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Abstract 

 

In this work an introduction to Local Electricity Markets (LEM) was done and 

afterwards evolutionary algorithms (EAs) such as Differential Evolution (DE), Hybrid-

Adaptive Differential Evolution (HyDE), Hybrid-Adaptive Differential Evolution with 

Decay Function (HyDE-DF) and Vortex Search (VS) were applied to a market model in 

order to test its efficiency and scalability. Then, the market model was expanded adding a 

network model from the BISITE laboratory and again tests using the evolutionary 

algorithms were performed. In more detail, first a literature review is done about 

distributed generation, load flexibility, LEM and EAs. Then a cost optimization problem in 

Local Electricity Markets is analyzed considering fixed-term flexibility contracts between 

the distribution system operator (DSO) and aggregators. In this market structure, the DSO 

procures flexibility while aggregators of different types (e.g., conventional demand 

response or thermo-load aggregators) offer the service. Its then solved the proposed model 

using evolutionary algorithms based on the well-known differential evolution (DE). First, a 

parameter-tuning analysis is done to assess the impact of the DE parameters on the quality 

of solutions to the problem. Later, after finding the best set of parameters for the “tuned” 

DE strategies, we compare their performance with other self-adaptive parameter 

algorithms, namely the HyDE, HyDE-DF, and VS. Overall, the algorithms are able to find 

near-optimal solutions to the problem and can be considered an alternative solver for more 

complex instances of the model. After this a network model, from BISITE laboratory, is 

added to the problem and new analyses are performed using evolutionary algorithms along 

with MATPOWER power flow algorithms. Results show that evolutionary algorithms 

support from simple to complex problems, that is, it is a scalable algorithm, and with these 

results it is possible to perform analyses of the proposed market model 

Keywords 

Distributed Generation, Demand Response, Evolutionary Algorithms, Local Electricity 

Markets, Load Flexibility  
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Resumo 

Neste trabalho foi feita uma introdução aos Mercados Locais de Eletricidade 

(MLE) e posteriormente foram aplicados algoritmos evolutivos (AEs) como Differential 

Evolution (DE), Hybrid-Adaptive Differential Evolution (HyDE), Hybrid-Adaptive 

Differential Evolution with Decay Function (HyDE-DF) e Vortex Search (VS) a um 

modelo de mercado a fim de testar a sua eficiência e escalabilidade. O modelo de mercado 

foi expandido adicionando uma rede do laboratório BISITE e novamente foram realizados 

testes usando os algoritmos evolutivos. Em mais detalhe, no trabalho primeiro foi feita 

uma revisão bibliográfica sobre geração distribuída, flexibilidade de carga, MLE e AEs. É 

analisado um problema de optimização de custos nos MLE, considerando contratos de 

flexibilidade a prazo fixo entre os agentes. O distribuidor adquire flexibilidade enquanto 

que os agregadores de diferentes tipos (por exemplo, os agregadores convencionais de 

resposta à procura ou de carga térmica) oferecem o serviço. Resolve-se depois o modelo 

proposto utilizando AEs baseados na conhecida DE. É feita uma análise de afinação de 

parâmetros para avaliar o impacto dos parâmetros DE na qualidade das soluções para o 

problema. Após encontrarmos o melhor conjunto de parâmetros para as estratégias DE 

"afinadas", comparamos o seu desempenho com outros algoritmos de parâmetros auto-

adaptáveis, nomeadamente o HyDE, HyDE-DF, e VS. Globalmente, os algoritmos são 

capazes de encontrar soluções quase óptimas para o problema e podem ser considerados 

um solucionador alternativo para instâncias mais complexas do modelo. Então um modelo 

de rede, do laboratório BISITE, é acrescentado ao problema e novas análises são realizadas 

utilizando algoritmos evolutivos juntamente com algoritmos de fluxo de potência 

MATPOWER. Os resultados mostram que os algoritmos evolutivos suportam desde 

problemas simples a complexos, ou seja, é um algoritmo escalável, e com estes resultados 

é possível realizar análises do modelo de mercado proposto 

Keywords 

Algoritmos Evolutivos, Flexibilidade de Carga,  Mercados Locais de Eletricidade.
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1. INTRODUCTION 

This chapter is intended to provide a quick overview of the topics covered in the 

dissertation, i.e., the discussion regarding distributed generation, load flexibility, local 

electricity markets and evolutionary algorithms applied in this context. A brief explanation 

of the topic is given in Section 1.1, Section 1.2 presents the dissertation objectives, then 

Section 1.3 presents the contributions of the work and finally Section 1.4 exposes the 

structure of the document. 

1.1. STUDY SCOPE 

The increased use of renewable energy sources (RES) has a fundamental role in the 

search for a more sustainable world. As a result, the development and use of RES have 

grown exponentially the last decades [1]. In the future, it is expected even more RES 

participation (e.g., wind and solar power), as well as the incorporation of other distributed 

resources such as electric vehicles (EV) and heat pumps. This massive integration of 

resources is changing the electric system and bringing new challenges to the system 

operators in part due to increased uncertainty in the whole energy supply chain. As a result, 

it is becoming increasingly complex to control the power flows in real-time and to 

guarantee stability and reliability of electricity networks [2]. Also, the European Union 
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(EU) expects, through its objective for energy and climate to 2030, the growth of RES 

participation of more than 50 % of energy production. This expansion is disturbing the 

electric system, for example causing congestion problems, demanding a redesign that 

allows a better predictability and flexibility of resources [3]. In this context of change in the 

electric systems the study of the best way to integrate the distributed resources and flexibility 

of the agents involved in the electricity market is of fundamental importance. One of the 

concepts that aims to best integrate these resources are the Local Electricity Markets, a concept 

that has been gaining relevance over the years [2]. In this type of market, the integration of 

local RES is taken into consideration as well as the demand for more active consumer 

participation in the market, this consumer that often owns its proper generation devices. So, 

distributed resources, load flexibility and market demands are integrated in the same context in 

order to solve the problems in current markets [4]. Therefore, the study of viable market 

frameworks and the definition of ways to perform market clearing are of fundamental 

importance for the implementation of these models. In this context, this dissertation studies the 

application of evolutionary algorithms in the market clearing of a proposed market model 

described in Section 5.1. 

1.2. OBJECTIVES 

In general, the objectives of this dissertation are to present the concepts and ways 

of using distributed generation (DG) and flexibility as well as their impacts on the 

electricity markets. Then, the dissertation aims to present the concept of Local Electricity 

Markets (LEM), the characteristics that this type of market should contain and finally to 

perform experiments on one proposed LEM model using differential evolution algorithms 

described in Chapter 4. So, the objectives of this work are the following:  

• Present concepts of distributed generation and flexibility;  

• Present the problems that current markets face when adapting to renewable energy 

resources and distributed generation;  

• Elucidate the concept of local electricity markets, possible flexibility services, 

roles, and interaction between stakeholders; 

• Present a brief description of the evolutionary algorithms that are going to be used 

in the case study.  
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• Present a market model and perform the market clearing using evolutionary 

algorithms; 

• Then, expand this market model using more aggregators, add a network to the 

problem and develop a method to evaluate the impacts of demand response in 

this network; 

• Perform the market clearing with the new market topology; 

• Test the scalability of the algorithms. 

 

1.3. CONTRIBUTION 

The state-of-the-art review contributes to a synthesis of the concepts, main forms of 

classification, problems to be solved, and ways of solving them regarding the changes 

caused by the increasing entry of RES into the electrical grid. A brief explanation of the 

evolutionary algorithms (Differential Evolution, Hybrid-Adaptive Differential Evolution, 

Hybrid-Adaptive Differential Evolution with Decay Function and Vortex Search) used in 

the case studies is also given. 

The case studies have as contribution the application of evolutionary algorithms to 

solve the Market Clearing problem in LEM. As well as the expansion of models previously 

proposed in the literature and analysis of the solutions obtained. 

 While writing this work a paper about the first Case Study, described in Section 

5.2, was written and accepted in the “IEEE Congress on Evolutionary Computation 2021” 

and is already published. In addition, two papers are being produced, one for a journal, 

where the case studies 3 and 4 are highlighted, and another for a conference, focusing on 

the expansion of the scalability test done in case study 2. All the case studies are described 

in Chapter 5. 

1.4. THESIS ORGANIZATION 
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In addition to the introduction, the thesis has 5 more chapters. Chapter 2 presents 

the concepts and considerations about distributed generation and flexibility resources and 

analyzes congestion problems existing in the grid today and possibly in the future. 

 Chapter 3 presents Local Electricity Market, the characteristics that a market 

framework should contain as well as possible roles and interactions between stakeholders.  

Chapter 4 presents a brief explanation about Differential Evolution, Hybrid-

Adaptive Differential Evolution, Hybrid-Adaptive Differential Evolution with Decay 

Function and Vortex Search.  

Chapter 5 presents the case studies simulations and its results, of a Local Electricity 

Market model simulated in several ways using evolutionary algorithms.  

Finally, chapter 6 presents the conclusions about the work. 
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2. DISTRIBUTED 

GENERATION AND 

FLEXIBILITY  

Distributed generation is a type of electricity generation characterized by its wide 

geographical distribution and the proximity of generation and demand [6]. This type of 

decentralized generation is opposed to the current traditional generation and dispatch 

models and is becoming increasingly relevant due to the large penetration of RES. These 

energy sources (Solar Power, Wind Power, etc) come along with the demand for new 

market models that integrate them in the best possible way as well as the available 

flexibility of consumers. Thus, this chapter aims to present the concepts of DG and load 

flexibility, as well as the problems that current energy markets have, such as congestion 

problems, in order to serve as a basis for the presentation of possible solutions such as 

LEM. 

2.1. DISTRIBUTED GENERATION AND FLEXIBILITY RESOURCES 

This sub-section intends to do a short literature review about DG and flexibility 

resources looking for explain these terms. 
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2.1.1. DISTRIBUTED GENERATION (DG) 

In recent years, there has been a significant increase in the penetration of RES and 

DG, encouraged due to their environmental and economic aspects [3]. This change will 

require a fundamental transformation of the energy system, including the redesign of the 

electricity market, providing greater predictability, linking the wholesale and retail 

markets, and attracting further investments [3]. In general, the increase of RES in the 

energy matrix is affected by its uncertainty in generation, since the resources are 

intermittent, making the conventional energies support still necessary. Consequently, with 

the largest distributed generation, the returns on investment costs of conventional plants 

take more time to realize. This situation combined with the DG incentives may cause 

distortions in the market [4]. So, this changing scenario makes it essential to study the 

different forms of DG in order to find solutions that optimize their benefits as well as 

foresee and solve the problems that may arise. 

In the literature, there are several ways of defining DG. One of the first articles to 

explore these different ways of definition was done by Ackermann [5]. Currently a widely 

used concept is that DG in general refers to the electricity generation on-site or close to the 

consumption rather than centralized generation which requires large transmission 

infrastructures over long distances such as large hydroelectric or thermoelectric power 

plants [6].  

The growing liberalization of the energy markets through the years has helped the 

spread of electricity generation close to the consumers which brings several advantages 

that, properly exploited, can be of great value to the electricity systems. These advantages 

are not restricted to the technical part only, economic and environmental aspects are 

equally benefited when the generation is decentralized [7]. From a technical point of view, 

when DG is connected to the electric utility's lower voltage distribution lines, energy losses 

in the transmission lines may be reduced and the network's resilience can be increased. In 

the economic aspect there are three main advantages: the need for investments in utility 

generation capacity decreases, costs with generation are reduced as well as the end-users 

tariffs [7]. Finally, distributed generation has advantages for the environment as it helps 

supporting the delivery of clean energy and reducing the emission of greenhouse gases 

such as 𝐶𝑂2 (Carbon Dioxide) and H2O (Water Vapor) [7-8]. 



 9 

2.1.2. FLEXIBILITY RESOURCES AND PRODUCTS 

In recent years, the increase in investments in renewable generation (RG) located in 

the transmission and distribution networks has caused the net demand hourly patterns to 

change, as well as the consumption patterns. Furthermore, RG increased the degree of 

generation uncertainty due to the intermittent characteristic of wind and solar sources. 

These changes pose great challenges to the operation of distribution and transmission 

networks that need to find solutions to ensure the safety and stability of the electrical 

system [9]. In this context, the concept of flexibility arises, which is the capacity of a load 

or generator to change its profile of consumption or generation pattern following a signal 

of activation or a market stimulus. This is done in order to contribute to the stability of the 

energy system. The parameters used to characterize flexibility include the amount of power 

modulation, the duration, the rate of change, the response time and the location [10]. 

 There are three main categories of flexible resources: energy storage, distributed 

generation and flexible loads [11]. These categories were separated according to their 

modelling similarities regardless of the technology used. In the first category, related to 

energy storage, resources are categorized into mobile or stationary storage. Mobile storage 

refers to the electric vehicles (EVs), which market participation is expected to grow, and 

Vehicle-To-Grid services (V2G) mechanisms which are expected to provide flexibility to 

the grid in different points of the energy system. Stationary storage refers to the Energy 

Storage Systems (ESS) like batteries and pumped-hydro energy storage which are expected 

as well to have more participation to provide reserve and flexibility services. DG is 

composed of generators whose electric power output is controlled only by the primary 

energy source. This group is divided into three distinct categories: Variable Renewable 

Energy Sources, allusive to solar, wind and small hydroelectric power generation sources; 

Combined Heat and Power related to energy cogeneration using both electrical energy and 

thermal energy produced; Conventional Generators, regarding to backup generators and 

other dispatchables such as biogas. Finally, flexible loads can be categorized into three 

families, namely: Thermostatically Controlled Loads (TCL), which are loads controlled by 

thermostats; Load shifting, which are loads that can modify their consumption period, i.e., 

some domestic objects and industrial processes; Curtailable Loads, which are loads that 

can reduce their consumption in a given period [9,11]. Figure 1 illustrates the previous 

explained flexible resources categories. 
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Figure 1 – Flexible resources categories 

RES are not fully integrated into the current energy markets [9]. The mechanism of 

feed-in tariffs is still currently used to remunerate renewable energy generators. This form 

of operation makes it necessary to generate flexibility incentives, causing market 

distortions [12]. Another problem caused by the growing participation of the DG is in the 

operation of transmission and distribution networks. Energy balance and frequency control 

are the biggest problems observed in transmission networks [9]. As a result, it becomes 

necessary to guarantee the ramping availability of generators aiming to solve these 

problems. At the distribution grid, reverse power flows, congestion and voltage issues are 

the main problems caused by DG penetration [9].  Therefore, it becomes necessary to 

transform flexible resources into flexibility products and services with the objective of 

integrate them into the market and remunerate them. The demand by grid operators for 

flexibility services is significant due to their need of solving their energy management 

problems, optimizing their operation and decreasing the investments [9,12]. 

2.2. DISTRIBUTION NETWORK CONGESTION MANAGEMENT SOLUTIONS 

The main function of an electric power network (Figure 2) is the provision of active 

power to consumers in an efficient, reliable, and quality manner [13]. In the context of the 

large penetration of RES, network congestion problems may happen, with the voltage 

problem (the limit of ±5% in the bus voltage being disregarded) and the overload problem 
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(the load close to the thermal capacity of the system components) the more serious 

problems to be solved [13]. The voltage problem can happen due to active and reactive 

power losses in the lines related to resistance and reactance, or even due to the distributed 

generation of RES that could generate over-voltage problems in some busses. Because of 

DG penetration, reverse power flows are another problem that demands solution. This 

reverse flow, in addition to the normal power flow, may contribute to the resulting power 

flow being higher than the limit of the system components and cause overload [13]. 

 

Figure 2 – Electric power network simple illustration  

Since the reliable provision of electrical energy is essential, network operators use 

different types of methods to ensure this prerogative. These methods are divided into two 

groups:  

• Direct methods: When the network operator takes concrete actions to solve the 

issue, such as strengthening the network, active and reactive power control, load 

shedding or utilize FACT devices as described in Sub-Section 2.2.1;  

• Indirect Methods: Market mechanisms that encourage changes in demand for 

electricity as described in Sub-Section 2.2.2.  

The methods can be used separately, however the use of both in a hybrid way is the 

most common [13,14]. 

2.2.1. DIRECT METHODS 

Direct methods, as the name suggests, are methods adopted by the Distribution 

System Operator (DSO) or Transmission System Operator (TSO) whose application 

directly causes the desired effect. These are applications where operators have direct 

control and the application-effect relationship is direct. The more conventional direct 
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methods are the network reconfiguration, grid reinforcement, reactive power control and 

active power control [4]. 

Network reconfiguration is the selection of the proper topological structure of the 

network for minimum load balancing index by changing open /closed status of 

sectionalizing and tie switches [15]. This method is applied aiming the delivery of power 

to consumers in a more efficient and suitable way without changing the radial structure of 

the network [13]. The authors of [15] present a radial distribution system reconfiguration 

problem for load balancing and solve it using genetic algorithms. Meanwhile in [16] the 

authors combine network reconfiguration and DERs scheduling in their congestion 

management strategy in order to enhance distribution system resilience. Other methods to 

tackle the congestion management problem are the grid reinforcement, which means 

changing the physical characteristics of the existing network in order to increase its 

capacity [17], as well as the investments in new DG. However, these are long term 

methods that require a higher investment. Thus, it is necessary applying the active 

management of DSO-network and DERs if possible, to avoid such high investments [18].  

