
Exploração de algoritmos de consenso no
Quorum

JOÃO PEDRO ASCENSÃO LOPES
junho de 2023

Exploring consensus algorithms in
Quorum

João Lopes

MSc in Computer Engineering, Specialisation Area of Software
Engineering

Supervisor: Isabel Azevedo

Porto, June 29, 2023

iii

Dedicatory

To my parents, for all the support over the years.

v

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I have not plagiarized or applied any form of undue use of information or falsification of
results along the process leading to its elaboration.

Therefore, the work presented in this document is original and authored by me, having not
previously been used for any other end.

I further declare that I have fully acknowledged the Code of Ethical Conduct of P.PORTO.

ISEP, June 29, 2023

João Pedro Ascensão Lopes

vii

Abstract

As blockchain technology matures, more industries are becoming interested in evaluating
if the technology can answer their needs for decentralized systems that guarantee data
immutability and traceability.

Quorum is a blockchain platform that accommodates enterprise use-cases by extending
Ethereum to support private transactions and a higher transaction throughput. To achieve
this, Quorum replaced Ethereum’s proof-of-stake consensus mechanism with proof-of-authority
ones, supporting four different algorithms: Raft, Clique, IBFT 1.0, and QBFT.

This work explores Quorum’s consensus algorithms and how they affect performance and
fault-tolerance, in order to assess the best use cases for each and what should drive their
choice.

A GoQuorum network was set up, and benchmarks were run against this system under
different scenarios while only changing the consensus algorithm for each scenario.

Results showed that Raft is the most performant consensus algorithm in Quorum in both
private and public transactions. Additionally, QBFT achieved the same performance as
IBFT, and Clique was the worst performer across the board, particularly due to having high
resource-usage. Regarding fault-tolerance, it was found that bringing validator nodes down
at random, when the network has high-availability, had no impact on networks under any of
the consensus algorithms.

Keywords: Blockchain, Quorum, Consensus Algorithms, IBFT, QBFT, Clique, Raft

ix

Resumo

Com blockchain a entrar numa fase de maturidade, cada vez mais indústrias procuram avaliar
se esta tecnologia responde às suas necessidades de sistemas distribuídos que garantam a
imutabilidade e rastreabilidade dos seus dados.

Quorum é uma plataforma blockchain que procura acomodar os casos de uso destas empresas
ao extender Ethereum para suportar transações privadas e um maior número de transações
por segundo. Para esse efeito, o Quorum substituiu o mecanismo de consenso proof-of-
stake do Ethereum por um mecanismo de proof-of-authority, onde quatro algoritmos são
suportados: Raft, Clique, IBFT 1.0, e QBFT.

Este trabalho explora os algoritmos de consenso suportados pelo Quorum de modo a deter-
minar como estes afetam o desempenho e tolerância a falhas das redes, e consequentemente
perceber os melhores casos de uso para estes algoritmos e que fatores ter em conta aquando
a sua escolha.

Foi criada uma rede de GoQuorum, e vários testes de desempenho foram corridos contra
a rede sob diferentes cenários, onde para cada cenário a única variável foi o algoritmo de
consenso.

Os resultados mostraram que o Raft foi o algoritmo de consenso com melhor desempenho,
tanto em transações públicas como privadas. Adicionalmente, o QBFT e o IBFT atingiram
o mesmo desempenho, e o Clique o pior de todos, particularmente pelo seu alto uso de
recursos do sistema. Quanto a tolerância a falhas, foi concluído que trazer nós validadores
abaixo aleatóriamente enquanto o sistema está configurado com alta disponibilidade não
tem impacto nas redes, independentemente do algoritmo de consenso utilizado.

xi

Acknowledgement

I would like to show my sincerest gratitude to my thesis supervisor, Isabel Azevedo, for the
dedication and availability she has to her students, for pointing me to the right places when
researching, and for the sincerity when giving feedback. Her guidance has been invaluable.

xiii

Contents

List of Figures xv

List of Tables xvii

List of Source Code xix

List of Acronyms xxi

1 Introduction 1
1.1 Problem statement . 1
1.2 Research methodology . 3
1.3 Goals . 4
1.4 Structure of the document . 4

2 State of the art 5
2.1 Quorum . 5

2.1.1 Private transactions . 6
2.1.2 Permissioning . 7
2.1.3 Consensus mechanisms . 9

Raft . 10
Clique . 11
IBFT . 11
QBFT . 13

2.2 Mapping study . 14
2.2.1 Methodology . 14
2.2.2 Research Questions . 15
2.2.3 Search keywords . 15
2.2.4 Screening of papers . 16
2.2.5 Data extraction . 17

2.3 Benchmarking tools . 18

3 Experimentation design 23
3.1 Methodology . 23
3.2 Benchmark framework . 25
3.3 Key performance indicators . 26
3.4 Network and environment configuration 29
3.5 Workload . 31
3.6 Overview . 33

4 Benchmark implementation 37
4.1 Hyperledger Caliper Quorum connector 37

xiv

4.1.1 Contract deployment . 38
4.1.2 Sending transactions . 40

4.2 System under test . 44
4.3 Workload . 51

5 Benchmarks and interpretation 55
5.1 Hypotheses . 55
5.2 Approach . 55
5.3 Results . 56

5.3.1 Raft . 56
Performance . 56
Fault-tolerance . 63

5.3.2 Clique . 64
Performance . 65
Fault-tolerance . 72

5.3.3 IBFT . 73
Performance . 73
Fault-tolerance . 80

5.3.4 QBFT . 81
Performance . 81
Fault-tolerance . 88

5.3.5 Comparison . 89

6 Conclusion 93
6.1 Overview . 93
6.2 Goals achieved . 94
6.3 Threats to validity . 94
6.4 Future work . 94
6.5 Personal appreciation . 95

Bibliography 97

A Project plan 103

B Hyperledger Caliper Ethereum connector 105

C Prometheus configuration 115

D Base docker compose file 117

E Seven nodes docker compose file 119

xv

List of Figures

1.1 Interest in blockchain over the years . 2

2.1 Private transaction lifecycle . 7
2.2 Permissions enhanced model . 8
2.3 Raft election lifecycle . 10
2.4 IBFT state machine . 12
2.5 Systematic mapping study . 15
2.6 Systematic map . 18
2.7 Hyperledger Caliper architecture . 20

3.1 Flowchart of the benchmarking methodology 24
3.2 Hyperledger Caliper layers . 25
3.3 GQM map . 27
3.4 Benchmarking system architecture . 35

4.1 Network file structure . 49

5.1 Raft open throughput . 56
5.2 Raft query throughput . 57
5.3 Raft transfer throughput . 57
5.4 Raft open latency . 58
5.5 Raft query latency . 59
5.6 Raft transfer latency . 59
5.7 Raft open CPU usage . 60
5.8 Raft query CPU usage . 61
5.9 Raft transfer CPU usage . 61
5.10 Raft open RAM usage . 62
5.11 Raft query RAM usage . 62
5.12 Raft transfer RAM usage . 63
5.13 Clique open throughput . 65
5.14 Clique query throughput . 66
5.15 Clique transfer throughput . 66
5.16 Clique open latency . 67
5.17 Clique query latency . 67
5.18 Clique transfer latency . 68
5.19 Clique open CPU usage . 69
5.20 Clique query CPU usage . 69
5.21 Clique transfer CPU usage . 70
5.22 Clique open RAM usage . 71
5.23 Clique query RAM usage . 71
5.24 Clique transfer RAM usage . 72

xvi

5.25 IBFT open throughput . 73
5.26 IBFT query throughput . 74
5.27 IBFT transfer throughput . 74
5.28 IBFT open latency . 75
5.29 IBFT query latency . 75
5.30 IBFT transfer latency . 76
5.31 IBFT open CPU usage . 77
5.32 IBFT query CPU usage . 77
5.33 IBFT transfer CPU usage . 78
5.34 IBFT open RAM usage . 79
5.35 IBFT query RAM usage . 79
5.36 IBFT transfer RAM usage . 80
5.37 QBFT open throughput . 81
5.38 QBFT query throughput . 82
5.39 QBFT transfer throughput . 82
5.40 QBFT open latency . 83
5.41 QBFT query latency . 83
5.42 QBFT transfer latency . 84
5.43 QBFT open CPU usage . 85
5.44 QBFT query CPU usage . 85
5.45 QBFT transfer CPU usage . 86
5.46 QBFT open RAM usage . 87
5.47 QBFT query RAM usage . 87
5.48 QBFT transfer RAM usage . 88
5.49 Public transaction throughput comparison for open 89
5.50 Public transaction latency comparison for open 90
5.51 Private transaction throughput comparison for open 91
5.52 Private transaction throughput comparison for query 91

xvii

List of Tables

2.1 Research questions . 15
2.2 Search keywords for each engine . 16
2.3 Initial search results . 16
2.4 Inclusion and exlusion criteria . 17
2.5 Relevant papers result . 17
2.6 Benchmarking tools comparison . 19

3.1 Quorum network configuration constants 29
3.2 EC2 instance configuration . 30
3.3 Benchmark variables summary . 34

5.1 Raft transaction errors without chaos testing 64
5.2 Raft transaction errors with chaos testing 64
5.3 Clique transaction errors without chaos testing 72
5.4 Clique transaction errors with chaos testing 73
5.5 IBFT transaction errors without chaos testing 80
5.6 IBFT transaction errors with chaos testing 81
5.7 QBFT transaction errors without chaos testing 88
5.8 QBFT transaction errors with chaos testing 89
5.9 Average CPU usage for Clique, IBFT, and QBFT 92
5.10 Average RAM usage for Clique, IBFT, and QBFT 92

A.1 Project plan . 103

xix

List of Source Code

2.1 Basic permissioned nodes file [37] . 8
2.2 Enhanced permissioning config file [38] 9
3.1 Pumba pause service . 28
3.2 Benchmark configuration example . 33
4.1 Caliper connector interface . 37
4.2 Deploy private contract method . 39
4.3 Deploy public contract method . 39
4.4 Send private transaction method . 41
4.5 From address seed handler . 42
4.6 Send public transaction method . 43
4.7 quorum-dev-quickstart initial environment file 45
4.8 Network environment file . 45
4.9 Tessera configuration . 46
4.10 Start network script . 50
4.11 GoQuorum Dockerfile . 51
4.12 Tessera Dockerfile . 51
4.13 Bank solidity code . 52
4.14 Script to run all benchmarks . 53
B.1 Caliper Ethereum connector [77] . 105
C.1 Prometheus configuration . 115
D.1 Base docker compose file . 117
E.1 Seven nodes docker compose file . 119

xxi

List of Acronyms

AHP Analytic hierarchy process.

BFT Byzantine fault tolerant.

DLT Distributed Ledger Technology.

EVM Ethereum Virtual Machine.

GQM Goal, question, metric.

NCD New concept development.
NPD New product development.

P2P Peer-to-peer.
PoS Proof-of-stake.

SUT System under testing.

TLS Transport Layer Security.

1

Chapter 1

Introduction

In this chapter, the problem statement is initially described, stating the project’s goals.
Following this, the execution plan to be followed is presented, and, finally, an overview of
this documents structure is given.

1.1 Problem statement

More industries are becoming interested in exploring solutions for their problems using
blockchain technologies, as these are seen as strong candidates for solutions in multiple
fields and use cases due to providing traceability by default. Examples of such use cases
include secure information exchange, asset tracking and management, and financial flow
traceability [1]. Consequently, there is an increasing need for more data on how these
technologies perform and how they can evolve to accommodate these industries’ needs.

Blockchain was originally introduced and implemented in 2014 by Bitcoin [2] to power its
decentralized digital currency. It is an open and permissionless network that assures trust
and consensus among unknown entities using cryptography.

The interest in this technology has had ups and down over the years, usually tied to the cryp-
tocurrency market that it supports. Figure 1.1 shows the evolution of interest in blockchain
based on Google Trends1 data.

1https://trends.google.com/trends/explore?date=2014-01-18%202023-02-18&q=blockchain

2 Chapter 1. Introduction

Figure 1.1: Interest in blockchain over the years

Although there are still recent peaks of relative interest, this metric peaked in 2017 where
the technology was still emerging and largely unknown. At the moment, the concept of a
distributed ledger is already known in high-level terms to most of the software industry, and
as it continues being explored, it enters its early phase of maturity. This means that more
industries outside the initial early adopters are assessing if blockchain can offer solutions to
existing problems for which previous software frameworks were inept [3].

However, due to its nature, Bitcoin’s original implementation of this technology and similar
ones are generally unfit for enterprise use-cases, which need privacy when handling their
data and control over what each party can access. To overcome this, several blockchain
platforms and protocols have emerged to cater to enterprises. Enterprise use-cases solved by
these technologies include ensuring data integrity across multiple parties and transactions,
or allowing a distributed system of nodes with a single source of truth and data sharing [4],
[5].

Supply chain tracking, for example, is a big use case for private blockchain platforms, and has
already been implemented and been in use for companies such as Renault2 and Walmart3 [6].

Enterprise consultancy companies have also been investing heavily into blockchain. Cloud
providers like IBM, Amazon and Oracle have also started offering Blockchain-as-a-Service
(BaaS) solutions, and continue to innovate in that field [7]. IBM is reported to have had
1500 employees working on blockchain in 2018 [8], and Deloitte reports to be heavily invested
in permissioned blockchains to support use cases beyond financial services [9]. According
to the same survey by Deloitte, 80% of the participants say their industries will see new
revenue streams from blockchain solutions, and the banking industry is leading the adoption

2https://www.ibm.com/case-studies/renault/
3https://www.hyperledger.org/learn/publications/walmart-case-study

1.2. Research methodology 3

of the new technology, followed by telecommunications, entertainment, manufacturing and
healthcare [9].

Forbes magazine also reports as recently as February 2023, in [10], that top enterprises
continue investing in enterprise blockchain, despite its hype cycle having peaked, which
demonstrates maturity, real-world potential to solve existing problems and customer trust.

Despite this interest, the technologies and underlying consensus algorithms are still being
iterated on and relatively under-explored, making adopting the technology risky, and con-
tributing to estimates that say that up to 92% of all blockchains projects fail in their early
stages [11].

It is thus important to have more independent data on these technologies and provide
concrete, verifiable metrics that the industry can use to assess which solution to implement.
This work aims to provide data on how different consensus algorithms for permissioned
networks behave under different scenarios, so that interested parties can better evaluate
how to choose them for their systems.

The three main permissioned blockchain platforms are R3 Corda [12], Hyperledger Fabric[13],
and Quorum [14], [15] . Despite aiming to provide the same features, these platforms work
in very different ways, and thus the way they achieve consensus across the network is also
different [16].

Hyperledger Fabric relies on deterministic consensus, where a block validated by a peer is
guaranteed to be final and correct. To do this, it uses an ordering service, which is a
collection of orderer nodes that, as the name implies, ensure the order the transactions
and packages them into blocks, which later get committed to the ledger. As of version
2.x, Hyperledger Fabric only supports and recommends using Raft as the ordering service
implementation [17].

In R3 Corda, consensus is achieved by proving that transactions are both valid and unique
before being committed to the ledger. Validity is done by walking the chain and ensures that
transactions are properly signed and all smart contracts involved in their input and output
accept them. Meanwhile, uniqueness prevents double-spend by ensuring that the same in-
put is not used in more than one transaction. This is guaranteed by using a notary service,
which is a cluster of notary nodes. Notary clusters are pluggable, and a Corda network
can have multiple ones, all running different consensus algorithms. However, adding custom
notaries is considered experimental, and only their in-house JPA notary implementation is
available and recommended for high-availability needs, with even the sample integrations to
Raft and SmartBFT clusters being tagged as experimental and deprecated on their docu-
mentation [18]–[20].

Quorum, on the other hand, provides four consensus mechanisms that can be easily replaced
by configuration [21], making it the ideal testing platform for the project.

1.2 Research methodology

To assess how Quorum’s consensus algorithms compare, a controlled experiment will be
conducted. A Quorum network will be set up under several scenarios, and benchmarks will
be run against each while only changing the consensus algorithm. The results obtained will

4 Chapter 1. Introduction

then be used to take conclusions on how each consensus algorithm performs with public and
private transactions, how they scale, and how they handle faulty networks.

1.3 Goals

This work’s main goal is then to explore the effect that different consensus algorithms
have on fault tolerance and performance in Quorum. Based on these findings, it should be
possible to have a good understanding of which use-cases each protocol fits better, namely
for different industries and development cycles.

Although there are other metrics to explore in regard to these algorithms, such as security,
those will not be explored in this work due to time constraints and instead will be left for
future work.

The research questions for this work are thus the following:

• RQ1: What is the effect of the consensus algorithm on performance in Quorum
blockchains?

• RQ2: What is the effect of the consensus algorithm on fault-tolerance in Quorum
blockchains?

1.4 Structure of the document

This paper features six chapters in total: Introduction, State of the art, Analysis and Design,
Implementation and benchmarking, Experimentation and Evaluation, and Conclusions.

This first chapter introduced the problem being explored and the project’s goals and scope.

In the second chapter, the current knowledge on the topic is explored. This is done by
explaining what Quorum is, how its consensus algorithms work, and the current state of
benchmarking technologies for it. A systematic mapping study is also presented to under-
stand the current research on the topic.

In the third chapter, the tools and techniques that can be used to benchmark Quorum’s
consensus mechanisms are explored and chosen for the project. The design and architecture
of the system to be tested and the monitoring system is also detailed.

In the fourth chapter, the implementation of the benchmarking framework and proof of
concept domain to run against the benchmarks is described in detail. Then, the results
obtained from the benchmarks are detailed and analyzed to draw conclusions.

In the fifth chapter, the evaluation definition and methodology for the work are described.
Afterward, the methodology is applied to assess if the work done achieved the goals it set.

The sixth chapter details the conclusions taken from the project. A summary of the goals
reached is presented, as well as any limitations and difficulties felt. The chapter ends with
a personal appreciation of the work done.

5

Chapter 2

State of the art

In this chapter, first, a dive into Quorum is done, showcasing the technology’s current state
and how it works. Then, a study into the current knowledge on permissioned blockchains
and particularly Quorum is done. The study summarizes knowledge on Quorum’s consensus
mechanisms and compares their theoretical benchmarks. Lastly, benchmarking tools for
Quorum are summarized, and their applicability for this project is assessed.

2.1 Quorum

Quorum is an open-source protocol layer for a permissioned blockchain network. It is also
a blockchain platform, which encapsulates the low-level intricacies of the network behind
well-defined APIs. It was originally developed by J.P. Morgan Chase in 2016, and later sold
to ConsenSys in 2020 [22], [23]. It extends the Ethereum protocol by introducing features
that accommodate enterprise use-cases [24].

Ethereum is an open-source protocol and implementation for a decentralized, distributed
platform that enables the execution of smart contracts. A smart contract is a stateful
program that resides at a specific address in the Ethereum blockchain, and always executes
the same block of code whenever called by a message or transaction [4], [25].

To maintain consensus on the order of transactions and account balances across all the nodes
in the blockchain, Ethereum, first used the proof-of-work mechanism and recently switched
to proof-of-stake. Both mechanisms target public networks, where all the transaction data
and account information are publicly available, and this makes Ethereum prohibitive for most
enterprise use-cases [26], [27].

Additionally, by virtue of being open, public, and permissionless, Ethereum requires complex
cryptography to maintain security and consensus across the multiple nodes in the network.
Security and consensus are maintained with recourse to the Proof-of-Stake protocol and
Ether, the blockchain’s cryptocurrency. All transactions done by smart contracts have an
associated Gas fee, paid for in Ether, which discourages denial-of-service and brute force
attacks. Consensus on the network’s state is then achieved by having pseudo-randomly
selected nodes stake part of their Ether on the validity of transactions, losing their Ether if
they approve invalid transactions. This effectively prevents malicious actors from attempting
to steal and creating a fake blockchain state, barring a 51% attack, in which more than half
of the network’s processing power agree on a new, incorrect state [28].

6 Chapter 2. State of the art

Quorum, by extending Ethereum to introduce private transactions via a permission system,
aims to make this technology viable for enterprise solutions. It achieves its goals by intro-
ducing private transactions, permissioned access to data, different consensus mechanisms,
account management via account plugins, and a general higher transaction throughput [29].

Quorum splits the Ethereums Patricia Merkle Tree [30] into a public one and multiple private
ones. Then, permissions are added to notes by using cryptography to ensure nodes cannot
access data from a transaction they are not part of. The Ethereum consensus mechanism is
replaced with a proof-of-authority one, for which there are currently four supported protocols:
Raft, Clique, QBFT, and Istanbul BFT [21], [29].

There are two open-source clients available to develop for Quorum: GoQuorum [31] and
Hyperledger Besu [32]. GoQuorum is developed by ConsenSys and is a fork of GoEthereum,
the official Go language implementation of Ethereum’s protocol. On the other hand, Hy-
perledger Besu is an Ethereum client written in Java and designed to be enterprise-friendly
by supporting private transactions and permissioned consensus mechanisms. It is developed
by the Hyperledger Foundation, a collaborative effort supported by the Linux Foundation.

In this work only the GoQuorum client will be explored, and all mentions of Quorum in the
next chapters refer to GoQuorum.

2.1.1 Private transactions

In Ethereum transaction data are publicly available in the network, which is a requirement
for its consensus mechanisms to work [4]. However, enterprise solutions also require private
transactions in which only specified nodes are privy to the transaction data.

