

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Departamento de Engenharia Mecânica

Seleção da tecnologia mais eficiente para instalações refrigeradas sem temperaturas negativas para potências até 250 kW

JOSÉ EMANUEL ALVES DINIS PEREIRA (Licenciado em Engenharia Mecânica)

Estágio de natureza profissional para obtenção do grau de Mestre em Engenharia Mecânica

Orientadora:

Prof.ª Doutora Cláudia Sofia Séneca da Luz Casaca

Júri:

Presidente: Prof. Doutor Ivan Rodolfo Pereira Garcia de Galvão Vogais: Prof. Doutor Luís Paulo Coelho Neto

Prof.ª Doutora Cláudia Sofia Séneca da Luz Casaca

Dezembro de 2022

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Departamento de Engenharia Mecânica

Seleção da tecnologia mais eficiente para instalações refrigeradas sem temperaturas negativas para potências até 250 kW

JOSÉ EMANUEL ALVES DINIS PEREIRA (Licenciado em Engenharia Mecânica)

Estágio de natureza profissional para obtenção do grau de Mestre em Engenharia Mecânica

Orientadora:

Prof.ª Doutora Cláudia Sofia Séneca da Luz Casaca

Júri:

Presidente: Prof. Doutor Ivan Rodolfo Pereira Garcia de Galvão Vogais: Prof. Doutor Luís Paulo Coelho Neto

Prof.ª Doutora Cláudia Sofia Séneca da Luz Casaca

Dezembro de 2022

Agradecimentos

Durante o meu percurso académico muitos foram os desafios ultrapassados com o auxílio de várias pessoas que direta ou indiretamente tiveram um efeito construtivo nesta jornada. Desta forma quero deixar o meu sincero e genuíno agradecimento a todos os que contribuíram para a realização deste Trabalho Final de Mestrado, em especial:

- À minha mãe por não me ter deixado desistir do curso. Pela força, pela coragem e por ter acreditado sempre em mim.
- Ao meu pai pela presença e pelo apoio incondicional que me ofereceu não só durante este trabalho, mas também durante toda esta jornada.
- Ao meu avô pela sua força de vontade e resistência que sempre me serviram de exemplo e modelo a seguir.
- À minha orientadora, Professora Cláudia Casaca, pelo apoio, conselhos e paciência prestados durante a realização deste projeto.
- Ao meu orientador de estágio, Eng.º Amad Hafez, pela disponibilidade e pela forma objetiva e pragmática que me ajudou durante os momentos de análise do presente trabalho.
- Aos Eng.º Elsa Pereira, Rui Antunes e Isabel Barão da Cunha pela transmissão de conhecimentos técnicos disponibilizados durante o estágio realizado na RACE S.A.

Por último agradeço também à minha restante família, amigos e colegas do ISEL e da RACE S.A. pela amizade, motivação e apoio que, sem dúvida, contribuíram para o desenvolvimento deste trabalho.

Resumo

A realização do presente trabalho passou por determinar a tecnologia mais eficiente para a conservação de produtos frutícolas com temperaturas positivas e com potências frigoríficas até 250 kW. Desta forma apresentaram-se soluções industriais para preservar determinados bens de primeira necessidade através de ciclos termodinâmicos nomeadamente, ciclos de compressão de vapor, tendo em consideração que são os mais utilizados na conservação alimentar. A seleção dos fluidos frigorigéneos para combater as alterações climáticas passa por adotar fluidos naturais, fluidos HFO e misturas HFC-HFO com reduzido GWP e nulo OPD. Relativamente à análise de produtos frutícolas, evidenciou-se que a produção de laranjas apresentou um crescimento gradual entre 2016 e 2021 de 21,5 %, pelo que exibiu a segunda maior produção em 2021 com 363 918 t. A produção deste fruto encontra-se focalizada na região do Algarve com 77,6%, tendo sido este o fruto selecionado para conservar.

Estudos realizados à operacionalidade dos sistemas de compressão simples permitiram observar o impacto que os mesmos têm sobre a eficiência energética. Realizaram-se análises ao impacto das temperaturas de condensação, das temperaturas de evaporação, dos sobreaquecimentos útil e não útil, do subarrefecimento e dos múltiplos estágios de compressão. Construiu-se um sistema aplicável para determinar qual o fluido mais eficiente tanto energética com exergeticamente. Inferiu-se que o sistema aplicável com o fluido R-717 apresenta-se como a melhor solução com um *COP_{Real}* de 3,38 (4,44 com o adiabático em funcionamento). Para além disso o funcionamento do sistema aplicável com R-717 exibiu a menor exergia destruída com 47,0 kW (29,5 kW com adiabático). Para as condições de funcionamento impostas para a conservação de laranjas, as propriedades termodinâmicas do R-717 destacam-se sobre os outros fluidos analisados. Os custos de investimento e de manutenção com a utilização do R-717 foram os mais acessíveis.

