., Viamonte, M. (2023).

Unravelling Network-based Intrusion Detection: A Neutrosophic Rule Mining and
Optimization Framework, submitted to European Symposium on Research in Computer
Security 2023 conference, to be presented in conference and indexed.

1.5 Outline
This thesis is divided into multiple chapters, which can be described as follows:

e Chapter 1 describes the problem statement that motivates this work from a social and
technological viewpoint. The research questions and objectives that guide this work are
also presented, as well as its scientific contributions.

e Chapter 2 consists of a state of the art on Software testing by describing theoretical key
points such as Software quality and levels of testing and explores current black-box
methods for detecting Software vulnerabilities. Additionally, it explores automated
Software testing workflow and respective academic advances to achieve automation.
Moreover, RL methods and techniques are also researched.

e Chapter 3 describes the proposed solution, by conceptualizing the tool, identifying its
target audience, and tackling ethical and security considerations. The system
architecture is also illustrated, following good Software Engineering practices, which
are also presented. Lastly, the implementation of the RL components, environment,
and agent, are also described.

e Chapter 4 describes the experimentation done to investigate the quality of the tool. In
this chapter, the test subject APIs are described, their results are presented and
discussed.

e Chapter 5 concludes the work, by exploring current limitations of the work developed,
assessing the objectives attained in the proposal of this thesis, answering the research
guestions and stating future work.

2 State of the Art

This chapter consists of a state of the art on Automated Software Testing (AST), where the
theoretical background of Software testing, automated testing methods and the latest
academic developments are described. Additionally, Reinforcement Leaning is explored from a
theoretical point of view and methods for solving search, and combinatorial problems are also
described. The first subsection focuses on the methodology that guided this chapter.

2.1 Research Method

To help understand and answer the previously defined objectives (Section 1.3), a
comprehensive systematic review was planned and managed based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology [13]. PRISMA is a
standard aimed at helping authors achieve transparent, replicable, and complete research by
defining an evidence-based checklist with a minimum set of items.

The search was conducted primarily using Association for Computing Machinery Digital Library
(ACM DL) [14] as the primary source of knowledge. ACM DL is a comprehensive database of
articles and literature associated with computing and information technology. The repository
includes the complete collection of ACM publications, and a comprehensive database of core
works in computing from other important publishers in the area, such as the Institute of
Electrical and Electronics Engineers (IEEE) Xplore [15]. Regardless, since it doesn't have all
documents from IEEE Xplore, this database was also queried. Moreover, the Multidisciplinary
Digital Publishing Institute (MDPI) [16] database and Science Direct Database [17] were also
used due to their relevance and impact on the areas related to our topic. MDPI is the largest
open-access publisher database, containing more than 390 peer-reviewed scientific journals.
Science Direct is a large and reputable database of scientific publications provided by Elsevier,
an internationally recognised academic publishing company, that includes millions of journals,
papers, and books that can be used in engineering, science, technology, medicine, and others.

In order to perform the search in the aforementioned sources, search terms had to be defined
to produce a search query. The search terms were chosen after a careful analysis of the
literature on this subject. To ensure comprehensive coverage of papers related to the
established research questions, the employed search strategy considered Software testing,
more specifically REST API testing, via reinforcement learning or search-based methods for test
case generation. In addition to the fields, the most relevant keywords that the search had to
include were "input generation" and "test generation". Figure 2 shows the final search query
that was defined.

(
("software testing" OR "REST API Testing" OR "RESTful API testing")
AND
("reinforcement learning" OR "search-based")
AND
("input generation" OR "test generation")
)

Figure 2 — Search Query

The adopted inclusion and exclusion criteria are detailed in Table 1. Given that the theme of
this study is an active research field, the inclusion criteria was limited to comprise only the most
recent peer-reviewed works (2019 onwards) that focus on the presentation of test case
generation applied to the Software testing field resorting to reinforcement learning or search-
based methods. The search included both conference papers and journal articles but excluded
survey and review papers, duplicated works, and papers that did not have the full text available.

Table 1 — Inclusion and Exclusion Criteria

Inclusion Criteria (IC) Exclusion Criteria (EC)

IC1 — Peer-reviewed journal article or conference paper. EC1 — Survey or Review papers
IC2 — Published from 2019 onwards. EC2 - Duplicate publications
IC3 — Available in English language. EC3 — Full text not available
IC4 — Introduces a test/input generation method that is

applied to the Software testing field.

The search process was conducted in November 2022. To ensure comprehensive and complete
coverage of papers related to the theme, our search procedure was based on two fundamental
steps, the systematic search of identified databases and then the snowballing step. The
systematic search was conducted by inserting the search query into the search engine of the
four databases. In addition to the search query, the "the time of publication" criterion was also
defined in the search engine. At this step, a total of 319 papers were identified, where the
majority, 206 papers, were retrieved from ACM DL, 44 papers were found at Science Direct
Database, 38 articles were discovered at MDPI database and 34 were extracted from |EEE

8

Xplore. Next, 1 duplicated document was eliminated, and the total of identified papers was
updated to 318. These articles were then screened, which consisted of reading both the title
and abstract to remove obviously irrelevant material for this comprehensive review theme. At
this stage, a total of 299 documents were eliminated based on relevancy. The 19 articles left
were then available for full-text analysis. The full-text analysis enables filtering for the eligibility
of articles, excluding the ones that fail to conform to the inclusion criteria or that fit into the
exclusion criteria. At this phase, 11 were eliminated for failing the eligibility criteria. The
snowballing step began by searching the references of the 8 papers left. This check allowed the
gathering of more related papers that were not retrieved initially from databases. Additionally,
3 papers were identified through snowballing. In the end, a total of 11 papers were selected for
this survey. Figure 3 details the process of the search procedure according to the PRISMA
methodology.

Query from Query from Query from Query from
Science Direct MDPI ACM DL |EEE Xplore
(n=44) (n=38) (n=206) (n=34)

| | [

r
Total records identified Total records identified
through database searching > through snowballing
(n=319) (n=3)

|

Total records identified after
eliminating duplicates
(n=318)

)

Records Screened Records excluded
(n=318) (n=299)

Identification

Selection

¥

Full-text articles assessed for N Full-text assessed for
- Full-text articles excluded for B
eligibility — lgibility criteria (n = 11) eligibility
(n-19) eligibility criteria (n = (n=3)

Elegibility

A 4
Studies included in the
qualitative synthesis
(n=11)

Figure 3 - PRISMA Diagram

2.2 Automated Software Testing

As defined by IEEE in [18] Software testing is the activity in which a system or component is
executed under specified conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or component. Essentially, it is the process of verification
and validation (V & V) of Software. It has an important role when it comes to checking whether

9

a given system and implementation meets the user requirements and fulfils the Software
quality metrics [19]. One common way to distinguish between validation and verification is by
asking two questions [2]:

Verification: are we building the product right?
Validation: are we building the right product?

For these questions to be helpful, one must first understand how they can be answered.
Verification can be answered by ensuring, to a certain extent, that the Software built and tested
following a Software testing methodology has been correctly developed. Validation can only be
answered by analysing the user requirements and satisfaction regarding the developed solution.
As such, only the product owner and end-users are capable of evaluating if indeed the Software
being developed satisfy all requirements and is being fulfils its requirements [1]. The answer to
these questions does not ensure that the Software is defect-free or will behave as specified in
every circumstance. As Edsger Djikstra famously put it [20]:

"Testing can only show the presence of errors, not their absence."

Software testing has a vital role in the Software development process. In many Software
development methodologies, such as Test-Driven Development [21] and Plan-Driven
Development [22], it appears consistently as the phase that evaluates the developed work and
reveals defects of a system. It evaluates correctness, completeness, and accuracy of the
Software. Testability is the scope of the ease with which a system can be tested. Itis a very well-
established Software quality attribute that highly influences the quality of the Software.
However, it being very much overlooked and along with the lack of testing, these end up being
the main reasons for the failure of big projects [19]. This usually happens because Software
testing is a process that takes a lot of time, and the discovery of errors in previous functionalities
can lead to a delay in the development of new functionalities. Nevertheless, the raise of errors
and defects that appear via Software testing should not be disregarded nor considered an
adversity towards the Software being developed. As stated in [19]:

"Testing is not a pit, it is a ladder!"

Test Test Test Test
Cases Data Results Reports

Design Test Prepare Test Run Program Compare Results
Cases Data with Test Data to Test Cases

Figure 4 — A model of the Software testing process [2]

In an attempt to reduce the time-consuming task that is testing Software, automated Software
testing tools have been developed and are nowadays highly used along with the manual testing
process. Figure 4 depicts the typical Software testing process that a system must go through.

10

While manual testing fits perfectly in this model, automated Software testing lacks the ability
to automatically generate traditional test cases, since human expertise of the system must be
involved to specify the expected output [2]. Therefore, an AST should comprise a different
oracle that does not require human intervention. In addition to reducing the testing time, they
are also characterised by increased fault detection, human-effort alleviation and increased
confidence [23].

AST is often divided in three types: (i) Black-box, where the tool only has access to input
specifications and (ii) White-box, leveraging from knowing the source code [24] and (iii) Grey-
box, benefitting from using both Black-box and White-box techniques [25]. The former is a
method of evaluating the functionality of a Software system without having access to the
system's internal workings, nor knowledge of it. This type of testing is based on the end user's
requirements and is conducted from the customer's perspective. By providing both valid and
invalid input, black box testing can identify any incomplete or unpredictable requirements and
address them [26], [27]. White box testing is a method of testing that involves examining the
internal structure and logic of a Software program. Therefore, it is usually carried out by the
developers. It is commonly used to detect logical errors in the code, debug the code, and find
typographical errors. This approach to testing is also helpful in uncovering incorrect
programming assumptions and verifying that the code follows coding standards and best
practices [27], [28]. Grey-box testing is the combination of the former types described. It
leverages from combining black-box and white-box techniques that the tester can use to design
more effective and efficient test cases [25].

Regardless of the type, the test cases differ from one another depending on the generated input
and the action sequence taken, since different combinations can lead to different path
exploration of the SUT. The input can be generated by resorting to multiple methods, which will
be further discussed in a systematic manner of input/test generation subsection of this chapter.
This thesis only accounts the Black-box testing type for further discussion in the context of APIs.

Software testing is comprised of a set principles and levels, which provide guidance and method
to the developed test cases. AST tools should also consider these principles and levels to provide
different valid test cases which are automatically generated. The following subsection explores
the principles and levels of Software testing.

2.2.1 Principles and Levels of Testing

Software testing principles are the fundamental concepts that form the foundation of effective
Software testing. By following these pillars, Software testers are guided to perform test cases,
which ultimately will evaluate the quality and functionality of a Software application or system.
The seven principles of Software testing described in [19] include:

1. Testing shows presence of Defects — Testing highlights the defects; it does not present
the absence of them. As such, the goal of testing is to make the Software fail.

11

2. Exhaustive testing is impossible — Testing each input for every possible value is
impractical and unfeasible. Testing should be made considering the domain boundaries
of an input.

3. Early Testing — Defects should be found in the early phases of the Software
Development Cycle, as it will reduce the cost of amendment.

4. Defect Clustering—Small modules are more likely to have the highest number of defects.

5. Pesticide Paradox — Running the same test cases multiple times will most likely not
produce any different outcome. Therefore, these must be regularly revised, adding new
test scenarios.

6. Testing is context-dependent — Different Software requires different types of testing.

7. Absence of Errors-Fallacy — Bug-free Software can still be unusable if the wrong
requirements were incorporated in the Software and still do not address the business
needs.

In addition to the importance of following the principles of testing, a system can also be tested
on multiple levels, from more fine-grained testing where only units are under test to more
general testing simulating the actions of a user. Additionally, the end user's interaction with the
system is also considered validation testing of the system. From a simpler and fine-grained to a
more complex and general testing method, the levels of testing are as follows [19]:

1. Unit Testing — The system is broken down into its smallest testable parts, designated
units. It consists of independently testing each of those units.

2. Integration Testing — The purpose of integration testing is to expose defects in the
integration between multiple units.

3. System Testing — Focusing on the entire Software, this is usually the last test performed
by developers before making a system public. This level contains various types, such as:
(i) usability testing; (ii) performance testing; (iii) security testing and (iv) Regression
testing.

4. Acceptance Testing — The last level of testing, which is performed by the end-users,
reflects the acceptability of the system. This level regards different types of tests, such
as: (i) Alpha testing; (ii) Beta testing; (iii) user acceptance testing; (iv) business
acceptance testing; and (v) exploratory testing.

Testers and automated Software testing tools should consider these principles and levels of
testing to provide the best possible outputs to whom they may concern. The lack of testing at
any of these levels can jeopardise the quality of the Software being developed [29].

Most of the test levels mentioned, are typically made in a white-box manner. However, because
of this there is a certain bias in the tests to assess their validity with correct input and analyzing
the expected output. However, faulty input should also be considered, because it can raise
unknown vulnerabilities of the system, which if not mitigated can be exploited by potential
malicious users in order to disrupt the application or service. Creating manual testing for each
possible faulty input is extremely difficult and not feasible, since an apparently normal input
can be considered faulty to the system for numerous reasons. As such, analysing this problem
from a black-box perspective, even though it raises other problems, such as the search and

12

combinatorial one presented in the first section, can also be beneficial, since it allows creating
and executing multiple test cases of mutated faulty input.

Following the scope of this thesis, the following subsection describes and analysis black-box
testing methods, along with the latest academic developments towards automation of this
testing type.

2.2.2 Black-box Testing

Black-box testing is a type of testing conducted from the end-users perspective and tries to
identify any ambiguities or inconsistencies in the requirements specifications. It does not
require testers to have in-depth knowledge of programming languages or implementation
details, allowing for greater independence between programmers and testers. Overall, the
main advantage of black box testing is its ability to evaluate the functionality of a Software
system without requiring knowledge of its internal workings. However, because of this lack of
knowledge, efficient automation can be extremely challenging, as there must be mechanisms
for generating the right input to cover most of the test cases of the SUT, to test its resiliency
and correctness.

Statistical test methods, such as random testing, can provide valuable information about
potential failures or defects in a system. However, this information is probabilistic in nature and
can be difficult to interpret in terms of the reliability of the test. Additionally, random testing
may not be effective at detecting rare failures. Despite these limitations, statistical testing is a
commonly used approach, particularly because it generates large amounts of quantitative data.
It is also often efficient in terms of time and resources compared to other testing methods, due
to the simplicity of generating random input data. While it has its limitations, it is important to
continue exploring ways to improve the quality and reliability of random testing and address
the issue of evaluating probability and reliability [30].

However, one should first understand the existing Black-box testing methods in order to
comprehend how these have been and can be utilised by other authors to achieve black-box
testing automation. As such, section 2.2.2.1 overviews and compares the already existing black-
box testing methods, whilst section 2.2.2.2 consists of a systematic review of the automation
of black-box Software Testing.

2.2.2.1 Testing Methods

Test cases are created using different testing techniques in order to be more thorough and
effective. This helps ensure that the Software is complete and that the test conditions chosen
have the highest likelihood of uncovering any errors. Rather than randomly selecting test cases,
testers can use these techniques to design their tests in a more organised and structured way.
Additionally, combining various testing techniques often yields better results than relying on
just one technique [31]. Software testing techniques are divided into 5 groups: (i) Intuition and
Experience based, (ii) Specification-based, (iii) Code-based, (iv) Fault-based, and (v) Usage-
based [32], [33]. Naturally, not all of these techniques can be automated in a black-box testing

13

environment. For instance, code-based testing is typically a white-box technique that requires
code analysis and intuition and experience-based specifically requires human expertise.
Nonetheless the remaining techniques are compatible with the described context. Therefore,
considering the scope of this thesis, testing methods of the remaining techniques will be further
described based on several articles [1], [2], [34].

2.2.2.1.1 Equivalence Partitioning and Boundary-value Analysis

[

11

Less than 4 Between 4 and 10 More than 10

Number of Input Values

9999 100000
10000 50000 99999

S

Less than 10000 Between 10000 and 99999 More than 99999

Figure 5 — Equivalence Partitioning and Boundary-value Examples [2]

Input data can be divided into distinct partitions, and Software often behaves the same way for
all members of a particular partition. By dividing the input data into diverse categories based
on the domain specificities, as shown in Figure 5, a developer can test a large portion of it
without having to test the entire system. One challenge with this approach is finding an
effective way to automate the partitioning of the input domain. However, partition testing is a
promising option for producing good results and ensuring a high level of robustness in the
implementation. After establishing the partitions, only the actual boundary value and the values
directly below and above it has to be tested in order to understand the behaviour of the system.

2.2.2.1.2 Cause-Effect Graphing

Cause-effect graphing involves populating a graph that represents the relationship between
causes (input data or conditions) and effects (output or behaviour of the SUT). This technique
is used to select test cases that cover a large portion of the input domain and to identify the
most relevant combinations of input data to test. It can also help testers understand the
behaviour of the SUT and identify potential failure points.

2.2.2.1.3 Error Guessing

Error guessing is a testing technique in which the tester uses their own expertise in the field,
knowledge, and intuition to predict where errors or defects might occur in the Software being
tested. This technique involves identifying areas of the Software that are likely to have problems,
based on the tester's understanding of the specifications of the SUT. It is an informal and
subjective testing technique that relies on the tester's expertise and judgment. As such, it can
be extremely hard to be automated [1].

14

2.2.2.1.4 Random Testing

The name of the technique is self-explanatory. Input values are picked at random, originating
multiple test cases. Although this technique may not always be the best technique to ensure
thorough testing of a system, as it may never explore some hard-to-reach functionalities, it
covers wide input ranges, which permits establishing the limit of failure frequency, even if not
necessarily finding all faults. Hence, Random Testing can potentially be used in automated
Software testing.

2.2.2.1.5 Exhaustive Testing

This method involves testing every possible combination of inputs. The combination of all
possible inputs in a black-box manner is not feasible since the range of inputs may be never-
ending. However, one should still consider this technique if the domain is small (e.g., Booleans).

2.2.2.1.6 Use Case Testing

This technique involves understanding the specifications of a system, regarding the
functionalities it possesses and testing multiple sequences of functionalities. A change of state
in the SUT by performing certain operations may disrupt other functionalities. This technique
ca be integrated in an automated context. However, in practice, depending on the size of the
SUT it can lead to high computational cost.

2.2.2.2 Literature of Automated Black-box Software Testing

Nowadays, web APIs are the de-facto standard for Software integration [35], being most
Software made available via RESTful APIs. As RESTful APls gain momentum, so does their testing.
Recent advances in the literature show that black-box testing of RESTful APIs has outputted
effective results and is capable of contributing to the validity, reliability and correctness of these
systems.

In this section the findings gathered during the research outlined in Section 2.1 are described
in greater detail. Table 2 summarises the target APl information, best input search method, if
any, input generators and the type of test case generators that the authors found most useful
to perform automated black-box testing.

Table 2 — Methods for black-box Software testing

Articles Target API Input Search Input Generators Test Case Generator
Information Method
[36] OpenAPI - Custom Data Fuzzy Testing +
Specifications Generators + Public Adaptive Random
Knowledgebases + | Testing + Constraint-
Output Data based testing
[37] OpenAPI - Random Data -
Specifications Generators +
Custom Data
[38] OpenAPI Breadth-first Use Case Fuzzy testing
Specifications search + combination +
Random Walk Random Input

15

Generator + Output
Data
[39] OpenAPI - Random Input Specification-based
Specifications Generator + testing
Random Input
Generator
[40] OpenAPI - Random Input Property-based
Specifications Generator testing
[41] - Similar to Random mutation -
Genetic of faulty real user
Algorithm (GA) input
[42] OpenAPI - Random Input Model-based testing
Specifications + Generation +
RESTful-service OpenAPI
Property Graph Specification input
example + Data
output
[43] Navigational Input Distance Random Input Diversity-based
model Formula Generation testing
[44] OpenAPI Not specified Data Ouput + JSON Model-based
specifications but the “bots” Perturbations + specification-driven
learn patterns Random Input testing +
Generation Metamorphic testing
+ Al-driven testing
[45] - RL + Monte Random input Property-based
Carlo Control Generation + testing
(McCCQ) Guided input
Algorithm generation
[46] Navigational RL + - Curiosity-driven
Model Deterministic testing
Finite
Automaton
(DFA)

Regarding data generation from a black-box testing perspective, since there is neither
knowledge nor access to the internal working of the regarded SUT, authors have found ways of
constraining the input generation and testing action sequences descriptive information
regarding the API under test, which is publicly available. For instance, in [36], the authors
decided to test a REST API. The authors decided to produce constrained input via three different
methods: (i) OpenAPI specifications [47] (formerly known as swagger), which describes the
methods for interacting with a certain API; (ii) custom data generators which produce
constrained input; and (iii) public knowledge bases. Similarly, [37] considers the OpenAPI
specifications to interact with the system and additionally can generate automatically test cases,
but also allow the user to influence the generation process to introduce human expertise and
specific context. Additionally, the authors use functional and non-functional metrics to analyse
the performance of the APIs.

