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Abstract

Machine Learning (ML) can be incredibly valuable to automate anomaly
detection and cyber-attack classification, improving the way that Network
Intrusion Detection (NID) is performed. However, despite the benefits of
ML models, they are highly susceptible to adversarial cyber-attack examples
specifically crafted to exploit them. A wide range of adversarial attacks have
been created and researchers have worked on various defense strategies to
safeguard ML models, but most were not intended for the specific constraints
of a communication network and its communication protocols, so they may
lead to unrealistic examples in the NID domain. This Systematization of
Knowledge (SoK) consolidates and summarizes the state-of-the-art adver-
sarial learning approaches that can generate realistic examples and could
be used in real ML development and deployment scenarios with real network
traffic flows. This SoK also describes the open challenges regarding the use of
adversarial ML in the NID domain, defines the fundamental properties that
are required for an adversarial example to be realistic, and provides guide-
lines for researchers to ensure that their future experiments are adequate for
a real communication network.
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1. Introduction

Modern organizations can benefit from the digital transformation to re-
engineer their business processes, integrating control and information systems
and automating decision-making procedures. Nonetheless, as organizations
become more and more dependent on digital systems, the threat posed by a
cyber-attack skyrockets [1]. Every novel technology adds hidden vulnerabil-
ities that can be exploited in multiple attack vectors to disrupt the normal
operation of a system. This is particularly concerning for organizations that
deal with confidential information and sensitive personal data, or manage
critical infrastructure, such as the healthcare and energy sectors [2].

The disruptions caused by a successful cyber-attack can be extremely
costly for an organization. In 2022, the average cost of a data breach was
reported to be 4.35 million US dollars, an increase of 12.7% since 2020 [3].
This continued growth of both the number of successful cyber-attacks and
their associated costs in various sectors and industries denotes that mod-
ern organizations face tremendous security challenges. Furthermore, since
monitoring a system to detect suspicious activity is not a trivial process and
small enterprises commonly fall short of security best practices, most go out
of business within 6 months of a breach [4].

With financial security and business continuity on the line, it is essen-
tial for organizations to improve the way they perform Network Intrusion
Detection (NID). This is where Artificial Intelligence (AI), and more specif-
ically Machine Learning (ML), can be incredibly valuable [5]. ML models
can originate from numerous algorithms, including tree-based algorithms and
deep learning algorithms based on Artificial Neural Networks (ANNs), and
can be trained to automate several tasks, from the recognition of patterns
and anomalies in network traffic flows to the classification of complex cyber-
attacks. The adoption of intelligent cybersecurity solutions can improve re-
silience and shorten the time required to detect and contain an intrusion by
up to 76 days, leading to cost savings of up to 3 million US dollars [3].

However, despite the benefits of ML to tackle the growing number and in-
creasing sophistication of cyber-attacks, it is highly susceptible to adversarial
examples: cyber-attack variations specifically crafted to exploit ML models
[6]. Even though the malicious purpose of a cyber-attack causes it to have
distinct characteristics that could be recognized in a thorough analysis by
security practitioners, an attacker can generate specific data perturbations
in a network traffic flow to evade detection from intelligent security systems.
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ML engineers and security practitioners still lack the knowledge and tools to
prevent such disruptions, so adversarial attacks pose a major threat to ML
and to the systems that rely on it [7, 8].

In recent years, a wide range of adversarial attacks have been developed
and researchers have worked on various defenses to protect ML models, but
most were not intended for the specific requirements of a communication
network and the utilized communication protocols, so they may lead to un-
realistic data perturbations in the NID domain. Even though several reviews
have been published with comparisons of the strengths and weaknesses of
multiple methods [9, 10], they do not address a key aspect: whether or not
they could be used in a real communication network. Therefore, there is a
lack in the current literature of a systematization of the approaches capable
of generating realistic adversarial examples in the NID domain.

This Systematization of Knowledge (SoK) consolidates and summarizes
the state-of-the-art adversarial learning approaches that could be applied
in real ML development and deployment scenarios with real network traffic
flows, and provides guidelines for future research to better address realism.
The main Research Question (RQ) to be investigated was:

• How can adversarial cyber-attack examples be realistically used to at-
tack and defend the ML models utilized in NID?

To provide more specific directions for the research, the main RQ was
divided into three narrower sub-questions:

RQ1: What are the main perturbation crafting processes?

