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Abstract. The digital transformation faces tremendous security challenges. In
particular, the growing number of cyber-attacks targeting Internet of Things (IoT)
systems restates the need for a reliable detection of malicious network activity.
This paper presents a comparative analysis of supervised, unsupervised and rein-
forcement learning techniques on nine malware captures of the IoT-23 dataset,
considering both binary and multi-class classification scenarios. The developed
models consisted of Support Vector Machine (SVM), Extreme Gradient Boost-
ing (XGBoost), Light Gradient Boosting Machine (LightGBM), Isolation Forest
(iForest), Local Outlier Factor (LOF) and a Deep Reinforcement Learning (DRL)
model based on a Double Deep Q-Network (DDQIN), adapted to the intrusion
detection context. The most reliable performance was achieved by LightGBM.
Nonetheless, iForest displayed good anomaly detection results and theDRLmodel
demonstrated the possible benefits of employing thismethodology to continuously
improve the detection. Overall, the obtained results indicate that the analyzed
techniques are well suited for IoT intrusion detection.

Keywords: Internet of Things · Intrusion detection · Supervised learning ·
Unsupervised learning · Reinforcement learning

1 Introduction

The digital transformation is associated with the Internet of Things (IoT) concept, which
describes decentralized and heterogeneous systems of interconnected devices. This field
converges wireless sensor networks, real-time computing, embedded systems and actu-
ation technologies [1]. Industrial IoT (IIoT) is a subfield of IoT focused on industrial
assets and the automation of manufacturing processes. Due to the integration of physical
and business processes, as well as control and information systems, IIoT is bridging the
gap between Operational Technology and Information Technology [2].

However, the convergence of previously isolated systems and technologies faces
tremendous security challenges. IoT devices commonly have software and commu-
nication protocol vulnerabilities, in addition to weak physical security and resource
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constraints [3, 4]. Consequently, malware attacks pose a major threat to IoT systems.
A self-propagating malware, such as Mirai, can compromise a large number of suscepti-
ble devices and establish a botnet to launch several cyber-attacks [5]. The cyber-attacks
targeting IoT systems can be divided into two categories: passive and active. Passive
attacks do not impact the operation of the system, mainly consisting of eavesdrop-
ping and traffic analysis. On the other hand, active attacks can range from probing and
man-in-the-middle to brute-force and Denial-of-Service (DoS) [6, 7].

Due to the exposure of IoT to malicious activity, a reliable intrusion detection is
indispensable. An Intrusion Detection System (IDS) dynamically monitors an environ-
ment with the purpose of identifying suspicious activity, so that possible threats can be
mitigated [8]. The application of machine learning techniques to an IDS is a promising
strategy to tackle the growing number and increasing complexity of cyber-attacks.

The developed work addressed nine malware captures of the IoT-23 dataset in
both binary and multi-class classification scenarios. Three distinct types of techniques
were analyzed and compared: supervised, unsupervised and reinforcement learning.
The developed models consisted of three supervised models, Support Vector Machine
(SVM), Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine
(LightGBM), two unsupervisedmodels, Isolation Forest (iForest) and Local Outlier Fac-
tor (LOF), and a Deep Reinforcement Learning (DRL) model based on a Double Deep
Q-Network (DDQN), adapted to the intrusion detection context.

This paper is organized into multiple sections. Section 2 provides a survey of pre-
vious work on machine learning techniques for intrusion detection. Section 3 describes
the utilized dataset and models, including the data preprocessing steps and evaluation
metrics. Section 4 presents an analysis of the results obtained in each scenario. Finally,
Sect. 5 addresses the main conclusions and future research topics.

2 Related Work

In recent years, IoT intrusion detection has drawn attention from a research perspective.
As both cyber-attacks and the techniques used to detect them evolve, an increasing
number of research topics come to light. Therefore, it is essential to understand the
results and conclusions of previous work.

Chaabouni et al. [8] provided a comprehensive survey of research published up to
the year of 2018. The authors reviewed previous studies aimed at IoT, highlighting the
advantages and limitations of the developed machine learning models.

More recently, Zolanvari et al. [9] utilized a testbed mimicking an industrial plant to
train several models for anomaly detection. The best overall performance was achieved
by Random Forest, which obtained a True Positive Rate (TPR) of 97.44%. However,
only SVM reached a False Positive Rate (FPR) of 0.00, representing no false alarms.