In addition to the other direct methods mentioned above, another widely used 

mechanism is the active and reactive power controls on the buses. The authors of [18] 

explain some already used mechanisms for active and reactive power control being them 

power electronics-based solutions like flexible AC transmission systems (FACTS) and 

high voltage DC (HVDC) as well as on-load tap changing transformers and phase-shifting 

transformers as feasible options to manage the power flow. The authors of [19] discuss 

with detailing the application of HDVC and FACTS highlighting the advantages of using 

these methods, like the improvement of the dynamic conditions in AC systems and transfer 

capability for HDVC and improving real power transfer capability in the lines, prevention 

of sub-synchronous resonance oscillations and damping of power swings for FACTS.  

2.2.2. INDIRECT METHODS 

Indirect methods for solving network congestion problems are based on market 

mechanisms such as price signals or contracts that manipulate the energy demand of 

consumers offering economic benefits to participants. The indirect methods most used in 

the literature refer to distributed local marginal price (DLMP) [20], dynamic pricing, local 

peer-to-peer electricity markets and local electricity markets [4]. These are market-based 
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methods which implementation can maximize social welfare, cause least discomfort to 

customers and encourage more participation of the end-users in the energy planning [21]. 

One of the broadest and most frequently used concepts when market methods are 

mentioned in solving network congestion problems are local marginal price (LMP) 

markets. In this type of market, the energy price varies according to the location and the 

cost of delivering an additional unit of energy to the grid, extending this concept to the 

distribution networks, DLMPs arise in which the DGs are properly remunerated in the case 

of increased energy production in the period in which the local buses present congestion 

[21]. In this market, the concept of dynamic tariff also appears, considering that the 

demand for energy is price-sensitive the price of energy responds to this demand in order 

to reduce consumption and avoid congestion. The authors of [21] present a DLMP model 

where the DSO calculates dynamic tariffs and publishes them to the aggregators, who 

make the optimal energy plans for the flexible demands. The authors of [20] introduce a 

method where EVs are used in a DLMP as DER to reduce network congestion. The authors 

of [22] present the definition and types of dynamic tariffs commonly used in energy 

markets as well as the proposal of a daily dynamic tariff structure. 

In recent years, with the development of different studies, the need to formulate 

new models and market structures that more effectively integrate the DER, the available 

flexibility and the demand for a more active role of consumers in the energy markets has 

been identified [4]. Traditionally, there are centralized energy markets where consumers 

are grouped in large areas, commonly the geographic limits of a country, and the control of 

energy supply is operated centrally using large power plants. However, with the 

penetration of DER, decentralized market models have been proposed where small-scale 

generators are located where their produced energy is consumed. Microgrids stand out in 

decentralized markets where prosumers and consumers trade energy locally through a 

platform with their community [23]. This model promotes consumption close to 

generation, efficiency in the use of resources and, consequently, sustainability, since it 

reduces the need for energy transport over long distances, decreases the latency in 

managing network problems and strengthens the local community by encouraging 

reinvestments in RES. With the advancement of information technologies, new proposals 

are made for better execution of these microgrids [23]. A recurring proposal refers to peer-

to-peer local electricity, where the application of blockchain technology would ensure, in a 
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decentralized manner, the security of this market, the resolution of conflicts of interest and 

the use of smart contracts. In addition, the main advantage of using the blockchain is 

transparency, as with this technology the distributed and secure transaction log allows for 

complete and continuous tracing of even the smallest energy transactions. [23]. The 

authors of [23] designed a blockchain-based microgrid energy market without the need for 

central intermediaries, evaluated it as a case study based on seven components and 

identified that it fully satisfied three and partially fulfilled an additional three of the seven 

components. 

Finally, there is a more robust proposal for adapting electricity markets, which 

refers to LEM, due to the fact that they can be adapted to the current wholesale market 

with some adjustments to the current framework [4]. The author of a LEM book [24] 

established the following definition for LEM: 

“A local electricity market is a market platform for trading locally generated (renewable) 

electricity among residential agents within a geographically and socially close community. 

Security of supply is ensured through connections to a superimposed electricity system (e. 

g. national grid or adjacent local electricity markets).” 

In this type of market, consumers become active participants, being able to 

exchange energy locally having as a guarantee of supply a backup system (i.e national 

energy system) [25]. LEM resolves potential conflicts of interest between DSO and TSO 

that may occur and facilitates the use of DER [4]. The authors of [25] conducted a 

literature review on the concept of LEM discussing current works in the area and 

identifying gaps in the literature. 

2.3. FINAL REMARKS 

Based on the literature review, it can be seen that with the large introduction of 

RER and DG into the energy matrix challenges arise. Among these challenges there are 

problems related to congestion management, voltage and grid losses.In order to solve this 

type of problem there are direct and indirect methods, LEM being one of the indirect 

methods. LEM aims to integrate DG, load flexibility and more active prosumer 

participation in the same framework in order to use its potential being one of the 

possibilities of market model renewal that has been studied.
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3. LOCAL ELECTRICITY 

MARKETS 

In view of the growing desire for the active participation of final consumers in the 

electricity market and the continuous increase in use of RES for electricity generation , it is 

necessary to study the proper incorporation of these new decentralized agents in the energy 

system. Due to the proliferation of digital technologies, network automation and inevitable 

changes in the roles of stakeholders in the market, a promising idea to aid this change are 

the so-called LEM, which proposes to extend to a local level the existing liberal wholesale 

markets present in Europe and United States [26]. So, this chapter intends to present the 

concept of LEM, its related challenges, prerogatives and Stakeholders. 

End-users with low demand or generation capabilities are often excluded from the 

bidding process due to various legislative restrictions and the top-down pattern of markets 

where larger producers and industry bodies actively make decisions while end-users are 

reactively involved in the market. One of the purposes of LEMs is to solve this problem by 

providing residential actors market access utilizing a market platform [25]. This growing 

demand for the empowerment of the end-consumer of electricity is linked to the increase in 

information and its growing participation in the market when they generate solar energy, 

store energy in batteries and exchange energy from their own electric car with the system 
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(V2G). The intention for greater empowerment and participation in the market of these 

consumers is the desire to reduce energy costs, greater freedom, independence from the 

government and the protection of the environment [26-27]. 

As mentioned before, the insertion of DG and RES in the system generates 

uncertainties regarding energy production, and with it, brings challenges regarding the 

balance of supply and demand. Furthermore, network problems, such as reverse power 

flows, line losses voltage deviations linked to these changes were mentioned in Chapter II. 

However, in addition to these changes in consumption patterns, a large increase in energy 

demand is expected at the same time in the next few years, related with the introduction of 

electric cars and space heating by heat pumps[3]. These trends offer excellent opportunities 

for flexibility as vehicle loading and space heating behavior can be adapted during the day 

following market incentives. In addition to this, the use of electric vehicle batteries as 

energy storage and V2G are unique opportunities for reducing system power peaks and 

reducing costs by limiting capacity usage [3]. Energy conversion technologies such as 

power-to-gas and fuel cell units are also standing out and becoming viable options for the 

energy market. Taking this into account, energy markets need to adapt to the new reality, 

aiming at the integration of all stakeholders and new forms of energy in a decentralized 

manner, so that each participant can compete and profit according to their contribution [3]. 

In this context, the study of the implementation of LEM aims to solve these integration 

issues without changing the standards of quality and safety in energy supply [3]. 

Similar to the wholesale market, LEM do not act independently and need to be 

connected to a larger system i.e., backup system, in order to guarantee the security of 

supply [25]. As pointed out by [26], there are three main topologies to study the interaction 

of agents and market models, namely, the interactions between agents arranged in a peer-

to-peer way (directly between agents), pool-trading (indirectly, through aggregation) or in 

a hybrid way. The study in [28] explains these different interaction proposals as well as 

their advantages and disadvantages. A further explanation of these type of markets is 

conducted in Section 3.1.1. 

The implementation of LEM is not dissociated from several challenges that arise 

for the system to be effective, safe, and viable. The article [26] highlights, among these 

challenges, 5 crucial factors that must be studied in the establishment of LEM, Table 1 

presents these factors and some of the challenges related to them. Taking this into account 
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it, is seen as necessary to implement a legal framework that addresses all present and future 

changes and challenges in the energy systems. 

Table 1 – LEM Challenges [26] 

Factor Related Challenges 

Optimal utilization of 

distributed supply 

- Changes in line losses, voltage levels and power 

quality. 

- Reduction in system reliability and consequently more 

need for flexibility. 

- Increase of computational complexity. 

- Potential waste of resources. 

Optimal utilization of 

demand response 

- Increase of computational complexity. 

- Forecast of individuals are error prone. 

- Similar tariffs might lead to different outcomes 

locally. 

Efficient and secure 

operation and technical 

implementation of 

localized markets 

- Risk of increasing electricity costs. 

- Scalability issues of communication devices. 

- Reliable solutions for metering without a centralized 

authority.  

Existing and emerging 

legal boundaries 

- Relationship with existing markets. 

- Stakeholders in current markets might be against these 

new changes. 

Socioeconomic aspects 

and human interaction 

- Encouragement of participation. 

- Security of information data. 
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- Dealing with conflicting stakeholders interest. 

 

3.1. LEM REQUIRED PREROGATIVES 

In order to implement a framework for local energy markets, attention must be paid 

to several aspects and identify how various interactions will be carried out in the market so 

that it does not have gaps to fill, and the framework is usable. In the literature reviews [4] 

and [26], several LEM proposals were studied and patterns and shortcomings in the models 

were identified. From that, some prerogatives that must be presented in the elaboration of a 

LEM framework were identified, being them:  

• Market Topology; 

• Services Definition; 

• System Level and TSO-DSO Coordination; 

• Unbundling Principle Respect; 

• Rebound Effects; 

• Stakeholders. 

3.1.1. MARKET TOPOLOGY 

In a literature review [26], regarding LEM, there are 3 topologies of market side 

interactions identified by: Pool Market Trading, Hybrid Market and Full P2P. In Figure 3, 

taken from [26], these market topologies are shown. 
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1 

Figure 3 – LEM clearing topologies (Pool Market Trading, Hybrid and Full P2P) [26] 

A Full P2P Market is characterized by the direct transaction of an amount of energy 

at a certain price without the supervision of a centralized body [28]. In this type of system, 

the distribution operator would be remunerated at a management fee tariff according to the 

type of service and the distance between buyer and seller [27]. Its main advantage is the 

empowerment and greater freedom offered to consumers who can buy and sell their energy 

according to their preference (cost, sustainability, etc.). For this type of market to be 

available some challenges must be overcome as a high computational capacity is required, 

the slow convergence in the market consensus process and the uncertainty regarding the 

energy balance that makes it difficult for grid operators to guarantee the security and 

quality of the energy supply [28]. 

 Pool Market Trading or Community-based market is a model where there is a 

community manager or aggregator that manages the energy exchanges within the 

community in a centralized manner, in addition this is responsible for interactions with 

agents outside this market.  The main advantage of this market model is to facilitate the 

interaction between agents that pursue the same objective. Through the aggregator they can 

access the external market in a joint manner and buy/sell energy and flexibility services. In 

addition, the computational infrastructure required is lower than the P2P markets, however 

 

 

1
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Finland), E-REDES (CNET and EDP Distribution), ISEP (GECAD), Lappeenranta University of Technology – LUT 

(Finland), VPS (UK), University of Leicester – UoL (UK), and University of Seville (Spain). Available: 

http://dominoesproject.eu/ 
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the freedom granted to the end-user is much lower and the aggregator's handling of 

consumer expectations is likely to be frowned upon [28]. 

The third type of marketplace discussed is Hybrid P2P, which is the middle ground 

between the two topologies presented above. The model is divided into two levels: at the 

lower level, aggregators control their customers' loads and from these loads offer products 

to the upper level, where they can exchange not only with system and market operators but 

also with other aggregators. This topology is the most compatible with the electrical 

system in the coming years since its scalability regarding the computing infrastructure, the 

greater predictability of the grid operators and because it is a junction of the best aspects of 

the previous models [28]. 

3.1.2. FLEXIBILITY SERVICES DEFINITION  

A fundamentally important issue for the adequacy of a LEM framework is the 

elaboration of flexibility services available in the market, and the elaboration of flexibility 

standard products, with well-represented stochasticity, so that they can be bought and sold. 

These standard products should be well defined so that the market formulation is more 

precise, so the roles and responsibilities assigned to each stakeholder are properly 

respected [4]. The flexibility services sought by each stakeholder are different, for 

example, the flexibility needs of the DSO are different from the needs of the TSO [12]. 

Therefore, the flexibility products for each of them are different and should be considered 

when designing a framework. 

DOMINOES, a research project about local energy markets, has listed the following 

parameters that should be defined when defining a flexibility product [29]. These are: 

• Period (Time Window); 

• Probability of Availability; 

• Location (Node location or grid metering point); 

• Constraints on Ramp Rate (Maximum Increase or Decrease); 

• Activation Delay (s); 

• Active or Reactive Power; 
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• Type of control; 

• Cost of Activation and Cost of Availability; 

Table 2 presents some of the flexibility services defined and their beneficiaries (TSO, 

DSO or Balance Responsible Party (BRP) in two frameworks that are already very well 

structured, namely the Danish project EcoGrid 2.0 [4] and the U.S.E.F Framework [3]. 

Table 2 – Potential Flexibility Services [3,4] 

Potential Beneficiary Service 

DSO, TSO,BRP Load Increase 

DSO, TSO, BRP Load Decrease 

TSO, BRP Balance Service 

DSO Voltage Control 

DSO Power Limitation 

TSO Primary, secondary and tertiary control 

DSO, TSO Controlled Islanding 

3.1.3. REBOUND EFFECTS 

Rebound (or recovery) effect is a characteristic of certain types of loads, such as 

direct electrical heating and heat pumps, that when they are reduced, there is an opposite 

effect immediately afterwards so that they return to their original state. Thus, the rebound 

effect is characterized by an increase in energy consumption immediately after a reduction 

or a reduction prior to the increase in consumption. As an example of this type of load we 

can cite the heat pumps in office buildings, if in a DR program it can be forced off one 

period, but after that it must increase its consumption so that the temperature of the 

environment returns to normal. The aggregators of this type of load must consider this 

effect when selling flexibility services, having therefore to inform the rebound power as 

well as the duration [32] when selling the service. Figure 4 exemplifies this effect. 𝑃𝑠 and 
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𝑑𝑠 are the response power and duration while  𝑃𝑟𝑏 and 𝑑𝑟𝑏 are the rebound power and 

duration respectively. 

 

Figure 4 – Rebound Effect [32] 

In order to model the ability of a load with rebound to provide DR to the system 

[37] introduces the concept of asymmetric block, a representation where the rebound and 

the response are modeled in blocks, which are not necessarily equal. The study of 

thermostatic systems and their possible use in the creation of flexibility services is of great 

value, in [38] the complex behavior of refrigeration machines was studied and modeled 

ways of using its rebound in flexibility services, in this study it was found the feasibility of 

using this form of flexibility as well as the asymmetric behavior of the rebound in relation 

to the response used. The study [39] compares several ways of modeling the rebound effect 

and its possible financial impacts on the agents that use this resource. 

3.1.4. SYSTEM LEVEL, UNBUNDLING PRINCIPLE AND OTHER ASSUMPTIONS 

When designing a market framework several prerequisites must be defined in order 

for it to operate adequately. The rebound effects, market topology and services definition 

were explained in the previous subsections, however there are other definitions of 

paramount importance in the context of LEMs, being them [32]: 
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• System level: The targeted level of the market must be defined. Distribution, 

transmission or both levels may be the target for the exploration of flexibility. 

Many times the needs of the DSO are not sufficient to drive a market, so the ideal 

scenario is the DSO, TSO and BRPs participation in the same market;  

• TSO-DSO Coordination: Services provided to the DSO, BRPs and TSO affect 

directly each other so the market framework must ensure that the use of flexibility 

is coordinated among these agents to avoid system instability; 

• Unbundling Principle: Network operation and market activities must be separated, 

TSOs and DSOs cannot own power generation or consumption units [32]; 

• Services Conditions: The basic characteristics of the services are needed, so the 

market type utilized such day-ahead-market and reserve market must be defined; 

• Aggregators Action: It must be defined if more multiple aggregators can operate 

within the same household as service providers or if the management of a consumer 

is exclusive to the aggregator. Another important consideration is that customers 

must be able to choose and switch between aggregators freely to ensure market 

competition; 

• Market Periods: The definition of the market periods is a basic definition a 

framework must define. The services periods are defined following this definition; 

• Data Security: Secure technology of information systems are required in order to 

protect the privacy of each stakeholder involved in the market. 

These are the main prerogatives that are required to ensure the elaboration of a 

functional LEM framework. Other prerogatives may appear depending on the context of 

the local where the LEM is implemented.   

 

3.2. STAKEHOLDERS  

In the LEM context, new participants enter the market as well as new products are 

added, so the market mechanism and the interaction between the agents must be defined, 

defining the roles of each stakeholder, the flexibility products they can offer and the 
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interaction between each of them is important when studying a possible framework for 

implementing an LEM. 