RQ2: What are the most realistic attack methods?

RQ3: What are the most reliable defense strategies?

By consolidating the main constraints and limitations of adversarial ML
in the NID domain, this SoK intends to guide ML engineers and security
practitioners to improve their methods and strategies according to the con-
straints of their specific communication networks. For that purpose, it is
organized into multiple sections. Section 2 describes the adopted research
methodology. Sections 3, 4, and 5, summarize and discuss the findings of
RQ1, RQ2, and RQ3, respectively. Section 6 describes the open challenges
regarding the main RQ and provides guidelines for future research. Finally,
Section 7 presents the concluding remarks.
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Table 1: Defined search terms.

Scope Terms

Adversarial adversarial

Learning (learning OR example OR perturbation OR
attack OR defense)

Network (network OR wireless OR IoT )

Intrusion (intrusion OR anomaly OR cyber-attack)

Detection (detection OR classification)

2. Research Methodology

The research was based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) [11], which is a standard reporting
guideline that aims to improve the transparency of literature reviews. Search
terms were used in reputable bibliographic databases, and several inclusion
and exclusion criteria were defined to screen the found publications. Since
screening the titles and abstracts of the publications was sufficient to as-
sess their eligibility, their full texts were directly reviewed without further
exclusion rounds being necessary.

After a careful initial analysis of the literature, several search terms were
chosen to address the formulated RQs. To ensure a comprehensive coverage
of relevant publications within the scope of adversarial ML, the adversarial
keyword was combined with other suitable terms like perturbation, attack,
and defense. Concepts closely related to NID, such as anomaly detection,
cyber-attack classification, wireless and IoT networks, were also considered.
Table 1 provides an overview of the defined search terms.

The primary search source was Science Direct [12], which is a large biblio-
graphic database of scientific journals and conference proceedings provided by
the internationally recognized publisher Elsevier. Due to their relevance for
scientific literature of ML, computing, software engineering, and information
technology, the search also included the digital libraries of the Association
for Computing Machinery (ACM) [13], the Institute of Electrical and Elec-
tronics Engineers (IEEE) [14], and the Multidisciplinary Digital Publishing
Institute (MDPI) [15]. It is important to note that the PRISMA backward
snowballing process of checking the references of the findings led to additional
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Table 2: Defined inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

IC1: Peer-reviewed journal article or
conference paper

EC1: Duplicated publication

IC2: Available in the English language EC2: Not applied to NID

IC3: Published from 2017 onwards EC3: Not a novelty

IC4: Addressed adversarial ML for NID EC4: Full text not available

records that were not directly obtained from these databases.
Since adversarial ML is an active research field, the search was limited to

peer-reviewed publications in journals or conference proceedings from 2017
onwards. It included recent works addressing the use of adversarial ML in the
NID domain, as well as surveys and reviews that addressed key developments,
which led to additional publications. The findings that were duplicated in
multiple databases were removed, and those that were not directly applied
to the NID domain or did not introduce a novel method or strategy were
excluded. Table 2 provides an overview of the inclusion and exclusion criteria
that were defined to screen the found publications.

A total of 936 records were initially retrieved by applying the query to the
contents of the publications stored in the selected databases. After removing
duplicates and performing the screening phase, 139 records were excluded
because they mentioned NID but were not directly applied to the NID do-
main. Furthermore, another 703 records were excluded because they did
not present novel approaches. Despite performing experiments with differ-
ent datasets and different contexts, these records used previously published
methods and strategies without relevant modifications. The 703 records cor-
respond to over 75% of the found publications, which demonstrates that it is
difficult for researchers to find innovative approaches in a regular search in
these databases, and further highlights the necessity for a systematization of
the most relevant advances in this research field.

The remaining 82 records, which correspond to only 9% of the found
publications, provided relevant aspects for the use of adversarial ML in the
NID domain. Their content and references were checked and 16 additional
publications were found by performing backward snowballing. Therefore, 98
publications were included in the review (see Figure 1). The publications
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Figure 1: PRISMA search process.

were independently reviewed by each author of this SoK to extract the key
developments and key takeaways for NID, and then their notes were consol-
idated and systematized to create this manuscript.