Jan et al. [10] proposed the use of SVM to detect attacks that influence IoT network
traffic intensity, which is common in DoS. The performance of different SVM kernels
was analyzed on simulated datasets with only three features: the minimum, maximum
and median values of the packet arrival rate. Even though the Linear kernel reached
98.03% accuracy with a small training time, this approach lacks the ability to detect
attacks that do not increase neither decrease traffic intensity.
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Bakhtiar et al. [11] employed the lightweight C4.5 algorithm to search for DoS
attacks by directly analyzing the packets captured in a device and creating a decision
tree. Despite achieving an accuracy of 100%, the average time required to process each
one was 0.0351 s on their testbed. Consequently, only 18.15% of the transmitted packets
were analyzed, which revealed the drawback of a packet-based approach.

Verma and Ranga [12] addressed classifier ensembles, comparing several models on
the CIDDS-001, UNSW-NB15 and NSL-KDD datasets. 10-fold cross-validation was
performed and the highest average accuracy, 96.74%, was obtained by the Classification
And Regression Trees algorithm, which creates a decision tree. However, XGBoost
reached the very close value of 96.73% and obtained the best average TPR, 97.31%.

Yao et al. [13] proposed the use of LightGBM to perform a lightweight analysis in
IoT devices, followed by more resource-intensive models in other devices. The authors
noted that since LightGBM is embedded with feature selection, the bandwidth required
to transmit the data is reduced. On their dataset, LightGBM achieved an accuracy of
93.2% and an F1-score of 95.6% for a flow-based approach.

Eskandari et al. [14] used unsupervised models to perform anomaly detection by
building a baseline of benign flows. LOF and iForest were compared in their testbed
with probing, brute-force and DoS attacks. Their macro-averaged F1-scores were 78.4%
and 92.5%, respectively, which indicates the suitability of the latter for the detection of
unknown attacks when trained with normal network traffic only.

The key drawback of both supervised and unsupervised techniques is that if the cyber-
attacks are modified or the network topology is updated, which includes the addition
of a new device, the models must be retrained to take into consideration the new traffic
patterns. To tackle this challenge, reinforcement learning can be adapted to the intrusion
detection context.

Gu et al. [15] proposed an entropy-based approach to continuously optimize a thresh-
old for anomaly detection. An agent interacted with the network environment, receiving
TPR and FPR as the rewards for each selected threshold. It employed Q-Learning, which
is an off-policy learner because it is improved regardless of the agent’s actions.

Despite not being aimed at IoT, Lopez-Martin et al. [16] analyzed the performance
of several techniques that combine reinforcement learning with deep learning to create
DRL models with improved stability. The utilized agents directly predicted the class of
the network flows received from the environment. Regarding the reward function, the
authors noted that a simple 1/0 reward for correct/incorrect predictions led to a better
performance. The best results were achieved by a DDQN, with F1-scores of 91.20% and
93.94% on the NSL-KDD and AWID datasets, respectively.

To the best of our knowledge, no previous work has comparatively analyzed
supervised, unsupervised and reinforcement learning techniques on the IoT-23 dataset.

3 Methods

This section describes the utilized dataset and models, as well as the employed data
preprocessing steps and the considered evaluation metrics. The work was carried out on
a machine with 16 GB of RAM, an 8-core CPU and a 6 GB GPU. The implementation
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relied on the Python programming language and the following libraries:Numpy andPan-
das for general data manipulation, Scikit-learn for the implementation of SVM, iForest
and LOF,Xgboost for the implementation ofXGBoost, Lightgbm for the implementation
of LightGBM and Tensorflow for the implementation of the DRL model.

3.1 Dataset

The IoT-23 dataset [17] was created by the Stratosphere Research Laboratory and is
publicly available. It consists of twenty-three labeled captures of malicious and benign
network flows, caused by malware attacks targeting IoT devices between 2018 and
2019. This is an extremely valuable dataset because it manifests real IoT network traffic
patterns and provides a large quantity of labeled malicious flows.

From the twenty-three captures, six were selected due to their distinct characteristics.
Since Capture-1-1 displayed a large number of recorded flows and the best balance
between malicious and benign labels, it was renamed as 1-1-full and three smaller
balanced subsets were established: 1-1-large, 1-1-medium and 1-1-small.