To support these use cases, Quorum supports private transactions by using the Tessera
private transaction manager, an open-source project also developed by ConsenSys [33].

Tessera stores and allows retrieval of private transactions without having access to private
keys. All cryptographic functionalities, namely encryption, decryption, and key management,
are delegated to an enclave, which is a processing environment that works as a black box.
Enclaves can either be local or remote, the latter of which is communicated with over
HTTP [33], [34].

Tessera also supports multi-tenancy by being stateless and featuring peer discovery. This
means that adding a key to a multi-tenant Tessera node and restarting it results on the key
being propagated to all other nodes in the network [34].

With this, Quorum nodes have a public state, accessible to all nodes in the network, and a
private state reserved for nodes with specific permissions. Public transactions function the
same way as Ethereum ones. If a node receives a public transaction, each participant will
execute the smart contract code and their state is updated accordingly.

Private transactions, however, function differently. An example lifecycle of a private trans-
action in Quorum can be seen in Figure 2.1 [35].

2.1. Quorum 7

Figure 2.1: Private transaction lifecycle [35]

A node executing a private transaction must first specify which nodes can access the infor-
mation. Then, before the transaction is sent and propagated to the rest of the network, the
original payload is replaced with a hash containing the key for the location of the encrypted
payload, stored in Tessera. Afterwards, the transaction is propagated across the network,
and participants with access to the information can replace the key with the original payload
by retrieving it from their Tessera instance.

2.1.2 Permissioning

Quorum is considered a permissioned blockchain, which means it enables fine-grained access
to data by implementing a network permissioning model, of which there are two types:
Basic and Enhanced. With the basic permissioning model, developers can specify which
particular nodes a given node can connect to, and which particular nodes it can receive
connections from. Configuration for this is done by specifying an allowlist in a JSON file
named permissioned-nodes.json. An example of this file can be seen in listings 2.1 [36], [37].

8 Chapter 2. State of the art

1 [
2 "enode://remotekey1@ip1:port1",
3 "enode://remotekey2@ip2:port2",
4 "enode://remotekey3@ip3:port3"
5]

Listing 2.1: Basic permissioned nodes file [37]

With the enhanced permissioning model, additional flexibility and options are given. Ac-
counts and account management are greatly extended by using smart contracts to apply the
permissioning rules at the time of transaction entry and block minting [36], [37]. Figure 2.2
shows the key definitions of the enhanced permissions model.

Figure 2.2: Permissions enhanced model [36]

The network represents the entire blockchain, and consists of an interconnected set of nodes,
constituting a group of organizations. The network administrator can propose and approve
new organizations, as well as assign administrator accounts to these. Each organization’s
administrator can then create sub-organizations, roles and accounts for their organization.
Each sub-organization can also have their own administrators, and its own specific roles and
accounts [36], [38].

An account is an externally owned Ethereum account. Each account has a role assigned,
and its permissions derive from it. A Voter is any account that can vote for specific actions
but is not necessarily part of any organization [36], [38].

To configure this, developers need to first setup the network by deploying the initial nodes
and the PermissionsUpgradable.sol contract. Once all contracts are deployed, the JSON

2.1. Quorum 9

configuration file permission-config.json must be created to set up the network administra-
tors. An example of this file can be seen in listings 2.2.

1 {
2 "permissionModel": "v2",
3 "upgradableAddress": "0x1932c48b2bf8102ba33b4a6b545c32236e342f34",
4 "interfaceAddress": "0x4d3bfd7821e237ffe84209d8e638f9f309865b87",
5 "implAddress": "0xfe0602d820f42800e3ef3f89e1c39cd15f78d283",
6 "nodeMgrAddress": "0x8a5e2a6343108babed07899510fb42297938d41f",
7 "accountMgrAddress": "0x9d13c6d3afe1721beef56b55d303b09e021e27ab",
8 "roleMgrAddress": "0x1349f3e1b8d71effb47b840594ff27da7e603d17",
9 "voterMgrAddress": "0xd9d64b7dc034fafdba5dc2902875a67b5d586420",

10 "orgMgrAddress": "0x938781b9796aea6376e40ca158f67fa89d5d8a18",
11 "nwAdminOrg": "ADMINORG",
12 "nwAdminRole": "ADMIN",
13 "orgAdminRole": "ORGADMIN",
14 "accounts": [
15 "0xed9d02e382b34818e88b88a309c7fe71e65f419d",
16 "0xca843569e3427144cead5e4d5999a3d0ccf92b8e"
17],
18 "subOrgBreadth": 3,
19 "subOrgDepth": 4
20 }

Listing 2.2: Enhanced permissioning config file [38]

All further configurations of creating organizations, sub-organizations, and roles are done by
executing transactions via smart contracts.

2.1.3 Consensus mechanisms

Blockchains are networks of distributed nodes, all of which must agree on a certain shared
state. Consensus mechanisms are the ways in which all the nodes in the network can agree
on the shared state after a series of transactions occur.

Ethereum uses the proof-of-stake consensus protocol, which is unnecessary and impossible
to implement in a permissioned network where all participants are known and transaction
data are private. As such, Quorum required consensus algorithms that could work in this
setting, while also providing faster consensus and transaction finality to speed up enterprise
processes.

Currently, Quorum provides the Raft, Clique, IBFT 1.0, and QBFT consensus algorithms,
all of which are proof-of-authority.

In proof-of-authority algorithms, a small number of nodes are given the power to validate
transactions and include new blocks in the blockchain. Validators are able to vote on new
validators or remove existing ones, and consequently the system works on a reputation basis,
where validators have the incentive to correctly process transactions so that they retain their
authority. Because the system is based on reputation, there is no need for an underlying
currency, and the computational power required by the blockchain is lower than the more
common proof-of-stake and proof-of-work mechanisms [39].

IBFT, QBFT, and Clique are considered to be byzantine fault-tolerant. Byzantine fault-
tolerance is an important term when evaluating blockchain consensus algorithms. It refers

10 Chapter 2. State of the art

to the Byzantine generals problem, where a number of generals who are physically separated
are attacking a fortress and need to decide whether to attack or retreat. Some generals want
to attack while others want to retreat, and they need to vote on a coordinated solution so
that they all perform the same action. If they fail at coordinating, a half-hearted attack will
be done, resulting in certain defeat. The problem also assumes that there can be malicious
generals who are intentionally trying to sabotage the strategy.

Given this formulation, a distributed system is considered byzantine fault-tolerant when it
can continue working safely despite part of its nodes failing, and others acting maliciously.

Raft

Raft is a consensus algorithm developed to handle replicated logs or state machines. It
was specifically designed to be easy to understand, and so it is decomposed into multiple
independent sub-problems: leader election, log replication, and safety [40].

In a Raft cluster, nodes can be in one of three states: leader, follower, and candidate. On
a common deployment, there is a single leader, and all other nodes serve as followers. All
followers are passive nodes and simply redirect all client requests to the leader, which is
always assumed to be correct. Time is divided into terms of arbitrary length, and at the end
of each term a new election occurs, in which candidate nodes try to become the leader for
the new term. Figure 2.3 shows the election lifecycle of nodes in a Raft cluster [40].

Figure 2.3: Raft election lifecycle [40]

Leaders maintain their status by sending heartbeats to followers. When a follower stops
receiving heartbeats for a certain period of time, it assumes there is no viable leader and
begins an election by transitioning to the candidate state. The node then votes for itself
and requests votes from other nodes. The node will continue in this state until it wins the
election, or another node wins the election, or a randomized period of time passes with no
winner. In the later case, a new election will start until a single leader is elected.

Due to these properties, Raft is considered to be fault-tolerant, but not byzantine fault-
tolerant [21], [40]. This is because during the election process, two malicious nodes can
ignore the timeouts and switch leaders between them, preventing the system from leaving
the election phase [41].

All client requests are first stored on the leader’s logs and then replicated to other nodes.
This is done by having the leader continuously firing events until all followers replicate the

2.1. Quorum 11

data in their logs [40].

Each log contains the command executed, the log’s index, and the term in which it was
executed. A log is committed by the leader when the majority of nodes in the network
successfully synced it to their status. Once the log is committed, the leader executes
the command and reports back to the client. Because commands are executed in order,
committing a log will also commit any previous one [40].

Inconsistencies are handled by forcing followers to replicate the leader’s logs in case of
conflicting entries [40].

This system is secured by ensuring that there can be only one leader at any given time, and
that its logs are append- only. Additionally, during the election phase, a node will refuse to
vote for a candidate whose latest log is older than its own [40].

The minimum number of nodes required to perform an action is 2/n+1, where n is the total
number of nodes in the cluster. This means that Raft can tolerate up to half the nodes in
the cluster being down [21], [40].

Clique

Clique is a proof-of-authority consensus algorithm that originated as an improvement pro-
posal for Ethereum’s testnet in 2017. At the time of Clique’s proposal, Ethereum used the
proof-of-work consensus mechanism, which made it vulnerable to attacks on networks with
low computing capacity. This made creating a testnet, which is an instance of the blockchain
used to experiment new features and changes, particularly hard because they were being eas-
ily attacked. Clique aims to provide a simple and standardized proof-of-authority mechanism
that can be embedded into any Ethereum client, and as such, it is proposed by repurposing
already existing Ethereum headers and without resorting to smart contracts [42].

There is a set of trusted nodes named Signers which are responsible for validating transac-
tions and new blocks at fixed intervals. Signers take turns to create blocks, and can also
vote to add or remove other signers. Spamming is prevented by restricting the minting
frequency of a given signer to 1 out of N/2, where N equals the total number of signers.
Although malicious signers can cause some damage, this is limited by the above restrictions,
and the malicious signer can be voted out by the remaining ones. The system can also
continue working normally up until half its miners stop working, which makes the algorithm
both byzantine-fault-tolerant and fault-tolerant [42].

The main problem with this algorithm is that signers are allowed to mint blocks concurrently,
which can cause race conditions and create network forks. The problem is made rare by
making all signers add a random time offset to when they release a new block, but it does
not prevent the problem completely. Small forks can be easy to solve, but large forks can
become irresolvable in the network [42], [43].

IBFT

Istanbul Byzantine Fault Tolerant is a consensus algorithm based on the Practical Byzan-
tine Fault Tolerant state machine replication algorithm. It is implemented by modifying
Ethereum’s headers to include additional information [44].

12 Chapter 2. State of the art

There are two versions of IBFT supported by the Quorum platform. This section will only
focus on version 1.0, which is the one supported by the goquorum. Version 2.0 is only
supported by Hyperledger Besu, which superseded the previous one by fixing chain forking
issues the original implementation had [45].

IBFT clusters have a set of nodes named validators or leaders, whose responsibility is to
determine if a proposed block can be added to the chain. Validators can in turn propose the
blocks to be added to blockchain, in which case they are called proposers [44], [46].

In each consensus round, a validator is randomly selected to become a proposer, at which
point it must construct a block and share it with the group. The group then votes on the
validity of the new block, which requires a super-majority of the votes to be considered
valid. A super-majority is obtained with 2F + 1 votes, where F represents the number of
faulty nodes in the network. If the block is considered invalid, the proposer changes and a
new round begins. Otherwise, the same proposer can continue unless the group votes to
change proposer. To ensure only one block is appended to the state machine, blocks are
immediately locked after being approved, before their command runs on the chain. This
makes the algorithm have immediate finality since it prevents blockchain forks [44], [46].

IBFT algorithm can be represented as a state machine, as shown in Figure 2.4.

Figure 2.4: IBFT state machine [44]

First, validators wait to receive a proposal from the proposer node. Once received, validators
notify their validator-peers and wait for these to notify if they accept the block. Once they
receive the notification that their peers have accepted the block, the validators jump into
ready state and wait until other validators are in the same state so that they can commit

2.1. Quorum 13

the block. During this time, the block is already locked and can not be replaced. If the
round times out or the block somehow failed to be inserted, validators go into the Round
Change state, where they must agree on the next round number. If enough validators reach
the ready state, then the block is inserted on the chain and validators move back into the
Awaiting Proposal state, incrementing the round number [44].

Validators can also vote to add or remove others, where at least N/2 + 1 votes are needed
for approval, where N equals the total number of validators in the network [44].

Given the algorithm’s behavior, it is considered to be byzantine-fault-tolerant, since malicious
validators can be voted out of the network and out of making block proposals. The network
implementing this algorithm can continue working properly until up to a third of its nodes
are faulty, making it also fault-tolerant [44].

Correctness analyses of the algorithm have found that it is possible for it to enter a deadlock
state, making its liveness weak. This happens because there is no process for nodes to
unlock from a given block until another block is approved for the same height, because once
a block locks on a proposed block for a certain height, it can only vote on that block for
that height [47].

A simple scenario to cause this, where F is the number of faulty nodes in the network, is
that if a block is proposed and validator A receives 2F+1 notifications of acceptance, it will
lock the block. In the same round, if other validators receive less than 2F+1 notifications of
acceptance, the round will timeout, and the validators will go into the round change state.
In the next round, a new block is proposed, but validator A will be unable to vote on the
new block because it is locked on the previous one. If a different validator gets locked on the
new block and the round times out again, and there are exactly F faulty validators, it will
no longer be possible to get super-majorities in votes, effectively locking the network until
validators recover.

QBFT

QBFT is a consensus algorithm developed by ConsenSys to overcome the identified limita-
tions of IBFT. It is a revision of IBFT, and thus functions very similarly to it, following the
same three-phase commit strategy, but with five modifications to implementation details,
and a bigger modification to ensure liveness.

First, the protocol IBFT uses to transmit finalized blocks is modified to make nodes query
their peers regularly on the availability of new finalized blocks. Then, to improve security,
nodes now only consider commit-messages signed by the sender. Block verifications are now
embedded to pre-prepare messages to enable adding finalization proof the block earlier in
the commit chain. Following this, failure to create a finalization proof is removed from the
list of conditions that can lead to the round change state. A guarded command is removed
from the original specification, as it was considered it provided no value. And, finally, IBFT’s
block-finalization-protocol is modified to require 2N / 3 validators to obtain a super majority,
where N equals the total number of validators in the network [46], [48].

To ensure liveness, the QBFT revision paper makes two suggestions: a PBFT-like solution,
or a Tendermint-like solution, both of which are also consensus algorithms.

14 Chapter 2. State of the art

The PBFT-like solution suggests four modifications. First, remove the locking logic from
IBFT. Then, a Prepared Certificate is added to the round change transition message, which
includes a set of 2N/3 prepare messages received for the same round of a given instance.
If a validator received multiple sets of 2N/3 prepare messages for different rounds of the
same instance, then its prepared certificate must only include the ones for the highest round
number. Finally, a new round message is introduced, which is sent by the proposer once
2N/3 round change messages are received by it [46].

Removing the locking logic effectively solves the liveness issue, and the rest of the modifi-
cations are done to ensure safety is not compromised and the network does not fork during
round changes [46].

Alternatively, concepts from the Tendermint consensus protocol, namely the concept of
relocking, can be applied to IBFT to ensure liveness. The specification suggests two mod-
ifications to implement this. First, add a locked round value to the pre-prepare message,
which represents the latest round number the validator locked on a given block. Allow a
validator to relock on a new block if it receives 2N/3 prepare messages for round r, one
pre-prepare message with the locked round number r and r is higher than the current round
number [46].

The proposal further suggests that both solutions should have little differences in perfor-
mance as long as the proposer for round 0 is honest and the network delay is less than the
round timer.

The solution implemented by ConsenSys for QBFT was based on the Tendermint proto-
col [49].

2.2 Mapping study

In order to collect and understand the current knowledge of Quorum’s consensus algorithms,
it was important to conduct a review of literature on the topic. This section describes the
review done, detailing both the methodology used the results obtained.

2.2.1 Methodology

There are multiple known strategies to conduct a review of literature. In this instance, the
goal is to understand what is currently known about Quorum’s consensus algorithms, what
has been studied and to what depth. Considering the goal, the most appropriate strategy to
adopt is to perform a systematic mapping study, which allows synthesizing information on a
field in the form of maps, thus creating a structure and classification system for it. Because
the search strategy is explicit, the study can be replicated [50].

The steps to perform a systematic mapping study can be seen in Figure 2.5.

2.2. Mapping study 15

Figure 2.5: Systematic mapping study [44]

Research questions must first be defined in order to define the research scope. Then,
research strings must be derived from the research questions and used on the search engines
of choice, in order to collect all papers that match them [50].

Once all papers are collected, they must be screened for inclusion and exclusion criteria to
get only the relevant papers. A classification scheme must then be created so that the
relevant papers can then be sorted into it. With all the data extracted, it can be mapped
into frequency tables or bubble plots for better visualization [50].

2.2.2 Research Questions

As mentioned, the goal of the study is to understand what research has been done on
Quorum’s consensus protocols and in what quantity and depth. As such, the research
questions formulated for this study can be seen in Table 2.1.

Table 2.1: Research questions

Question
RQ1 What performance metrics were explored for each consensus algorithm?
RQ2 What fault-tolerance metrics were explored for each consensus algorithm?
RQ3 What benchmarking frameworks or strategies were used when exploring consensus

algorithms?

2.2.3 Search keywords

Keywords to be used on the search engines must be derived from the research questions
previously defined.

The search engines chosen can be seen in the list below.

• ScienceDirect 1

• ACM Digital Library 2

• IEEE Xplore 3

Each search engine supports key searching in a slightly different format, so the search syntax
must be adapted for each.

1https://www.sciencedirect.com/
2https://dl.acm.org/
3https://ieeexplore.ieee.org/

16 Chapter 2. State of the art

Based on the research questions, the search terms found in Table 2.2 were created to
conduct the search.

Table 2.2: Search keywords for each engine

Search engine Search
ScienceDirect permissioned AND blockchain AND consensus AND (algorithm

OR protocol OR mechanism)
ACM Digital Library Abstract:(permissioned AND blockchain AND consensus AND

(algorithm OR protocol OR mechanism)) OR Keyword:(permis-
sioned AND blockchain AND consensus AND (algorithm OR pro-
tocol OR mechanism)) OR Title:(permissioned AND blockchain
AND consensus AND (algorithm OR protocol OR mechanism))

IEEE Xplore ”All Metadata”:”permissioned” AND ”All
Metadata”:”blockchain” AND ”All Metadata”:”consensus”
AND (”All Metadata”:”algorithm” OR ”All
Metadata”:”protocol” OR ”All Metadata”:”mechanism”)

Because Quorum’s consensus algorithms are platform-agnostic and can be implemented on
any Ethereum client, the search did not filter down to Quorum blockchain in this phase.
The keywords are searched only in the title, abstract, and author-specified keywords of each
paper, in order to eliminate articles that only mention the algorithms in passing from the
results.

Filtering specifically by ”permissioned” blockchain technologies means that some older pa-
pers might be filtered out, because the keyword ”permissioned” had not yet seen widespread
use, and instead the keyword ”private” was more common [51]. However, filtering with
the ”private” keyword resulted in many unrelated papers, and because the algorithms being
explored are fairly recent, particularly QBFT, a compromise was reached to exclude these
older papers.

2.2.4 Screening of papers

Using the search criteria previously explained, the results in Table 2.3 were obtained.

Table 2.3: Initial search results

Search engine Number of papers Date range
ScienceDirect 26 2018–2023
ACM Digital Library 35 2017–2023
IEEE Xplore 140 2016–2023

To further filter the results for relevancy, the inclusion and exclusion criteria found in Ta-
ble 2.4 were defined.

2.2. Mapping study 17

Table 2.4: Inclusion and exlusion criteria

Inclusion The abstract explicitly mentions exploring the QBFT, IBFT, Clique and/or
Raft protocols.

Exclusion The paper is not available in its full format or only mentions the consensus
algorithms in passing and does not focus on them on its body of work.

By applying the criteria to the results, we obtain the summary of relevant papers found in
table .

Table 2.5: Relevant papers result

Search engine Number of relevant papers
ScienceDirect 2
ACM Digital Library 0
IEEE Xplore 4

The vast majority of the initial papers explored different consensus algorithms or proposed
new ones, making no references to the ones used in Quorum and Hyperledger Besu, resulting
in a total of six relevant papers.

2.2.5 Data extraction

Based on the research questions and knowledge gained by reading the abstracts of the rel-
evant papers, three facets were created to structure the topic. The consensus mechanisms
facet will simply represent the consensus algorithms explored in each paper. The Metric
explored facet will represent the metrics explored in each paper, detailing the algorithms
were explored in terms of performance, resource-usage, security, correctness, and liveness.
Correctness and liveness directly affect both fault-tolerance and performance because cor-
rectness represents the blockchain’s ability to have the correct blocks mined and liveness
ensures that as long as a theoretical threshold is not reached, the network will continue
processing transactions [52].

Finally, the benchmarking framework facet represents how the data for the exploration of
the algorithms were obtained.

Figure 2.6 shows a bubble plot representing the systematic map of the papers into the facets
defined.

18 Chapter 2. State of the art

Figure 2.6: Systematic map

From the chart, it can be concluded that there are few papers exploring the consensus algo-
rithms. None explores the QBFT consensus algorithm yet, while the other three algorithms
have a similar share of papers published on them.