3. Data Perturbations

ML has been increasingly used to make digital systems more intelligent,
but it is not flawless. For instance, if an ML model is trained with non-
representative data that has missing or biased information, it may become
underfit, performing poorly on both its training data and new data, or even
overfit, performing very well on its training data but still poorly on previously
unseen testing data [16]. These generalization errors can be quickly noticed
during the development of an intelligent system with ML models, and better
results can be achieved by improving data quality and fine-tuning the models
[17]. However, even if a model generalizes well to the testing data, it is not
guaranteed to always have a stable performance. During the inference phase,
when it is deployed to make predictions on live data, it may sometimes behave
unexpectedly with seemingly ordinary data samples [18, 19].
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In a set of very similar samples of the same class, a model may correctly
classify all but one. That specific sample may be assigned to a completely dif-
ferent class with a high confidence score because the model wrongly considers
that it is different from the others. Ultimately, this unexpected behavior is
caused by some unnoticed generalization errors during the model’s training
phase [20]. Since a training set does not cover all the samples that a model
will encounter in its inference phase when deployed in a real system, the
model will inevitably learn some simplifications of the decision boundaries
that lead to incorrections in its internal reasoning [21, 22]. These incorrec-
tions can be hard to notice because the intricate mechanics of ML models
cause the misclassifications to only occur in very specific samples, which are
designated as adversarial examples [6].

An adversarial example may have very subtle perturbations that are al-
most imperceptible to humans but make it significantly different from regular
samples to an ML model. Such adversarial perturbations can occur natu-
rally in faulty data recordings with incorrect readings, but they can also be
specifically crafted with specialized inputs to exploit the generalization errors
[23, 24]. Even though all ML models are inherently susceptible to adversar-
ial examples, different models will learn distinct simplifications of the target
domain and create distinct decision boundaries. Hence, some models may be
more vulnerable to perturbations in a certain feature than others, presenting
model-specific edge cases that are hard to detect and address [25, 26].

Due to the advances in computer vision technologies and their increas-
ing use across various industries, the major developments in adversarial ML
have been focused on the image classification domain and are then adapted
to other domains [27, 28]. In adversarial images, the perturbed features are
pixels with a value freely assigned from 0 to 255, but it is pertinent to un-
derstand how these research efforts can be applied in cybersecurity solutions
and if the concepts are transferable to a NID system in a real communication
network. In the current literature, the perturbations that turn a regular sam-
ple into an adversarial example can be crafted using two main concepts: an
adversarial patch that heavily modifies a few features, and an adversarial
mask that slightly modifies many or all features [29].

Adversarial patches are the most straightforward way to disrupt a cyber-
physical system. Since live data from a physical environment is not easily
controllable, there is a greater risk for an ML model to be affected by faulty
input data, either naturally occurring or purposely created [30]. For instance,
for a model trained to classify street signs, a perturbed sample of a stop sign
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Figure 2: Adversarial perturbation via a patch, based on [31].

with small black and white patches can be misclassified as a completely
unrelated sign (see Figure 2) [31]. These patches are devised to cause the
model to make a mistake when it encounters the sign at a certain angle,
although a human would still recognize a stop sign [32].

Despite being harder to apply adversarial masks in physical environments,
they are very well-suited for digital systems. For instance, for a model that
performs handwritten digit recognition, a picture of a digit with a subtle
change to several pixels can be misclassified as another digit (see Figure 3)
[33]. Such model can have a wide range of applications, from certified docu-
ments and bank check processing to authentication via a picture of an identi-
fication document. If a person applies a filter that has a built-in adversarial
mask before submitting the requested document, the automated verification
systems that rely on this model can be deceived [34]. Furthermore, there are
even some adversarial masks that exploit the intrinsic vulnerabilities of ML
models and turn every image of well-established datasets into an adversarial
image, which denotes that adversarial examples might not be as difficult to
create as previously thought [35].

Even though most developments in the adversarial ML area of research
have addressed image classification, the susceptibility of ML models to these
examples has also been noticed in other domains with different data types,
such as audio, text, tabular data, and time series [25, 36]. For the NID
domain, adversarial perturbations must follow a tabular format, where each
feature is a categorical or numerical variable representing a characteristic of
network traffic [37, 38]. This tabular data format requires more complex
perturbations, but they can also be based on the concepts utilized for im-
ages. For a tabular classification model, a patch-like perturbation could fully
replace the values of categorical variables, which may include the communi-
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Figure 3: Adversarial perturbation via a mask, based on [33].