No dimensionamento da instalação refrigerada inferiu-se que, para a área das câmaras de conservação e para o número apresentado de trabalhadores, não existem restrições à quantidade de R-717 utilizado no sistema. Concluiu-se, através da realização de um balanço térmico, que é possível conservar uma quantidade aproximada de laranjas de 104,37 t.

Palavras-chave: Ciclo de Compressão de Vapor; Fluidos Frigorigéneos; Laranjas; Eficiência Energética; Exergia; Sistema de Refrigeração.

Abstract

The realization of the present work involved determining the most efficient technology for the conservation of fruit products at positive temperatures and with refrigerating powers of up to 250 kW. In this way, industrial solutions were presented to preserve certain essential goods through thermodynamic cycles, namely, steam compression cycles, taking into account that they are the most used in food preservation. The selection of refrigerants to combat climate change involves adopting natural fluids, HFO fluids and HFC-HFO blends with low GWP and zero OPD. Regarding the analysis of fruit products, it was evidenced that the production of oranges showed a gradual growth between 2016 and 2021 of 21.5%, so it exhibited the second highest production in 2021 with 363,918 t. The production of this fruit is focused on the Algarve region with 77.6%, and this was the fruit selected for conservation.

Studies carried out on the operation of simple compression systems allowed observing the impact they have on energy efficiency. Analyzes were carried out on the impact of condensing temperatures, evaporation temperatures, useful and non-useful superheating, subcooling and multiple stages of compression. An applicable system was built to determine which fluid is the most efficient both energetically and exergetically. It was inferred that the system applicable with the fluid R-717 presents itself as the best solution with a COP_{Real} of 3.38 (4.44 with the adiabatic in operation). Furthermore, the operation of the applicable system with R-717 exhibited the lowest exergy destroyed with 47.0 kW (29.5 kW with adiabatic). For the operating conditions imposed for the conservation of oranges, the thermodynamic properties of R-717 stand out over the other fluids analyzed. Investment and maintenance costs with the use of R-717 were the most affordable.

In the dimensioning of the refrigerated installation, it was inferred that, for the area of the conservation chambers and for the number of workers presented, there are no restrictions on the charge of R-717 used in the system. It was concluded, by carrying out a thermal balance, that it is possible to preserve an approximate quantity of oranges of 104.37 t.

Keywords: Vapor Compression Cycle; Refrigerant Fluids; oranges; Energy Efficiency; exergy; Refrigeration system.

Simbologia

- A -Área de permuta de calor [m²];
- A_P Área da porta [m];
- A_S Área da superfície [m²];
- C Comprimento [m];
- cp_a Calor específico acima do congelamento [kJ/(kg.K)];
- cp_{água} Calor específico da água a pressão constante [kJ/kg.K];
- COP Coeficiente de desempenho [adimensional];
- COP_{Carnot} Coeficiente de desempenho de Carnot [adimensional];
- COP_{Real} Coeficiente de desempenho real [adimensional];
- CS Coeficiente de segurança [adimensional];
- d Coeficiente de depreciação [adimensional];
- DN Dimensão Nominal [mm];
- *D_{Tub}* Diâmetro interno do tubo [m];
- D_t Porção decimal de tempo em que a porta se encontra aberta [adimensional];
- E Iluminância [lux];
- E_{Re} Calor de respiração [mW/kg];
- f_a Fator de atrito [adimensional];
- g Aceleração gravítica [m/s²];
- h_1 Entalpia específica de entrada no compressor [kJ/kg];
- h_{2_S} Entalpia específica de saída no compressor (processo isentrópico) [kJ/kg];
- h_2 Entalpia específica de saída no compressor (processo real) [kJ/kg];
- h_3 Entalpia específica de saída no condensador [kJ/kg];
- h_4 Entalpia específica de entrada no evaporador [kJ/kg];
- *h_e* Entalpia específica de entrada [kJ/kg];
- h_{inf} Entalpia específica do ar infiltrado [kJ/kg];
- h_{ref} Entalpia específica do ar refrigerado [kJ/kg];
- h_s Entalpia específica de saída [kJ/kg];
- *K* Índice local [adimensional];
- K_v Coeficiente de perda [m];
- L Largura [m];
- L_T Comprimento das tubagens [m];
- L_v Calor latente específico de vaporização [kJ/kg];

- Moc Massa de laranjas por palote [kg];
- M_{Pr} Caudal mássico de produto diário [kg/dia];
- *m* Caudal mássico de fluido frigorigéneo [kg/s];
- \dot{m}_{AL} Caudal de água inerente ao calor latente [kg/s];
- \dot{m}_{AS} Caudal de água inerente ao calor sensível [kg/s];
- N Número de estágios de compressão [adimensional];
- N_p Número de passagens [adimensional];
- P₁ Pressão de aspiração [bar];
- P₂ Pressão de descarga [bar];