16

RESTler [38] is also an approach to REST API testing, which focuses on fuzzy testing to test the
security of the system. The tool analyses the API specifications and generates a sequence of
requests by inferring order dependencies and analysing dynamic feedback of prior tests. In
conclusion, the tool was capable of detecting 28 bugs in various cloud services, which were
confirmed and tested by service owners. Ed-douibi et al. in [39] also present an automated REST
API testing tool that relies on OpenAPI specifications to generate specification-based test cases
to ensure APIs meet the requirements defined in their specifications. Their tool was validated
with 91 OpenAPI definitions, and the experiments showed that the generated test cases cover,
on average, 76.5% of the elements included in the definitions, with 40% of the tested APIs failing.
Karlsson et al. in [40] analyse the behaviour of a RESTful API by using automatic property-based
tests generated from OpenAPl documentation. In their work, input is generated randomly.
Similarly, in [41], the authors propose using the data collected from a public APl and mutate
faulty input to produce valuable test cases. Although these approaches can diminish the input
space, producing realistic test data, and discover web APIs vulnerabilities, they do not keep
track of the path exploration of the SUT, which might can be a major drawback of these
approaches, as they might not sufficiently cover the entirety of the SUT test paths.

The authors of [42] present Morest, their model-based RESTful API testing technique that uses
a dynamically generated and self-updating RESTful-service Property Graph to model the
behaviour of RESTful services and guide the call sequence generation. Their empirical
evaluation led them to conclude that Morest was capable of successfully requesting a higher
average of APl operation, cover more lines of code and detect more bugs than state-of-the-art
techniques. In [43], the authors produce a navigational model of the web application by
crawling it to discover possible test cases. The presented method's first test is generated
randomly and is added to a set of executed tests. The subsequent tests and concrete input
vectors are selected depending on the distance between each candidate and the current set of
executed test cases, where only the farthest case is computed. Their goal is to generate a set of
test cases that diversify the coverage of the navigational graph and the use of input data.
Although they present a method that does not rely on exhaustive testing of the APl that requires
in-browser executions, they still rely on random input which dictates how long the system will
take to find the next valuable input data to cover different test paths, since it is calculated by
the distance formula. Lastly, in [44], the authors also resort to three different methods for
testing web APIs: (i) resorting to search-based methods; (ii) mutating APl JavaScript Object
Notation (JSON) input and output; and (iii) computing metamorphic testing. These methods
naturally preserve the quality of the initial data since they don't tend to diverge from the initial
input.

However, more intelligent solutions have also arisen. Specifically, the ones using RL to solve the
search-based problem that is finding the right input and combination of use cases. The authors
in [45] focus on improving valid test input generation relying on RL to perform such a task. They
motivate their work by stating that Property-based testing is a great way of quickly generating
a huge amount of test cases and running them through a parameterised test driver. However,
when the test driver (e.g., web API) requires validity constraints, random input generation fails

to generate enough valid inputs. Although they could rely on white-box or grey-box information
17

to solve the problem, this would decrease the speed at which tests could be executed. As such,
they present a tabular guide, which limits the input space within a random generator. Their
guide is based on the MCC learner, which defines the policy and the choice for a given state,
which will allow the generator to generate the input value. In conclusion, their system does not
scale so well because of the complexity of the MCC algorithm and because of the RL method
chosen, which was the Q-table. Additionally, RLChecker, their tool, had difficulty generating the
first valid input value for very strict domains. In comparison to other tools, RLCheck obtained a
better average time to discover and reliability percentage to bug finding. However, it was not
capable of finding all bugs. The authors in [46] present WebExplor, which is an automatic end-
to-end web testing framework which adopts curiosity-driven reinforcement learning to
generate action sequences, following a Use Case testing method, since many times a sequence
of functionalities of a system can raise unexpected defects. This framework leverages RL to
perform adaptive exploration of web applications and generate action sequences. Additionally,
the authors tackle local optima by introducing a Deterministic Finite Automaton (DFA) which
continuously records the transitions and states visited during the RL exploration. This way,
when RL gets stuck, WebExplor selects a path from the DFA based on the curiosity. In conclusion,
their framework uncovered 3466 exceptions and errors in a real-world commercial web
application.

Regardless of their usefulness, none of the solutions presented are comparable to the
framework being developed in this work. None of the described tools combines RL for input
and action sequence generation and API specifications along with user input to create more
diverse test cases and perform more thorough testing of RESTful APIs to discover hard-to-find
combinations to search for code defects. Moreover, none of the solutions found utilize fuzzy
testing mutation methods, such as the ones that fuzzers usually integrate, in order to try to find
vulnerabilities in the APIs.

2.2.3 Fuzzy Testing

Fuzzy testing is a vulnerability discovery technique which is typically used for automated
Software vulnerability mining [48]. Recent applications show that this technique has shown
great results for uncovering Software defects [49]—[51]. The premise of this technique is to
generate malformed input that is used to execute use cases and monitor the SUT for possible
errors or bugs. Figure 6 describes the process of fuzzy testing.

W
Target Input uzzy les Manitor far Record and
identification identification data exceptions P determine
generation availabili

Yes

Figure 6 — Fuzzy Testing Flowchart

The first step of fuzzy testing, as depicted in Figure 6, is the target identification, where the
fuzzer must know the specification of the endpoint to interact with it. This way, the fuzzer

18

moves onto the second phase, where the input combination and typing are now known. The
fuzzer then starts generating the malformed input, usually resorting to random or mutated
input, and executes fuzzy tests on the target. The fuzzer then proceeds to repeat this process
on the known target until exceptions are found. After finding the exceptions, these are recorded
so that security personnel can assess and report the uncovered vulnerabilities [48].

Fuzzy testing’s ease of deployment and lightwheightness are often considered advantages of
this testing technique. Moreover, tests are usually executed quickly and efficiently, with a great
adaptability to modern large-scale Software [48]. However, this technique often shows low
code coverage due to its randomness, along with poor execution efficiency due to excessive
redundant tests.

Fuzzing Software systems can be made with multiple objectives, including test the robustness,
performance, correctness and fault tolerance of a SUT. Therefore, fuzz testing is divided into 4
main methods, each comprised of their own characteristics and goals: (i) Mutation testing, (ii)
Fault injection testing, (iii) Robustness testing and (iv) Stress testing. The first involves
introducing small, controlled changes to the code being tested and then evaluating the
effectiveness of the test suite in detecting those changes. It is great for assessing the quality of
a test suite by measuring its ability to detect code changes. Fault Injection involves introducing
malformed input into the code being tested in order to evaluate the SUT ability to handle those
faults. Robustness testing is one that evaluates the SUT’s ability to continue functioning
properly in the presence of hardware of Software failures, exposing SUT to multiple different
conditions. Lastly, Stress testing focuses on identifying performance bottlenecks and potential
failure points in a system.

Recently, fuzzy testing has gained some attention for its ability to uncover vulnerabilities and
code defects which typically are not found in white-box testing through manual testing.
Therefore, multiple frameworks have emerged to assists developers and testers to uncover
Software vulnerabilities, which in turn lead to the creation of multiple fuzzers of different types.
Fuzzers can be considered naive or non-naive, with the former being fairly easy to implement,
however, because of its blindness towards the SUT they are unlikely to achieve interesting
results in a timely manner. Modern fuzzers improve on naive fuzzers by introducing some sort
of information about the target system, making them grey-box fuzzers. According to [52], these
can be of three types: (i) Mutation-based, (ii) Generation-based, and (iii) Evolutionary.

The following subsections describe the different types of non-naive fuzzers along with a
description of the existing frameworks.

2.2.3.1 Mutation-based fuzzers

Mutation-based fuzzers are characterized by their capability to perform mutations on test input.
Typically, fuzzers of this type are not aware of the input format or specifications and therefore
cannot perform wise mutations on the data. Peach [53] is an example of a fuzzer of this type. It
is capable of performing both smart and naive fuzzing, and it includes a monitoring system
allowing for fault detection, data collection, and automation of the fuzzing environment.

19

Peach is highly adaptable to the Software being tested since it adapts to any data consumer. As
such, it is typically used to fuzz file formats, network protocols, and APIs. This tool works based
on configuration files, usually named Peach Pit files, that describe the structure, data types and
establishes relationships about the Software being fuzzed [54]. Although this fuzzer is described
as a mutation-based fuzzer, it can also perform generation-based fuzzing.

2.2.3.2 Generation-based fuzzers

Generation-based fuzzers resort to specifications of the SUT to gain some insight regarding the
format of the input or protocol. This kind of fuzzer can generate inputs based on these
specifications and therefore produce more realistic input to perform better tests and achieve
interesting results faster. In addition to Peach, BooFuzz [55] is also a fuzzer of this type,
considered a network protocol fuzzer. Network protocol fuzzing focuses on sending erroneous,
unexpected, or malicious protocol data to a system via the network in order to find weaknesses
and potential security problems in the protocol.

Boofuzz is the successor of Sully [56] fuzzing framework. Besides numerous bug fixes, it also
expands on the original version of the fuzzing framework, enhancing performance, ease-of-use,
data instrumentation and making highly extensible. This fuzzer’s goal is to simplify not only data
representation but also transmission and instrumentation. This framework is capable of
watching and maintaining records regarding network information, whilst providing target
monitor and response methods. Moreover, considering time complexity, it scales horizontally
to allow better fuzzing [56]. This way, BooFuzz requires little to no interaction, allowing
vulnerability researchers to focus on other areas of exploitation [55].

2.2.3.3 Evolutionary-based fuzzers

Evolutionary-based fuzzers are the most recent type of fuzzers to appear. These build on
mutation-based fuzzers by selecting inputs over others for mutation. These typically resort to
an evolutionary algorithm to evaluate the outcome of a certain input and proceed based on
that evaluation. State-of-the-art fuzzers of this type typically define a fitness function to select
the best-ranked inputs to mutate. These include Honggfuzz [57], American Fuzzy Lop (AFL) [58],
and libFuzzer [59].

Honggfuzz is a security oriented, feedback-driven fuzzer based on code coverage, with a
complete set of analysis tools. Similar to BooFuzz, it too works in a multi-threaded way to avoid
overhead and instead scale horizontally. It also keeps track of records and provides visual
interface for analysis. Given an initial input corpus, it identifies which are valuable for code
coverage increase and stores them in an in-memory database. Then it performs random
mutations on that population and begins a new fuzzing round, in which the newly mutated data
is utilized for fuzzy testing [60].

AFL is an open-source mutational coverage-guided fuzzing framework that was designed to
automate the process of generating and injecting random or semi-random data into a SUT, with
the goal of testing robustness and resilience by uncovering potential buggy program points. AFL
uses a mutation fuzzing technique along with an evolutionary algorithm to generate test cases,
which consists of taking a set of initial inputs and applying several mutations to generate a large

20

number of new test cases. These test cases are then fed into the system or Software being
tested, and the results are evaluated to identify any potential issues or vulnerabilities [51].

libFuzzer is also an example of a coverage-guided, evolutionary-based grey-box fuzzer that
generates mutations on the initial data in order to maximize code coverage. This fuzzer also
adapts quite well to the SUT, since it does not require knowledge regarding the Software [60].
Similarly to AFL, this fuzzer also keeps track of the mutated inputs that increase code coverage
for later use and uses multiple threads to maintain fast performance. For random input
generation, it combines bitwise, mathematical, delete and overwrite operations [61].

2.3 Artificial Intelligence

Artificial Intelligence (Al) is the field of computer science focused on creating intelligent
machines that can achieve specific goals. According to [62], intelligence can be defined as the
ability to accomplish tasks effectively through computation. This definition applies to a range
of beings, including humans, animals, and machines.

Machine

Learning

Multi-
Agent
Systems

Natural
Language
Processing

Artificial
Intelligence

Deep

; Robotics
Learning

Cognitive
Computing

Computer
Vision

Expert

Systems

Figure 7 — Artificial Intelligence Fields

Al appears in many shapes, ranging from the most straightforward formats to more complex
mathematically computerised concepts, such as rules and neural networks. Al has recently been
heavily adopted by the industry in many fields and continues to gain attention, making this
technology more relevant. As shown in Figure 7, within Al, there are multiple fields [63], each
with its own purposes. Depending on the problem at hand, each field has a set of algorithms
and methods that help problem-solving. The complexity of the algorithms used is directly
dependent on the complexity of the problem to be solved, and sometimes, the solution is not

21

finding all possible cases in highly complex problems but instead trying to find the best possible
[64]. Moreover, one has to consider the environment in which the Al is applied. Volatile
domains usually vary a lot. As such, the application of Al in these must be performed alongside
the changes. This means that an algorithm created for a certain condition in the domain is no
longer valid if the domain changes [64]. In these cases, the solution may be using learning
algorithms, which are referred to as Machine Learning (ML).

ML has the ability to interpret data to solve previously impossible tasks. ML algorithms allow a
system to gain the ability to learn without being confided to explicitly defined rules. As
described in [65]:

"Programming computers to learn from experience should eventually eliminate the need for
much of this detailed programming effort."

ML algorithms can be defined in 3 different subcategories, each with distinct approaches suited
for distinct types of problems, which are: (i) Supervised learning, (ii) Unsupervised learning and
(iii) RL. The first incurs in a training phase where labelled data is fed into the model so it can
learn to classify unseen data properly [66]. The second does not require any training data.
Instead, it observes and segments the data by the number of classes specified [67]. Recently
these two have also been combined to produce semi-supervised learning. This method takes a
certain amount of data already labelled and attempts to use unsupervised learning to label the
rest of the data. By comparing the classifications with the already correctly labelled data, the
algorithm can adjust its classifications accordingly [68]. Lastly, RL enables Al-based agents to
learn complex and dynamic environment by trial-and-error, aiming to find optimal actions to
be taken in certain events [69].

In this thesis, RL is utilised to optimise input generation and action sequences of RESTful APIs
functionalities in order to perform more thorough testing of these systems and discover the
hard-to-find paths to look for code defects. As such, the next sections consist of a theoretical
overview of RL and a review of algorithms that are indicated to solve search and combinatorial
problems.

2.3.1 Reinforcement Learning

RL is a subfield of ML that deals with decision-making and problem-solving in environments
where an agent learns by interacting with its environment and receiving feedback in the form
of rewards or punishments. One of the key features of reinforcement learning is that in an RL
environment, an agent is capable of learning through trial and error without the need for
explicit supervision or labelled training data. This makes it particularly well-suited for solving
problems in underlying volatile domains.

In recent years, RL has had much success in multiple applications, the most relevant being
control, recommendations systems and games [70], [71]. However, their configuration is not as
straightforward as one might think, as there are still challenges that one must tackle to
implement an RL environment. One of the key challenges in RL is the exploration-exploitation

22

trade-off, which refers to the tension between exploring new actions and states in order to
learn more about the environment and exploiting known good actions in order to maximise
reward [70]. Another challenge is the sample efficiency of learning algorithms, which refers to
how quickly they can learn from a given amount of experience. In order to scale up
reinforcement learning to real-world applications, it is important to develop algorithms that are
both sample efficient and able to balance exploration and exploitation effectively [70].

In order to understand RL, one must first understand Markov Decision Processes (MDP) since
RL functions are based upon that [70].

2.3.1.1 Markov Decision Processes

A Markov decision process (MDP) is a mathematical framework for modelling decision-making
situations which are used as world representations where agents can learn to interact with it to
find optimal solutions to deal with stochastic problems. It consists of a set of states, actions,
and a transition function that defines the probabilistic transitions between states based on the
actions taken. As described by [72], it is a "non-deterministic search problem".

:l Agent ||
state reward action

s, | |R A,

R. _
P Environment
\

Figure 8 — RL Algorithms Flowchart [70]

As depicted in Figure 8, at each time step, the agent observes the current state of the
environment and selects an action based on its policy. The environment then transitions to a
new state based on the action taken, and the agent receives a reward based on the new state.
The goal of the agent is to learn a policy that maximises the expected cumulative reward over
time.

MDPs are often formally defined using the following components [73]:

e S—Finite number of states;

e sp—Initial state;

e A - Finite number of actions;

e T(s,a,s')— Possible transitions from a state s to the next, s', carrying out an action g;

o 46:5xA - dist(S) — Function that given a state s and an action g, possible to take in state
s, returns the probabilistic distribution of which possible states the transition can be
made to and the associated probability for each;

e R(t)—Reward or loss associated with a transaction t.

Additionally, its concepts can be defined as such [73]:
23

e Policy: t*: S - A— A policy is a strategy used to choose the best action to make in each
moment, for each state S a policy zattributes an action A;

e Utility — Some of the rewards obtained with the actions already taken;

¢ Values — Expected maximum utility for each state, assuming that all actions taken are
ideal;

e Q-Values — Expected maximum utility for each state assuming that the first actions
taken is uncertain and therefor might not be ideal, and all other following actions taken
are ideal, the highest Q-value for a state must correspond with the value for that same
state.

In order to solve an MDPs, the optimal policy that maximises the obtained utility at every
moment must be found. There are multiple processes to do this that are based on finding the
values and Q-values aforementioned. Bellman equations [74] are used to find these values.
These equations may vary depending on the specific problem.

To solve MDPs, other mathematical work approaches can be utilised. RL is not exclusive to
solving these problems. However, focusing on the scope of this work, only RL is regarded.
Moreover, being non-stationary, these algorithms are ideal for problems that may require some
trial-and-error operations to reach a certain path, for instance, in Software testing to cover most
paths of a black-box RESTful API. As such, in order to select the right algorithm, one must first
comprehend the taxonomy of RL algorithms to correctly review and assess algorithms to solve
the challenges of this thesis. Figure 9 describes the taxonomy of RL algorithms, based on [75].

RL
algorithms
|

Model- Model-
based RL Free RL
Lt

Given the Value- Policy-
Model based based
Learns the .
Q-Learning |i{REINFORCE
-l DQN PPO

SARSA

Figure 9 — Reinforcement Learning algorithms Taxonomy

MDPs can be of two different types: (i) Model-based or (ii) Model-free. Model-based MDPs
consist of consulting a model that describes the environment to be able to take an informed

24

decision, without failing so much into trial and error. This model can be built from observing
the outcomes of certain actions taken in a certain environment. Model-free MDPs, on the other
hand, do not require any model. In this case, the environment in not so well known, as such, no
action outcome can be predicted. As per described in Figure 9, Model-free MDPs are further
divided into: (i) Value-based, and (ii) Policy-based. Where in the first the policy is explicitly
defined and kept in memory during learning, and in the second the policy is implicit in the value
function, picking the actions with the best value [75].

In the summarized taxonomy presented in Figure 9, each algorithm behaves differently from
one another. Each define different ways of processing rewards, which will produce different
outcomes and require unique implementations. In order to understand each algorithm that
belong to different branches of the presented taxonomy, the following subsections consists of
their description.

2.3.1.2 Q-Learning

Q-learning is typically used to learn the value of taking different actions in different states. It is
a value-based method, which means that it estimates the value function for different states or
actions and uses this value function to determine the optimal policy [76], [77].

The core idea behind Q-learning is to estimate the quality of each action, represented by the Q-
value, which is the expected cumulative reward for taking that action in a particular state. The
Q-values are updated iteratively based on the observed rewards and the estimated Q-values of
the next states. Algorithm implementation resorts to a Q-table, which functions as a lookup
table that automatically stores the Q-values for all states and actions in each transition [77].

2.3.1.3 State-Action-Reward-State-Action

State-Action-Reward-State-Action (SARSA) is a model-based reinforcement learning algorithm
used to learn the optimal policy for an agent in a given environment. This algorithm is based on
Q-Learning. However, it uses the expected value of the next action rather than the maximum
expected, to update the Q-values, as shown in the equation below [70].

QS A) = QS,A) + alR + yQ(S",4") — Q(S,4)], ey

where S is the current state, A is the current action, R is the immediate reward, S’ is the next
state, A’is the next action, y is the discount factor and « is the learning rate. This Q-value serves
as the measure of the expected cumulative reward that the agent will receive from a certain
state-action pair, given its policy [70].

Contrary to Q-Learning, this algorithm is best suited for stochastic environments where future
states and rewards may not always be the same [70].