Figure 4: Adversarial perturbation on tabular data, based on [39].

cation protocol or the endpoint port number, and a mask-like perturbation
could slightly increase or decrease the values of numerical variables, such as
the amount of sent packets or the download to upload ratio (see Figure 4)
[39, 40]. Nonetheless, not all perturbations are suitable for the NID domain
because there are specific constraints that must be complied with.

In contrast with the pixels of an image, each tabular feature may have a
different range of possible values, according to the characteristic it represents.
Furthermore, a feature may also be highly correlated to several others, being
required to exhibit specific values depending on the other characteristics of
a sample [41]. For instance, a Slowloris is a Denial-of-Service (DoS) attack
that attempts to overwhelm a web server by opening multiple connections
and maintaining them as long as possible. A flow utilized in this cyber-attack
must use the Transmission Control Protocol (TCP) and the Push (PSH) flag
to keep the connection open on the port number 80, its endpoint [42].

A very relevant characteristic of this flow is its packet Inter-Arrival Time
(IAT), which represents the elapsed time between the arrival of two subse-
quent packets and may be represented as two features: the minimum and
maximum IAT. The flow may have a varying IAT between 20 and 30 sec-
onds to appear as arbitrary benign traffic instead of scheduled packets just
to keep the connection open. In a certain network, a longer IAT cannot be
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used because the web server being attacked is configured with a timeout to
close connections after 30 seconds of inactivity, which is a very common web
application security measure [43].

However, throughout the literature, various studies provide adversarial
cyber-attack examples crafted via patch-like and mask-like perturbations as
direct input to an ML model without questioning if they are viable for a real
communication network [9, 44]. This may result in misleading evaluations
where the ML models are tested against unrealistic examples that they will
not encounter in a real deployment scenario with real network traffic.

Due to their lack of constraints, it is very difficult to transfer the perturba-
tion crafting processes of the image classification domain to the NID domain.
A patch-like crafting process could be performed, changing the flow from a
TCP connection to another protocol, or from port number 80 to another
port, but these modifications would not be useful for a lengthy DoS. The
communication protocol, the connection flag, and the port must remain the
same, otherwise the crafted example will no longer be a flow of the Slowloris
class [45, 46]. Likewise, a mask-like crafting process may increase or decrease
the values of the minimum and maximum IAT, but not all perturbations will
be suitable for a real communication network.

Three diferent examples may be generated for the considered Slowloris
flow: the first with a minimum IAT of 22 and a maximum IAT of 28 seconds,
the second with 18 and 32, and the third with 26 and 24. Even though all
three may deceive an ML model and be misclassified as belonging to the
benign class, only the first is a harmful Slowloris flow. The second example
is actually a harmless flow because the considered web server will terminate
the connection at the 31st second, before a packet is received at the 32nd
second, preventing the functionality of this type of DoS [47]. In turn, the
third example would not even be possible in a real communication network
because a flow with packets at least every 26 seconds cannot also have packets
at most every 24 seconds (see Figure 5).

Despite all examples following similar mask-like perturbations of increas-
ing and decreasing some numerical variables of the flow, they would lead to
very different outcomes in a communication network and only one example
could be used against a real NID system. Therefore, a successful adversarial
attack is not guaranteed to be a successful cyber-attack [48].

To ensure that an adversarial example represents a real network traffic
flow that can be transmitted through a real communication network, the
constraints of the utilized communication protocols and the malicious pur-
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Figure 5: Adversarial perturbation on a network traffic flow, based on [48].

pose and functionality of a cyber-attack must be taken into account when
generating the perturbations [49, 50]. Nonetheless, despite the current dif-
ficulty in creating realistic adversarial cyber-attack examples, the growing
popularity of adversarial ML is leading to the development of novel meth-
ods to attack various types of algorithms, which is very concerning for the
security of intelligent systems [9, 37, 8].

4. Attack Methods

The susceptibility of ML to adversarial examples can be exploited for
diverse malicious purposes with methods that automatically generate the
required perturbations. An attacker targeting an intelligent system may use
multiple methods to perform a wide range of attacks, which can be divided
into two primary categories: poisoning attacks during a model’s training
phase, and evasion attacks during the inference phase [51].