Table 1 provides an overview of the malware type and class proportions of the
utilized datasets. The labels PartOfAHorizontalPortScan and C&C-FileDownload were
shortened to POAHPS and C&C-FD, respectively.

Table 1. Main characteristics of the utilized datasets.

Dataset Malware type Total samples Malicious class samples Malicious class label

1-1-full Hide and Seek 1,008,749 539,465 POAHPS

8 C&C

1-1-large Hide and Seek 400,000 199,996 POAHPS

4 C&C

1-1-medium Hide and Seek 200,000 99,999 POAHPS

1 C&C

1-1-small Hide and Seek 20,000 10,000 POAHPS

20-1 Torii 3,210 16 C&C-Torii

21-1 Torii 3,287 14 C&C-Torii

34-1 Mirai 23,146 14,394 DDoS

6,706 C&C

122 POAHPS

42-1 Trojan 4,427 3 FileDownload

3 C&C-FD

44-1 Mirai 238 14 C&C

11 C&C-FD

1 DDoS
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3.2 Data Preprocessing

Besides the creation of the three additional subsets, a preprocessing stage was required
before the data was usable (see Fig. 1). This stage was applied to all nine datasets, taking
into consideration their distinct characteristics.

A pertinent aspect is that if a class only contains a single sample, it cannot be
simultaneously used to train and evaluate a model. Therefore, that individual sample
must be discarded. This is the case of the 1-1-medium and 44-1 datasets, when used for
multi-class classification. Regarding 1-1-medium, it becomes only suitable for binary
classification because only the POAHPS malicious class remains. Consequently, only
1-1-full, 1-1-large, 34-1, 42-1 and 44-1 were utilized in the multi-class scenario.

Fig. 1. Overview of data preprocessing stage (Business Process Model and Notation).

3.3 Evaluation Metrics

The performance of a model can be evaluated using the values reported by the confusion
matrix. It reports the number of True Positives (TP), TrueNegatives (TN), False Positives
(FP) andFalseNegatives (FN) regarding the predicted classes.Usingbinary classification
as an example, the considered metrics and their interpretation are described below [18,
19].

Accuracy measures the proportion of correctly classified network traffic. However,
a high value can be achieved even when a minority class is disregarded. For instance, a
high accuracy can be reached in datasets unbalanced towards benign traffic without any
malicious activity being detected.

Precisionmeasures the proportion of predicted attacks thatwere actual attacks,which
indicates the relevance of a model’s predictions. On the other hand, Recall, which corre-
sponds to TPR, measures the proportion of actual attacks that were correctly predicted,
reflecting a model’s ability to identify malicious activity.
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FPR is a valuable metric because it accounts for false alarms, whichmust be avoided.
It measures the proportion of benign traffic that was incorrectly predicted to be an attack,
leading to unnecessary mitigation efforts.

Overall, the most trustworthy metric is the F1-score, also referred to as F-measure.
It calculates the harmonic mean of Precision and Recall, considering both FP and FN.
Therefore, a high F1-score indicates that malicious activity is being correctly identified
and there are low false alarms.

These metrics, except for Accuracy, can be macro-averaged to treat all classes
equally. Since the minority classes are given the same relevance as the overrepresented,
macro-averaging is well suited for unbalanced datasets.

3.4 Supervised Learning Models

Due to the promising results obtained in the surveyed work, three supervised techniques
were selected to be evaluated on the IoT-23 dataset. The configurations of the developed
models resulted from a grid search of possible hyperparameter combinations for both
binary and multi-class classification scenarios.

To obtain the optimal configuration for each dataset and scenario, a 5-fold cross-
validation was performed. Therefore, a model was trained with 4/5 of a training set and
validatedwith the remaining1/5 in each iteration.Due to its adequacy for unbalanceddata
and consolidation of Precision and Recall, the macro-averaged F1-score was selected as
the validation metric.

After their optimization, the models were retrained with the complete training sets
and a final evaluation was performed with the evaluation sets.

Support Vector Machine. SVM [20] attempts to find a hyperplane that successfully
segregates two classes in an n-dimensional space, where n is the number of features.
Even though it only inherently performs binary classification, a One-vs-All scheme was
employed to handle multi-class classification. Table 2 summarizes the configuration.

Table 2. Summary of SVM configuration.