The most explored metrics are performance and fault-tolerance, while security and resource
usage have less data on them. Regarding benchmarking tools, the two most common
strategies are deploying a synthetic application and using Hyperledger Caliper. Synthetic
applications are instances of a system running a blockchain platform, where tests can be
run against them. No papers used Blockbench for benchmarking despite mentioning it
when evaluating which framework to use, and one paper used a novel approach of using a
synthetic application together with chaos engineering to benchmark it for performance and
correctness.

In conclusion, there is very little research published on the topic at the time of writing,
particularly for QBFT, which was initially released at the end of 2022. All relevant papers
were published after 2020, and so, given their recency, their research and results can help
set baselines and expectations for Raft, Clique and IBFTs metrics.

2.3 Benchmarking tools

With the need to test and benchmark systems running on Ethereum-based blockchain plat-
forms, the community has developed several tools and frameworks for benchmarking private
networks over the years.

ConsenSys develops quorum-profiling4 specifically for Quorum. The previous mapping study
also revealed Hyperledger Caliper5 and Blockbench6 as widely used. In addition to these,

4https://github.com/ConsenSys/quorum-profiling
5https://github.com/hyperledger/caliper
6https://github.com/ooibc88/blockbench

2.3. Benchmarking tools 19

there have been several papers published that detail and showcase novel benchmarking tools
for permissioned blockchains. The most notable examples found in a brief search are Chain-
hammer7, gromit8, BCTMark9, and Diablo10. These tools collect different performance
indicators and in general have different sets of pros and cons, as shown in Table 2.6.

Table 2.6: Benchmarking tools comparison

Tool Suc-
cess
rate

Through-
put

La-
tency

Re-
source
usage

Com-
pre-
hen-
sive
docu-
men-
tation

Active
main-
te-
nance

Cus-
tom
work-
loads

quorum-profiling X X X X
Blockbench X X X X X X
Hyperledger Caliper X X X X X X X
Chainhammer X
gromit X X X X
BCTMark X X X X
Diablo X X X X X X

ConsenSys quorum-profiling is a toolset that connects to a Quorum network and runs stress
tests on it using JMeter, collecting TPS, total transactions and block counts from all nodes.
It also collects resource usage information, like CPU and RAM usage, and the results of the
JMeter tests being run against the system. All metrics are pushed to an InfluxDB time-series
database, and can be queried from a Prometheus11 endpoint, which can then be used to
display the data visually on a Grafana12 instance.

Blockbench was one of the first frameworks for benchmarking permissioned blockchains,
and it supports benchmarking many performance indicators [53]. However, the tool has
been mostly superseded by Hyperledger Caliper, which supports the same benchmarks but
with better documentation and extensibility, and consequently better community support
and engagement.

Hyperledger Caliper is a framework that connects to a system under test (SUT), sends
requests to it and then monitors responses, before generating a report with the data col-
lected [54]. Figure 2.7 shows the high-level architecture diagram of the framework.

7https://github.com/drandreaskrueger/chainhammer
8https://github.com/grimadas/gromit
9https://gitlab.inria.fr/dsaingre/bctmark

10https://github.com/NatoliChris/diablo-benchmark
11https://prometheus.io/
12https://grafana.com/

20 Chapter 2. State of the art

Figure 2.7: Hyperledger Caliper architecture [54]

The framework can be used as a standalone docker image, or it can be embedded into an ap-
plication using Node.js. Only Hyperledger Besu, Ethereum, Hyperledger Fabric, and FISCO
BCOS platforms are supported natively [55]. However, the framework itself is platform ag-
nostic and supports custom connectors to interact with SUTs on different platforms [55].
For example, in [56], an older version of Caliper was extended to support benchmarking
Quorum.

Chainhammer focuses solely on transactions per second (TPS) and measures internal blockchain
metrics like gas used, block time and block size. It is not being actively maintained, with
the latest functional commit being three years ago, and it also lacks comprehensive docu-
mentation [57].

Gromit is based on another tool called Gumby. It supports multiple blockchain platforms,
which include Quorum, and provides a set of experiments that can be run and customized [58].
However, documentation is lacking because the author pointed to Gumby’s original docu-
mentation, which is no longer available on GitHub. Additionally, it has not seen recent
activity, with the latest functional commit being over a year ago, around the time the paper
detailing it was published.

BCTMark was developed in 2020 and also collects all the relevant metrics for this work [59].
However, there is no documentation for it outside of the initial release paper, and there is
no activity in its repository for three years, indicating it has been abandoned.

The paper presenting and describing Diablo was released in May of 2023, but the source
code for the project indicates that it was developed over 2 years ago. The tool supports
collecting all the performance metrics and resource usage, and it sets itself apart by providing
real-world workloads for the blockchain, including complex video-games, Youtube, and Uber.
The tool also supports adding custom workloads and has detailed documentation on how it
works and how to run it. However, the source code has not been updated in over 2 years,

2.3. Benchmarking tools 21

and for Quorum only the IBFT algorithm is supported natively [60]. Support for the rest of
the algorithms could theoretically be added by modifying the source code, but the tool is
written in the Go programming language13, which the author is not familiar with, making it
unfeasible to use given the project’s time constraints.

13https://go.dev/

23

Chapter 3

Experimentation design

In this chapter, the methodology for the benchmarking is described, followed by the design
and architecture of the implementation.

3.1 Methodology

The main objective of comparing consensus algorithms requires benchmarking the network
under different scenarios, in a way that promotes speed of development, fairness, data
reliability, and transparency. As such, a methodology to follow was drafted, which can be
seen in Figure 3.1.

24 Chapter 3. Experimentation design

Figure 3.1: Flowchart of the benchmarking methodology

First, a blockchain benchmark framework compatible with the system must be chosen. This
should be done based on a study of the current solutions and what features they provide.

Then, the key performance indicators that will be measured must be selected, followed by
network and workload configurations. In these phases, it is important to keep the goal and
scope of the project present so that only relevant variable system parameters and measured
metrics are included.

Once these are defined, the benchmarks must be run for each combination of network
variables in order to collect all the relevant data, which in turn will be used to compare the
consensus algorithms and draw conclusions.

The sections that follow go over each phase of the methodology as it was applied.

3.2. Benchmark framework 25

3.2 Benchmark framework

As explored in the previous chapter, there are multiple tools that can be used to benchmark
a quorum network. The one chosen for this project is Hyperledger Caliper because it sup-
ports all the metrics needed, its documentation is more extensive and complete than the
alternatives, it has more community support and active development, being supported by
the Hyperledger community, and is written in a programming language known to the author.
Figure 3.2 shows the multiple layers of the framework.

Figure 3.2: Hyperledger Caliper layers

As previously mentioned, Hyperledger Caliper does not support the GoQuorum client by
default. However, because it is designed to be extended, a custom connector can be created
for it and added to the connector layer, which will allow the framework’s core to interact
with the system under test [61].

Additionally, because GoQuorum is based on Ethereum, and Hyperledger Caliper is open-
source, the Ethereum connector that is provided by Caliper can be used as the base for the

26 Chapter 3. Experimentation design

custom one for Quorum. The source code for Caliper’s Ethereum connector can be found
in their GitHub repository1, and it follows the interface shown in Listing 4.1.

The Ethereum connector already has support for private transactions, but only for the Hy-
perledger Besu client. This is done using the web3-eea2 package, but it has since been
deprecated in favor of web3js-quorum3, both developed by ConsenSys. To ensure compati-
bility with the latest version of Quorum and facilitate development, the new connector will
be built on top of the Ethereum one, modifying it to use the latest version of web3s-quorum
and all the changes required for it.

3.3 Key performance indicators

The project has the aim of measuring the performance and fault-tolerance of each consensus
algorithm in Quorum, and thus the key performance indicators are all related to these two
metrics.

The goal, question, and metric (GQM) approach defines a measurement model that can
be used to establish the goals and metrics to measure them. This model has three distinct
levels: conceptual level, operational level, and quantitative level [62].

The conceptual level defines the goal for the project, which, as defined in 1.3, is to explore
the effect that different consensus algorithms have on fault tolerance and performance in
Quorum.

Based on this goal, the operational level details a set of questions that map to concrete
components of the system being evaluated. The questions previously defined are:

• Q1 What is the effect of the consensus algorithm on performance?

• Q2 What is the effect of the consensus algorithm on fault-tolerance?

The Hyperledger Performance and Scale Working Group (PSWG) has proposed a set of basic
terms and metrics to serve as a standard when evaluating the performance of blockchains
and distributed ledger technologies (DLTs) [63].

Latency and throughput for reads and transactions are identified as the main metrics to
assess the system’s performance. In addition to those, resource consumption and scalability
will also be measured to assess how the system behaves under different needs, resulting in
the following list of metrics:

• M1: Transaction throughput.

• M2: Read throughput.

• M3: Transaction latency.

• M4: Read latency.
1https://github.com/hyperledger/caliper/tree/main/packages/caliper-ethereum
2https://github.com/ConsenSys/web3js-eea
3https://consensys.github.io/web3js-quorum/latest/index.html

3.3. Key performance indicators 27

• M5: Resource consumption.

• M6: Scalability: relationship between number of nodes and transaction throughput.

As for fault-tolerance, the only metric that will be monitored is:

• M7: Transaction success rate.

As for fault-tolerance, the only metric that will be monitored is the transaction success rate.

With the goal, questions, and metrics defined, the resulting GQM map can be seen in
Figure 3.3.

Figure 3.3: GQM map

A transaction is considered a network state transition, where some data in the blockchain
was changed to a new value. Transactions are submitted by clients and evaluated by the
system, which will commit them if it considers them valid. Invalid transactions are not taken
into account for latency and throughput metrics because they are not considered meaningful
by Hyperledger [63].

Transaction throughput is the rate at which valid transactions are committed by the SUT
in a given time frame, thus representing the rate of the entire network, and not of each
individual node [63].

Transaction throughput =
Total transactions committed

Total time in seconds
(3.1)

Transaction latency is also measured at the network level, and represents the amount of
time it takes for a transaction to go from being submitted by a client to having its result

28 Chapter 3. Experimentation design

available across the network. This means that the consensus mechanism’s propagation and
settling times are included in the latency.

Transaction latency = Confirmation time x network threshold− Request submission time
(3.2)

The network threshold is basically the percentage of the network’s processing power that
needs to have acknowledged the transaction. In this project, since all consensus algorithms
are deterministic, the threshold will always be considered 100%.

Reads, on the other hand, are measured on the clients directly, and thus are much simpler
to define. Read throughput represents how many read operations are completed within a
given time-frame.

Read throughput =
Total read operations
Total time in seconds

(3.3)

Read latency, consequently, is simply the difference between the time when the request was
sent and the time the response was received.

Read latency = Response received time− Request submission time (3.4)

It is important to note that for each latency metric the average, maximum, and minimum
values will be gathered and compared.

Resource consumption will look into the CPU and RAM usage of each GoQuorum node
over the course of the benchmark. Hyperledger Caliper measures these metrics for each
container in the network. To get a single measurement for the whole network, the highest
average CPU and RAM usage value measured for the run will be used. This will be done
instead of calculating the average for all nodes because, if one node is having much higher
resource consumption than the rest, then it can be a bottleneck for the whole network.

Scalability will be measured by analyzing how the transaction throughput and latency evolve
with the number of nodes in the blockchain. As the number of nodes increases, each
transaction will need to propagate across more nodes, and thus it is expected that the
throughput will do down and the latency up.

Fault tolerance will be measured by introducing a 10-second delay to network requests to
validator nodes in the system at random and evaluating if transaction processing, throughput,
and latency are affected. This will be achieved by using pumba4, a chaos testing tool for
Docker5 that allows interacting with contains at random in a docker network using the docker
socket. The pumba service entry and command that allows this can be seen in Listing 3.1.

1 chaos-delay:
2 image: gaiaadm/pumba

4https://github.com/alexei-led/pumba
5https://www.docker.com/

3.4. Network and environment configuration 29

3 volumes:
4 - /var/run/docker.sock:/var/run/docker.sock
5 command: "--log-level debug --interval 20s --random netem --tc-image gaiadocker/

iproute2 --duration 10s delay re2:^network-validator"

Listing 3.1: Pumba pause service

Each test run will then have a scenario where validator nodes being paused at random, and
another where all containers are stable.

3.4 Network and environment configuration

The network and environment configurations impact the system’s performance, and thus
it is important to determine which parameters will be treated as constants and which ones
will serve as variables for the benchmarks. This includes configuration parameters of the
Quorum system itself and decisions on how the network and benchmark environment is set
up when building the test environment.

Starting with the system, there are multiple configurations outside the consensus algorithm
that can affect its performance, such as the gas limit or block mining period. However,
because the goal of this project is only to evaluate the consensus algorithms, all these
configurations will be treated as constants. Table 3.1 shows the values used for each of
Quorum’s network parameters in its genesis file6, and which consensus algorithms they
apply to.

Table 3.1: Quorum network configuration constants

Property Algorithms Value
txnSizeLimit All 64 (kb)
difficulty All 0x1
gasLimit All 0xFFFFFF
epoch Clique, IBFT, QBFT 30000
policy Clique, IBFT, QBFT 0
ceil2Nby3Block IBFT, QBFT 0
blockperiodseconds IBFT, QBFT 5
emptyblockperiodseconds IBFT, QBFT 60
requesttimeoutseconds IBFT, QBFT 10
period Clique 10

All the values are the default ones when using quorum-genesis-tool7 to generate a GoQuorum
network. It is also important to note that this project used the latest versions of Quorum
and Tessera available at the time of writing, which is version 23.4.0 for both.

As for the network and environment setup, three main alternatives were identified:

• A: Run all nodes locally.
6https://docs.goquorum.consensys.net/configure-and-manage/configure/genesis-file/genesis-options
7https://github.com/ConsenSys/quorum-genesis-tool

30 Chapter 3. Experimentation design

• B: Run all nodes on a single cloud instance.

• C: Divide nodes across multiple cloud distances.

Alternative A is free and very simple to set up, but limits the reproducibility of the benchmark
results while also affecting the results directly if the machine does not have enough CPU
threads to dedicate one per node.

Alternative B is also simple to set up, only requiring a few more extra steps for configuring the
cloud instance and connecting remotely to it, while also improving benchmark reproducibility.
However, it incurs some monetary costs since most cloud providers will charge for instances
with enough resources to run the benchmarks comfortably.

Alternative C also guarantees reproducibility, and is better at simulating an actual real-world
scenario of a network where the nodes are distributed across different geographical locations.
However, it is much harder to set up since it involves setting up communication across
multiple cloud instances, and it also requires running more benchmarks because network
latency becomes a variable outside the tester’s control. It also incurs higher monetary
charges since it involves multiple cloud instances.

Taking these alternatives into consideration, option B was chosen as a good compromise
between cost, reproducibility, and speed of development. For the cloud provider, an AWS
EC28 instance was chosen, since the author already has experience working with this provider,
speeding up the setup process.

The EC2 instance type is c5a.8xlarge, which is configured with the values found in Table 3.2.

Table 3.2: EC2 instance configuration

Property Value
Operating System Ubuntu 22.04
vCPUs 32
CPU clock speed 2.8Ghz
RAM 64Gb

Inside the instance, nodes will run inside Docker containers. This technology was chosen
because of its compose tool9, which greatly simplifies the process of tearing down and setting
up a new network to run the benchmarks.

Regarding TLS usage, this protocol is already known to introduce performance overhead to
all requests, while also slightly increasing CPU usage [64]. Since TLS overhead is introduced
per request, the more requests a network has, the more noticeable this overhead will be,
which means that this latency is expected to increase as the number of nodes in a blockchain
network increases. Consequently, it might be interesting to explore how this overhead relates
to other variables, namely if different consensus mechanisms result in more or less network
requests. However, this exploration falls outside this project’s scope because manually setting
up TLS for so many nodes is complex and time-consuming, and many companies and systems
in production do not use TLS for communication internal to their network. Regardless, it

8https://aws.amazon.com/ec2/
9https://docs.docker.com/compose/

3.5. Workload 31

could be explored in future works, perhaps more focused on the security aspects of these
systems.

Regarding the number of benchmark workers, Hyperledger Caliper will use four workers to
run transactions against the system, in order to simulate multiple clients sending requests
at the same time. Each worker will thus simulate one client. Caliper supports this natively
and divides the configured transactions and transactions per second across all workers. This
means that increasing the number of workers, which make the requests in parallel, does not
have an impact on the number of transactions per second sent, thus ensuring the transactions
per second are the ones explicitly configured. Furthermore, Caliper allows each worker to
connect to a node at random by using the fromAddressSeed property, which uses BIP-44
key derivation to generate an address for each worker [65].

In an enterprise scenario, it is expected that only a subset of nodes will be exposed to clients,
and the network needs to propagate these requests across all its members. Thus, four clients
is a good middle ground to simulate this enterprise scenario and test how each consensus
algorithm is affected by different transactions being propagated across the network in parallel.

Finally, the number of nodes will be a variable in the benchmark in order to assess how
each consensus algorithm scales. All consensus algorithms being tested require at least four
validator nodes to achieve high availability. As such, the system will initially be configured
with seven nodes: three members and four validators. Then, in order to horizontally scale
the network, member nodes will be increased in steps of one, up to 6, and validator nodes
will be increased in steps of four, up to 16. This will result in networks of 7, 12, 17, and
22 nodes. The system is not scaled any further because past 6 member nodes because
the number of errors when processing transactions becomes too high, making it pointless
to assess its performance since it is not feasible to deploy such a network in a production
environment. The main reason for this lack of scaling is that the Tessera private transaction
manager is a bottleneck on the system, as it will be explored in chapter 4.

In addition to member and validator nodes, an RPC node will also be present in the network
to interact with the blockchain.

3.5 Workload

Hyperledger provides a repository with benchmark examples compatible with multiple sys-
tems, which can be found in [66]. There are two benchmark scenarios available that simulate
a simple bank10. One called smallbank targets Hyperledger Fabric, and another called simple
targets Ethereum. Despite their names, the operations they perform are identical, and the
only changes are in the targeted systems.

Because Quorum extends Ethereum, the simple scenario was chosen as the workload for the
benchmarks since it is the most compatible one. In this scenario there are three different
smart contracts used:

• open: write operation that creates a bank account, which is a randomly generated
string with an amount of money associated.

10https://github.com/hyperledger/caliper-benchmarks/tree/main/benchmarks/scenario

32 Chapter 3. Experimentation design

• query : read operation that, given an account string, returns the amount of money
associated with it.

• transfer : read-write operation that transfers money across two accounts.

This is a good benchmark workload because it supports the three possible types of oper-
ations, it allows parallel requests, and exemplifies a finance use case, which is the most
common one for permissioned blockchains. However, as it is, it only supports Ethereum
public transactions, and so it must be modified to also support private Quorum transac-
tions.

Alternatives to using this benchmark could involve creating a new scenario from scratch,
but the extra work was not considered worth it when the existing one already covers all
the benchmark needs. Creating a more complex benchmark would also bring no benefits to
the goal of comparing the consensus algorithms, since a more complex smart contract logic
would only impact running the code in the EVM. Implementing a scenario for an industry
outside of finance was also not considered necessary because all three operation types are
being measured, which will allow interested parties to extrapolate the results and conclusions
to their use cases.

Regarding how many requests will be sent and at which rate, Hyperledger Caliper allows
configuring both of these numbers using the properties txNumber to define the number of
transactions to be sent of each smart contract and tps to define the number of transactions
per second. The transactions per second property will be incremented across test runs to
assess if different consensus algorithms can handle specific request rates better than others.
The number of transactions will start at 50, then increase to 100, 200, and finally 300.
Similar to what happens with network scaling, there is no point in increasing the TPS past
300 because the system is unable to handle them and results in most transactions failing.

Listing 3.2 shows an example of a benchmark configuration file used in the project for the
smart contracts previously shown.

3.6. Overview 33

1 bankArgs: &bank-args
2 initialMoney: 10000
3 moneyToTransfer: 100
4 numberOfAccounts: &number-of-accounts 1000
5

6 test:
7 name: bank
8 workers:
9 number: 1

10 rounds:
11 - label: open
12 description: >-
13 Test description for the opening of an account through the deployed
14 contract.
15 txNumber: *number-of-accounts
16 rateControl:
17 type: fixed-rate
18 opts:
19 tps: 50
20 workload:
21 module: benchmarks/scenario/bank-private/open.js
22 arguments: *bank-args
23 - label: query
24 description: Test description for the query performance of the deployed contract.
25 txNumber: *number-of-accounts
26 rateControl:
27 type: fixed-rate
28 opts:
29 tps: 100
30 workload:
31 module: benchmarks/scenario/bank-private/query.js
32 arguments: *bank-args
33 - label: transfer
34 description: Test description for transferring money between accounts.
35 txNumber: 50
36 rateControl:
37 type: fixed-rate
38 opts:
39 tps: 5
40 workload:
41 module: benchmarks/scenario/bank-private/transfer.js
42 arguments:
43 << : *bank-args
44 money: 100

Listing 3.2: Benchmark configuration example

As it can be seen, transactions per seconds and the total number of transactions can be
configured globally using a variable or per smart contract.

3.6 Overview

Table 3.3 shows a summary of the main benchmark properties and how variables will be
incremented.