Poisoning attacks inject adversarial examples in a model’s training data
to compromise its internal reasoning and decision boundaries. These attacks
can perform model corruption that make it completely unusable, or even
introduce hidden backdoors that make it exhibit a biased behavior in spe-
cific samples, which is difficult to detect and explain because the model only
deviates from its expected behavior when triggered by very specific pertur-
bations [52, 53]. This is a serious security risk for organizations that heavily
rely on third-party datasets or outsource their cybersecurity solutions, such
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as the development of facial recognition models for biometric authentication
systems [54, 55]. Nonetheless, since NID systems are commonly developed
in secure environments with thoroughly verified network traffic data, an ex-
ternal attacker does not usually have access to an ML model to compromise
it during its training phase [49, 10].

On the other hand, evasion attacks use adversarial examples to deceive
a vulnerable model after it has been deployed. The misclassifications caused
by these attacks can be directly used to evade detection from an intelligent
security system, or for more complex goals, such as membership inference
and attribute inference to check if a model was trained with a certain sam-
ple and certain features, model inversion to reconstruct a training set, and
model extraction to steal its functionality and replicate it in a substitute
model [56, 57, 58]. If confidential or proprietary information is used to train
a model, an attacker can cause significant damage to an organization by
gathering that information during the inference phase [59, 60]. Even though
a model must be queried many times to obtain the information, advances
in wireless and IoT technologies are making NID systems process larger and
larger amounts of network traffic, which substantially increases query oppor-
tunities and therefore the feasibility of evasion attacks [61, 62, 63].

In recent years, numerous methods have been created to automate the
misclassification attempts for evasion attacks. A method may require access
to a model in one of three possible settings: black-box, gray-box, and
white-box. The first is model-agnostic and solely queries a model’s predic-
tions, whereas the second may also require knowledge of its architecture or
the utilized features, and the third needs full access to its internal parameters
[64, 30]. Additionally, a black-box or gray-box method may solely use class
predictions, a decision-based approach, or require a model to output the
confidence scores of the predictions, a score-based approach [65, 10]. These
characteristics affect the choice of an adversarial method because it must be
able to attack the targeted model and system, while also being useful to the
fulfillment of the goals of the attacker.

Since the focus of adversarial ML has been image classification, the com-
mon attack approach is to freely exploit the internal gradients of an ANN
in a white-box setting [51, 36]. Consequently, most state-of-the-art meth-
ods do not support other settings nor other models, which severely limits
their applicability to other domains. Considering that a deployed NID sys-
tem is securely isolated, having full access to a model and its feedback is
highly unlikely, and an attacker will only know if a certain example evades
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detection if the entire cyber-attack is successfully completed. This inter-
action corresponds to a decision-based approach in black-box or gray-box
settings, depending on the available system information about the utilized
model and feature set [49, 34]. Furthermore, various other types of ML
models can be used for classification tasks with tabular data. For instance,
tree-based algorithms and ensembles like Random Forest (RF) are remark-
ably well-established for NID, but are also susceptible to adversarial attacks
[66, 16, 67, 68]. Therefore, an attacker will have to resort to methods that
support these models and all the specificities of NID.

Various adversarial evasion attack methods have been made open-source
software and have started being used to target the ML models of intelligent
NID systems. Table 3 summarizes the characteristics of the most relevant
methods of the current literature that have been used in NID, noting if they
could potentially fulfill the constraints of complex communication networks.
Even though some methods were introduced as suitable for a black-box set-
ting, they require knowledge of the utilized feature set to determine how
which feature will be perturbed, so they were categorized as being in the
gray-box setting. The ‘Scores’ keyword corresponds to models that can out-
put confidence scores for a score-based approach. In turn, the ‘Gradients’
keyword corresponds to models that provide full access to their internal loss
gradients, which includes ANNs.

Several methods initially developed for the generation of adversarial im-
ages have been adapted to generate adversarial network traffic flows. How-
ever, most do not account for the constraints of the utilized communication
protocols nor the functionalities of the cyber-attacks, so only a few could
potentially generate realistic examples [10, 68].