2.3.1.4 Deep Q-Network

Deep Q-Network (DQN) is an algorithm that combines Q-learning with neural networks [78] to
continuously understand the environment and compute the Q-values for all possible actions in
a given state [79].

25

Environment
Future State
. Reward
Action
State
—]
DQN-Agent
1| Target Network Value Network | :
P o Update Network st af |
E se aje——— Parameters after » episodes 552 ag :
E &3 as /r_————;g-.i a;) i
e a Update Network Parameters s ol :
E Future Q-Values Future State State 5
Optimizer O-Values Replay Memory
P
{State, '
B ———— Action, Reward ——— Action, :
—0 Reward,
ad
t Future State}

Figure 10 — Deep Q-Network Architecture [80]

As depicted in Figure 10, to approximate the Q-function, DQN uses the neural network rather
than the formerly mentioned Q-table to store the Q-values. The neural network takes the state
of the environment as input and produces a vector of Q-values for each possible action as
output. The Q-values are then used to determine the optimal action for the agent to take in the
current state. This algorithm uses techniques such as replay memory to store past experiences
and fixed Q-targets which consists of using two neural networks: (i) one that is updated during
the learning process, (ii) and one that is used to compute the target Q-values, which allows for
a more stable learning process. The Q-values are updated according to a modified version of
the Bellman equation [80], [81]:

Q'edd = Q(S,, Ap) + alRpyq + v * maxa[Q(Se41, A1 — Q(Se, Ap)], ()

where Q(S;, A;) and Q'(S;, A;) are the recent and updated Q-values for all possible actions A
in state S with a time step of t, a the learning rate and R;, 1 the resulting reward. y works as a
discounting factor and max,[Q(S;41,A)] represents the prediction of the best action for the
future state S¢y1-

2.3.1.5 REINFORCE

REINFORCE algorithm is mostly used to learn a policy directly without estimating the value
function. It is a policy-based method, which means that it learns a policy that maps states to
actions and does not estimate the value of taking different actions in different states [70], [82].

The core idea behind the REINFORCE algorithm is the optimisation of the policy using gradient
ascent by adjusting the policy parameters in the direction that increases the expected reward.
The policy parameters are updated using the observed rewards and the gradient of the

26

expected reward with respect to the policy parameters. This algorithm can be implemented
using, for instance, a neural network to represent the policy [70], [82].

2.3.1.6 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy-based RL algorithm that aims to optimize the
policy network, which consists of a neural network that maps states to actions. The algorithm
optimized this network’s parameters by maximizing the probability of selecting actions similar
to those selected by the current policy. This algorithm contains a trust-region optimization
method that prevents unstable training [83].

PPO collects a batch of transitions by running the initial policy in the environment. Then it
computes the old policy probabilities with the corresponding value estimates which are
computed by a different neural network, usually called value network. The new policy is
computed by running the policy network with the states from the batch collected initially and
is then the PPO surrogate objective function is computed by combining the ratio of the new
policy with the old policy probabilities and value estimates. The objective is to maximize the
surrogate objective function. This process is repeated until convergence is achieved [83].

2.4 Resume

This chapter provided some theoretical background on Software testing, which is important to
understand the context that this thesis focuses on. It explained why automated black-box
testing is more advantageous when performing fuzzy testing describing the motivation behind
choosing a black-box approach. It addressed multiple types of testing and testing levels, in
particular fuzzy testing methodology and a few existing successful tools that are used to
conduct this kind of testing. However, it can be noted that there is a lack of valuable generic
tools for RESTful API testing.

A systematic review was conducted following the PRISMA methodology, and eleven papers
were considered worthy of being compared to the system being presented in this thesis. In
summary, most of them still rely on randomness. Although some have already implemented RL
for this task and have been successful, some do not take into consideration the combination of
multiple functionalities which can lead to change of state of the APl under test.

Lastly, Al was also briefly introduced to be able to explore some RL algorithms. As such, MDPs
were explained because of its relationship with RL. A shortened taxonomy of RL algorithms was
also presented and used to decide which algorithms could be interesting for the solution. Five
different algorithms were described and explored.

27

28

3 FuzzTheREST

This chapter presents FuzzTheREST, the framework proposed in this thesis. In a first instance,
the framework is envisioned considering its innovations and advantages compared to other
previously mentioned well-known fuzzy testing systems, as well as ethical and security
considerations that have to be analysed. FuzzTheREST’s target audience is also discussed, which
helps raising its functional and non-functional requirements. Secondly, the Software
Engineering process performed is also explored by presenting use cases, an overview of the
domain model and the architectural design considerations. Lastly, the RL environment
implementation decisions are also detailed.

3.1 Conceptualisation

Software testing is a broad domain with the goal of ensuring the quality of Software, essentially
by exposing it to different situations and assessing its behaviour. However, most testing types
attempt to validate the SUT by exposing it to realistic inputs and scenarios, which might not be
enough to validate its quality. Moreover, usually this kind of testing is made from a white-box
perspective, which means that the tests are already biased, since the testers already know
which user-system interactions are expected. This is still quite important for the developers to
understand if their system works properly when faced with what would be an expected used
input. However, it does not test most invalid input. Hence the need to validate the solution
from a black-box point of view. Nowadays, this process is mostly performed by Software testers
[84], and consists of interacting with the system without any knowledge of its inner workings.
This way the user can try to find defects on the application. As already mentioned in Section
2.2.3, attempts to enhance this kind of testing has appeared in the form of fuzzy testing.
However, typical black-box fuzzers are quite naive as they only generate random input to be
sent to the SUT until an error occurs. This is very time consuming, which makes it unfeasible,
especially considering the size and complexity of modern-day Software systems [85].

In order to enhance efficiency and automate the fuzzy testing process of Software systems, Al
techniques can and have been leveraged to this end. However, from a black-box perspective it

29

is still very much convoluted, as there are multiple factors that can be related to the cause of a
vulnerability. For instance, programming languages, frameworks, operating systems, hardware
specifications, amongst others, can all be causes of vulnerabilities. As such, the development of
a generic framework for identifying vulnerabilities in systems can be extremely challenging
because of all involved factors.

FuzzTheREST, the RESTful APl fuzzy testing framework presented in this thesis tries to
accomplish this by proposing a tool dedicated to learning the context of each SUT. The fuzzer
proposed in this thesis tackles RESTful API testing from a black-box perspective, relying on RL
to solve the search and optimization problem that is finding the right input values and input
combinations efficiently to uncover vulnerabilities present in RESTful APIs. The objective is to
attain the highest number of vulnerabilities found in the smallest time window possible, whilst
maintaining a certain level of coverage. Additionally, to enhance the value of the system and
make it highly explainable, the process until finding certain vulnerabilities is fully reported and
presented to the respective user of the system.

In comparison to other well-known fuzzers, this proposal also stands out for its explainability
and use of RL to acquire knowledge of the APl and adapt its actions to the context, without
having to gather source code knowledge, as this would make the process much slower [45].

3.1.1 Target Audience

FuzzTheREST is a tool that focuses on finding RESTful APIs vulnerabilities, following a fuzzy
testing methodology. However, it should be noted that it does not substitute the traditional
white-box script-based Software testing. The framework proposed in this thesis is intended to
be used by developers, testers or even security practitioners, without any prior knowledge of
its innerworkings. In all these actor’s roles, Software quality is of great importance for the
business continuity of those who develop or use Software systems.

Considering the intended audience, the framework’s development decisions should be made
according to the actor’s likely needs. The following section focuses on exploring the ethical and
security considerations related to the use of this RL-based tool for Software testing, as this
context will help clarifying the requirements of such a system.

3.1.2 Ethical and Security Considerations

Data is the foundation of Al algorithms [86]. It is the representation of knowledge from which
these algorithms can learn to perform predictions. Hence one of the reasons why Al can be
applied to such a wide variety of fields [87]. However, one must first understand the importance
of data. Data refers to the representation of the understanding and interpretation of the world,
which when correctly correlated permits constructing meaningful knowledge [88]. As such, data
is not neutral when it comes to the context in which it is collected, methods used to gather it
and the perspective of the observer. Therefore, data must be critically evaluated in order to
reach correct conclusions [88].

30

Software systems have an enormous range of applications to various fields. As such, many times,
these systems must be representative of the domain to which they are applied [89]. This can be
regarding a public or private domain. The latter can be extremely problematic regarding ethical
and security issues, since typically, these systems collect and instrument sensitive private data.
Therefore, Software testing becomes even more important in such systems to prevent security
breaches. Nevertheless, considering RESTful APl Fuzzy Testing resorting to Al methods, one has
to ensure the validity, anonymity and integrity of the data. Regarding security, RL raises many
privacy concerns as it is capable of potentially access or manipulate sensitive information, which
may lead to data breaches and privacy violation. Additionally, knowing that the main objective
of FuzzTheREST is to find vulnerabilities, using a RL environment to perform this, one must
consider that exploits and other undesirable behaviours of the API can lead to unauthorized
access to different parts of the application. As such, it is important that the algorithm is well-
designed to ensure that the agent is incentivized to find and exploit bugs and vulnerabilities,
however in a simulated production environment, where the important and sensitive data are
out of the fuzzer’s reach, to avoid serious damage. Bias can also be an issue, as in a fuzzy testing
methodology, typically, the initial data used to generate random inputs are manually entered,
which can cause triggering of certain types of bugs. Another security aspect is the fact that this
tool can also be representative of cyber-attack, for it performs a lot of interactions on the API
with multiple input. It could be misused by a malicious actor to launch attacks, such as Denial-
of-Service (DoS) or improper access to data, on the APl under test. Therefore, it is crucial that
security measures are implemented to prevent such misuses.

FuzzTheREST, being a testing tool that focuses on black-box type of testing, it should provide
valuable information to the actor that wants to understand what has been done in the API to
discover vulnerabilities. As such, the whole process should be a white-box and provide
explainability and transparency. On the other hand, actors that receive the report of
vulnerabilities found in the API should also consider its output to fix the Software defects
identified, as these can be disruptive not only internally to those who provide the Software, but
also to those who depend on it and trust its quality to perform certain tasks and provide private
information.

3.2 Software Engineering

Considering the positioning of FuzzTheREST in several topics, it is now possible to understand
the purpose of the tool from a realistic point of view. However, it now raises questions regarding
its implementation. Therefore, this chapter presents the implementation decisions of the fuzzer,
following good Software Engineering practices.

The following subsections describe the identified requirements, and Software design decisions,
whilst providing theoretical background on the methodologies followed to fulfil this task.

31

3.2.1 Requirements Engineering

Requirements engineering is a fundamental step in the software development process. It serves
as the cornerstone for creating software systems that meet the needs and expectations of users,
stakeholders, and the broader context in which they operate. It involves identifying,
documenting, and managing the essential functionalities and constraints that software must
adhere to. Effective requirements engineering is crucial for project success, as poorly defined
requirements can lead to delays and cost overruns, while well-executed processes can ensure
that software not only meets but excels in meeting user expectations.

Non-functional requirements delineate the expected performance and behaviour of a software
system, with a specific focus on its operational characteristics. They play a pivotal role in
ensuring the software's comprehensive quality, encompassing performance, security, reliability,
and usability aspects. In the scope of this project, these are the non-functional requirements:
e Theimplementation of the solutions should follow good Software Engineering practices,
such as SOLID [90] and General Responsibility Assignment Software Patterns (GRASP)
[91].
e The project must be documented in Unified Modelling Language (UML) style following
the C4 Models [92] and 4+1 Architectural View [93] formalisms.
e The implementation of the solution should consider the extensibility of the project
regarding the methods that can be utilized.
o The tool should provide explanation regarding the vulnerability found.
Functional requirements delineate the precise features and functionalities expected from a
software system, detailing its intended behaviour and capabilities. These requirements are
crucial as they serve as the architectural framework for the software's core functions, directing
its development and ensuring its alignment with desired outcomes and user demands. Within
the framework of this project, the following represent the functional requirements:
e The tool should permit testing any RESTful APl independently of the language it is
implemented on.
e The tool should provide at least Q-learning as the RL algorithm. However, more are
desirable.
o The tool should allow as much configuration as possible of the algorithms available.
e The tool should allow user registration and authentication.
e The tool should restrict the number of times a user tests a certain API, to ensure that it
does not constitute a cyber-attack.

e The tool should export a text file with the report of the test.

32

e The tool should be secured with different levels of authorization.

3.2.2 Practical Software Engineering Principles

During the development of the proposed solution, a strong emphasis was placed on practical
Software Engineering principles that serve as the foundation for building robust and
maintainable Software systems. These principles played a pivotal role in ensuring that the
system not only met its functional requirements but also adhered to industry best practices. In
this section, two key sets of principles, SOLID and GRASP, were briefly introduced. These
principles provided valuable insights into structuring the codebase for scalability, flexibility, and
ease of maintenance, which were crucial attributes for a successful Software application.

SOLID is an acronym for five object-oriented design (OOD) principles made popular by Robert
C. Martin [94] in [90]. SOLID is composed of these 5 principles [95][96]:

e Single Responsibility Principle: A class should have one responsibility, simplifying
testing and code maintenance.

e Open-Closed Principle: Classes should be open for extension but closed for
modification, aiding in application stability.

e Liskov Substitution Principle: Subclasses should seamlessly replace their parent classes
without altering behaviour.

e Interface Segregation Principle: Large interfaces should be split into smaller, focused
ones to prevent unnecessary dependencies.

e Dependency Inversion Principle: High-level modules should not depend on low-level
ones; both should depend on abstractions.

GRASP is a set of patterns to guide one understand “essential object design, and apply design
reasoning in a methodical, rational, explainable way” [91]. GRASP stands for General
Responsibility Assignment Software; it was first introduced by C. Larman in [91] and is
composed by the following patterns [91][97]:

e Information Expert
e Creator

e Controller

e Low Coupling

e High Cohesion

e Indirection

e Polymorphism

e Pure Fabrication

e Protected Variations

33

Therefore, combining SOLID and GRASP principles leads to more maintainable, flexible, and
high-quality software. It fosters a development approach that not only meets current
requirements but also accommodates future changes and growth more effectively.

3.2.3 Architectural Design

This chapter covers the architectural design of this system, providing various alternatives to the
problem. This will be presented resorting to UML diagrams, contemplating 4+1 Architectural
View and C4 Models formalisms.

4+1 View Model is an information organization framework that aims to capture the description
of Software implementation or architecture into multiple views [98]. It was introduced by P.
Kruchten in [93], and it can be broken down into 5 views (Figure 11):

e Logical View: Is the object model of the design. In this view the system is analysed by
the components that compose it.

e Process View: Captures the concurrency and synchronization of the design.

o Physical View: Maps the various Software parts into hardware, to reflects its
distribution.

e Development/Implementation View: Describes the general organization of the
Software in its development environment.

e Scenarios View: lllustration of the four views in terms of use cases.

End-user Programmers
Functionality Software management
; . Development
Logical View Nicw
' (Scenarios)

Process View Physical View
Integrators System engineers
Performance Topology
Scalability Communications

Figure 11 - 4+1 View Model [93]

C4 Model stands for context, containers, components and code, a set of hierarchical “zoom
levels” that describe a system. C4 model considers structures of a Software system and the

interested audience that will later use the system. In this format, it is possible to understand

34

the system slowly and gradually by interpreting high-level diagrams first and then move to
lower levels of abstraction.

C4 Model was introduced by S. Brown in [92] and this article the author presents a great analogy
involving the google maps and the different levels of abstraction the map, since it can be
extremely reduced and provide a general view of the world or amplified to provide lower levels
of abstraction and more concrete views with finer granularity. The C4 Model can be described
in these levels [92] [99]:

e Level 1 (Context): Representation of the system context highest level of abstraction.

e Level 2 (Container): Representation of the system’s containers. It also allows to
understand how these various components communicate.

e Level 3 (Component): Zooms in to each container, allowing for a representation of the
different components that integrate a container.

e Level 4 (Code): Representation of each component implementation. This is considered
the lowest level of abstraction.

When combining the two models, it is possible to achieve great interpretability and readability
of the system, making use of UML diagrams, resulting in the matrix shown in Figure 12.

4+1 Architectural View

Scenarios View —

Physical View —

Implementation View [D6 | [D10] [D13] [D16]

Process View —— [D2 |[D5|[D9 |[D12][D15]

— [D1][D4]|[D8]||D11][D14] (.)

| | | | | | C4 Models
| | | | | | (Levels)
1 2 3 3 3 4

M1 M2 MX

Logic View

Figure 12 - C4 Models and 4+1 Architectural View Crossover Matrix

Taking into consideration the previous engineering best practices and architectural design
patterns, the following subsections describe the framework proposed, examining it from two
different views, logic and process in levels 2 and 3. The physical view in this context is
unnecessary, as this is a framework that is supposed to be used by other users, the
implementation view was disregarded, as it didn’t add much value to explain the system
developed. Level 1 was not introduced because it is extremely simple to a point where there is
nothing to talk about, as this system by default does not depend on external systems; and Level

35

4 considers code, which is too specific for what is going to be presented in the following
subsections.

3.2.3.1 Logic View
Regarding the architecture of the system, only the logic view was considered most relevant for
the development and explanation of the fuzzer.

O
ul
é

<<component>> @
<<system(C4)>>
FuzzTheREST
<<component>> gl CC <<component>>
<<container(C4)>> <<container(C4)>>
FuzzCore AUTH API AUTH

Figure 13 — Level 2 logic View of FuzzTheREST

As illustrated in Figure 13, FuzzTheREST is composed of two containers: (ii) the Authentication
(AUTH), which is responsible for controlling the access to the tool and monitoring malicious
activity; And (ii) FuzzCore, which is the core of the system. Its responsibility is to fuzzy test
RESTful APIs, given the proper input.

AUTH is intended to contain all registered users authorized to use the FuzzCore. This Java [100]
module follows a very similar architecture to FuzzCore, except it uses Springboot Framework’s
[101] implementation of REST. It also uses a MySQL [102] database to persist user and activity
data.

FuzzCore container is intended to receive necessary input from the user, which consists of a
valid OpenAPI Specification (OAS) file of the RESTful API being tested, algorithm parameters and
scenario files. The scenario files consist of a combination of functionalities available in the API,
which make sense to be tested in a certain order. However, this does not mean that the
functionality shouldn’t be tested individually, but this sequence is important to ensure
maximum coverage. Without this, the system would have to perform every possible
combination, which is extremely expensive computation-wise. The provided data is then used
along with algorithms and data generators made available by the system to find possible
vulnerabilities.

36

\
AUTH API

p—<O)

i
=8

<<component>>
<<container(C4)>>
FuzzCore

Frameworks and Drivers Layer

<<component>> {l <<component>>
Command Line Filesystem
|
Controller API FE';I
Interface Adapters Layer
<<component>> <<component>> gl <<component>> @ <<component>> @ <<component>>
Controller Adapter Algorithm Data Generator Exporter

O QO —O O O

Application Service API Adapter API Algorithm API Data Generator API Exporter API
Application Business Rules
<<gomponent>>
Application Service

Figure 14 — Level 3 Logic View of FuzzCore

As depicted in Figure 14, the system follows an Onion Architecture, which is a design pattern
emphasizing the organization of code into concentric layers with strict dependencies [103] .
However, contrary to the typical four layers, this component does not consider the Enterprise
Business Rules layer which contains the modelled entities and the rules of the domain.
Modelling domain entities would increase unnecessary computation resources, as such it was
disregarded.

The Frameworks and Drivers Layer contains the Command Line and the Filesystem, which are
Operating System (OS) services. The first allows, in this context, the interaction with the
innerworkings of the system and the second grants access to the application to operate on the
filesystem. The Interface Adapters layer define the components which are part of the system
but do not represent any business rule in particular and can have multiple implementations.
This layer consists of: (i) Controllers, which purpose is to serve as entry points to the application
and communicate with the service, (ii) Adapters, which can contain multiple implementations
of Adapter to communicate with external APls, (iii) Algorithm which may contain multiple
implementations of algorithms capable of analysing the data and providing a report of
vulnerabilities found, (iv) Data Generator, which contains the implementation of multiple data
generation/mutation methods, and (v) the Exporter, which contains the export methods for the
vulnerability report generated. At last, the Application Business Rules layer defines the

37

application services, which orchestrate the flow of each use case. Table 3 summarizes the
responsibility of each component.

Table 3 — Level 3 Fuzzer components responsibilities

Component Responsibility
Command Line OS service for interacting with the system.
Filesystem OS service for the system to interact with the filesystem.
Controller Serves as entry and exit point of the API.
Adapter Communicates with external APIs.