34 Chapter 3. Experimentation design

Table 3.3: Benchmark variables summary

Property Value
Number of validators 4–16, steps of 4
Number of members 3–6, steps of 1
Number of benchmark workers 4
Consensus mechanisms Clique, IBFT, RAFT, QBFT
Transaction rate (tps) 50,100–300, steps of 100
Number of transactions 5000
Transaction type Public and Private
Chaos testing Disabled and Enabled

Figure 3.4 shows the system architecture, using UML notation11.
11https://www.omg.org/spec/UML/2.5.1/About-UML#inventory-links

3.6. Overview 35

Figure 3.4: Benchmarking system architecture

Inside a docker network are two main boundaries: the monitoring system and the SUT itself.

The SUT is a Quorum network which will have, in each benchmark, the pre-configured
number of nodes. All member nodes have a corresponding Tessera transaction manager in
order to support private transactions.

Then, the monitoring system consists of a Prometheus [67] instance which will query each

36 Chapter 3. Experimentation design

node’s metrics endpoint to fetch information exported, a Grafana [68] instance to present
visualizations on top of this information, and a Quorum Explorer instance to explore the
network.

Prometheus is an open-source systems monitoring toolkit that pulls data from running in-
stances and stores them in real-time. Grafana, in turn, is an open-source data visualization
platform that can fetch data from Prometheus and present it in multiple dashboards with
custom queries. ConsenSys has made available a pre-configured Grafana dashboard to Go-
Quorum nodes that export Prometheus metrics on a pre-configured endpoint [69].

Quorum Explorer is a simple webpage that connects to the system using RPC and allows
developers to visualize the system in real time and interact with it.

As previously mentioned, one of the metrics to be measured is resource usage, which is
supported by Hyperledger Caliper via Prometheus or via Docker [70]. Since all the benchmark
services are running on a single Docker network and the Caliper workers are also local to
it, the Docker monitoring will be used, since it is fully automated to configure, whereas the
Prometheus one requires writing each query individually. As such, resource usage results will
be derived from this monitoring, and Prometheus, Grafana, and Quorum Explorer will only
be used during the development phase to ensure the benchmarks are being run correctly and
transactions are being added to the chain successfully.

Finally, pumba will be used as a chaos testing tool to randomly introduce network delays
and prevent validator nodes from sending requests. Delays will be run every 20 seconds and
have a duration of 10 seconds, effectively causing a validator node to go temporarily offline
for the duration.

37

Chapter 4

Benchmark implementation

In this chapter, the implementation of the system that was used for benchmarks is initially
described. Then, the Quorum connector implemented for Hyperledger Caliper is presented,
and, finally, the workload used in Caliper to run against the system is also described.

4.1 Hyperledger Caliper Quorum connector

As mentioned in chapter 3, Hyperledger Caliper does not support GoQuorum as a target
platform by default. However, it does support an extensible connector interface that can be
implemented to support any platform. Listing 4.1 shows the connector interface exported
by the @hyperledger/caliper-core package, for Node.js, that must be implemented to write
a custom connector.

1 class ConnectorInterface extends EventEmitter {
2 getType() {}
3 getWorkerIndex() {}
4 async init(workerInit) {}
5 async installSmartContract() {}
6 async prepareWorkerArguments(number) {}
7 async getContext(roundIndex, args) {}
8 async releaseContext() {}
9 async sendRequests(requests) {}

10 }

Listing 4.1: Caliper connector interface

In essence, the connector handles three tasks: deploying public and private smart contracts
to the system, sending both public and private transactions, and storing the benchmark’s
state.

Since GoQuorum is built on top of Ethereum, which is supported by the framework, the
connector for it can be adapted to also support GoQuorum. Hyperledger Caliper connector
for Ethereum can be found in Appendix B.

This connector already has support for Hyperledger Besu private transactions using the
web3-eea package developed by ConsenSys, however, this package has been deprecated
since January 2022 and was effectively replaced by web3js-quorum. Documentation for
web3js-quorum fully details the migration process from web3-eea to the new package, which
can be found in [71].

38 Chapter 4. Benchmark implementation

As such, implementing the connector started by copying the Ethereum connector to a new
file and then following the migration guide to have it use the new package. Once this was
done, each connector task had to be slightly adapted to fully support GoQuorum.

4.1.1 Contract deployment

the deployment of private transactions had to be adapted to support all the fields introduced
by the new library and required by the GoQuorum client. Deploying private contracts consists
of the following steps:

1. Get the contract deployer account.

2. Create the payload with the transaction data and privacy settings.

3. Send the transaction and wait for a successful response.

In the first step, a random deployer account is created. This is done instead of using the
same account to deploy all contracts in order to avoid nonce issues when deploying both
public and private contracts.

In the second step, first, the current nonce for the account is fetched by counting the number
of transactions for the deployer account. Then, the privacy configuration for the contract
is fetched by defining the privateFor and privateFrom fields. To simulate the worst case
scenario for every network configuration, the privateFrom field is set to the deployer node,
and the privateFor field specifies all member nodes in the network, which means that every
member must decode each transaction using their Tessera instance.

In addition to these, the payload also defined the gas price and limit, the deployer account
as the transaction sender, and the contract’s bytecode as its data.

Finally, with the payload the defined the payload is sent. If the deployment is successful, the
benchmark continues; otherwise it fails by throwing an error. The code that handles this
can be seen in Listing 4.2.

4.1. Hyperledger Caliper Quorum connector 39

1 async deployPrivateContract(contractData, privacy) {
2 const web3 = this.web3;
3 // Using a randomly generated account to deploy private contract to avoid public/

private nonce issues
4 const deployerAccount = web3.eth.accounts.create();
5 const txCount = await web3.eth.getTransactionCount(`${deployerAccount.address}`);
6

7 const transaction = {
8 data: contractData.bytecode,
9 nonce: txCount,

10 gasPrice: 0,
11 gasLimit: 0x24a22,
12 value: 0,
13 from: deployerAccount,
14 isPrivate: true,
15 privateKey: deployerAccount.privateKey,
16 privateFrom: privacy.privateFrom,
17 privateFor: privacy.privateFor
18 };
19

20 try {
21 const txHash = await web3.priv.generateAndSendRawTransaction(transaction);
22 return new web3.eth.Contract(contractData.abi, txHash.contractAddress);
23 } catch (err) {
24 logger.error('Error deploying private contract: ', err.stack);
25 throw(err);
26 }
27 }

Listing 4.2: Deploy private contract method

As for public contracts, these are identical in GoQuorum and Ethereum, and thus deploying
these and sending public transactions is supported without any changes required. The code
for deploying public contracts can be found in Listing 4.3.

1 async deployContract(contractData) {
2 const web3 = this.web3;
3 const contractDeployerAddress = this.ethereumConfig.contractDeployerAddress;
4 const contract = new web3.eth.Contract(contractData.abi);
5 const contractDeploy = contract.deploy({
6 data: contractData.bytecode
7 });
8

9 try {
10 return contractDeploy.send({
11 from: contractDeployerAddress,
12 gas: contractData.gas
13 });
14 } catch (err) {
15 throw(err);
16 }
17 }

Listing 4.3: Deploy public contract method

The pre-configured deployer address is used to deploy the contract using its bytecode gas
required data. If the contract deployment fails, the benchmark stops by throwing an error.

40 Chapter 4. Benchmark implementation

4.1.2 Sending transactions

Sending a private transaction consists of encoding the transaction to ABI, then fetching the
sender and privacy configuration to generate the payload and then send the transaction to
the network. The transaction’s success status is then stored in the benchmark’s state to
generate the final report. The code that handles this can be seen in Listing 4.4.

4.1. Hyperledger Caliper Quorum connector 41

1 async _sendSinglePrivateRequest(request) {
2 const context = this.context;
3 const web3 = context.web3;
4 const contractInfo = context.contracts[request.contract];
5 const privacy = request.privacy;
6 const sender = privacy.sender;
7

8 const status = new TxStatus();
9

10 const onFailure = (err) => {
11 status.SetStatusFail();
12 logger.error(`Failed private tx on ${request.contract}; calling method: ${request

.verb}; private nonce: ` + 0);
13 logger.error(err);
14 };
15

16 const onSuccess = (rec) => {
17 status.SetID(rec.transactionHash);
18 status.SetResult(rec);
19 status.SetVerification(true);
20 status.SetStatusSuccess();
21 };
22

23 let payload;
24 if (request.args) {
25 payload = contractInfo.contract.methods[request.verb](...request.args).encodeABI

();
26 } else {
27 payload = contractInfo.contract.methods[request.verb]().encodeABI();
28 }
29

30 const transaction = {
31 to: contractInfo.contract._address,
32 data: payload,
33 gasPrice: 0,
34 gasLimit: 0x24a22,
35 value: 0,
36 isPrivate: true,
37 nonce: sender.nonce,
38 privateKey: sender.privateKey,
39 from: sender,
40 privateFrom: privacy.privateFrom,
41 privateFor: privacy.privateFor
42 };
43

44 try {
45 const result = await web3.priv.generateAndSendRawTransaction(transaction);
46 if (result.status) {
47 onSuccess(result);
48 } else {
49 onFailure(result);
50 }
51 } catch (err) {
52 onFailure(err);
53 }
54

55 return status;
56 }

Listing 4.4: Send private transaction method

42 Chapter 4. Benchmark implementation

Similarly to contract deployments, the sender account is created automatically for each
request in order to avoid nonce issues when using multiple workers. The transaction receiver
is also randomly selected from a list of accounts that is predefined in the benchmark.

All private transactions are marked to be sent from the same pre-configured member and
for all other members, which is the worst case scenario for the network, since all members
will need to decode the transaction.

For public transactions, the sender’s address is automatically generated from a seed using
BIP-44 key derivation1. This works by pre-configuring the field fromAddressSeed and then
fetching a wallet from this seed using the derivation path m/44’/60’/<workerIndex>’/0/0,
where workerIndex ranges from 1 to 4 and is unique for each worker. This effectively allows
each worker to have their own sender account, which also prevents eventual nonce issues.

The code that handles processing the seed can be seen in Listing 4.5.

1 let hdwallet = EthereumHDKey.fromMasterSeed(this.ethereumConfig.fromAddressSeed);
2 let wallet = hdwallet.derivePath('m/44\'/60\'/' + this.workerIndex + '\'/0/0').getWallet

();
3 context.fromAddress = wallet.getChecksumAddressString();
4 context.nonces[context.fromAddress] = await this.web3.eth.getTransactionCount(context.

fromAddress);
5 this.web3.eth.accounts.wallet.add(wallet.getPrivateKeyString());

Listing 4.5: From address seed handler

Other than the sender’s address, the only other fields specified are the gas price, gas required,
and chain id. The gas price and chain id are relevant to the network itself and could be fetched
in real time if not specified here, but this would cause transactions to be reordered, possibly
resulting in nonce failures.

The gas required for the contract is estimated using web3 and then added 1000, to ensure
that there’s enough for the operation.

The code that handles sending public transactions can be seen in Listing 4.6.
1https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

4.1. Hyperledger Caliper Quorum connector 43

1 async _sendSingleRequest(request) {
2 const context = this.context;
3 let status = new TxStatus();
4 let params = {from: context.fromAddress};
5 if (request.hasOwnProperty('value') && request.value > 0) {
6 params.value = request.value;
7 }
8 let contractInfo = context.contracts[request.contract];
9 let receipt = null;

10 let methodType = 'send';
11 if (request.readOnly) {
12 methodType = 'call';
13 } else if (context.nonces && (typeof context.nonces[context.fromAddress] !== '

undefined')) {
14 let nonce = context.nonces[context.fromAddress];
15 context.nonces[context.fromAddress] = nonce + 1;
16 params.nonce = nonce;
17 params.gasPrice = context.gasPrice;
18 params.chainId = context.chainId;
19 }
20 const onFailure = (err) => {
21 status.SetStatusFail();
22 logger.error(`Failed tx on ${request.contract}; calling method: ${request.verb};

nonce: ${params.nonce}`);
23 logger.error(err);
24 };
25 const onSuccess = (rec) => {
26 status.SetID(rec.transactionHash);
27 status.SetResult(rec);
28 status.SetVerification(true);
29 status.SetStatusSuccess();
30 };
31 if (request.args) {
32 if (contractInfo.gas && contractInfo.gas[request.verb]) {
33 params.gas = contractInfo.gas[request.verb];
34 } else if (contractInfo.estimateGas) {
35 params.gas = 1000 + await contractInfo.contract.methods[request.verb](...

request.args).estimateGas();
36 }
37 try {
38 receipt = await contractInfo.contract.methods[request.verb](...request.args)[

methodType](params);
39 onSuccess(receipt);
40 } catch (err) {
41 onFailure(err);
42 }
43 } else {
44 if (contractInfo.gas && contractInfo.gas[request.verb]) {
45 params.gas = contractInfo.gas[request.verb];
46 } else if (contractInfo.estimateGas) {
47 params.gas = 1000 + await contractInfo.contract.methods[request.verb].

estimateGas(params);
48 }
49 try {
50 receipt = await contractInfo.contract.methods[request.verb]()[methodType](

params);
51 onSuccess(receipt);
52 } catch (err) {
53 onFailure(err);
54 }
55 }
56 return status;
57 }

Listing 4.6: Send public transaction method

44 Chapter 4. Benchmark implementation

Like in private transactions, if the request fails, the transaction status is marked as a failure;
otherwise it is marked as success.

4.2 System under test

The system under test is a Quorum network that needs to be set up and teared down using
different variables for each test run. To get an initial working setup, the tool quorum-dev-
quickstart was used. This tool is developed by ConsenSys and allows generating a Quorum
network with monitoring tools for either GoQuorum or Hyperledger Besu clients [72]. The
resulting project uses Docker to manage all the services provided and includes shell scripts
to bring the network up and down. The list of services included is:

• Four Quorum validator instances

• Three Quorum member instances

• Three Tessera instances

• One RPC node instance

• One Quorum explorer instance

• One Prometheus instance

• One Grafana instance

• One Loki instance

• One Promtail instance

Loki is a log aggregator system that is configured to store the logs from all the services [73].
Promtail is an agent included in each service instance that sends the logs to Loki [74].
Because logs can be seen directly using the docker logs <container_id> command, these
two services were removed to save computer processing power for the network. The other
services have already been explored in previous chapters and were kept for their intended
purposes.

The generated project also included a set of smart contracts and a distributed app simulating
a pet shop that can be deployed to manually test the network. However, these were also
deleted as they were not needed for the benchmarking project.

To configure the network parameters, a .env file is included, as seen in Listing 4.7.

4.2. System under test 45

1 # This file defines environment variables defaults for Docker-compose
2 # but we also use it for shell scripts as a sourced file
3

4 BESU_VERSION=22.10.3
5 QUORUM_VERSION=22.7.5
6 TESSERA_VERSION=22.10.1
7 ETHSIGNER_VERSION=22.1.3
8 QUORUM_EXPLORER_VERSION=4f60191
9

10 LOCK_FILE=.quorumDevQuickstart.lock
11

12 # GoQuorum consensus algorithm
13 # istanbul, qbft, raft
14 # !!! lower case ONLY here
15 GOQUORUM_CONS_ALGO=qbft
16

17 # Besu consensus algorithm
18 # IBFT, QBFT, CLIQUE
19 # PLEASE NOTE: IBFT used here refers to IBFT2.0 and not IBFT1.0 More information can be

found https://besu.hyperledger.org/en/latest/HowTo/Configure/Consensus-Protocols/IBFT
/

20 # We use IBFT here to keep the API names consistent
21 # !!! upper case ONLY here
22 BESU_CONS_ALGO=QBFT

Listing 4.7: quorum-dev-quickstart initial environment file

This file was adapted by removing unused variables, changing the services’ version to their
latest ones and including a variable that allows configuring the number of nodes in the
network. The final environment file that was used can be seen in Listing

1 # This file defines environment variables defaults for Docker-compose
2 # but we also use it for shell scripts as a sourced file
3

4 QUORUM_VERSION=23.4.0
5 TESSERA_VERSION=23.4.0
6

7 LOCK_FILE=.quorumDevQuickstart.lock
8

9 # GoQuorum consensus algorithm
10 # ibft, qbft, raft, clique
11 # !!! lower case ONLY here
12 GOQUORUM_CONS_ALGO=raft
13 # 7, 12, 17 or 22
14 NODES_NUMBER=7

Listing 4.8: Network environment file

The generated project contains a configuration directory with the necessary data for each
service. This includes the prometheus configuration file, which can be seen in Appendix C,
and also the configuration data for Tessera and Quorum nodes.

Tessera nodes require a JSON file named tessera-config that contains the server’s ports, list
of peers and the paths to the private and public keys it will use. The Tessera configuration
file for the network of seven nodes can be seen in Listing 4.9.

46 Chapter 4. Benchmark implementation

1 {
2 "mode": "${TESSERA_MODE}",
3 "useWhiteList": false,
4 "jdbc": {
5 "username": "sa",
6 "password": "",
7 "url": "jdbc:h2:./data/tm/db;MODE=Oracle;TRACE_LEVEL_SYSTEM_OUT=0",
8 "autoCreateTables": true
9 },

10 "serverConfigs": [
11 {
12 "app": "ThirdParty",
13 "enabled": true,
14 "serverAddress": "http://${HOSTNAME}:9080",
15 "communicationType": "REST"
16 },
17 {
18 "app": "Q2T",
19 "enabled": true,
20 "serverAddress": "http://${HOSTNAME}:9101",
21 "sslConfig": {
22 "tls": "OFF"
23 },
24 "communicationType": "REST"
25 },
26 {
27 "app": "P2P",
28 "enabled": true,
29 "serverAddress": "http://${HOSTNAME}:9000",
30 "sslConfig": {
31 "tls": "OFF"
32 },
33 "communicationType": "REST"
34 }
35],
36 "peer": [
37 {
38 "url": "http://member0tessera:9000"
39 },
40 {
41 "url": "http://member1tessera:9000"
42 },
43 {
44 "url": "http://member2tessera:9000"
45 }
46],
47 "keys": {
48 "passwords": [],
49 "keyData": [
50 {
51 "privateKeyPath": "/config/keys/tessera.key",
52 "publicKeyPath": "/config/keys/tessera.pub"
53 }
54]
55 },
56 "alwaysSendTo": [],
57 "bootstrapNode": false,
58 "features": {
59 "enableRemoteKeyValidation": false,
60 "enablePrivacyEnhancements": true
61 }
62 }

Listing 4.9: Tessera configuration

4.2. System under test 47

For networks with more nodes, the new members’ tessera instances are added to the list of
peers. The hostname is always localhost and the Tessera mode is always tessera.

For Quorum nodes, multiple configuration files are required:

• Genesis JSON file

• Disallowed nodes list

• Permissioned nodes list

• Static nodes list

• Keys

– Account keystore

– Account password

– Account private key

– Account address

– Address

– Private nodekey

– Public nodekey

– Tessera public key

– Tessera private key

The genesis file contains information about the network itself and must be common for all
the Quorum nodes in it. There are multiple network properties that can be configured in
this file, with the relevant ones for this project being the ones mentioned in the previous
chapter. Additionally, this file must also specify the account address list of all the nodes in
the network and their initial balance.

The disallowed nodes list specifies the public nodekeys which can not connect to a given
node, and in this project it is always an empty array. Meanwhile, the permissioned nodes list
specifies which nodes can connect to a given node, and in this project it always includes all
the network’s nodes, thus allowing connections between all of them.

The static nodes list allows the network to discover nodes. An alternative to this would
be to use use bootnodes, which are nodes whose purpose is to discover other nodes in the
network. Because the network in this project is not dynamic, specifying the pre-configured
list of static nodes is faster and provides better benchmark reproducibility.

Then, the list of keys is unique for each node, and they specify all the required information
for each node to work correctly. Validator and RPC nodes do not contain the Tessera keys,
but all other ones must be included.

48 Chapter 4. Benchmark implementation

Each number of nodes and consensus algorithm combination requires a unique genesis file.
However, with the quickstart tool, only data for the network of seven nodes with either Raft,
IBFT, or QBFT are available. To generate Quorum configuration files for all combinations
previously specified, the quorum genesis tool was used [75].

This tool was also developed by ConsenSys, and it allows generating genesis files for a
configurable number of member nodes with Tessera keys, validator nodes, and all Quorum
consensus algorithms. Besides the genesis files, all required keys are also generated for each
node.

To support running all the different configurations by only changing the environment file,
the structure found in Figure 4.1 was created.

4.2. System under test 49

Figure 4.1: Network file structure

50 Chapter 4. Benchmark implementation

Inside the network directory is a folder named common, which contains the docker images
and non-environment specific configuration files. Then, a subfolder was created for each
number of nodes, and inside each of these is the docker-compose file, the Tessera config-
uration file, and four folders, one for each consensus algorithm. The docker-compose file
for a seven-node network can be seen in Appendix E. The files for other networks follow the
exact same format, but with extra member and validator nodes. Then, inside each consensus
algorithm folder are the files generated by the quorum-genesis-tool, with the IP addresses in
the static and permissioned nodes list updated to match the ones of the docker network.

In the network root folder, there is another docker-compose file containing the Grafana,
Prometheus, and pumba services, as well as the docker network configuration, which can be
seen in Appendix D.

The script that starts the network can be seen in Listing 4.10.

