
Testes End to End em Microserviços

DANIEL CANASTRO DIAS
Outubro de 2021

End to End Testing in Microservices

Daniel Canastro Dias

Dissertation to obtain the Master’s degree in Informatics Engineering,
Specialization in Software Engineering

Advisor: Alberto Sampaio

Co-advisor: Isabel Sampaio

Porto, 2021

ii

iii

Dedication

In dedication to all student workers who build their own future with extra sweat and blood

and tears. You are all almost free too.

iv

v

Abstract

The microservices architecture is a recent trend in the software engineering community, with

the number of research articles in the field increasing, and more companies adopting the

architectural style every year. However, the testing aspect of this architecture can sometimes

be overlooked, with a lack of guidelines for its execution. Also, microservices testing introduce

a lot of different challenges that are not faced when following a monolithic architecture.

This work aims to fill some gaps in current microservices testing research by providing a study

of five existing service virtualization tools, implementing them in a company system and

extracting the results of the tool properties identified through a survey delivered to a

convenience sample of software development experts.

Finally, the mentioned experts in the microservices field validated the results of the research

and the tool identified as the best and provided insights regarding the value of this work.

Key Words: End-to-End Testing, Microservice Architecture, Service Virtualization

vi

vii

Resumo

A arquitetura de micros serviços é uma tendência recente na comunidade de engenharia de

software, com o número de artigos na área a aumentar e mais empresas a adotar o estilo

arquitetónico a cada ano. No entanto, a área dos testes end-to-end desta arquitetura pode às

vezes ser esquecido. Além disso, os testes de micros serviços apresentam muitos desafios

diferentes que não são enfrentados ao seguir uma arquitetura monolítica.

Este trabalho visa preencher algumas lacunas na pesquisa de teste de micros serviços atuais,

fornecendo um estudo de cinco ferramentas de virtualização de serviço existentes,

implementando-as num sistema empresarial e extraindo os resultados das propriedades da

ferramenta identificadas por meio de um questionário entregue a uma amostra de

conveniência de especialistas em desenvolvimento de software.

Por fim, os citados especialistas na área de micros serviços validaram os resultados da pesquisa

e a ferramenta identificada como a melhor e forneceram a sua visão geral sobre o valor deste

trabalho.

Palavras-chave: Testes End-to-End, Arquitetura de Micro Serviços, Virtualização de Serviços

viii

ix

Acknowledgements

First, I must thank with the deepest love to my mother and father, who showed me the value

of hard work for the things and people we love and always managed to provide everything I

ever needed to achieve all my objectives while improving as a human being.

I also want to especially thank my friends Carlos Vicente, José Gonçalves, Tiago Leite, Henrique

Costa, Francisco Azevedo, and many others whose paths crossed with mine during this year at

ISEP. It’s thanks to all that this journey was bearable and enjoyable.

Furthermore, I must thank my thesis advisors Alberto Sampaio and Isabel Sampaio of ISEP, who

were kind enough to accept my thesis proposal, who instantly answered emails with all the help

anyone would ever need and were always ready for a meeting to discuss the work. Without

their availability to help when I ran into trouble, this accomplishment would probably not be

achieved.

Finally, I must thank the experts who were involved in the surveys for this project. Without their

passionate participation and input, the surveys could not have been successfully conducted.

Thanks to all of you, who made this accomplishment possible.

x

xi

Table of Contents

1 Introduction ... 1

1.1 Context ..1

1.2 Problem ..2

1.3 Goal ..3

1.4 Contributions of this work ..3

1.5 Work methodology ...4

1.6 Document structure ..4

2 Value Analysis ... 7

2.1 Introduction ...7

2.2 New Concept Development Model ...7

2.3 Opportunity identification ..8

2.4 Opportunity analysis ...9

2.5 Idea Generation and Enrichment .. 10

2.6 Idea Selection ... 10

2.7 Concept Definition ... 14

3 State of the Art ... 17

3.1 Microservice Architecture ... 17
3.1.1 Microservices Benefits ... 18
3.1.2 Possible Setbacks ... 18

3.2 Kafka Messaging .. 19

3.3 Software End-to-End Tests .. 21

3.4 Service Virtualization .. 24

3.5 Service Virtualization and E2E Tools .. 25
3.5.1 Gremlin .. 25
3.5.2 Hoverfly.. 27
3.5.3 WireMock .. 29
3.5.4 MockLab ... 30
3.5.5 Traffic Parrot ... 32

3.6 Microservice E2E Testing Automation Studies .. 33
3.6.1 Comparison of runtime testing tools for microservices 33
3.6.2 Automated Testing for Provisioning Systems of Complex Cloud Products 37
3.6.3 End-to-End Regression Testing for Distributed Systems 39
3.6.4 Efficient test execution in End-to-End testing 41
3.6.5 Web Test Automation Insights from Grey Literature 42

3.7 Conclusions .. 44

xii

4 Study of Service Virtualization Tools in E2E Testing 47

4.1 Introduction ... 47
4.1.1 Test Implementation .. 47
4.1.2 Test Evaluation ... 47

4.2 Design of the Validation Systems .. 49

4.3 End-to-End Test Cases ... 52
4.3.1 User Functions .. 52
4.3.2 Conditions ... 54
4.3.3 Test Cases ... 54

4.4 Test Cases Implementation ... 55
4.4.1 Test Without Using a Test Tool .. 55
4.4.2 Test using WireMock ... 56
4.4.3 Test using MockLab .. 57
4.4.4 Test using Traffic Parrot .. 61
4.4.5 Test using Gremlin ... 63
4.4.6 Test using HoverFly .. 66

4.5 Discussion of The Results ... 68

5 Experts' Evaluation ... 71

5.1 Evaluation Objectives ... 71

5.2 Methodology .. 71
5.2.1 Choice of Participants ... 72
5.2.2 Hypothesis ... 73

5.3 Execution and Results ... 74
5.3.1 Expert’s background ... 74
5.3.2 Choice of characteristics to evaluate the tools 76
5.3.3 Hypotheses test .. 80

5.4 Result Limitations .. 83

6 Conclusions .. 85

6.1 Achieved objectives ... 85

6.2 Difficulties along the way ... 85

6.3 Future work ... 86

xiii

Table of Figures

Figure 1 – AHP hierarchical model tree. ... 11

Figure 2 – Overview of Apache Kafka (19). .. 20

Figure 3 – Kafka as a Service (20). .. 21

Figure 4 – Overview of the End-to-End testing process (22). .. 22

Figure 5 – Basic process for creating a Virtual Service (25). .. 25

Figure 6 – High-level overview of the Gremlin framework (28). .. 26

Figure 7 – MockLab Request Section (32). ... 31

Figure 8 – MockLab Response Section (32). ... 31

Figure 9 – Navigation Bar dropdown (33) .. 32

Figure 10 – Ridesharing testbed application (26). ... 35

Figure 11 – Microservice architecture schematic (9). .. 37

Figure 12 – End-to-End tests coverage (9). .. 38

Figure 13 – Reproducing an application server defect with a small, distributed setup (34). 40

Figure 14 – Test Attribute Questionnaire Results. ... 48

Figure 15 – Use Case Diagram. ... 49

Figure 16 – Use Case 1.. 50

Figure 17 – Use Case 2.. 50

Figure 18 – Domain Model. .. 50

Figure 19 – Component Diagram. .. 51

Figure 20 – Sequence Diagram. .. 51

Figure 21 – Company System Sequence Diagram. ... 52

Figure 22 – User Function Activity Diagram. .. 53

Figure 23 – Moq Framework NuGet. .. 55

Figure 24 – Setting up a mock object with Moq. ... 56

Figure 25 – WireMock Framework NuGet. .. 56

Figure 26 – Setting up a WireMock stub. ... 57

Figure 27 – MockLab Subscription Plans. ... 58

Figure 28 – MockLab login information message with exposed limits of a free account. 58

Figure 29 – Start-up screen for creating a new mock API. ... 59

Figure 30 – Creating a new request on a mock API.. 59

Figure 31 – Creating a request response on a mock API. ... 60

Figure 32 – E2E test structure that used the MockLab service URL. .. 61

Figure 33 – Traffic Parrot introductory video. .. 62

Figure 34 – Traffic Parrot fourteen-day free trial request form. .. 63

Figure 35 – Gremlin installation options. ... 64

Figure 36 – Initial configuration of Gremlin. .. 64

Figure 37 – Configure call to Gremlin mock API. .. 65

Figure 38 – E2E test structure that used the Gremlin service URL. ... 66

Figure 39 – HoverFly NuGet Package. .. 67

Figure 40 – E2E test structure that uses the HoverFly service URL.. 68

xv

Figure 41 - Participant’s job titles. ... 74

Figure 42 - Participant’s years of experience. .. 75

Figure 43 – How many systems the participants currently work with. 76

Figure 44 – Results for the question “How important is the test execution time when choosing

a service virtualization tool?”. ... 76

Figure 45 – Results for the question “How important is the fact that the tool is available as a

nugget when choosing a service virtualization tool?”. .. 77

Figure 46 – Results for the question “How important is the fact that the tool is available as an

external, standalone service, that must execute outside of the IDE environment, when

choosing a service virtualization tool?”. .. 77

Figure 47 – Results for the question “How important is the fact that the tool is Open Source,

when choosing a service virtualization tool?”. .. 78

Figure 48 – Results for the question “How important is the fact that the tool is free but with a

limited amount of uses per month, when choosing a service virtualization tool?”. 78

Figure 49 – Results for the question “How much does the fact that a tool has a paid

subscription in order to be use, contribute to the rejection of the tool?”. 79

Figure 50 – Results for the question “How important is the fact that the tool has updated

documentation, when choosing a service virtualization tool?”. ... 79

Figure 51 – Results for the question “How important is the fact that the tool has updated

examples, when choosing a service virtualization tool?”. ... 80

Figure 52 – Results for the question “Please evaluate from (strongly disapprove) to 5 (strongly

approve) the analysis of the tools.” ... 81

Figure 53 – Results for the question “Please evaluate from (strongly disagree) to 5 (strongly

agree) the best tool identified is WireMock.” ... 82

xvi

Table of Tables

Table 1 – AHP evaluation table. ... 12

Table 2 – AHP normalized matrix. .. 12

Table 3 – AHP criteria priorities ... 13

Table 4 – Business model canvas ... 15

Table 5 – Interface exposed by the data plane to the control plane (28). 27

Table 6 - Tools used to support the testing of Microservices (26). ... 34

Table 7 – Execution times to run 5 system test cases each iterated 5 times (26). 36

Table 8 - Top 10 best practices (listed in descending order of references) (36). 44

Table 9 – Test Result Summary. ... 69

Table 10 – Test Runtime Results in milliseconds. .. 69

Table 11 – Likert scale (45). .. 71

Table 12 – Mean intervals for the evaluation of the solutions and patterns identified. 72

Table 13 – Mean of every answer regarding importance of tool properties. 80

Table 14 – Work Evaluation total means. .. 82

xviii

Acronyms and Symbols

Acronyms

E2E End-to-End

SOA Service Oriented Architecture

ERP Enterprise resource planning

CI Continuous Integration

GUI Graphical User Interface

IDE Integrated development environment

xx

1

1 Introduction

In this chapter, the problem, objective, and context of the theme of this report are presented

alongside the document structure.

1.1 Context

The literature defines microservice as a small application (generally less than a couple of

thousand lines of code) with a single responsibility (a functional, non-functional, or cross

functional requirement) that can be independently deployed, scaled, and tested (1). It must be

cohesive and independent of other processes, interacting with them via messages using a

clearly defined interface (2).

A microservice architecture was defined as “a distributed application where all its modules are

microservices” (2). On the microservices architectural style, each module of the system must

be identified and isolated on a single microservice. Therefore, the functionality must be divided

through the services using the appropriate granularity, to achieve high cohesion inwards and

loose coupling outwards (3).

Microservices oriented architecture has been regarded as a promising solution (1) that

conjugates scalability, maintainability, ease of deployment, reduced infrastructure costs,

technology heterogeneity, resilience, reusability, among others (4).

The microservices architectural style is a recent trend in the software engineering community

since it was first publicly proposed by Fowler and Lewis in 2014 (3). However, the term was first

discussed at a workshop near Venice in 2011 where different authors and experts of the field

debated some techniques like the microservices architecture, including some of the SOA

principles (5). These techniques and principles were consolidated in the microservices

architectural style, and that definition started the referred trend.

2

Each microservice is developed, deployed, and managed independently; new features and

updates are delivered continuously (6), possibly hundreds of times a day, making the

applications extremely dynamic. Microservice applications are typically polyglot: developers

write individual microservices in the programming language of their choice, and the

communication between services happens using remote API calls.

Microservices are designed to withstand infrastructure failures and outages yet struggle to

remain available when deployed. The postmortem reports point to missing or faulty failure-

recovery logic, indicating that unit and integration tests are insufficient to catch such defects.

The application deployment needs to be subjected to end-to-end testing.

End-to-end testing is a technique that tests the entire software product from beginning to end

to ensure the application flows behave as expected (7). It defines the product’s system

dependencies and ensures all integrated pieces work together as expected. Software systems

nowadays are complex and interconnected with numerous subsystems. If any of the

subsystems fails, the whole software system could crash. This is a major risk and can be avoided

by end-to-end testing (8).

Microservices and their development model, however, pose new challenges for systematic

resiliency testing:

• Microservices’ polyglot nature requires the testing tool to be agnostic to each service’s

language and runtime.

• Rapidly evolving code requires tests that are fast and focus on the failure-recovery logic,

not business logic.

Existing works on end-to-end of general distributed systems and service-oriented architectures

(SOAs) are unsuitable for microservice applications, since they do not address the challenges

mentioned above (9). In contrast, in this project the objective is to provide systematic,

application-agnostic testing on live services by analyzing a series of tools and propose one as

the best approach.

1.2 Problem

In the context of most development environments in most companies, the microservice

architecture is being used or adapted into (10). Although this type of architecture comes with

an array of advantages, a new problem arose with their test methods, due to the added

complexity of network communication between the collaborating services, this pattern needs

an infrastructure to establish communication between microservices, possibly a cloud

infrastructure (3), databases, third-party services, or other external components. The network

connections used in this infrastructure add complexity to testing the application making it more

difficult to perform end-to-end testing when compared with a monolithic system. Hence, it is

3

necessary to test it at runtime to monitor the behaviour of the different components in a

production environment.

Therefore, there is a need to analyse the tools available in the market and extract the features

most suited to a business environment to facilitate the testing of services developed in a

microservice architecture.

1.3 Goal

The goal of this project is to analyse some of the currently available tools for service

virtualization and their role in End-to-End testing with focus on microservices created withing a

certain company environment with specific criteria, such as the framework and message

brokers used by the company. This kind of tests will focus on the integrated software system

because the interconnected systems are mocked with the service virtualization tool.

To achieve this, it is necessary to first analyse the tools and their documentation and identify

their challenges. After identifying the challenges, it will be necessary to identify the best

features and practices of each one of them by implementing them in a controlled environment

identical to the one used in a specific company, where the development language is C#, the

development framework is .Net, the services use Kafka as the message broker of choice and

communicate via REST API as well. Finally, with data obtained and complied, it will be necessary

to pinpoint the better tool of the bunch and its implementation practice that is best suited for

the environment in which the tools are being tested on.

The findings of this report will them be evaluated by a selected group of professionals within

the company in question.