Contains multiple algorithms which can be used by the system to
perform vulnerability detection.
Contains multiple methods utilized by the system to generate or mutate

Algorithm

Data Generator

data.
Exporter Organizes the data and defines the export methods for the final report.
Applicati
PP Ic? fon Orchestrates the flow of each use case.
Service

This architecture of the FuzzCore is SOLID compliant since it respects the Interface Segregation,
Single Responsibility, Dependency Inversion, and Open-Closed Principle.

This system is implemented in Python programming language [104] and is considered a console
application, since it uses the console to interact with the user. The algorithms component
contains one algorithm, Q-learning, which is a RL algorithm. The implementation of the Q-
learning algorithm utilizes Gym [105] framework. Gym is a Python library for developing and
comparing reinforcement learning algorithms. It provides a variety of environments and a
common interface for interacting with them, making it easy to compare different RL algorithms
on the same tasks. It also allows creating custom environments and is compatible with most
deep learning libraries [105]. The use of Gym in this context was considered advantageous,
since it provides a common interface for interacting with the APIs, making it ideal to compare
different test scenarios and compare results. Additionally, Gym permits the implementation of
custom environments, which in this case allows the simulation of different states and inputs of
the API. Moreover, this framework has great support for RL algorithms and a wide community.
It is considered the go-to framework for RL.

NumPy [106] was also utilized, primarily for data processing tasks for its ability to provide
efficient data structures and mathematical operations, ensuring optimized performance for
numerical computations. Additionally, to ensure a certain level of abstraction, Textblob [107]
framework was also utilized to validate and interact with the domain nomenclatures of the SUT.

38

Textblob is a Python library for processing textual data, providing simple APIs for common
natural language processing tasks.

The communication between the system and external APIs, including the one under test, uses
the requests [108] library, which is native to Python.

3.2.3.2 Process View

This section presents the overall process of the proposed tool for testing an APl in a summarized
manner, where the RL process is summarized via class Algorithm, by resorting to a level 3
process view diagram produced in UML, which is on Appendix A. Notice that the user of the
sequence is already the authorized user. To simplify the diagram, the authorization step was
skipped, and the actor is assumed to be authorized.

As depicted in Figure 26 of Appendix A, the system starts by requesting the necessary
information regarding the OpenAPI specification file, the scenarios file, the algorithm to be used
along with the necessary parameters and whether an execution export is desired or not. Then
the system proceeds to extract the necessary information from the OAS file, creating the data
structures necessary to interact with the algorithm, which are parameterized by the user.

The algorithm then performs fuzzy testing on the functions of each scenario, with the agent
interacting with the environment. The algorithm then searches for the right input combinations
for the duration of iterations the user parameterized. At each iteration, to evolve the input, a
series of mutations are performed on the input values, which all occur in the interaction in the
interaction between the agent and the environment. During this process, the algorithm keeps
track of the inputs generated, the vulnerabilities found and other metrics necessary to analyse
the testing process. Additionally, if required, the system exports the testing report files of each
function.

After finishing the testing of all scenarios, a file containing coverage metrics is exported in
HyperText Markup Language (HTML) format.

3.3 FuzzCore: Reinforcement Learning Design

This chapter delineates the meticulous execution of the RL algorithm employed in FuzzTheREST.
It begins by explaining the data acquisition and its subsequent processing phase. Then, it
describes the environment, highlighting the reasons behind its design and characteristics. Lastly,
it presents a comprehensive breakdown of the Q-Learning agent, shedding light on its inner
workings and what it brings to the table.

39

3.3.1 Data Acquisition and Processing

The implemented RL works with two main instances of data: (i) the initial input data, which
works as baseline to communicate with the API, (ii) and the generated/mutated data which is
used to test the system.

b
"info": {
"contact™: {
"email": "apiteam@swagger.io”

": "This is a sample Pet Store Server based on the OpenlAPI 3.0 specification

": “hpache 2.0%,
z1": “http://www.spache.org/licenses/LICENSE-2.0.html"

rvice": "http://swagger.io/terms/",
i Swagger Detstors — OpenRPI 3.0
"3 1.0.17

post": {
"description”: "Add a new pet to the store”,
a *addPet”,

": "§/components/schemas/Det”

nww-form-urlencoded": {
: "§/components/schemas/Pet™
1

"descripti
"required”

: "Create = new pet in the store”,

: "#/components/schemas/Det"

}

*application/xml": {

£": "§/components/schemas/Pet™

t

"description”: "Successful operation”

T
"405": |
"description”: "Invalid input”

1

Figure 15 — Petstore API OAS file [109]

[llustrated in Figure 15 is an example of a OAS file, which is the main data source regarding the
API under test for the algorithm. This file defines the structure and capabilities of an API using
the OpenAPI standard. It includes information regarding the API’s endpoints, types of requests
and response payloads and the authentication or authorization requirements, if any.
Additionally, it also may provide examples of valid inputs to test the APL. It is also in this file that
we may find which status codes are expected to be outputted by the system. However, the file
contains more information that what is necessary to train the RL agent to perform fuzzy testing.
As such, for this context, the dimension of the data was reduced.

40

—_— Create JSON Extract communication Extract API paths
- schemas information information

OAS File

Figure 16 - OAS File Data Extraction

The data processing phase considers the version 3.0.0 of the OAS file, which can be greatly
divided into three main sequences: (i) APl information, (ii) API paths and operations, (iii) and
components. The first one contains information regarding the API itself, including its title,
version, description, terms of service, contact information, license, and server information. The
second sequence is where various endpoints are defined along with their communication
specificities, such as HTTP method, parameters and request and response bodies. Lastly, the
components section defines reusable components like data schemas and security schemes.

As shown in Figure 16, firstly, the components data is traversed, and the schemas are created
in JSON format and stored in a list of domain schemas. Afterwards, the base Uniform Resource
Locator (URL) for communication is extracted from the first section and lastly, each path in the
middle section of the file is processed to create the data structures utilized throughout the
system. However, in this section two different types of data structures can be defined: (i)
parameters, (i) and request bodies. The first one is usually sent in the URL query as a parameter
and the second as a JSON object mainly in POST and PUT HTTP functions.

Function = {
path, Input_parameters = { Input._body = {
content-type, name,
HTTP_method, location, schema,
input_parameters, schema, sample,
input_body sample | schema_name
/ }

Figure 17 - FuzzTheREST Data Schema

The API paths information extracted in the last phase of OAS File Data Extraction follow the
structure shown in Figure 17. Each function object contains the path of the function, the
content-type, the HTTP method, the input parameters, and the input body. The input
parameters specify information regarding the parameters, which includes the name of the
parameter, the location where the parameter should be sent, the schema describing the
datatype and information regarding if it is an array and the sample, which contains a sample
value. The input body follows a very similar structure as the parameters; however, its schema
specifies a JSON object with each field corresponding to a certain datatype, and the name of
the schema object.

Regarding the datatypes used in this work, five different datatypes were considered: integer,
float, boolean, string and byte, where some values can be arrays of a certain datatype.

41

Nonetheless, there’s possibility for expansion. Moreover, the sample field present in both input
parameters and input body data structures are an instantiated representation of the schema.
This field can be randomly generated or if there is a previous sample, then this value is evolved
via the mutation methods used during the testing process. The mutations methods
implemented in this tool consist of nine methods adopted from successful fuzzers, such as AFL
and libFuzzer [60]. These are presented and described in Table 4.

Table 4 — FuzzTheREST data generation/mutation methods [60], [110]

Method Description
Bit Flips Randomly flips individual bits in the input data.
Byte Shuffling Shuffles the order of the bytes in the input data.
Byte Adds or removes random bytes, causing structural changes to the
Injection/Deletion input data.
Bytes Substitution Randomly replaces bytes for others.
Truncation Shortens the input data by removing trailing bytes.
Dictionary Fuzzy Substitutes certain parameters for other pre-defined ones.
Arithmetic Randomly performs arithmetic operations, such as addition,
Operations subtraction, multiplication, and division, on the input data.
Random Generation Randomly generates input of a certain type.

The following section describes the implementation of the RL environment taking into
consideration the data specifications described.

3.3.2 Reinforcement Learning Environment

The RL environment implemented is a custom one since there is no similar environment for the
purpose of testing Software. The approach taken is based on a chess game, however this
environment is stochastic meaning that the next outcome cannot be predicted as it is extremely
random. Figure 18 represents the implementation of the RL environment and agent.

42

AP| Under Test

API Fuzzy Testing Environment
Response

.

Generate : Update Calculate
Input State Reward

Execute Action

Action (mutators) State (Status Codes) Reward
At St Rt

Multi-table Q-Learning

Choose Update Log
Action Q-tables Errors

Exports

B—

Parameters Processed Data
(OAS file, Scenarios,
Mutators and Algorithm Parameters)

Figure 18 — Reinforcement Learning Environment and Agent Overview

To start modelling the RL environment, it is important to identify the observation and action
space. The observation space refers to the set of all possible states or inputs that an RL agent
can perceive from its environment. As such, in this context HTTP status codes were considered
as variables for the discrete space. The different HTTP status codes are described in Table 5.

Table 5 — HTTP status codes description [111]

Status

code Description

1XX Informs that the server has received the request and processing it.

2XX Indicates that the request has been received, accepted, processed, and
successfully fulfilled.

3XX Indicates that the request has been redirected to a different resource.

4xXX Indicates a client error or the server was unable to fulfil the request.

EXX Indicates that the server has encountered an error while processing the

request, due to an internal error or temporary condition.

The action space refers to the set of all possible actions that an RL agent can take in its
environment. Considering that the goal is to test multiple inputs against a SUT, then the actions

43

were clearly identified as the mutation methods that can be performed. Nonetheless, this is
considered a multi-discrete space, as there are different possible actions for each datatype.

The developed environment’s parameters considering the space values, communication URL
and functions are all part of the parameterization of the API fuzzy testing environment. After
defining the environment characteristics, it is necessary to implement the functions inherent to
the environment, such as the Action, Reward, and Step. The Action function determines the
action that an agent will take in a given state; The Reward function assigns a numeric value to
each state and action, representing the reward or penalty associated with that state-action pair;
And the Step function takes an action as input and returns the next state, the rewards and the
indication that the episode is over. In the Gym custom environment implementation, these are
used to define the agent’s interactions with the environment. As such, their implementation
must take into consideration the data and objective of the algorithm.

The Step function which is briefly represented in Figure 26, found in Appendix A, orchestrates
the interaction of the agent with the environment and contains most of the logic of the
environment. In this case, this function receives the set of actions, which are the data mutators,
for each data type and mutates the input values using the mutation methods, generating the
new input sample. This input sample is then sent to the Action method which is responsible for
communicating with the APl under test and receiving the corresponding response.

The Reward function then analyses the response’s HTTP status code and assigns a reward. The
rewards were implemented according to the HTTP status code: the codes in range of 1XX has 0,
as reward, because it has no impactful meaning; status code in the range of 2XX and 3XX the
reward is 5 points, because there was some sort of success in the communication, which is
important to ensure that the system is being tested, and so the agent might want to explore
that input or close values until a vulnerability is found; in contrast, the 4XX code range is
rewarded -20 points because a response with this status code means that the request is not
being correctly made and so the API’s innerworkings are not being fully tested. Nonetheless,
hitting some of these status codes might be important as they may reveal defects; lastly 5XX is
the code range the agent wants to achieve and so when reached the agent is rewarded 10 points.

Considering the implementation of this environment, the agent leverages the environment to
learn characteristics of the APl under test. The following section describes the agent chosen as
well as its implementation characteristics.

3.3.3 Multi-table Q-Learning Agent

An agent is an algorithm that interacts with an environment to learn and make decisions to
maximize a cumulative reward. The agent's goal is to learn a policy that maps observations from
the environment to actions. This policy guides the agent's decision-making process, helping it
choose actions that lead to favourable outcomes over time.

Regarding the algorithm used for this task, a model-free Multi-table Q-Learning algorithm [112]
was implemented as it is fit for the task at hand, since it does not require prior knowledge of

44

the domain and deals well with stochastic environments. In this algorithm, the state-action
observation pairs are stored in Q-tables. However, because the observation space of the
environment is multi-discrete, the agent has separate Q-tables for each datatype. Considering
how uncertain and patternless the domain can be and to learn the best mutation methods, an
exploration-exploitation policy [113] should be considered to ensure that the algorithm is
capable of learning each API’s behaviour. The objective is to be able to learn the best action to
perform at each iteration, but at the same time be able to explore other methods and inputs.
Therefore, an epsilon-greedy policy [114] with an exploration decay was employed.

Epsilon-greedy policy balances exploiting the current knowledge with exploring new actions. It
selects an action based on the highest Q-value with a high probability, and selects a random
action with a low probability, allowing the agent to exploit its current knowledge, whilst
exploring new actions according to the Q-table [115]. The exploration decay ensures that in an
initial phase, the algorithm is exploring the space, and later it starts exploiting points of failure.
Overtime, the agent should be able to learn which mutation methods should be utilized in each
iteration to best know the APl under test and its vulnerabilities.

3.3.3.1 Agent Training Pipeline
In order to find vulnerabilities in systems, first the agent must adapt and understand the
environment. Only then can it exploit the SUT to find vulnerabilities.

Figure 27 in Appendix B depicts the training process of an agent in a more detailed manner than
previously presented, describing the interaction between the agent and the environment
during this process. The agent is trained during a parameterized amount of training episodes,
and during each episode, the agent interacts with the environment, registering the outcome of
the interaction, updating the Q-values of each Q-table. The Q-values represent the success of
state-action pairs and are calculated using the Bellman Equation. Afterwards, the agent relies
on the defined policy to choose the new mutation method that should be used in the next
episode. In each episode, the agent has a user-defined number of steps to take. This value
defines when an episode ends if reached, otherwise the episode may end sooner if the agent
reaches an HTTP status code in range 5XX.

Nonetheless, generating random data and sending it to an endpoint may not always be
sufficient for an agent to be well trained. One must consider the dependencies that exist
between functionalities of the same system, since disregarding them may result in an agent
with an incomplete training.

To solve this issue, a mechanism for sharing dependencies between functions was implemented.
Since each agent only tests one function, if the function being tested consists of a creation
function, then the agent stores the unique identifiers that are generated so that other agents
that may require that information have access to it. The implementation of this mechanism
relies on substring identification and word inflection methods available in Textblob to
singularize the components names and respective identification field. This method works both
to store the identifiers and to access them. Even though this functionality was only
implemented for unique identifiers, it is extensible to include a wider variety of fields.

45

3.4 Resume

In the initial section of this chapter, the conceptualization of FuzzTheREST was introduced, the
target audience was examined, and ethical and security considerations were explored. This
initial exploration was imperative in establishing the intended direction for this tool. Once the
purpose and objectives of the tool were clearly defined, the focus shifted towards constructing
and analyzing the solution from a software engineering perspective. Within this chapter, the
requirements, encompassing both functional and non-functional aspects, were elucidated,
building upon the conceptualization and earlier considerations. Emphasis was placed on the
practical principles, such as SOLID and GRASP, which play a pivotal role in ensuring the
robustness of the system.

Furthermore, architectural design discussions were delved into, introducing the theoretical
foundations of the 4+1 and C4 models. These models enabled a more detailed breakdown and
analysis of the logic view and process view, providing a comprehensive understanding of the
system's structure. In this context, the tools and frameworks employed in this work were also
presented.

Subsequently, the chapter transitioned to the design of the reinforcement learning component.
Insights into the methods used for data acquisition and processing were provided, thoroughly
reviewing the input structures, data types considered, and the mutators implemented in the
final solution. Additionally, the foundation was laid by describing the custom RL environment
developed specifically for APl fuzzy testing. Within this chapter, the Multi-table Q-learning
Agent was introduced, elucidating its training pipeline and its interaction with the environment.

46

4 Demonstration

To demonstrate the suitability and validity of the proposed solution, this chapter presents two
case studies which utilize as testing subject two RESTful APIs: Petstore APl [109] and the Human
Behaviour Analyzer module (HBA) [9], [10] which integrates the CyberFactory#1 project [116],
[117]. The following subsections describe the selected RESTful APls, the behaviour of the fuzzer
and the results obtained. These are then discussed to evaluate the value, the performance, and
the achieved objectives, but before delving into the those, it's important to establish the
common preparations made for each case study.

Considering that the goal of this tool is to find vulnerabilities in a production-ready REST APIs,
one must prepare a suitable testing environment. To replicate authentic operational conditions,
both APIs were setup in a simulated production environment. The Petstore APl was compiled
using Maven [118] for generating a production build, whilst HBA, the Python application, was
deployed in multiple scripts. Subsequently the two systems were deployed through Docker [119]
in a containerized manner, to ensure the veracity of the testing outcomes. A comprehensive
evaluation of the testing tool's performance necessitated a robust measure of code coverage.
As such, a code coverage agent was employed in both APIs. JaCoCo [120], functioning as a Java
Virtual Machine (JVM) agent, facilitated the dynamic capture of code coverage metrics of the
Petstore APl. However, in the Python application HBA, to the best of the authors knowledge,
there is yet not tool nor framework capable of collecting live code coverage, other than by
analysing test files, which is not the goal. One additional similar aspect is the algorithm’s
parameters that are used across both the Petstore APl and HBA. These parameters play a vital
role in shaping the testing scenarios and provide a consistent basis for evaluating the
effectiveness of the testing tool. Table 6 describes the parameters considered for the execution
of the fuzzer.

47

Table 6 - Case Study Algorithm Parameters

Parameter Value

bit_flips, byte_shuffling, bytes_substitution, arithmetic_addition,

Integer mutation arithmetic_subtraction, arithmetic_multiplication,
methods
arithmetic_division, random_generation, dictionary_fuzzy

bit_flips, byte_shuffling, bytes_substitution, arithmetic_addition,

Float mutation arithmetic_subtraction, arithmetic_multiplication,
methods
arithmetic_division, random_generation

Boolean mutation bit_flips, byte_shuffling, random_generation
methods

bit_flips, byte_shuffling, byte_injection, byte_deletion,
Byte mutation methods N . .
y bytes_substitution, truncation, random_generation

String mutation bit_flips, byte_shuffling, byte_injection, byte_deletion,

methods bytes_substitution, truncation, random_generation
Number of max. steps 5or10
Number of episodes 50 or 100 or 200 or 500

Exploration rate lor0.8

Discount factor 0.9
Min. exploration rate 0.01
Max. exploration rate 1
Exploration decay rate 0.01

4.1 Petstore API Case Study

The Petstore APl is an illustrative Java-based RESTful API intricately developed using the Spring
framework [101], built on the OAS 3.0.0. It serves as a model example of a web service, designed
around the concept of a pet store business. This APl encapsulates quintessential layers
characteristic of information systems, encompassing infrastructure, data, application services,
and domain and is often utilized for educational purposes, providing insights into web service
development and testing.

The API's functionalities are organized into three core categories, each centered around specific
entities.

48

The Pets section manages operations related to pets, forming the backbone of the pet store's
offerings. This category contains the functionalities mentioned in Table 7

Table 7 - Petstore API Pets Methods

Function Name Description
AddPet Adds a new pet to the store
UpdatePet Updates an existing pet
UpdatePetWithForm Updates a pet in the store with form data
FindPetsByStatus Fetches pets by their status (available, pending and sold)
FindPetsByTags Fetches pets by their tags
FindByPetld Fetches a pet by its identification number.
Uploadimage Uploads an image of the pet
DeletePet Deletes a Pet

The store section enables the placement and tracking of orders for pets, facilitating transactions,
and the methods available are the ones presented in Table 8

Table 8 - Petstore API Store Methods

Function Name Description
PlaceOrder Places an order for a pet
GetOrderByld Fetches a purchase order by its identification number

Fetches pet inventories by their status (available, pending and

Getlnventory sold)

DeleteOrder Deletes a purchase order

The last category, Users, permits the registration of users to interact with the Petstore. This
category contains the methods described in Table 9.

49

Table 9 - Petstore APl Users Methods

Function Name Description
CreateUser Creates a new user
CreateUsersWithArraylnput Creates a list of users with given input array.
CreateUsersWithListinput Creates a list of users with given input list
Login Logs a user into the system
Logout Logs out the current logged in user session
GetUserByName Fetches a user by its name
UpdateUser Updates a existing user
DeleteUser Deletes a user

The Petstore API includes multiple Create, Read, Update and Delete (CRUD) functionalities
revolving around the main entities, some of which contain different customizable parameters,
especially fetching operations. To holistically gauge our testing tool's effectiveness, three
distinct testing scenarios were crafted. These scenarios targeted CRUD operations involving
pets, users, and for last orders, ensuring thorough exploration of diverse API functionalities and
the potential vulnerabilities they might harbour.