1 #!/bin/bash -u
2

3 NO_LOCK_REQUIRED=true
4

5 . ./.env
6 . ./.common.sh
7

8 mkdir -p logs/besu logs/quorum logs/tessera
9

10 echo "docker-compose.yml" > ${LOCK_FILE}
11

12 echo "Start network"
13 echo "--------------------"
14

15 echo "Starting network..."
16 docker compose -f docker-compose.common.yml -f "${NODES_NUMBER}-nodes/docker-compose.yml"

build --pull
17 docker compose -f docker-compose.common.yml -f "${NODES_NUMBER}-nodes/docker-compose.yml"

up --detach
18

19 ./list.sh

Listing 4.10: Start network script

As it can be seen, the environment variables are used to dynamically call the pre-configured
network environment. The same logic is used in the Tessera and GoQuorum node’s Dock-
erfiles, which can be seen in listings 4.11 and 4.12.

4.3. Workload 51

1 ARG QUORUM_VERSION
2 FROM quorumengineering/quorum:${QUORUM_VERSION}
3

4 ARG NODES_NUMBER
5 ARG GOQUORUM_CONS_ALGO
6

7 RUN apk add --no-cache curl
8

9 COPY common/config/goquorum/data data
10 COPY ${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/goQuorum/ data
11 COPY common/config/goquorum/docker-entrypoint.sh /usr/local/bin/
12

13 ENTRYPOINT ["docker-entrypoint.sh"]

Listing 4.11: GoQuorum Dockerfile

1 ARG TESSERA_VERSION
2

3 FROM quorumengineering/tessera:${TESSERA_VERSION}
4

5 ARG NODES_NUMBER
6

7 RUN if [-e /sbin/apk] ; then apk add gettext --no-cache ; else apt-get update && apt-
get install -y gettext && rm -rf /var/lib/apt/lists/* ; fi

8

9 ENV JAVA_OPTS="-Dlogback.configurationFile=/data/logback.xml"
10

11 COPY common/config/tessera/docker-entrypoint.sh /usr/bin/
12 RUN mkdir data
13 COPY ${NODES_NUMBER}-nodes/tessera-config-template.json data/tessera-config-template.json
14

15 ENTRYPOINT ["docker-entrypoint.sh"]

Listing 4.12: Tessera Dockerfile

Using this setup, it is possible to tear down a network and run a new one with a different
consensus algorithm or number of nodes by just altering the properties in the environment
file, which facilitates benchmarking so many variables.

4.3 Workload

As explored in the previous chapter, Hyperledger Caliper’s simple scenario was used as a
workload for the benchmarks. This scenario simulates a small bank where accounts are
open, queried, and transactions between accounts are made.

The smart contracts used for these operations are deployed to the blockchain at the start
of every benchmark run. The solidity code for them can be seen in Listing 4.13.

52 Chapter 4. Benchmark implementation

1 pragma solidity >=0.4.22 <0.6.0;
2

3 contract bank {
4 mapping(string => int) private accounts;
5

6 function open(string memory acc_id, int amount) public {
7 accounts[acc_id] = amount;
8 }
9

10 function query(string memory acc_id) public view returns (int amount) {
11 amount = accounts[acc_id];
12 }
13

14 function transfer(string memory acc_from, string memory acc_to, int amount) public {
15 accounts[acc_from] -= amount;
16 accounts[acc_to] += amount;
17 }
18 }

Listing 4.13: Bank solidity code

As seen, the code is straightforward and thus creates as little overhead as possible on top
of the network.

To automate running all the tests without having to manually change the required variables,
the script in Listing 4.14 was developed.

4.3. Workload 53

1 #!/bin/bash -u
2

3 NETWORK_ENV_FILE='./network/.env'
4 TIMESTAMP=$(date +%s)
5

6 RESULTS_DIR=./results/"$TIMESTAMP"
7

8 mkdir -p "$RESULTS_DIR"
9

10 for NODES_NUMBER in 7 12 17 22; do
11 sed -i 's/NODES_NUMBER=.*/NODES_NUMBER='$NODES_NUMBER'/' $NETWORK_ENV_FILE
12 for CONSENSUS_ALGO in raft clique ibft qbft; do
13 sed -i 's/GOQUORUM_CONS_ALGO=.*/GOQUORUM_CONS_ALGO='$CONSENSUS_ALGO'/'

$NETWORK_ENV_FILE
14 for TYPE in public private; do
15 for TPS in 50 100 200 300; do
16 cd ./network || exit 1
17 ./run.sh
18 cd ..
19 sleep 90 # wait for network to init
20 sed -i 's/tps:.*/tps: '$TPS'/' ./caliper/benchmarks/scenario/bank-"$TYPE"/config.

yaml
21 echo "Executing benchmark with $NODES_NUMBER, $CONSENSUS_ALGO, $TPS, $TYPE"
22

23 cd ./caliper || exit 1
24 if [["$TYPE" = "public"]]; then
25 npm run launch-bank-public
26 else
27 npm run launch-bank-private-"$NODES_NUMBER"-nodes
28 fi
29

30 cd ..
31 sleep 5
32 cp ./caliper/report.html "$RESULTS_DIR"/report-$CONSENSUS_ALGO-$NODES_NUMBER-

$TYPE-$TPS.html
33 cd ./network || exit 1
34 ./remove.sh
35 cd ..
36 echo "Benchmark ran successfully"
37 done
38 done
39 done
40 done

Listing 4.14: Script to run all benchmarks

The script is essentially four nested for loops, iterating over every possible combination of
number of nodes, consensus algorithm, type of transaction, and transaction per second. The
network is restarted before every benchmark, and the script waits 90 seconds before each
run to ensure every node is up and running. The 90-second sleep time was chosen despite
the network tending to be ready in a few seconds to be safe and avoid having to re-run
benchmarks.

Each benchmark run generates a report HTML file containing all the data collected. To
avoid overwriting previous runs, a folder with the timestamp of when the run was started
is also created, and the report files are stored inside it. The name of each file is the four
variables appended to facilitate collecting the results after.

54 Chapter 4. Benchmark implementation

The script was run with and without Pumba enabled to compare results between networks
where some validators were being brought offline at random and ones where the validators
were online during the whole test.

All the source code is available in GitHub [76].

55

Chapter 5

Benchmarks and interpretation

This chapter presents the method used to evaluate the results obtained. Then, the hypothe-
ses are defined, the approach to the evaluation is detailed, and then the results obtained are
presented and explored.

The goals, metrics and methodology used to benchmark the system have been explored in
chapter 3.

5.1 Hypotheses

To evaluate if the goals previously defined were met, the following hypotheses were specified
for each research question:

• Q1:

– Hypothesis 1 (HA0): The consensus algorithm used influences performance

– Hypothesis 0 (HA1): The consensus algorithm used does not influence perfor-
mance

• Q2:

– Hypothesis 1 (HB1): The consensus algorithm used influences fault-tolerance

– Hypothesis 0 (HB0): The consensus algorithm used does not influence fault-
tolerance

5.2 Approach

A Quorum network was developed and stress-tested while being monitored to collect relevant
data.

To ensure the hypotheses are verified correctly, data was collected while tweaking different
variables individually, and each test ran multiple times to ensure data consistency and avoid
outliers.

56 Chapter 5. Benchmarks and interpretation

Additionally, to ensure relevancy when validating the hypothesis, a data point for a consensus
mechanism is only considered better or worse than another if there is a 5% difference between
them.

5.3 Results

This section presents the results after running the benchmarks previously described.

For all consensus algorithms, private transactions are expected to have a lower throughput
than public ones due to the overhead of Tessera encrypting and decrypting messages. Net-
works with a lower number of nodes are also expected to outperform ones with a higher
number, due to spending less time propagating transactions across the network. The key
points of comparison, thus, are how each consensus algorithm compares with each other
under the same network scenarios.

Results will then first be presented for each consensus algorithm, to analyze how each one
scales and how private transactions compare to public ones. Then, the different consensus
algorithms will be compared with each other for the same scenarios.

5.3.1 Raft

This subsection will present the results obtained for the Raft consensus algorithm for both
performance and fault-tolerance.

Performance

Figures 5.1, 5.2, and 5.3 show the throughput results for Raft, for all numbers of nodes
with public and private transactions. The results are divided into the different operations
benchmarked: open, query, and transfer.

Figure 5.1: Raft open throughput

5.3. Results 57

Figure 5.2: Raft query throughput

Figure 5.3: Raft transfer throughput

In all operations and for both privacy configurations, until 100 TPS, all network configura-
tions using Raft managed to reach near the maximum throughput of 100. With 200 and
300 TPS, however, the throughput varies greatly across configurations.

Public networks managed to achieve roughly the same throughput regardless of the number
of nodes in the network, with 283 for both open and transfer, and 300 for query.

With private transactions, however, a higher number of nodes consistently resulted in lower
throughput.

For open, the throughput on the 7-node network is on par with the public ones on 200
TPS, but sees a slight decrease at 300 TPS. For query, the throughput is slightly lower

58 Chapter 5. Benchmarks and interpretation

than the public ones across the board, but never decreasing too much, and for transfer the
throughput is exactly on par with the public ones.

With 12 nodes, the throughput of open until 200 TPS is also on par with the public networks,
but it decreases greatly at 300 TPS, to only 200. For query, the results are the same as the
7-node private network until 200 TPS, but the throughput dips to 253 at 300 TPS. For the
transfer operation, results were again on par until 200 TPS, but fell to 254 at 300 TPS.

The 17 and 22-node networks showed a much lower throughput at 200 TPS, which plateaued
until 300 TPS, with the 17-node network reaching only 145 and the 22-node one 100
processed transactions per second. For query and transfer, the 17-node one managed to
achieve the same throughput as the rest at 200 TPS, but fell greatly at 300 TPS. Meanwhile,
the 22-node one already fell short at 200 TPS, then plateauing until 300 TPS.

Results for latency can be seen in Figures 5.4, 5.5, and 5.6.

Figure 5.4: Raft open latency

5.3. Results 59

Figure 5.5: Raft query latency

Figure 5.6: Raft transfer latency

For public transactions latency stays consistently low, around 1s for open and transfer, and
0s for query. However, with private transactions, the results vary more.

The 7-node private network manages latency numbers comparable to the public ones across
all operations.

With 12 nodes, the latency stays at 1s up to 100 transactions per second, increasing to
round 2.5s with 300 transactions per second. For the query and transfer operations, latency
stays at 1s across all TPS configurations.

With 17 nodes, the latency for open is noticeably worse at 200 TPS, with an average of
5.3s, which increases to 7.9s with 300 TPS, an increase of 49% in this step. For the query

60 Chapter 5. Benchmarks and interpretation

and transfer latency stays low up until 200 TPS, only increasing to 4.3 and 3.8 seconds,
respectively, at 300 TPS.

With 22 nodes, for the open operation, the latency still manages to stay low at 50 TPS, but
immediately increases to 4s at 100 TPS, 8s at 200 TPS, and 9.51s at 300 TPS. For query
and transfer, the latency stays low up to 100 TPS, only increasing at 200 TPS and 300
TPS, thus further confirming the overhead that the open transaction has over the others.

Results show that the throughput of the open operation is much lower than the query
or transfer ones. Additionally, and as expected, public transactions achieve much greater
performance than private ones, with the latter seeing their processing power plateauing at a
certain number of nodes and transactions per second.

Figures 5.7, 5.8, and 5.9 show the CPU usage for Raft across all operations.

Figure 5.7: Raft open CPU usage

5.3. Results 61

Figure 5.8: Raft query CPU usage

Figure 5.9: Raft transfer CPU usage

As it can be observed, Raft’s CPU usage is very low across the board, reaching a maximum
of 4.6% on the network with 7-nodes using public transactions. In all operations, CPU
usage increases slightly as the number of transactions per second increases, but only by a
few percentage points. There is no clear correlation found between the number of nodes or
transaction type and CPU usage.

Results for RAM usage can be found in Figures 5.10, 5.11, and 5.12.

62 Chapter 5. Benchmarks and interpretation

Figure 5.10: Raft open RAM usage

Figure 5.11: Raft query RAM usage

5.3. Results 63

Figure 5.12: Raft transfer RAM usage

In all operations, RAM usage increases as the number of transactions per second also in-
creases. For the 17 and 22-node private networks, the jump in RAM usage at 200 and 300
TPS is particularly high, jumping from under 1Gb of RAM to more than double. All other
scenarios saw incremental increases in RAM usage but not as steep.

It can also be observed that private networks have higher RAM usage than public ones. In a
production scenario, this effect is aggravated by the fact that Tessera instances are required
for these types of networks, and they also have a relatively high RAM usage.

Read operations saw a consistent higher RAM usage than write ones, which can be explained
by the fact that nodes can answer reads at much faster speed, thus keeping more information
in memory at a given time.

Fault-tolerance

Without introducing validator failures with pumba, Raft never had failures on public trans-
actions, and only saw failures with private ones in the scenarios found in Table 5.1.

64 Chapter 5. Benchmarks and interpretation

Table 5.1: Raft transaction errors without chaos testing

Scenario Number of failures out of 5000
12-node, 300 TPS, open 3
17-node, 200 TPS, open 819
17-node, 300 TPS, open 923
17-node, 300 TPS, query 299
17-node, 300 TPS, transfer 153
22-node, 100 TPS, open 64
22-node, 200 TPS, open 2821
22-node, 200 TPS, query 684
22-node, 200 TPS, transfer 624
22-node, 300 TPS, open 2837
22-node, 300 TPS, query 1006
22-node, 300 TPS, transfer 988

By introducing random 10 second latency to validator nodes, once again there were no
failures in public transactions, and the results for private ones can be found in Table 5.2.

Table 5.2: Raft transaction errors with chaos testing

Scenario Number of failures out of 5000
12-node, 300 TPS, open 3
17-node, 200 TPS, open 806
17-node, 300 TPS, open 988
17-node, 300 TPS, query 260
17-node, 300 TPS, transfer 201
22-node, 100 TPS, open 64
22-node, 200 TPS, open 2634
22-node, 200 TPS, query 645
22-node, 200 TPS, transfer 542
22-node, 300 TPS, open 2649
22-node, 300 TPS, query 920
22-node, 300 TPS, transfer 854

Analysing at the results, there is no noticeable difference in the number transaction failures,
and throughput and latency were also not affected by this change in any benchmarked
scenario, leading to the conclusion that validators being disabled did not affect the error
rate of transactions, nor its general performance.

5.3.2 Clique

This subsection will present the results obtained for the Clique consensus algorithm for both
performance and fault-tolerance.

5.3. Results 65

Performance

Figure 5.13 shows the throughput results for the open transaction with Clique, for all numbers
of nodes with public and private transactions.

Figure 5.13: Clique open throughput

Until 100 TPS, all network configurations using Clique reached roughly the same throughput
for open, varying between 84.4 and 87.1. With 200 and 300 TPS, however, the throughput
varied greatly across configurations.

Public transactions achieved a higher throughput than private ones across the board for the
same number of nodes. The 7 and 12-node public configurations outperformed the rest
under all TPS configurations, as expected. However, the 17 and 22-node public networks,
despite outperforming all the private ones up until 200 TPS, had their throughput plateau
past this at just 164.0 and 170.6 on 300 TPS, respectively. This caused them to have a
lower throughput than the 7-node private network at 300 TPS.

Analyzing the private transactions, the 7-node network outperformed the rest, which was
also expected. The 12 and 17-node networks performed near identically across the board,
with the 12-node one being slightly having slightly more throughput. Then, the 22-node
network performed the worse, only reaching 104.7 throughput.

The throughput results for the query operation can be seen in Figure 5.14.

66 Chapter 5. Benchmarks and interpretation

Figure 5.14: Clique query throughput

As it can be seen, all public network configurations achieved the maximum possible result
across all scenarios.

With private transactions, all network configurations performed similarly until 200 TPS,
always being at a difference lower than 4 transactions per second. At 300 TPS, the 7-node
network manages to increase its throughput to 189.1, but the rest are unable to scale and
continue processing at the same rate.

For the transfer operation, results can be seen in Figure 5.15.

Figure 5.15: Clique transfer throughput

These are similar to the ones obtained in the open operation, with all the public networks
outperforming the rest except at 300 TPS, where the 7-node private scenario achieves a

5.3. Results 67

higher throughput than the 22-node public one.

These results also showcase some inconsistency with Clique, as the 12 and 17-node public
networks managed to achieve a higher throughput than the 7-node public one, which was
unexpected.

Private networks all achieve roughly the same results until 200 TPS, with the 7-node scenario
then achieving a throughput of 183.1 at 300 TPS, whereas the rest remained flat with results
between 136.1 and 139.4 at the same TPS.

Results for latency can be seen in Figures 5.16, 5.17, and 5.18.

Figure 5.16: Clique open latency

Figure 5.17: Clique query latency

68 Chapter 5. Benchmarks and interpretation

Figure 5.18: Clique transfer latency

With public transactions latency starts at 6.5 seconds and increases up to 13 seconds at
300 TPS for open and transfer, and is always 0 for query.

With private transactions, the results are similar to the public ones for open and transfer.
For open, all node configurations start at 6.5 seconds and reach 15.15 seconds on the 22-
node network. This network is also an outlier by consistently having more latency than the
rest across all TPS.

For transfer, latency starts at 6.5 for all configurations, and reaches 10.46 seconds at worse,
also on the 22-node network. Unexpectedly, for transfer, the latency results are worse with
public transactions than they with for private ones.

For query, results with private transactions are as expected, with the latency increasing as
the number of nodes in the network increases. The latency for the 22-node network is once
again particularly high, reaching 12.78 seconds at 300 TPS.

Figures 5.19, 5.20, and 5.21 show the CPU usage for Clique across all operations.

5.3. Results 69

Figure 5.19: Clique open CPU usage

Figure 5.20: Clique query CPU usage

70 Chapter 5. Benchmarks and interpretation

Figure 5.21: Clique transfer CPU usage

For open, CPU usage starts at 2 to 3% for all network configurations, and tends to increase
as the number of transactions increases, peaking at around the 5% mark. Despite this
tendency, there are some exceptions due to unusual peaks, like the 7-node private network
reaching 8.6% at 200 TPS. The outlier is the 7-node public network which reached 17.35%
CPU usage at 200 TPS and 22.21% at 300 TPS. This is partly explained because in
networks with fewer nodes, each node will have to process more transactions, resulting in
increased resource usage.

For query, CPU usage for public networks was consistently low, between 0.1 and 0.28%.

In private networks, results were as expected: CPU usage increased with the number of
TPS, and networks with fewer nodes saw consistently higher CPU usage. This correlation
is somewhat inconsistent until 100 TPS, but becomes noticeable at 200 and 300 TPS.

The transfer operation saw CPU usage increase as TPS increased, and generally networks
with less number of nodes again saw higher CPU usage than ones with less, although again
there were some exceptions.

Results for RAM usage can be found in Figures 5.22, 5.23, and 5.24.

5.3. Results 71

Figure 5.22: Clique open RAM usage

Figure 5.23: Clique query RAM usage

72 Chapter 5. Benchmarks and interpretation

Figure 5.24: Clique transfer RAM usage

In all operations, once again RAM usage increases with the number of transactions per
second. For the 17 and 22-node private networks, the jump in RAM usage at 200 and 300
TPS is particularly high, jumping from under 1Gb of RAM to more than double. All other
scenarios saw incremental increases in RAM usage but not as steep. The 7-node network
had consistently higher RAM usage until 200 TPS.

RAM usage was roughly the same across all operations with private transactions being used.
On public ones, however, the query operation saw less RAM usage than the other two.

Fault-tolerance

Without introducing validator failures with pumba, Clique never had failures on public trans-
actions.

With with private transaction, failures were found in the scenarios shown in Table 5.3.

Table 5.3: Clique transaction errors without chaos testing

Scenario Number of failures out of 5000
17-node, 200 TPS, open 638
17-node, 300 TPS, open 269
22-node, 100 TPS, open 2
22-node, 200 TPS, open 2956
22-node, 200 TPS, query 669
22-node, 200 TPS, transfer 146
22-node, 300 TPS, open 3003
22-node, 300 TPS, query 742
22-node, 300 TPS, transfer 142

5.3. Results 73

Using pumba, once again there were only failures with private transactions, as shown in
Table5.4.

Table 5.4: Clique transaction errors with chaos testing

Scenario Number of failures out of 5000
17-node, 200 TPS, open 847
17-node, 300 TPS, open 808
22-node, 100 TPS, open 16
22-node, 200 TPS, open 2884
22-node, 200 TPS, query 1
22-node, 200 TPS, transfer 505
22-node, 300 TPS, open 2843
22-node, 300 TPS, query 324
22-node, 300 TPS, transfer 912

There is no noticeable difference in the number of transaction failures, and throughput
and latency were also not affected by this change in any benchmarked scenario. As such,
introducing chaos testing did not affect the error rate of transactions nor the network’s
performance.

5.3.3 IBFT

This subsection will present the results obtained for the IBFT 1.0 consensus algorithm for
both performance and fault-tolerance.

Performance

Figures 5.25, 5.26, and 5.27 show the throughput results for IBFT, for all numbers of nodes
with public and private transactions. The results are divided into the different operations
benchmarked.

Figure 5.25: IBFT open throughput

74 Chapter 5. Benchmarks and interpretation

Figure 5.26: IBFT query throughput

Figure 5.27: IBFT transfer throughput

In all operations, public transactions achieve a higher throughput than private ones, with
results for public transactions showing similar throughput for all numbers of nodes.