Both the Jacobian-based Saliency Map Attack (JSMA) [72] and the One
Pixel attack [78] were developed to attack image classification models, but
their perturbation crafting processes could be used to preserve the structure
of a traffic flow. The former minimizes the number of modified pixels, requir-
ing full access to the internal gradients of an ANN in a white-box setting,
whereas the latter only modifies a single pixel, based on the confidence scores
of a model in a black-box setting. These methods only perturb the most ap-
propriate features in a decision boundary without affecting the remaining
ones, which can preserve the correlations between most features of a flow.

Nonetheless, these methods freely generate the perturbations for the few
modified features. When adapted to network flows, this lack of constraints
could lead to values that are incompatible with the remaining features, which
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Table 3: Characteristics of relevant adversarial evasion attack methods.

Method Setting Models Constraints Reference

BIM White-box Gradients ✗ [24]

C&W White-box Gradients ✗ [69]

DeepFool White-box Gradients ✗ [70]

FGSM White-box Gradients ✗ [23]

Hierarchical White-box Gradients ✗ [41]

Houdini White-box Gradients ✗ [71]

JSMA White-box Gradients ✓ [72]

PGD White-box Gradients ✗ [73]

Structured White-box Gradients ✗ [74]

GSA-GAN Gray-box Scores ✗ [75]

IDS-GAN Gray-box Scores ✗ [46]

Polymorphic Gray-box Scores ✓ [45]

A2PM Gray-box Any ✓ [47]

DoSBoundary Gray-box Any ✓ [40]

BFAM Black-box Scores ✗ [76]

BMI-FGSM Black-box Scores ✗ [77]

OnePixel Black-box Scores ✓ [78]

RL-S2V Black-box Scores ✗ [79]

WGAN Black-box Scores ✗ [80]

ZOO Black-box Scores ✗ [81]

Boundary Black-box Any ✗ [82]

CGAN Black-box Any ✗ [83]

CVAE Black-box Any ✗ [84]

GADGET Black-box Any ✗ [85]

HopSkipJump Black-box Any ✗ [86]

Optimization Black-box Any ✗ [87]

14



would result in mostly harmless or impossible flows and only a few occasional
realistic examples created by chance. To generate high-quality examples on a
more regular basis, some methods have been specifically developed to tackle
the constraints of the NID domain.

The Polymorphic attack [45] addresses the preservation of original class
characteristics to create examples compatible with a cyber-attack’s purpose.
A feature selection algorithm is applied in a gray-box setting to obtain the
most impactful features for the distinction between benign traffic and cyber-
attack classes in a dataset. Then, the remaining features, which are con-
sidered non-relevant for the functionality of a cyber-attack, are perturbed
by a Wasserstein Generative Adversarial Network (WGAN) [80]. Despite
the WGAN not accounting for the constraints of the remaining features, the
most important features of each class are not modified, so the main charac-
teristics required for a successful cyber-attack may be preserved.

The distinction between benign traffic and cyber-attack classes was fur-
ther explored in the DoSBoundary attack [40] and the Adaptative Pertur-
bation Pattern Method (A2PM) [47]. Both iteratively optimize the pertur-
bations that are performed on each feature of a traffic flow according to the
constraints of a communication network and the functionality of each cyber-
attack class. The former requires expert knowledge to manually configure
the specific perturbations of each feature, whereas the latter only needs to
know the utilized feature set and relies on adaptative patterns to learn the
characteristics of each feature. Despite these methods requiring many queries
to a model and knowledge of the feature set, which corresponds to a gray-box
setting, they can generate constrained adversarial examples that preserve the
correlations between the features of a network traffic flow.

Due to the different characteristics of existing methods and diverse goals
of attackers, efforts are being made to systematize the possible attack vectors
in the Adversarial Threat Landscape for Artificial-Intelligence Systems [88]
knowledge base, and to complement it with case studies and demonstrations
based on real-world observations. As novel adversarial methods continue
to be developed, it is becoming essential to raise awareness of the diverse
strategies that attackers can use to exploit ML models and the security risks
they pose to modern organizations.
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Figure 6: Adversarial arms race (left) and security-by-design (right), based on [90].

5. Defense Strategies

The growing ML attack surface led to a never-ending arms race where
attackers continuously exploit newly discovered vulnerabilities and defenders
develop countermeasures against each novel threat. However, the defenders
are always a step behind because it can take a long time until the effects of an
attack are detected, and then it is difficult to retrace it and develop a specific
countermeasure [89]. To get ahead of attackers, organizations should follow a
security-by-design development approach and proactively search for vulner-
abilities themselves. By simulating adversarial attacks in realistic scenarios
and analyzing entire attack vectors, ML engineers and security practitioners
can anticipate possible threats and use that knowledge to preemptively revise
and improve their defense strategy (see Figure 6) [90].