This APl is also targeted by many literatures works for software testing and vulnerability
discovery [42], [121]-[123]. As such, it can be considered a good candidate for testing.

4.1.1 Execution and Results

Harnessing the parameters detailed in Table 6, a suite of 18 agents were deployed and trained.
Out of all combinations of parameters, the global best combination was the one where the
maximum number of steps per episode was 10, for 500 episodes with a learning rate of 1.
However, from the reports extracted from the process it is possible to see that some agents
reach a plateau much sooner, meaning that perhaps for those agents, other parameters would
fit best.

50

Q-value Convergence

10 4

Average Q-value

— int

24 float
— bool
— byte
04 —— string
T T T T T T
0 100 200 300 400 500
Episodes

Figure 19 - Q-Value Convergence of addPet Function

An example of this is the agent of the function addPet, where it is clearly seen reaching a
plateau at the 200%™ episode, as shown in Figure 19.

Total HTTP Code Status
Received

0%

15%
0% = 1XX

2XX
m 3XX
4XX

m 5XX
81%

Figure 20 - Total HTTP Code Status Received

A compelling pattern emerged in the API's responses, offering intriguing insights. As shown in
Figure 20, during testing, a remarkable proportion of requests—52531—yielded 2XX status
codes, signifying successful outcomes. Notably, contributions to this success stemmed from
functions like addPet, createUser, and others, underpinning the robustness of these particular
functionalities. Conversely, the testing process elicited 8139 instances of 4XX status code

51

responses. Predominantly originating from functions such as deleteUser, findPetsByStatus, and
placeOrder, these errors underscored potential issues within these areas. The exact
contributions of each function can be found in Appendix D.

When considering the learning process of the agents, insights can be drawn from the analysis
of the state visits and Q-value convergence plots provided in section 0. These visual
representations provide a clear illustration of the learning progress exhibited by each agent.
Notably, some agents commence their training with a significant proportion of 4XX status codes,
gradually transitioning to an increased occurrence of 2XX and 5XX codes. This evolution signifies
the effectiveness of automated requests in the learning process. Furthermore, in light of the
fact that all identifiers assume integer values, a deeper examination of the chosen mutation
method for integers corroborates this observation. This validation is particularly evident in the
action distribution plots, reinforcing the assertion that the automated requests are indeed
yielding productive outcomes. However, this is not always the case. In specific, the
findPetsByStatus was the only function where an agent was unable to learn anything from it,
having 100% 4XX hit ratio. This happens because the status parameter only had three possible
string values, which is not easy for the agent to learn, since most inputs are randomly generated
or mutated. The plots in Appendix C.4 show the randomness and continuous sense of
exploration of the agent towards this function.

During the tool’s testing endeavours, a subset of requests—2549—culminated in 5XX status
codes, predominantly tied to functions like deleteOrder, getinventory, and others, which can
be found in Appendix D. While this volume of errors raises concern, it's important to note that
not all instances represent distinct vulnerabilities. A meticulous analysis of APl responses during
testing yielded insights into the nature of these errors and their potential implications. Even
though 2912 requests were replied with a 5XX status code, this doesn’t mean that there are all
this number of vulnerabilities. Some of them are the same kind of vulnerability, just with
different input. After a thorough analysis of the report document of each function which
provides the responses given by the API during testing, 7 different vulnerabilities have been
identified, these are described in Table 10. This highlights the significance of the report
document and demonstrates FuzzTheREST’s capacity for providing explanations.

Table 10 - Petstore Vulnerabilities

- Status —
Vulnerability u Description Faulty framework
Code
The error message for this vulnerability
. did not provide much detail, but the
For input 500 Not applicable
error system may be trying to convert a
string input to a number.
URL contains . I . .
. I Issue related to input validation or Spring boot security
potential 500
malicious security checks within the application. framework

content

52

Broken
surrogate pair

Invalid white
space
character

Unmatched
second part of
surrogate pair

Fetch
operation
unsuccessful
(Getinvetory)

Surrogate pairs are used in Unicode
encoding to represent characters
outside the Basic Multilingual Plane
(BMP). In this case, the first character
and the second character form a
500 | surrogate pair thatis considered illegal.
The error message shows that the
object which was previously recorded
successfully is unable to be fetched

[124].

Invalid white space character makes
the fetch of certain objects previously
recorded impossible. In eXtensible
200 Markup Language (XML) 1.1, such
characters could be represented as
character entities, but in JSON, they are
not allowed [124].
In Unicode encoding, characters
outside the BMP are represented by
two 16-bit values called surrogate
pairs. The first value is the high
surrogate, and the second value is the
500 | low surrogate. These two values should
always appear together to represent a
single character. The error message
suggests that there is a second part of a
surrogate pair without a matching first
part.
No error description provided.
500 However, by analysis of the source

code, the function attempts to fetch

com.fasterxml.jackson.

core

com.fasterxml.jackson.

core

com.fasterxml.jackson.

core

Not provided

53

the number of pets for each status.
However, there is no validation for the
status with which the pet is recorded in
the system. As such, when it finds an
unexpected status, the code fails to
execute, leading to an internal server
error.
Even though no error was raised from
the delete operations, it was verified
Dele.te 200 that no warning or error was raised Not applicable
operations

when attempting to delete an absent

object.

Moreover, the Petstore APl vulnerabilities documented in the literature [122] were also
identified by FuzzTheREST tool. However, unlike FuzzTheREST, most scientific works that
present fuzzers or other testing tools, do not describe the errors found and most times only
focus on the number of times the error code 5XX is received [42], [123], [125], [126].

Despite having made a great number of requests to the API functions and attain good results in
multiple functions, one must understand if the Software was thoroughly tested or not. It is
important to analyse how much of Software was tested.

JaCoCo Coverage Report

Element Missed Instructions = Cov.© Missed Branches Cov.© Missed- Cxty~ Missed: Lines® Missed- Methods® Missed- Classes

i org.openapitocls. model 36% 7% 85 177 150 331 32 121 0 8
B org.openapitools. api 66% 9% 75 135 122 280 49 1098 6 20
H# org.openapitools repository = 54% I 50% 16 34 22 55 12 29 0 4
i org_openapitools configuration = 91% £ 37% 6 17 2 45 2 13 1] 5
{4 org.openapitools o) 82% I 25% 4 13 3 21 2 11 1 4
Total 1643 of 3683 55% 164 of 186 1% 186 376 299 732 97 283 7 41

Figure 21 - JaCoCo's Code Coverage Report

The JaCoCo’s code coverage report depicted in Figure 21, indicates that in total, 55% of code
coverage was achieved throughout the testing process. Naturally, due to the nature of the
fuzzer, it is possible that not every execution path is reached, which of course reflects on the
code coverage achieved. Nonetheless, after analysing the source code, it was noticed that
several classes that have defined methods, which are included in the coverage calculation are
never utilized, meaning that such code will never be executed nor tested. As such, if the unused
code was to be removed, the coverage would increase significantly, as there are many methods
that contain multiple instructions that are never traversed.

54

4.2 CyberFactory#1 Case Study

CyberFactory#1 was a project that aimed to enhance the optimization and resilience of the
Digital Factory and Factories of the Future (FoF) through the design, development, integration,
and demonstration of a set of key enabling capabilities. The project addressed the needs of
various industries such as transportation, automotive, electronics, and machine manufacturing.
It proposed of the capabilities to optimize the efficiency and security manufacturing process, as
well as addressing cyber and physical threats and safety concerns. The project also aimed to
solve not just the technological challenges of Industry 4.0 but also the technical, economic,
human and societal dimensions. The project achieved this by delivering realistic digital models
of FoF, developing key technology bricks for the optimization of the manufacturing cycle, and
addressing the need for enhanced resilience of FoF [116].

GECAD was a partner of the project and contributed by proposing a multi-domain security
awareness tool for FoF, incorporating three different domains: (i) energy, (ii) human behaviour,
(iii) and network. In the system developed by the authors, each domain is represented by a
module, which has its own characteristic and responsibilities, that ultimately monitor those
sectors and raise alerts for each of them. The alerts of each domain are gathered in an
intelligent correlator [127], and are correlated to infer if the factory is suffering a safety breach.

In particular, the human behaviour domain is represented by the HBA component. It is
responsible for capturing the emotions of the shop floor operators. The component is
composed of two distinct containers: (i) Camera Application (ii) and Emotion Detector. Figure
22, displays the architecture of this component.

O W,
Ul Kafka API
= =
<<component>> gl
<<system(C4)>>
Human Behaviour Analyzer

<<component>> @ <<component>>
<<container(C4)>> \ <<container(C4)>>
Camera Application ED API Emotion Detector

Figure 22 — Human Behaviour Analyzer architecture [9]

The Camera Application is a standalone user Interface (Ul) container, with the responsibility of
capturing frames of the worker’s face and displaying information provided by the Emotion
Detector. The Emotion Detector is a ML-powered container, which is responsible for receiving
frames via the Camera Application, processing the data and performing emotion recognition,
considering the seven emotions of Paul Ekman’s Model of Basic Emotions [128], based on the

55

facial expression of the workers. These would then be sent over a Kafka[129] topic to the
intelligent correlator and the worker would receive the feedback via the Camera Application.

The Emotion Detector is considered a RESTful APl in this component’s architecture, possessing
its own OAS file. Therefore, it is a great candidate for conducting experiments to validate the
proposed solution, since it also integrates DL which could raise much more interesting different
vulnerabilities.

4.2.1 Execution and Results

Once again, the algorithm was setup with the parameters detailed in Table 6. However, this
time, because the system only contains one function, which is to analyse an image, find a
person’s face and detect its emotion, only one agent was created and tested. Out of all
combinations of parameters, the global best combination was the one where the maximum
number of steps per episode was 5, for 100 episodes with a learning rate of 1. The increase of
these parameters led to much higher computation times, as this API calls are extremely complex
computation-wise.

Q-value Convergence

Average Q-value

T T T T T
0 25 50 75 100 125 150 175 200

Episodes

Figure 23 — DetectEmotion Agent’s Q-Value Convergence

The evaluated method exclusively employs a single byte-encoded frame parameter transmitted
through a JSON object. As depicted in Figure 23, the agent can be seen starting to stabilize at
the 200%™ episode, which could be attributed to the nature of the input data. The API is set to
receive an array of bytes, regardless of its order sequence, size, or byte values, which should

56

represent a frame. However, regardless of these attributes, a system will always interpret the
bytes array as if it was a byte encoded frame.

Figure 24 - Randomly Generated Test Frame

Since the data is randomly generated/mutated by the fuzzer, the resulting byte information can
be a meaningless, leading to a randomly generated nonsensical frame, such as the one shown
in Figure 24. Thus, even when the input generated is a nonsensical frame, the API consistently
processed it into frames for subsequent analysis.

Number of Visits to Each HTTP Status Code Range
1000.0

1000 ~

800 -

600 -

400

Number of Visits

200 A

0.0 0.0 0.0 0.0
T T

1XX 2XX 3XX 4XX 5XX
HTTP Status Code Ranges

Figure 25 - DetectEmotion Agent’s State Visits

Consequence of this agnosticism, the fuzzer is consistently obtaining 2XX status codes from the
API, as evidenced in Figure 25, consequence of the lack of meaning in the images, when the API
applied facial detection algorithm, it resulted in responses indicating the absence of detectable
individuals within the processed images. This could be justified for the way that the function is

57

implemented. For instance, if the function were to receive a base64 encoded string image,
perhaps it would be more prone to errors and having vulnerabilities.

4.3 Discussion of Results

The results obtained from the two case studies provide valuable insights into the effectiveness
of FuzzTheREST. This tool demonstrates its capacity to understand the intricacies of different
RESTful APIs and adapt to varying API contexts efficiently. Notably, the tool's usage does not
impose significant time constraints on the testing process, rendering it a valuable asset for
Software testing endeavours. Additionally, the reports extracted from the tool confer it great
explainability.

In terms of the primary objectives, the authors found that FuzzTheREST exceeded expectations
by successfully identifying both visible code errors and hidden vulnerabilities. These
vulnerabilities, often elusive and challenging to uncover through traditional scripting, were
effectively revealed by the tool. When examining the distribution of status code responses, a
substantial number of responses fell into the 4XX category. However, exceptions were noted,
particularly in functions where agents encountered limitations associated with predefined
values. A detailed examination of each agent's report revealed a discernible learning curve.
After encountering initial 4XX responses, the agents displayed a propensity to transition
towards obtaining more 2XX responses, occasionally interspersed with 5XX status codes.

Beyond the immediate implications of each status code, it is vital to acknowledge the
significance of eliciting diverse status code responses. Different codes often signify the
exploration of distinct system paths within the SUT, contributing to a more comprehensive
evaluation and increase in coverage. Additionally, the results presented show the duality of
values of the status codes. For instance, in the results achieved, the status code 500 does not
necessarily mean that a vulnerability exists, but instead, an analysis into the root cause should
be made. On the other hand, the status code in 2XX usually means that the operation was
successful, when the results show that this is not always the case. Sometimes a data leak or a
broken access control can cause an erroneous 2XX status code.

Regarding the parameterization chosen, the authors believe that the parameters chosen were
ideal for both APIs, however, this may not always be the case. For instance, a more complex
system will certainly have more execution paths to explore. The agents will take longer to get
to know better longer and more diverse paths. On the other hand, systems with complex
functionalities could also pose threat to the time it takes to test a system. Therefore,
parameters involving the exploration rate and the number of episodes and steps should always
be fine-tuned to each case.

In the context of fuzzing tools, FuzzTheREST distinguishes itself by leveraging RL to uncover
vulnerabilities. This approach sets it apart from tools like AFL and LibFuzzer. While AFL and
LibFuzzer are widely recognized for their effectiveness in traditional fuzzing tasks, they do not
possess the adaptability and learning capabilities inherent in FuzzTheREST. Moreover,

58

FuzzTheREST consistently achieves substantial code coverage, further emphasizing its ability to
learn intricate API interactions and identify various vulnerabilities, including those that remain
concealed.

4.4 Resume

This chapter encompassed a comprehensive examination of FuzzTheREST's demonstration and
results on the two defined case studies. Firstly, the details regarding the parameters employed
for API testing, along with the technologies used to prepare the APIls were described.
Afterwards, each APl under test was described along with their functionalities. After execution,
the results obtained in both APIs regarding the learning process of the agent, vulnerabilities
found, distribution of states per function and code coverage achieved were analysed. Lastly, a
discussion regarding the results achieved took place to discuss the results obtained and how
these reflect the success of the work developed.

Then, the Petstore API and its available functionalities were described, and the results achieved
by the testing agents and results were presented and conclusions were drawn from those.
Afterwards, the same applied to the CyberFactory#1 module, HBA, case study. This chapter
functioned as the foundational cornerstone of the thesis, providing a structured framework for
the subsequent exploration of the research contributions and their implications.

59

60

5 Conclusion

This summarizes the results obtained, presenting the main conclusions drawn from this thesis.
In this chapter, the identified research questions and objectives are analysed to understand if
this work answers them properly.

5.1 Summary of results

As Software systems increase in size and complexity, so does the need for testing. This is the
result of Software systems gaining more attraction and becoming more impactful of people’s
daily life. A Software that lacks quality can be extremely disruptive in many harmful ways. As
such, to evaluate and enhance Software quality, Software testing is performed. Many types of
testing have been adopted by developers and are performed to ensure the quality of a Software.
However, these tests, which are manually developed and usually considered white-box, only
evaluate the requirements of the domain. It is necessary to evaluate the system with not so
expected input, which can be designated as faulty input. To perform this in a white-box manner
would be extremely inefficient, as it would take a lot of time since the input search and
combinatorial space is so broad and the input created for each test case would be already
biased. As such, it is important to approach this problem from a black-box perspective and use
intelligent methods to reduce the input universe.

This thesis presents FuzzTheREST, which is an intelligent RESTful API black-box fuzzer. The tool
performs fuzzy testing to evaluate the quality of RESTful APls, generating inputs in an intelligent
manner resorting to RL to guide the input mutation methods utilized to find vulnerabilities and
get acquaintance with the APl behaviour. From the systematic review conducted in this work,
FuzzTheREST stands out for its attempt to guide the input being generated by trying to
understand the underlying code resorting to RL, for its adaptability to a wide range of APIs
following the OAS 3.0.0 file format for establishing communication with the APIs under test and
for wide range of configuration that allow its setup according to the respective use case and
providing transparency and explainability throughout the process, whilst taking ethical and

61

security considerations to guide the implementation of the tool, which is something that to the
best of the authors knowledge has not yet been made.

The case study conducted on the two APIs, Petstore APl and Cyberfactory#1 module, showed
the custom environment and Q-Learning agent developed were successful for the task of fuzzy
testing, vulnerability discovery and documentation. The tool was able to learn the context of
the API, uncover vulnerabilities, and achieve a great live code coverage considering that parts
of the APIs were implemented as functions but never called for any instruction, increasing the
amount of code that is left unseen and lowering the code coverage. The study conducted also
showed that there is a certain duality to HTTP status codes as vulnerabilities were found in the
range of 2XX and some status codes 5XX may not be necessarily vulnerabilities, or even
Software defects.

5.2 Objectives Achieved

Table 11 provides a summary of the objectives outlined in Section 1.3, which have been
successfully accomplished.

Table 11 — Objectives fulfilled

Objective Description Achieved
o1 Investigate the current state of the art of automated Software v
testing.

02 Investigate the current state of the art of constrained input v
generation
03 Identify the current flaws of automated Software testing tools and v
proposed solutions
04 Propose a RL environment in the context of Software testing v
05 Design and implement a RL-based automated Software testing tool v
equipped with methods for fuzzy black-box testing
In a case study, evaluate the developed work in a well-known public
06 APl and in a private APl which integrates a GECAD project for v

vulnerability discovery

5.3 Research Questions Answered

In Section 1.3 four research questions were raised, and answers can already be provided based
on the achieved objectives. The main conclusions that can be drawn from them are the
following:

62

5.3.1 RQ1 - What are the main flaws of current automated Software testing applications?

Most automated Software testing tools perform exhaustive testing to achieve their results from
a black-box perspective. It is beneficial when it comes to the number of tests that are performed.
However, most of them wont lead to any interesting result regarding existing vulnerabilities of
the SUT. Most of them still lack intelligent input generation. To the extent of what has been
research in this field, some tools also do not provide as much metrics and user feedback content
as one would need to evaluate the results achieved in order to fix vulnerabilities found.
Additionally, none of them tackle the ethical and security issues that are inherent to a fuzzy
testing tool which focuses on heavily consuming resources from APIs under test. Moreover,
most tools disregard application scenarios, which combine multiple functionalities. The
combination of different functionalities may also lead to state changes of the APl which can
raise new vulnerabilities.

RQ1 is mainly addressed in the systematic review of Chapter 2.

5.3.2 RQ2 - Which specifications/methods can be utilised to avoid exhaustive web API
testing?

Research works typically rely on OpenAPI specification to establish a base line with the API
regarding available paths and input expected. Additionally, these files may contain examples
which can be utilized to diminish the search space. Moreover, scenario file can be constructed
to be able to reduce the number of permutations between methods in order to achieve more
code coverage. Additionally, RL and metaheuristics can be utilized to diminish the input
universe.

RQ2 is mainly addressed in the systematic review in Chapter 2.

5.3.3 RQ3 - Which are the methods utilised for test/input generation?

Most methods utilized for input generation rely heavily on random generation, APl under test
response data, public knowledge bases, custom data generators and API specification files.
More recently, some intelligent methods have also appeared, where RL algorithms combined
with optimization or guidance algorithms have also been useful to produce more intelligent
input. However, none of the authors have stated which method they utilized to produce that
input. Additionally, tools like AFL or libFuzzer utilize a plethora of mutation methods, which in
the case of AFL is utilized along with a GA. Although, the last is considered grey-box, falling in a
different category than the one being presented in this thesis.

Regarding test generation, most of the authors relied on fuzzy testing, specification-testing and
property-based testing. However, other approaches have also been explored.

RQ3 is mainly addressed in the systematic review presented in Chapter 2.

63

5.3.4 RQ4 -Is Reinforcement Learning an alternative solution to what would be considered
a search-based problem?

The work developed and presented in this thesis shows that to implement RL in the context of
Software testing is not an easy task, and it becomes especially harder when this process occurs
in a black-box scenery, which only makes the context much more stochastic. Search-based
problems usually fall under two categories which an exploratory search or an exploitable search
should be performed. The work and case study conducted shows that indeed RL can be a good
alternative to solve search-based problems. Depending on the domain it may even outperform
many other types of algorithms because of its ability to learn on the context in relation to its
actions and states.