1.4 Contributions of this work

The first main contribution of this work is the analysis and comparison of the available literature

regarding end-to-end testing and service virtualization tools. This work tries to clarify what are

the current most common challenges while performing end-to-end test in a microservice

architecture, guiding future researchers, and helping the industry to avoid the identified issues,

while providing possible tools and best practices also identified in the research. Furthermore,

an article was developed based on the output of this work and publicly published on Computer

Engineering Symposium (11) where a different perspective of reviews was gathered.

In the future, the tool identified as the better one among the selection can be applied in projects

or put in practice by other interested companies which can then provide their testimony on the

value of this project.

4

This document is written in English so that this work can reach a larger number of professionals

or companies.

1.5 Work methodology

The development of this work will consist of different phases.

First, a narrative literature review will be performed to validate the problem. With that

information, the objectives of this work will be defined, and therefore, this work aims to reduce

the gap of missing research regarding challenges of end-to-end testing in a microservice

architecture by identifying the most reported problems. Also, another objective is to support

the use of service virtualization in end-to-end testing by further detailing the issue and exploring

possible solutions. This first literature review helps define the context of the work and the

problem to be solved. Also, the gathered information will help conclude the value analysis of

this project.

Once the problem context and the objectives of this work were defined, literature research was

be performed through a systematic mapping study that helped identify the most common

challenges of end-to-end testing in a microservice architecture.

Regarding service virtualization, a set of existent tools and approaches will be analysed, and the

most adequate to the context of this work will be chosen, to propose a solution for E2E of

microservices architectures.

Finally, the research findings will be presented to the industry and evaluated through a survey

in which expert professionals of the field can assess it and provide insights regarding the work

developed.

1.6 Document structure

This document is divided into seven different chapters, which are followed by references and

appendix sections.

1 Introduction - This first chapter introduces the reader to the developed work by

presenting the motivation context and the document structure.
2 Value analysis - presents the value analysis of this work, containing the different steps of

the new concept development model of Peter Koen and a business model canvas of the
project.

3 State of the art - describes different crucial concepts related to this work that may help
the readers understand the following chapters. The most recent stage in microservices
end to end testing research is described and compared, along with related technologies.

5

4 Study of Service Virtualization Tools in E2E Testing - the design of the performed
research is defined and justified. Also, the systematic mapping study and participant
observation study are described, and the results analysed.

5 Experts' Evaluation - evaluates the quality of the final work using an industry
questionnaire answered by experienced professionals of the field and hypothesis testing
using the questionnaire provided data.

6 Conclusions – describes the conclusions obtained with the outputs of this work. In this
chapter, the achieved objectives are described along with the difficulties faced during this
project, contributions of the accomplished work and future work that can be done or
continued in this topic.

6

7

2 Value Analysis

This chapter describes the value analysis of this work. On the following sections, the value

analysis will be supported using the New Concept Development (NCD) model of Peter Koen (12).

Furthermore, the value proposition will also be described and illustrated by a business model

canvas.

2.1 Introduction

Value analysis is a systematic, formal, and organised process of analysis and evaluation (13) of

possible solutions to a specific problem with the purpose of improving the value of a product.

Therefore, this chapter has the objective of analysing the value for the customer this work

creates.

To create value, this analysis verifies if the product meets the needs of the customer and

increases the product value by reducing the costs and/or improving product performance.

Reducing costs that bring no benefit to the customer and that do not have any impact on the

product performance naturally increase the profit and therefore the value provided by the

product.

2.2 New Concept Development Model

The NCD model was developed to define best practices in the innovation process of creating or

establishing a product. This model provides a method to improve this process by defining a

universal language that distinguishes the different stages of an iterative process of innovation

(12).

The model consists of three key components:

• Five controllable key activity elements

8

o Opportunity identification.

o Opportunity analysis.

o Idea generation and enrichment.

o Idea selection.

o Concept definition

• The engine that powers the elements (leadership, culture, and business strategy).

• Influencing factors, which affect the innovation process and cannot be controlled by

the corporation (organisational capabilities, the outside world, and the enabling

sciences).

This model is a relationship model and not a linear process. This means that ideas and concepts

can iterate and move back and forwards across the five key elements, like the circular shape

and the arrows between the key elements suggest.

Furthermore, the engine “represents senior and executive-level management support and

powers the five elements of the NCD model” (12). The engine and the five key elements are

influenced by the base of the circle, the influencing factors. Finally, the arrows indicate that

projects begin at Opportunity Identification or Idea Generation & Enrichment but only leave the

model after the Concept Definition.

“The influencing factors are the corporation’s organisational capabilities, customer and

competitor influences, the outside world’s influences, and the depth and strength of enabling

sciences and technology” (12).

The engine consists of leadership, culture, and business strategy and “sets the environment for

successful innovation” (12).

2.3 Opportunity identification

This element has the objective of identifying opportunities that might be pursued. They can be

a possibility to capture competitive advantage, or a means to simplify operations, speed them

up, or reduce their cost (12). Opportunity identification may come from an individual that

recognises an unmet customer need or a problem to be solved.

One of the main techniques used to identify opportunities is technology trend analysis, which

consists of gathering information regarding technological trends and defining opportunities of

process or product improvement that may arise from it. This was the technique used in this

work.

Like defined in the context section of the previous chapter, the technology trend in using the

microservices architecture as lead to an increase in the difficult and yet an increase in the

demand for reliable end-to-end tests. This happens because since must systems rely on

message brokers to communicate there is a need to ensure that the messages passed on

9

through maintain a quality status and satisfy requirements. This mainly affects the

maintainability and scalability of the system but also has an impact on the software

development lifecycle and on organisational flexibility as the time needed to release new

features increases.

Therefore, an opportunity is identified in this testing process. If the costs of the microservices

architecture testing are reduced, then the microservices architectural testing style becomes a

more appealing solution for companies. It enables them to increase the maintainability and

scalability of their systems while reducing the time-to-market of new features implemented in

their software systems, at a reduced cost.

2.4 Opportunity analysis

This stage of the NCD model has the objective of analysing the identified opportunity to confirm

its viability. For that, additional information is required so that the opportunity identified can

be defined as a specific business and technology opportunity. This involves making early and

often uncertain technology and market assessments. The technique used may be the same used

on the opportunity identification stage, but while it was used with the objective to determine

if an opportunity existed, now more resources are expended so that the opportunity is defined

with further detail to verify its appropriateness and attractiveness (12). The opportunity

identified in the previous section is therefore analysed so that it is possible to understand it

better and the possibilities of value it may provide.

Since the official definition of microservices, there are multiple reports of end-to-end testing

processes, systematic literature reviews regarding the subject and studies of best practices and

patterns for the microservices architecture testing styles and for the end-to-end testing process.

These documents report multiple common problems that still have no explicit or linear solution.

They include fundamental intrinsic issues of the microservices architecture style, like dealing

with distributed transactions across microservices, data synchronisation and consistency across

multiple databases and the loss of messages regarding the messages broker.

Issues of distributed systems, for instance, network-related problems, are another inherent

problem of the microservices field.

This analysis defines multiple technical challenges that may be addressed regarding the

microservices architecture testing. All of them constitute an opportunity that can bring value to

the customer.

10

2.5 Idea Generation and Enrichment

This key element of the NCD model may be a formal process with the objective of generating

new or modified ideas for the identified opportunity. It consists of the birth, development, and

maturation of a concrete idea (12).

On this work, the individual brainstorming technique (14) was used to generate and enrich ideas

for the identified opportunity. From the brainstorming sessions, the following enumerated

ideas were made:

1. Implement the end-to-end tests of a specific microservices architecture project. The

objective of this idea is to identify the problems of this kind of implementation through

practical experience, defining solutions for the challenges faced.

2. Define a technical guide with best practices, conventions, and guidelines for

microservices end to end tests. This idea has the purpose of defining technical

guidelines to avoid some of the common problems of the microservices architecture

testing process, or at least reduce their impact and costs.

3. Use static analysis to inspect the existent microservice system and generate

suggestions for the tests of each of the microservices. This idea provides a tool to

automatically define the tests of each one of the components of a microservices

architecture, based on an existent system.

4. Use model-driven software engineering (MDSE) to create the microservices

architecture system end to end tests based on a defined metamodel. This idea uses

the MDSE approach to generate a skeleton of the microservices architecture end to end

tests, providing a typical structure for all the components.

5. Analyse existing market solutions, identify problems and advantages, and implement

a solution with the most suited one. The framework or tool chosen has the objective

of simplifying the process of developing automated end to end tests in the

microservices architecture.

2.6 Idea Selection

Idea Selection is the element of NCD where the idea with the most value is selected. This

process is affected by insights from the influencing factors and directives from the engine (12).

The selection process can be just an individual choice between many self-generated options.

Usually, this stage is sustained by early personal judgements, with only the idea itself to

consider and without more information. Some techniques traditionally used on this process and

applied on this work are technical success probability and the strategic fit.

Analytic Hierarchy Process (AHP) is a method to help on the decision-making process. To explain

complex decision-making problems, the method models the problem into hierarchical elements.

The hierarchy levels are the primary objective, the criteria that define a right decision, and the

11

alternatives that are being considered (15). Therefore, this method was chosen to select the

idea that brings the most value from the alternatives described in the Idea Generation and

Enrichment section.

Following the AHP method, the hierarchy tree presented in Figure 1 was developed. The first

layer defines the main objective of this work that the selected idea should help achieve.

Furthermore, the middle layer consists of the following criteria used to evaluate each one of

the ideas and choose the best one accordingly.

• Time Restrictions – If the idea presents time restrictions as this work has a pre-defined

due date and is limited by it.

• Infrastructure Restrictions – Mandatory Infrastructure requirements for the idea

success. The infrastructure available for this work is limited.

• Current Relevancy – Current value for the stakeholder.

• Technical success probability – If the idea is achievable with the restrictions of this work

with a high success probability.

Figure 1 – AHP hierarchical model tree.

Finally, on the lowest hierarchical level, the five ideas described in the Idea Generation and

Enrichment section are presented.

12

Based on these criteria, it is possible to evaluate and select the best idea to achieve the main

objective. Table 1 below describes the considered weight for each of the criterions following

the AHP scale.

To accomplish the primary goal of this work, it is essential that the idea is currently relevant and

presents the current value. Given the type of project described in this document, there are also

some time and infrastructure restrictions that should be considered, as well as the probability

of technical success of the chosen idea.

Table 1 – AHP evaluation table.

Evaluation
Criteria

Time
Restrictions

Infrastructure
Restrictions

Current
Relevancy

Technical success
probability

Time
Restrictions

1 2 0.33 0.50

Infrastructure
Restrictions

0.50 1 0.25 0.33

Current
Relevancy

3 4 1 3

Technical
success
probability

2 3 0.33 1

Sum 6.5 10 1.91 4.83

After defining the weight of each criteria using a pairwise comparison on the table above, the

matrix must be normalised to retrieve the priorities of each measure by calculating the mean

value of each row. To generate the normalised matrix each cell should be divided the total of

the correspondent column. This is presented in Table 2.

Table 2 – AHP normalized matrix.

Evaluation
Criteria

Time
Restrictions

Infrastructure
Restrictions

Current
Relevancy

Technical success
probability

Mean

Time
Restrictions

0.154 0.2 0.173 0.104 0.158

Infrastructure
Restrictions

0.077 0.1 0.131 0.068 0.094

Current
Relevancy

0.462 0.4 0.524 0.621 0.501

Technical
success
probability

0.308 0.3 0.173 0.207 0.247

Sum 1 1 1 1 1

Calculated the normalised matrix, it is possible to define the priorities of each criterion for the

process of idea selection. This is defined in Table 3 below.

13

Table 3 – AHP criteria priorities

Priority Criterion Rate

1 Current Relevancy 50.1%

2 Technical Success Probability 24.7%

3 Time Restrictions 15.8%

4 Infrastructure Restrictions 9.4%

The AHP method concludes that the current relevancy is the most important criterion to apply

while selecting the idea with the most value. Technical success probability comes after,

followed by time restrictions and then infrastructure restrictions. Therefore, we can now

analyse the described ideas based on these priorities to select one.

1. Implement the end-to-end tests of a specific microservices architecture project. this

idea is not considered currently relevant because it would require high infrastructural

resources which are not available for this work.

2. Define a technical guide with best practices, conventions, and guidelines for

microservices end to end tests. This idea may be considered currently relevant as there

is an evident lack of guidelines on microservices end to end tests reported on the

literature. However, it may not respect the time restrictions of this work. Furthermore,

this is a highly sophisticated solution that may not be able to achieve high technical

success.

3. Use static analysis to inspect the existent microservice system and generate

suggestions for the tests of each of the microservices. There are multiple solutions and

studies regarding this topic. Therefore, this idea is not considered currently relevant as

it has already similar solutions on the market.

4. Use model-driven software engineering (MDSE) to create the microservices

architecture system end to end tests based on a defined metamodel. This idea is

currently relevant as it solves some of the reported problems using a different approach.

However, the technical success probability of this idea may be hard to measure as it is

a disruptive idea with some uncertainty level.

5. Analyse existing market solutions, identify problems and advantages, and implement

a solution with the most suited one. This idea is currently relevant as it solves a recently

reported issue and can be designed to achieve a high technical probability of success

and respect the time restrictions. It may present some difficulties regarding

infrastructure restrictions, but they can be surpassed.

Therefore, following the analysis and comparison of each one of the ideas, the selected plan to

achieve the objectives of this work is idea 5.

14

2.7 Concept Definition

This project has the purpose of identifying the current state of end-to-end testing in a

microservice architecture and find the best practices and solutions to use in a work

environment.

The research can use methods like literature review, and industry surveys or interviews.

Therefore, the main requirements are an increased knowledge of end-to-end testing and

microservice architecture as well as their must common challenges and best practices. Also, the

implementation of a solution to manage end-to-end testing should be provided. It should be

reusable by multiple teams, providing a generic and abstract approach that can be adapted to

any microservices oriented system with reduced costs.

The value of the concept defined above will be described in more detail in the following sections

where a business model canvas of the solution is presented.

As mentioned in the previous sections and chapters, based on various public documents, there

is a trend of companies migrating their systems to a microservices oriented architecture to be

more flexible. This flexibility is related to their capacity of adapting to environmental changes

or business needs (organisational agility) with inferior costs, which can be achieved with a

microservices oriented architecture as it improves the maintainability of the system, as

explained before. Furthermore, one of the advantages of microservices is having more flexible

scalability and optimised infrastructural costs.

However, this migration makes surface other problems like the ones regarding an effective end-

to-end testing process as related on public documentation.

This work intends to help solve this problem by analysing and compiling all the issues reported,

identifying the most common ones, and finding the best solutions for them.

Therefore, with this work, companies will be able to test microservices with reduced costs. Also,

the final system may be better engineered due to a better-quality assurance that this work may

bring, and for that reason, this work can improve the maintainability, performance, reusability,

and other characteristics of the system, which leads to a more resilient system.

To present this idea in a more structured way, the following Canvas model was developed in

Table 4. The cost structure and revenue streams sections of Table 4 show the main reason for

the value of this solution. There are almost no costs on using the developed solution, but there

are many benefits like providing more resilient systems with higher maintainability, reusability,

and quality assurance while reducing the overall infrastructural costs of the system.

15

Table 4 – Business model canvas

Key Partners

-Google
Scholar,
ACM, IEEE,
and other
digital
libraries.

-Companies
willing to
participate in
the study,
providing
support to
experiments.

Key Activities

-Systematic
Literature
Review to
Identify
common
problems and
solutions.

-Design and
implementation
of a solution for
the end-to-end
testing with
service
virtualization

Value
Propositions

-Identification
of the
currently most
common
challenges
faced with
testing
microservices
architecture.
This allows
companies to
avoid or at
least be aware
of these
problems,
leading to an
overall better
microservice
oriented final
system.