A defense strategy can combine multiple techniques to address different
security concerns. Due to their proven value against several adversarial at-
tacks, some defenses have been standardized across the scientific literature,
divided into two primary categories: proactive defenses during a model’s
training phase, and reactive defenses during the inference phase [36].

Regarding reactive defenses, they attempt to mitigate the effects of cor-
rupted data on a model’s predictions by safely processing its input and output
data. These defenses can rely on several preprocessing techniques, such as
data denoising and feature squeezing to reduce the search space for an
attack, and postprocessing techniques, such as mechanisms that deal with
model uncertainty and require predictions with high confidence scores
[64, 57, 91]. Even though reactive defenses can be valuable against both
erroneous data and adversarial attacks purposely exploiting a model, they
represent an additional software layer that attempts to encapsulate a vul-
nerable model. This layer is always needed for a NID system to convert the
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recorded network traffic into the utilized feature set and then convert the
predictions of one or more models into relevant warnings and alerts, but it
does not fully protect those models [49, 19].

On the other hand, proactive defenses tackle the susceptibility of ML to
adversarial examples, aiming to reduce the vulnerabilities and intrinsically
improve a model’s robustness against adversarial examples during its train-
ing phase. These defenses include several techniques, such as adversarial
training with perturbed samples, regularization to better calibrate the
learning process, and defensive distillation to create smaller models less
sensitive to data variations [23, 9, 92, 28]. It is not yet clear how to completely
resolve this susceptibility and achieve an adversarially robust generalization
in a classification task, but progress is being made in robustness research
with regularization and optimization techniques [93, 94, 95]. This gives ML
engineers and security practitioners better tools to address ML security dur-
ing the entire lifecycle of an intelligent system, including its development,
testing, deployment, and maintenance phases.

Most proactive defenses are focused on improving the robustness of deep
learning algorithms based on ANNs against evasion attacks with adversarial
images [96, 97, 98, 99], although some also take measures against backdoors
[53, 55]. Despite ANN defenses being difficult to apply to other models and
domains, the protection of tree-based algorithms has been drawing attention
for intelligent cybersecurity solutions [100, 101]. Some defenses have been
developed to improve the robustness of entire tree ensembles at once [102,
103], whereas others address each individual decision tree at a time [104, 105].
Still, proactive defenses often trade-off some performance on regular samples
to improve performance on adversarial examples. This trade-off affects the
choice of a defense strategy because the utilized techniques need to balance
adversarial robustness and generalization to regular network traffic.

Defense strategies continue to be enhanced with better techniques, but
the most effective and widespread defense is still adversarial training because
it anticipates the data variations that an ML model may encounter when
it is deployed [106, 107, 108]. Augmenting a training set with examples
created by one or more adversarial attack methods enables a model to learn
additional characteristics that the samples of each class can exhibit, so it
becomes significantly harder to deceive it. This augmented training data
with more data variations can improve a model’s robustness not only against
attack methods similar to the utilized ones, but also against a wide range of
attacks that perform different data perturbations [93, 109, 110].
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Nonetheless, augmenting a model’s training set with the examples created
by adversarial attack methods may not be as beneficial as it seems. Even
though it is meant to improve robustness, training with unrealistic samples
will make a model learn distorted characteristics that will not be exhibited
by regular samples [20]. This raises a major security concern because in-
cluding unrealistic data in a training set can not only be detrimental to a
model’s generalization, but also lead to accidental data poisoning and to the
introduction of hidden backdoors that leave a model even more vulnerable
[53]. Therefore, to improve a model’s robustness to adversarial data without
deteriorating its generalization to regular network traffic flows, it is essential
to ensure that adversarial training is performed with realistic examples that
could be transmitted through a communication network and preserve the
functionality and malicious purpose of a cyber-attack [34, 48].

6. Future Directions

Adversarial data perturbations are very concerning for ML security and
reliability. Despite the current difficulty in the transferability of the patch-
like and mask-like crafting processes of the image classification domain to
the NID domain, there are more sophisticated approaches being specifically
designed for communication networks. Nonetheless, an adversarial example
that successfully deceives an ML model is not guaranteed to be a successful
cyber-attack in a real communication network.