 $P_{int 1}$; $P_{int 2}$; $P_{int 3}$ – Pressões intermédias num sistema com N estágios de compressão [bar];

Pint. – Pressão Intermédia num ciclo com dois estágios de compressão [bar];

 \dot{Q}_{AC} – Calor removido pelo condensador adiabático [kW];

 \dot{Q}_{Af} – Carga térmica de arrefecimento do produto [kW];

 \dot{Q}_{EC} – Potência frigorífica em cada câmara [kW];

 \dot{Q}_{Env} – Calor da envolvente [kW];

- \dot{Q}_{Int} Carga térmica interna [kW];
- \dot{Q}_L Calor latente [kW];
- \dot{Q}_P Potência calorífica de um permutador de calor [W];
- \dot{Q}_{Pd} Carga térmica do produto [kW];
- \dot{Q}_{Re} Carga térmica de respiração [kW];
- \dot{Q}_{S} Calor da superfície [kW];
- \dot{Q}_{S} Calor sensível [kW];
- \dot{Q}_c Calor rejeitado pelo condensador [kW];
- \dot{Q}_e Potência Frigorífica [kW];
- \dot{Q}_{inf} Carga térmica inerente às infiltrações de ar [kW];
- q_p Calor equivalente por pessoa [kW];
- S Área de cada câmara de conservação [m²];
- s_q Entropia específica gerada [kJ/kg.K];
- s_e Entropia específica de entrada [kJ/kg.K];
- s_s Entropia específica de saída [kJ/kg.K];
- TFE Tempo de funcionamento dos evaporadores [horas];
- T_0 Temperatura estado morto [K];

- T_{CH} Temperatura de condensação bolbo húmido [°C];
- $T_{CM \acute{a} xS}$ Temperatura de condensação máxima bolbo seco [°C];
- T_{CMinS} Temperatura de condensação mínima de bolbo Seco [°C];
- T_{CS} Temperatura de condensação bolbo seco [°C];
- T_{Con_Min} Temperatura de conservação mínima do produto bolbo seco [°C];
- T_E Temperatura de conservação mínima bolbo seco [°C];
- T_F Temperatura da fonte fria [K];
- T_P Temperatura de projeto [°C];
- T_Q Temperatura da fonte quente [K];
- T_i Temperatura de entrada [°C];
- U Coeficiente global de transmissão de calor [W/m². °C];

V_{ar} – Velocidade do ar [m/s];

- Ve Velocidade de escoamento do fluido [m/s];
- V_i Velocidade do escoamento à entrada [m/s];
- V_s Velocidade do escoamento à saída [m/s];
- v_p Volume de cada palote [mm³];
- \dot{W}_c Potência de compressão [kW];
- \dot{W}_{c_s} Potência de compressão isentrópica [kW];
- z_e Altura à entrada [m];
- z_s Altura à saída [m];
- ΔH_l Altura da tubagem de líquido [m];
- ΔP_L Perda de carga inerente à altura das tubagens [Pa];
- ΔP_T Perda de carga nas tubagens [Pa];

 ΔP_d – Variação de pressão [bar];

 $\Delta \dot{Q}_{Cr}$ – Diferença de calor realizado pelo sistema adiabático [kW];

 ΔT_1 – Diferença entre a temperatura de entrada do ar e a temperatura do fluido frigorigéneo no evaporador [°C];

 ΔT_2 – Diferença entre a temperatura de saída do ar e a temperatura do fluido frigorigéneo no evaporador [°C];

 ΔT_{Env} – Diferença de temperaturas entre a envolvente e a câmara de conservação [°C];

- $\Delta T_{Log,m}$ Diferença de temperatura logarítmica [°C];
- ΔT_P Perda de carga em temperatura equivalente [K].
- ΔT Diferença de temperatura [K];
- $\Delta \psi$ Variação de exergia no escoamento [kJ/kg];

- $\eta_{\rm s}$ Rendimento isentrópico [adimensional];
- η_{I} Primeira lei da eficiência energética [adimensional];
- η_{II} Segunda lei da eficiência energética [adimensional];
- θ_d Período diário [h];
- θ_o Período em que a porta se encontra aberta [min];
- θ_p Período de abertura/fecho de porta [s];
- μ_{ut} Coeficiente de utilização [adimensional];
- $\rho_{\rm f}$ Massa específica do fluido nas tubagens [kg/m³];
- $\rho_{\rm ML}$ Massa específica média das laranjas [kg/mm³];
- ρ_{ref} Massa específica do ar refrigerado [kg/m³];
- ϕ_t Fluxo luminoso total [lm];
- ψ_D Exergia destruída [kJ/kg];