RQ4 is mainly addressed in systematic review in Chapter 2 and in Chapter 4.

5.4 Limitations and Future Work

Despite the success of the work developed and presented, some limitations were recognized
and therefore plans for future work exist.

Regarding the solution as a whole, at the moment, it was decided to focus on 5 different
datatypes, which seem reasonable. However, when faced with bigger APIls, the range of
accepted data types should be broader. Additionally, when faced with functionalities that
require specific input values, the tool is prone to fail, because of the mechanism that was
implemented for the identification numbers which identify certain entities of these systems.
Nevertheless, to achieve better results, other fixed parameter values should be able to be
added. Moreover, 9 mutation methods are not enough for the task of producing faulty input
values to test a broad range of inputs, even though the methods implemented already allowed
for success. A broader range of algorithms should also be available especially to compare and
evaluate the performance of each algorithm or even to complement one another if the results
vary by much. The tool’s explainability regarding vulnerability findings should be much more
robust. Currently, the tool relies on the feedback provided by the APl under test, to understand
and document the flaw, which makes sense considering that the tool is dealing with REST APIs
in a black-box scenario. Nonetheless, the results obtained show that even when receiving 2XX
HTTP status code in responses, sometimes these contained an error message or were not
supposed to have worked considering the scenario. This means that the status codes do not
always reflect the success of the operation and as such, the system should consider analysing
the response content to verify if a vulnerability was found to be better documented.
Additionally, to compliment the report of vulnerabilities, an analysis should be made at the level
of the fields which trigger certain vulnerabilities. Even though, the AUTH module is already
implemented, because of time constraints, the authors were unable to integrate it with the
FuzzCore to enhance the system’s security.

Regarding the RL algorithm itself, the work focused on mutating, in every step of the training
process, the inputs by their datatype, which for the scope of this thesis can be considered

64

reasonable. Nonetheless, the results demonstrated in this work show that the input fields of
each function should also be evaluated along the way, as measure to ensure that faulty inputs
are not being mutated and losing its faultiness. Moreover, the consideration of the live coverage
as a decision metric during the testing exercise could be valuable for the algorithm to balance
exploration with exploitation. In this work to ensure that the algorithm reached some sort of
vulnerability exploration decay was implemented, but the coverage metric could be much more
interesting and insightful to the algorithm. Moreover, currently the tool creates a separate
agent for each function, which the authors still consider the best approach, however, all agents
are parameterized the same manner. Therefore, the future work should include a parameter
search for each function because the metrics can vary depending on the size and complexity of
each function.

65

66

References

[1]

(2]

3]

[4]

(5]

6]
[7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

R. Torkar, “Towards Automated Software Testing: Techniques, Classifications and
Frameworks,” Blekinge Institute of Technology, 2006.

I. Sommerville et al., “Software Engineering (2011 - 9th edition),” 2011.

M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating Web APIs on the world
wide Web,” Proceedings - 8th IEEE European Conference on Web Services, ECOWS 2010,
pp. 107-114, 2010, doi: 10.1109/ECOWS.2010.9.

“Gecad - Home.” http://www.gecad.isep.ipp.pt/GECAD/Pages/Presentation/Home.aspx
(accessed Apr. 19, 2021).

G. Tassey, “The Economic Impacts of Inadequate Infrastructure for Software Testing
Final Report Prepared for,” 2002.

H. Krasner, “The Cost of Poor Software Quality in the US: A 2020 Report,” 2020.
“Software Testing Statistics - TrueList 2022.”
“25+ Cyber Security Vulnerability Statistics and Facts of 2022.”

S. Wannous, T. Dias, E. Maia, |. Praga, and A. R. Faria, “Multiple Domain Security
Awareness for Factories of the Future,” 2022, pp. 29-40. doi: 10.1007/978-3-031-18697-
4 3.

E. Maia, S. Wannous, T. Dias, I. Praga, and A. Faria, “Holistic Security and Safety for
Factories of the Future,” Sensors, vol. 22, no. 24, p. 9915, Dec. 2022, doi:
10.3390/s522249915.

J. Vitorino, T. Dias, T. Fonseca, E. Maia, and I. Praca, “Constrained Adversarial Learning
and its applicability to Automated Software Testing: a systematic review,” Mar. 2023,
Accessed: Sep. 07, 2023. [Online]. Available: https://arxiv.org/abs/2303.07546v1

T. Dias, A. Batista, E. Maia, and |. Praga, “TestLab: An Intelligent Automated Software
Testing Framework,” pp. 355—364, 2023, doi: 10.1007/978-3-031-38318-2_35.

D. Moher et al., “Preferred reporting items for systematic review and meta-analysis
protocols (PRISMA-P) 2015 statement,” Revista Espanola de Nutricion Humana y
Dietetica, vol. 20, no. 2, pp. 148-160, Jan. 2016, doi: 10.1186/2046-4053-4-1/TABLES/4.

“ACM Digital Library.” https://dl.acm.org/ (accessed Nov. 07, 2022).

“IEEE Xplore.” https://ieeexplore.ieee.org/Xplore/home.jsp (accessed Nov. 07, 2022).

67

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

68

“2021 Impact Factors - Released.”
https://www.mdpi.com/about/announcements/4095?utm_campaign=corpnews_if21_
announcement&utm_medium=social_corp&utm_source=search&gclid=CjwKCAjw8JKb
BhBYEiwAs3sxN3dyZ5lel5GVCLGHM_ 33Gz8UOMA70zHASO6guRWbaD-
A7YMILISSWhoCnFgQAvD_BwE (accessed Nov. 07, 2022).

“ScienceDirect.com | Science, health and medical journals, full text articles and books.”
https://www.sciencedirect.com/ (accessed Nov. 07, 2022).

“IEEE Standard for Software Quality Assurance Processes,” IEEE Std 730-2014 (Revision
of IEEE Std 730-2002), pp. 1-138, 2014, doi: 10.1109/IEEESTD.2014.6835311.

A. Anand and A. Uddin, “Importance of Software Testing in the Process of Software
Development,” I/SRD-International Journal for Scientific Research & Development/, vol.
6, no. February, pp. 2321-0613, 2019.

S. Yang, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Preparing Software Quality Assurance
Professionals: Metamorphic Exploration for Machine Learning,” in TALE 2019 - 2019 IEEE
International Conference on Engineering, Technology and Education, Institute of
Electrical and Electronics Engineers Inc., Dec. 2019. doi:
10.1109/TALE48000.2019.9225946.

I. Karac and B. Turhan, “What Do We (Really) Know about Test-Driven Development?,”
IEEE Softw, vol. 35, no. 4, pp. 81-85, Jul. 2018, doi: 10.1109/MS.2018.2801554.

K. Petersen and C. Wohlin, “The effect of moving from a plan-driven to an incremental
software development approach with agile practices: An industrial case study,” Empir
Softw Eng, vol. 15, no. 6, pp. 654—693, Dec. 2010, doi: 10.1007/s10664-010-9136-6.

D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V Mantyla, “Benefits and limitations of
automated software testing: Systematic literature review and practitioner survey,” in
2012 7th International Workshop on Automation of Software Test (AST), 2012, pp. 36—
42. doi: 10.1109/IWAST.2012.6228988.

A. Martin-Lopez, A. Arcuri, S. Segura, and A. Ruiz-Cortés, “Black-Box and White-Box Test
Case Generation for RESTful APIs: Enemies or Allies?,” 2021. doi:
10.1109/1SSRE52982.2021.00034.

L. Rajamanickam, N. A. B. Mat Saat, and S. N. Binti Daud, “Software Testing: The
Generation Tools,” International Journal of Advanced Trends in Computer Science and
Engineering, vol. 8, no. 2, pp. 231-234, Apr. 2019, doi: 10.30534/ijatcse/2019/20822019.

T. Murnane and K. Reed, “On the Effectiveness of Mutation Analysis as a Black Box
Testing Technique.,” 2001, pp. 12-20.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

S. Nidhra, “Black Box and White Box Testing Techniques - A Literature Review,”
International Journal of Embedded Systems and Applications, vol. 2, no. 2, pp. 29-50,
Jun. 2012, doi: 10.5121/ijesa.2012.2204.

F. Saglietti, N. Oster, and F. Pinte, “White and grey-box verification and validation
approaches for safety- and security-critical software systems,” Information Security
Technical Report, vol. 13, no. 1, pp. 10-16, 2008, doi: 10.1016/].istr.2008.03.002.

V. Garousi and J. Zhi, “A survey of software testing practices in Canada,” Journal of
Systems and Software, vol. 86, no. 5, pp. 1354-1376, May 2013, doi:
10.1016/j.jss.2012.12.051.

R. Hamlet, “Random Testing,” in Encyclopedia of Software Engineering, Hoboken, NJ,
USA: John Wiley & Sons, Inc., 2002. doi: 10.1002/0471028959.50f268.

I. Jovanovié, “Software Testing Methods and Techniques”.

V. Garousi and M. V Mantyla, “A systematic literature review of literature reviews in
software testing,” Inf Softw Technol, vol. 80, pp. 195-216, 2016, doi:
10.1016/j.infsof.2016.09.002.

P. Bourque, R. Dupuis, A. Abran, J. W. Moore, and L. Tripp, “The Emerging Consensus on
the Software Engineering Body of Knowledge”, Accessed: Sep. 04, 2023. [Online].
Available: http://www.swebok.org

A. Qazi, A. Rauf, and N. M. Minhas, “A Systematic Review of Use Cases based Software
Testing Techniques,” International Journal of Software E ngineering and Its Applications,
vol. 10, pp. 337-360, 2016, doi: 10.14257/ijseia.2016.10.11.28.

A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test Coverage Criteria for RESTful Web
APIs,” in Proceedings of the 10th ACM SIGSOFT International Workshop on Automating
TEST Case Design, Selection, and Evaluation, in A-TEST 2019. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 15-21. doi: 10.1145/3340433.3342822.

A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated Black-Box Testing
of RESTful Web APIs,” in Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, in ISSTA 2021. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 682—685. doi: 10.1145/3460319.3469082.

0. Banias, D. Florea, R. Gyalai, and D.-I. Curiac, “Automated Specification-Based Testing
of REST APIs,” Sensors, vol. 21, no. 16, 2021, doi: 10.3390/s21165375.

V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST APl Fuzzing,” in
ICSE 2019, 2019.

69

(39]

[40]

[41]

[42]

(43]

[44]

(45]

(46]

[47]

(48]

[49]

70

H. Ed-Douibi, J. L. C. lIzquierdo, and J. Cabot, “Automatic Generation of Test Cases for
REST APIs: A Specification-Based Approach,” 2018 IEEE 22nd International Enterprise
Distributed Object Computing Conference (EDOC), pp. 181-190, 2018.

S. Karlsson, A. Causevic, and D. Sundmark, “QuickREST: Property-based Test Generation
of OpenAPI-Described RESTful APIs.” arXiv, 2019. doi: 10.48550/ARXIV.1912.09686.

S. O. Haraldsson, J. R. Woodward, and A. I. E. Brownlee, “The Use of Automatic Test Data
Generation for Genetic Improvement in a Live System,” in Proceedings of the 10th
International Workshop on Search-Based Software Testing, in SBST '17. IEEE Press, 2017,
pp. 28-31.

Y. Liu et al., “Morest: Model-Based RESTful API Testing with Execution Feedback,” in
Proceedings of the 44th International Conference on Software Engineering, in ICSE '22.
New York, NY, USA: Association for Computing Machinery, 2022, pp. 1406-1417. doi:
10.1145/3510003.3510133.

M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-Based Web Test Generation,”
in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, in ESEC/FSE
2019. New York, NY, USA: Association for Computing Machinery, 2019, pp. 142-153. doi:
10.1145/3338906.3338970.

A. Martin-Lopez, “Al-Driven Web API Testing,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Companion Proceedings, in ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp. 202-205. doi:
10.1145/3377812.3381388.

S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly Generating Diverse Valid Test
Inputs with Reinforcement Learning,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, in ICSE “20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 1410-1421. doi: 10.1145/3377811.3380399.

Y. Zheng et al., “Automatic Web Testing Using Curiosity-Driven Reinforcement Learning,”
in Proceedings of the 43rd International Conference on Software Engineering, in ICSE '21.
IEEE Press, 2021, pp. 423-435. doi: 10.1109/ICSE43902.2021.00048.

“Home - OpenAPI Initiative.”

Q. Shen, M. Wen, L. Zhang, L. Wang, L. Shen, and J. Cheng, “A systematic review of fuzzy
testing for information systems and applications,” in 2021 2nd International Conference
on Electronics, Communications and Information Technology (CECIT), IEEE, Dec. 2021, pp.
156-162. doi: 10.1109/CECIT53797.2021.00035.

M. Bohme and J. Metzman, “On the Reliability of Coverage-Based Fuzzer Benchmarking,”
2022, doi: 10.1145/3510003.3510230.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]
[63]
[64]

[65]

[66]

A. Hazimeh, S. Adrian Herrera, and A. Mathias Payer, “Magma: A Ground-Truth Fuzzing
Benchmark,” In Proc. ACM Meas. Anal. Comput. Syst, vol. 4, 2020, doi: 10.1145/3428334.

A. Fioraldi, A. Mantovani, D. Maier, and D. Balzarotti, “Dissecting American Fuzzy Lop —
A FuzzBench Evaluation.” Jan. 2022. doi: 10.13140/RG.2.2.13803.82722.

G. J. Saavedra, K. N. Rodhouse, D. M. Dunlavy, and P. W. Kegelmeyer, “A Review of
Machine Learning Applications in Fuzzing,” Jun. 2019.

“Peach Fuzzer.” https://peachtech.gitlab.io/peach-fuzzer-community/ (accessed Jan. 05,
2023).

“Peach Tech / peach-fuzzer-community - GitLab.” https://gitlab.com/peachtech/peach-
fuzzer-community (accessed Jan. 10, 2023).

“boofuzz: Network Protocol Fuzzing for Humans — boofuzz 0.4.1 documentation.”
https://boofuzz.readthedocs.io/en/stable/ (accessed Jan. 05, 2023).

“OpenRCE/sulley: A pure-python fully automated and unattended fuzzing framework.”
https://github.com/OpenRCE/sulley (accessed Jan. 11, 2023).

“google/honggfuzz: Security oriented software fuzzer. Supports evolutionary, feedback-
driven fuzzing based on code ~coverage (SW and HW based).”
https://github.com/google/honggfuzz (accessed Jan. 05, 2023).

“american fuzzy lop.” https://lcamtuf.coredump.cx/afl/ (accessed Jan. 05, 2023).

“libFuzzer —a library for coverage-guided fuzz testing. — LLVM 16.0.0git documentation.”
https://llvm.org/docs/LibFuzzer.html (accessed Jan. 05, 2023).

A. Pramanik and A. Tayade, “Study and Comparison of General Purpose Fuzzers,” 2019.
Accessed: Jan. 11, 2023. [Online]. Available:
https://theultramarine19.github.io/data/736.pdf

W. Drozd and M. D. Wagner, “FuzzerGym: A Competitive Framework for Fuzzing and
Learning,” Jul. 2018.

J. Mccarthy, “What is Artificial Intelligence?,” 2004.
J. A. Bullinaria, “lAl : The Roots, Goals and Sub-fields of Al”.
T. Sejnowski, “The Deep Learning Revolution (The MIT Press),” 2018.

A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM J
Res Dev, vol. 3, no. 3, pp. 210-229, Jul. 1959, doi: 10.1147/rd.33.0210.

Y. Sibaroni, D. H. Widyantoro, and M. L. Khodra, “Extend relation identification in
scientific papers based on supervised machine learning,” in 2016 International

71

(67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

72

Conference on Advanced Computer Science and Information Systems (ICACSIS), |IEEE, Oct.
2016, pp. 379-384. doi: 10.1109/ICACSIS.2016.7872724.

F. A. Breve and D. C. G. Pedronette, “Combined unsupervised and semi-supervised
learning for data classification,” in 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, Sep. 2016, pp. 1-6. doi:
10.1109/MLSP.2016.7738877.

P.Shen, X. Du, and C. Li, “Distributed Semi-Supervised Metric Learning,” IEEE Access, vol.
4, pp. 8558-8571, 2016, doi: 10.1109/ACCESS.2016.2632158.

N. Shimkin, “Learning in Complex Systems: Reinforcement Learning Basic Algorithms,”
20009.

R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” IEEE Trans
Neural Netw, vol. 9, no. 5, pp. 1054-1054, Sep. 1998, doi: 10.1109/TNN.1998.712192.

D. Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm,” Dec. 2017.

F. Kominis and H. Geffner, “Beliefs In Multiagent Planning: From One Agent to Many,”
Proceedings of the International Conference on Automated Planning and Scheduling, vol.
25, pp. 147-155, Apr. 2015, doi: 10.1609/icaps.v25i1.13726.

M. L. Puterman, “Chapter 8 Markov decision processes,” 1990, pp. 331-434. doi:
10.1016/5S0927-0507(05)80172-0.

S. Peng, “Stochastic Hamilton—Jacobi—Bellman Equations,” SIAM J Control Optim, vol. 30,
no. 2, pp. 284-304, Mar. 1992, doi: 10.1137/0330018.

H. Zhang and T. Yu, “Taxonomy of Reinforcement Learning Algorithms,” in Deep
Reinforcement Learning, Singapore: Springer Singapore, 2020, pp. 125-133. doi:
10.1007/978-981-15-4095-0_3.

V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529-533, Feb. 2015, doi: 10.1038/nature14236.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach Learn, vol. 8, no. 3—4, pp. 279-292,
May 1992, doi: 10.1007/BF00992698.

K. Gurney, An Introduction to Neural Networks. CRC Press, 2018. doi:
10.1201/9781315273570.

V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” Dec. 2013.

S. Lang, F. Behrendt, N. Lanzerath, T. Reggelin, and M. Muller, “Integration of Deep
Reinforcement Learning and Discrete-Event Simulation for Real-Time Scheduling of a

[81]

[82]

[83]

(84]

[85]

(86]

[87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

Flexible Job Shop Production,” in 2020 Winter Simulation Conference (WSC), IEEE, Dec.
2020, pp. 3057-3068. doi: 10.1109/WSC48552.2020.9383997.

P. Munro et al., “Bellman Equation,” in Encyclopedia of Machine Learning, Boston, MA:
Springer US, 2011, pp. 97-97. doi: 10.1007/978-0-387-30164-8_71.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” Jul. 2017.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” Jul. 2017.

J. D. Mcgregor and D. A. Sykes, A Practical Guide to Testing Object-Oriented Software,
1st ed. jAddison-Wesley Professional, 2001.

P. Godefroid, “Random testing for security,” in Proceedings of the 2nd international
workshop on Random testing: co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007), New York, NY, USA: ACM,
Nov. 2007, pp. 1-1. doi: 10.1145/1292414.1292416.

W. Liang et al., “Advances, challenges and opportunities in creating data for trustworthy
Al” Nat Mach Intell, vol. 4, no. 8, pp. 669—677, Aug. 2022, doi: 10.1038/s42256-022-
00516-1.

G. MISURACA and N. C. VAN, “Al Watch - Artificial Intelligence in public services,”
Publications Office of the European Union, no. July, pp. 1-96, 2020, doi: 10.2760/039619.

K. Charmaz and L. L. Belgrave, “Thinking About Data With Grounded Theory,” Qualitative
Inquiry, vol. 25, no. 8, pp. 743753, Oct. 2019, doi: 10.1177/1077800418809455.

F. Armour and G. Miller, Advanced use case modeling: software systems. Pearson
Education, 2000.

R. C. Martin, “Design Principles and Design Patterns,” 2000.

C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process (2nd Edition). 2001.

S. Brown, “The Ca Model for Software Architecture.”
https://www.infog.com/articles/C4-architecture-model/ (accessed May 07, 2021).

P. Kruchten, “Architectural Blueprints-The ‘4+1’ View Model of Software Architecture,”
1995.

“Robert C. Martin - Wikipedia.” https://en.wikipedia.org/wiki/Robert_C. Martin
(accessed May 06, 2021).

73

[95]

[96]

[97]

(98]

[99]

[100]
[101]
[102]

[103]

[104]
[105]
[106]

[107]

[108]
[109]

[110]

[111]

[112]

74

“A Solid Guide to SOLID Principles | Baeldung.” https://www.baeldung.com/solid-
principles (accessed May 06, 2021).