Parameter Value

Kernel Linear

Loss function Squared Hinge

Dual False

C 0.001 to 0.1

The parameter search led to the use of the Linear kernel with the Squared Hinge loss
function, evidencing the linear separability of the data. Since the number of samples is
significantly higher than the number of features across all datasets, Dual was set to False
to solve the primal optimization problem.
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This model relies on the C parameter, a value inversely proportional to the strength
of the regularization. It was set to lower values on the larger datasets and higher values
on the smaller datasets, in the range of 0.001 to 0.1.

Extreme Gradient Boosting. XGBoost performs gradient boosting using an ensemble
of decision trees. A level-wise growth strategy is employed to split nodes level by level,
seeking to minimize a loss function. Table 3 summarizes the configuration.

Table 3. Summary of XGBoost configuration.

Parameter Value

Method Histogram or exact

Loss function (Objective) Cross-entropy

Max depth 5

Feature subsample 0.7

Min loss reduction (Gamma) 0.01

Min child weight 1.2 to 100.0

Nº of estimators 60 to 80

Learning rate 0.001 to 0.01

The acknowledged Cross-Entropy loss function was used for both binary and multi-
class classification. To build the decision trees on the smaller datasets, the Exact method
was utilized to account for all possible node splits. On the larger datasets, the Histogram
method was selected because it computes fast histogram-based approximations.

The key parameters are the number of estimators and the learning rate. The first
represents the number of decision trees, whereas the latter controls how quickly the
model adapts its weights to the training data. Overall, the number of estimators was
set to a relatively large value and the learning rate to a small value, avoiding a fast
convergence to a suboptimal solution.

Light Gradient Boosting Machine. LightGBM [22] also utilizes an ensemble of deci-
sion trees to perform gradient boosting. A leaf-wise strategy is employed for a best-
first approach, directly splitting the leaf with the maximum loss reduction. Conse-
quently, despite having similar parameters to XGBoost, these have different effects on
its performance. Table 4 summarizes the configuration.

The key advantage of this model is the ability to use Gradient-based One-Side Sam-
pling (GOSS) to build the decision trees, which is computationally lighter than the
remaining methods and therefore provides a faster and reliable convergence.

The Cross-Entropy loss function was also used and the learning rate was set to a
small value on most datasets. However, the smaller and more unbalanced sets required
it to be increased to counteract the shortage of training data.
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Table 4. Summary of LightGBM configuration.

Parameter Value

Method GOSS

Loss function (Objective) Cross-entropy

Max depth 5

Max leaves 25

Feature subsample 0.7

Min loss reduction (Split gain) 0.01

L2 regularization (Lambda) 1.0

Min child samples 2 to 2000

Nº of estimators 60 to 100

Learning rate 0.001 to 0.04

3.5 Unsupervised Learning Models

Two unsupervised techniques were also selected because of their promising results in the
surveyed work. Even though the developed models only perform one-class classification
with unlabeled data, they can be compared to the remainingmodels in the binary scenario.
Therefore, their optimization process was similar to the supervised approach, employing
cross-validation to assess their configurations on unlabeled subsets.

Isolation Forest. An iForest isolates anomalies through an ensemble of decision trees.
The samples are repeatedly split by random values of random features until outliers are
segregated from normal observations. Table 5 summarizes the configuration.

Table 5. Summary of iForest configuration.

Parameter Value

Nº of estimators 100

Max features 1.0

Max samples 100 to 250

Contamination 0.001 to 0.05

This model relies on the contamination ratio of the training set, which must not
exceed 50%. Consequently, the number of samples intended to be anomalies must be
lower than the number of remaining samples, otherwise outliers cannot be detected.

For 20-1, 21-1, 42-1 and 44-1, the ratio was set to the approximate percentage
of malicious flows of the training sets. Even though 1–1-full and 34-1 do not fit the
50% requirement, 1-1-large, 1-1-medium and 1-1-small have exactly 50/50 proportions.
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Despite being theoretically suitable, the model underperformed with such high contam-
ination. To overcome this obstacle, the samples with a malicious label were randomly
subsampled to reduce the contamination of their training sets. The optimized ratio was
0.05, with approximately 5% malicious and 95% benign samples.

Local Outlier Factor. LOF [24] detects anomalies bymeasuring the local density devi-
ation. This strategy identifies samples with a significantly lower density than their
neighbors, which correspond to local outliers that would otherwise remain undetected.