Siglas e Acrónimos

- ASHRAE Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar Condicionado;
- COP Coeficiente de desempenho;
- CAPEX Despesas de capital;
- DGEG Direção-Geral de Energia e Geologia;
- ERSE Entidade Reguladora dos Serviços Energéticos;
- GHG Gases efeito de estufa (Greenhouse Gases);
- GWP Potencial de aquecimento global (Global Warming Potential);
- IIAR Instituto Internacional de Refrigeração a Amoníaco.
- INE Instituto Nacional de Estatística;
- IPCC Painel Intergovernamental sobre as Alterações Climáticas;
- LFL Limite de Inferior de Inflamabilidade (Lower Flammability Limit);
- ODP Potencial de destruição da camada de ozono (Ozone Depletion Potencial);
- ODS Substâncias promotoras da destruição da camada de ozono;
- OPEX Despesas operacionais;
- PPEC Plano de Promoção de Eficiência no Consumo;
- PNEC Plano Nacional Energia e Clima;
- SEAI Autoridade de Energia Sustentável da Irlanda;
- UNEP Programa das Nações Unidas para o Meio Ambiente;
- VSD Acionamentos com Velocidade Variável;

Índice

A٤	gradeci	imento	5	I
Re	esumo			
Ał	ostract			v
Si	mbolo	gia		vii
Si	glas e A	Acróni	105	xi
1.	Intr	oduçã		1
	1.1.	Moti	ação e Enquadramento	1
	1.2.	Obje	vos	1
	1.3.	Estru	ura do Trabalho Final de Mestrado .	2
2.	Enq	luadra	nento Teórico	5
	2.1.	Insta	ações de Refrigeração	5
	2.1.	1.	ciclo de Compressão de Vapor	6
	2.1.	2.	rocessos Inerentes ao Ciclo de Com	pressão de Vapor10
	2	.1.2.1	Sobreaquecimento	
	2	.1.2.2	Dessobreaquecimento	11
	2	.1.2.3	Subarrefecimento	
	2	.1.2.4	Descongelamento	
	2	.1.2.5	Múltiplos Estágios de Compress	ão14
	2.1.	3.	efrigeração – Gama de Temperatur	as14
	2.1.	4.	istemas de Controlo e Equipamento	s Anexos15
	2.2.	Fluid	s Frigorigéneos	16
	2.2.	1.	Características Ambientais dos Fluido	s Frigorigéneos17
	2.2.	2.	oxicidade e Inflamabilidade dos Flui	dos Frigorigéneos18
	2.2.	3.	Grupos de Fluido Frigorigéneo	20
	2	.2.3.1	Hidrocarbonetos halogenados	20
	2	.2.3.2	Misturas	21
	2	.2.3.3	Fluidos Naturais	21
	2.2.	4.	egulamentos e Legislação em Vigor	23
	2.2.	5.	lternativas aos Fluidos em Funciona	mento em Portugal25
	2.3.	Prod	tos Frutícolas	
	2.3.	1.	écnicas e Boas Práticas de Conserva	ção29
	2.3.	2.	anorama Português na Produção Fr	utícola32

	2	2.3.2.1	. Necessidades de Frio de Cada Produto Frutícola	33
	2	2.3.2.2	2. Localização	34
3.	Efic	iência	a Energética	37
	3.1.	Pan	orama energético Nacional	37
	3.2.	Exer	gia	39
	3.3.	Leis	da eficiência	40
	3.4.	Ope	racionalidade de Sistemas de Refrigeração	41
	3.4	.1.	Impacto da Temperatura de Condensação	41
	3.4	.2.	Impacto da Temperatura de Evaporação	45
	3.4	.3.	Impacto do Sobreaquecimento nos Sistemas de Compressão a Vapor	47
	3.4	.4.	Impacto do Subarrefecimento nos Sistemas de Compressão a Vapor	49
	3.4	.5.	Impacto de Múltiplos Estágios nos Sistemas de Compressão a Vapor	50
	3.5.	Med	lidas de Otimização	53
4.	Cas	o de l	Estudo	55
	4.1.	Con	dições de Projeto	55
	4.1	.1.	Temperaturas de Condensação e de Evaporação	56
	4.2.	Uma	a Aproximação Teórica	57
	4.3.	Apli	cabilidade do Projeto	60
	4.3	.1.	Análise Exergética	66
	4.4.	Cust	tos Inerentes ao Investimento e à Manutenção dos Componentes Principais	69
	4.4	.1.	Custos de Investimento	70
	4.4	.2.	Custos de Manutenção	72
5.	Pro	jeto d	le Conservação de Frutas	75
	5.1.	Dad	os Contabilizados para Dimensionamento do Projeto	75
	5.1	.1.	Segurança e Limite de Carga do Fluido Frigorigéneo	75
	5.1	.2.	Planta do Entreposto Frigorífico	75
	5.1	.3.	Palotes para o Armazenamento de Laranjas	77
	5.2.	Dim	ensionamento	78
	5.2	.1.	Balanço Térmico	78
	5	5.2.1.1	. Carga Térmica Pela Envolvente	79
	5	5.2.1.2	2. Carga Térmica Interna	81
	5	5.2.1.3	8. Carga Térmica das Infiltrações de Ar	83
	5	5.2.1.4	 Carga térmica do Produto Armazenado 	84
	5.2	.2.	Tubagens	87