“The S.0.L.1.D Principles in Pictures | by Ugonna Thelma | Backticks & Tildes | Medium.”
https://medium.com/backticks-tildes/the-s-o-I-i-d-principles-in-pictures-b34ce2f1e898
(accessed May 06, 2021).

“GRASP - General Responsibility Assignment Software Patterns Explained - Kamil
Grzybek.” http://www.kamilgrzybek.com/design/grasp-explained/ (accessed May 07,
2021).

“Kruchten’s 4 + 1 views of Software Design | by Puneet Sapra | The Mighty Programmer
| Medium.” https://medium.com/the-mighty-programmer/kruchtens-views-of-
software-design-e9088398c592 (accessed May 07, 2021).

“The C4 model for visualising software architecture.” https://c4model.com/ (accessed
May 07, 2021).

“Java | Oracle.” https://www.java.com/pt-BR/ (accessed Apr. 11, 2021).
“Spring | Home.” https://spring.io/ (accessed Jun. 25, 2021).
“MySQL.” https://www.mysgl.com/ (accessed Jan. 22, 2023).

|. Dominte, “Introducing Web API,” Web API Development for the Absolute Beginner, pp.
3-18, 2023, doi: 10.1007/978-1-4842-9348-5_1.

“Welcome to Python.org.” https://www.python.org/ (accessed Aug. 19, 2021).
“Gym Documentation.” https://www.gymlibrary.dev/ (accessed Jan. 21, 2023).
“NumPy.” https://numpy.org/ (accessed May 04, 2021).

“TextBlob: Simplified Text Processing — TextBlob 0.16.0 documentation.”
https://textblob.readthedocs.io/en/dev/ (accessed Aug. 28, 2023).

“requests - PyPL.” https://pypi.org/project/requests/ (accessed Jan. 21, 2023).
“Swagger Ul.” https://petstore.swagger.io/ (accessed Jan. 21, 2023).

“lcamtuf’s old blog: Binary fuzzing strategies: what works, what doesn’t.”
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
(accessed Jan. 21, 2023).

“HTTP response status codes - HTTP | MDN.” https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status (accessed Jan. 21, 2023).

N. Kantasewi, S. Marukatat, S. Thainimit, and O. Manabu, “Multi Q-Table Q-Learning,”
10th International Conference on Information and Communication Technology for

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Embedded Systems, IC-ICTES 2019 - Proceedings, Apr. 2019, doi:
10.1109/ICTEMSYS.2019.8695963.

H. Wang, T. Zariphopoulou, and X. Yu Zhou, “Exploration versus exploitation in
reinforcement learning: a stochastic control approach *,” 2019.

B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing Exploration In Reinforcement
Learning With Deep Predictive Models”.

Y. Liu, B. Cao, and H. Li, “Improving ant colony optimization algorithm with epsilon
greedy and Levy flight,” Complex & Intelligent Systems, vol. 7, no. 4, pp. 1711-1722, Aug.
2021, doi: 10.1007/s40747-020-00138-3.

A. Becue et al., “CyberFactory#l — Securing the industry 4.0 with cyber-ranges and
digital twins,” in 2018 14th IEEE International Workshop on Factory Communication
Systems (WFCS), |EEE, Jun. 2018, pp. 1-4. doi: 10.1109/WFCS.2018.8402377.

“Home - CyberFactory#1.” https://www.cyberfactory-1.org/home/ (accessed Jan. 21,
2023).

“Maven — Welcome to Apache Maven.” https://maven.apache.org/ (accessed Aug. 29,
2023).

“Docker: Accelerated Container Application Development.” https://www.docker.com/
(accessed Aug. 29, 2023).

“EclEmma - Java Code Coverage for Eclipse.” https://www.jacoco.org/ (accessed Aug. 29,
2023).

D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Restats: A Test Coverage Tool for
RESTful APIs,” Proceedings - 2021 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2021, pp. 594-598, 2021, doi:
10.1109/1CSME52107.2021.00063.

R. Mahmood, J. Pennington, D. Tsang, T. Tran, and A. Bogle, “A Framework for
Automated API Fuzzing at Enterprise Scale,” Proceedings - 2022 IEEE 15th International
Conference on Software Testing, Verification and Validation, ICST 2022, pp. 377-388,
2022, doi: 10.1109/I1CST53961.2022.00018.

D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago, and M. Ceccato,
“Automated black-box testing of nominal and error scenarios in RESTful APls,” Software
Testing, Verification and Reliability, vol. 32, no. 5, p. e1808, Aug. 2022, doi:
10.1002/STVR.1808.

“Extensible Markup Language (XML) 1.1 (Second Edition).”
https://www.w3.org/TR/xml11/#sec-white-space (accessed Sep. 01, 2023).

75

[125]

[126]

[127]

[128]

[129]

76

E. Viglianisi, M. Dallago, and M. Ceccato, “RESTTESTGEN: Automated Black-Box Testing
of RESTful APIs,” in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), 1EEE, Oct. 2020, pp. 142-152. doi:
10.1109/1CST46399.2020.00024.

A. Tokos, “Evaluating fuzzing tools for automated testing of REST APIs using OpenAPI
specification,” 2023, Accessed: Sep. 07, 2023. [Online]. Available:
https://www.doria.fi/handle/10024/187395

T. Dias, N. Oliveira, N. Sousa, |. Praca, and O. Sousa, “A Hybrid Approach for an
Interpretable and Explainable Intrusion Detection System,” Lecture Notes in Networks
and Systems, vol. 418 LNNS, pp. 1035-1045, 2022, doi: 10.1007/978-3-030-96308-
8_96/COVER.

S. Gu, F. Wang, N. P. Patel, J. A. Bourgeois, and J. H. Huang, “A Model for Basic Emotions
Using Observations of Behavior in Drosophila,” Front Psychol, vol. 10, Apr. 2019, doi:
10.3389/fpsyg.2019.00781.

“Apache Kafka.” https://kafka.apache.org/ (accessed May 05, 2021).

Appendixes

77

Appendix A — Process View

1: Stants fuzzy testing of the API :

Authorized User

1.1: Requests necessary data

2; Inserts necessary data (i.e.. OAS, scenarios,

algorithm, parameters, mutators, format) 2.1: testApi(OAS, scenarios,
algorithm, parameters)

L 2.1.1: testApi(OAS, scenarios,

algorithm, parameters)

| : 2.1.1.1: create(mutators)
I s
! ! 2.1.1.2: create(algorithm,
1 | parameters, mutators) env : RL
: : ---------------------------------- | Environmen
| | t
1 | T
1 lacp | M
I |
I | |[for each scenario]
I | L
: I l()Tn | agent: RL
I | | [for each function in scenario] Agent
I | |
| | | |
i i ' | 3interact)
1 | | |
1 1 I 1
1 1 1 1
1 i I |
1 | | 1
1 1 1 1
1 | | |
1 i I |
I i I 1
1 1 | |
| | | |
I | | I
1 1 | 1
1 i t T
: : : 4: vulnerabilties }
1 St S Ll
1 W _____ Atcreateformat) [
1 I | r
I |
| | 4.2: export{vulnerabilities)
4.3.1.1: shows vulnerabilities found, metrics of | B 4.3:IstV | |
the operation and the success of the export | 43T IstVulnerabiliies 4_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 26 — Level 3 Process View

78

Appendix B- Agent Training Process View

serv . FuzzerService

| 1: create(url, functions, mutators)

API : APIAdapter

>1 env : APIFuzzy TestingEnvironment

[for each function in scenario]

e
|
|
|
loop) :
[for each scenario]
loop

2: reset_environment()

[

3: create(env, mutators, algorithm_parameters)

4: train(num_episodes)

4.2.6.5: end_train()

4.1: action = choose_action(state, g-table)

4.2: new_state, reward, is_done = step(action)

4.2.6: new_state, reward, is_done, response

4.2.1: json_sample = create_sample(current_function,
mutators)
4.2.2: response = execute_action(json_sample)

4.2.3: reward = calculate_reward(response)

4.2.4: new_state = update_environment_state(response)

4.2.5:is_done = check_if_is_done()

4.2.6.1: update_q_tables(state action,reward, new_state,g-table)

4.2.6.2: update_state(new_state)

4.2.6.3: calculate_exploration_decay()

4.2.6.4: gather_metrics_and_log_error(response)

Figure 27 — Agent Training Process View

79

Appendix C — Petstore API Result Plots

In this appendix the reader can find for each function, the action distribution plots for each datatype considered in the solution (integer, float,
boolean, byte and string), the total number of state visits during the agent’s training, and the agent’s Q-value convergence.

C.1-AddPet

2500

2000

Action Counts

1500

1000

80

Action Distribution for int

4069

Mutation Method Index

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

Action Counts

2500

2000

1500

1000

Action Distribution for byte

Action Distribution for float

4103

2500

2000

Action Counts

1500

1000

500

0 12

94 107 89 99 97 91 90

i 4 5 6

75

7

Mutation Method Index

-
-
-
W byte_deletion
-
-
-

Mutation Methed Index

bit_flips
byte_shuffling
byte_injection

bytes_substitution
truncation
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Counts

4000

3500

3000

2500

2000

1500

1000

500

Action Distribution for bool

4302
= bt _flips 4000
m byte shuffling
W bytes_substitution
mm arithmetic_addition
B arithmetic_subtraction 3000
B arithmetic_multiplication)
arithmetic_division <
random_generation 8
€
£ 2000
g
<
1000
o
o
Action Distribution for string
4131
148 154 135 149 147
o 1 4 6

2 3
Mutation Method Indi

Figure 28 — AddPet Agent’s Action Distribution

ex

330 368

1
Mutation Method Index

bit_flips
byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
random_generation

I bit_flips
BN byte_shuffling
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000 4
B -
2
o 3000 +
6 z
5]
e
4]
a
g 2000 1
47 =
— int
2 — float 1000 -
—— bool
— byte
—— string
04
T T T T T T 0-
0 100 200 300 400 500
Episodes

1xXX

5000.0

2XX

0.0
T

0.0
T

0.0

3IXX

4xXX

HTTP Status Code Ranges

Figure 29 - AddPet Agent’s Q-Value Convergence and State Visits

SXX

81

C.2 — UpdatePet

Action Distribution for bool

Action Distribution for int Action Distribution for float 2289 bt 1l
4106 4116 . - bit_flips
4000 . bit_flips 000 . bit_flips 4000 B byte_shuffling
R byte_shuffling R byte_shuffling random_generation
3500 W bytes_substitution 3500 W bytes_substitution
BN arithmetic_addition BN arithmetic_addition
3000 - ar!lhmel!c,subtract\oq 3000 - ar!thmet!c,subtractmr.l 3000 4
B arithmetic_multiplication B arithmetic_multiplication 8
8 W arithmetic_division B arithmetic_division £
€ 2500 S 2500 2
H random_generation random_generation S
S 5} <
5 2000 dictionary_fuzzy 5 2000 § 3000
g g £
1500 1500
1000 1000 1000 4
500 500 314 397
[0 0
0 1 2 3 4 5 6 7 8 3 5 0 1 2
Mutation Method Index Mutation Method Index Mutation Method Index
Action Distribution for string
Action Distribution for byte a136 .
it_flips
4000 K] . bit_flips 4000 EEE byte shuffling
EEm byte_shuffling W byte_injection
3500 B byte_injection 3500 B byte_deletion
EEm byte deletion BN bytes_substitution
3000 B bytes_substitution 3000 mem truncation
[truncation 2 random_generation
£ e00 W arithmeti S 2500
2 W arithm S
g W arithmetic_multiplication § 2000
& 2000 N e =
2 arithmetic_division g
< random_generation
1500 -9 1500
1000 1000
500 500
o o
o 1 2 3 4 5 6
Mutation Method Index Mutation Method Index

Figure 30 - UpdatePet Agent’s Action Distribution

82

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000
B -
2
< 3000 4
6 z
(=}
e
w
=
. 2000
4 =
— int
5 —— float 1000
—— bool
— byte
—— string
04
T T T T T T 0 -
0 100 200 300 400 500
Episodes

1XX

5000.0

0.0 0.0 0.0
T T

2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 31 - UpdatePet Agent’s Q-Value Convergence and State Visits

83

C.3 — GetPetByld

Action Distribution for bool

Action Distribution for int Action Distribution for float 3645
3452 3218 Wit fiips
3500 = bit_flips = bit_flips 3500 B byte_shufiling
EE byte shuffling 3000 B byte_shuffling random_generation
3000 W bytes_substitution B bytes_substitution 3000
BN arithmetic_addition BN arithmetic_addition
B arithmetic_subtraction 2500 B arithmetic_subtraction 2500
2500 B arithmetic_multiplication B arithmetic_multiplication
8 W arithmetic_division B arithmetic_division €
£ £ 2000 3
2 2000 random_generation random_generation o 2000
S 5}
g dictionary_fuzzy % oo 5
‘§ 1500] £ 1500
< <
1000 1000 1000
500 500
0 290 309
e e oo o s w0 N 0000
0 0 o
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 1 2
Mutation Method Index Mutation Method Index Mutation Method Index

Action Distribution for string

Action Distribution for byte
I bit_flips
3168 bit i -
. bit_flips i 3000 I byte_shuffling
3000 EEE byte shuffling Wl byte_injection
I byte_injection B byte_deletion
2500 B byte_deletion 2500 B bytes substitution
B bytes_substitution truncation
EEE truncation £ 5000 random_generation
£ 2000 W arithmetic_addition 5
5 - il subtraction 3
- §
§ 1500 £ 100
£ <
< random_generation
1000 1000
500
oo 339
95 85 J6 B0 78 85 83 78 77
o o
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6
Mutation Method Index Mutation Method Index

Figure 32 - GetPetByld Agent’s Action Distribution

84

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 3500 A 3472.0
7.5 -
3000 A
5.0 1
2500 |
2.5 2
= &
Z 2000 -
0.0 - o
4]
E 1500
—2.5 1 =1
=
5.0 4 1000 4
609.0
=731 500
163.0
—10.01 0. 0.0
T T T T T T T T
0 100 200 300 400 500 1XX 2XX 3%X 4XX 5XX
Episodes HTTP Status Code Ranges

Figure 33 - GetPetByld Agent’s Q-Value Convergence and State Visits

85

C.4 - FindPetsByStatus

Action Counts
-] &
s 5]

n
=3
a8

100

86

Action Distribution for int

557

558

559

45 gmpmy 553 555 557 554 | it fiips
EE byte shuffiing 600
N bytes_substitution
BN arithmetic_addition 500
B arithmetic_subtraction
B arithmetic_multiplication
W arithmetic_division £ 400
random_generation
dictionary_fuzzy <
§ 00
<
200
100
0

3 4 5 6 7 8
Mutation Method Index

Action Distribution for byte

Action Distribution for float

623 626 628 g1 632 624

0 1 2

400

300

200

Action Counts

100

Mutation Methed Index

457 455 454 455 455 g5 453 455 457 455 454

3 4 5
Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

623

Action Counts

623

Action Distribution for bool

1674
. bit_flips 1600 -
B byte_shuffling
N bytes_substitution 1400
BB arithmetic_addition
W arithmetic_subtraction 1200 A
Bmm arithmetic_multiplication
arithmetic_division S 1000 o
random_generation IS}
S 8004
el
<
600 4
400 +
200 4
0

0 1
Mutation Method Index

Action Distribution for string

700

600 1

500 4

400

300

200

100 4

719 718 711 716 715 712 bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
random_generation

1 2 3 4
Mutation Method Index

Figure 34 - FindPetsByStatus Agent’s Action Distribution

1659

it flips
= byte_shuffling
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 - 5000.0
0 -
_10 -
4000
_20 -
2
i
—30 S 3000 4
e
=]
—40 - T
s
E 2000-
—50 - 3 2000
_60 -
1000
_?0 -
—80 1 0 0.0 0.0 0.0
T T T T T T T T T
0 100 200 300 400 500 1XX 2XX 3%X 4XX
Episodes HTTP Status Code Ranges

Figure 35 - FindPetsByStatus Agent’s Q-Value Convergence and State Visits

0.0
5XX

87

C.5 — FindPetsByTags

1200

1000

Action Counts

88

@
S
S

@
S
S

Action Distribution for int

1318

Mutation Method Index

Action Counts

1000

Action Distribution for float

bit_flips
byte_shuffling
bytes_substitution 1200
arithmetic_addition
arithmetic_subtraction 1000
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

800

Action Counts

400

200

Action Distribution for byte
1281

Mutation Method Index

Figure 36 - FindPetsByTags Agent’s Action Distribution

1400 1347

2 3 4
Mutation Method Index

bit_flips
byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation

arithmetic_addition
il subtraction

random_generation

5

Action Counts

2500

2000

1500

1000

500

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Counts

Action Distribution for bool

Action Distribution for string

Mutation Method Index

2544

1752

1
Mutation Method Index

I bit_flips

B byte_shuffling

Wl byte_injection

B byte_deletion

BN bytes_substitution
truncation
random_generation

I bit_flips
B byte_shuffling
random_generation

Q-value Convergence

@©
= -10 +
m
7
o
&
© —15 A
g
=4
—20 4 int
—— float
—— bool
-25 1 — byte
—— string
T T T T T T
0 100 200 300 400 500

Episodes

Figure 37 — FindPetsByTags Agent’s Q-Value Convergence and State Visits

Number of Visits

Number of Visits to Each HTTP Status Code Range

1750 ~

1500 ~

1250 ~

1000 -

750

500 ~

250

1XX

1792.0

2XX

0.0
T

1250.0

3XX

T
4XX

HTTP Status Code Ranges

291.0

5XX

89

C.6 — UploadFile

2500

2000

Action Counts

1500
1000

500

90

Action Distribution for int

4081

o 1 2 3 4 5 6 7 8
Mutation Method Index

Action Distribution for float

4099
bit_flips 4000
byte_shuffling
bytes_substitution 1500
arithmetic_addition
ar!lhmel!c,subtract\oq 2000
arithmetic_multiplication
thmetic_d 2
arithmetic_division £ 2500
random_generation
5}
dicti fu
ictionary_fuzzy £ 2000
il
<
1500
1000

0 1 2 3 4
Mutation Method Index

Action Distribution for byte

3500

3000

2500

2000

Action Counts

1500

1000

500

4048

Mutation Method Index

bit_flips
byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetis
arithm
arithmetic_multiplication
arithm division
random_generation

Action Counts

2500

2000

1500

1000

500

Action Distribution for bool

bit_flips 4000
byte_shuffling
bytes_substitution 3500
arithmetic_addition
arithmetic_subtraction 3000
arithmetic_multiplication 0
arithmetic_division 5
- 3 2500
random_generation o
c
S 2000
<
1500
1000
500
o

Action Distribution for string

4094

Mutation Method Index

Figure 38 - UploadFile Agent’s Action Distribution

4279

. bit_flips
B byte_shufiling
random_generation

1
Mutation Method Index

bit_flips
byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000
B -
2
< 3000 4
6 z
(=}
e
w
=
. 2000
47 =
— int
2 —— float 1000
—— bool
— byte
—— string
04
T T T T T T 0 -
0 100 200 300 400 500
Episodes

1XX

5000.0

0.0 0.0 0.0
T T

2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 39 - UploadFile Agent’s Q-Value Convergence and State Visits

91

C.7 — UpdatePetWithForm

Action Distribution for bool

Action Distribution for int Action Distribution for float
4031 3718 4000 el . bit_flips
4000 . bit_flips . bit_flips B byte_shuffling
EE byte shuffling 3500 B byte_shuffling 3500 random_generation
3500 W bytes_substitution W bytes_substitution
BN arithmetic_addition 3000 BN arithmetic_addition 2000
3000 W arithmetic_subtraction W arithmetic_subtraction
B arithmetic_multiplication B arithmetic_multiplication
- 2500 - £ 2500
£ 2500 W arithmetic_division 2 arithmetic_division £
H random_generation 2000 random_generation S
o [*} = 2000
g 2000 dictionary_fuzzy H 5
g g <
1500 1500
< 1500 =
1000 1000 1000
500 500 500 37
122 107 114 127 120 134 11§ 129
0 o
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 1 2
Mutation Method Index Mutation Method Index Mutation Method Index

Action Distribution for string

Action Distribution for byte
s V! L . bit_flips
4000 . bit_flips 3500 B byte shuffling
EEE byte shuffling Wl byte_injection
I byte_injection 3000 B byte_deletion
B byte_deletion BN bytes_substitution
B bytes_substitution truncation
i 2500
B runcation il random_generation
E . arithmeti 5
5 m— arithm S 2000
‘; W arithmetic_multiplication ‘5
s arithmetic_division 2 1500
< random_generation
1000
500 493
158 152 164 151 141
o
o 1 2 3 4 5 6
Mutation Method Index Mutation Method Index