3.2.1. AGGREGATORS 

 

Aggregators act as intermediaries in the negotiation of flexibility in the energy 

market, this new player exploits the flexibility of its customers in order to make it tradable 

and be able to solve problems of system operators as well as provide balancing services 

[29]. In fact, these aggregators accumulate flexibility from their customers (residential, 

commercial and industrial) through DR programs. This flexibility from each individual 

customer is added to a joint pool and from this pool is transformed into flexibility products 

with considerable volume and value to different stakeholders of the system.  

This way of acting is important to the market because the aggregation of individual 

flexibilities mitigates the risks of both the aggregators and their clients. For example, if the 

flexibility depended on only one source, the non-delivery of the service would not happen 

as planned and the flexibility product would not be delivered, resulting in losses to the 

aggregator and the system. In addition, prosumers also mitigate their risks by not 

participating directly in the market and being exposed to large price variations; instead, 

they participate through contracts with aggregators that, by gathering several loads, can 

offer better conditions to their clients. Thus, aggregators are essential in the 

implementation of DR programs for the sake of aggregate and turn this flexibility into a 

unique resource. In the implementation of a framework for LEM it must be considered that 

several aggregators must enter the market and that their entry must be standardized and 

certified. For them to enter the market it is important that they have a deep knowledge of 

the area and the consumption profile of their customers, so that they can fully exploit the 

flexibility that the customers themselves don't even know they have. In addition, the 

information technology needed for data transfer and demand control by the aggregators is 

of fundamental importance [30]. 

Aggregators have four potential customers, these are the Prosumers, the Balance 

Responsible Party (BRP), the TSO and the DSO. For prosumers the approach refers to 

traditional DR programs while for the other three options the aggregate of the flexibility 

that aggregators have in their portfolio can be turned into a product and negotiated with 
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these stakeholders. Therefore, the aggregator and the prosumers agree on commercial 

terms and conditions of control of the Active Demand and Supply (ADS) asset by the 

aggregator, which optimizes the value of the flexibility by selling to where there is demand 

combined with the highest price [29]. 

In LEM these participants must establish contracts with the aggregator aiming to 

define the flexibility activation criteria. These contracts, which, according to the 

framework, can be renewed periodically (weekly, monthly, etc.) settle the activation price 

as well as the allowed activation period and number of times per day. That is, in LEM the 

contracts [31] are introduced: 

• DSO-Aggregator Contract: Contract between DSO and aggregator that defines 

the type and amount of flexibility contracted, the price of the service, the activation 

criteria, the responsibilities of each stakeholder, the required information exchanges 

and the contract time; 

• TSO-Aggregator Contract: Contract between TSO and aggregator with the same 

criteria as the DSO-Aggregator Contract; 

• BRP-Aggregator Contract: Contract between BRP and aggregator with the same 

criteria as the DSO-Aggregator Contract, but with flexibility services related to 

imbalance solution; 

• Prosumer-Aggregator Contract: Contract between prosumer and aggregator that 

must define the flexibility reserve, activation price, allowed activation periods, and 

fines in case the contract is not fulfilled.  

3.2.2. PROSUMERS 

The continuous progress in the integration of DG and information technology is 

helping to turn more and more energy consumers into prosumers [28]. Prosumers are 

small-scale residential, commercial, or industrial consumers who not only demand but also 

produce energy through PV panels and wind turbines. These consumers want to participate 

more actively in the market so that they can receive benefits related to the energy they 

produce in order to reduce costs, increase profits, increase autarchy, increase the share of 

local/green RES [24]. In this way the energy generated by prosumers can be consumed 
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locally as well as exchanged in the local energy market, evolving from a passive to an 

active player in the market. This stakeholder has also the characteristic of being more 

aware of the efficient consumption of energy willing to participate in demand side 

management programs in order to obtain financial savings when optimizing their energy 

consumption [29]. 

The participation of prosumers happens through ADS devices that respond to price 

and other signals from the aggregator and provide flexibility services to the system. In this 

way, the prosumer owns the ADS device and authorizes its control by the aggregator, 

establishing limits that do not compromise their comfort level, but that can generate profits 

for both parties. However, before offering flexibility to the market, the prosumer can use 

its own flexibility for in home optimization [3], such as Table 3: 

Table 3 – Flexibility services for the Prosumer [3] 

Service Description 

Time of use optimization Optimization based on changing energy consumption from 

a period when the tariff is expensive to periods when the 

tariff is lower. 

Control of maximum 

load 

Control established by contract of the maximum load that a 

consumer will be allowed at any given time. 

Self-Balancing Optimization in the purchase and sale of energy (energy 

from local generation) in order to maximize profits. 

Thus, the inclusion of these actors in the market stimulates the economic growth of 

the region as well as greater energy use since prosumers can trade self-produced electricity 

and use the full potential of DER [29]. 

3.2.3. DISTRIBUTION SYSTEM OPERATOR 

The DSO is responsible for the free flow of power between suppliers and customers 

in a stable and cost-effective manner [3]. The demand for electric power is growing over 

the years and with the arrival of electric vehicles the tendency is for it to continue to grow. 

Thus the grid capacity must be sufficient to accommodate this increase in load. One of the 

alternatives is to invest in increasing grid capacity and building new lines, but this is a 
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long-term solution that requires a lot of capital. Another alternative is to use flexibility in 

order to reduce the load in critical periods and avoid expansion costs, LEM offers this 

option by using flexibility services that help the DSO to manage the network[3]. Therefore, 

it is important to identify and add flexibility services to the energy market so that the grid 

can continue to provide its current levels of stability, security and reliability [3]. As these 

products are added to the market, the DSO's role will be to identify their problems and 

formulate service requests in the market according to pre-established product standards 

[32]. It is important to point out that the DSO should not publish its grid status for privacy 

and security reasons, but only to request specific services from aggregators that do not 

know the grid boundaries. It is also important that the aggregators inform their operation 

plans to the DSO in advance, so they do not cause unexpected disturbances [31]. 

The analysis of the value of the available flexibility so that the DSO can use it in 

the best way is the subject of studies and debates among the involved stakeholders [33]. 

With the identification and definition of standardized products, this analysis becomes 

easier to perform. For the DSO, some flexibility services that the aggregator can offer so 

that flexibility is explored were identified in Table 4 [3]: 

Table 4 – Flexibility services for DSO [3] 

Service Description 

Congestion Management Reduce peak loads with the purpose of avoiding thermal 

overload of the system components. 

Voltage Control Increasing the load or decrease the generation is an option 

to avoid exceeding the voltage limits.  

Grid Capacity 

Management 

Use load flexibility aiming the optimization of the 

operational performance extending the components 

lifetime and reducing grid losses. 

Controlled Islanding Avoid supply interruption in a given grid section. 

Power Quality Support Aggregator might provide equipment to the prosumers 

which are technically capable of improving grid´s local 

power quality and sell it as a service to the DSO. 
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3.2.4. TRANSMISSION SYSTEM OPERATOR 

It is the responsibility of the TSO to guarantee the free flow of power on the 

transmission lines that connect the generators to the end-users in a way that guarantees the 

stability and security of the system. In order to do it and keep the generation and 

consumption equilibrated TSO manages the congestion in the lines and network constraints 

administrating energy losses providing ancillary and balancing services [29]. The 

intermittent character of new energy sources makes continuous optimization of energy 

dispatch necessary, since generation in many different locations causes the power flow to 

change constantly with little predictability. This change in patterns as well as the large 

increase in demand (for instance, caused by EVs) may generate problems for the TSO that 

can be alleviated if more flexibility services are available. In the current model, the 

flexibility demanded by the TSOs is supplied by large energy generating units that are 

available to increase or decrease generation according to the TSO's signals. However, with 

the advent of DG, large generating units are decreasing compared to small-scale units. This 

shift changes the way flexibility is made available to the TSO, which now must also 

demand this service from several small market agents [3]. 

The flexibility products available to the DSO can be categorized into supply and 

demand-side resources. Solutions to the problems faced in managing transmission 

networks can be solved through flexibility obtained from consumers and prosumers 

varying their demand or through traditional generators, wind power generators and virtual 

power plants able to react to signals from the TSO [18]. In relation to the LEM, in the same 

way as the DSO, the TSO should formulate its needs as services requests according to the 

market standard, something that already happens in some current markets [32]. 

To properly exploit the available flexibility, some flexibility services that the 

aggregator can offer to the TSO have been identified in Table 5 [3,32]: 
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Table 5 – Flexibility services for TSO [3,32] 

Service Description 

Primary, Secondary and 

Tertiary Control 

Prosumers owns equipment which is able to support the 

grid frequency maintaining system stability and reliability. 

Voltage Control Reactive power control by large generators, capacitors and 

inverters on large wind farms 

Grid Capacity 

Management 

Use load flexibility aiming the optimization of the 

operational performance extending the components 

lifetime and reducing grid losses. 

Controlled Islanding Avoid supply interruption in a given grid section. 

 

 

3.2.5. BALANCE RESPONSIBLE PARTIES (BRPS) 

Imbalance settlement determines that every market agent must be aware of its own 

energy balance. In practice, these agents cannot maintain this balance by themselves, 

requiring an agent to assist them in this power balance [34]. In other words, the Imbalance 

Settlement is a process that settles discrepancies comparing the amount of contracted and 

actually generated or consumed electricity. When these values are different from the 

contracted amount of electricity the agents are exposed to the imbalance price. This 

mechanism works as an economic incentive because imbalance agents must pay this cost. 

[35] In order to solve this problem, the BRP role is defined as the responsible for the 

balance of production and consumption of its customers through technical resources or 

exchanges with other BRPs [36]. 



 30 

In the operation of BRPs, the use of flexibility services fits as an additional tool 

since they have great potential in maintaining the system balance. To take advantage of 

this flexibility, BRPs may have contracts with suppliers and aggregators. The interaction 

with aggregators in new LEM models is of fundamental importance in the acquisition of 

flexibility-based services and in the sale of balance services. Depending on the market 

model implemented, aggregators should have contracts with one or more BRPs in order to 

guarantee their energy balance. In addition to aggregators, DSOs and TSOs can benefit 

from the balance services provided by this agent [32]. 

To balance its portfolio, flexibility sources can be used for managing possible 

imbalances due to forecasting errors and minimize BRP electricity costs.[31]. USEF, a 

smart energy framework, listed some potential flexibility services for the BRP [3], 

presented in Table 6: 

Table 6 – Flexibility services for BRP [3] 

Service Description 

Intraday Portfolio 

Optimization 

Shift loads from a high-price time interval to a low-price 

time interval in the intraday market and reduce its overall 

electricity costs. 

Self-Balancing or 

Balance Service  

Reduce imbalance with its portfolio and avoid imbalance 

charges. 

Generation Optimization Optimize the generation planning of central production 

units. 

Day-Ahead Portfolio 

Optimization 

Shift loads from a high-price time interval to a low-price 

time interval before the day-ahead market and reduce its 

overall electricity costs. 

 

3.2.6. SUPPLIERS AND PRODUCERS 

The role of the supplier in electric power systems is to provide energy to end-users 

according to their demand, while producers feed energy into the grid and help the security 
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of the energy supply. In the future, the relationship between these agents and consumers 

should change. With the advent of distributed generation and the entry of prosumers, it 

might be a differentiation between new products and services that alter the interactions 

between agents. In this way, suppliers with better forecasting models will have a 

competitive advantage, because they will be able to optimize their generation assets and 

benefit from the sale of products aimed at solving market issues [3]. In the USEF 

framework [3], the role of the supplier is well-defined stating that, suppliers must provide 

energy to its customers. These agents agree on commercial terms for the supply and 

procurement of energy, forecast consumer load profile and source the energy through a 

BRP with which they have balance response agreements.   

3.2.7. ENERGY SERVICE COMPANIES (ESCOS)   

The European Commission [40] defines ESCOs as companies that guarantee 

energy savings and energy supply at a lower cost by offering services such as energy 

efficiency and renewable energy projects. ESCOs are a growing business in the European 

market as they can achieve a significant reduction in customer demand while their 

revenues are directly linked to the energy savings achieved by their customers [29]. As 

providers of energy-related services to the end user they need remote access and operation 

of equipment, including DR devices, in addition to information for better realization of off-

site energy management. This form of insight services, energy optimization service and 

remote maintenance of ADS asset can be services present in the catalog of this stakeholder. 

This function can be purchased by the aggregator depending on the established market 

model [3].  

3.3. FINAL REMARKS 

In this chapter, the LEM concept was detailed in order to present its concept and 

contextualize the main benefits and barriers to be faced when implementing this model. 

Next, several prerequisites that must be analyzed in order for the LEM to be functional 

were discussed and highlighted. Finally, the various players involved in the market were 

presented in order to show the services they can offer, their role in the market, and the 

interactions between them in the context of the LEM. 
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4. EVOLUTIONARY 

ALGORITHMS FOR 

ENERGY APPLICATIONS 

Evolutionary computation is a sub-field of computational intelligence that include 

different algorithms for global optimization inspired by evolutionary processes [41]. 

Typically, the so-called evolutionary algorithms (EA) are population-based meta-heuristics 

that evolves an initial set of candidate solutions (i.e., a population or swarm) over 

iterations. The improvement of solutions in the evolutionary process is measured by a 

given fitness function. Thus, in each iteration, new solutions are generated using particular 

operators and those new solutions are introduced into the population depending on their 

fitness value (i.e., replacing solutions with lower performance). By doing this, it is 

expected that the population gradually evolves towards a promising area of the search 

space following the principles of natural/artificial selection [41]. 

4.1. DIFFERENTIAL EVOLUTION 

Differential Evolution Algorithms (DE) are part of a wide range of EAs whose 

study has been growing and developing continuously [41]. EAs are inspired by biological 
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processes with a terminology originated from the theory of natural evolution and genetics, 

where from an initial population the best adapted ones are recombined and mutated over 

the generations. As described in more detail in [42] DE uses a population of individuals 

where G is correlated with the generation number and the number of individuals per 

generation corresponds to i = [1 ... 𝑁𝑝]. The most common method used in the creation of 

the population is a random initialization of the solutions, considering the particular 

problem restrictions and characteristics. To create the new population of individuals, the 

recombination and mutation operators, that will be explained in the following subsections, 

are used. After this process, the individuals with the best fitness are selected and the rest 

are discarded in order to obtain better solutions in later generations. 

The recombination and mutation operators contain two parameters (F and Cr) that 

are fundamental to the algorithm. In addition to these two parameters, the NP parameter 

also has a great value, with only these three being the parameters of the algorithm. F is the 

mutation constant and is related to the control of the mutation force. Cr is the 

recombination constant and is linked to diversity in the mutation process, and NP defines 

the population size. 

In the evolutionary computing process, there are four important segments, 

sequentially, i) the strategy used to create the mutation of individuals, ii) the 

recombination, iii) verification of the viability of solutions iv) and the selection of 

individuals with the best fitness. In the first step, all xi,G⃗⃗ ⃗⃗⃗⃗  ∈ Pop individuals are evaluated 

each generation, the individual being evaluated is called the target vector 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗ . Using the 

mutation operator, a mutant individual 𝑚𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is designed for each target vector. The 

mutation operator varies in different applications called strategies, in this case study tests 

were performed using two different strategies DE/rand/1 and DE/target-to-best/1 which 

will be explained briefly in this section. The other 3 segments of the DE algorithm will be 

explained in the following subsections. The reader can obtain a complete explanation about 

the processes and state of the art of DE in [42]. 

Mutation Operator Strategies 

The DE/rand/1 strategy operator is shown in equation (1), this is the standard DE 

mutation operator model where three random individuals of the current population, 

different from each other and from the target vector, make a linear combination in order to 
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generate mi,G⃗⃗ ⃗⃗ ⃗⃗  ⃗. Unlike the previous strategy, the DE/target-to-best/1 strategy acts changing 

the convergence capabilities of the algorithm using information related to the best 

individual found so far. The DE/target-to-best/1 strategy mutation operator is described as 

equation (2). 

mi,G⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑥𝑟1,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + F( 𝑥𝑟2,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑥𝑟3,𝐺  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  (1) 

 

mi,G⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗   + F( 𝑥𝑏𝑒𝑠𝑡,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −  𝑥𝑖,𝐺  ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  + F( 𝑥𝑟1,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑥𝑟2,𝐺  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (2) 

  

Recombination Operator 

The recombination operator is applied to create the trial vector tj,i,G⃗⃗ ⃗⃗ ⃗⃗  ⃗ which 

corresponds to the combination between the target vector 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗  and the individual mutant 

𝑚𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  according to equation (3). In this step Cr corresponds to the probability of choosing 

each of element of 𝑚𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Rnd is an integer between [1,D] that guarantees that at least one of 

the individuals in 𝑚𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  will be selected to compose the new population. 

tj,i,G⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
mj,i,G⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   𝑖𝑓  (𝑟𝑎𝑛𝑑𝑖,𝑗|0,1|  <   Cr)  𝑣 (𝑗 =  𝑅𝑛𝑑) 

xj,i,G⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
 

(3) 

  

Boundary Verification 

Mutation and recombination processes can generate solutions that do not respect 

the problem's constraints and are therefore not viable. Thus, the boundary verification 

occurs according to (4). 

tj,i,G⃗⃗ ⃗⃗ ⃗⃗  ⃗   =  {
xj,lb⃗⃗ ⃗⃗⃗⃗  ⃗   if   tj,i,G⃗⃗ ⃗⃗ ⃗⃗  ⃗   <   xj,lb⃗⃗ ⃗⃗⃗⃗  ⃗

  xj,ub⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      if   tj,i,G⃗⃗ ⃗⃗ ⃗⃗  ⃗  >   xj,ub⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     
 

(4) 

 

Selection 

The selection occurs by comparing the fitness values of the objective function between the 

trial vector 𝑡𝑗,𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the target vector 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗  in which the best individual is selected to 
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compose the population of the next generation 𝑃𝑜𝑝𝑖,𝐺+1 This selection is described by 

equation (5). 