Even though LOF only identifies anomalies on the initial data it receives by default,
Novelty was set to True to enable it to detect outliers on new data, based on the neigh-
borhoods computed in its training. Table 6 summarizes the configuration.

Table 6. Summary of LOF configuration.

Parameter Value

Novelty True

Algorithm K-dimensional tree

Metric Euclidean

Leaf size 30

Nº of neighbors 35 to 520

Contamination 0.001 to 0.05

The parameter search led to the values of the remaining parameters, as well as
the use of the K-Dimensional Tree algorithm and the Euclidean metric. Regarding
the contamination ratio of the training data, the approach employed for iForest was
replicated.

The key parameter of this model is the number of neighbors, which regulates the
size of the neighborhoods and therefore affects the measurement of the local density
deviation. It was set to a higher value as the size of the dataset increased.

3.6 Deep Reinforcement Learning Model

To adapt the reinforcement learning methodology to the intrusion detection context, it
was necessary to create a suitable training environment and develop a learning process
for an agent. Due to the characteristics of this methodology, a manual optimization of
several aspects was performed instead of cross-validation.

Regarding the training environment, when the agent observes a state and performs
an action, predicting a class, it advances into the next state and provides a reward for
the performed action. Due to the conclusions reached in [16], a simple 1/0 reward is
calculated for correct/incorrect predictions.

Regarding the agent, an incremental episode-based learning process was developed,
where each episode contains multiple steps (see Fig. 2). It was based on a DDQN [25]
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because this technique introduced several improvements to the training of an Artificial
Neural Network (ANN). Therefore, the following concepts were applied:

• Exploration – During the initial training, the agent implements the Epsilon-Greedy
method to choose predictions of the utilized ANN or random actions according to an
exploration ratio. This method avoids a fast convergence to a suboptimal solution.

• Experience Replay – Instead of immediately updating the ANN’s weights after an
interactionwith the environment, the agent stores those experiences in a finitememory.
Then, a minibatch of past experiences is randomly sampled from the memory to train
the ANN. Consequently, the interaction phase is logically separated from the learning
phase, which mitigates the risk of catastrophic interference.

• Target network – Instead of using the same ANN for predicting the actions and
the target values during experience replay, the agent employs two separate networks.
An active network is continuously trained while a target network is used to calculate
soft targets, being a copy of the first with delayed synchronization. This approach
improves the generalization of the model by minimizing the instabilities inherent to
the incremental training of an ANN.

In addition to the reward for the current action, a DDQN also calculates the
expected future rewards during experience replay. However, since the correctness of
future predictions is not relevant to the classification of a network flow, these were not
calculated.

Fig. 2. Overview of DRL learning episode (Business Process Model and Notation).

Several parameters were manually optimized to regulate the developed learning
process and the training of the agent. Table 7 summarizes the configuration.
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The exploration rate was set to 0.2, which corresponds to 80% predictions and 20%
randomactions. The rate is decayed by 0.01 after each experience replay until aminimum
of 0.05 is reached, effectively decreasing the random actions as the weights are adapted
to the training data. The best balance between underfitting and overfitting was achieved
with 2 replays per episode, each cycling through a minibatch for 20 epochs.

The size of a minibatch is the number of randomly sampled past experiences in an
experience replay. Considering the small size of most utilized datasets, it was set to
2.5% of the size of a training set. Due to the greater size of the 1-1-full, 1-1-large and
1-1-medium datasets, this percentage was decreased. To strengthen the training of the
agent, memory size was set to 1.5× the minibatch size, which corresponds to 3.75% of
the size of a training set. Therefore, the agent can retrain with up to half of the already
replayed experiences.

To perform the final evaluation, the most up-to-date network is retrieved from the
agent. For that purpose, the learning process is stopped when the model’s loss is stabi-
lized. Stabilization is achieved when the average loss of the experience replays of the
most recent episode is within the same range as the previous episodes. The number of
previous episodes to compare and the stability range were set to 3 and 0.05, respectively,
which gives margin for a slight variance.

Table 7. Summary of DRL learning process configuration.

Parameter Value

Exploration rate 0.2

Exploration rate decay 0.01

Min exploration rate 0.05

Replays per episode 2

Replay epochs 20

Min stable episodes 3

Stability range 0.05

Minibatch size 2.5% of set

Memory size 3.75% of set

Regarding the active and target networks, both consist of a four-layered ANN. The
Adamoptimization algorithm is used tominimize theCross-Entropy loss, with a learning
rate of 0.001 to avoid a fast convergence to suboptimal weights.