With private transactions, in all operations, all networks achieve the same throughput until
100 TPS. Past that, results vary and in every scenario, networks with fewer nodes achieved
a higher throughput than the rest.

Results for latency can be seen in Figures 5.28, 5.29, and 5.30.

5.3. Results 75

Figure 5.28: IBFT open latency

Figure 5.29: IBFT query latency

76 Chapter 5. Benchmarks and interpretation

Figure 5.30: IBFT transfer latency

For open, latency is relatively similar for all network configurations, varying between 5 and
5.8 seconds. The exceptions are 17 and 22-node private networks, where the former jumps
to 11.9 and 12.28 seconds past 200 TPS, and the latter to 9.10, 11.98, and 12.17 at 100,
200, and 300 TPS, respectively.

For query, all public networks have no latency. Private ones all have similar latency, ranging
between 5 and 5.3 seconds, with the exception of the 22-node network, which jumps to 9.87
and 10.90 seconds at 200 and 300 TPS, respectively.

For transfer, all network configurations had latency ranging between 5 and 5.32 seconds.
The exception, once again, was the 22-node network, which benchmarked 9.87 seconds at
200 TPS and 10.90 seconds at 300 TPS.

Figures 5.31, 5.32, and 5.33 show the CPU usage for IBFT across all operations.

5.3. Results 77

Figure 5.31: IBFT open CPU usage

Figure 5.32: IBFT query CPU usage

78 Chapter 5. Benchmarks and interpretation

Figure 5.33: IBFT transfer CPU usage

For open, under 100 TPS all networks have roughly the same CPU usage, ranging between
1 and 4.3%. After that, although results varied across configurations, there was no clear
advantage for either privacy setting, nor for any configuration of number-of-nodes. CPU
usage was at maximum 11%, and it generally increased with the number of TPS.

For query, CPU usage was very low for public transactions, never passing 0.35%. Using
private transactions, there was also no observable relationship between CPU usage and the
number of nodes in the network, and CPU usage never surpassed 10%. RAM usage increased
with the number of TPS, but seemed to stabilize past 200 TPS.

In transfer it was verified that CPU usage increased with the number of TPS for all network
types, except for the 22-node private network, which always stayed around 5% past 100
TPS. Public networks saw lower CPU usage until 200 TPS, but all peaked to values higher
than their private counterparts at 300 TPS. There was no observable relationship between
the number of nodes in the network and the CPU usage.

Results for RAM usage can be found in Figures 5.34, 5.35, and 5.36.

5.3. Results 79

Figure 5.34: IBFT open RAM usage

Figure 5.35: IBFT query RAM usage

80 Chapter 5. Benchmarks and interpretation

Figure 5.36: IBFT transfer RAM usage

All operations saw roughly the same RAM usage.

Private transactions had a higher RAM consumption than the public ones on all operations,
as the latter never passed 1Gb, whereas the former reached past that on all operations and
network configurations.

Whereas on public transactions networks with more nodes used less RAM per node overall.
On private networks this was not the case, as different network configurations had higher or
less RAM usages on different TPS and operations.

Fault-tolerance

Without introducing validator failures with pumba, IBFT also never had failures on public
transactions. Failures using private transaction can be found in Table 5.5.

Table 5.5: IBFT transaction errors without chaos testing

Scenario Number of failures out of 5000
17-node, 200 TPS, open 824
17-node, 300 TPS, open 866
22-node, 100 TPS, open 234
22-node, 200 TPS, open 3083
22-node, 200 TPS, query 491
22-node, 200 TPS, transfer 697
22-node, 300 TPS, open 3142
22-node, 300 TPS, query 663
22-node, 300 TPS, transfer 718

Using pumba, no differences were found for public networks, and the failures for private ones
can be found in Table 5.6.

5.3. Results 81

Table 5.6: IBFT transaction errors with chaos testing

Scenario Number of failures out of 5000
17-node, 200 TPS, open 919
17-node, 300 TPS, open 808
22-node, 100 TPS, open 330
22-node, 200 TPS, open 3092
22-node, 200 TPS, query 190
22-node, 200 TPS, transfer 863
22-node, 300 TPS, open 3136
22-node, 300 TPS, query 727
22-node, 300 TPS, transfer 1034

Once again, there is no noticeable difference in the number transaction failures, and through-
put and latency were also not affected by this change in any benchmarked scenario. As such,
the chaos testing approach did not affect the error rate of transactions nor the general per-
formance in networks using IBFT.

5.3.4 QBFT

This subsection will present the results obtained for the QBFT consensus algorithm for both
performance and fault-tolerance.

Performance

Figures 5.37, 5.38, and 5.39 show the throughput results for QBFT, for all numbers of nodes
with public and private transactions. The results are divided into the different operations
benchmarked.

Figure 5.37: QBFT open throughput

82 Chapter 5. Benchmarks and interpretation

Figure 5.38: QBFT query throughput

Figure 5.39: QBFT transfer throughput

Public transactions also achieve a higher throughput than private ones in all operations
with QBFT. All public network configurations achieve similar throughput for all numbers of
nodes, peaking at around 220 for open, 300 for query, and 230 for transfer.

With private transactions, in all operations, all networks achieve the same throughput until
100 TPS. Past that, results vary and in every scenario, networks with fewer nodes achieved
a higher throughput than the rest.

The outlier here is the 22-node network, whose throughput decreased to just 50 on 200 and
300 TPS.

Results for latency can be seen in Figures 5.40, 5.41, and 5.42.

5.3. Results 83

Figure 5.40: QBFT open latency

Figure 5.41: QBFT query latency

84 Chapter 5. Benchmarks and interpretation

Figure 5.42: QBFT transfer latency

For open, latency is relatively similar for all network configurations, varying between 4.3 and
5 seconds. The exceptions are 17 and 22-node private networks, where the former jumps to
12.79 and 16.09 seconds past 200 TPS, and the latter to 8.72, 19.45, and 18.90 seconds
at 100, 200, and 300 TPS, respectively.

For the query operation, all public networks have no latency. Private ones all have similar
latency, ranging between 4.78 and 5.85 seconds, with the exception of the 22-node network,
which jumps to 10.05 and 10.93 seconds at 200 and 300 TPS, respectively.

For transfer, all network configurations had similar latency across all TPS, ranging between
4.70 and 6.28 seconds. The exception was again the 22-node network, which had 10.49
seconds at 200 TPS and 11.35 seconds at 300 TPS.

Figures 5.43, 5.44, and 5.45 show the CPU usage for QBFT across all operations.

5.3. Results 85

Figure 5.43: QBFT open CPU usage

Figure 5.44: QBFT query CPU usage

86 Chapter 5. Benchmarks and interpretation

Figure 5.45: QBFT transfer CPU usage

For open, CPU usage generally increased as the number of TPS increased. There was
no clear advantage of public or private transactions here, nor the number of nodes in the
network. CPU usage was at maximum 6.7%.

For query, CPU usage was very low for public transactions, never passing 0.3%. With private
transactions, there was no observable relationship between CPU usage and the number of
nodes in the network, and CPU usage never passed 11%.

In transfer, it was verified that CPU usage increased with the number of TPS for all network
types, except for the 22-node private network, which always stayed under 5%. This, however,
can be explained by its very high latency in this operation, as previously observed. CPU usage
was higher in this operation, reaching 20% in the 7 and 12-node private networks.

Results for RAM usage can be found in Figures 5.46, 5.47, and 5.48.

5.3. Results 87

Figure 5.46: QBFT open RAM usage

Figure 5.47: QBFT query RAM usage

88 Chapter 5. Benchmarks and interpretation

Figure 5.48: QBFT transfer RAM usage

For the open operation, RAM usage for all network configurations ranged between 279MB
and 784Mb, increasing with the number of TPS. The outliers are the 7 and 17-node private
networks, where the former saw consistently higher RAM usage across all TPS, and the
latter had a peak of 1260MB at 200 TPS.

For query, RAM usage again grew with the number of TPS. Public transactions saw less
RAM usage than private ones across all configurations, never reaching past 720MB. With
private transactions, the 22-node private network saw by far the highest peak, using more
than 2GB of RAM at 300 TPS.

Fault-tolerance

Without introducing validator failures with pumba, QBFT never had failures on public trans-
actions, and only saw failures with private transactions in the scenarios found in Table 5.7.

Table 5.7: QBFT transaction errors without chaos testing

Scenario Number of failures out of 5000
17-node, 200 TPS, open 972
17-node, 300 TPS, open 1109
22-node, 100 TPS, open 226
22-node, 200 TPS, open 2920
22-node, 200 TPS, query 494
22-node, 200 TPS, transfer 751
22-node, 300 TPS, open 3061
22-node, 300 TPS, query 878
22-node, 300 TPS, transfer 760

Using chaos testing, there were no changes in public transactions, and the results for private
ones can be seen in Table 5.8.

5.3. Results 89

Table 5.8: QBFT transaction errors with chaos testing

Scenario Number of failures out of 5000
17-node, 200 TPS, open 771
17-node, 300 TPS, open 807
22-node, 100 TPS, open 37
22-node, 200 TPS, open 3070
22-node, 200 TPS, query 782
22-node, 200 TPS, transfer 667
22-node, 300 TPS, open 2998
22-node, 300 TPS, query 1022
22-node, 300 TPS, transfer 1218

As can be seen there is no noticeable difference in the number transaction failures. Perfor-
mance was also not affected, as throughput and latency remained consistent with the other
results.

5.3.5 Comparison

With the results collected above, the various consensus algorithms can be compared to each
other on the different scenarios benchmarked.

For public transactions, Raft was the clear winner across all performance metrics, having
reached near perfect throughput for all node-number configurations and operations. Fig-
ure 5.49 shows the comparison of throughput for open, which was the less performant
operation for all consensus algorithms.

Figure 5.49: Public transaction throughput comparison for open

Raft also achieved the lowest latency in these transactions, never passing 1.1 seconds.
Figure 5.50 shows the comparison of latency for open to illustrate this.

90 Chapter 5. Benchmarks and interpretation

Figure 5.50: Public transaction latency comparison for open

Resource usage was also the lowest for this algorithm, with the average CPU usage never
passing 5% and average RAM usage never passing 681MB.

Clique was the worst performer, having had the highest resource usage, while also having
the lowest throughput.

IBFT and QBFT essentially tied for performance in all benchmarks for public transactions.

Regarding private transactions, which is where most of Quorum’s added functionality is,
and thus better representative of Quorum’s real-world use cases, Raft was again the winner
in performance, having also beaten the rest in all benchmarks. To illustrate this for both
write and read operations, Figure 5.51 shows the comparison of throughput for open and
Figure 5.52 shows the comparison of throughput for query.

5.3. Results 91

Figure 5.51: Private transaction throughput comparison for open

Figure 5.52: Private transaction throughput comparison for query

Clique was once again the worst performer despite having a throughput and latency compa-
rable to IBFT and QBFT, as it used considerably more resources than the rest. Table 5.9
shows the average CPU usage for Clique, IBFT and QBFT, and Table 5.10 shows the same
data for RAM usage.

92 Chapter 5. Benchmarks and interpretation

Table 5.9: Average CPU usage for Clique, IBFT, and QBFT

Algorithm Operation Avg CPU usage across all private transaction runs
Clique open 3.8%
IBFT open 4.8%
QBFT open 2.5%
Clique query 7.27%
IBFT query 5.52%
QBFT query 5.75%
Clique transfer 8.27%
IBFT transfer 5.58%
QBFT transfer 5.38%

Table 5.10: Average RAM usage for Clique, IBFT, and QBFT

Algorithm Operation Avg RAM usage across all private transaction runs
Clique open 1376MB
IBFT open 856MB
QBFT open 715MB
Clique query 1544MB
IBFT query 905MB
QBFT query 908MB
Clique transfer 1604MB
IBFT transfer 943MB
QBFT transfer 975MB

As it can be seen, despite Clique having used less CPU on average than IBFT for the
open operation, it registered a higher CPU usage on all other operations and it required
considerably more RAM across all operations.

Between IBFT and QBFT, once again these had very similar performances across all bench-
marks. QBFT had worse throughput in write operations on the 17 and 22-node networks,
but given the number of transaction failures in these scenarios, their significance is decreased.
The algorithms also had very similar resource usage across all scenarios.

For fault tolerance, with private transactions, as observed, all consensus algorithms fail under
the same scenarios, being unable to scale past 17-nodes without having a very high number
of transaction failures, making them not viable at this scale. Introducing chaos testing had
no effect on either of the consensus algorithms, and the number of failures was consistent
across all of them, with none having a clear advantage over the rest based on the benchmarks
done.

Based on the results found, for Q1, the hypothesis 1 (HA1) was verified, as the choice of
consensus algorithm dramatically affected performance in networks for all scenarios. For Q2,
under the scenarios tested, no difference was found between consensus algorithms for fault-
tolerance, which negates hypothesis 1 (HB1) and consequently confirms the null hypothesis
(HB0).

93

Chapter 6

Conclusion

This chapter presents a summary of the work done, analyzing the results achieved, short-
comings and limitations, as well as future improvements. Finally, a personal appreciation of
the project is done.

6.1 Overview

Based on the results obtained, Raft is the most performant consensus algorithm. This result
is not surprising, as Raft does not offer byzantine fault tolerance and thus can focus solely on
achieving higher throughput while offering only crash fault tolerance and immediate finality.

Regarding fault-tolerance, with the scenarios tested, no difference was found between con-
sensus algorithms. However, since IBFT and QBFT provide theoretical byzantine fault-
tolerance, and QBFT was introduced as a replacement for IBFT in order to fix previously
identified issues with the latter that caused network deadlocks, QBFT should still be the
better choice in this metric, although these properties were not tested in this body of work.

Since QBFT achieved the same performance as IBFT across all metrics, there is no reason
to use IBFT over QBFT, as the new algorithm fixes the aforementioned issues without
compromising performance.

None of the consensus algorithms in GoQuorum scaled past 17 nodes under private transac-
tions. However, benchmarks were for the worst possible scenario, and thus implementations
where most transactions are only shared across a few members might be able to scale past
this number.

Analyzing use cases for each consensus algorithm, Raft is more appropriate for scenarios
where performance is important and the network administrators can trust every party in
the network to not be compromised. For scenarios where it can not be guaranteed that
validators will always act benevolently, or where security is more important than raw perfor-
mance, QBFT should be the algorithm chosen, as it provides a good compromise between
performance and byzantine fault-tolerance.

For development purposes, both QBFT and Raft perform fast enough with a low number
of nodes with relatively low resource usage for a development machine, and thus whichever
algorithm is chosen for production should be the one chosen for development and testing.
This will also ensure that quirks in the configurations of each algorithm are caught before
reaching production.

94 Chapter 6. Conclusion

6.2 Goals achieved

The goal of obtaining empirical data on how each GoQuorum’s consensus algorithm performs
under the same scenarios was achieved. The strategy chosen to test fault-tolerance did not
find differences across consensus algorithms, as the chaos testing solution used was not
enough to affect the networks. Nevertheless, it was proven that when high availability is
used for validators, GoQuorum networks can handle validator crashes without compromising
performance, regardless of the consensus algorithm employed.

As such, this work has provided concrete data on how each consensus algorithm compares
under different scenarios and for different operations, which can help interested parties inform
their decision when deciding whether to adopt these technologies.

6.3 Threats to validity

Some issues and threats have been identified in the development of this project that could
impact the results obtained.

First, the benchmarks were run in a single machine, which is the best case scenario for
communication between distributed nodes. Results then might not fully apply and vary a lot
in a scenario where nodes are distributed across different machines, particularly in different
regions of the globe, which can be a real use case for big enterprises.

Finally, all metrics collected came from the version 0.5 of Hyperledger Caliper, and thus
results have a hard dependency on this implementation. If this tool is found to have bugs in
its data collection logic, then the results obtained will be compromised.

6.4 Future work

As mentioned in the introductory chapter, this work does not explore the security implication
of each consensus algorithm outside their theoretical byzantine fault tolerance. Since this
metric is increasingly important, especially for enterprises, a body of work exploring this
subject is also in the community’s interest.

Regarding fault-tolerance, the strategy employed did not trigger failures in the network due
to the high number of validators used, and it did not test how quickly these can recover
after crashing on each consensus algorithm. As such, it can be worthwhile to further explore
this topic by testing different scenarios where validator nodes are crashed but allowed to
instantly recover. Another evolution on this topic would be to evaluate exactly when and
how each of these consensus algorithms can fail, in order to understand the true minimum
resource requirements for each.

Additionally, the results showed that the consensus algorithms failed to scale past 17 nodes
at 200 TPS or higher. However, it did not test the maximum number of transactions per
second that the 7 or 12-node networks can handle before failing, and thus it did not fully
cover the scalability of GoQuorum. With that said, this would be a very extensive body of
work and its eventual benefits are unclear, since real-world scenarios can have very different
transactions which can have different benchmark results, as it was observed in the difference
between the open and query operations.

6.5. Personal appreciation 95

6.5 Personal appreciation

The development of this work has been a very compelling and worthwhile experience for
the author, as it granted the opportunity to learn about and explore the state of the art in
blockchain technology. It has, then, been a very enriching personal project, full of learning
and exploration of new and interesting topics.

97

Bibliography

[1] Deloitte’s 2021 Global Blockchain Survey, [Online; accessed 19. Feb. 2023], Feb.
2023. [Online]. Available: https://www2.deloitte.com/us/en/insights/topics/
understanding-blockchain-potential/global-blockchain-survey.html.

[2] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, [Online; accessed 29.
Apr. 2023], Mar. 2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf.

[3] Key Challenges to the Enterprise Blockchain Technology Market (and Solutions) |
LinkedIn, [Online; accessed 21. May 2023], May 2023. [Online]. Available: https:
/ / www . linkedin . com / pulse / key - challenges - enterprise - blockchain -
technology-market-singh.

[4] V. Buterin, “Ethereum: A Next-Generation Smart Contract and Decentralized Appli-
cation Platform.,” en, 2014.

[5] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee, Performance Evaluation of the
Quorum Blockchain Platform, en, arXiv:1809.03421 [cs], Jul. 2018. [Online]. Avail-
able: http://arxiv.org/abs/1809.03421 (visited on 02/04/2023).

[6] B. Dimitrov, “How Strong Enterprise Interest In 2020 Is Pushing Blockchain Tech-
nology Further,” Forbes, Feb. 2020. [Online]. Available: https://www.forbes.com/
sites/biserdimitrov/2020/02/03/how-is-strong-enterprise-interest-in-
2020-pushing-blockchain-technology-further/?sh=1c360798139d.

[7] Enterprise Blockchain Platforms - Current State and Development. [Online; accessed
19. Feb. 2023], Nov. 2022. [Online]. Available: https://limechain.tech/blog/
enterprise-blockchain-platforms.

[8] A. Garcia, “IBM is betting big on blockchain technology. Is it worth the risk?” CN-
NMoney, Sep. 2018. [Online]. Available: https://money.cnn.com/2018/09/06/
technology/ibm-blockchain-gamble/index.html.

[9] W. Henry and L. Pawczuk, “Blockchain: Ready for business,” Deloitte Insights, Jan.
2023. [Online]. Available: https://www2.deloitte.com/us/en/insights/focus/
tech-trends/2022/blockchain-trends.html.

[10] J. Swift, “The 2023 Forbes Blockchain 50 Reveals Top Enterprises Continuing To In-
vest In Future Blockchain Innovations,” Forbes, Feb. 2023. [Online]. Available: https:
/ / www . forbes . com / sites / forbes - spotlights / 2023 / 02 / 07 / the - 2023 -
forbes-blockchain-50-reveals-top-enterprises-continuing-to-invest-
in-future-blockchain-innovations/?sh=54c68620477e.

[11] D. A. Disparte, “Why Enterprise Blockchain Projects Fail,” Forbes, May 2019. [Online].
Available: https://www.forbes.com/sites/dantedisparte/2019/05/20/why-
enterprise-blockchain-projects-fail/?sh=d85d5e04b96b.

[12] Corda, [Online; accessed 29. Apr. 2023], Apr. 2023. [Online]. Available: https://r3.
com/products/corda.

[13] Hyperledger, Fabric, [Online; accessed 29. Apr. 2023], Apr. 2023. [Online]. Available:
https://github.com/hyperledger/fabric.

98 Bibliography

[14] ConsenSys, ConsenSys Quorum | ConsenSys, [Online; accessed 29. Apr. 2023], Apr.
2023. [Online]. Available: https://consensys.net/quorum.

[15] 101 Blockchains, “Top Blockchain Platforms and Enterprise Solutions to Choose
From,” 101 Blockchains, Aug. 2022. [Online]. Available: https://101blockchains.
com/blockchain-platforms.

[16] J. Polge, J. Robert, and Y. Le Traon, “Permissioned blockchain frameworks in the
industry: A comparison,” en, ICT Express, vol. 7, no. 2, pp. 229–233, Jun. 2021,
issn: 24059595. doi: 10.1016/j.icte.2020.09.002. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S2405959520301909 (visited on
10/05/2022).

[17] Hyperledger, The Ordering Service — hyperledger-fabricdocs main documentation,
[Online; accessed 15. Apr. 2023], Apr. 2023. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html.