𝑃𝑜𝑝
𝑖,𝐺+1

  =  {
     𝑡𝑖,𝐺⃗⃗⃗⃗  ⃗  if    f(𝑡𝑖,𝐺⃗⃗⃗⃗ )  ≤   f(𝑥𝑖,𝐺⃗⃗⃗⃗  ⃗)   

   𝑥𝑖,𝐺⃗⃗⃗⃗  ⃗                otherwise       
  

 

(5) 

 

4.1.1. HYDE (HYBRID ADAPTIVE DIFFERENTIAL EVOLUTION) 

Hybrid-adaptive DE (HyDE) is a self-adaptive EA proposed in [43] and inspired in 

the DE. HyDE incorporates different ideas from other EAs, such as an operator called 

“DE/target-to-perturbed_{best}/1” (which is a modification of the DE/target-to-best/1 

strategy [42] with a perturbation of the best individual inspired by the evolutionary PSO 

[44], and the parameters self-adaptive mechanism of DE [45]. HyDE main operator is 

defined as: 

mi,G⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗   + 𝐹𝑖
1(ϵ  𝑥𝑏𝑒𝑠𝑡,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝑖,𝐺 ⃗⃗ ⃗⃗ ⃗⃗  )  + 𝐹𝑖

2 ( 𝑥𝑟1,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑥𝑟2,𝐺  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (6) 

where 𝐹𝑖
1 and 𝐹𝑖

2, are scale factors in the range [0,1] independent for each individual i, and 

𝜖 =𝒩(𝐹𝑖
3,1) is a perturbation factor equivalent to a random number taken from a normal 

distribution with mean 𝐹𝑖
3 and standard deviation 1. 𝐹𝑖

1, 𝐹𝑖
2 and 𝐹𝑖

3 are updated at each 

iteration following the same rule of DE algorithm (see Sect. III.B of [43]). 

4.1.2. HYDE-DF (HYBRID ADAPTIVE DE WITH DECAY FUNCTION) 

HyDE with decay function (HyDE-DF) is an improved version of HyDE used for 

function optimization [46]. It incorporates a decay function to perform a transition in the 

iteration process from the main operator of HyDE (11) to the basic operator of DE Eq. (7): 

mi,G⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗   + 𝛿𝐺 * [𝐹𝑖
1(ϵ  𝑥𝑏𝑒𝑠𝑡,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑥𝑖,𝐺 ⃗⃗ ⃗⃗ ⃗⃗  )]  + 𝐹𝑖

2 ( 𝑥𝑟1,𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑥𝑟2,𝐺  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (7) 

where 𝛿𝐺 factor is used to gradually decrease the influence of the term 𝐹𝑖
1 (ε  𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  −

 𝑥𝑖,𝐺⃗⃗ ⃗⃗ ⃗⃗ }) responsible for the fast convergence towards the best individual in the population. 

Therefore, 𝛿𝐺 is a function that decreases its value from 1 → 0 at each iteration mitigating 

the influence towards 𝑥𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, and taking advantage of the inherent DE exploitation 

capabilities in later stages of the evolutionary process: 
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𝛿𝐺  =  𝑒1 − 1/𝑎2
      𝑤𝑖𝑡ℎ      𝑎 =  (𝐺𝐸𝑁 −  𝐺)/𝐺𝐸𝑁 (8) 

where a is a value that linearly decreases from 1 → 0. Such a decrease value of a is 

proportional to the number of generations GEN. The transition implemented in Hyde-DF 

allows an enhance phase of exploration in the early stage of evolution and stress the 

exploitation in later stages of the optimization. To remark that HyDE-DF achieved third 

place (out of 36 algorithms) in the 100-digit challenge in CEC/GECCO 2019 [46]. 

 

4.2. VORTEX SEARCH (VS) 

Vortex search (VS) is classified as a single solution-based metaheuristic with a 

similar framework compared with other EAs [47]. Therefore, VS generates 𝑁𝑣𝑠 neighbor 

solutions at each iteration using a multivariate Gaussian distribution around the initial 

single solution. After that, those 𝑁𝑣𝑠 solutions are evaluated in the fitness function and the 

single solution is updated with the best solution found. The iterative process is repeated 

until a stop criterion set by the user is met [47]. The advantage of applying VS algorithm 

lays in its simplicity and effectiveness, and the fact that no associate parameters (apart 

from the number of neighbor solutions 𝑁𝑣𝑠 and iterations) need to be set or tuned. 
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5. LOCAL MARKET 

APPLICATION STUDY 

5.1. MARKET MODEL DESCRIPTION 

In the market model proposed by Kok et al. [48] the DSO procures flexibility while 

DR aggregators offer this type of product. Considering a competitive market context, the 

best combination of bids and offers must be found so the equilibrium price is reached and 

the participants adequate their products in order to decrease the costs and maximize profits. 

The services are settled through fixed term contracts which expose the obligations of both 

parts. The aggregators must provide fixed quantities of flexibility every day besides the 

reserve flexibility that eventually can be requested by the DSO through an external signal. 

The DSO is responsible for the stable and reliable energy supply, and its duty is utilizing 

the flexibility available to help with it. An exemplification model is shown in Figure 5. 
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Figure 5 - Market Model Representation 

Scheduled and Conditional are the two types of services concerted by the DSO and 

aggregators, in these two services the aggregators offer their flexibility products before 

Market Clearing. The information that must be provided by the DSO before the Market 

Clearing is the period in which it demands flexibility as well as the probability of 

activating the conditional service. Taking this into consideration, in [48] it was defined 

that, before the Market Clearing, for each type of service p ∈ P, every period in which each 

unit must provide flexibility the maximum quantity must be declared. 

The aggregators function is making the accumulation of flexibility obtained in their 

portfolio into flexibility products that can be of interest to agents in the energy market. 

This accumulation comes from its customers who have the most diverse profiles. One of 

these is related to thermostatically controlled loads whose operation is different from the 

other types of loads because the temperature of a certain space must be maintained within a 

pre-established level. Thus, two types of agents are part of the market, the thermo load 

aggregators c ∈ C and the conventional aggregators i ∈ I. Conventional aggregators are 

able to offer for each p and time step t service a maximum amount of load reduction 𝑃𝑝𝑖𝑡, 

this flexibility that can be contracted and partially used by DSO. The thermal load 

aggregators, due to their rebound characteristics, offer their products in the form of 

asymmetric blocks, which must be completely used (not partially); thus ensuring that the 

load reduction is followed by an increase and vice versa. Each block is identified by d ∈ D 

and its response at each time t is identified by the parameter 𝑄𝑝𝑐𝑑𝑡
𝐷𝑅 . 
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The optimization function of this study is related to minimizing the market overall 

costs through the best combination of bids and offers for DR and is described by equation 

(9). 

minimize ∑ R𝐶𝑝

𝑅

𝑝∈𝑃

+ ∑𝑃𝑝

𝑝∈𝑃

𝐷𝐶𝑝 

 

(9) 

This optimization is referred to a mixed integer linear problem defined through 

many functions and restrictions. Regarding the objective function, the dummy variables 

RC and DC are the reserve costs (or capacity costs) and the dispatch costs, respectively. 

The reserve costs defined in (10) refer to fixed costs and are not dependent on the number 

of times the service is activated. It represents the market costs associated with the DSO and 

aggregator operation. Regarding aggregators, the main cost is associated with the choice to 

reserve flexibility for the DSO-level instead of participating in another markets (e.g., at the 

TSO-level). For the DSO, the benefits of its market share are counted as a decrease in the 

overall cost of the system. 

𝑅𝐶𝑝  =  ∑∑𝐶𝑝𝑖𝑡
𝑅,𝐶𝑜𝑛

𝑡∈T𝑖∈I  

𝑝𝑝𝑖𝑡  +  ∑∑𝐶𝑝𝑐𝑑
𝑅,𝐷𝑅

𝑡∈T𝑖∈I  

𝑟𝑝𝑐𝑑  +  ∑𝐶𝑝𝑡
𝑅,𝑅𝑒𝑏

𝑡∈T

𝑠𝑝𝑡  −  𝐶𝑝
𝑅,𝐷𝑆𝑂𝑧𝑝   ∀ p

∈  P                                                                                                             (10) 

The first term of the Eq. (10) refers to the cost associated with conventional 

aggregators, where 𝐶𝑝𝑖𝑡
𝑅,𝐶𝑜𝑛

 is equal to the reserve component cost (€/ kW) for unit i to meet 

service p at time t, and the upward regulation (load reduction) is given by 𝑝𝑝𝑖𝑡. DR cost in 

the second term is related to the total cost of the asymmetric blocks offered by each 

aggregator c, where 𝐶𝑝𝑐𝑑
𝑅,𝐷𝑅 is the cost of the block d and 𝑟𝑝𝑐𝑑  is the number of blocks 

offered. The third term of the Eq. (2) corresponds to the rebound cost, this being the cost to 

DSO for the allowed rebound of the aggregators c ∈ C, 𝐶𝑝𝑡
𝑅,𝑅𝑒𝑏

 is the cost per kW of 

rebound, and 𝑠𝑝𝑡  is the amount of total rebound at each time t. The last term refers to the 

benefit to the DSO of activating the service (this term is negative because it decreases the 

total cost of the system). 𝐶𝑝
𝑅,𝐷𝑆𝑂

 refers to the benefit of DSO while 𝑧𝑝  is a binary variable 

that indicates which of the services has been selected. 
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The dispatch cost refers to the second term of Eq. (9) and is defined as (11): 

𝐷𝐶𝑝  =  ∑∑𝐶𝑝𝑖𝑡
𝐷,𝐶𝑜𝑛

𝑡∈T𝑖∈I  

𝑝𝑝𝑖𝑡  +  ∑∑𝐶𝑝𝑐𝑑
𝐷,𝐷𝑅

𝑡∈T𝑖∈I  

𝑟𝑝𝑐𝑑  +  ∑𝐶𝑝𝑡
𝐷,𝑅𝑒𝑏

𝑡∈T

𝑠𝑝𝑡  −  𝐶𝑝
𝐷,𝐷𝑆𝑂𝑧𝑝   ∀ p

∈  P                                                                                                             (11) 

where the terms are similar to those of equation (10) considering different parameter 

values associated with the costs. The load reduction is dependent on a DSO activation 

signal and is not mandatory for all days and periods. Thus, associated with the DC is the 

term 𝑃𝑝 which indicates the daily probability of activation of the service p. This probability 

of activation is previously established by the DSO before the Market Clearing. Constraint 

(12) defines the amount of power that each aggregator i can offer for up regulation in each 

time t and service p, this being defined as the upper limit 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛     

𝑝𝑝𝑖𝑡  ≤  𝑃𝑝𝑖𝑡
𝐶𝑜𝑛    ∀ 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                       (12) 

Aggregators c might offer many asymmetric blocks with different structures 

knowing that at least one of them must be activated. So, a variable called 𝑚𝑝𝑐𝑑 is defined to 

indicate which block d offered for service p and aggregator c is selected. Equation (13) 

guarantees that at least one block is selected. 

∑ 𝑚𝑝𝑐𝑑

𝑑∈𝐷

 ≤  𝑧𝑝   ∀ 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶 
(13) 

 

Equation (14) guarantees that only one of the services will be cleared by the 

market. 

𝑟𝑝𝑐𝑑  ≤  𝐵𝑝𝑐𝑑
𝐷𝑅  𝑚𝑝𝑐𝑑   ∀ 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷 (14) 

The amount of total rebound possible is not unlimited as it could cause problems 

for the DSO. In this way, a limit of 𝑠𝑝𝑡  rebound to a maximum 𝐷𝑝𝑡
𝑅𝑒𝑏

 is defined by the 

DSO. Equation (15) guarantees this restriction. 

𝑠𝑝𝑡  ≤  𝐷𝑝𝑡
𝑅𝑒𝑏  𝑧𝑝  ∀ 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (15) 

Constraint (16) defines a minimum amount of response required by the DSO for 

each period. That is, in each period the combination of bids from conventional units and 
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the asymmetric blocks must match or exceed the requirement of the DSO (𝐷𝑝𝑡
𝑅𝑒𝑔

) 

considering the rebound effect at each time step: 

∑𝑝𝑝𝑖𝑡

𝑖∈𝐼

 +  ∑ ∑ 𝑄𝑝𝑐𝑑𝑡
𝐷𝑅

𝑑∈𝐷𝑐∈𝐶

𝑟𝑝𝑐𝑑  ≥  𝐷𝑝𝑡
𝑅𝑒𝑔

𝑧𝑝  −  𝑠𝑝𝑡    ∀ 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 
(16) 

Finally, variables are bounded according to Equations. (17a) - (17d): 

𝑃𝑝𝑖𝑡  ≥  0   ∀ 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 

 

(17a) 

𝑟𝑝𝑐𝑑 ∈ 𝑍+    ∀ 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶,𝑑 ∈ 𝐷 

 

(17b) 

𝑚𝑝𝑐𝑑 ∈ {0,1}    ∀ 𝑝 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷 

 

(17c) 

𝑧𝑝 ∈ {0,1}    ∀ 𝑝 ∈ 𝑃 

 

(17d) 

The following are some considerations regarding the case studies, which are divided into 

four experiments that can be summarized as: 

• Experiment 1: Simulation of LEM model with 4 aggregators using DE/rand/1, 

DE/target-to-best/1, HyDE, HyDE-DF and VS algorithms; 

• Experiment 2: Simulation of LEM model with 6 aggregators using DE/rand/1, 

DE/target-to-best/1, HyDE, HyDE-DF and VS algorithms; 

• Experiment 3: Simulation of LEM model with 6 aggregators, with the addition of 

a distribution network mockup model, using DE/target-to-best/1, HyDE-DF and VS 

algorithms. The fitness function is modified to consider network constraints in this 

experiment; 

• Experiment 4: Sensibility test of parameters BBen, 𝐷𝑝𝑡
𝑅𝑒𝑔

, 𝐷𝑝𝑡
𝑅𝑒𝑏

 and 𝑃𝐶𝑜𝑛
𝑈𝑝

  from 

experiment 3, using DE/target-to-best/1 and HyDE-DF algorithms. 

Table 7 presents the list of experiments compactly. 



 42 

Table 7 – List of Experiments 

Experiment Name Number of  

Aggregators 

Algorithms  

Utilised 

Grid 

Utilised 

1 DSO-Aggregator 

Contract Market 

4 DE/rand/1 

DE/target-to-best 

HyDE 

HyDE-DF 

Vortex Search 

NO 

2 Local Market 

Scalability Test 

6 DE/rand/1 

DE/target-to-best 

HyDE 

HyDE-DF 

Vortex Search 

NO 

3 DSO Network 

Validation in 

Flexibility Market 

6 DE/target-to-best 

HyDE-DF 

Vortex Search 

YES 

4 Parameters 

Sensibility Analysis 

6 DE/target-to-best 

HyDE-DF 

YES 

 

 

 

5.2. EXPERIMENT 1: DSO-AGGREGATOR CONTRACT MARKET 

In this case study, the tests were divided into two parts. In the first part, the impact 

of the DE parameters using the DE/rand/1 and DE/target-to-best/1 algorithms was 

analyzed to know the best combination of these for carrying out the tests. In the second 

part, tests were made and the results obtained from the optimization problem were 

collected. After that, other algorithms such as VS, HyDE and HyDE-DF were used to offer 

a comparison of performance. 
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5.2.1. CASE STUDY DESCRIPTION 

For this study, a market with 5 participants, the DSO and 4 aggregators, was 

considered. Among these aggregators, two of them are of conventional loads (i1 and i2) 

and the other two of thermostatically controlled loads (c1 and c2), i1 and i2 offer flexibility 

without rebound effect while c1 and c2 offer flexibility in the form of asymmetric blocks. 

DSO controls the market with monthly contracts. In this case study, the DSO demands 

flexibility in the periods between 17:00 and 18:00 hours as it aims to reduce the peak 

consumption in this time of the day. In this market, it was defined that the period of one 

hour before and one hour after the period that the DSO requires flexibility is allowed for 

rebound, i.e., thermostatically load aggregators must increase/decrease their consumption 

inside these periods. In order to execute this study, three DR services were considered, one 

of which is Scheduled (denoted by Sched) and the other two Conditional (referred as 

Cond1 and Cond2), as described in the market model, Schedule services must be delivered 

every day while conditional services are dependent on a DSO activation signal.  

The aggregators c1 and c2 offer blocks for each service p. The parameters used in 

the study are contained in the following tables. The cost associated with each block d 

offered is shown in Table 8. Table 9 gives the costs related to aggregators i1 and i2 for 

each service p and the quantity of up regulation offered in the market. The benefit of the 

DSO clearing the market is given in Table 10. Table 11 is related to the costs of the 

rebound effect. Lastly, Table 12 exhibit the service requirement and the allowed rebound 

for each period. 