By inspecting the third example of Figure 5, it can be observed that the
reason it is impossible is because it does not comply with the inherent data
structure of a network traffic flow. On the other hand, the reason that the
second example is harmless is because it does not comply with the intended
functionality of the Slowloris class of DoS attacks. Therefore, it is possible
to define two fundamental properties that are required for an adversarial
example to resemble a real data sample:

• Validity: Compliance with the constraints of a domain, following its
inherent data structure.

• Coherence: Compliance with the constraints of a specific class, follow-
ing the characteristics that distinguish it from other classes.

Even though validity was already taken into account in the reviewed ad-
versarial methods, it is imperative to address it together with coherence to
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fully achieve adversarial realism. Hence, to ensure that their experiments are
realistic, researchers must use examples that represent valid network traffic
capable of being transmitted through a real communication network, as well
as coherent cyber-attack flows capable of fulfilling their intended function-
ality and the malicious purposes of an attacker. Novel approaches should
support more rigorous configurations to address the complex constraints of
the tabular data format and of the time-related characteristics of network
traffic flows, creating constrained adversarial examples capable of evading
detection while preserving their realism.

As more realistic perturbation crafting processes are developed, they may
be used by data scientists and engineers to improve their AI applications with
high-quality data, but they may also be used by attackers with malicious in-
tents to disrupt the critical business processes of an organization. An attacker
will usually have limited knowledge of the model and feature set utilized in
a NID system, corresponding to a black-box or gray-box setting, and will
only be able to interact with it in a decision-based approach, without direct
feedback and only knowing if a certain example deceived a model if the en-
tire cyber-attack is successfully completed. This limits the possible attack
vectors and hinders the feasibility of most adversarial methods of the cur-
rent literature, but novel attack methods may be developed to address the
constraints of complex communication networks and deceive the ML models
of NID systems in these scenarios.

To tackle the growing ML attack surface and counteract the disruptions
caused by the known attacks, it is becoming essential to enforce a security-
by-design approach throughout the entire lifecycle of intelligent systems by
simulating realistic evasion attack vectors to assess a system’s resilience in
edge cases. Reactive and proactive defenses should be combined to attempt
to encapsulate ML models in secure software layers and also improve their
intrinsic robustness against faulty input data.

Still, efforts to improve a model’s robustness against all possible adver-
sarial examples that might occur should not disregard the importance of
the model’s generalization to regular network traffic that it will definitely
encounter. It may not be possible to fully safeguard ML models from ad-
versarial cyber-attack examples, but ML engineers and security practitioners
should stay up-to-update with security best-practices and preemptively test
their ML models against the novel threats they may face.
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7. Conclusion

This work investigated the adversarial ML approaches of the current sci-
entific literature that use realistic adversarial examples and could be applied
in real ML development and deployment scenarios in the NID domain, ful-
filling the requirements of the diverse cyber-attack classes and of the tabular
data format and time-related characteristics of network traffic flows.

From the 936 records initially retrieved, over 75% did not present novel
methods nor strategies, which demonstrates that it is difficult for researchers
to find innovative approaches in a regular search. The 82 records that re-
mained after the screening phase, which correspond to approximately 9% of
the found publications, presented relevant advances in the use of adversarial
ML in the NID domain, and were included in the review together with 16
additional records found through backward snowballing.

The information present in the 98 publications was consolidated and com-
bined into three sections, each discussing its respective RQ, systematizing
the approaches, and highlighting the most relevant aspects. An additional
section described the open challenges regarding the main RQ, defined the
fundamental properties that are required for an adversarial example to be
realistic, and provided guidelines for researchers to ensure that their future
experiments are adequate for a real communication network.

A security-by-design approach throughout the entire ML lifecycle is be-
coming essential to tackle the growing ML attack surface, and research efforts
continue to be made to better protect various types of algorithms with re-
active and proactive defenses. However, there is still a lack of realism in the
state-of-the-art perturbation crafting processes, which hinders the develop-
ment of secure defense strategies. It is pertinent to continue the research
efforts to improve the robustness and trustworthiness of ML and of the in-
telligent cybersecurity solutions that rely on it.
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