6.	Conclusões e Trabalhos Futuros	93
Refe	erências Bibliográficas	97
Apê	ndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração	105
Apê	ndice 2 – Análise à Aproximação Teórica	113
Apê	ndice 3 – Análise à Aplicabilidade do Projeto	117
Apê	ndice 4 – Análise ao Dimensionamento da Instalação Refrigerada	121
Apê	ndice 5 – Vistas da Central Para a Conservação de Laranjas e Folhas de Cálculo	131
Ane	xo 1 – Análise aos Custos de Investimento	141

Índice de Figuras

Figura 1 – Esquema da "máquina térmica" (a) e da "máquina frigorífica" (b)	5
Figura 2 – Ciclo de compressão a vapor simples	7
Figura 3 – Diagrama de Mollier do ciclo de compressão a vapor simples	7
Figura 4 – Comparação entre o ciclo de compressão teórico e real	9
Figura 5 – Uso de permutador de calor líquido-vapor no circuito frigorífico	11
Figura 6 – Ciclo de refrigeração com sistema dedicado de subarrefecimento	12
Figura 7 – Ciclo de refrigeração com sistema integrado de subarrefecimento	12
Figura 8 – Permuta de calor num condensador adiabático	43
Figura 9 – Arrefecimento intermédio entre estágios de compressão	52
Figura 10 – Parâmetros de Projeto inerentes à cidade de Faro	56
Figura 11 – Sistema nº 4 (a) e 5 (b)	59
Figura 12 – Esquema de refrigeração simplificado para o sistema aplicável	63
Figura 13 – Planta do entreposto para a conservação de laranjas	76
Figura 14 – Disposição dos equipamentos e linhas de tubagem	77
Figura 15 – Palotes 1200 X 1000 X 760	78
Figura 16 – Disposição dos palotes nas três câmaras de conservação	87
Figura 17 – Diagrama de Moody	90
Figura 18 – Esquema unifilar da instalação refrigerada.	92
Figura 19 – Representação das várias temperaturas de condensação	106
Figura 20 – Representação das várias temperaturas de evaporação	108
Figura 21 – Representação do processo de sobreaquecimento	109
Figura 22 – Representação do processo de subarrefecimento	110
Figura 23 – Representação dos múltiplos estágios de compressão	111
Figura 24 – Representação do esquema do ciclo número 1 (a) e do respetivo diagrama de	
Mollier (b)	114
Figura 25 – Representação do esquema do ciclo número 2 (a) e do respetivo diagrama de	
Mollier (b)	114
Figura 26 – Representação do esquema do ciclo número 3 (a) e do respetivo diagrama de	
Mollier (b)	115
Figura 27 – Representação do esquema do ciclo número 4 (a) e do respetivo diagrama de	
Mollier (b)	115
Figura 28 – Representação do esquema do ciclo número 4 (a) e do respetivo diagrama de	
Mollier (b)	115
Figura 29 – Esquema de funcionamento e diagrama de Mollier considerado para a	
aplicabilidade do projeto	118
Figura 30 – Determinação do fator de atrito através do diagrama de Moody	122
Figura 31 – Determinação da perda de carga em K para a linha de líquido da instalação	124
Figura 32 – Tubagens schedule 40 e schedule 80	125
Figura 33 – Resultados obtidos para o dimensionamento do filtro na linha de líquido	127
Figura 34 – Vista da instalação refrigerada sem paredes/tetos	132
Figura 35 – Vista da central de frio	132
Figura 36 – Vista do condensador da instalação.	133