-The solution
provided to
the distributed
transactions
challenge will
also reduce
the costs of
microservice
architecture
adoption as
there will be
fewer
problems to
address.

Customer
Relationships

-Implementation of
the final solution in
an interested
company.

Customer
Segments

-Companies
that are
interested in
performing a
microservice
migration or
solving
problems that
they are
currently
facing on
microservice
oriented
system tests.

Key Resources

- Public
documentation
regarding
microservices
architecture and
testing.

- Industry
knowledge of
the field

Channels

Digital Libraries,
Technology blogs,
Technology
conferences,
Companies’
presentation

Cost Structure

-The knowledge provided by the study has no costs.
-The solution developed may require some
infrastructural costs to be used.

Revenue Streams

- Reduced technical debt.
- Reduced infrastructure costs.
- Possibly faster development of new
features.
-Solution to some of the most
common
problems;

16

17

3 State of the Art

In this chapter, the background and state of the art are presented. The first section introduces

the microservice architecture which is prevalent to the case in study. The second section

explains a little about service messaging, specifically about the Kafka message broker which is

the tool mostly used in the environment in which the solution is being evaluated on. The third

section gives more information about concepts of software testing in a general matter with a

later focus on end-to-end testing follow by the fourth section which explains the concept of

service virtualization which is used in end-to-end testing. The fifth section presents the possible

tools used for service virtualization, which will be the focus of study in this report.

3.1 Microservice Architecture

When talking about Microservices, it is also important to explain the monolith term as well.

Monolith was formally defined (2) “A monolith is a software application whose modules cannot

be executed independently.”.

In general, the “monolith” and “monolithic” terms are used for lack of a better designation to

refer to a system in which the different architectural elements are together in a single

executable, unit, or block (16).

Some authors still suggest that software development should begin with a monolith, but over

time and with better knowledge of the system complexities it should be migrated to a

Microservices oriented architecture to avoid the limitations of a monolithic architecture (17).

This pattern is usually called “Monolith First”.

According to Sam Newman in (18), Microservices are independently deployable services

modelled around a business domain. They communicate with each other via networks, and as

an architecture choice offer many options for solving the problems a developer might be facing.

It follows that a microservice architecture is based on multiple collaborating microservices.

They are a type of service-oriented architecture (SOA), albeit one that is opinionated about how

service boundaries should be drawn, and that independent deployability is key. Microservices

also have the advantage of being technology agnostic. Microservices make a form of a

distributed system as they expose their information via on or more network endpoints.

As said in the previous paragraph, that independent deployability is key point of the

microservice architecture. It is the idea a change can be made to a microservice and deploy it

into a production environment without having to utilize any other services. To guarantee

independent deployability, there is a need to ensure that the services are loosely coupled—in

other words, the ability to change one service without having to change anything else.

18

Although a microservice is an independent component that can be deployed in isolation a

microservice alone presents no value which leads to the concept of microservices architecture

(2) “A microservice architecture is a distributed application where all its modules are

microservices”. Therefore, a microservice architecture is defined as a distributed application in

which its behaviour depends on the communication, composition, and coordination of its

microservices via messages (2).

3.1.1 Microservices Benefits

Microservices independence emphasizes loose coupling and high cohesion concepts, offering

different benefits. Some key features of using a microservices architecture are (18):

• Technology Heterogeneity: With the application composed as a set of independent and

loosely coupled services we have the freedom to pick the best tool that fulfill the needs.

That can be the full application stack, from the programming language to the

application server. Also, since services are small, we can replace a technology with a

low risk.

• Resilience: The key concept of resilience is to isolate failures, so it does not affect the

whole system. The natural independence of the services in a microservices architecture

allow to isolate key services in its own infrastructure to keep them working even with

failures in other services.

• Scalability: Each service boundary is well defined and organized around the business

capabilities. This sort of granularity allows to scale each one of the services as needed,

reducing costs, and providing only the necessary resources as opposed to monolithic

applications where we must scale the whole application.

• Ease of Deployment: In a microservices architecture we can change a single service and

deploy it independently in a short time.

3.1.2 Possible Setbacks

According to (18) one of the main challenges comes from the networks which is the way

different systems can communicate with each other. Communication between computers over

networks is not instantaneous which causes latency to be a worry. Things get worse when we

consider that these latencies will vary, which can make system behaviour unpredictable. And

we also must address the fact that networks sometimes fail—packets get lost; network cables

are disconnected.

Dealing with the fact that any network call can fail becomes a recurring problem, as the fact

that the services could go offline for whatever reason or otherwise start behaving oddly, there

is also the need to work out how to get a consistent view of data across multiple machines.

19

A single-process application likely reads data from a database that runs on a different machine

and presents data on to a web browser. That is at least three computers in the mix there, with

communication between them over networks. The difference is the extent to which monolithic

systems are distributed compared to microservice architectures. As you have more computers

in the mix, communicating over more networks, it is more likely to exist problems associated

with distributed systems. These problems may not appear initially, but over time, as a system

grows, it will likely hit most, if not all, of them.

As a possible solution for the setbacks presented relating to a microservice architecture,

message brokers are utilized (7) to maintain the messaging flux between services and not lose

messages when services are down. The topic of message brokers is explorer in more detail in

the next section.

3.2 Kafka Messaging

As was mentioned in the first chapter, section 1.1 and 1.3 of this work, Kafka is the message

broker by choice for the environment in which the solution should be tested on.

According to Apache Kafka’s website (19) event streaming is the digital equivalent of the human

body's central nervous system. It is the technological foundation for the 'always-on' world

where businesses are increasingly software-defined and automated, and where the user of

software is more software.

Technically speaking, event streaming is the practice of capturing data in real-time from event

sources like databases, sensors, mobile devices, cloud services, and software applications in the

form of streams of events; storing these event streams durably for later retrieval; manipulating,

processing, and reacting to the event streams in real-time as well as retrospectively; and routing

the event streams to different destination technologies as needed. Event streaming thus

ensures a continuous flow and interpretation of data so that the right information is at the right

place, at the right time.

In an overview in (20) Apache Kafka provides a publish-subscribe messaging service, where a

producer (publisher) sends messages to a Kafka topic in the Kafka cluster (message brokers),

and a consumer (subscriber) reads messages from the subscribed topic. A topic is a logical

category of messages, for instance the producer will send the logs of a web server access

records to the serverLogs topic, while the records of the querying records on a website will be

sent to the search’s topic. As depicted in Figure 2, we observe 2 producers sending messages to

2 topics in this Kafka cluster, topic A and topic B, respectively.

20

Figure 2 – Overview of Apache Kafka (20).

A topic may be stored in one or more partitions, which are the physical storage of messages in

the Kafka cluster. The Kafka cluster consists of several brokers (Kafka servers), and all the

partitions of the same topic are distributed among the brokers. In the example in Figure 2 there

are 3 brokers, and we see topic A consisting of 6 partitions while topic B with 3 partitions, which

are denoted by tA-pf0-5g and tB-pf0-2g, respectively.

Each partition is physically stored on disks as a series of segment files that are written in an

append-only manner, and it is replicated across the Kafka broker nodes for fault tolerance, and

we denote the replica of a partition with the suffix -r in Figure 2. The messages of the leader

partition tA-p0 on broker1 are replicated to the partition tA-p0-r on broker3, so once the

broker1 server fails, tA-p0-r is chosen as the leader partition, which is similar for other partitions

on broker1. Only the leader partition handles all reads and writes of messages with producer

and consumer, which is performed in FIFO manner. Kafka uses partitions to scale a topic across

many servers for producers to write messages in parallel, and to facilitate parallel reading of

consumers.

We see 2 consumer instances in our example, and they belong to the same consumer group.

When the consumer group is subscribed to a topic, each consumer instance in the group will in

parallel fetch messages from a different subset of the partitions in the topic. A consumer

instance can fetch messages from multiple partitions, while one partition must be consumed

by only one consumer instance within the same consumer group. However, different consumer

groups can independently consume the same messages and no coordination among consumer

groups is necessary. As a result, the number of partitions controls the maximum parallelism of

the consumer group, and it is obvious that the number of consumer instances in the consumer

21

group should not exceed the number of partitions in the subscribed topic, otherwise there will

be idle consumer instances.

Cloud service vendors provide Apache Kafka as a service mainly in two different modes, the full-

service mode and cluster-service mode (21). The VPC provided by AWS offers full-service mode

where a user can create producer clients, consumer clients and a Kafka cluster on the cloud

servers, and the user only needs a laptop connecting to the console for sending commands, as

depicted in Figure 3a. This mode is applicable when the upstream and downstream applications

that cooperate with Kafka are also deployed on cloud services. Under many circumstances data

are generated or consumed locally, and users will run Kafka producer or consumer clients on

their own machines. Then the choice should be cluster-service mode where cloud vendors like

Confluent and Aiven provide a Kafka cluster as a service, as shown in Figure 3b. In this mode

producer clients send messages with local machines, then cloud servers distribute and store

those messages for consumer clients to fetch. Normally users must run test cases on a Kafka

cluster and compare the performance results under different configuration parameters.

However, the Kafka cluster needs a restart every time the configuration parameter is changed

and running test cases on cloud servers is time consuming and expensive (21).

Figure 3 – Kafka as a Service (21).

3.3 Software End-to-End Tests

Software testing is the process of executing a program with the intent of finding errors (22).

Software testing is mainly divided into two methods of tests: white-box and black-box. Black-

box method consists of disregard the system internal behaviour, instead, the test is made

considering only the input and output data. On the other hand, White-box method consider the

system internal structure causing each statement of the program to be executed at least once.

In software testing area there are different test levels or stages (22):

22

• Unit testing: The objective of this phase is to test each component or software unit

individually and independently without considering other parts of the application.

• Integration testing: This level focus on testing if the components work well after they

are integrated. For this test, the application components are bound together and

assembled in a single artifact.

• System testing: The objective of this test is to use the requirements that were raised

during the analysis and check if all requirements are being attended by the application.

• Acceptance testing: At this level, final users perform the test in the system to check if

the solution delivered meets their needs.

End-to-end testing (E2E testing) refers to a software testing method that involves testing an

application’s workflow from beginning to end. This method basically aims to replicate real user

scenarios so that the system can be validated for integration and data integrity (23).

Essentially, the test goes through every operation the application can perform to test how the

application communicates with hardware, network connectivity, external dependencies,

databases, and other applications. Usually, E2E testing is executed after functional and system

testing is complete (22).

The diagram in the Figure 4 gives an overview of the End-to-End testing process.

Figure 4 – Overview of the End-to-End testing process (23).

End-to-end testing has been more reliable and widely adopted because of these following

benefits (23):

• Expand test coverage

• Ensure the quality of the application

• Reduce time to market

• Reduce cost

• Detect defects

23

Modern software systems allow subsystem interactions through advancements in technology.

Whether the subsystem is the same or different from the main system, within or outside the

organization, subsystem failures can cause adverse effects throughout the entire system (22).

System risks can be avoided by performing the following:

• Verifying the system flow

• Increasing test coverage areas

• Detecting issues associated with the subsystem

E2E testing is regularly conducted on finished products and systems, making each review a test

of the completed system. A second test will take place if the system does not output what is

expected or if a problem is found. In this case, the team will have to record and analyze the data

to determine the issue’s origin; then fix and re-test them (23).

Detecting defects in a complex workflow entails challenges. The two major ones are explained

below (6):

• Creating workflows: To examine an app’s workflow, test cases in an E2E test suite must

be run in a particular sequence. This sequence must match the path of the end-user as

they navigate through the app. Creating test suites to match this workflow can be

taxing, especially since they usually involve creating and running thousands of tests.

• Accessing Test Environment: It is easy enough to test apps in dev environments.

However, every application must be tested in client or production environments.

Chances are, that production environments are not always available for testing. Even

when they are, testers must install local agents and log into virtual machines. Testers

also must prepare for and prevent issues like system updates that might interrupt test

execution. The best way to access an ideal test environment is to test on a real device

cloud.

E2E can be divided into two different methods (23):

• Horizontal E2E testing: A commonly used method occurring horizontally across the

context of multiple applications and easily takes place in a single ERP (Enterprise

Resource Planning) application like for example a Web-based application of an e-

commerce system includes accounts, product inventory status, and shipping details.

• Vertical E2E testing: This method refers to testing in layers, meaning that tests happen

in sequential, hierarchical order. To ensure quality, each component of a system or

product is tested from start to finish. Vertical testing is often used to test critical

components of a complex computing system which does not typically involve users or

interfaces.

24

3.4 Service Virtualization

Service virtualization involves the creation and deployment of “virtual services” that emulate

the specific behaviour of the dependent components or services and facilitate the testing of the

SUT without requiring access to the actual services. The formulation of such service models in

the service virtualization environment is relatively more manageable than in mocking objects

where its internal components require re-implementation for every testing scenario. The

creation of virtual services can be done in two ways: manually defining service models by an

expert with the required knowledge of underlying services (24); and automatically infer service

models through extracting the relevant knowledge from the service interaction traces and

utilizing them in generating responses. The behaviour/characteristics of a virtual service

depends on the dependent/connected services of an enterprise system, and it emulates the

specific behaviour of the dependent service, which is required to execute the development and

testing tasks. For example, virtualizing a web service requires listening for a request message

over HTTP, JMS, or MQ and then returning a response message. Virtualizing a database

application means that the service model can parse an SQL query and then return the data

source rows according to the query request as the response message (25).

Service virtualization creates an asset known as a Virtual Service (VS), which is a system-

generated software object that contains the instructions for a plausible “conversation”

between any two systems (26). The fundamental process works this way (Figure 5):

1. Capture: a “listener” is deployed wherever there is traffic or messages flowing between

any two systems. Generally, the listener records data between the current version of

the application under development and a downstream system that we seek to simulate.

2. Model: Here the service virtualization solution takes the captured data and correlates

it into a VS, which is a “conversation” of appropriate requests and responses that is

plausible enough for use in development and testing. Sophisticated algorithms are

employed to do this correctly.

3. Simulate: the development team can now use the deployed virtual services on-demand

as a stand-in for the downstream systems, which will respond to requests with

appropriate data just as the real thing would, except with more predictable behaviors

and much lower setup/teardown cost.

25

Figure 5 – Basic process for creating a Virtual Service (26).

3.5 Service Virtualization and E2E Tools

Over the next sections of the report, a group of selected tools of service virtualization, used in

software end to end testing, will be presented in greater detail, starting with Gremlin and

Hoverfly, which were mention in studies (27) that are present in section 3.6 of this report and

also WireMock, Traffic Parrot and MockLab, which are relevant tools for the environment in

which the work of this report will be evaluated on.

There are more existing tools, but to better improved the focus of the work and due to time

restrictions, only the ones present in this section will be mention and analysed. Also, it is

important to note that some the tools presented are also present in the literature analysed in

the 3.6 section.

3.5.1 Gremlin

Gremlin is a framework for systematically testing the failure-handling capabilities of

microservices (28). Gremlin is based on the observation that microservices are loosely coupled

and thus rely on standard message-exchange patterns over the network. Gremlin allows the

operator to easily design tests and executes them by manipulating interservice messages at the

network layer. Gremlin supports emulation of fail-stop/crash failures, performance/omission

failures, and crash-recovery failures, the most common types of failures encountered in

modern-day cloud deployments.

In Gremlin, the human operator (e.g., developer or tester) writes a Gremlin recipe: a test

description, written in Python, which consists of the outage scenario to be created and

assertions to be checked. Assertions specify expected behaviour of microservices during the

26

outage. An operator can orchestrate elaborate failure scenarios and validate complex

application behaviours in short and easy-to-understand recipes.