Table 8 – Cost per Block and Number of Divisible Blocks 

c d 𝑪𝒑𝒄𝒅
𝑹,𝑫𝑹(€) 𝑪𝒑𝒄𝒅

𝑫,𝑫𝑹(€) 𝑩𝒑𝒄𝒅
𝑫𝑹 (€) 

c1 d1,d2 150 55 2 

c1 d3,d4 150 55 1 

c2 d1,d2,d3,d4 150 60 1 

 

Table 9 – Costs and Maximum Load Reduction (kW) for Each Conventional Aggregator 

p i 𝑪𝒑𝒊𝒕
𝑹,𝑪𝒐𝒏(€) 𝑪𝒑𝒊𝒕

𝑫,𝑪𝒐𝒏(€) 𝑷𝒑𝒊𝒕
𝑪𝒐𝒏(𝒌𝑾) 

Sched i1 2 4.0 50 

Sched i2 2 4.1 50 

Cond1 i1 1 4.0 50 

Cond1 i2 1 4.1 50 
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Cond2 i1 1 4.0 50 

Cond2 i2 1 4.1 50 

 

Table 10 – Reserve and Dispatch Benefit for the DSO  

service(p) 𝑪𝒑
𝑹,𝑫𝑺𝑶(€) 𝑪𝒑

𝑫,𝑫𝑺𝑶(€) 

Sched 400 2400 

Cond1,Cond2 400 4000 

 

Table 11 – Reserve and Dispatch Rebound Cost  

service(p) Time period (t) 𝑪𝒑𝒕
𝑹,𝑹𝒆𝒃(€) 𝑪𝒑𝒕

𝑫,𝑹𝒆𝒃(€) 

Sched, Cond1,Cond2 16-16:59, 18-18:59 0 1 

 

Table 12 – DSO Request and Rebound Allowed  

service(p) Time period (t) 𝑫𝒑𝒕
𝑹𝒆𝒈

(𝒌𝑾) 𝑫𝒑𝒕
𝑹𝒆𝒃

(𝒌𝑾) 

Sched, Cond1,Cond2 17-17:59 100 0 

Sched, Cond1,Cond2 16-16:59, 18-18:59 0 25 

For each service, the aggregators c1 and c2 offer four asymmetric blocks (d1 to d4). 

The respective response and rebound of these block offers are presented in Tables 13 and 

14. 

Table 13 – Aggregator i1 block offers  

Aggregator i1 Blocks 

Period(t)/Block(kW) d1 d2 d3 d4 

1 -20 0 -25 0 

2 -20 0 -25 0 

3 -20 0 -25 0 

4 -20 0 -25 0 

5 20 20 50 0 

6 20 20 50 40 

7 20 20 0 40 

8 20 20 0 40 

9 0 -20 0 -60 

10 0 -20 0 -60 

11 0 -20 0 0 

12 0 -20 0 0 
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Table 14 - Aggregator i2 block offers 

Aggregator i2 Blocks 

Period(t)/Block(kW) d1 d2 d3 d4 

1 -30 0 0 0 

2 -30 0 0 0 

3 -30 0 -35 0 

4 -30 0 -35 0 

5 40 30 35 0 

6 40 30 35 0 

7 40 30 0 0 

8 20 30 0 50 

9 0 -40 0 -25 

10 0 -40 0 -25 

11 0 -40 0 0 

12 0 0 0 0 

 

5.2.2. ENCODING OF INDIVIDUALS 

The encoding of individuals (solutions to the problem) plays a key role in the 

application of EAs. An individual is typically a vector containing the necessary variables 

for the evaluation of the objective function (9). In many optimization problems in energy 

systems several variables are used and the vector  𝑥  can reach a high dimension. In the case 

of the analyzed DSO-Contract Market, some variables must be evaluated in order to obtain 

the lowest system overall cost. For instance, in this problem resolution the individual 

includes information about the selected service, the power values of conventional 

aggregators at each time t and service p, and the number of blocks used by thermal load 

aggregators, given a dimension of individuals equal to 1+t*𝑁𝑖+𝑁𝑐. In this case study 

considering 2 conventional aggregators, 2 thermal load aggregators, 12 periods and 3 

services the dimension of the solution vector is 27. The 1st value corresponds to the 

selected 𝑍𝑝 service (integer value), the following 24 values are positive numbers which 

represent the 𝑃𝑝𝑖𝑡 of each aggregator i for each time t and finally the last two values 

correspond to the block d selected by each aggregator c, these being integer values.  

In order to limit possible solutions and more easily reach valid ones, the boundaries 

allowed for each individual of the solution population are established. These boundaries, 

called lower bounds and upper bounds, are related to the parameters established in the case 

study as well as real technical restrictions. Thus, in relation to the selected service, this 
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variable is defined as an integer value in the range 𝑍𝑝= [1, 𝑁𝑝]. The up-regulation values 

offered by conventional aggregators i are limited between lb = 0 and ub = 𝑃𝑝𝑖𝑡
𝑐𝑜𝑛 while the 

chosen block d is represented by an integer and must be contained in the range of lb = 0 

and ub = 𝑁𝑑. A random solution (18) is obtained as an initial population with values 

contained between the bounds defined as… 

𝑥𝑗⃗⃗⃗   = rand (𝑥𝑙𝑏⃗⃗ ⃗⃗  ⃗ , 𝑥𝑢𝑏⃗⃗ ⃗⃗ ⃗⃗  ) 

 

(18) 

Since the problem has restrictions that are hardly perceived and solved by the 

algorithm, severe penalties are applied in case one of these is violated. In this way, the 

algorithm is helped to find feasible solutions and the best possible fitness value. In the 

proposed problem, these repair techniques refer to the fulfillment of the requirements 

proposed by the DSO regarding the amount of up regulation requested in critical periods 

and also the maximum amount of rebound allowed, adding the contribution of all 

aggregators c and i. In the up-regulation periods for each time t, the contributions of all 

aggregators are added together and subsequently a penalty per kWh different from that 

required by the DSO is applied, (this penalty is described by (19)). In rebound periods, the 

total amount of rebound in the period is shown by the 𝑠𝑝𝑡 variable. When this amount 

exceeds the allowed 𝐷𝑝𝑡
𝑅𝑒𝑏 ,a penalty is applied per kWh exceeded, this penalty is described 

by (20). Finally, the fitness function of the problem becomes (21) by adding the repairs 

related to the unfeasibility of solutions. 

g1 = | (𝐷𝑝𝑡
𝑅𝑒𝑔

 −  𝑃𝑝𝑖𝑡   ) | 

 

(19) 

g2 = {
|𝐷𝑝𝑡

𝑅𝑒𝑔
− 𝑠𝑝𝑡|   𝑖𝑓  𝑠𝑝𝑡 > 𝐷𝑝𝑡

𝑅𝑒𝑔
   

   0                    𝑖𝑓  𝑠𝑝𝑡 ≤ 𝐷𝑝𝑡
𝑅𝑒𝑔

       
 

 

(20) 

F (𝑥′) = f (𝑥′) + ∑ 𝑔𝑖 ∗  𝑅𝐽
𝑗=1  (21) 

Now that we defined the encoding of individuals and the fitness function, we can 

apply some EA to solve the problem. So was chosen two differential evolution (DE) 

variants, one single-based solution heuristic called vortex search (VS) algorithm [47], and 
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two self-adaptive versions of DE called HyDE and HyDE-DF (selected due to its success 

in many applications and easy implementation [46]. 

5.2.3. PARAMETERS TUNING 

Assessing the impact of each of the DE parameters is the purpose of this 

subsection, thus tests were carried out whose intention was to identify the best combination 

of the parameters F, Cr, NP and G for DE/rand/1 and DE/target-to-best/1. Three tests were 

performed, the first of which referring to the parameters F and Cr, the second NP 

parameter and the third to the number of generations (G). In the first experiment, the 

values of F and Cr were varied from 0.1 to 1 and tests were performed with all 

combinations. In these evaluations the number of population and generations were fixed 

with NP equal to 30 and G equal to 4000, in addition 10 races were held. Figures 6 and 7 

show the HeatMaps for the fitness results found with each combination of parameters F 

and Cr. In these HeatMaps, the darkest points refer to better fitness values, that is, lower 

values of overall costs in equation (5). To obtain better visualization of the results, all 

values greater than 0were set to a white color. Figure 6 shows the HeatMap related to the 

DE/rand/1 strategy. It can be seen that lower F values lead to much worse fitness values 

than higher F values while lower Cr values have better fitness than higher Cr but with less 

variation. Figure 7 shows the HeatMap related to the DE/target-to-best/1 strategy and the 

evaluation of its results is similar to the previous strategy. Table 15 presents the best values 

of F and Cr found in the tuning of parameter and their respective average execution time 

and fitness as well as the standard deviation along the 10 runs. 

Table 15 - Best DE tuning of F and Cr values 

Method 
 

Fitness Time/Run (sec) 
 

(F,Cr) Ave. ± Std Ave. ± Std 

DE/rand/1 (1.0 , 0.2) -1080.2 ± 6.4 565,5 ± 41,4 

DE/target-to-best/1 (1.0 , 0.1) -1049 ± 100.1 562,3 ± 14,43 

 

Figure 6 - HeatMap of strategy DE/rand/1 
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Figure 7 - HeatMap of strategy DE/target-to-best/1 

Using the best values of F and Cr according to Table 14, the second test was 

accomplished in order to test the influence of the NP values when finding a better solution. 

Thus, the experiment was done, varying NP with a step size of 10 with values of 10 < NP 

<100 in order to compare the results. The value of the generations was varied according to 

the equation Gen = ⌈120000 / NP⌉ so that the objective function was evaluated the same 

number of times in all runs and the comparison was performed fairly. Figure 8 shows the 

variation in the fitness value referring to the assessment with each NP for each of the 

strategies using the optimal combination of F and Cr for DE/rand/1, the values obtained 

refer to the average of 10 runs performed. With these results it is possible to observe that 

for both cases the value of the objective function improves as the population increases up 

to NP = 70, after this point the NP increase interferes negatively in obtaining a better 

fitness. Figure 9 shows the variation in the fitness value using the optimal combination of 

F and Cr for DE/target-to-best/1, where it is possible to observe the same behavior of the 

other test, with NP = 70 being value of the best performance. 

 

Figure 8 - Fitness in function of NP parameter variation with F=1and Cr=0.2 
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Figure 9 - Fitness in function of NP parameter variation with F=1and Cr=0.1 

After the exploration of the NP parameter, the analysis of the relationship between 

the number of generations and the result obtained was started. Using the optimum values 

of F and Cr according to table x and NP fixed at 70, the number of generations was varied 

in a step size of 500 in the range [500 5000]. The results of these experiments are shown in 

figures 6 and 7. The results of the experiments demonstrate that for both cases the results 

are better when increasing the variation until 3500 generations, however from G equal to 

3500 until G equal to 5000 the fitness comes back to get worse every generation. 

 

Figure 10 - Fitness in function of G parameter variation with F=1and Cr=0.2 
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Figure 11 - Fitness in function of G parameter variation with F=1and Cr=0.1 

Finally, after tuning the parameters, their ideal values were established to carry out 

the final tests of the case study. Regarding the DE/rand/1 algorithm, the values found were 

F = 1.0, Cr = 0.1, NP = 70 and G = 3500, while for the DE/target-to-best/1 algorithm the 

only difference occurs in the parameter Cr this being equal to 0.2. 

5.2.4. PERFORMANCE ANALYSIS 

In this subsection the two algorithms (DE/rand/1 an DE/target-to-best/1), whose 

parameters have been specified, are compared with other available algorithms (HyDE, 

HyDE-DF and VS) in order to compare their performances. To perform the experiments, 

the best values of F and Cr found for the two DE algorithms were used, as well as 3500 

generations of individuals for these and the other algorithms so that the objective function 

is evaluated the same number of times for all algorithms. Using these parameters, Figure 

12 shows the convergence of both strategies over the generations. As expected throughout 

the iterations the result becomes more negative as this is a minimization function that aims 

to reduce the overall cost. In both cases the convergence rate is similar, both quickly 

slowing down when near 500 generations, and with DE/rand/1 a little bit faster than the 

rest of algorithms. All the algorithms converge to very close results. For instance 

DE/target-to-best/1 converges in generation 3500 to a fitness of -1087.38 while fitness in 

DE/rand/1 was -1080.9. 
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Figure 12 - Experiment 1 Algorithms Convergence 

In addition to this analysis, tests were performed with other algorithms to compare 

results and computational time. The VS, HyDE and HyDE-DF algorithms were used with 

the parameters that, by experimentation, generally lead to acceptable solutions. Again, in 

order to have a fair comparison for the three methods, the same population number NP = 

70 was used, so that the objective function is evaluated the same number of times. These 

tested algorithms converged to worse solutions when compared to the DE algorithms, 

being also slower in the convergence to these values. At the end of the generations, the 

fitness value for VS was -739.9, for HyDE-DF was -649.2 and for HyDE it was 9.9. 

The results are shown in Table 16, in which the mean and standard deviation of the 

values obtained in 10 runs are presented for each algorithm.  

Table 16- Experiment 1: Results for each method (€) 

Method Fitness Reserve Cost Dispatch Cost Time/Run (s) 

DE/rand/1 -1080,09 ± 3,29 148,85 ± 1,02 -2730,98  ± 5,59 9,00  ± 0,28 

DE/target-to-best/1 -1087,38  ± 2,59 145,79  ± 0,77 -2740,39  ± 4,69 8,60  ± 0,15 

Vortex -739,93 ± 230,3 220,49 ± 85,0 -2431,13 ± 494,0 12,32 ± 1,0 

HyDE-DF -649,16 ± 153,7 178,27 ± 66,3 -2545,69 ± 481,8 11,64 ± 1,6 

HyDE 9,92 ± 160,7 250,96 ±  131,6 -2081,14 ± 829,6 12,24 ± 1,5 

Figure 13 was elaborated, which graphically demonstrates the best result obtained 

among all runs and algorithms. It is related to the DE/target-to-best/1 3rd run, which fitness 

is -1091,7 with RC = 145,3 and DC = -2749. In this run a conditional service, Cond2, was 

selected in the market clearing. The blocks selected of the thermostatically controlled loads 

aggregators were block 1 to aggregator c1 and block 2 to aggregator c2. Finally, aggregator 

i1 was cleared in both up regulation and rebound period and aggregator i2 was activated in 

just one period of up regulation. 
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Figure 13 – Experiment 1: Upward and Downward Regulation 

 

5.3. EXPERIMENT 2: LOCAL MARKET SCALABILITY TEST 

5.3.1. STUDY DESCRIPTION 

The purpose of Experiment 2 is to identify the difference in the Market Clearing 

results and test the scalability of the algorithms when adding aggregators and their offers to 

the market. In order to do this, the same market model presented in subsection 5.1 was 

used, that is, the Market Clearing presented in equations 9 to 17 remains the same.  For this 

study, 7 participants are considered, namely the DSO and 6 aggregators. For the 

aggregators were kept the four presented in the previous study (two of conventional loads 

(i1 and i2) and the other two of thermostatically controlled loads (c1 and c2)). In addition, 

aggregators i3 and c3 were added to the problem, where i3 is a conventional load 

aggregator and c3 a thermostatically controlled load aggregator. The parameters referring 

to the aggregators i1, i2, c1 and c2 as well as DSO request and allowed rebound remained 

the same as presented in the Tables 8 to 14. Regarding the aggregator i3 the parameters 

presented in Table 17 were used. Table 18 presents aggregator c3 parameters while Table 

19 presents its block offers. 

Table 17 – Conventional Aggregator i3 Parameters 

p i 𝑪𝒑𝒊𝒕
𝑹,𝑪𝒐𝒏 (€) 𝑪𝒑𝒊𝒕

𝑫,𝑪𝒐𝒏 (€) 𝑷𝒑𝒊𝒕
𝑪𝒐𝒏 (kW) 

Sched i3 1 3.6 50 

Cond1 i3 1 3.6 50 

Cond2 i3 1 3.6 50 
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Table 18 – Thermostatically Controlled Load Aggregator c3 Parameters 

c d 𝑪𝒑𝒄𝒅
𝑹,𝑫𝑹 (€) 𝑪𝒑𝒄𝒅

𝑫,𝑫𝑹 (€) 𝑩𝒑𝒄𝒅
𝑫𝑹  

c1 d1,d2,d3 and d4 135 49.5 1 

 

Table 19 - Thermostatically Controlled Load Aggregator c3 Block Offers  

Aggregator c3 Blocks 

Period(t)/Block(kW) d1 d2 d3 d4 

1 -5 0 0 0 

2 -5 0 0 0 

3 -10 -10 -20 0 

4 -10 -10 -20 0 

5 10 10 15 0 

6 10 10 15 10 

7 10 10 10 10 

8 0 10 0 10 

9 0 -10 0 -10 

10 0 -10 0 -10 

11 0 0 0 -10 

12 0 0 0 0 

 

To perform the experiment, was utilized the two DE algorithms as well as HyDE, 

HyDE-DF and VS. The same values of F and Cr from experiment 1 were used for the two 

DE algorithms. To have a fair comparison and the objective function is evaluated the same 

number of times, NP = 70 and 3500 generations were performed for all algorithms. 