133
133
134
134
135
136
137
138
139
140

Índice de Tabelas

Tabela 1 – Refrigeração consoante a temperatura de evaporação	.14
Tabela 2 – Gama de temperaturas empregues por cada setor da refrigeração	.15
Tabela 3 – Classificação dos grupos de segurança	.19
Tabela 4 – Grupos de fluidos halogenados	.20
Tabela 5 – Comparação GWP, ODP e Classificação de Segurança para fluidos naturais	.22
Tabela 6 – Normas a nível europeu inerentes a aplicações de refrigeração	.25
Tabela 7 – Fluidos frigorigéneos com baixo GWP como alternativa	.28
Tabela 8 – Exemplos de danos causados pela atmosfera controlada	.31
Tabela 9 – Requisitos de armazenamento consoante o produto frutícola	.34
Tabela 10 – Impacto na eficiência e na potência de compressão na implementação de	
múltiplos estágios.	.51
Tabela 11 – Temperaturas exteriores de projeto de verão com probabilidades acumuladas d	e
ocorrência de 99% e amplitude térmica diária no mês mais quente	.55
Tabela 12 – Sistemas dimensionados para a determinação do COP real mais elevado	.58
Tabela 13 - Dados inerentes à unidade compressora para o R-290 sem sistema adiabático	.61
Tabela 14 – Dados inerentes à unidade compressora para o R-1270 sem sistema adiabático.	.61
Tabela 15 – Dados inerentes à unidade compressora para o R-1234ze[E] sem sistema	
adiabático	.62
Tabela 16 – Dados inerentes à unidade compressora para o R-744 sem sistema adiabático	.62
Tabela 17 – Dados inerentes à unidade compressora para o R-515B sem sistema adiabático.	.62
Tabela 18 – Dados inerentes à unidade compressora para o R-717 sem sistema adiabático	.63
Tabela 19 – Eficiência exergética do sistema aplicável e de cada componente principal sem c)
sistema adiabático	.69
Tabela 20 – Vantagens e desvantagens da metodologia CAPEX	.69
Tabela 21 – Vantagens e desvantagens inerentes ao OPEX	.70
Tabela 22 – Custos inerentes aos equipamentos principais que formam cada circuito	.71
Tabela 23 – Determinação da quantidade de fluido utilizado nos evaporadores e	
condensadores para cada fluido	.72
Tabela 24 – Custos de manutenção do sistema, atendendo o fluido utilizado	.73
Tabela 25 – Restrições à quantidade de fluido utilizado no sistema	.75
Tabela 26 – Efeito Solar e consequente incremento de temperaturas	.79
Tabela 27 – Espessuras dos painéis isotérmicos segundo a temperatura de conservação	.79
Tabela 28 – Balanço térmico da câmara 1	.80
Tabela 29 – Coeficiente de depreciação consoante o ambiente de trabalho	.81
Tabela 30 – Valores inerentes à determinação da potência consumida pelas lâmpadas em ca	da
câmara	.82
Tabela 31 – Ganhos térmicos provocados pelos motores elétricos segundo a sua potência	
nominal	.82
Tabela 32 – Cargas térmicas determinadas para cada câmara de conservação	.85
Tabela 33 – Ponto de congelamento inicial, calor específico da laranja e massa de conservação	ão.
	.85

Tabela 34 – Carga térmica do produto e caudal mássico diário de produto por câmara de
conservação
Tabela 35 – Diâmetros de tubagem consoante as linhas do circuito e da temperatura saturada
de aspiração
Tabela 36 – Fatores de correção para as linhas de aspiração e de descarga consoante a
temperatura de condensação
Tabela 37 – Comprimentos, perdas de carga e dimensões nominais das linhas de aspiração e
de descarga
Tabela 38 – Comprimentos, diâmetros e perdas de carga nas tubagens de líquido91
Tabela 39 – Perdas de carga, em K, para válvulas, filtros curvas, tês, tubagens e total91
Tabela 40 – Dados dos principais pontos para o fluido frigorigéneo R-717 para temperaturas de
condensação de 45 °C e de evaporação de 0 °C (Análise do impacto das temperaturas de
condensação)107
Tabela 41 – Variação do COP e da potência absorvida pelo compressor com a variação da
temperatura
Tabela 42 – Variações do COP e da potência absorvida pelo compressor consoante a variação
do sobreaquecimento109
Tabela 43 – Valores relativos a um sistema com quatro estágios de compressão111
Tabela 44 – Dados dos principais pontos do sistema a R-290118
Tabela 45 – Valores determinados para o dimensionamento da tubagem de líquido da
instalação122