Consider a simple application consisting of two HTTPbased microservices, namely ServiceA and

ServiceB, where ServiceA makes API calls to ServiceB. An operator might wish to test the

resiliency of ServiceA against any degradation of ServiceB, with the expectation that ServiceA

would retry failed API calls no more than five times. With Gremlin, this resiliency test can be

conducted using the following recipe (Code 1):

Overload(ServiceB)
HasBoundedRetries(ServiceA, ServiceB, 5)

Code 1 – Overload Test (28).

In line 1, Gremlin emulates the overloaded state of ServiceB, without impacting ServiceB. When

traffic is injected into the application, ServiceA would experience delayed responses from

ServiceB, or receive an HTTP error code (503 Service unavailable). The operator’s expectation

(when ServiceA encounters such behavior, it should restrict the number of retries to five

attempts) is expressed using the assertion in line 2.

A high-level view of Gremlin architecture is shown in Figure 6. Broadly, the framework is divided

into data plane and a control plane (29).

Figure 6 – High-level overview of the Gremlin framework (29).

The data plane consists of network proxies, called Gremlin agents. Microservices are configured

to communicate with each other via these agents. In addition to proxying the API calls, Gremlin

agents can manipulate the arguments, return values, and timing of the calls, thus acting as fault

injectors. As shown in Table 5 (26), the data plane supports three primitive fault injection

actions: Abort, Delay, and Modify. Using these primitives, complex failure scenarios that

emulate real-world outages can be constructed. Like software defined network switches,

Gremlin agents expose a well-defined interface to the control plane. The control plane uses the

27

interface to send rules to the agents, instructing them to inspect the messages and perform

fault-injection actions if a message matches a given criteria (25).

Table 5 – Interface exposed by the data plane to the control plane (29).

Interface Mandatory Parameters Description

Abort Src, Dst, Error, Pattern Abort messages from Src to Dst, where
messages match pattern Pattern. Return an
application-level Error code to Src

Delay Src, Dst, Interval, Pattern Delay forwarding of messages from Src to
Dst, that match pattern Pattern, by specified
Interval

Modify Src, Dst, ReplaceBytes, Pattern Rewrite messages from Src to Dst, that match
pattern Pattern and replace matched bytes
with ReplaceBytes

The control plane has three components (29):

• Recipe Translator - exposes a Python interface to the operator, which enables it to

compose high-level failure scenarios and assertions from pre-existing recipes or directly

from low-level primitives for fault injection (shown in Table 5) and assertions. The

operator is also expected to provide a logical application graph: a directed graph

describing the caller/callee relationship between different microservices. Internally,

the translator breaks down the recipe into a set of fault-injection rules to be executed

on the application’s logical graph.

• Failure Orchestrator - sends fault-injection actions to the Gremlin data plane agents

through an out-of-band control channel. Since an application might have multiple

instances of any given service, the Failure Orchestrator locates and configures all

physical instances of the Gremlin agents.

• Assertion Checker - is responsible for validating the assertions provided in the recipe.

It does so by querying a centralized data store that contains event logs collected from

the data and performing a variety of processing steps. To aid the operator in querying

the event logs, Gremlin provides abstractions for fetching and analysing the data. The

queries return a filtered list of observations from the Gremlin agents, sorted by time.

Basic statistics on the requests (or replies) can be computed without requiring

knowledge of the log-record structure.

3.5.2 Hoverfly

Hoverfly is an open-source product developed by SpectoLabs and written in Go whose core

functionality of Hoverfly is to capture HTTP(S) traffic to create API simulations which can be

used in testing (30). A Hoverfly instance can work according to two schemes (30):

28

1. Proxy server: it receives an incoming request and forwards it to the destination service.

In the meantime, it waits for the response from the destination. When it arrives, the

instance stores the array of request-response pairs in a JSON objects, called simulations,

and forward the response to the source that made the original request.

2. Webserver: it receives an incoming request and looks among previously captured

simulations for a pair having an analogous request. If the pair is found, the instance

forwards it to the original source, otherwise it can behave differently according to the

working mode of Hoverfly that has been set.

These schemes form the basis for service virtualization (30). Each time Hoverfly receives a

request, rather than forwarding it on to the real API, it will respond instead. To make the service

virtualization more realistic, it is also possible to simulate network latency, by applying delays

to responses based on URL pattern matching or HTTP method.

Hoverfly stores in-memory captured traffic as a JSON object, called simulations, that follows the

Hoverfly Simulation schema (31). Simulations consists essentially of request-response pairs.

Hoverfly can work in different way, accordingly its mode (30):

• Capture Mode: It is an "as a proxy" mode and the Hoverfly instance is placed in the

middle of a client-server application, saving simulations. When in this mode, it is

checked the binary flag stateful, which determines the instance behavior when there is

an incoming request-response pair (31):

o if stateful is true, all pairs are saved, without further checks.

o if stateful is false, for each pair it is checked whether the request is not already

present. It is not, the pair is saved, otherwise is checked a further binary flag,

called overwriteDuplicate. If it is true, the existing pair is replaced by the new

one, otherwise nothing happen.

• Simulate Mode: It is an "as a webserver" mode and the Hoverfly instance represent the

destination server. When a new request arrives, the instance searches for a simulation

matching the request. If it is not found, an error is returned with status code 502. For

choosing the simulations to return, Hoverfly must use a matching strategy. There is only

one valid matching strategy, called strongest match, which consists of calculating and

assigning a matching score to each simulation, and then the one with the highest score

is selected.

• Spy Mode: It extends the behavior of the simulate mode, with the difference that, if a

matching is not found, a request to the real service is made and its response is returned

to the client. When it happens, the simulation is not persisted.

29

3.5.3 WireMock

WireMock is an HTTP mock server (32). At its core it is web server that can be primed to serve

canned responses to requests (stubbing) and that captures incoming requests so that they can

be checked later (verification).

It also has an assortment of other useful features including record/playback of interactions with

other APIs, injection of faults and delays, simulation of stateful behavior

It can be used as a library by any JVM application or run as a standalone process either on the

same host as the system under test or a remote server.

All WireMock’s features are accessible via its REST (JSON) interface and its Java API. Additionally,

stubs can be configured via JSON files.

WireMock is distributed in two ways - a standard JAR containing just WireMock, and a

standalone fat JAR containing WireMock plus all its dependencies.

Most of the standalone JAR’s dependencies are shaded which is, they are hidden in alternative

packages. This allows WireMock to be used in projects with conflicting versions of its

dependencies. The standalone JAR is also runnable (32).

Additionally, versions of these JARs are distributed for both Java 7 and Java 8+.

The Java 7 distribution is aimed primarily at Android developers and enterprise Java teams still

using JRE7. Some of its dependencies are not set to the latest versions (32).

The Java 8+ build endeavors to track the latest version of all its major dependencies. This is

usually the version you should choose by default.

As mentioned before, the WireMock server can be run in its own process, and configured via

the Java API, JSON over HTTP or JSON files. Once the standalone JAR has been downloaded, it

can run it simply by execution the command in Code 2.

$ java -jar wiremock-standalone-2.27.2.jar

Code 2 - Standalone execution command (32).

To create a stub via the JSON API, the Code 3 document can either be posted to

http://<host>:<port>/__admin/mappings or placed in a file with a .json extension under the

mappings directory (32).

{

 "request": {

 "method": "GET",

30

 "url": "/some/thing"

 },

 "response": {

 "status": 200,

 "body": "Hello world!",

 "headers": {

 "Content-Type": "text/plain"

 }

 }

}

Code 3 – Json File with Stub Code (32).

3.5.4 MockLab

To continue from the previous section where WireMock is presented, this one will follow up

with MockLab. MockLab is an API simulator built on WireMock (33). It possesses a user interface

to facilitate the user’s work and provides several ways to set up a mock API:

• Manually via the web UI - After signup, an example mock API is created, showcasing

different MockLab features. This can be edited or added more stubs to experiment with

MockLab’s capabilities.

• Swagger or OpenAPI specification import - Swaggerhub users can integrate with

MockLab via a webhook, so that the mock API will be updated each time a change is

saved.

• Record traffic to and from another API - a mock of an existing API which is accessible

over the internet can be configured in MockLab to proxy (forward) traffic to it and

record requests as stubs.

• Import an existing project from WireMock - MockLab uses WireMock as its underlying

engine, so mock APIs created within WireMock can be directly imported into MockLab

(and vice versa). This can be useful when there is a need to record APIs that are only

accessible inside an organisation or from a private network, or if there are existing

projects utilising WireMock that must be hosted in the cloud.

• Automate via the REST API or WireMock - MockLab enables this approach by making

all features available via its REST APIs. The provisioning API supports the creation,

31

querying and deletion of mock APIs. The mocking API supports configuration of an

individual mock API, including stub create/update/delete, request log querying and

verification and more. It is 100% compatible with WireMock’s API and can therefore be

used with any WireMock client library.

MockLab at its core, like WireMock which underpins it is an HTTP stubbing tool. This means that

it can be configured to return specific canned responses depending on the request. This can be

a simple as just matching the URL, right up to a combination of URL, header and body matches

using regexes, JSONPath, XPath and others (33).

To create a basic Stub the mock API to work in must be select, then navigate to the Stubs page

and click on the button name “+New”. The URL field from the default value to the one which it

will be worked on (Figure 7).

Figure 7 – MockLab Request Section (33).

 In the Response section (Figure 8), HTTP status must be settled, headers and body text as well.

Typically, it is a good idea to send a Content-Type header in HTTP responses, so one can be

added by clicking the “+Header” button and setting “Content-Type” to “application/json”.

Figure 8 – MockLab Response Section (33).

32

The request must be saved and then the stub should be ready for testing (33). In a browser, at

for example http://<your-subdomain>.mocklab.io/hello-world the body text “Hello World!!!”

that was entered into the body text box should be seen.

3.5.5 Traffic Parrot

Traffic Parrot is an API mocking and service virtualization tool (34). It simulates APIs and services

so that you can test your microservice without having to worry about test data set up or

environment availability.

Traffic Parrot is specifically designed to maximize developer and tester productivity when

working in autonomous or cross-functional product teams. Small footprint (less than 50MB of

disk space), lightweight but powerful, supporting HTTP, JMS, IBM MQ, File transfers, gRPC and

more.

Traffic Parrot supports a method for grouping together virtual service mappings to form a

scenario. For example, to group together mappings used for different types of testing like

integration, manual and performance tests.

The default scenario stores mappings on the filesystem under the directory specified in

trafficparrot.properties by the trafficparrot.virtualservice.trafficFilesRootUrl property. For

example, the mappings and __files directories which are used for HTTP mappings in the default

scenario.

All other scenarios are placed in the scenarios directory, which is also found under the

configured root folder. For example, the scenarios/Example/mappings and

scenarios/Example/__files which are used for HTTP mappings in the scenario named Example.

Once some files are placed under a scenario directory, they can be seeming in the navigation

bar dropdown (Figure 9) (34).

Figure 9 – Navigation Bar dropdown (34)

Clicking on a scenario name will activate that scenario. The scenario directory on the file system

will be used as the source of mappings until Traffic Parrot is shut down. The default scenario is

activated when Traffic Parrot starts up.

The Traffic Parrot web console and virtual service can be configured by editing property values

in trafficparrot.properties file or by passing parameters to the start script (34).

33

The trafficparrot.properties is located in the main Traffic Parrot directory. To edit the file, it

must be opened in a text editor and update the property values. The names of properties should

be self-explanatory.

Traffic Parrot can also be configured by passing arguments to the start script. This will override

properties defined in the trafficparrot.properties file (Code 4).

start.cmd trafficparrot.gui.http.port=20000

trafficparrot.virtualservice.http.port=20001

Code 4 – Passing values to the start script (34).

The list of all available properties that can be configured is available in the

trafficparrot.properties file which is located in the main Traffic Parrot directory.

Some properties may only be changed by passing values to the start script. For example,

outbound HTTPS certificate configuration and outbound HTTP proxy configuration may only be

specified as start script values (34).

3.6 Microservice E2E Testing Automation Studies

In this section of the report, some existing studies related to the concept of testing microservice

architecture systems will be presented.

3.6.1 Comparison of runtime testing tools for microservices

According to (27) the testing of microservices applications continues to be challenging due to

the added complexity of network communication between the collaborating services. That

paper provides a comparison of several open-source tools used to support the testing of

microservices, which can be found in Table 6.

34

Table 6 - Tools used to support the testing of Microservices (27).

Name Interface
Method

Implementation Platform Test Case
Language(s)

Testing
Objectives/Support

Testing
Strategies

Docker
Compose
Rule

HTTP
Requests

Library JVM Java Regression Integration,
System

Gremlin HTTP
Requests

Side-car + Proxy Linux,
Python
Runtime
Environm
ent (PRE)

Linux
Scripting
Language,
Python

End-to-End Component
,
Integration,
System

Hoverfly HTTP
Requests

Side-car + Proxy JVM, PRE,
MacOS,
Windows,
Linux

Java, Python,
Scripting
Language

End-to-End Component
,
Integration

Minikube CLI Container’s
Orchestrator

Linux,
Windows,
MacOS

Scripting
Language

Test Harness Component
,
Integration

Telepresen
ce

Two-way
proxy

CLI Windows,
Linux

Any Test Harness Component

The polyglot testbed microservices system called Rideshare, was used in the paper to evaluate

the tools mention on Table 6. The system implements a cluster of microservices for a

ridesharing application that allows passengers to request a ride from a list of available drivers

going from a pickup address to a destination address. The description of the application includes

a high-level architecture of the system and a component diagram of the system.

The Rideshare application uses the microservices architectural pattern consisting of a front-end,

backing services and domain services. The high-level architecture of the Rideshare application

is shown in Figure 10.

35

Figure 10 – Ridesharing testbed application (27).

The front-end is a web user interface that provides user interfaces for both the passenger and

the driver. These interfaces include screens for the requirements stated in the previous

paragraph. The back-end services are the generic services to support running a microservices

application and include the following:

• Authentication - validates user credentials.

• Edge - is a proxy that provides communication between the front-end and the domain

services.

• Discovery - provides a directory and lookup functionality of the active microservices.

• Configuration Services - provides a centralized repository of files to support

configuration of the domain services.

The Front-end of the Rideshare application is implemented using AngularJS. The backing

services were developed with Java Spring Boot framework. The Edge service is an instance of

Zuul that performs proxy communication as previously mentioned, in addition to the proxy

tasks the Edge service also provides load balancing and fault tolerance. The Discovery service

implements Eureka, which is a REST (Representational State Transfer) based service that

provides support for locating other active services in the network. The Configuration service

provides remote configuration capabilities to Spring Boot applications and finally the

Authentication service is an OAuth2 implementation that authorizes applications on behalf of

an authenticated user.

36

The domain services are implemented as follows: Notification uses RabbitMQ as a message

broker that facilitates asynchronous communication between all the services. Google Maps

Adapter connects to the Google Maps Platform to retrieve details of locations. The Trip

Calculator is implemented in Golang and uses a MongoDB database. The other services

implement Command and Query Responsibility Segregation (CQRS), that is, every service is split

into two smaller services, one that takes care of the command executions using an event bus

implemented with RabbitMQ, and another one for queries.

The results of the tests made in (27) can be found in Table 7.

Table 7 – Execution times to run 5 system test cases each iterated 5 times (27).

Tool Total Time
(sec.)

Mean (sec.) Std. Dev. Max. (sec.) Min. (sec.)