5.3.2. RESULTS AND ANALYSIS 

With the parameters described in subsection 5.3.1, tests were performed with each 

algorithm on 10 runs. Then Figure 14 is obtained, which shows the convergence of the 

algorithms over the generations. When compared all algorithms converge to similar results 

between 500 and 1000 iterations. The DE/target-to-best and VS algorithms converge faster 

than the others tested and, as in experiment 1, the differential evolution algorithms reached 

better solutions then the others. Final results at the end of generations showed fitness value 

of -1139,60 for DE/rand, -1100,82 for DE/target-to-best, -1078,81, for VS, -1083,60 for 

HyDE-DF and -1039,09 for HyDE. 
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Figure 14 – Experiment 2 Algorithms Convergence 

The results, in which the mean and standard deviation of the values obtained in 10 

runs are presented for each algorithm, in Table 20. 

Table 20 – Experiment 2: Results for each method (€) 

Method Fitness Reserve Cost Dispatch Cost Time/Run (s) 

DE/rand/1 -1139,60 ± 23,79 25,00  ± 23,84 -2588,00  ± 105,36 10,62  ± 0,13 

DE/target-to-
best/1 

-1100,82  ± 38,66 24,99  ± 31,99 -2527,90  ± 88,45 11,24 ± 1,13 

Vortex -1078,81 ± 77,32 60,24 ± 100,65 -2531,23 ± 105,35 11,52 ± 0,48 

HyDE-DF -1083,60 ± 21,17 62,67 ± 20,59 -2678,16 ± 66,27 10,41 ± 0,66 

HyDE -1039,09 ± 40,02 75,77 ± 44,69 -2674,41 ± 96,62 11,25 ± 0,17 

By comparing the results in Table 20 with those of the previous experiment in 

Table 16 it can be seen that with the addition of more competition in the market it can 

achieve better results in all algorithms. However, when comparing the execution time of 

each run one can notice the increase in time for all algorithms. To illustrate the results 

obtained, Figure 15 was elaborated, graphically demonstrating the best result obtained 

among all runs and algorithms. The figure is related to the results obtained with the 9th run 

of DE/target-to-best/1, in which a fitness of -1176,25 was achieved with RC = 50,0 and DC 

= -2725.  As in experiment 1, a conditional service, Cond2, was selected in the market 

clearing. One block was selected of the thermostatically controlled loads aggregators, 

which is block 1 from aggregator c1. Finally, aggregator i1 was cleared in periods 7 and 8 

while aggregator i3 was activated in all up-regulation periods. 
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Figure 15 - Experiment 1: Upward and Downward Regulation 

 

5.4. EXPERIMENT 3: DSO NETWORK VALIDATION IN FLEXIBILITY 

MARKET 

The application of local markets will require technology devices that supports and 

operates all market transactions in a fast, secure, and reliable way. To be efficient this 

mechanism must relate the technical and economic aspects of the market, so that the 

operation remains stable and managed in an optimal way. Thus, in order to expand the 

previous case studies, along the two new aggregators from experiment 2, an electrical 

network model was added to the problem, a distribution network model of the BISITE 

laboratory from University of Salamanca [49]. This network presents a 13-bus network 

with a 30MVA substation, 25 load points and high penetration of DER.  

5.4.1. BISITE LABORATORY DEVELOPED CITY MODEL 

The city model developed by BISITE laboratory is intended to conduct studies on 

the high penetration of DER in the power grid and to formulate solutions for local energy 

markets [50]. In the model, a 13-bus distribution network with a 30MVA substation and 

several distributed generation units is considered. There are 15 DG units, 2 wind power 

plants and 13 PV parks that represent 27% (10925 MW) of the total installed power, 24% 

of which is wind generation and 3% PV generation. In the city six types of loads were 
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differentiated, whose demand characteristics and flexibility service possibilities are 

different in some aspects among them. The types of loads presented are:  

• Residential Buildings: This type of consumer may or may not have its own 

generation, micro or nano generation, through its photovoltaic panels. When they 

do, their own generation is deducted from their consumption when their demand is 

greater than the generation and made available to the grid in the other periods. This 

consumer is characterized in LEM as a prosumer, given its generation as well as its 

availability to participate in aggregation for flexibility services. Consumers without 

self-generation can also be aggregated and offer flexibility services such as energy 

curtailment and/or load shifting; 

• Office Buildings: These are prosumers with different demand and generation 

characteristics than residential buildings. The high demand and energy generation 

generates different opportunities to offer flexibility services. An example is the 

services related to thermal loads with rebound that can be modeled and offered to 

the LEM; 

• Hospital and Fire Station: Priority loads of the power grid that have diesel 

cogeneration so that their supply is not affected by adverse grid conditions. These 

consumers may provide flexibility in very specific and well-studied situations since 

their energy demand is paramount at all times to perform their activities; 

• Fast or Slow EV Charging: Parking lots for charging electric vehicles. They have 

a high demand for electricity and in the future may offer energy to the grid through 

V2G as well as flexibility by encouraging the change of charging periods. 

The data regarding agents’ consumption contains one week of input data for every 15 

minutes of the week between 03/19/2017 and 03/25/2017. The single line diagram, taken 

from [50], of the 13-bus, 30kV medium voltage distribution network is presented in Figure 

16. 
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Figure 16 – Distribution Network Single-Line Diagram. Modified from [50] 

When proceeding with the data treatment several graphs regarding the behavior of the 

market loads can be made for analysis. It is presented in Figure 17 the total market 

demand. It is noticed in this graphic a daily demand pattern similar to the "Duck Curve" 

[51] with a large increase in consumption between 5 p.m. and 7 p.m. 
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Figure 17 – Distribution Network Load Demand 

Figure 18 presents the power demand per bus. One can notice in the graphic the similar 

behavior in the form of the "Duck Curve" in all buses, being the buses 13, 12, 9 and 7 

those that present the greatest demand for energy respectively. It should be noted that the 

demand corresponds to the energy consumption subtracted from the local generation. 

 

Figure 18 – Distribution Network Buses Load Demand 

Bus 13, with the highest power demand, is characterized for containing exclusively the 

Commercial Mall. Bus 12 contains office buildings with PV generation totally used 

locally. Bus number 9 is differentiated by the presence of a fire station while bus 7 presents 

several types of loads with emphasis on parking lots of slow EV charging. 
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Figure 19 presents the LEM generation alone. It is noticed the large energy generation 

at bar 12 referring to the PV panels present in one of the office buildings as well as at bars 

11 and 7 where the wind power plants are present. 

 

Figure 19 – Buses Generation  

With this daily data, the DSO will be able to simulate the optimal power flow and 

identify areas where possible congestion or voltage problems may occur. So, It will be able 

to demand flexibility services from the market to help solve problems in an economical, 

feasible and beneficial way for both parties. 

5.4.2. STUDY DESCRIPTION 

The objective of this study is considering the addition of the network model from 

BISITE laboratory to the previous problem. To this end the loads that each aggregator 

controls in the model were defined, these loads may eventually offer consumption 

reduction services when requested. Table 21 shows the loads that each aggregator controls 

and in which buses they are located.  
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Table 21 – Aggregators Load and Location 

Aggregator Type of Load Type of Service Buses Located 

i1 Residential Buildings Conventional Load 

Reduction 

7, 10 and 11  

i2 Residential Buildings Conventional Load 

Reduction 

3 and 8 

i3 Fast and Slow EV 

Charging Parks 

Conventional Load 

Reduction 

2, 5, 7 and 11 

c1 Shopping Mall, 

Hospital and Fire 

Station 

Load Reduction with 

Rebound   

3, 9 and 13 

c2 Office Buildings Load Reduction with 

Rebound   

2, 4, 5 and 12 

c3 Office Buildings Load Reduction with 

Rebound   

6, 7 and 9 

 

DSO controls the market with monthly contracts, in this case study the DSO 

demands flexibility in the periods with increased demand, when congestion, voltage and 

losses problems may arise. When analyzing Figure 17 referring to the total market demand, 

it is possible to notice an exponential increase in energy demand between 4p.m. and 7p.m. 

Thus, for this experiment it was defined, similarly to the previous experiment, that the 

DSO requires flexibility between 5p.m. and 6p.m. with one hour before and one hour after 

for the allowed rebound. To execute this study, the same three DR services were 

considered, one of which is Scheduled (denoted Sched) and the other two Conditional 

(referred to as Cond1 and Cond2). The reduction requested in the market clearing for each 

aggregator are then divided among the buses it has control.  
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To be able to measure the results and the best offers to be selected in the Market 

Clearing the free file type.m package MATPOWER was used to run the power flow of the 

network [52]. With MATPOWER, a open source tool for electric power system 

simulations and optimization [52], by indicating the input data regarding the network, the 

standard algorithm solves the power flow by Newton's method with a complete Jacobian 

matrix at each iteration and finally provides us with the optimal power flow of the network. 

Thus, with the data regarding the network, the power flow before and after the use of 

flexibility can be obtained, one can consider the reduction of losses and the reduction of 

congestion in the lines as a crucial factor in the choice of services offered by the 

aggregators and add this generated value to the fitness function of the problem.  

To identify the initial situation of the network, the power flow in the regulating 

periods were first simulated, without the reduction requested by the DSO.  This way it is 

possible to obtain an overview of the network and use this information to choose the best 

flexibility services to reduce network congestion. To perform the simulation with 

MATPOWER, as previously described, one must provide information about the grid such 

as number of buses, interconnections between buses, bus types, power flow limit, 

impedance, reactance, and resistance values as well as demand and generation in each 

node, among others. Some of the physical grid parameters as well as simulation base 

values are presented in Table 22. To carry out the network simulation it was used the 

average of the demand and generation values, whose data refer to 7 days, in order to 

mitigate possible atypical values in case a random day was chosen. After simulating the 

initial case the results referring to the nodes and branches are made available by 

MATPOWER and are displayed between Tables 23 and 30. 

Table 22 – Network Physical Parameters 

From 
Bus 

To Bus r(p.u) x(p.u) c(p.u) Power Flow  
Limit (p.u.) 

1 2 0.000026 0.000020 0.000000 11.40 

1 7 0.000051 0.000041 0.000000 11.40 

2 4 0.000108 0.000038 0.000000 8.31 

2 8 0.000086 0.000030 0.000000 8.31 

3 7 0.000065 0.000023 0.000000 8.31 

3 10 0.000086 0.000030 0.000000 8.31 



 62 

4 5 0.000151 0.000053 0.000000 8.31 

4 9 0.000065 0.000023 0.000000 8.31 

5 6 0.000108 0.000038 0.000000 8.31 

6 9 0.000043 0.000015 0.000000 8.31 

7 10 0.000645 0.000225 0.000000 8.31 

8 11 0.000108 0.000038 0.000000 8.31 

9 13 0.000108 0.000038 0.000000 8.31 

10 11 0.000043 0.000015 0.000000 8.31 

10 12 0.000301 0.000105 0.000000 8.31 

11 13 0.000032 0.000011 0.000000 8.31 

Voltage 
(kV) 

Base Power 
(MVA) 

Zbase 
(ohm) 

30 1 900 

 

Table 23 – Initial Network Bus Data (5p.m-5:15 p.m Period) 
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Table 24 - – Initial Network Branch Data (5p.m - 5:15 p.m Period) 

 

Table 25 - Initial Network Bus Data (5:15p.m -5:30p.m Period) 
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Table 26 - Initial Network Branch Data (5:15p.m -5:30p.m Period) 

 

Table 27 - Initial Network Bus Data (5:30p.m -5:45p.m Period) 
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Table 28 - Initial Network Branch Data (5:30p.m -5:45p.m Period) 

 

Table 29 - Initial Network Bus Data (5:45p.m -6p.m Period) 
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Table 30 - Initial Network Branch Data (5:45p.m -6p.m Period) 

 

Aiming to integrate this benefit of congestion reduction and line losses reduction, 

two additional factors were added to the fitness function (21), named Bus_Benefit (BusB) 

and Loss Benefit (LossB). This way the new fitness function of the problem becomes (22): 

F (𝑥′) = f (𝑥′) + ∑ 𝑔𝑖 ∗  𝑅𝐽
𝑗=1 - 𝐵𝑢𝑠𝐵 - 𝐿𝑜𝑠𝑠𝐵                      (22)                     

 Bus Benefit and Loss Benefit is the way to measure how much the choice of 

certain services during market clearing will contribute to reducing network congestion and 

reducing energy losses. For this purpose, the simulation of the initial network presented in 

Tables 23 to 30 was performed in order to identify the initial power flow and establish 

parameters that will serve as a basis for calculating the benefits. Considering every period t 

from regulating power periods R, the maximum power value found at any bus in the initial 

test (𝑃𝐹𝑖 ) will be compared with the maximum value found after the decrease in 

consumption caused by the DR (𝑃𝐹𝑓 ) for every period 𝑡 ∈  𝑅 , this difference will be 

multiplied by the benefit to the DSO (BBen) in running this market clearing.  To calculate 

LossB the sum of all losses in the initial test (𝐿𝑖) is compared with the sum after DR (𝐿𝑓) 

and finally multiplied by the benefit to the DSO for every period 𝑡 ∈  𝑅 .  These benefits 

are calculated according to equations 22 and 23. 

𝐵𝑢𝑠𝐵 =  𝐵𝐵𝑒𝑛 ∗ ∑(𝑃𝐹𝑖 − 𝑃𝐹𝑓 )

𝑡 ∈ 𝑅

 
(22) 
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𝐿𝑜𝑠𝑠𝐵 =  𝐿𝐵𝑒𝑛 ∗ ∑(𝐿𝑖 − 𝐿𝑓 )

𝑡 ∈ 𝑅

 

 

(23) 

In order to obtain the 𝑃𝐹𝑖  and 𝐿𝑖 parameters, the network without the consumption 

decrease after the Market Clearing is simulated, as done previously in this subsection. 

Simulations in each of the regulating power periods indicate higher power flow between 

buses 1 and 2 in period of 17:45h to 18h thus the value of 𝑃𝐹𝑖  refer to this period and 

branch being equal to 6.58 MW. Initial Losses values 𝐿𝑖 are 0.004, 0.004, 0.005 and 0.006 

for periods t equal 5, 6 ,7 and 8 respectively. 

Now that the new fitness function is defined, some of the EA used previously were 

applied to solve the problem. In this experiment, only the differential evolution (DE) 

variant DE/target-to best, the self-adaptive version of DE called HyDE-DF and the VS 

were selected, due to its success in the previous experiment.  After this first study a 

sensibility analysis of some parameters is applied in order to identify its interference in the 

study as well as test different scenarios. 

5.4.3. RESULTS ANALYSIS 

In this subsection three algorithms are compared (DE/target-to best, HyDE-DF and 

VS) in order to compare their performances. To perform the experiments, the best values 

of F and Cr found for the two DE algorithms in subsection 5.2.3 were used again. So that 

the objective function is evaluated the same number of times for all algorithms, 10000 

generations of individuals were performed. The population number NP of 10 was used. 

The convergence of the strategies over the generations is presented in Figure 20. The result 

becomes more negative throughout the iterations due to the minimization character of the 

study that continues. Again, in three cases the convergence rate is similar, they quickly 

slow down when near 500 generations with DE/target-to-best/1 faster than the other 

algorithms while VS was slower to converge. The three algorithms converge to very close 

results, the average convergence found in generation 10000 by DE/target-to-best/1 owns 

fitness of -2679.11, while fitness in HyDE-DF was -3015,73 and in VS was -2811,74. As 

the complexity of the problem increased, the results obtained were different when 
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comparing the algorithms. In the previous experiments differential evolution algorithms 

obtained the best results while in this experiment HyDE-DF and VS found better solutions. 

 

Figure 20 – Experiment 3: Convergence of each method 

The results are shown in Table 31, in which the mean and standard deviation of the 

values obtained in 10 runs are presented for each algorithm. Due to running MATPOWER 

every iteration the t/Run (s) increased with each run during around 20 minutes.   

Table 31 – Experiment 3: Results for each method (€) 

Method Fitness Reserve Cost Dispatch Cost Benefits/Penalties t/Run (s) 

DE -2679,11  ± 
108,23 

88,00  ± 101,11 -1521,6  ± 76,97 -1245,52  ± 129,73 1147 ± 
37 

Vortex -3015,73 ± 98,64 263,72 ± 
150,24 

-1786,81 ± 
691,88 

-1492,64 ± 907,69 1150 ± 
27 

HyDE-DF -2811,74 ± 64,28 190,4 ± 172,42 -1443,83 ± 
189,76 

-1558,31 ± 363,20 1210 ± 
24 

Figures 21, 22 and 23 were elaborated, they graphically demonstrate the best result 

obtained among all runs for DE/target-to-best/1, HyDE-DF and VS respectively. Figure 21 

is related to the DE/target-to-best/1 9th run, which fitness is -2821,3 with RC = 100,0 and 

DC = -1510,0 and the part referring to benefit and penalties equal to -1411,26. As the 

previous experiments, a conditional service, Cond2, was selected in the market clearing. 