Índice de Gráficos

Gráfico 1 – Decréscimo gradual da comercialização/utilização dos gases fluorados segundo o
GWP até 203024
Gráfico 2 – Fluidos utilizados nas instalações refrigeradas em Portugal 201926
Gráfico 3 – Comparação dos valores de GWP entre o R-404A e os dos anos afetados pelo
Regulamento (EU) 517/201427
Gráfico 4 – Fluidos utilizados no setor hortofrutícola em Portugal em 201427
Gráfico 5 – Níveis de GWP dos fluidos alternativos e GWP limite para 203029
Gráfico 6 – Produção das 5 maiores culturas permanentes em 2020
Gráfico 7 – Produção das 5 maiores culturas permanentes em 2021
Gráfico 8 – Produção de maçã e de Laranja entre 2016 e 2021
Gráfico 9 – Distribuição dos Hectares na Produção de Laranja em 2021
Gráfico 10 – Distribuição dos Hectares na Produção de Maçã em 2021
Gráfico 11 – Dependência energética a nível nacional
Gráfico 12 – Produção de energia primária elétrica em 2020
Gráfico 13 – Variação da potência absorvida e do COP através da temperatura de
condensação42
Gráfico 14 – Resultados inerentes aos consumos durante o período de testes
Gráfico 15 – Variação do COP e da potência absorvida pelo compressor consoante a
temperatura de evaporação46
Gráfico 16 – Processos de sobreaquecimento, potências absorvidas pelo compressor e COP48
Gráfico 17 – Variação da potência absorvida e do COP em função do subarrefecimento49
Gráfico 18 – Variação na potência de compressão e na eficiência energética53
Gráfico 19 – COP Real dos Vários fluidos consoante o sistema analisado
Gráfico 20 – COP Real do sistema aplicável segundo os vários fluidos frigorigéneos em análise.
Gráfico 21 – COP Real com e sem o sistema Adiabático
Gráfico 22 – Consumo Anual de água com a implementação do sistema adiabático66
Gráfico 23 – Impacto da temperatura da fonte fria na eficiência exergética67
Gráfico 24 – Exergia destruída no sistema aplicável, atendendo cada fluido67
Gráfico 25 – Exergia destruída em percentagem em cada equipamento
Gráfico 26 – Custos de investimento do sistema para cada fluido72
Gráfico 27 – Potência absorvida pelos compressores73

1. Introdução

1.1. Motivação e Enquadramento

Durante o Curso de Engenharia Mecânica sempre existiu um interesse genuíno pela refrigeração. Esta vertente da engenharia revela-se fundamental e indispensável no quotidiano da população já que é responsável por manter e preservar a qualidade das mais variadas gamas de produtos.

A possibilidade de escolher um tema nesta área em junção com a realização e desenvolvimento do mesmo em ambiente empresarial foi um fator determinante que decidi acolher para a conclusão do mestrado. O estágio foi realizado na RACE S.A. que se apresenta com mais de trinta anos de experiência nas áreas de refrigeração e climatização, tendo-me possibilitado adquirir experiência a nível profissional e conhecimentos inerentes à refrigeração que considero importantes nesta nova jornada.

1.2. Objetivos

Realizou-se uma análise a várias tecnologias disponíveis para instalações refrigeradas, sem temperaturas negativas, com potências até 250 kW. Contabilizaram-se sistemas de refrigeração que funcionem com fluidos frigorigéneos com baixo Potencial de Aquecimento Global (na literatura inglesa, *Global Warming Potential*, GWP) de forma a combater as alterações climáticas que gradualmente se manifestam de forma nefasta sobre os ecossistemas. Notar que a potência frigorífica apresentada enquadra-se nos valores utilizados na refrigeração industrial pelo que existe uma necessidade de avaliar uma tecnologia energeticamente eficiente com uma reduzida pegada ambiental neste setor.

Os sistemas refrigerados analisados devem, de igual modo, atender à vertente económica. Estes devem ser energeticamente eficientes, ou seja, para uma determinada potência frigorífica, a potência consumida deve ser a mais reduzida possível. O consumo de energia tem um destaque cada vez mais relevante na sociedade. Questões como a transição energética e racionamento do consumo de energia, levam a escolher medidas cada vez mais eficientes. Para além disso não se podem descurar os custos de investimento e de manutenção das várias instalações. A escolha do melhor sistema estende-se para além de ser eficiente e amigo do ambiente, ou seja, a sua aquisição e manutenção são fatores a considerar para cada empresa que deseje adquirir uma instalação refrigerada. Além da componente energética,

1

analisou-se a vertente exergética nos processos de refrigeração, contabilizando a exergia destruída nos sistemas e o rendimento exergético dos mesmos.

Consequentemente, dimensionou-se uma instalação para a conservação de produtos frutícolas, isto é, atendendo às necessidades de frio de um determinado fruto, determinaramse as condições necessárias à construção de um espaço que seja capaz de preservar a qualidade e frescura do fruto.

1.3. Estrutura do Trabalho Final de Mestrado

O presente trabalho encontra-se divido em seis capítulos. Deste modo exibe-se uma breve descrição dos mesmos:

Capítulo 1 – Introdução, pretende apresentar a motivação e enquadramento, objetivos e estrutura do Trabalho Final de Mestrado com a finalidade de expor o trabalho desenvolvido.

Capítulo 2 – Enquadramento Teórico, incide, numa fase inicial, na descrição dos sistemas de compressão a vapor. Os princípios de funcionamento, os processos de operação, os controlos e os equipamentos auxiliares foram pontos considerados neste trabalho. A gama de temperaturas utilizada na refrigeração assim como os setores que se apoiam nesta tecnologia também serão devidamente abordados neste capítulo. De seguida destacar os fluidos frigorigéneos, isto é, referir as características de cada fluido a considerar e enumerar as normas e legislações que limitam o uso de determinados fluidos.