Docker CE 5.30 0.11 0.23 0.88 < 0.01

Gremlin 6.36 0.13 0.28 1.19 < 0.01

Hoverfly 5.57 0.11 0.27 1.15 < 0.01

Minikube 14.85 0.30 0.43 2.17 < 0.01

Telepresence 1003.22 20.06 40.92 123.13 0.05

The columns in the table from left to right are the total time, the arithmetic mean, standard

deviation, maximum time, and the minimum time for all the iterations. Since the Rideshare

application runs on Docker the execution times in the first row of the table can be considered

the baseline for running the Rideshare application. Telepresence takes the longest time to run

all iterations of the system test cases with a total of 1,003.22 seconds. The percentage increase

of execution time of Telepresence over Docker CE is 18,842% while Hoverfly has the least

percentage increase over Docker CE, 5.1%. Gremlin has an increase of 20.11% and Minikube

180.35% over Docker CE.

The tools used in the study represent test harness tools (Minikube and Telepresence) and end-

to-end testing tools (Gremlin and Hoverfly), on which, special attention should be provided for

the last ones. The authors in (27) mention that the particularly the high execution times

observed for Minikube and Telepresence were unexpected, since both are test harnesses. It is

inferred that these high executions times are related to the communication setup with the

services to be tested. This thesis is supported by the fact that Hoverfly has execution times close

to Docker CE and requires manual changes to the system test cases to use the proxy service

provided by Hoverfly.

37

3.6.2 Automated Testing for Provisioning Systems of Complex Cloud Products

The goals of the work in (9) were to design an efficient testing strategy that considers a

microservices architecture with infrastructure provisioning capabilities while integrating it in a

Continuous Integration (CI)/Continuous Deployment (CD) pipeline.

The solution devised in this dissertation was tested against a set of prototypes, developed

alongside the strategy definition, that emulate the functionality and limitations of the

orchestrator system to prove its applicability in the OutSystems context. The solution was able

to reduce the exacerbated feedback loop by applying a pyramid distribution to the

implemented test levels and by using virtualization to replace some dependencies in the testing

stage.

The created strategy focused on having a clear architectural notion of the components under

test to provide a better mapping between the components and the errors to detect at each

level. The strategy encompasses multiple types of tests to guarantee coverage of the system,

and priorities using lower-level tests whenever possible to provide fast, focused, and reliable

feedback.

3.6.2.1 Microservices Testing Strategy

The prototype used in (9) exercised the most critical dependencies of the orchestrator system.

The design of the prototype revolved around defining microservices that performed cloud

operations commonly used in the orchestrator system. The microservices were developed using

Spring Boot and Java.

Understanding proper responsibilities division, and how the design of the service influenced the

definition of the tests, was a clear indicator of the need to design the microservices following a

layered architecture, with clear boundaries and well-defined responsibilities (9).

Figure 11 – Microservice architecture schematic (9).

38

Figure 11 represents the general architecture of the implemented microservices. The controller

classes are the entry point of the service are responsible for validating and routing the incoming

requests. The service layer encompasses the business logic specific to the microservice and

communicates with the clients and existing repositories. The client classes create an abstraction

layer for all the communications with other services of which we are dependent, while the

repositories make the bridge to a persistence solution. The domain encapsulates the entities

used across the service (9).

This architecture allows the better separation of concerns and is a better fit for the testing

needs. Most implemented services follow this architecture model, but not all are required to

have all the presented components. Stateless services do not need repositories and therefore

databases, while some services contain trivial business logic that makes the service layer just

boilerplate. When that is the case, the controller can communicate directly with the client class,

for example (9).

3.6.2.2 End-to-End Testing

The goal of the end-to-end tests is to understand if the system delivers business-critical

functionality. The system is the composition of the microservices with all the required

dependencies.

Figure 12 – End-to-End tests coverage (9).

Figure 12 portrays the coverage attained with the definition of the end-to-end tests.

End-to-end tests are usually flaky due to their complex nature as they have many moving parts

(9). Beyond their flaky nature, the provided feedback by this type of tests is usually not very

accurate or precise, which means a failure in this type of tests demands a much bigger

debugging effort.

39

Despite their flaws, this type of tests is beneficial to validate that the system can deliver the

expected value. The definition of end-to-end tests aimed to minimise the flakiness while

ensuring the critical business paths worked as expected.

This translated into grouping microservices together into a specific domain which means

reducing the amount of moving parts and reducing the possible points of failure that are usually

present in highly distributed systems.

The other high value of end-to-end tests is that they are much more expressive in the sense

that they can be shown to managers and decision-makers as a representation of critical user

journeys (9).

Because this is a significant advantage of end-to-end tests, the solution defined the critical user

journeys and tested the commonly denominated happy paths. The definition of the tests

ensures that the different pieces can work together to deliver the needed functionality. Just like

with component tests, the remainder non-happy paths were already tested in the lower levels

of the pyramid with much narrower focus. Covering those cases in the lower levels instead

means the coverage of those cases is much cheaper.

By grouping multiple microservices to define end-to-end tests and covering only the most

critical paths, we reduce the number of tests of this type and address the considerable time

cost usually associated with this type of testing (9).

3.6.3 End-to-End Regression Testing for Distributed Systems

The study in (35) describes a framework for regression testing that bridges a gap between local

ad-hoc experiments and end-to-end stress testing, potentially lowering the recurrence of

critical defects.

The motivating example (Figure 13) described an actual faulty behavior observed in

OpenSimulator, a 3D distributed virtual environment application. The work with OpenSimulator

includes a more complicated case study of user login behavior, also exhibiting a long manual

event chain and an unpleasant user-facing experience. Even when faults like this resolve

eventually (the assets in question were downloaded after a long period of time), they are

problematic for user-facing application (35).

40

Figure 13 – Reproducing an application server defect with a small, distributed setup (35).

The testing framework was designed and implemented in C# and it was named FlowTesting

that utilizes aspect-oriented weaving techniques to provide a controlled experiment setting

for end-to-end regression testing in distributed systems. Replication, control, and automation

of distributed systems experiments are critical to reducing the reappearance of previously

known defect. Once a defect is understood and fixed, software system developers should

have the ability to rapidly codify the minimum operation conditions that replicate that bug

without having to deploy the system into production. The two-primary user-facing

components are the FlowTestRuntime and the WeavePoint (35).

The FlowTestRuntime handles the injection of instrumentation into target libraries and

executables, the execution of external test components, and messaging of target system

internal state information for debugging. Its internal instrumentation engine is based on

Mono.Cecil, an open source, bytecode weaving library for C#. The FlowTestRuntime

instrumentation API adds a layer on top of Mono.Cecil to support clean, user-friendly weaving

composition and to avoid poorly formed bytecode weaving. A user can instrument target code

with functionality from the core C# system libraries or compose complex custom methods.

The WeavePoint component provides the main API for test specification. Each weave point is

matched to a method in the target software system and provides an API for instrumentation

on entering and exiting that method. A user can attach a debug message that they would

otherwise enter manually, or an extra sleep call to trigger a time-out, all without permanently

modifying the source code. Each WeavePoint is attached to a single FlowTestRuntime for the

duration of a regression test.

To replicate a fault from the motivating scenario for system P and P’ the following high-level

steps in a unit test suite can be taken (35):

41

1. Initialize a FlowTestRuntime F for P’ with config data.

2. Add a WeavePoint W in InventoryService.

3. Specify a small sleep call for the start W.

4. F.Write(), to write instrumented P’ to a staging directory.

5. F.Start(), to launch the configured and instrumented P’.

6. Specify and start a third-party client for F.

7. Assert that the inventory progress is not complete after 15 seconds in instrumented P’

when executed from the staging directory.

8. Clean up with F.Stop().

3.6.4 Efficient test execution in End-to-End testing

The study in (36) proposes a research problem and a feasible solution that looks to improve

resource usage in the E2E tests, towards smart resource identification and a proper

organization of its execution to achieve efficient and effective resource usage. The resources

are characterized by a series of attributes that provide information about the resource and its

usage during the E2E testing phase. The test cases are grouped and scheduled with the

resources (i.e., parallelized in the same machine or executed in a fixed arrangement), achieving

an efficient test suite execution, and reducing its total cost/time.

The proposal is composed of three processes that are the basis of the orchestration technique

(36):

1. The resource identification process characterizes the resources required.

2. The grouping process aims to reduce the costs, grouping together the test cases with

similar resource requirements to allow sharing and avoid unnecessary deployments.

3. The scheduling process organizes the test cases focused on achieving savings in

execution time.

The proposed solution rest on the following concepts promoting efficient of E2E (36):

• Resource Identification characterizes the resources employed by each test case to

detect which require similar resources. These resources are classified into different

categories and characterized by static attributes, that describe how the resource is used

and made available for the test. These include elasticity that refers to the possibility of

making available the resource on the fly, the resource hierarchy if the resource can be

42

replaced by a mock during the test phase and a Lifecycle with different phases such as

set-up, execution, or disposal. Resources are also characterized by several access

modes such as read, read-write, write-only or dynamic. These modes are related to how

safe and idempotent are the operations performed by the test cases over it are,

allowing sharing between the test cases that perform a compatible use of those

resources. Resources also have dynamic attributes that change during the resource

usage such as: measurable to refer to the fact that it has indicators to measure its

performance, traceable that allows knowing the phase of the lifecycle, or availability

according to how and the number of times that it may be instantiated, to specify how

and the number of resources that would be deployed.

• Grouping Process optimizes the usage of resources through an aggrupation of test

cases according to the way they use such resources. These test groups, called T-Groups,

include all the required execution scaffolding, and focus on avoiding oversubscription

and reducing the cost of performing the test suite.

• Scheduling Process in which the T-Groups are optimized to achieve resource savings in

terms of time. The T-Groups are divided, composed by several test cases and the

scaffolding required (T-Jobs). The T-Jobs test cases are parallelized and arranged

according to the execution constraints ensuring that the resources are deployed in an

optimal way.

3.6.5 Web Test Automation Insights from Grey Literature

The paper in (37) provides the results of a survey of the grey literature concerning best practices

for end-to-end web test automation focusing on literature for functional testing of web

applications with the goals to understand what best practices are suggested by practitioners

and, to structure, curate, and unify the grey literature.

The study (37) grouped 706 occurrences of best practices into two main categories, namely

technical aspects (80%) and business-level aspects (20%).

3.6.5.1 Technical Best Practices

Technical best practices refer to the development, maintenance, and execution of web tests.

That is, testers are already equipped with test requirements, and their task is to translate such

requirements into actual test code, with appropriate oracles, or to adapt existing test code to

changes and extensions of such requirements, or applications' functionalities.

The most represented subcategory pertains to guidelines on how to achieve a high structural

quality of the test code (29%). Particularly, the most mentioned tip is careful handling of the

synchronization between the web app and the test code. Modern web applications are

developed using front-end technologies in which the Document Object Model (DOM) elements

43

are loaded dynamically by the browser and may be ready for interaction at unpredictable time

intervals (37). This is a huge problem for automated testing since there is no universal

mechanism to understand when a page is fully loaded and when it is possible to perform actions.

If one fails to place appropriate wait commands in the test code, the associated risks span from

having pointless lengthy delays in tests' execution, to having flaky checks due to the waits being

non-deterministic (37). Other best practices pertain to keep the test scripts atomic (each test

method should concern only one single test scenario), using test naming conventions as well as

coding rules, and focusing on reusable test code.

The second most mentioned subcategories pertain to test development and reporting of the

test results (37). Concerning the former, it is suggested to implement deterministic tests by

removing uncertainties that may cause tests to pass/fail non-deterministically, as well as

implementing GUI-resilient tests, both positive and negative tests, and mock external services

to keep the testing environment under full control. Related to the latter, developers suggest

providing detailed reporting, making use of screenshots to help visually assess the bugs, and of

continuous integration (CI) environments (37).

Design patterns are suggested as an effective mechanism to isolate the code's functionalities

into reusable methods (12%). Developers suggest different design patterns: most of our

references mention the Page Object (37), whereas lower occurrences pertain to other patterns

such as Bot Pattern, AAA Pattern, and Screenplay Pattern which do not seem yet consolidated

within test development.

Finally, a test suite is cost-effective if test data are of high quality (9%). In a way, a test suite is

as weak as the test data it uses, which denes the overall faultfinding capability and hence cost-

effectiveness of running it. Among the tips, developers suggest adopting data-driven testing

techniques by parameterizing the test cases and using realistic inputs, as well as meaningful

real-world combinations that the users may experience.

3.6.5.2 Business-level Best Practices

Business-level aspects are related to the practices of establishing a process that ensures the

final quality of the software product and satisfies the customers as well as users. Also, it

concerns aspects like resource optimization, communication, cost management, and team

building (37).

The most represented subcategory pertains to Planning the process of test code development

(39%). The main guidelines in this subcategory are not considering automation as a replacement

for manual testing, choosing the correct/right testing tool/framework for your organization and,

hiring a team of experts or a skilled automation engineer.

The second most mentioned subcategory is Design (33%), which pertains to guidelines on how

design test cases and how to transform them into test code. In this subcategory, the most

44

mentioned tips are the focusing on key user flows during test code development, that means

to test mainly “happy paths” capturing typical use scenarios and so limit exception testing;

creating scenarios and test cases in advance before automating test cases, i.e., having a clear

understanding of what test cases to automate, indeed diving straight into automation without

a proper test design can be dangerous; conducting testing from the users' perspective, e.g., by

getting into the mindset of novice users (37).

Finally, it is also worth mentioning the best practice of not relying entirely on GUI test

automation belonging to the Process subcategory. This is one of the main best practices a

testing team should consider at first. Ideally, a test suite should be constituted by more low-

level unit tests and integration tests than E2E tests running through a GUI (the practical test

pyramid). Another best practice that is gaining momentum concerns reviewing the test code,

similarly to production code. Test code review aims to analyze its quality and to find mismatches

or bad practices (37).

3.6.5.3 Top 10 Best Practices

Based the analysis in (37), ten best practices emerged as essential for obtaining high-quality

test code (Table 8). Nine of them are related to technical aspects, and only one to business-

level best practices. This suggests that most sources of grey literature in this domain are

predominantly of technological nature. However, according to (37), in the literature, no

solutions and tools have been proposed to detect and solve flaky web tests, even less to tackle

the synchronization problem.

Table 8 - Top 10 best practices (listed in descending order of references) (37).

Rank Best Practice Technical Business

1 Manage the synchronization w/ the web app X

2 Use the Page Object Pattern (also Page Factory) X

3 Create robust/proper locators/selectors X

4 Keep the tests atomic and short X

5 Produce detailed reports X

6 Make tests independent from each other X

7 Use data-driven testing X

8 Use appropriate naming and code conventions X

9 Do not limit to only GUI testing (the testing pyramid) X

10 Remove sources of uncertainty (no flakiness) X

3.7 Conclusions

The related work presented, helped to shape the solution. Understanding the strategies used

to tackle each of the identified problems enabled the appliance of some of the solutions

presented to our specific use case. The related work also highlighted some lessons and pitfalls

to be mindful of when designing the solution.

45

The study in (36) highlighted that the efficient usage of resources in E2E testing is a challenging

and promising field and that with smart resource identification and organization of the test

cases with the resources required, we can achieve savings in terms of time and reductions in

the total cost of the test suite. One can say that in a way the study in (35) is related to (36) in

the way that the described FlowTesting goal is to smooth the testing process for complex bugs

that resurface between patches of distributed systems.