[18] R3, Consensus, [Online; accessed 15. Apr. 2023], Jan. 2023. [Online]. Available:
https://docs.r3.com/en/platform/corda/4.10/enterprise/key-concepts-
consensus.html#summary.

[19] Configuring a JPA notary backend, [Online; accessed 15. Apr. 2023], Apr. 2020. [On-
line]. Available: https://docs.r3.com/en/platform/corda/4.8/enterprise/
notary/installing-jpa.html.

[20] Setting up a notary service, [Online; accessed 15. Apr. 2023], Apr. 2020. [Online].
Available: https://docs.r3.com/en/platform/corda/4.10/enterprise/
notary/running-a-notary.html#crash-fault-tolerant-experimental.

[21] Comparing PoA consensus protocols - GoQuorum - latest. [Online]. Available: https:
//consensys.net/docs/goquorum/en/latest/concepts/consensus/comparing-
poa/ (visited on 11/01/2022).

[22] M. Nelson, What is ConsenSys Quorum? | ConsenSys, [Online; accessed 26. Feb.
2023], Jun. 2021. [Online]. Available: https://consensys.net/blog/quorum/
what-is-consensys-quorum.

[23] M. Leising, JPMorgan Sells Quorum Blockchain Unit, Takes Stake in ConsenSys,
[Online; accessed 26. Feb. 2023], Aug. 2020. [Online]. Available: https://news.
bloomberglaw . com / payroll / jpmorgan - sells - quorum - blockchain - unit -
takes-stake-in-consensys?context=article-related.

[24] ConsenSys, ConsenSys/quorum, original-date: 2016-11-14T05:42:57Z, Feb. 2023.
[Online]. Available: https://github.com/ConsenSys/quorum (visited on 02/15/2023).

[25] Introduction to smart contracts, en. [Online]. Available: https://ethereum.org
(visited on 10/30/2022).

[26] Proof-of-work (PoW), en. [Online]. Available: https://ethereum.org (visited on
11/01/2022).

[27] D. Li, W. E. Wong, and J. Guo, “A Survey on Blockchain for Enterprise Using Hy-
perledger Fabric and Composer,” in 2019 6th International Conference on Dependable
Systems and Their Applications (DSA), Jan. 2020, pp. 71–80. doi: 10.1109/DSA.
2019.00017.

[28] Proof-of-stake (PoS), en. [Online]. Available: https://ethereum.org (visited on
02/05/2023).

[29] Architecture - GoQuorum - latest. [Online]. Available: https://consensys.net/
docs/goquorum/en/latest/concepts/architecture/ (visited on 11/01/2022).

[30] Patricia Merkle Trees, en. [Online]. Available: https://ethereum.org (visited on
11/01/2022).

Bibliography 99

[31] ConsenSys, quorum, [Online; accessed 29. Apr. 2023], Apr. 2023. [Online]. Available:
https://github.com/ConsenSys/quorum.

[32] Hyperledger, besu, [Online; accessed 29. Apr. 2023], Apr. 2023. [Online]. Available:
https://github.com/hyperledger/besu.

[33] Privacy - GoQuorum - latest. [Online]. Available: https://consensys.net/docs/
goquorum//en/latest/concepts/privacy/#enclave (visited on 01/29/2023).

[34] Tessera Private Transaction Manager. [Online]. Available: https://docs.tessera.
consensys.net/en/stable/ (visited on 01/29/2023).

[35] Private transaction lifecycle - GoQuorum - latest. [Online]. Available: https : / /
consensys . net / docs / goquorum / en / latest / concepts / privacy / private -
transaction-lifecycle/ (visited on 01/29/2023).

[36] Permissioning - GoQuorum - latest. [Online]. Available: https://consensys.net/
docs / goquorum / /en / latest / concepts / permissions - overview/ (visited on
02/04/2023).

[37] Basic permissioning - GoQuorum - latest. [Online]. Available: https://consensys.
net/docs/goquorum//en/latest/configure-and-manage/configure/permissioning/
basic-permissions/ (visited on 02/04/2023).

[38] Enhanced permissions | ConsenSys GoQuorum, en, Feb. 2023. [Online]. Available:
https://docs.goquorum.consensys.net/configure-and-manage/manage/
enhanced-permissions/ (visited on 02/06/2023).

[39] What is Proof of Authority? [Online; accessed 9. Jun. 2023], Dec. 2019. [Online].
Available: https://www.coinhouse.com/what-is-proof-of-authority.

[40] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,”
en, p. 18, 2014. [Online]. Available: https://raft.github.io/raft.pdf.

[41] J. Clow and Z. Jiang, “A byzantine fault tolerant raft,” en, 2017.
[42] Péter Szilágyi, EIP-225: Clique proof-of-authority consensus protocol, en, Mar. 2017.

[Online]. Available: https : / / eips . ethereum . org / EIPS / eip - 225 (visited on
02/05/2023).

[43] Clique - Hyperledger Besu. [Online]. Available: https://besu.hyperledger.org/
en/stable/private-networks/how-to/configure/consensus/clique/#extra-
data (visited on 02/07/2023).

[44] Scaling Consensus for Enterprise: Explaining the IBFT Algorithm, en. [Online]. Avail-
able: https://consensys.net/blog/enterprise-blockchain/scaling-consensus-
for-enterprise-explaining-the-ibft-algorithm/ (visited on 02/07/2023).

[45] ConsenSys, Another day, another consensus algorithm. why ibft 2.0? en, Feb. 2019.
[Online]. Available: https://consensys.net/blog/news/another-day-another-
consensus-algorithm-why-ibft-2-0/ (visited on 02/09/2023).

[46] H. Moniz, The Istanbul BFT Consensus Algorithm, en, arXiv:2002.03613 [cs], May
2020. [Online]. Available: http://arxiv.org/abs/2002.03613 (visited on 02/08/2023).

[47] R. Saltini and D. Hyland-Wood, Correctness Analysis of IBFT, en, arXiv:1901.07160
[cs], Aug. 2019. [Online]. Available: http://arxiv.org/abs/1901.07160 (visited
on 02/08/2023).

[48] Qbft consensys goquorum, en, Feb. 2023. [Online]. Available: https://docs.goquorum.
consensys.net/configure-and-manage/configure/consensus-protocols/
qbft/ (visited on 02/10/2023).

[49] A. Garreta, How to reach consensus with strangers, en, Nov. 2022. [Online]. Avail-
able: https://medium.com/nethermind-eth/how-to-reach-consensus-with-
strangers-9b57264afd65 (visited on 02/10/2023).

100 Bibliography

[50] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Stud-
ies in Software Engineering,” Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering, vol. 17, Jun. 2008.

[51] Google Trends, [Online; accessed 17. May 2023], May 2023. [Online]. Available:
https://trends.google.com/trends/explore?date=2015-04-17%202023-
05-17&q=permissioned,private%20blockchain&hl=en-GB.

[52] Aaron Blankstein, Blockchains and Consensus Protocols: Liveness and Correctness
are Inseparable, [Online; accessed 14. Jun. 2023], 2018. [Online]. Available: https:
//blog.blockstack.org/blockchains-and-consensus-protocols-liveness-
and-correctness-are-inseparable.

[53] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, Blockbench:
A framework for analyzing private blockchains, Mar. 2017. arXiv: 1703 . 04057v1
[cs.DB]. [Online]. Available: http://arxiv.org/abs/1703.04057v1;%20http:
//arxiv.org/pdf/1703.04057v1.

[54] Hyperledger caliper architecture, [Online; accessed 17. Feb. 2023], Aug. 2022. [On-
line]. Available: https://hyperledger.github.io/caliper/v0.5.0/architecture/
#birds-eye-view.

[55] Installing and Running Caliper, [Online; accessed 17. Feb. 2023], Aug. 2022. [Online].
Available: https://hyperledger.github.io/caliper/v0.5.0/installing-
caliper.

[56] M. Mazzoni, Caliper, [Online; accessed 17. Feb. 2023], Feb. 2023. [Online]. Available:
https://github.com/MarcoMazzoni/caliper.

[57] Andreas Krueger, chainhammer, [Online; accessed 11. Jun. 2023], Jun. 2023. [Online].
Available: https://github.com/drandreaskrueger/chainhammer.

[58] B. Nasrulin, M. De Vos, G. Ishmaev, and J. Pouwelse, “Gromit: Benchmarking the Per-
formance and Scalability of Blockchain Systems,” arXiv, Aug. 2022. doi: 10.48550/
arXiv.2208.11254. eprint: 2208.11254.

[59] D. Saingre, T. Ledoux, and J.-M. Menaud, “BCTMark: a framework for benchmarking
blockchain technologies,” IEEE, pp. 1–8, Nov. 2020. doi: 10.1109/AICCSA50499.
2020.9316536.

[60] Diablo Blockchain Benchmark Suite, [Online; accessed 11. Jun. 2023], Oct. 2022.
[Online]. Available: https://diablobench.github.io.

[61] Writing Connectors, [Online; accessed 24. May 2023], Aug. 2022. [Online]. Available:
https://hyperledger.github.io/caliper/v0.5.0/writing-connectors.

[62] V. R. Basili and D. M. Weiss, “A methodology for collecting valid software engineering
data,” IEEE Transactions on Software Engineering, vol. SE-10, no. 6, pp. 728–738,
1984. doi: 10.1109/TSE.1984.5010301.

[63] Hyperledger, Hyperledger Blockchain Performance Metrics White Paper Hyperledger
Foundation, [Online; accessed 27. May 2023], May 2023. [Online]. Available: https:
/ / www . hyperledger . org / learn / publications / blockchain - performance -
metrics.

[64] T. Mull, “Measuring the Performance Impact of TLS Encryption Using TPC-C,”
Yugabyte, Feb. 2021. [Online]. Available: https : / / www . yugabyte . com / blog /
measuring-the-performance-impact-of-tls-encryption-using-tpcc.

[65] Ethereum, [Online; accessed 30. May 2023], Aug. 2022. [Online]. Available: https:
//hyperledger.github.io/caliper/v0.5.0/ethereum-config.

[66] caliper-benchmarks, [Online; accessed 31. May 2023], May 2023. [Online]. Available:
https://github.com/hyperledger/caliper-benchmarks.

Bibliography 101

[67] Prometheus, Prometheus - Monitoring system & time series database, [Online; ac-
cessed 17. Jun. 2023], Jun. 2023. [Online]. Available: https://prometheus.io.

[68] Grafana: The open observability platform | Grafana Labs, [Online; accessed 17. Jun.
2023], Jun. 2023. [Online]. Available: https://grafana.com.

[69] Use metrics | ConsenSys GoQuorum, [Online; accessed 1. Jun. 2023], Jun. 2023.
[Online]. Available: https://docs.goquorum.consensys.net/configure-and-
manage/monitor/metrics.

[70] Monitors and Observers, [Online; accessed 1. Jun. 2023], Aug. 2022. [Online]. Avail-
able: https://hyperledger.github.io/caliper/v0.4.2/caliper-monitors/
#resource.

[71] Tutorial: Migrate from web3js-eea - Documentation, [Online; accessed 8. Jun. 2023],
Apr. 2022. [Online]. Available: %7Bhttps : / / consensys . github . io / web3js -
quorum/latest/tutorial-Migrate%20from%20web3js-eea.html%7D.

[72] quorum-dev-quickstart, [Online; accessed 18. Jun. 2023], Jun. 2023. [Online]. Avail-
able: https://github.com/ConsenSys/quorum-dev-quickstart.

[73] Grafana Loki OSS | Log aggregation system, [Online; accessed 18. Jun. 2023], Jun.
2023. [Online]. Available: https://grafana.com/oss/loki.

[74] Promtail | Grafana Loki documentation, [Online; accessed 18. Jun. 2023], Jun. 2023.
[Online]. Available: https://grafana.com/docs/loki/latest/clients/promtail.

[75] quorum-genesis-tool, [Online; accessed 18. Jun. 2023], Jun. 2023. [Online]. Available:
https://github.com/ConsenSys/quorum-genesis-tool.

[76] João Lopes, quorum-benchmark, [Online; accessed 21. Jun. 2023], Jun. 2023. [On-
line]. Available: https://github.com/joao-asc-lopes/quorum-benchmark.

[77] hyperledger/caliper: A blockchain benchmark framework to measure performance of
multiple blockchain solutions https://wiki.hyperledger.org/display/caliper, [Online; ac-
cessed 29. Jun. 2023], Jun. 2023. [Online]. Available: https : / / github . com /
hyperledger/caliper/blob/main/packages/caliper-ethereum/lib/ethereum-
connector.js.

103

Appendix A

Project plan

To facilitate the project’s management, it is important to have a good overview of the
project’s phases, their sequence and estimated effort. To achieve this, the Gantt chart in A.1
was created, detailing the expected project’s phases and their time estimation. Highlighted
tasks represent main tasks, while the non-highlighted ones represent subtasks of the first
main task above them.

Table A.1: Project plan

Task Start End Duration
Literature review 11/2022 02/2023 3 months
Informal reading on the topic 1 month
Systematic mapping study 2 months
Evaluation definition 11/2022 01/2023 2 months
Define research hypothesis 2 weeks
Define evaluation methodology 2 months
Value analysis 01/2022 02/2023 2 months
Investigate benchmarking frameworks for Quorum 02/2023 02/2023 2 weeks
Design methodology for algorithm benchmarking 03/2023 04/2023 1 month
Implement system to benchmark algorithms 04/2023 05/2023 1 month
Analyse results and draw conclusions from benchmarks 05/2023 06/2023 1 month
Evaluate results based on the previous definition 06/2023 06/2023 2 weeks
Dissertation writing 11/2022 06/2023 8 months

105

Appendix B

Hyperledger Caliper Ethereum
connector

1 'use strict';
2

3 const EthereumHDKey = require('ethereumjs-wallet/hdkey');
4 const Web3 = require('web3');
5 const EEAClient = require('web3-eea');
6 const {ConnectorBase, CaliperUtils, ConfigUtil, TxStatus} = require('@hyperledger/caliper

-core');
7

8 const logger = CaliperUtils.getLogger('ethereum-connector');
9

10 /**
11 * @typedef {Object} EthereumInvoke
12 *
13 * @property {string} contract Required. The name of the smart contract
14 * @property {string} verb Required. The name of the smart contract function
15 * @property {string} args Required. Arguments of the smart contract function in the

order in which they are defined
16 * @property {boolean} readOnly Optional. If method to call is a view.
17 */
18

19 /**
20 * Extends {BlockchainConnector} for a web3 Ethereum backend.
21 */
22 class EthereumConnector extends ConnectorBase {
23

24 /**
25 * Create a new instance of the {Ethereum} class.
26 * @param {number} workerIndex The zero-based index of the worker who wants to create

an adapter instance. -1 for the manager process.
27 * @param {string} bcType The target SUT type
28 */
29 constructor(workerIndex, bcType) {
30 super(workerIndex, bcType);
31

32 let configPath = CaliperUtils.resolvePath(ConfigUtil.get(ConfigUtil.keys.
NetworkConfig));

33 let ethereumConfig = require(configPath).ethereum;
34

35 // throws on configuration error
36 this.checkConfig(ethereumConfig);
37

38 this.ethereumConfig = ethereumConfig;

106 Appendix B. Hyperledger Caliper Ethereum connector

39 this.web3 = new Web3(this.ethereumConfig.url);
40 if (this.ethereumConfig.privacy) {
41 this.web3eea = new EEAClient(this.web3, ethereumConfig.chainId);
42 }
43 this.web3.transactionConfirmationBlocks = this.ethereumConfig.

transactionConfirmationBlocks;
44 this.workerIndex = workerIndex;
45 this.context = undefined;
46 }
47

48 /**
49 * Check the ethereum networkconfig file for errors, throw if invalid
50 * @param {object} ethereumConfig The ethereum networkconfig to check.
51 */
52 checkConfig(ethereumConfig) {
53 if (!ethereumConfig.url) {
54 throw new Error(
55 'No URL given to access the Ethereum SUT. Please check your network

configuration. ' +
56 'Please see https://hyperledger.github.io/caliper/v0.3/ethereum-config/

for more info.'
57);
58 }
59

60 if (ethereumConfig.url.toLowerCase().indexOf('http') === 0) {
61 throw new Error(
62 'Ethereum benchmarks must not use http(s) RPC connections, as there is no

way to guarantee the ' +
63 'order of submitted transactions when using other transports. For more

information, please see ' +
64 'https://github.com/hyperledger/caliper/issues/776#issuecomment-624771622

'
65);
66 }
67

68 //TODO: add validation logic for the rest of the configuration object
69 }
70

71 /**
72 * Initialize the {Ethereum} object.
73 * @param {boolean} workerInit Indicates whether the initialization happens in the

worker process.
74 * @return {object} Promise<boolean> True if the account got unlocked successful

otherwise false.
75 */
76 init(workerInit) {
77 if (this.ethereumConfig.contractDeployerAddressPrivateKey) {
78 this.web3.eth.accounts.wallet.add(this.ethereumConfig.

contractDeployerAddressPrivateKey);
79 } else if (this.ethereumConfig.contractDeployerAddressPassword) {
80 return this.web3.eth.personal.unlockAccount(this.ethereumConfig.

contractDeployerAddress, this.ethereumConfig.contractDeployerAddressPassword, 1000);
81 }
82 }
83

84 /**
85 * Deploy smart contracts specified in the network configuration file.
86 * @return {object} Promise execution for all the contract creations.
87 */

Appendix B. Hyperledger Caliper Ethereum connector 107

88 async installSmartContract() {
89 let promises = [];
90 let self = this;
91 logger.info('Creating contracts...');
92 for (const key of Object.keys(this.ethereumConfig.contracts)) {
93 const contract = this.ethereumConfig.contracts[key];
94 const contractData = require(CaliperUtils.resolvePath(contract.path)); //

TODO remove path property
95 const contractGas = contract.gas;
96 const estimateGas = contract.estimateGas;
97 let privacy;
98 if (this.ethereumConfig.privacy) {
99 privacy = this.ethereumConfig.privacy[contract.private];

100 }
101

102 this.ethereumConfig.contracts[key].abi = contractData.abi;
103 promises.push(new Promise(async function(resolve, reject) {
104 let contractInstance;
105 try {
106 if (privacy) {
107 contractInstance = await self.deployPrivateContract(contractData,

privacy);
108 logger.info(`Deployed private contract ${contractData.name} at ${

contractInstance.options.address}`);
109 } else {
110 contractInstance = await self.deployContract(contractData);
111 logger.info(`Deployed contract ${contractData.name} at ${

contractInstance.options.address}`);
112 }
113 } catch (err) {
114 reject(err);
115 }
116 self.ethereumConfig.contracts[key].address = contractInstance.options.

address;
117 self.ethereumConfig.contracts[key].gas = contractGas;
118 self.ethereumConfig.contracts[key].estimateGas = estimateGas;
119 resolve(contractInstance);
120 }));
121 }
122 return Promise.all(promises);
123 }
124

125 /**
126 * Return the Ethereum context associated with the given callback module name.
127 * @param {Number} roundIndex The zero-based round index of the test.
128 * @param {object} args worker arguments.
129 * @return {object} The assembled Ethereum context.
130 * @async
131 */
132 async getContext(roundIndex, args) {
133 let context = {
134 chainId: 1,
135 clientIndex: this.workerIndex,
136 gasPrice: 0,
137 contracts: {},
138 nonces: {},
139 web3: this.web3
140 };
141

108 Appendix B. Hyperledger Caliper Ethereum connector

142 context.gasPrice = this.ethereumConfig.gasPrice !== undefined
143 ? this.ethereumConfig.gasPrice
144 : await this.web3.eth.getGasPrice();
145

146 context.chainId = this.ethereumConfig.chainId !== undefined
147 ? this.ethereumConfig.chainId
148 : await this.web3.eth.getChainId();
149

150 for (const key of Object.keys(args.contracts)) {
151 context.contracts[key] = {
152 contract: new this.web3.eth.Contract(args.contracts[key].abi, args.

contracts[key].address),
153 gas: args.contracts[key].gas,
154 estimateGas: args.contracts[key].estimateGas
155 };
156 }
157

158 if (this.ethereumConfig.fromAddress) {
159 context.fromAddress = this.ethereumConfig.fromAddress;
160 }
161

162 if (this.ethereumConfig.contractDeployerAddress) {
163 context.contractDeployerAddress = this.ethereumConfig.contractDeployerAddress

;
164 context.contractDeployerAddressPrivateKey = this.ethereumConfig.

contractDeployerAddressPrivateKey;
165 }
166

167 if (this.ethereumConfig.fromAddressSeed) {
168 let hdwallet = EthereumHDKey.fromMasterSeed(this.ethereumConfig.

fromAddressSeed);
169 let wallet = hdwallet.derivePath('m/44\'/60\'/' + this.workerIndex + '\'/0/0'

).getWallet();
170 context.fromAddress = wallet.getChecksumAddressString();
171 context.nonces[context.fromAddress] = await this.web3.eth.getTransactionCount

(context.fromAddress);
172 this.web3.eth.accounts.wallet.add(wallet.getPrivateKeyString());
173 } else if (this.ethereumConfig.fromAddressPrivateKey) {
174 context.nonces[this.ethereumConfig.fromAddress] = await this.web3.eth.