The input layer node size is the number of utilized features, expressed as NF. Next,
there are two hidden layers with 20 neurons each and the computationally efficient
Rectified Linear Unit (ReLU) activation function. Finally, the binary output layer uses
the Sigmoid activation function and a single node. For multi-class output, the layer is
created with the Softmax function and a node size matching the total number of classes
to be predicted, expressed as NC. Table 8 describes the employed structure.
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Table 8. Employed ANN structure.

Layer Size Activation

Dense NF -

Dense 20 ReLU

Dense 20 ReLU

Dense 1 or NC Sigmoid or Softmax

4 Results and Discussion

This section presents and analyses the results obtained in the binary and multi-class
classification scenarios, comparing the performance of the developed models.

4.1 Binary Classification

For the binary scenario, a comparison was performed between the F1-scores obtained
in the cross-validation and the final evaluation. The obtained results are summarized in
Tables 9 and 10, respectively.

In the 5-fold cross-validation, the supervised models, namely SVM, XGBoost and
LightGBM, achieved scores near 100% when training with a large quantity of bal-
anced data. The main distinction between the three models is visible on 21-1, where
XGBoost only reached approximately 89.98%, despite SVMandLightGBMbothobtain-
ing 97.99%.On34-1, a dataset unbalanced towardsmalicious flows, LightGBMobtained
the highest score, a value of 99.73%.

In contrast with the supervised models, the scores of iForest and LOF were signif-
icantly lower on most of the larger datasets. Nonetheless, these unsupervised models
achieved a good performance on the smaller and more unbalanced sets. LOF obtained
better results than iForest on 1-1-small, 21-1 and 34-1. On 21-1, it surpassed XGBoost
with a score of 91.66%. However, iForest outperformed LOF on all the remaining sets
and even reached approximately 100% on 42-1.

Table 9. F1-scores of the binary cross-validation (5-fold average).

Model 1-1-full 1-1-large 1-1-medium 1-1-small 20-1 21-1 34-1 42-1 44-1

SVM 100 100 100 100 100 97.99 99.30 100 97.84

XGBoost 99.99 99.99 99.99 99.99 100 89.98 98.14 100 97.84

LightGBM 100 99.99 99.99 99.99 100 97.99 99.73 100 97.84

iForest 76.62 71.88 71.82 73.36 93.75 68.15 88.20 100 88.79

LOF 62.18 61.88 61.03 80.64 93.54 91.66 97.43 79.97 87.89
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In the final evaluation, the supervised models achieved a good generalization. How-
ever, the lower scores on 20-1 and 21-1 indicate a slight overfitting on those smaller sets.
On 44-1, the smallest of the analyzed datasets, only SVM increased its score.

A significant improvement is visible on the results of iForest on the larger sets, as
well as on 20-1, where it reached 100%. This indicates it is well suited for the detection
of anomalies on unseen data. On the other hand, LOF obtained lower scores on all
datasets except 44-1. On this last set, its score was also increased to approximately
100%, possibly due to the small number of new samples to be classified.

The DRL model almost reached the results of the supervised models on the larger
sets. However, it is pertinent to note that the smaller the training set, the lower the
obtained score. This suggests that a large quantity of data is required for the developed
learning process to be effective in an initial training.

Table 10. F1-scores of the binary evaluation.

Model 1-1-full 1-1-
large

1-1-medium 1-1-small 20-1 21-1 34-1 42-1 44-1

SVM 100 100 100 100 95.43 94.42 99.43 100 100

XGBoost 99.99 99.99 99.99 99.99 95.43 94.42 98.84 100 96.28

LightGBM 100 99.99 100 100 95.43 94.42 99.76 100 96.28

iForest 96.46 94.80 94.68 95.37 100 89.95 75.08 100 90.91

LOF 53.46 53.40 54.66 80.18 89.95 87.45 96.80 49.96 100

DRL 99.91 99.91 99.97 99.98 78.49 83.28 98.65 83.31 75.39

Overall, the analyzed supervised and DRL models were reliable on most datasets,
despite their slight performance decrease on some of the smaller sets. On the other
hand, the unsupervised models were more advantageous for the smaller training sets,
especially the ones highly unbalanced towards benign flows (see Fig. 3).