Figure 40 - UpdatePetWithForm Agent’s Action Distribution

92

Average Q-value

Q-value Convergence

I e

10
5 4
0 -
_5 .
— int
—10 - —— float
—— bool
— byte
-15 —— string
T T T T T T
0 100 200 300 400 500
Episodes

Number of Visits

Number of Visits to Each HTTP Status Code Range

4000 +

3500 A

3000 +

2500

2000

1500 ~

1000 +

500 A

4260.0

740.0

0.0 0.0
T

1IXX 2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 41 - UpdatePetWithForm Agent’s Q-Value Convergence and State Visits

93

C.8 — DeletePet

Action Distribution for int

2500

2000

Action Counts

1500

1000

127 113 110 125 116 119 129

0 1 2 3 4 5 6
Mutation Method Index

Action Counts

94

Action Distribution for bool

Action Distribution for float 3281
4039 . bit_flips 4000 4 4058 . bit_flips 4000
R byte_shuffling R byte_shuffling
W bytes_substitution 3500 4 W bytes_substitution 3500
EEE arithmetic_addition B arithmetic_addition
B arithmetic_subtraction 3000 - W arithmetic_subtraction 3000
B arithmetic_multiplication B arithmetic_multiplication]
€
W arithmetic_division 2 5500 arithmetic_division S 2500
random_generation H random_generation o
o
dictionary_fuzzy £ 2000 § 2000
E 2
< 1500 { 1500
1000 1 1000
500 4 500 66
122 138 130 142 138 123 141 130
D—m o
7 8 0 1 2 3 4 5 6 7 0 1
Mutation Method Index Mutation Method Index
Action Distribution for string
Action Distribution for byte
e y 4000 058 | it flps
4000 - . bit_flips B byte shuffling
EEE byte shuffling 3500 Wl byte_injection
35004 I byte_injection Bl byte_deletion
EEE byte deletion 2000 BB bytes_substitution
3000 4 B bytes_substitution truncation
@l truncation) random_generation
25004 W arithmetic_addition 5 2500
B arithmetic_subtraction S
2000 4 arithmetic_multiplication ~ § 2000
arithmetic_division g
1500 4 random_generation 1500
1000 { 1000
500 4 500
88 104 114 87 150 144 159 137 165 157
ol ol NN NN BN e B oo |

Mutation Method Index

1 2 3 4 5 6
Mutation Method Index

Figure 42 - DeletePet Agent’s Action Distribution

. bit_flips
B byte_shufiling
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000
B -
2
< 3000 4
6 z
(=}
e
w
=
. 2000
47 =
— int
2 —— float 1000
—— bool
— byte
—— string
04
T T T T T T 0 -
0 100 200 300 400 500
Episodes

1XX

5000.0

0.0 0.0 0.0
T T

2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 43 - DeletePet Agent’s Q-Value Convergence and State Visits

95

C.9 — CreateUser

Action Distribution for int

Action Distribution for float

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication

4000 1

3500 1

3000 4

thmetic_d 2
arithmetic_division £ 2500
random_generation 2

g
dicti fi
ictionary_fuzzy £ 20001
il
<
1500 1
1000 1

Action Distribution for byte

4092
4000
3500
3000
é 2500
2
O
5 2000
i
<
1500
1000
500
107 111 118 106 109 121 118 118
[}
0 1 2 3 4 5 6 7 8
Mutation Method Index
4000 4
3500 4
3000 4
2
S 25004
2
(5]
5 2000 4
<
1500 1
1000 q
500 4
93
0

96

93 92 76 84 %4 91

Mutation Method Index

4112

Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition

i subtraction

Action Counts

random_generation

3500

3000

2500

2000

1500

1000

500

Action Distribution for bool

4305
bit_flips 4000
byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction 3000
arithmetic_multiplication
arithmetic_division £
random_generation S
c
S 2000
£
1000
359
o
0

1
Mutation Method Index

Action Distribution for string

3127 = bit_flips

B byte shuffling

Wl byte_injection

B byte_deletion

BN bytes_substitution
truncation
random_generation

2 3 4 5 6
Mutation Method Index

Figure 44 - CreateUser Agent’s Action Distribution

. bit_flips
B byte_shufiling
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000
B -
2
< 3000 4
6 z
(=}
e
w
=
. 2000
41 =
— int
2 —— float 1000
—— bool
— byte
—— string
04
T T T T T T 0 -
0 100 200 300 400 500
Episodes

1XX

5000.0

0.0 0.0 0.0
T T

2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 45 - CreateUser Agent’s Q-Value Convergence and State Visits

97

C.10 - LoginUser

Action Distribution for bool

Action Distribution for int Action Distribution for float 3332 bit 11
K23} - bit_fl KL - bit_f o
2000 it_flips i 000 it_flips i 4000 B byte_shuffling
R byte_shuffling R byte_shuffling random_generation
2500 B bytes_substitution 2004 B bytes_substitution
BN arithmetic_addition BN arithmetic_addition
3000 - al!(hmel!c,subtmmor.\ 20004 - al!thmet!c,subtmmur.\ 3000
B arithmetic_multiplication B arithmetic_multiplication
8 W arithmetic_division B arithmetic_division £
€ 2500 S 2500 3
H random_generation 2 random_generation 5]
S 5} c
fi
5 2000 dhctionary_fuzzy 5 2000 { S 2000
g g g
1500 1500 4
1000 1000 4 1000
500 500 1 335 333
[} o o
0 1 2 3 4 5 6 7 8 0 1 2
Mutation Method Index Mutation Method Index Mutation Method Index
Action Distribution for string
Action Distribution for byte
P Y w000 W = bit_flips
4000 4 . bit_flips i I byte_shuffling
EEm byte_shuffling 3500 B byte_injection
3500 4 I byte_injection B byte_deletion
EEm byte deletion 3000 BN bytes_substitution
30004 W bytes_substitution truncation
@l truncation) random_generation
£ 55004 W arithmetic_addition £ 2500
5 - il subtraction S
€
< 20004 § 2000
g random generstion
15004 9! 1500
1000 { 1000
500 - 500
o0 o
Mutation Method Index Mutation Method Index

Figure 46 - LoginUser Agent’s Action Distribution

98

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000
B -
2
< 3000 4
6 z
(=}
e
w
=
. 2000
47 =
— int
2 —— float 1000
—— bool
— byte
—— string
04
T T T T T T 0 -
0 100 200 300 400 500
Episodes

1XX

5000.0

0.0 0.0 0.0
T T

2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 47 - LoginUser Agent’s Q-Value Convergence and State Visits

99

C.11 - UpdateUser

1000

800

Action Counts

100

Action Distribution for int

1255

1179

4
Mutation Method Index

Action Counts

Action Distribution for float

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

Action Counts

Action Distribution for byte

1000 §

800 4

600 4

400 4

200 4

1062

228 231

Mutation Method Index

1240

2 3 4
Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition

i subtraction

random_generation

Action Counts

1750

1500

1250

1000

750

500

1296

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Distribution for bool

2198
2000
1537
1500 4
8
£
s
3
8
P
2 1000
g
<
500 4
353
ol
0 2

Action Distribution for string

1865

2 3
Mutation Method Index

4 5 6

Figure 48 - UpdateUser Agent’s Action Distribution

1
Mutation Method Index

I bit_flips

B byte shuffling

Wl byte_injection

B byte_deletion

BN bytes_substitution
truncation
random_generation

I bit_flips
B byte_shuffling
random_generation

Average Q-value

Q-value Convergence

T T T T T
100 200 300 400 500
Episodes

o 4

Number of Visits

Number of Visits to Each HTTP Status Code Range

3500 A

3000 A

2500

2000

1500 ~

1000 +

500 A

1XX

3708.0

243.0 137.0

0.0
2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 49 - UpdateUser Agent’s Q-Value Convergence and State Visits

101

C.12 - LogoutUser

2500

2000

Action Counts

1500
1000

500

102

Action Distribution for int

4068

2 3 4 5 6 7 8
Mutation Method Index

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

Action Distribution for float

Action Distribution for bool

4085

4000 4

3500 4

3000 4

25001

2000 4

Action Counts

1500 1

1000 {

500 4

Mutation Method Index

Action Distribution for byte

4000 4

3500 4

3000

25001

2000 1

Action Counts

1500 4

1000 q

500 4

4058

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition

i subtraction

random_generation

Mutation Method Index

Action Counts

4000

3500

3000

2500

2000

1500

1000

500

4309
. bit_flips 4000
B byte shuffling
W bytes_substitution
BEm arithmetic_addition
B arithmetic_subtraction 3000
B arithmetic_multiplication
arithmetic_division £
random_generation S
c
S 2000
£
1000
o
0

Action Distribution for string

4083

Mutation Method Index

Figure 50 - LogoutUser Agent’s Action Distribution

. bit_flips
B byte_shuffling
random_generation

1
Mutation Method Index

I bit_flips

B byte shuffling

Wl byte_injection

B byte_deletion

BN bytes_substitution
truncation
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 5000 -
10 A
4000
B -
2
< 3000 4
6 z
(=}
e
w
=
. 2000
47 =
— int
2 —— float 1000
—— bool
— byte
—— string
04
T T T T T T 0 -
0 100 200 300 400 500
Episodes

1XX

5000.0

0.0 0.0 0.0
T T

2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 51 — LogoutUser Agent’s Q-Value Convergence and State Visits

103

C.13 — GetUserByName

400

=1
3

Action Counts
N
s
e

100

104

Action Distribution for int

436

Mutation Method Index

Action Counts

350

300

250

200

150

100

Action Distribution for float

- bit_fiips ==
B byte shuffling
N bytes_substitution 400
BN arithmetic_addition
W arithmetic_subtraction
B arithmetic_multiplication
B arithmetic_division £ 300
random_generation
dictionary_fuzzy <
&
g 200
<
100
38 36
30 30 30 23
0 M
0 1 2 3 4 5 6
Mutation Method Index
Action Distribution for byte
23| - bit_flips 00
B byte shuffling
B byte_injection
BB byte deletion
B bytes_substitution 300 4
BN truncation 9
W arithmetic_addition 5
B arithmetic_subtraction S
- arithmetic_multiplication § 500
arithmetic_division E
random_generation
100
61
29 20 20 23 23 22 25
o
o 1 2 3 4 5 & 7 & 9 1

Mutation Methed Index

Figure 52 - GetUserByName Agent’s Action Distribution

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Distribution for string

Action Counts

Action Distribution for bool

479

1
Mutation Method Index

429

2 3
Mutation Method Index

bit_flips
byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
random_generation

flips
B byte_shuffling
random_generation

Average Q-value

Q-value Convergence

0 |
_2 4
_4 4
_6 -
—8 7 int
—— float
—— bool
—10 — byte
—— string
T T T T T
100 200 300 400 500
Episodes

Number of Visits

Number of Visits to Each HTTP Status Code Range

500 ~

400 -

300 ~

200 A

100 4

493.0

188.0

0.0 0.0 0.0
T T

XX 2XX 3IXX 4XX 5XX
HTTP Status Code Ranges

Figure 53 — GetUserByName Agent’s Q-Value Convergence and State Visits

105

C.14 — DeleteUser

400

350

300

250

200

Action Counts

150

100

106

Action Distribution for int

70

80

2

388

3 4 5
Mutation Method Index

Action Counts

31

300

250

200

150

100

Action Distribution for float

. 400
bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

Action Counts

Action Distribution for byte

355

Mutation Methed Index

386

3 4 5
Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Counts

350

300

~
3

200

»4
&
o

-
5
=)

Action Distribution for bool

500 4

1
Mutation Method Index

. bit_flips
B byte_shuffling
N bytes_substitution
BB arithmetic_addition 400 4
W arithmetic_subtraction
B arithmetic_multiplication @
arithmetic_division E
& 3 300
random_generation S
3
1
< 2004
136
100 4
04
0
Action Distribution for string
376 -
-
-
-
-
85 97
55 54
35
1 4 5 6

2 3
Mutation Method Index

Figure 54 - DeleteUser Agent’s Action Distribution

bit_flips
byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
random_generation

flips
B byte_shuffling
random_generation

Average Q-value

Q-value Convergence

T T T T T
0 100 200 300 400 500
Episodes

Number of Visits

Number of Visits to Each HTTP Status Code Range

500 ~

400 ~

300 ~

200 ~

100 4

491.0

247.0

0.0 2.0 0.0

XX 2XX 3IXX 4XX 5XX
HTTP Status Code Ranges

Figure 55 - DeleteUser Agent’s Q-Value Convergence and State Visits

107

C.15 - PlaceOrder

Action Counts

108

Action Distribution for int

372

Mutation Method Index

Action Counts

Action Distribution for byte

Mutation Method Index

Action Distribution for string

Action Distribution for bool

Action Distribution for float 562
— 400 386
W bit_flips . bit_flips
B byte shuffling 50 B byte_shuffling
N bytes_substitution N bytes_substitution
BN arithmetic_addition BB arithmetic_addition
B arithmetic_subtraction 200 W arithmetic_subtraction
B arithmetic_multiplication B arithmetic_multiplication 8
W arithmetic_division g 250 arithmetic_division €
random_generation random_generation S
dictionary_fuzzy < 200 5
& =
] 163 g
g <
< 150
100
w0 51
0
1 3 4 5 7

1
Mutation Method Index

- 408 = bit_flips
350 . bit_flips B byte shuffling
EEm byte shuffling Wl byte_injection
300 I byte_injection N byte_deletion
BB byte deletion BN bytes_substitution
B bytes_substitution truncation
250 i
EER truncation i) random_generation
W arithmetic_addition 5
200 B arithmetic_subtraction S
e arithmetic_multiplication S
arithmetic_division g

random_generation

o 1 2 3 4 5 6

Mutation Method Index Mutation Method Index

Figure 56 - PlaceOrder Agent’s Action Distribution

flips
B byte_shuffling
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 474.0
400
]
G 300 - 295.0
>
b
=]
I~
M)
£
E 200 -
=
100 89.0
0 0.0 0.0
T T T T T T T T
0 100 200 300 400 500 IXX 2XX 3XX AXX 5XX
Episodes HTTP Status Code Ranges

Figure 57 — PlaceOrder Agent’s Q-Value Convergence and State Visits

109

C.16 — GetOrderByid

2500

2000

Action Counts

1500
1000

500

110

Action Distribution for int

4080

Mutation Method Index

Action Counts

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

Action Distribution for float

Action Distribution for bool

3754

Action Counts

Action Distribution for byte

3500 4

3000 1

25004

2000

1500 4

1000

500 4

3700

Mutation Method Index

Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition

i subtraction

random_generation

Action Counts

3500

3000

2500

2000

1500

1000

500

4260
. bit_flips 4000
B byte shuffling
B bytes_substitution 3500
W arithmetic_addition
B arithmetic_subtraction 3000
B arithmetic_multiplication
arithmetic_division S 2500
random_generation o
c
2 2000
£
1500
1000
500
o
0

Action Distribution for string

3761

o 1 2 3 4 5 6
Mutation Method Index

Figure 58 - GetOrderByld Agent’s Action Distribution

1
Mutation Method Index

I bit_flips

B byte shuffling

Wl byte_injection

B byte_deletion

BN bytes_substitution
truncation
random_generation

. bit_flips
B byte_shuffling
random_generation

Average Q-value

Q-value Convergence

10
5 -
0 B
-5
int
~10 4 — float
—— bool
— byte
15 4 —— string
T T T T T T
0 100 200 300 400 500
Episodes

Number of Visits

Number of Visits to Each HTTP Status Code Range

4000

3500

3000 A

2500

2000

1500 ~

1000 -

500 A

4208.0

792.0

0.0 0.0
T

1IXX 2XX 3AX 4XX 5XX
HTTP Status Code Ranges

Figure 59 - GetOrderByld Agent’s Q-Value Convergence and State Visits

111

C.17 — Getlnventory

Action Distribution for int

410

Action Counts

o 1 2 3 4 S 6
Mutation Method Index

112

Action Counts

bit_flips 400
byte_shuffling
bytes_substitution 150
arithmetic_addition
arithmetic_subtraction 200
arithmetic_multiplication
arithmetic_division 8
< 250
random_generation
dict fu <
ictionary_fuzzy S 200
i
<
150
100
50
ol

Action Distribution for float

Action Distribution for bool

Action Distribution for byte

410

Mutation Methed Index

410

Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition
arithmetic_subtraction

arithmetic_multiplication
arithmetic_division
random_generation

Action Counts

]
3

w
&
°©

]
B

™
&
3

N
S
b1

150 4

100

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Counts

433

1
Mutation Method Index

I bit_flips

B byte_shufiling

Wl byte_injection

N byte_deletion

B bytes_substitution
truncation
random_generation

11
7
Action Distribution for string
418
19 12 7 16 15 13
0o 1 2 3 4 5 6

Mutation Method Index

Figure 60 — Getlnventory Agent’s Action Distribution

flips
B byte_shuffling
random_generation

Q-value Convergence

2.00
1.75 A
1.50 -
8 1251
m
>
(o3
< 1.00 -
[=]
@
g 0.75 -
0.50 A — int
—— float
0.25 - — bool
— byte
0.00 - string
T T T T T
100 200 300 400 500
Episodes

Number of Visits

Number of Visits to Each HTTP Status Code Range

500 ~

400 ~

300 ~

200 ~

100 ~

0.0

0.0 0.0 0.0
T T T

XX

2XX 3IXX 4XX
HTTP Status Code Ranges

Figure 61 - Getlnventory Agent’s Q-Value Convergence and State Visits

500.0

5XX

113

C.18 — DeleteOrder

400

350

300

250

200

Action Counts

150

100

114

Action Distribution for int

Mutation Method Index

Action Counts

407

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation
dictionary_fuzzy

Action Counts

Action Distribution for byte

Action Distribution for float

406

Mutation Methed Index

Figure 62 - DeleteOrder Agent’s Action Distribution

Mutation Method Index

bit_flips

byte_shuffling
byte_injection
byte_deletion
bytes_substitution
truncation
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Counts

bit_flips

byte_shuffling
bytes_substitution
arithmetic_addition
arithmetic_subtraction
arithmetic_multiplication
arithmetic_division
random_generation

Action Distribution for string

Action Counts

Action Distribution for bool

437

1
Mutation Method Index

400

350

300

250

n
=1
8

150 4

100

412

2 3
Mutation Method Index

I bit_flips

B byte_shufiling

Wl byte_injection

N byte_deletion

B bytes_substitution
truncation
random_generation

flips
B byte_shuffling
random_generation

Average Q-value

Number of Visits to Each HTTP Status Code Range

Q-value Convergence 500 4
1.75 -
1.50 - 400 1
1.25 - 9
[}
S 300
1.00 i
I~
M)
s
0.75 - £
5 |
3 200
0.50 - -
— int
—— float
100 ~
0.25 - —— bool
— e
0.00 - —_— ts}tyr:n 25.0
: 9 0 0.0 0.0 0.0
T T T T T T T T T
100 200 300 400 500 1XX 2XX 3XX AKX
Episodes HTTP Status Code Ranges

Figure 63 - DeleteOrder Agent’s Q-Value Convergence and State Visit

500.0

5XX

115

Appendix D — Status Codes Function Distribution

6000

5000

4000

3000

2000

1000

6000

5000

4000

3000

2000

1000

Functions contributions to 2XX status code

5000 5000 5000 5000 5000 5000 5000
4260 4208
3472 3708
1792
2XX

W AddPet W UpdatePet M GetPetByld B FindPetsByTags

B UploadFile W UpdatePetWithForm M DeletePet M CreateUser

M LoginUser W UpdateUser W LogoutUser H DeleteUser

M PlaceOrder B GetOrderByld

Figure 64 - Functions Contributions to 2XX Status Code

Functions contributions to 4XX status code

5000
1290
609 740 792
- [e |
4AXX

B FindPetsByStatus W GetPetByld B UpdatePetWithForm m UpdateUser

B GetUserByName M DeleteUser M PlaceOrder H GetOrderByld

H DeleteOrder FindPetsByTags

Figure 65 - Functions Contributions to 4XX Status Code

116

600

500

400

300

200

100

Functions contributions to 5XX status code

493 491
291
I :
5

B FindPetsByTags M GetPetByld H GetUserByName M DeleteUser

500 500
474

XX

m PlaceOrder H Getlnventory M DeleteOrder ™ UpdateUser

Figure 66 - Functions Contributions to 5XX Status Code

137

117