getTransactionCount(this.ethereumConfig.fromAddress);
175 this.web3.eth.accounts.wallet.add(this.ethereumConfig.fromAddressPrivateKey);
176 } else if (this.ethereumConfig.fromAddressPassword) {
177 await context.web3.eth.personal.unlockAccount(this.ethereumConfig.fromAddress

, this.ethereumConfig.fromAddressPassword, 1000);
178 }
179

180 if (this.ethereumConfig.privacy) {
181 context.web3eea = this.web3eea;
182 context.privacy = this.ethereumConfig.privacy;
183 }
184

185 this.context = context;
186 return context;
187 }
188

189 /**
190 * Release the given Ethereum context.
191 * @async
192 */

Appendix B. Hyperledger Caliper Ethereum connector 109

193 async releaseContext() {
194 // nothing to do
195 }
196

197 /**
198 * Submit a transaction to the ethereum context.
199 * @param {EthereumInvoke} request Methods call data.
200 * @return {Promise<TxStatus>} Result and stats of the transaction invocation.
201 */
202 async _sendSingleRequest(request) {
203 if (request.privacy) {
204 return this._sendSinglePrivateRequest(request);
205 }
206

207 const context = this.context;
208 let status = new TxStatus();
209 let params = {from: context.fromAddress};
210 if (request.hasOwnProperty('value') && request.value > 0) {
211 params.value = request.value;
212 }
213 let contractInfo = context.contracts[request.contract];
214

215 let receipt = null;
216 let methodType = 'send';
217 if (request.readOnly) {
218 methodType = 'call';
219 } else if (context.nonces && (typeof context.nonces[context.fromAddress] !== '

undefined')) {
220 let nonce = context.nonces[context.fromAddress];
221 context.nonces[context.fromAddress] = nonce + 1;
222 params.nonce = nonce;
223

224 // leaving these values unset causes web3 to fetch gasPrice and
225 // chainId on the fly. This can cause transactions to be
226 // reordered, which in turn causes nonce failures
227 params.gasPrice = context.gasPrice;
228 params.chainId = context.chainId;
229 }
230

231 const onFailure = (err) => {
232 status.SetStatusFail();
233 logger.error(`Failed tx on ${request.contract}; calling method: ${request.

verb}; nonce: ${params.nonce}`);
234 logger.error(err);
235 };
236

237 const onSuccess = (rec) => {
238 status.SetID(rec.transactionHash);
239 status.SetResult(rec);
240 status.SetVerification(true);
241 status.SetStatusSuccess();
242 };
243

244 if (request.args) {
245 if (contractInfo.gas && contractInfo.gas[request.verb]) {
246 params.gas = contractInfo.gas[request.verb];
247 } else if (contractInfo.estimateGas) {
248 params.gas = 1000 + await contractInfo.contract.methods[request.verb](...

request.args).estimateGas();

110 Appendix B. Hyperledger Caliper Ethereum connector

249 }
250

251 try {
252 receipt = await contractInfo.contract.methods[request.verb](...request.

args)[methodType](params);
253 onSuccess(receipt);
254 } catch (err) {
255 onFailure(err);
256 }
257 } else {
258 if (contractInfo.gas && contractInfo.gas[request.verb]) {
259 params.gas = contractInfo.gas[request.verb];
260 } else if (contractInfo.estimateGas) {
261 params.gas = 1000 + await contractInfo.contract.methods[request.verb].

estimateGas(params);
262 }
263

264 try {
265 receipt = await contractInfo.contract.methods[request.verb]()[methodType

](params);
266 onSuccess(receipt);
267 } catch (err) {
268 onFailure(err);
269 }
270 }
271

272 return status;
273 }
274

275 /**
276 * Submit a private transaction to the ethereum context.
277 * @param {EthereumInvoke} request Methods call data.
278 * @return {Promise<TxStatus>} Result and stats of the transaction invocation.
279 */
280 async _sendSinglePrivateRequest(request) {
281 const context = this.context;
282 const web3eea = context.web3eea;
283 const contractInfo = context.contracts[request.contract];
284 const privacy = request.privacy;
285 const sender = privacy.sender;
286

287 const status = new TxStatus();
288

289 const onFailure = (err) => {
290 status.SetStatusFail();
291 logger.error(`Failed private tx on ${request.contract}; calling method: ${

request.verb}; private nonce: ` + 0);
292 logger.error(err);
293 };
294

295 const onSuccess = (rec) => {
296 status.SetID(rec.transactionHash);
297 status.SetResult(rec);
298 status.SetVerification(true);
299 status.SetStatusSuccess();
300 };
301

302 let payload;
303 if (request.args) {

Appendix B. Hyperledger Caliper Ethereum connector 111

304 payload = contractInfo.contract.methods[request.verb](...request.args).
encodeABI();

305 } else {
306 payload = contractInfo.contract.methods[request.verb]().encodeABI();
307 }
308

309 const transaction = {
310 to: contractInfo.contract._address,
311 data: payload
312 };
313

314 try {
315 if (request.readOnly) {
316 transaction.privacyGroupId = await this.resolvePrivacyGroup(privacy);
317

318 const value = await web3eea.priv.call(transaction);
319 onSuccess(value);
320 } else {
321 transaction.nonce = sender.nonce;
322 transaction.privateKey = sender.privateKey.substring(2);
323 this.setPrivateTransactionParticipants(transaction, privacy);
324

325 const txHash = await web3eea.eea.sendRawTransaction(transaction);
326 const rcpt = await web3eea.priv.getTransactionReceipt(txHash, transaction

.privateFrom);
327 if (rcpt.status === '0x1') {
328 onSuccess(rcpt);
329 } else {
330 onFailure(rcpt);
331 }
332 }
333 } catch(err) {
334 onFailure(err);
335 }
336

337 return status;
338 }
339

340

341 /**
342 * Deploys a new contract using the given web3 instance
343 * @param {JSON} contractData Contract data with abi, bytecode and gas properties
344 * @returns {Promise<web3.eth.Contract>} The deployed contract instance
345 */
346 async deployContract(contractData) {
347 const web3 = this.web3;
348 const contractDeployerAddress = this.ethereumConfig.contractDeployerAddress;
349 const contract = new web3.eth.Contract(contractData.abi);
350 const contractDeploy = contract.deploy({
351 data: contractData.bytecode
352 });
353

354 try {
355 return contractDeploy.send({
356 from: contractDeployerAddress,
357 gas: contractData.gas
358 });
359 } catch (err) {
360 throw(err);

112 Appendix B. Hyperledger Caliper Ethereum connector

361 }
362 }
363

364 /**
365 * Deploys a new contract using the given web3 instance
366 * @param {JSON} contractData Contract data with abi, bytecode and gas properties
367 * @param {JSON} privacy Privacy options
368 * @returns {Promise<web3.eth.Contract>} The deployed contract instance
369 */
370 async deployPrivateContract(contractData, privacy) {
371 const web3 = this.web3;
372 const web3eea = this.web3eea;
373 // Using randomly generated account to deploy private contract to avoid public/

private nonce issues
374 const deployerAccount = web3.eth.accounts.create();
375

376 const transaction = {
377 data: contractData.bytecode,
378 nonce: deployerAccount.nonce,
379 privateKey: deployerAccount.privateKey.substring(2), // web3js-eea doesn't

not accept private keys prefixed by '0x'
380 };
381

382 this.setPrivateTransactionParticipants(transaction, privacy);
383

384 try {
385 const txHash = await web3eea.eea.sendRawTransaction(transaction);
386 const txRcpt = await web3eea.priv.getTransactionReceipt(txHash, transaction.

privateFrom);
387

388 if (txRcpt.status === '0x1') {
389 return new web3.eth.Contract(contractData.abi, txRcpt.contractAddress);
390 } else {
391 const msg = `Failed private transaction hash ${txHash}`;
392 logger.error(msg);
393 throw new Error(msg);
394 }
395 } catch (err) {
396 logger.error('Error deploying private contract: ', JSON.stringify(err));
397 throw(err);
398 }
399 }
400

401 /**
402 * It passes deployed contracts addresses to all workers (only known after deploy

contract)
403 * @param {Number} number of workers to prepare
404 * @returns {Array} worker args
405 * @async
406 */
407 async prepareWorkerArguments(number) {
408 let result = [];
409 for (let i = 0 ; i<= number ; i++) {
410 result[i] = {contracts: this.ethereumConfig.contracts};
411 }
412 return result;
413 }
414

415 /**

Appendix B. Hyperledger Caliper Ethereum connector 113

416 * Returns the privacy group id depending on the privacy mode being used
417 * @param {JSON} privacy Privacy options
418 * @returns {Promise<string>} The privacyGroupId
419 */
420 async resolvePrivacyGroup(privacy) {
421 const web3eea = this.context.web3eea;
422

423 switch(privacy.groupType) {
424 case 'legacy': {
425 const privGroups = await web3eea.priv.findPrivacyGroup({addresses: [

privacy.privateFrom, ...privacy.privateFor]});
426 if (privGroups.length > 0) {
427 return privGroups.filter(function(el) {
428 return el.type === 'LEGACY';
429 })[0].privacyGroupId;
430 } else {
431 throw new Error('There are multiple legacy privacy groups with same

members. Can\'t resolve privacyGroupId.');
432 }
433 }
434 case 'pantheon':
435 case 'onchain': {
436 return privacy.privacyGroupId;
437 } default: {
438 throw new Error('Invalid privacy type');
439 }
440 }
441 }
442

443 /**
444 * Set the participants of a privacy transaction depending on the privacy mode being

used
445 * @param {JSON} transaction Object representing the transaction fields
446 * @param {JSON} privacy Privacy options
447 */
448 setPrivateTransactionParticipants(transaction, privacy) {
449 switch(privacy.groupType) {
450 case 'legacy': {
451 transaction.privateFrom = privacy.privateFrom;
452 transaction.privateFor = privacy.privateFor;
453 break;
454 }
455 case 'pantheon':
456 case 'onchain': {
457 transaction.privateFrom = privacy.privateFrom;
458 transaction.privacyGroupId = privacy.privacyGroupId;
459 break;
460 } default: {
461 throw new Error('Invalid privacy type');
462 }
463 }
464 }
465 }
466

467 module.exports = EthereumConnector;

Listing B.1: Caliper Ethereum connector [77]

115

Appendix C

Prometheus configuration

1 global:
2 scrape_interval: 15s
3 evaluation_interval: 15s
4

5 alerting:
6 rule_files:
7 scrape_configs:
8 - job_name: validator1
9 scrape_interval: 15s

10 scrape_timeout: 10s
11 metrics_path: /debug/metrics/prometheus
12 scheme: http
13 static_configs:
14 - targets: [validator1:9545]
15

16 - job_name: validator2
17 scrape_interval: 15s
18 scrape_timeout: 10s
19 metrics_path: /debug/metrics/prometheus
20 scheme: http
21 static_configs:
22 - targets: [validator2:9545]
23

24 - job_name: validator3
25 scrape_interval: 15s
26 scrape_timeout: 10s
27 metrics_path: /debug/metrics/prometheus
28 scheme: http
29 static_configs:
30 - targets: [validator3:9545]
31

32 - job_name: validator4
33 scrape_interval: 15s
34 scrape_timeout: 10s
35 metrics_path: /debug/metrics/prometheus
36 scheme: http
37 static_configs:
38 - targets: [validator4:9545]
39

40 - job_name: rpcnode
41 scrape_interval: 15s
42 scrape_timeout: 10s
43 metrics_path: /debug/metrics/prometheus
44 scheme: http
45 static_configs:

116 Appendix C. Prometheus configuration

46 - targets: [rpcnode:9545]
47

48 - job_name: newnode
49 scrape_interval: 15s
50 scrape_timeout: 10s
51 metrics_path: /debug/metrics/prometheus
52 scheme: http
53 static_configs:
54 - targets: [newnode:9545]
55

56 - job_name: member1quorum
57 scrape_interval: 15s
58 scrape_timeout: 10s
59 metrics_path: /debug/metrics/prometheus
60 scheme: http
61 static_configs:
62 - targets: [member1quorum:9545]
63

64 - job_name: member2quorum
65 scrape_interval: 15s
66 scrape_timeout: 10s
67 metrics_path: /debug/metrics/prometheus
68 scheme: http
69 static_configs:
70 - targets: [member2quorum:9545]
71

72 - job_name: member3quorum
73 scrape_interval: 15s
74 scrape_timeout: 10s
75 metrics_path: /debug/metrics/prometheus
76 scheme: http
77 static_configs:
78 - targets: [member3quorum:9545]
79

80 - job_name: member1tessera
81 scrape_interval: 15s
82 scrape_timeout: 10s
83 metrics_path: /metrics
84 scheme: http
85 static_configs:
86 - targets: [member1tessera:9000]
87

88 - job_name: member2tessera
89 scrape_interval: 15s
90 scrape_timeout: 10s
91 metrics_path: /metrics
92 scheme: http
93 static_configs:
94 - targets: [member2tessera:9000]
95

96 - job_name: member3tessera
97 scrape_interval: 15s
98 scrape_timeout: 10s
99 metrics_path: /metrics

100 scheme: http
101 static_configs:
102 - targets: [member3tessera:9000]
103

Listing C.1: Prometheus configuration

117

Appendix D

Base docker compose file

1 ---
2 version: '3.6'
3

4 services:
5 prometheus:
6 image: "prom/prometheus"
7 volumes:
8 - ./common/config/prometheus/prometheus.yml:/etc/prometheus/prometheus.yml
9 - prometheus:/prometheus

10 command:
11 - --config.file=/etc/prometheus/prometheus.yml
12 ports:
13 - 9090:9090/tcp
14 networks:
15 quorum-benchmark:
16 ipv4_address: 172.16.239.32
17

18 grafana:
19 image: "grafana/grafana"
20 environment:
21 - GF_AUTH_ANONYMOUS_ENABLED=true
22 - GF_USERS_VIEWERS_CAN_EDIT=true
23 volumes:
24 - ./common/config/grafana/provisioning/:/etc/grafana/provisioning/
25 - grafana:/var/lib/grafana
26 ports:
27 - 3000:3000/tcp
28 networks:
29 quorum-benchmark:
30 ipv4_address: 172.16.239.33
31

32 chaos-delay:
33 image: gaiaadm/pumba
34 volumes:
35 - /var/run/docker.sock:/var/run/docker.sock
36 command: "--log-level debug --interval 20s --random netem --tc-image gaiadocker/

iproute2 --duration 10s delay re2:^network-validator"
37

38 networks:
39 quorum-benchmark:
40 name: quorum-benchmark
41 driver: bridge
42 ipam:
43 driver: default
44 config:

118 Appendix D. Base docker compose file

45 - subnet: 172.16.239.0/24
46

47 volumes:
48 prometheus:
49 grafana:

Listing D.1: Base docker compose file

119

Appendix E

Seven nodes docker compose file

1 ---
2 version: '3.6'
3

4 x-quorum-def:
5 &quorum-def
6 restart: "on-failure"
7 build:
8 context: .
9 dockerfile: common/config/goquorum/Dockerfile

10 args:
11 QUORUM_VERSION: ${QUORUM_VERSION:-latest}
12 GOQUORUM_CONS_ALGO: ${GOQUORUM_CONS_ALGO}
13 NODES_NUMBER: ${NODES_NUMBER}
14 expose:
15 - 30303
16 - 8545
17 - 9545
18 healthcheck:
19 test: ["CMD", "wget", "--spider", "--proxy", "off", "http://localhost:8545"]
20 interval: 3s
21 timeout: 3s
22 retries: 10
23 start_period: 5s
24

25 x-tessera-def:
26 &tessera-def
27 build:
28 context: .
29 dockerfile: common/config/tessera/Dockerfile
30 args:
31 TESSERA_VERSION: ${TESSERA_VERSION:-latest}
32 NODES_NUMBER: ${NODES_NUMBER}
33 environment:
34 TESSERA_MODE: tessera
35 expose:
36 - 9000
37 - 9080
38 - 9101
39 restart: "no"
40 healthcheck:
41 test: ["CMD", "wget", "--spider", "--proxy", "off", "http://localhost:9000/upcheck"]
42 interval: 3s
43 timeout: 3s
44 retries: 20
45 start_period: 5s

120 Appendix E. Seven nodes docker compose file

46

47 services:
48 explorer:
49 image: consensys/quorum-explorer:${QUORUM_EXPLORER_VERSION:-latest}
50 volumes:
51 - ./${NODES_NUMBER}-nodes/quorum-explorer/config.json:/app/config.json
52 - ./${NODES_NUMBER}-nodes/quorum-explorer/env:/app/.env.production
53 depends_on:
54 - rpcnode
55 ports:
56 - 25000:25000/tcp
57 networks:
58 quorum-benchmark:
59 ipv4_address: 172.16.239.31
60

61 rpcnode:
62 <<: *quorum-def
63 container_name: rpcnode
64 ports:
65 - 8545:8545/tcp
66 - 8546:8546/tcp
67 - 30303
68 - 9545
69 environment:
70 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
71 volumes:
72 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/rpcnode:/config/keys
73 - ./logs/quorum:/var/log/quorum/${GOQUORUM_CONS_ALGO}/
74 networks:
75 quorum-benchmark:
76 ipv4_address: 172.16.239.38
77

78 validator0:
79 << : *quorum-def
80 ports:
81 - 21001:8545/tcp
82 - 30303
83 - 9545
84 environment:
85 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
86 volumes:
87 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/validator0:/config/keys
88 - ./logs/quorum:/var/log/quorum/${GOQUORUM_CONS_ALGO}/
89 networks:
90 quorum-benchmark:
91 ipv4_address: 172.16.239.11
92

93 validator1:
94 << : *quorum-def
95 ports:
96 - 21002:8545/tcp
97 - 30303
98 - 9545
99 environment:

100 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
101 volumes:
102 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/validator1:/config/keys
103 - ./logs/quorum:/var/log/quorum/${GOQUORUM_CONS_ALGO}/
104 networks:

Appendix E. Seven nodes docker compose file 121

105 quorum-benchmark:
106 ipv4_address: 172.16.239.12
107

108 validator2:
109 << : *quorum-def
110 ports:
111 - 21003:8545/tcp
112 - 30303
113 - 9545
114 environment:
115 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
116 volumes:
117 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/validator2:/config/keys
118 - ./logs/quorum:/var/log/quorum/${GOQUORUM_CONS_ALGO}/
119 networks:
120 quorum-benchmark:
121 ipv4_address: 172.16.239.13
122

123 validator3:
124 << : *quorum-def
125 ports:
126 - 21004:8545/tcp
127 - 30303
128 - 9545
129 environment:
130 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
131 volumes:
132 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/validator3:/config/keys
133 - ./logs/quorum:/var/log/quorum/${GOQUORUM_CONS_ALGO}/
134 networks:
135 quorum-benchmark:
136 ipv4_address: 172.16.239.14
137

138 member0tessera:
139 << : *tessera-def
140 ports:
141 - 9081:9080
142 volumes:
143 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/member0:/config/keys
144 - ./logs/tessera:/var/log/tessera/
145 networks:
146 quorum-benchmark:
147 ipv4_address: 172.16.239.26
148

149 member0quorum:
150 << : *quorum-def
151 ports:
152 - 20000:8545/tcp
153 - 20001:8546/tcp
154 - 30303
155 - 9545
156 depends_on:
157 - member0tessera
158 environment:
159 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
160 - QUORUM_PTM=member0tessera
161 volumes:
162 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/member0:/config/keys
163 - ./logs/quorum:/var/log/quorum/${GOQUORUM_CONS_ALGO}/

122 Appendix E. Seven nodes docker compose file

164 networks:
165 quorum-benchmark:
166 ipv4_address: 172.16.239.15
167

168 member1tessera:
169 << : *tessera-def
170 ports:
171 - 9082:9080
172 volumes:
173 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/member1:/config/keys
174 - ./logs/tessera:/var/log/tessera/
175 networks:
176 quorum-benchmark:
177 ipv4_address: 172.16.239.27
178

179 member1quorum:
180 << : *quorum-def
181 ports:
182 - 20002:8545/tcp
183 - 20003:8546/tcp
184 - 30303
185 - 9545
186 depends_on:
187 - member1tessera
188 environment:
189 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
190 - QUORUM_PTM=member1tessera
191 volumes:
192 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/member1:/config/keys
193 - ./logs/quorum:/var/log/quorum/
194 networks:
195 quorum-benchmark:
196 ipv4_address: 172.16.239.16
197

198 member2tessera:
199 << : *tessera-def
200 ports:
201 - 9083:9080
202 volumes:
203 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/member2:/config/keys
204 - ./logs/tessera:/var/log/tessera/
205 networks:
206 quorum-benchmark:
207 ipv4_address: 172.16.239.28
208

209 member2quorum:
210 << : *quorum-def
211 ports:
212 - 20004:8545/tcp
213 - 20005:8546/tcp
214 - 30303
215 - 9545
216 depends_on:
217 - member2tessera
218 environment:
219 - GOQUORUM_CONS_ALGO=${GOQUORUM_CONS_ALGO}
220 - QUORUM_PTM=member2tessera
221 volumes:
222 - ./${NODES_NUMBER}-nodes/${GOQUORUM_CONS_ALGO}/member2:/config/keys

Appendix E. Seven nodes docker compose file 123

223 - ./logs/quorum:/var/log/quorum/
224 networks:
225 quorum-benchmark:
226 ipv4_address: 172.16.239.17

Listing E.1: Seven nodes docker compose file