The taxonomy provided by (37) of best practices for E2E web test automation derived from an

analysis of the grey literature serves as proof of the increasing interest of developers and

industry around web test automation which has fostered a large amount of software

engineering research. Novel analysis and testing techniques are being proposed every year,

however, without a centralized knowledge base of best practices by professionals, it is difficult

to fairly design and implement solutions, or to assess research advancements, so with that in

mind, the solutions explorer is this study should always verify that the ten concepts presented

are being follow in each step.

The dissertation in (9) testing strategy should allow writing and running tests efficiently while

allowing to detect errors sooner to shorten the feedback loop. It also aimed to provide support

for testing commonly found errors in distributed systems in a deterministic way and be

integrated in a CI/CD pipeline, which although this last aspect of a pipeline is not to be

contemplated in this study, it serves as an example of future work and how the topics explored

can also have ramifications outside of E2E testing.

Out of the studies exposed and analyse, the (27) “Comparison of runtime testing tools for

microservices” has a prominent placement as it is not only the one which correlates in a higher

percentage with the objectives of this study but it also is a study that was referenced in several

other mentioned, such has (9) and (37). Most of all, (27) brought to light two tools of service

virtualization, that will be part of the study group of this dissertation which were Hoverfly and

Gremlin.

46

47

4 Study of Service Virtualization Tools in

E2E Testing

In this chapter the thesis proposal is presented and elaborated. The system in which the

research is implemented, and the company system is described using a series of UML diagrams

and the test cases specified. The tests implementations are demonstrated and explained, and

the results listed.

4.1 Introduction

The study is divided into two phases, first the implementation of an E2E test is done using each

of the tools studied in the previous chapter on a prototype system and them on a real company

system. The second part consists of the evaluation of the results related with the test

implementation.

4.1.1 Test Implementation

To achieve the objective proposed in 1.3 an End-to-End test must be replicated in a testing

environment that aims to represent a real system used in a company environment to obtain

standard data for comparison purposes.

That test is than recreated using the five tools proposed and analysed on section 3.5 to simulate

the API responses of the services the main service depends on, retrieving the details and

challenges of the implementation. Since the service virtualization is used to create API

responses, the pattern proposed can then be used regardless of the system language.

The test cases are then repeated on a system provided by a company on which the protype is

based on, sharing the same concepts. The results on this system are then compared with the

ones obtained in the prototype.

4.1.2 Test Evaluation

The evaluation of the tools implementation that will help in the reach of conclusions and lessons

learned will focus on two criteria, the test running time and the ease of implementation. The

test running time will be measured against a standard time provided by a test using the Moq

framework (38) as a substitute of a virtualization tool.

48

The ease of implementation can be measure by how easy it is to install the tool, as in, if the tool

may be installed as a NuGet (39) or if it must run as a separate standalone service. Also, the

availability of the tool contributes as a factor to the ease of implementation, for example, if the

tool is open-source or it requires a subscription. The final characteristic to evaluate the tool

ease of installation is the quality of the documentation, has in, if the documentation is updated

and/or provides enough examples or guides on how the tool must be used and configured.

The choice of attributes to be considered was presented to the professionals using a

questionnaire. The professionals will later participate in the evaluation of the results to validate

if the attributes evaluated are considered valuable and important in workplace project.

The questionnaire the group of professionals answered to obtain evaluation criteria is available

in Appendix A and a summary of the answers is present in Figure 14.

Figure 14 – Test Attribute Questionnaire Results.

There was a total of four properties named by the participants, after the answers were analysed

and edit to be more easily presented in the chart in Figure 14, due to the fact that the original

answers were given in the form of a loose paragraph, not all participants wrote the same

property in the same way, for example “It’s a free tool” was written also as “It must be free” or

simply “Free”.

One observation that can be made is that the sum of all the properties mentions equals to 37,

that is since the participants could give more than one property as an answer.

Looking at the chart in Figure 14, the property that had the must focus was the time it took for

the test to run, with a total of 19 mentions, while the property least mention was if the tool is

available as a NuGet. It makes sense that the test run time is seem like a valuable property,

since the service performance takes a higher priority when implementing a service, but it is also

one of the more easily perceivable properties on a day-to-day basis.

The tool with the better result will be proposed as the best one to use in a company working

environment.

19

9

6

3

Test run time Updated Documentation

It's a free tool It's available as a NuGet

49

The results of the tools experimentation will be grouped into a questionary form and given to a

group of professionals to answer. The questionary format was chosen to facilitate the

professionals to express their opinion on the results, but they will also have access to the

repository to experiment on their own and provide a more bolstered opinion.

4.2 Design of the Validation Systems

The system will try to simulate a plausible company environment focused on report generation

of an e-commerce platform. The architecture is composed of three services, OrderService,

JournalService and TransactionService. OrderService is responsible for the registry of the

customer orders, and it is responsible for the start of the test process as it sends an order event

to the JournalService with the required information to create a Journal. A Journal can be

described as a Transaction Bag, in which it holds all the transactions related with an Order and

a Transaction is a financial movement, represented by a name, a currency and an amount and

a report type. The JournalService is also responsible to split a Journal according to the

Transaction types it has. The TransactionService is responsible to provide the Transactions

related to one Journal according to its Id.

After considering the architecture, the two Use Cases on Figure 15 can be ascertained.

Figure 15 – Use Case Diagram.

The diagram in Figure 16 demonstrates a more detailed sequence of events of Use Case 1 and

the same can be observed in Figure 17 for Use Case 2.

50

Figure 16 – Use Case 1.

Figure 17 – Use Case 2.

In the Figure 18 there is a representation of the Domain Model with all the objects

present and used in all three services and which all are present in the domain of the

JournalService.

Figure 18 – Domain Model.

51

After defining the Domain Model and Use Cases, the overall architecture of the environment in

test can be described in the component diagram of Figure 19.

Figure 19 – Component Diagram.

Now that the components are defined, to facilitate the research process, only the main process

of the JournalService should be the focus of the test cases, as it is the only service in which all

the domain model objects are present and it is the service that communicates with the other

two, giving it a wider range of possible functions and increased complexity. The sequence of

actions of the main process of the JournalService is described in the sequence diagram of Figure

20.

Figure 20 – Sequence Diagram.

The company system in which the tools will also be tested served as the base for the prototype,

therefore there are similar concepts in their domain models and in their sequence diagrams as

it can be seen in Figure 21. More details about the company system cannot be provided due to

confidentiality.

52

Figure 21 – Company System Sequence Diagram.

4.3 End-to-End Test Cases

In this section, the E2E test cases are defined according to process of JournalService (see Figure

20). E2E Testing must include the following three categories of activity (40):

• User functions - list down the software system’s features and the subsystems that are

interconnected, keep track of the actions performed for any functionality along with

the input data and output results, between different functionalities performed from

the user’s end find out if there is any relation, check whether the user functions are

independent or can be reused.

• Conditions - for each user function, build a set of conditions, conditions should include

parameters like timing, data conditions, and sequence.

• Test Cases - write more than one test cases for every scenario and every functionality,

enlist each condition as separate test cases.

4.3.1 User Functions

To build user functions (40), the following list must be pursued:

• List the features of the software and its interconnected sub-systems.

53

• For each function, track and record all actions performed. Do the same for all input and

output data.

• Identify all relations between user functions.

• Establish if each user function is independent or reusable.

In this case the focus will be the use case 1 (Figure 16), whose objective is to create a new

Journal, therefore the user function defined is “Process Order Event to obtain a new Journal”.

For this user function the following steps and actions are ascertained in Figure 22.

Figure 22 – User Function Activity Diagram.

54

4.3.2 Conditions

To build conditions based on user functions, a set of conditions for every user function must be

decided (40). This could include timing, data conditions, etc. – essentially any factor that can

affect user functions.

For the user function defined the following set of condition can be ascertained:

• Check if the array of bytes sent by OrderService is correctly deserialiased into an

OrderEvent

• Verify that the Posting Date generated for the Journal is higher than the Creation Date

on the Order Event

• Verify that the TransactionService returns a response with code 200, meaning a

successful request

• Check if the Transaction list sent by the TransactionService is not null or empty.

• Check the report type groups of the transactions.

• Assert that the Journal is persisted successfully in the database.

4.3.3 Test Cases

To build test cases for E2E Testing it is necessary to create multiple test cases to test every

functionality of the user functions and assign at least a single, separate test case to every

condition (40).

For this study, the focus is on how the tools will work to mock the response of the

TransactionsService, therefore each test case will follow the Journal process happy path. A test

happy path is a well-defined test case using known input, which executes without exception

and produces an expected output. Happy path testing can show that a system meets its

functional requirements, but it does not guarantee a graceful handling of error conditions or

aid in finding hidden bugs (41).

In the case of the tests to be implemented in the context of the JournalService the happy path

will follow the structure presented in Figure 22, where the test starts with a message as an array

of bytes which is deserialize by JournalService and the success of the test is determined by the

success of the asserts on the processed Journal properties and if they match the expected ones

configured in the test.

The tests will vary among themselves according to the tool in use:

• ProcessJournal_WithoutUsingATestTool

55

• ProcessJournal_UsiginWireMock

• ProcessJournal_UsingMockLab

• ProcessJournal_UsingGremlin

• ProcessJournal_UsingHoverfly

• ProcessJournal_UsingTrafficParot

4.4 Test Cases Implementation

4.4.1 Test Without Using a Test Tool

The Moq framework (38) is mostly used in a context of unit tests. In a similar fashion to the

service virtualization tools, it returns a mocked response to a method of a class using that class

interface without executing the method itself, therefore the Moq framework does not actually

produce an API response or does it capture an API call. If a method is not mocked, test execution

fails.

The framework can be installed in a NuGet by using the Integrated Development Environment

(IDE), which in this case is the Visual Studio, NuGet Manager as seem in Figure 23.

Figure 23 – Moq Framework NuGet.

After installing the NuGet, a mocked object can be created in the context of the test, the mock

object uses a class interface as a base and with that its methods responses and calls can be

configured using the Setup method Figure 24.

56

Figure 24 – Setting up a mock object with Moq.

4.4.2 Test using WireMock

The WireMock framework is installed on the test project as NuGet (Figure 25). The NuGet itself

has a very complete documentation on its Github page (42), but it lacks an actual test

implementation example but those can be found in other sources like in (43), although the

examples provided use an old version of WireMock in which the name of some methods have

been updated between versions so that is a fact to keep in mind when reading the

documentation.

Figure 25 – WireMock Framework NuGet.

Since WireMock can receive an API request because it creates an instance of a web service it is

necessary to first pass the WireMock server URL to the method that is sending the request. The

mocked server is programmed to catch a specific request from a path and http method, which

has a query parameter of the OrderId in this context.

The response is also configured with a chosen http status code and a body content which is the

list of Transactions object which is converted into a json with the “BodyAsJson()” method,

according to what is necessary for the test (Figure 26).

57

Figure 26 – Setting up a WireMock stub.

4.4.3 Test using MockLab

MockLab, unlike WireMock as seem in 4.4.2, does not have a NuGet to be installed but instead

depends entirely on an external service which can be accessed through MockLab main website

after creating an account and logging in, not actually needing any processing or memory to be

used by the user system.

Although the service has a free option, it comes with a few restrictions in the number of API’s

mocked and mocked request that can be made, as seem in the welcome message in Figure 28.

A more detailed view of the packages offered by MockLab service can be seen in Figure 27.

58

Figure 27 – MockLab Subscription Plans.

The free account already comes with several examples of mocked requests, using the four main

Http verbs (44), GET, POST, PUT and DELETE, therefore it is simple to create a new Mock API by

following the provided examples.

Figure 28 – MockLab login information message with exposed limits of a free account.

The new mock API can also follow an example REST structure, but MockLab also provides three

more build sets for a mock API, depending on what the user might need (Figure 29). In this case

the mocklab/rest-example template was chosen.

59

Figure 29 – Start-up screen for creating a new mock API.

After having the new mock API created, a new request can be specified with the necessary

parameters, which in the case of the request to the TransactionService, the OrderId must be

passed as a query parameter (Figure 30). The route of the request must also be specified, which

in this case was “/transactions”.

Figure 30 – Creating a new request on a mock API.

60

The status code and the response body are also defined when creating a new request, in this

case the necessary status code is 200 and the body is composed of a Json with a list of

Transaction objects necessary for the test (Figure 31).

Figure 31 – Creating a request response on a mock API.

The newly created mock API creates an URL which is used on the required tests for the service

to call the mock API created in MockLab (Figure 32), in this case the URL created was

“http://34q39.mocklab.io”.

61

Figure 32 – E2E test structure that used the MockLab service URL.

4.4.4 Test using Traffic Parrot

The Traffic Parrot main website (34) already comes with a very complete documentation of the

service and even comes with a video explaining the process of how to use the service as seem

in Figure 33.

62

Figure 33 – Traffic Parrot introductory video.

In the video it is explained that the service runs on the users’ machine as a service and uses a

console window as an interface to configure the necessary mock requests. Even though the

video is very explicit and the documentation on the website extensive, it has not been updated

since 2017.

The main obstacle faced with Traffic Parrot appeared even before the service was downloaded

into a user machine. Traffic Parrot is not an open-source service and to gain access to a

fourteen-day trial it is necessary to fill a form (Figure 34) with several information of the user

and the reason and other services that the user might compare with or has already used prior

to Traffic Parrot.

63

Figure 34 – Traffic Parrot fourteen-day free trial request form.

It was detailed on the mentioned form that during those fourteen days Traffic Parrot was going

to be used in E2E test to mock a service response in the context of a thesis report and that the

data obtained with those tests would be compared with four other services which were listed

by name in the form. After the form is sent, a response from the company should arrive within

one business day.

Unfortunately, the trial was denied by the company due to the lack of business prospects and

lack of academic packages and support by the Traffic Parrot owner company, therefore the time

of execution of the test could not be obtained as the implementation of the test could not

continue after this point.

4.4.5 Test using Gremlin

Gremlin, much like Traffic Parrot, runs as a sperate service. To start using Gremlin, first it is

necessary to create an account on Gremlin main website (29), from there the documentation is

very much complete throughout the whole installation and mocking process.

Although Gremlin is a separate service, it comes with a plethora of options of installation (Figure

35), since in this context the services run in a Windows machine, the Windows installation guide

could be followed, but the Docker installation was chosen has having a Docker image of Gremlin

would them be easier to install in different machines. To install using Docker the command

“docker pull gremlin/gremlin” must run in a console window.

64

Figure 35 – Gremlin installation options.

After downloading and starting the image, it is necessary to configure the team id and secret

that are provided on the previously created Gremlin account, as seen in Figure 36. As it happens

with many passwords when working with a console, the characters for the secret are not visible,

therefore there is a need to be precise when inserting the team secret, but if it fails or if it is

lost, the secret can be generated as many times as necessary from the account interface in (29).

Figure 36 – Initial configuration of Gremlin.

65

Now that the Gremlin account has been linked with the Gremlin service, the necessary requests

and responses for the test can be configure, much like what was described in 4.4.3 with

MockLab. The Http method is chosen, then the endpoint must be defined as well as the body

of the response (Figure 37).

Figure 37 – Configure call to Gremlin mock API.

The final step is to pass the Gremlin service URL on the test for the service to call it (Figure 38).

66

Figure 38 – E2E test structure that used the Gremlin service URL.

4.4.6 Test using HoverFly

HoverFly main website (30) has a very complete documentation section with examples,

although not focused on any language for test development but very detailed on how to setup

the service. With further research on the Visual Studio Marketplace, two NuGet packages were

also found, even though they are not mentioned on the official documentation.