One block was selected of the thermostatically controlled loads aggregators, which is block 

d1 from aggregator c2.  Aggregator i2 was cleared completely in all up-regulating periods 

while aggregator i1 and i3 were activated alternatingly. DSO request was attended in all 

regulating periods while rebound limit was respected as well. 
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Figure 21 – Experiment 3: DE/target-to-best/1 Upward and Downward Regulation 

Figure 22 is related to the HyDE-DF 9th run, which best fitness among all runs and 

algorithms, of -3151,1, was obtained. RC = 340,05 and DC = -1248,4 and benefit/penalties 

equal to -2242,75. Different from previous experiments, the scheduled service, Sched, was 

selected in the market clearing. Two blocks were selected of the thermostatically 

controlled loads aggregators, which are block d2 from aggregator c1 and block d1 from 

aggregator c2.  All conventional aggregators were cleared in the market up regulating 

periods as well as in some rebound periods. Due to the fact that block d1 of aggregator c2 

presents -30kW of rebound it was necessary to use the conventional aggregators in this 

period in order to respect the allowed rebound limit of 25kW. 
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Figure 22 - Experiment 3: HyDE-DF Upward and Downward Regulation 

Figure 23 is related to the VS 2nd run, which best fitness among all runs, of -

2993,35 was obtained, with RC = 425,00 and DC = -1111,58 and benefit/penalties equal to 

-2306,78. As well as HyDE-DF algorithm the scheduled service Sched, was selected in the 

market clearing, but with two different blocks of the thermostatically controlled loads 

aggregators.  Block d1 from aggregator c2 and block d4 from aggregator c3 were selected.  

Again, all conventional aggregators were cleared in the market up regulating periods, in 

order to reach the 100kW DSO request, as well as in some rebound periods to compensate 

the rebound in excess of what is permitted. 
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Figure 23 – Vortex Search Upward and Downward Regulation 

5.5. EXPERIMENT 4: PARAMETERS SENSIBILITY ANALYSIS 

In order to evaluate the impact of certain parameters on the final result obtained by 

the algorithms in Market Clearing, in this case study a sensitivity analysis was designed. 

This type of analysis seeks to estimate the result generated by changes in the parameters or 

activities of a procedure, thereby measuring the degree of sensitivity of the process to a 

change. In other words, in the sensitivity analysis, several different variables are tested to 

understand the effect that each one produces at the end of the process. For this study some 

of the variables from the previous study were changed individually and the DE/target-to-

best/1 and HyDE-DF algorithms were used to find the solutions as well as the same 

number of generations, 10000, and NP of 10. Four parameters were identified as of interest 

for sensitivity analysis, these being the DSO request (𝐷𝑝𝑡
𝑅𝑒𝑔

), the allowed rebound (𝐷𝑝𝑡
𝑅𝑒𝑏

), 

the DR capacity of each aggregator (𝑃𝑝𝑖𝑡
𝐶𝑜𝑛) and the Bus Benefit (BBen). Table 32 details 

the variations used for each of these parameters in the tests. 

Table 32 – Experiment 4 Sensibility Analysis Parameters 

Sensibility Analysis Parameters 

Changed Parameter Variation 

Value 1 Value 2 Initial Test Value 3 Value 4 

DSO REQUEST (kW) 50 75 100 125 150 

REBOUND (kW) 0 12,5 1 37,5 50 

DR CAPACITY (kW) 25 37,5 50 75 100 

BUS (€) 200 400 800 1600 3200 
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5.5.1. DSO REQUEST SENSIBILITY ANALYSIS 

The first sensitivity analysis test refers to the variation of the parameter (𝐷𝑝𝑡
𝑅𝑒𝑔

), its 

function is to indicate the amount of up regulation the DSO demands in the pre-established 

periods. In the initial study case, the demand was 100kW for each of the regulating 

periods, so this parameter was varied and simulated for values of 50, 75, 125 and 150 kW 

to verify how the variation of the DSO demand impacts the results obtained.  

Table 33 presents the mean and standard deviation of the main values in the 10 runs 

performed by the DE/target-to-best/1 algorithm while Table 34 presents the results 

obtained using HyDE-DF algorithm. With the results it is possible to see that the best 

fitness values were found the lower the DSO request, this result can be explained by 

checking the reserve cost and dispatch cost values. Due to the fact that less energy is 

demanded while the parameters  𝐶𝑝
𝑅,𝐷𝑆𝑂

and   𝐶𝑝
𝐷,𝐷𝑆𝑂  regarding the DSO benefit remain 

unchanged, it created this difference in the fitness value when the lower demand for load 

reduction. Another important result is that the benefits related to the network reached in the 

experiment are better with 125 kW than with 150 kW of request. It is also important to 

note that for all levels of DSO Request the HyDE-DF algorithm found better solutions. 

Table 33 – DE/target-to-best/1 DSO Request Sensibility Analysis Results (€) 

DSO Request  Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

50 kW -3452,05  ± 253,36 -150,00  ± 83,66 -2138,3  ± 192,09 -1163,75  ± 509,57 

75 kW -2978,82 ± 117,70 36,12 ± 142,01 -1738,48 ± 285,45 -1276,46 ± 482,81 

100 kW -2679,11  ± 108,23 88,00  ± 101,11 -1521,6  ± 76,97 -1245,52  ± 129,73 

125 kW -2323,29 ± 135,12 278,13 ± 102,00 -1240,06 ± 88,57 -1361,38 ± 69,47 

150 kW -2385,91 ± 114,47 441,65 ± 109,17 -1882,43 ± 44,80 -945,13 ± 103,99 

  

Table 34 – HyDE-DF DSO Request Sensibility Analysis Results (€) 

DSO Request  Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

50 kW -3972,48  ± 91,53 5,51  ± 42,37 -1788,58  ± 53,37 -2191,42  ± 17,14 

75 kW -3457,11  ± 119,32 187,17  ± 41,55 -1455,65  ± 78,61 -2198,64  ± 30,27 

100 kW -2811,74 ± 64,28 190,4 ± 172,42 -1443,83 ± 189,76 -1558,31 ± 363,20 

125 kW -2729,87 ± 40,62 259,80 ± 70,97 -2370,23 ± 80,27 -619,44 ± 38,77 

150 kW -2418,86 ± 42,88 391,98 ± 61,29 -1042,01 ± 43,52 -1768,83 ± 46,69 
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Tables 35 and 36 were elaborated looking for demonstrate the best result obtained 

among all runs for each performed test. These tables present the best result, in which run it 

was obtained and the selected service and blocks. The best fitness value was found to be - 

with DSO request equal to 50kW for both algorithms, where its value is -4077.1 on the 

first run of DE/target-to-best/1 algorithm and -4113,7 on the fifth run of HyDE-DF. All 

three service types were selected in both tests, only blocks from aggregator c1 were picked 

in the DE/target-to-best/1 test while aggregator c2 was selected along c1 in HyDE-DF. 

Table 35 – DE/target-to-best/1 DSO Request Sensibility Analysis Best Run Results 

DSO Request (kW) 50 75 125 150 

Fitness Value (€) -4077,1 -3098,5 -2492,2 -2554,2 

Run 1 1 7 9 

Zp 1 3 3 2 

Selected  
Blocks 

c1 -> d3 c1 -> d3 2x c1 -> d1 c1 -> d3 

  

Table 36 - HyDE-DF DSO Request Sensibility Analysis Best Run Results 

DSO Request (kW) 50 75 125 150 

Fitness Value (€) -4113,7 -3741,5 -2778,6 -2480 

Run 5 4 3 6 

Zp 1 1 2 3 

Selected  
Blocks 

c2 -> d1 c1 -> d2 
c2 -> d1 

c2 -> d1 c1 -> d2 
c2 -> d1 

 

Figures 24 and 25 were elaborated looking for demonstrate graphically the best 

result obtained among all runs for each performed test. It can be seen that the higher the 

DSO demand, the more diversified are the services and aggregators chosen. This can be 

noted easily in DE/target-to-best/1, because when the DSO request is equal to 50kW only 3 

aggregators provide the service, being entirely responsible for the demand in the period, 

while in tests with higher DSO request the Market Clearing aggregator selection is more 

diversified and the risk of non-delivery is mitigated. In HyDE-DF this characteristic is less 

evident but can also be noted, while only three aggregators were selected in the test with a 

50kW request, five aggregators were selected when the request was for 150kW. 
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Figure 24 - DE/target-to-best/1 DSO Request Sensibility Analysis Upward and Downward 

Regulation 

 

 

Figure 25- HyDE-DF DSO Request Sensibility Analysis Upward and Downward Regulation 
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5.5.2. ALLOWED REBOUND SENSIBILITY ANALYSIS 

The second sensitivity analysis performed refers to the variation of the parameter 

(𝐷𝑝𝑡
𝑅𝑒𝑏

), its function is to indicate the amount of rebound allowed by the DSO in the pre-

established periods. In the initial study case, the allowed rebound was 25 kW for each of 

the rebound periods, in this test this parameter was varied and simulated for values of 0, 

12.5, 37.5 and 50 kW to verify how the variation of the allowed rebound impacts the 

selection of services and the results obtained.  

Table 37 presents the mean and standard deviation of the main values in the 10 runs 

performed by the DE/target-to-best/1 algorithm. It is interesting to note that varying this 

parameter does not cause much distortion in the fitness values obtained since they all 

remain around -2500 and -3000. 

Table 37 – DE/target-to-best/1 Allowed Rebound Sensibility Analysis Results (€) 

Rebound (kW) Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

0 -2597,50  ± 106,53 -107,12  ± 95,66 -1385,6  ± 53,98 -1319,00  ± 133,21 

12,5 -2758,85  ± 93,31 -112,80  ± 91,39 -2447,74  ± 36,80 -423,91  ± 128,39 

25  -2679,11  ± 108,23 88,00  ± 101,11 -1521,6  ± 76,97 -1245,52  ± 129,73 

37,5 -2970,34  ± 83,01 325,91  ± 176,35 -1440,76  ± 502,63 -1855,49  ± 724,49 

50  -2799,71 ± 158,44 153,51 ± 116,42 -1691,93 ± 185,12 -1261,29 ± 352,66 

Table 38 presents the mean and standard deviation of the main values in the 10 runs 

performed by the HyDE-DF algorithm. Again, it is noted that varying this parameter does 

not cause much distortion in the fitness values obtained. Another important remark is that 

for all values, but 𝐷𝑝𝑡
𝑅𝑒𝑏

 =  50𝑘𝑊 , HyDE-DF reached better solutions. 

Table 38 – HyDE-DF Allowed Rebound Sensibility Analysis Results (€) 

Rebound(kW) Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

0 -2648,94  ± 84,93 -202,56  ± 138,92 -1311,3  ± 182,67 -1540,2  ± 235,90 

12,5 -2837,46  ± 44,58 119,89  ± 63,95 -2502,07  ± 40,86 -455,28  ± 34,94 

25 -2811,74 ± 64,28 190,4 ± 172,42 -1443,83 ± 189,76 -1558,31 ± 363,20 

37,5 -3234,73  ± 145,79 344,61  ± 40,77 -1309,13  ± 95,40 -2270,21  ± 32,85 

50 -2351,64 ± 132,01 465,91 ± 108,84 -965,71 ± 167,25 -1851,84 ± 145,18 

 

Tables 39 and 40 presents the best result, in which run it was obtained and the 

selected service and blocks for both algorithms. The best fitness value found by DE/target-

to-best/1 was -3149.6 on the first run with 𝐷𝑝𝑡
𝑅𝑒𝑏

 = 50kW. In this run three blocks were 
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selected, block d1 from aggregator c1 two times and block d2 from aggregator c3.   Again, 

all three service types were selected as well as blocks from aggregators c1, c2 and c3 were 

utilized. 

Table 39 – DE/target-to-best/1 Allowed Rebound Sensibility Analysis Best Run Results 

Rebound (kW) 0 12,5 37,5 50 

Fitness Value(€) -2727,1 -2869,3 -3093,2 -3149,6 

Run 8 10 1 1 

Zp 3 2 1 1 

Selected  
Blocks 

x x c2 -> d1 
c3 -> d1 

2x c1 ->d1 
c3 -> d2 

HyDE-DF found the best solution of -3423.0 on the third run with 𝐷𝑝𝑡
𝑅𝑒𝑏

 = 37.5 kW. 

In this run three blocks were selected, block d1 from aggregator c1 two times and block d1 

from aggregator c2.   Again, all three service types were selected as well as blocks from 

aggregators c1, c2 and c3 were utilized demonstrating the feasibility of participation of all 

aggregators in the market. 

Table 40 - HyDE-DF Allowed Rebound Sensibility Analysis Best Run Results 

Rebound (kW) 0 12,5 37,5 50 

Fitness Value(€) -2777,9 -2893,5 -3423 -3319 

Run 6 10 3 1 

Zp 3 2 1 1 

Selected  
Blocks 

x c2 -> d1 2x c1 -> d1 
c2 -> d1 

c1 ->d1 
c2 -> d1 
c3 -> d1 

 

Figure 26 was elaborated looking for graphically demonstrate the best result 

obtained by DE/target-to-best/1 among all runs for each performed test. Due to the rebound 

limitations when 𝐷𝑝𝑡
𝑅𝑒𝑏

 =  0 𝑘𝑊 and 𝐷𝑝𝑡
𝑅𝑒𝑏

 =  12,5 𝑘𝑊 only conventional aggregators were 

selected. On the other hand, when the allowed rebound was bigger than the initial case, the 

reached fitness value was greater and more blocks from thermostatically controlled loads 

aggregators were selected. 
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Figure 26 – DE/target-to-best/1 Allowed Rebound Sensibility Analysis Upward and Downward 

Regulation 

Figure 27 was elaborated looking for graphically demonstrate the best result 

obtained by HyDE-DF among all runs for each performed test. Due to the rebound 

limitations when 𝐷𝑝𝑡
𝑅𝑒𝑏

 =  0 𝑘𝑊 only conventional aggregators were selected while when 

𝐷𝑝𝑡
𝑅𝑒𝑏

 =  12,5 𝑘𝑊 conventional aggregators were activated in the rebound periods in order to 

compensate the excessive rebound. When the allowed rebound was bigger than the initial 

case, solutions obtained were greater with more diversity of aggregators selection and 

more blocks from thermostatically controlled loads aggregators utilized. 
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Figure 27 - HyDE-DF Allowed Rebound Sensibility Analysis Upward and Downward Regulation 

5.5.3. DR CAPACITY SENSIBILITY ANALYSIS 

The third sensitivity analysis performed refers to the variation of the parameter  

𝑃𝑝𝑖𝑡
𝐶𝑜𝑛 , its function is to indicate the amount of load reduction each conventional aggregator 

i can deliver in each period. In the initial study case, the maximum load reduction each 

aggregator could provide per period was 50 kW, in this test this parameter was varied and 

simulated for values of 25, 37.5, 75 and 100 kW to verify how this the variation impact the 

selection of services and the results obtained.  

Tables 41 and 42 presents the mean and standard deviation of the main values in 

the 10 runs performed by algorithms DE/target-to-best/1 and HyDE-DF respectively. In 

relation to the fitness values obtained it is noted that no major variations occur as well as in 

reserve cost values. Meanwhile, there were significant variations in Dispatch Cost and 

Benefits that offset each other and did not significantly change the fitness value. 

Table 41 – DE/target-to-best/1 DR Capacity Sensibility Analysis Results (€) 

DR Cap.(kW) Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

25 -2726,25  ± 75,07 255,10  ± 68,91 -1663,37  ± 63,47 -1317,99  ± 60,29 

37,5 -2724,74  ± 82,06 176,53  ± 103,95 -2468,36  ± 459,46 -432,92  ± 556,45 

50 -2679,11  ± 108,23 88,00  ± 101,11 -1521,6  ± 76,97 -1245,52  ± 129,73 

75 -2610,92  ± 124,60 38,44  ± 39,47 -2471,95  ± 113,09 -177,41  ± 102,00 

100 -2769,48 ± 50,93 5,03 ± 15,09 -1503,98 ± 77,04 -1270,25 ± 123,25 
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Table 42 - HyDE-DF DR Capacity Sensibility Analysis Results (€) 

DR Cap.(kW) Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

25 -3077,08  ± 46,85 455,15  ± 29,15 -1228,83  ± 31,98 -2303,40  ± 8,68 

37,5 -3009,55 ± 113,68 341,71  ± 141,88 -1624,15  ± 660,45 -1727,11  ± 858,73 

50 -2811,74 ± 64,28 190,4 ± 172,42 -1443,83 ± 189,76 -1558,31 ± 363,20 

75 -2966,3  ± 110,52 177,64  ± 124,81 -2195,6  ± 641,89 -948,33  ± 855,11 

100 -2929,14 ± 90,11 263,73 ± 145,33 -1291,46 ± 239,99 -1901,42 ± 411,36 

 

Table 43 presents the best results obtained among all runs of DE/target-to-best/1. 

The best fitness value found was -2869.6 on the third run with 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛 = 37,5 kW. In this run 

service Cond2 was selected along with block d1 from aggregator c2.   This time, Sched 

service was not selected in any of the best runs while blocks from all aggregators were 

delivered. 