Fig. 3. Comparison of the F1-scores of the binary evaluation.
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4.2 Multi-class Classification

For the multi-class scenario, an equivalent comparison was performed using the macro-
averaged F1-scores, which are summarized in Tables 11 and 12. Due to the inability of
unsupervised models to perform multi-class classification, these were not analyzed.

In the 5-fold cross-validation, the supervised models achieved very high scores on
34-1 and 44-1. LightGBM reached the highest score on 34-1, as in the previous scenario.
On the other hand, very poor results were obtained on the particularly unbalanced sets.
Since 1-1-full, 1-1-large and 42-1 contain minority classes with a very low number of
samples, the models were not able to learn how to correctly classify them while training
with 4/5 of the training sets.

Table 11. Macro-averaged F1-scores of the multi-class cross-validation (5-fold average).

Model 1-1-full 1-1-large 34-1 42-1 44-1

SVM 66.67 80.00 95.67 59.97 97.66

XGBoost 66.66 80.00 97.30 46.67 96.44

LightGBM 66.66 80.00 98.77 59.99 97.66

In the final evaluation, the supervised models reached scores of approximately 100%
on 44-1 and similar results to the cross-validation on 34-1, which indicates a good
generalization. However, their scores were decreased to near 66% on 1-1-large, due
to the neglect of the underrepresented class. Furthermore, only LightGBM correctly
classified one of the two minority classes of 42-1, whereas the remaining models failed
to detect both. Since poor results were obtained on both validation and evaluation sets,
the lack of training samples of those classes may be leading to underfitting.

The results obtained by the DRL model were very similar to the remaining mod-
els on most datasets, but significantly lower on 34-1 and 44-1. This indicates that the
employed learning process cannot successfully account for multiple underrepresented
classes during the initial training of the model.

Table 12. Macro-averaged F1-scores of the multi-class evaluation.

Model 1-1-full 1-1-large 34-1 42-1 44-1

SVM 66.67 66.67 95.89 33.31 100

XGBoost 66.66 66.66 95.59 33.33 100

LightGBM 66.66 66.67 99.64 66.65 100

DRL 66.64 66.64 63.75 33.38 88.38

Overall, the analyzed models achieved a goodmulti-class classification performance
on the datasets with relatively balanced class proportions (see Fig. 4). The key obstacles
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remain the lack of training data and the underrepresented classes. Therefore, for these
models to be able to distinguish between the different types of cyber-attacks, it is crucial
to train them with a greater number of flows of each type.

Fig. 4. Comparison of the macro-averaged F1-scores of the multi-class evaluation.

5 Conclusions

The developed work addressed IoT intrusion detection from amachine learning perspec-
tive. Nine malware captures of the IoT-23 dataset were utilized in a binary classification
scenario and five of those in a multi-class scenario as well.

After a data preprocessing stage, three supervised models, SVM, XGBoost and
LightGBM, two unsupervised models, iForest and LOF, and one DRL model based on
a DDQN were analyzed and compared to assess their applicability to an IDS in an IoT
system. Both a 5-fold cross-validation and a final evaluation were performed with the
macro-averaged F1-score as the metric.

The supervised models achieved the most reliable performance in both scenarios,
reaching higher scores when trained with a greater number of malware attack examples.
LightGBM stood out for displaying the best generalization to several evaluation sets,
especially in the multi-class scenario.

Despite the significantly lower results of the unsupervisedmodels, these seem advan-
tageous for the detection of very low-frequency malware attacks. Furthermore, iFor-
est achieved a good overall performance, which highlights its suitability for anomaly
detection when trained with smaller and more unbalanced datasets.

The DRL model adapted to the intrusion detection context demonstrated that the
reinforcement learningmethodology can reach the performance of supervised techniques
while also providing a learning process capable of continuously improving the detection.
Therefore, the model can be adapted to changes in the traffic patterns, caused by updates
to the network topology or by modifications to the cyber-attacks.

As a future research topic, these three distinct types of machine learning techniques
can be combined in an IDS to strengthen their benefits and overcome their individ-
ual drawbacks. Additionally, the development of DRL learning processes with rewards
obtained from user feedback or other systems is a promising strategy to provide a more
reliable and robust IoT intrusion detection.
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