One of those NuGet packages (45), would allow for a service configuration without needing for

HoverFly to run separately, similarly to WireMock in 4.4.2, but this package only runs in a .Net

Framework Standard project and not on a .Net Core project has it is the case with JournalService,

so it wasn’t possible to use this package.

The second package (Figure 39), which is the one supported officially by the HoverFly company

(SpectoLabs), does not provide methods and metadata to implement and run tests with. What

this NuGet provides instead are the necessary files to run the HoverFly service in a machine into

the project folder.

To run HoverFly locally, it is necessary to use a console window and navigate to the folder where

hoverfly.exe and hoverctrl.exe are and run the command “hoverctrl start”, with this the

HoverFly service starts to run.

67

Figure 39 – HoverFly NuGet Package.

HoverFly uses a .json file to obtain the configuration of the requests and responses necessary

for the tests. The json file must be saved in the same folder has the hoverfly.exe and

hoverctrl.exe files and must follow a similar structure to Code 5.

{

 "data": {

 "pairs": [

 {

 "request": {

 "path": [

 {

 "matcher": "exact",

 "value": "/transactions"

 }

],

 },

 "response": {

 "status": 200,

 "body": "[{\"ReportType\":1,\"Code\":\"FTO016\",\"Cur

rency\":\"JPY\",\"Value\":420},{\"ReportType\":2,\"Code\":\"FTO016\",\"Cu

rrency\":\"JPY\",\"Value\":420}]",

 }

]

}

Code 5 – HoverFly configuration file.

68

After having the json simulation file ready, it is necessary to run a chain of commands in the

previously mention console window. The first command is “hoverctl start webserver”, which

starts HoverFly as a webservice, then the simulation file is imported with “hoverctl import

simulation.json”. After running these two commands successfully, the service is ready to be use

for testing, all that is left is to set the correct URL for the test to call on, as seem in Figure 40.

Figure 40 – E2E test structure that uses the HoverFly service URL.

When all tests have ended their run and the user no longer needs to use HoverFly, the command

“hoverctl stop” must be used to terminate the HoverFly service safely.

4.5 Discussion of The Results

In section 4.1.2 it was presented that the properties to evaluate the tools were obtained using

a questionnaire. In this section the answers are stated and discussed.

69

Based on the data collected in Figure 14, Table 9 and Table 10 were constructed. In both tables

it is present a summary of the implementation results of the tests detailed in 4.3, in both

systems in which they were implemented. These tables summarize the results obtained during

the implementation of the tests on two criteria, the test running time, whose standard is

defined by a test using the Moq framework (38) and measure in milliseconds, and the ease of

implementation, measured by the tool installation method, the tool availability, and the tool

documentation status.

In Table 10 it is possible to observe the results of the test run times implemented in both the

prototype and the company more complex service.

Table 9 – Test Result Summary.

Tool Name Tool Installation
Tool

Availability

Tool
Documentation

Moq
(standard
test)

NuGet Open source Updated

WireMock
NuGet Open source Updated

MockLab
External Service

Free with
limitations

Updated

TrafficParrot
External Service Paid

Last updated in
2017

Gremlin External Service Free Updated

HoverFly
External Service Open source

Last updated in
2017

Table 10 – Test Runtime Results in milliseconds.

 Tool

System

Moq
(standard

test)
WireMock MockLab TrafficParrot Gremlin HoverFly

Prototype 329 490 562 - 564 2300

Company
service

527 784 899,2 - 902,4 3680

70

Analysing the tables, it is possible to observe that none of the tools could reach an execution

time lower than the standard time set by the Moq framework, but it was something expected

because Moq does not go has deep as a service virtualization tool.

Regarding Table 10, the time of each tool increase proportionally when implementing the tests

in the company service and no tool reached a faster time when changing services nor did the

order of the fastest to the slowest. The higher run time when implementing in the company

service was expected, since the service has a higher complexity when comparing with the

prototype service.

The tool with the fastest run time in both systems was WireMock with 490 milliseconds in the

prototype and 784 milliseconds in the company system, although the difference when

compared with MockLab and Gremlin is not very high. In theory, the time difference might be

since WireMock is being run as NuGet package in the project as opposite to all the other tools

that run as an external service, making it more easily accessed by the system.

The TrafficParrot run time could not be measured due to the inaccessibility to the tool by the

parent company so it will not be possible to know if it would have the lowest speed.

Continuing with the subject of the paragraph before the last one, WireMock was also the only

tool that could be installed as a NuGet service, at least, when searching in the NuGet.org library,

which is the one used when developing in .Net. The other tools might be available in NuGet or

similar notion in other language which is something to discuss in future developments of this

research.

The fact that a tool must run as an external service, makes it have extras steps for the test to

run and for test development, delaying the completion of a test case and also increasing the

complexity for the developers as they must work with various environments instead of just

focusing on one IDE.

Looking at the fourth column of Table 9 we can see that only Traffic Parrot has its use barred

by a paid subscription. One of the aspects of a tool mentioned in answers of the questionnaire

was that a tool must be either free or open source, meaning that if a tool is paid, normally it is

automatically discarded. The same can be said for the MockLab tool, even though it has a free

subscription, due to its limitations it could also be discarded.

The last property to be evaluated is related to the documentation. All the tools possess updated

documentation and very well organized in each of their company’s website, except for

WireMock where the official documentation is present in a Github wiki. Hoverfly and Traffic

Parrot were the only ones with a slight delay in their documentation as their last update was in

2017.

Having these analyses and Table 9 and 10 in mind the WireMock tool presents the best results

and characteristics and is therefore the tool of choice according to this study to implement E2E

tests in services with features like the ones presented.

71

5 Experts' Evaluation

This chapter has the objective of evaluating the tool study that was implemented. It defines the

measures to be used, the hypotheses to be tested, the test methodology and the results of the

tests. It also describes the approach used to evaluate the solutions.

5.1 Evaluation Objectives

The goal of this project is to provide a way to consistently implement end-to-end tests with

resource to service virtualization that is possible to use within a working/company environment.

Therefore, it is necessary to evaluate not only the solution implemented but also the challenges

faced and ascertain the validity of the reasons why a certain tool may be used over another.

Since this work focus on real life applications of the tools, it was decided to use questionaries

that can be answered by experts of the field. The opinion of the professionals is of high

importance as they have extensive experience in microservices implementations. The complete

questionnaire will be found in the appendix of this report.

5.2 Methodology

The questions presented to the experts are divided into sections to provide a better adjustment

for the professionals’ evaluation. The groups are:

A. Questions regarding the experience of the questionees with microservices and E2E in

general.

B. Questions regarding the choice of characteristics chosen to evaluate the service

virtualization tools to validate their choice.

C. Questions regarding the results of each tool and the tool chosen as the best one.

All the questions are closed-ended, and the answers are provided using values of the Likert

scale (Table 11).

Table 11 – Likert scale (46).

Strongly Disapprove Disapprove Undecided Approve Strongly Approve

1 2 3 4 5

To analyse the results of the questionnaire regarding the groups of questions 1 and 2, each one

will have specified intervals which will be described to the professionals before they answer the

72

survey. These intervals will be used to better exemplify the meaning of each value of the Likert

scale and provide the participants with as much information as possible so that they may make

a conscientious decision when answering the questionary.

The intervals defined for the answers to group B are presented in Table 12 below.

Table 12 – Mean intervals for the evaluation of the solutions and patterns identified.

Interval Description

[1-2] The features and patterns identified in each service virtualization tool have no
relation to end-to-end testing in a microservice architecture.

[2-3] Some of the features and patterns identified in each service virtualization tool
are related to end-to-end testing in a microservice architecture, but there are
essential issues missing.

[3-4] The list of features and patterns in each service virtualization tool is complete
and clear. The methods are related to end-to-end testing a microservice
architecture, but some are not relevant.

[4-5] The research identified currently mostly used and proper techniques and
features of each service virtualization tool for end-to-end testing a microservice
architecture.

Regarding group C, the experts had access to the non-functional requirements and functional

requirements. They will then be asked to analyse the solution and provide feedback regarding

the achievement of the requirements. To do that, they will use the Likert scale to inform their

evaluation from “Strongly Disapprove” (grade 1) to “Strongly Approved” (grade 5), for each

group of requirements.

5.2.1 Choice of Participants

Since an important aspect of the tool study and implementation is focused on its usefulness in

a company environment, the participants will be the highest number of available employees in

the company, making up a convenience sample (47).

The job titles of the participants must also require extensive technical knowledge and software

architecture experience and they should execute end-to-end tests as part of their recurring

responsibilities, therefore the range of the participating positions which be withing the ones

below:

• Principal Engineer.

• Engineering Lead.

• Senior Engineer.

• Quality Assurance Engineer

73

• Software Engineer.

The mean of experience of all the participants should be a value that assures that the

participants are highly experienced and are able to provide value by evaluating the results, but

there will not be a minimum of years of experience required to enter the survey as the pool of

participants may not be very large.

5.2.2 Hypothesis

The mean answer of group B and C will be calculated and mapped to its specific interval. The

description of the defined intervals gives some insights regarding the results of the group.

To also have an overall evaluation, the mean of the question groups mentioned will also be

calculated. This final grade will be used to test the value of this work.

Using the Likert scale, if a value is bigger than 3, then it is on the positive side of the range.

Consequently, it is possible to consider that the work is valuable if the final mean is higher than

3. Therefore, we must understand if the final mean value is on the positive side of the scale to

test the following hypotheses.

• Group B hypotheses:

𝐻0: 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐ℎ𝑜𝑖𝑐𝑒 𝑖𝑛 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑐ℎ𝑎𝑟𝑒𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠

𝑛𝑜𝑡 𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑

𝐻0 ∶ 𝜇 ≤ 3

𝐻1: 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐ℎ𝑜𝑖𝑐𝑒 𝑖𝑛 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑐ℎ𝑎𝑟𝑒𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠

𝑣𝑎𝑙𝑢𝑒𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑

𝐻1 ∶ 𝜇 > 3

• Group C hypotheses:

𝐻2: 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑘 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑛𝑜𝑡 𝑣𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑

𝐻2 ∶ 𝜇 ≤ 3

𝐻3: 𝐸𝑥𝑝𝑒𝑟𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑘 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑣𝑎𝑙𝑢𝑒𝑎𝑏𝑙𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑

𝐻3 ∶ 𝜇 > 3

If the mean is greater than 3, H0 and H2 are refuted and therefore it is valid to say that the work

results and evaluated characteristics are valuable to the field.

74

5.3 Execution and Results

The questionnaire will be directly provided to specific professionals with recognized extensive

knowledge in the microservices field mention in the section above. The main objective of this

will be to obtain feedback directly from experts and not from a wide group of professionals. It

was possible to get answers from 30 participants.

5.3.1 Expert’s background

Figure 41 illustrates the job titles of the participants. All of them require extensive technical

knowledge and software architecture experience.

Figure 41 - Participant’s job titles.

Also, the participants answered how many years of experience they have, which can be

analysed in Figure 42.

24

3

1 1 1

Software Engineer Quality Assurance Engineer

Infrastructure Engineer Principal Engineer

Software Architect

75

Figure 42 - Participant’s years of experience.

All the participants have at least 5 years of experience. The most experienced participant has

15 years of experience. Also, the average experience of the 30 participants is 8,8. Therefore,

the participants are highly experienced and can provide value by evaluating this work results.

The next question about the expert’s background looked to clarify the composition of the

system the participants most recent worked with. In this case the results will not be presented

in a graph because 100% of participants answered with “My system consists of more than 5

services, but some of them are Monolithic”, meaning the systems the expert’s use mostly have

a microservice architecture meaning most of the system are quite updated.

Figure 43 complements the previous paragraph information with the quantity of systems the

participants currently work with and 19 of the 30 participants work with 12 services, meaning

the company environment has a considerable size and the minimum number of services is 5,

meaning all the systems the participants work with have a considerable complexity going by

their size.

6

3

213

1
1

2

5 Years 6 Years 8 Years 10 Years

11 Years 14 Years 15 Years

76

Figure 43 – How many systems the participants currently work with.

5.3.2 Choice of characteristics to evaluate the tools

After gathering some information regarding the participant's profiles, they were asked to

provide feedback regarding the main aspects of the tools that were evaluated and their

importance when choosing one (questions group 2).

Figure 44 – Results for the question “How important is the test execution time when choosing a service

virtualization tool?”.

Figure 44 describes the grades provided by experts regarding the importance of test execution

time of a tool. Thirteen of the experts provided the maximum grade of 5, while the lowest grade

was 4. Therefore, all the experts provided a positive evaluation (more than 3 in the Likert scale).

192

2

2

1
1

2
1

10 Services 11 Services 9 Services 5 Services

12 Services 6 Services 7 Services 8 Services

17

13

0 5 10 15 20

Grade 4

Grade 5

77

Figure 45 – Results for the question “How important is the fact that the tool is available as a nugget

when choosing a service virtualization tool?”.

Figure 45 describes the grades provided by experts regarding the importance of the availability

of the tool as a NuGet. Sixteen of the experts provided the maximum grade of 5, while the

lowest grade was 3. The evaluation was positive, because all grades were 3 or higher, but not

as overwhelming as in the previous one.

Figure 46 – Results for the question “How important is the fact that the tool is available as an external,

standalone service, that must execute outside of the IDE environment, when choosing a service

virtualization tool?”.

Figure 46 describes the grades provided by experts regarding the importance of the tool being

able to run as an external service. Seventeen of the experts provided the grade of 4 and none

gave the maximum grade, while the lowest grade was 1, meaning that this time the evaluation

was not all positive which indicates that this property is less desirable to some experts but not

entirely to the vast majority.

16

8

6

0 5 10 15 20

Grade 4

Grade5

Grade 3

17

8

3

2

0 5 10 15 20

Grade 4

Grade 2

Grade 1

Grade 3

78

Figure 47 – Results for the question “How important is the fact that the tool is Open Source, when

choosing a service virtualization tool?”.

Figure 47 describes the grades provided by experts regarding the importance of the tool being

Open Source. This aspect was evaluated only by two grades, 4 and 5, and the majority, 16

participants voted 5, meaning that this factor is highly important and highly desirable by the

experts.

Figure 48 – Results for the question “How important is the fact that the tool is free but with a limited

amount of uses per month, when choosing a service virtualization tool?”.

Figure 48 describes the grades provided by experts regarding a tool being free but with limited

uses. Most of the participants, 18 of the 30 participants, gave this aspect the lowest grade

possible, meaning that this evaluation was negative, and it is an aspect of a tool that is not

desirable, but even so, there were 2 experts that gave the grade 4, meaning that there is some

room for compromise within the sample.

16

14

Grade 4

Grade 5

13 13,5 14 14,5 15 15,5 16 16,5

Série1

10

2

18

Grade 2

Grade 4

Grade 1

0 5 10 15 20

Série1

79

Figure 49 – Results for the question “How much does the fact that a tool has a paid subscription in

order to be use, contribute to the rejection of the tool?”.

Figure 49 describes the grades provided by experts regarding the possibility of rejecting the tool

if it was only available by paying a subscription. Overwhelming, this aspect was evaluated

positively by the participants, in which 10 gave the highest grade possible, meaning that if a tool

has this characteristic, it is most likely to not be used.

Figure 50 – Results for the question “How important is the fact that the tool has updated

documentation, when choosing a service virtualization tool?”.

Figure 50 describes the grades provided by experts regarding the documentation of a tool and

how updated it is. Seventeen participants gave the maximum grade to this property making it

have a highly positive evaluation, meaning that updated documentation is highly important to

the participants when choosing a tool.

20

10

0 5 10 15 20 25

Grade 4

Grade 5

13

17

0 5 10 15 20

Grade 4

Grade 5

80

Figure 51 – Results for the question “How important is the fact that the tool has updated examples,

when choosing a service virtualization tool?”.