Table 43 - DE/target-to-best/1 DR Capacity Sensibility Analysis Best Run Results 

DR (kW) 25 37,5 75 100 

Fitness Value(€) -2766,8 -2869,3 -2818,9 -2809,3 

Run 3 3 5 8 

Zp 3 2 2 3 

Selected  
Blocks 

c2 -> d2 
c3 -> d3 

c2 -> d1 c1 -> d1 - 

Table 44 presents the best results obtained among all runs of HyDE-DF. The best 

fitness value found was -3182.4 on the second run with 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛 = 37,5 kW. In this run, 

different from DE/target-to-best/1, service Sched was selected along with blocks d2 and d1 

from aggregators c1 and c2 respectively. This time, Cond1 and Cond2 services were not 

selected in any of the best runs while blocks from aggregator c3 were not cleared. 

Table 44 - HyDE-DF DR Capacity Sensibility Analysis Best Run Results 

DR (kW) 25 37,5 75 100 

Fitness Value (€) -3121,1 -3182,4 -3174,8 -3180,1 

Run 2 2 4 10 

Zp 1 1 1 1 

Selected  
Blocks 

2x c1 -> d2 
c2 -> d1 

c1 -> d2 
c2 -> d1 

c1 -> d2 
c2 -> d1 

c1 -> d2 
c2 -> d1 
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Figure 28 was elaborated looking for graphically demonstrate the best result 

obtained among all DE/target-to-best/1 runs for each performed test. The interesting 

analysis of this sensibility case is that due to the load reduction limitations when 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛  =

 25 𝑘𝑊 blocks d2 from aggregator c2 and d3 from aggregator c3 were selected so the DSO 

request is satisfied. While, when the 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛  =  100 𝑘𝑊  only conventional aggregators were 

delivered to satisfy the DSO demand. 

 

 

Figure 28 – DE/target-to-best/1 DR Capacity Sensibility Analysis Upward and Downward 

Regulation 

Figure 29 was elaborated looking for graphically demonstrate the best result 

obtained among all HyDE-DF runs for each performed test. Again, due to the load 

reduction limitations of conventional aggregators when 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛  =  25 𝑘𝑊, blocks from 

thermostatically controlled loads aggregators were necessary cleared in order to satisfy the 

DSO request. Different from DE/target-to-best/1, HyDE-DF selected thermostatically 

controlled loads aggregators when 𝑃𝑝𝑖𝑡
𝐶𝑜𝑛  =  100 𝑘𝑊  and reached better results. 
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Figure 29 - HyDE-DF DR Capacity Sensibility Analysis Upward and Downward Regulation 

 

5.5.4. BUS BENEFIT SENSIBILITY ANALYSIS 

The fourth and final sensitivity analysis performed refers to the variation of the 

parameter BBen, its function is to quantify the benefit to the distribution network by 

delivering the DR. In the initial study case BBen was equal 800, in this test this parameter 

was varied and simulated for values of 200, 400, 1600 and 3200 to verify how this the 

variation impact the selection of services and the results obtained.  

Tables 45 and 46 presents the mean and standard deviation of the main values in 

the 10 runs performed by the DE/target-to-best/1 and HyDE-DF algorithms respectively. It 

can be seen from the results that the variation of this parameter causes large changes in the 

fitness value because this variation causes great variation in the benefit/penalty values 

making the other parameters impact reduced.   

Table 45 – DE/target-to-best/1 Bus Benefit Sensibility Analysis Results (€) 

Bus Benefit Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

200 -1094,74  ± 78,30 57,97  ± 96,33 -1509,24  ± 67,34 356,52  ± 89,26 

400 -1615,15 ± 104,82 83,71 ± 91,30 -1579,69 ± 105,19 -119,17 ± 171,12 

800 -2679,11  ± 108,23 88,00  ± 101,11 -1521,6  ± 76,97 -1245,52  ± 129,73 

1600 -5090,25  ± 83,15 188,99  ± 114,93 -2445,6  ± 438,35 -2846,4  ± 530,49 

3200 -9698,72 ± 110,56 222,20 ± 99,56 -2458,13 ± 440,77 -7462,80 ± 527,88 
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Table 46 – HyDE-DF Bus Benefit Sensibility Analysis Results (€) 

Bus Benefit Fitness Reserve Cost Dispatch Cost Benefits/Penalties 

200 -1303,16  ± 111,88 377,12  ± 92,72 -1277,55  ± 169,36 -452,72  ± 273,52 

400 -1615,15  ± 104,82 296,36  ± 153,66 -1626,13  ± 612,41 -285,38  ± 741,57 

800 -2811,74 ± 64,28 190,4 ± 172,42 -1443,83 ± 189,76 -1558,31 ± 363,20 

1600 -5287,53  ± 99,33 320,23  ± 150,53 -1619,75  ± 662,99 -3988,01  ± 859,76 

3200 -9820,57 ± 128,18 373,35 ± 101,78 -1261,25 ± 179,99 -8932,35 ± 357,76 

Table 47 presents the best results obtained among all runs of DE/target-to-best/1. 

The best fitness value found was -9871.1 on the tenth run with BBen = 3200. In this run 

service Cond1 was selected along with blocks d1 from aggregator c2 and c3.   This time 

again Sched service was not selected in any of the best runs while blocks from all 

aggregators were delivered. It was noticed that BBen value has a great impact in the fitness 

value and service selection. 

Table 47 – DE/target-to-best/1 Bus Benefit Sensibility Analysis Best Run Results 

Bus Benefit (€) 200 400 1600 3200 

Fitness Value(€) -1187,1 -1717,4 -5250,4 -9871,1 

Run 6 6 5 10 

Zp 3 3 2 2 

Selected  
Blocks 

x x c1 -> d1 
c2 -> d2 

c2 -> d1 
c3 -> d1 

Table 48 presents the best results obtained among all runs of HyDE-DF. The best 

fitness value found was -10024.0 on the third run with BBen = 3200. In this run service 

Sched was selected along with blocks d1 from aggregator c1 and d2 from aggregator c2. 

This time, totally different from DE/target-to-best/1 simulation, only the Sched service was 

selected in the best performance among the runs while Cond1 and Cond2 were not present. 

It was noticed that besides the best performance service being always the same, the choice 

of blocks followed the same trend with blocks d1 and d2 from aggregators c1 and c2 being 

cleared in the market. 
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Table 48 - HyDE-DF Bus Benefit Sensibility Analysis Best Run Results 

Bus Benefit (€) 200 400 1600 3200 

Fitness Value(€) -1449,6 -2038,1 -5471,4 -10024 

Run 3 3 7 3 

Zp 1 1 1 1 

Selected  
Blocks 

c1 -> d1 
c2 -> d2 

c1 -> d1 
c2 -> d2 

c1 -> d1 
c2 -> d2 

c1 -> d1 
c2 -> d2 

 

Figures 30 and 31 were elaborated looking for graphically demonstrate the best 

result obtained among all runs for each performed test. The interesting analysis of this 

sensibility test is that for BBen equal 200 and 400 the best result was exactly the same and 

only conventional aggregators were chosen while for BBen 1600 and 3200 the variety of 

selection was bigger and in rebound periods conventional aggregators were activated. 

While this activation aggregates in the costs of the market clearing, it was necessary in 

order to guarantee the allowed rebound limits. 

 

Figure 30 – DE/target-to-best/1 Bus Benefit Sensibility Analysis Upward and Downward 

Regulation 
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Figure 31 - HyDE-DF Bus Benefit Sensibility Analysis Upward and Downward Regulation 

5.6. CASE STUDY FINAL REMARKS 

In the proposed LEM, the best combination of bids and offers must be found so the 

equilibrium price is reached and the participants adequate their products in order to 

decrease the costs and maximize profits. In experiment 1 the impact of the DE parameters 

using the DE/rand/1 and DE/target-to-best/1 algorithms were analyzed to know the best 

combination of these for carrying out the tests. In the second part, tests were made, and the 

results obtained from the optimization problem were collected. Assessing the impact of 

each of the DE parameters tests were formulated whose intention was to identify the best 

combination of the parameters F, Cr, NP and G for DE/rand/1 and DE/target-to-best/1. 

Three tests were performed, the first of which referring to the parameters F and Cr, the 

second referring the NP parameter and the third to the number of generations (G). F = 1 for 

both algorithms and Cr = 0.2 and Cr =0.1 for DE/rand/1 and DE/target-to-best/1 

respectively were the best parameters reached. Np = 70 and G = 3500 were the best-found 

parameters as well. After that, other algorithms such as VS, HyDE and HyDE-DF were 

used to offer a comparison of performance. Analyzing, DE algorithms converged faster 

and to better results. The purpose of Experiment 2 was to identify the difference in the 

Market Clearing results and test the scalability of the algorithms when adding aggregators 

and their offers to the market. DE/rand/1 and VS converged faster than the others 
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algorithms tested and DE algorithms found better fitness values. Compared to experiment 

1 all algorithms obtained better results. 

 In Experiment 3, a 13-bus distribution network with a 30MVA substation and 

several distributed generation units was considered. The objective of this study was 

considering the addition of the BISITE mockup model network to the previous problem. 

To perform this experiment a new fitness function was formulated. With respect to the 

results DE/target-to-best/1 converged faster than the other algorithms while VS was slower 

to converge. HyDE-DF has obtained the best result among the algorithms. By again 

reaching good results the goal of adding the network was achieved. In Experiment 4, four 

parameters were identified as of interest for sensitivity analysis, these being the DSO 

request (𝐷𝑝𝑡
𝑅𝑒𝑔

), the allowed rebound (𝐷𝑝𝑡
𝑅𝑒𝑏

), the DR capacity of each aggregator (𝑃𝐶𝑜𝑛
𝑈𝑝

) and 

the Bus Benefit (BBen). In order to evaluate the impact of certain parameters on the final 

result obtained by the algorithms in Market Clearing, this case study measured the degree 

of sensitivity of the process by changing the parameters. After the tests was identified that 

BBen and 𝐷𝑝𝑡
𝑅𝑒𝑔

, while the parameters 𝐷𝑝𝑡
𝑅𝑒𝑏

 and 𝑃𝐶𝑜𝑛
𝑈𝑝

 show a lower sensitivity. 
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6. CONCLUSIONS 

This chapter presents the conclusions of this work. Section 6.1 exhibit the 

developed work and highlight the contributions and conclusions about it. Section 6.2 

presents some limitations of the work as well as some ideas for future developments of the 

case studies presented in the Thesis. 

6.1. CONTRIBUCTIONS AND CONCLUSIONS 

The work done in this dissertation focused on studying the use of flexibility in 

LEMs and the way these products can be transformed into services to solve problems in 

the distribution network. In this case, the objective of the work was to present the state of 

the art of the changes that have been occurring in the energy markets, the factors that led to 

these changes and, finally, to present solutions such as LEM and to test a model by means 

of case studies. Overall, it was concluded that LEMs are a great way to integrate RER and 

load flexibility and that several prerogatives and roles should be defined in the formulation 

of a LEM. Furthermore, it was found that evolutionary algorithms have great value and can 

be a good alternative in simulating Market Clearing in LEMs that may demand large 

computational capacity. 

Initially, in order to contextualize the problem, the concepts of DG and load 

flexibility as well as their different types and categories were presented. Next, the possible 
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problems faced by distribution networks due to the large penetration of DG were presented 

as well as the direct and indirect methods feasible to solve the problem. One of the 

methods presented is the LEM, it was presented why this idea seeks to integrate DG, 

flexibility and the end-user's greater participation in the market in an economical and 

efficient manner. Then in chapter 3 the LEM concept was detailed in order to elucidate its 

proposal and present possible benefits and barriers to be faced when adopting this type of 

market. Next, several prerequisites that must be analyzed when implementing an LEM in 

order for it to be operational were elucidated. Finally, the various stakeholders involved in 

the market were presented in order to show the services they can offer, their role in the 

market, and the interactions among them in the context of LEM. 

In the first experiment, different DE strategies were used to execute a flexibility 

contract market in a proposed LEM model. Tests of DE parameters, F, Cr and NP, were 

accomplished to verify their influence in the obtained results and subsequently to use the 

best combination of them. With this analysis, it can be seen that the choice of parameters 

significantly impacts the results obtained. Also, it can be concluded that each DE strategy 

has a different set of optimal parameters that lead to good performance. After that, DE 

algorithms were compared with other algorithms, namely VS, HyDE and HyDE-DF, to 

compare the results obtained and the convergence time to the best solutions. In the 

comparison, better fitness values were obtained with the tuned DE strategies than with the 

self-parameter tuning algorithms, with similar execution times for all of them. Despite its 

good performance, the tested algorithms were not able to reach the optimal fitness value 

found by the linear method. Then in the second experiment two more aggregators were 

added to the market in order to increase competition in the market and to test the scalability 

of the algorithms. It was verified that the addition of new aggregators was beneficial to the 

solution of the problem, all algorithms tested obtained better solutions when compared to 

experiment 1 and converged quickly. 

Regarding experiment 3 there was an expansion of the problem with the addition of 

a distribution network to the model. By adding this network its parameters were defined, as 

well as the interaction of the aggregators with the network and finally the fitness function 

of the problem was adjusted in order to consider the benefits of DR to the network. With 

the execution of the tests, it was confirmed the viability of using the evolutionary 

algorithms to perform the market clearing even with the increase of the problem's 
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complexity since all of them quickly converged to optimal solutions. Finally In Experiment 

4 the sensitivity test of the parameters was performed, resulting in the identification of a 

high sensitivity for the parameters BBen and 𝐷𝑝𝑡
𝑅𝑒𝑔

, while the parameters 𝐷𝑝𝑡
𝑅𝑒𝑏

 and 

𝑃𝐶𝑜𝑛
𝑈𝑝

 show a lower sensitivity. In relation to the performance of the algorithms, there were 

changes in the pattern as the experiments progressed with DE algorithms reaching better 

results in the experiments 1 and 2 while in experiments 3 and 4 when the problem was 

more complex HyDE-DF and VS performed better. Finally, it can be stated that the 

objectives proposed in Section 1.2 were achieved since the simulations went well and good 

results were obtained. 

 

6.2. LIMITATIONS AND FUTURE WORK 

LEM is a topic with a lot of interest in view of the need for change in the energy 

markets. In this way the work developed can be the target of future improvements in order 

to obtain more realistic and accurate results. In order to improve the work some 

modifications, tests and additions can be made, such as: 

• Use actual values regarding aggregator costs, energy costs, DSO benefits, 

etc. In order to make the simulation closer to reality. 

• Create new types of aggregators and services offered in order to make the 

market more complete. 

• Use a larger and more detailed city, with more charging stations and a 

differentiated focus on V2G service. 

• Expand the scalability test and simulate the market clearing with many 

more aggregators. 

• Improve decision method that defines in which bus the aggregator will 

decrease energy consumption. 
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Appendix – Case Study: List of Variables and 

Parameters 

i Conventional aggregator 

c Thermostatically controlled load aggregator 

t Period 

d Asymmetric block offer 

R𝐶𝑝 Reserve cost (€) 

𝐷𝐶𝑝 Dispatch cost (€) 

𝑃𝑝 Daily probability of activation of the service p 

𝑃𝑝𝑖𝑡 Conventional aggregator upward regulation (kW) 

𝑃𝑝𝑖𝑡
𝐶𝑜𝑛 Conventional aggregator upward regulation upper limit (kW) 

𝑄𝑝𝑐𝑑𝑡
𝐷𝑅  Block d response at each time t (kW) 

𝑠𝑝𝑡  Amount of rebound at each time t (kW) 

𝑧𝑝  Binary variable that indicates which of the services has been selected  

𝑚𝑝𝑐𝑑 Indicate which block d is selected 

𝐵𝑝𝑐𝑑
𝐷𝑅  Number of granular blocks 

𝐶𝑝𝑖𝑡
𝑅,𝐶𝑜𝑛

 Reserve component cost (€/ kW) for unit i to meet service p at time t 

𝐶𝑝𝑐𝑑
𝑅,𝐷𝑅

 Reserve cost of the block d (€) 
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𝐶𝑝t
𝑅,Reb

 Reserve cost per kW of rebound (€/ kW) 

𝐶𝑝
𝑅,𝐷𝑆𝑂

 Reserve component DSO Benefit (€) 

𝐶𝑝𝑖𝑡
D,𝐶𝑜𝑛

 Dispatch component cost (€/ kW) for unit i to meet service p at time t 

𝐶𝑝𝑐𝑑
D,𝐷𝑅

 Dispatch cost of the block d (€) 

𝐶𝑝t
D,Reb

 Dispatch cost per kW of rebound (€/ kW) 

𝐶𝑝
D,𝐷𝑆𝑂

 Dispatch component DSO Benefit (€) 

𝐷𝑝𝑡
𝑅𝑒𝑔

 DSO up-regulation requirement at each time t (kW) 

𝐷𝑝𝑡
𝑅𝑒𝑏 Allowed rebound at each time t (kW) 

𝐵𝑢𝑠𝐵 Bus benefit clearing the market (€) 

𝐿𝑜𝑠𝑠𝐵 Loss benefit clearing the market (€) 

𝑃𝐹𝑖  Maximum power flow value from the initial test (kW) 

𝑃𝐹𝑓  Maximum power flow value after market clearing (kW) 

𝐵𝐵𝑒𝑛 Bus benefit factor 

𝐿𝑖  Power losses from the initial test (kW) 

𝐿𝑓  Power losses after market clearing (kW) 

𝐿𝐵𝑒𝑛 Loss Benefit Factor 

NP DE Population Number 

G DE Number of generations 

F DE mutation operator 
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Cr DE recombination operator 
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