Figure 51 describes the grades provided by experts regarding the fact that the tool has updated

examples of its implementation as part of its documentation. Much like the previous results this

property is also highly regarded by the participant sample, has eighteen of them have given the

highest grade possible, continuing the tendency that updated documentation is important

when choosing a tool.

5.3.3 Hypotheses test

In Table 13 it is possible to visualize the means of all the answers regarding the importance of

the choice of tool properties to evaluate (group B).

Table 13 – Mean of every answer regarding importance of tool properties.

Question Mean

How important is the test execution time when choosing a service virtualization
tool?

4,433

How important is the fact that the tool is available as a nugget when choosing a
service virtualization tool?

4,067

How important is the fact that the tool is available as an external, standalone
service, that must execute outside of the IDE environment, when choosing a
service virtualization tool?

3,1

How important is the fact that the tool is Open Source, when choosing a service
virtualization tool?

4,467

How important is the fact that the tool is free but with a limited amount of uses
per month, when choosing a service virtualization tool?

1,533

How much does the fact that a tool has a paid subscription to be use, contribute to
the rejection of the tool?

4,333

How important is the fact that the tool has updated documentation, when
choosing a service virtualization tool?

4,567

How important is the fact that the tool has updated examples, when choosing a
service virtualization tool?

4,4

Total Mean 3,863

18

12

0 5 10 15 20

Grade 4

Grade 5

81

By using the means of the results, it possible to corroborate the affirmations made in the

previous paragraphs. The property with the lowest score was “How important is the fact that

the tool is free but with a limited amount of uses per month, when choosing a service

virtualization tool?” and the one with the highest was “How important is the fact that the tool

has updated documentation, when choosing a service virtualization tool?”.

The total mean of this group was 3,863 which means it had an overall positive evaluation.

𝜇 = 3,863

3,863 ≥ 3

With this value, H0 is refuted confirming that the properties selected to evaluate the tools were

correct and in tune with what the experts perceive as valuable when selecting a tool for E2E

testing.

The results of the two questions in Group C with the focus on the quality of the tool analysis

results and the conclusion of which of them is the most suited to be used are presented in the

following figures.

Figure 52 – Results for the question “Please evaluate from (strongly disapprove) to 5 (strongly approve)

the analysis of the tools.”

Figure 52 describes the grades provided by experts regarding the general way in which the

analysis of all the tools was conducted. Most of the participants gave the second highest grade

(Grade 4), meaning the analysis was overall accepted and approve but with some room for

improvement as it is also possible to conclude by the two grades of 3.

20

2

8

0 5 10 15 20 25

Grade 4

Grade 3

Grade 5

82

Figure 53 – Results for the question “Please evaluate from (strongly disagree) to 5 (strongly agree) the

best tool identified is WireMock.”

Figure 53 describes the grades provided by experts regarding their agreement with the

statement that WireMock is the most suited tool. Half of the participants gave this statement

the maximum score (Grade 5) making it very positively evaluated although there were still three

participants who remained neutral.

To conclude the evaluation, the hypotheses stated in section 5.2.2 must be tested. As previously

mentioned, this will be obtained by calculating the total mean of the answers and positioning

it on the Likert scale. If the total mean of this evaluation is more significant than 3 it will be valid

to say that the work results are valuable to the field. The calculations are present in Table 14.

Table 14 – Work Evaluation total means.

Question Mean

Please evaluate from (strongly disapprove) to 5 (strongly approve) the analysis of
the tools.

4,2

Please evaluate from (strongly disagree) to 5 (strongly agree) the best tool identified
is WireMock.

4,4

Total mean 4,3

The total mean of this evaluation is 4.3, which is more significant than 3, positioning the

evaluation in the positive side of the Likert scale.

𝜇 = 4.3

4.3 ≥ 3

With this value, H2 is refuted and therefore it is valid to say that the work results are valuable

to the field.

12

15

3

0 2 4 6 8 10 12 14 16

Grade 4

Grade 5

Grade 3

83

5.4 Result Limitations

The present study also comes with its share of limitations regarding its results. One of the most

visible ones is the fact that the tools were only used and tested in a .Net, or C# developed

solutions, meaning that the results of their execution run time may not be directly extrapolated

to other languages or frameworks, even though the tools chosen to be evaluated can be used

by any language, such as Java for example. The same can be said about the tools ease of

implementation because there is a chance that the difficulty might increase in another

environment, since for example NuGet is exclusive to .Net.

Another limitation to point out is the fact that the professionals that answered the

questionnaire belonged to the same company, which may lead to some developing habits that

are common between most participants and it is likely that the primarily work with a focus on

single developing language as well, bordering the perspectives of the evaluation.

84

85

6 Conclusions

This chapter concludes this document by analyzing and comparing the initially defined

objectives with the work outputs and outcomes. The difficulties identified during this work are

described here, along with possible future work.

6.1 Achieved objectives

In Section 4.1 the main objective of this work was defined. In this section, the achievement of

this objective is evaluated and justified with corresponding evidence.

In Chapter 4, the tests cases and the systems they were implemented on were described. All

the tools, except one, were successfully implemented on the systems, including the one used

in a real company environment and the path and difficulties faced were described.

In Chapter 5, 30 experts in microservices with an average of 8,8 years of experience in the field

provided a positive grade (4.3) in the Likert Scale (1 to 5) and feedback regarding both the tools

research study and the tool selected and also the characteristics by which these tools were

evaluated, considering the work valuable to the field, and providing further evidence of the

objective achievement.

6.2 Difficulties along the way

During the development of this work, different difficulties were faced influencing the results:

86

• Tool implementation challenges – all the tools analyzed worked in different ways and

each had their own rules to follow which was quite a tolling task for one developer to

try to come up with ways in which these could fit with the system that need to be tested

and still be comparable amongst themselves.

• Tool inaccessible by pay wall – the fact that one of tools, Traffic Parrot, could not be

implemented meant a somewhat incomplete study regarding the implementation

process experimentation and the test execution time measurement but it also provided

an extra aspect of consideration when selecting or in this case rejecting the use of a

tool.

• Confidentiality issues – due to confidentiality issues it was not possible to provide all

the information regarding the company, its system that was used and the participant

sample.

• Experts’ availability – another difficulty found during this work was to find availability

from industry experts to validate the results of this work as it required them to read the

results and the fact that they had to answer two different questionnaires, albeit in

different timeframes, which demands some time.

6.3 Future work

Even though this work achieved its objectives, there are always improvement points. Also, this

work’s contributions identify essential challenges for further research in the microservices E2E

testing field.

One aspect to point out is the number of tools analyzed. Considering the number of tools

available and the lack of tool study reports that exist, the number of tools can be increased in

the future and perhaps a more suited tool can be found.

Speaking of increasing the number of tools studied, the number of systems in which these tools

are implemented can also increase to achieve a better reach with the results and a stronger

statement with the analysis.

Finally, this work was written in English so that it can reach a higher number of readers. Also, it

was structured with the possibility of publishing an article on a recognized platform or

conference, further increasing the work reach. Even though it was not possible to achieve this

in the timeframe available for this work, this task may be completed in the future, so that a

different perspective of reviews can be gathered, and future research influenced positively.

87

88

References

1. Architecting Microservices: Practical Opportunities and Challenges. Baškarada, S., Nguyen,

V. and Koronios, A. s.l. : Journal of Computer Information Systems, 2018.

2. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R. and

Safina, L. Microservices: yesterday, today, and tomorrow. Springer, Cham. : In Present and

ulterior software engineering, 2017.

3. From monolith to microservices: a classification of refactoring approaches. Fritzsch, J.,

Bogner, J., Zimmermann, A. and Wagner, S. Springer, Cham. : In International Workshop on

Software Engineering Aspects of Continuous Development and New Paradigms of Software

Production and Deployment, 2018.

4. Migrating towards microservices: migration and architecture smells. Carrasco, A., Bladel,

B.V. and Demeyer, S. s.l. : In Proceedings of the 2nd International Workshop on Refactoring,

2018.

5. Fowler, Martin and Lewis, Jerry. Microservices. martinfowler.com. [Online] [Cited: 02 6,

2021.] https://martinfowler.com/articles/microservices.html.

6. Verification in the age of microservices. PANDA, Aurojit, SAGIV, Mooly and SHENKER,

Scott. s.l. : Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017.

7. Sundar, A. An insight into microservices testing strategies. Infosys.com. [Online] [Cited: 2 6,

2021.] https://www.infosys.com/it-services/validation-solutions/white-papers/.

8. Network virtualization in multi-tenant datacenters. Koponen, T. and Amidon, K. s.l. : NSDI,

2014.

9. Mendes, David Garcia . Automated Testing for Provisioning Systems of Complex Cloud

Products. Lisboa : Faculade de Ciências e Tecnologia, 2019.

10. Architectural Technical Debt in Microservices. De Toledo, Soares. 2019.

11. Instituto Superior de Engenharia Informática. Simpósio de Engenharia Informática.

Simpósio de Engenharia Informática. [Online] ISEP, 2021. [Citação: 11 de 10 de 2021.]

http://sei.dei.isep.ipp.pt/index.html.

12. Koen, Peter, Ajamian, G M and Boyce, S. Fuzzy front end: effective methods, tools, and

techniques. s.l. : The PDMA toolbook 1 for new product development, 2002.

13. Rich, N. and Holweg, M. Value analysis. Value engineering: Innoregio: dissemination of

innovation and knowledge management techniques. United Kingdom : Lean Enterprise

Research, 2000.

89

14. The brainstorming myth. Furnham, Adrian. s.l. : Business strategy review, 2000.

15. Combining the AHP and TOPSIS to evaluate car selection. Ulkhaq, M, et al. s.l. : In

Proceedings of the 2nd International Conference on High Performance Compilation

Computing and Communications, 2018.

16. Software architectures - Present and visions. Strîmbei, C., Dospinescu, O., Strainu, R.M.

and Nistor, A. s.l. : Informatica Economica, 2015.

17. Fowler, Martin. Monolith First. martinfowler.com. [Online] [Cited: 2 6, 2021.]

https://martinfowler.com/bliki/MonolithFirst.html.

18. Newman, Sam. Monolith to Microservices. United States of America. : O'Reilly, 2020. 978-

1-492-07554-7.

19. Apache Software Foundation. INTRODUCTION. kafka.apache. [Online] 2017.

https://kafka.apache.org/intro.

20. Learning to Reliably Deliver Streaming Data with Apache Kafka. wu, Han, Shang, Zhihao

and Wolter, Katinka. Berlin : 0th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2020. DSN48063.2020.00068.

21. Apache Kafka: Real Time Implementation with Kafka Architecture Review. Shaheen, Javed

Ahmed . Faisalabad, Pakistan : International Journal of Advanced Science and Technology,

2017. 10.14257.

22. The Future of Software Quality Assurance. Goericke, Stephan. Cham : Springer, 2020.

23. Application performance management: State of the art and challenges for the future.

Heger, C, et al. s.l. : In Proc. 8th ACM/SPEC Int. Conf. on Performance Engineering, 2017.

24. Analysis of Server Virtualization Service Performance Using Citrix Xenserver. Tenggono,

Surahmat and Tenggono, Alfred. s.l. : Journal of Physics: Conference Series, 2020. 1500

012098.

25. Hossain, Arafat. Discovering Context Dependent Service Models for Stateful Service

Virtualization. Melbourne, Australia : Swinburne University of Technology, 2020.

26. Shrimann , Upadhyay, Hrishikesh , Mukherjee and Arup Abhinna , Acharya Abhinna .

Continuous Testing of Service-Oriented Applications Using Service Virtualization. s.l. :

ResearchGate, 2019. 10.9790/0661-17258892.

27. Comparison of runtime testing tools for microservices. Sotomayor, Juan. s.l. : IEEE 43rd

Annual Computer Software and Applications Conference (COMPSAC), 2019.

28. Heorhiadi, Victor. Gremlin: Systematic Resilience Testing of Microservices. s.l. : 36th

International Conference on Distributed Computing Systems (ICDCS), 2016.

90

29. Gremlin Inc. Docs. gremlin.com. [Online] [Citação: 16 de 2 de 2021.]

https://www.gremlin.com/docs/.

30. SpectoLabs. Docs. hoverfly.io. [Online] [Citação: 17 de 2 de 2021.]

https://docs.hoverfly.io/en/latest/.

31. D’Amore, Antonio. Implementation of a serverless application. Torino : Politecnico Di

Torino, 2020.

32. Akehurst, Tom. Docs. wiremock.org. [Online] [Citação: 18 de 2 de 2021.]

http://wiremock.org/docs/.

33. MockLab. Docs. mocklab.io. [Online] [Cited: 2 20, 2021.]

https://www.mocklab.io/docs/getting-started/.

34. Traffic Parrot. Documentation. Traffic Parrot. [Online] [Cited: 2 20, 2021.]

https://trafficparrot.com/.

35. Gabrielova, Eugenia. End-to-End Regression Testing for Distributed Systems. Las Vegas :

Association for Computing Machinery, 2017. 978-1-4503-5199-7.

36. Efficient test execution in End to End testing. Augusto, Crstian. New York, : International

Conference on Software Engineering, 2020. 978-1-4503-7122-3.

37. Web Test Automation: Insights from the Grey Literature. Ricca, Filippo and Stocco,

Andrea . Italy : ResearchGate, 2020.

38. Cazzulino, Daniel. moq. Github. [Online] Moq. [Cited: 5 18, 2021.]

https://github.com/moq/moq.

39. Microsoft. An introduction to NuGet. Microsoft Docs. [Online] 5 24, 2019. [Cited: 7 3,

2021.] https://docs.microsoft.com/en-us/nuget/what-is-nuget.

40. Bose, Shreya. End To End Testing: A Detailed Guide. BrowserStack. [Online] BrowserStack,

2 5, 2020. [Cited: 4 30, 2021.] https://www.browserstack.com/guide/end-to-end-testing.

41. Cohen, Julie, Plakosh, Dan and Keeler, Kristi. Robustness Testing of Software-Intensive

Systems: Explanation and Guide. Carnegie Mellon University, Software Engineering Institute :

Carnegie Mellon University, 2005. 10.1184/R1/6583508.v1.

42. Heyenrath, Stef. WireMock.Net. Github. [Online] 2021. [Cited: 6 9, 2021.]

https://github.com/WireMock-Net/WireMock.Net/wiki/Stubbing.

43. Acohen, Daan. How WireMock.NET Can Help in Doing Integration Testing of a .NET Core

Application. Code Project. [Online] [Cited: 6 9, 2021.]

https://www.codeproject.com/Articles/5267354/How-WireMock-NET-Can-Help-in-Doing-

Integration-Tes.

91

44. Neumann, Andy, Laranjeiro, Nuno and Bernardino, Jorge. An Analysis of Public REST Web

Service APIs. s.l. : IEEE Computer Society, 2018.

45. Normén, Fredrik. Hoverfly C# Nugget. Github. [Online] [Cited: 6 8, 2021.]

https://github.com/fredrikn/hoverfly-dotnet.

46. A technique for the measurement of attitudes. Likert, R. s.l. : Archives of psychology, 1932.

47. Bornstein, Marc H., Jager, Justin and Putnick, Diane L. Sampling in Developmental

Science: Situations, Shortcomings, Solutions, and Standards. 2017. PMID 25580049.

48. Neuman, S. Building Microservices: Designing Fine-Grained Systems. s.l. : O’Reilly Media,

2015.

92

Appendix A

93

Appendix B

94

95

96

97

98