Notar que a escolha de um fluido deve estar em consonância com as imposições da União Europeia pelo que se deve considerar o tempo de funcionamento da instalação escolhida e, deste modo, garantir que não haverá a necessidade de *retrofittings* num curto espaço de tempo. Entenda-se *retrofitting* como a adaptação e modificação de instalações de forma a funcionar com outro fluido frigorigéneo. Referir ainda a classificação de segurança e o Potencial de Aquecimento Global (GWP) e Potencial de Depleção de Ozono (ODP) que cada potencial escolha apresenta. Este trabalho foca-se na conservação de produtos frutícolas e, como tal existe uma necessidade em complementar o enquadramento teórico com técnicas e boas práticas na conservação destes alimentos. Verificar que a forma de armazenamento, ventilação e colheita são fatores importantes na conservação destes produtos. Para além disso, analisa-se os níveis de produção das culturas permanentes assim como a área de cultivo em Portugal. *Capítulo 3 – Eficiência Energética*, foca-se na relevância que a eficiência energética tem sobre os sistemas já que os custos energéticos têm um peso relevante nas empresas, sendo, também, um ponto determinante na seleção da tecnologia. Realiza-se um estudo sobre as operações que se encontram nos sistemas de compressão de vapor, ou seja, determinam-se os impactos que a variação das temperaturas de condensação e de evaporação, processos de sobreaquecimento, subarrefecimento e múltiplos estágios de compressão têm sobre os sistemas refrigerados.

Capítulo 4 – Caso de Estudo, foca-se na análise de vários sistemas com a interligação dos fluidos frigorigéneos examinados no Capítulo 2 com o intuito de verificar qual a tecnologia mais eficiente, a nível energético, para a conservação de frutas a temperaturas positivas. Para além disso, desenvolve-se uma análise exergética aos sistemas e aos vários componentes que os compõem.

Ter uma informação sobre a quantidade de energia destruída nos vários equipamentos, dependendo da tecnologia, revela-se importante pois permite visualizar onde a energia convertível em trabalho útil é degradada. Os custos de investimento e de manutenção são outros temas relevantes a abordar de modo a perceber se uma tecnologia é económica e financeiramente vantajosa sobre outras. Por exemplo, uma determinada instalação pode-se apresentar energeticamente mais eficiente, contudo pode comportar custos de obtenção e operação superiores pelo que este *trade-off* deve ser analisado.

Capítulo 5 – Projeto de Conservação de Frutas, apresenta um dimensionamento de uma instalação refrigerada com base no sistema que se destaque quer seja pela sua eficiência energética, exergética ou pelos custos de investimento e manutenção. Este dimensionamento passa pelo balanço de cargas térmicas, pelo cálculo de tubagens e seleção de equipamentos para uma determinada planta que foi desenvolvida com o auxílio da RACE S.A., empresa onde foi realizado o estágio curricular.

Capítulo 6 – Conclusões e Trabalhos Futuros, expõe a conclusões sobre os resultados obtidos ao longo do trabalho e apresenta as perspetivas para trabalhos futuros.

2. Enquadramento Teórico

2.1. Instalações de Refrigeração

A refrigeração traduz-se pela transferência de energia, na forma de calor, de um espaço frio para um espaço quente através da aplicação de trabalho ou calor externos. Podese considerar uma "máquina frigorífica" o inverso de uma "máquina térmica". Em ambas as situações apresentam-se as fontes quente e a fria contudo, existem diferenças que distinguem estes dois sistemas [1].

Nas "máquinas térmicas", a transferência de calor dá-se da fonte quente para a fonte fria com a consequente produção de trabalho enquanto nas "máquinas frigoríficas" a passagem de calor dá-se de forma inversa pelo que existe um fornecimento de trabalho ao sistema como se evidencia na Figura 1.

Figura 1 – Esquema da "máquina térmica" (a) e da "máquina frigorífica" (b), adaptado de [1].

O Coeficiente de Desempenho (na literatura inglesa, *Coefficient Of Performance*, COP) de Carnot permite determinar a eficiência máxima possível de uma máquina frigorífica que converte trabalho em calor. O mesmo pode ser determinado através das temperaturas das fontes quentes e frias conforme evidenciado na Equação 1.

$$COP_{Carnot} = \frac{T_F}{T_O - T_F} \tag{1}$$

Onde,

COP_{Carnot} – Coeficiente de desempenho de Carnot [adimensional];

 T_F – Temperatura da fonte fria [K];

 T_Q – Temperatura da fonte quente [K].

Existe um variado leque inerente às tecnologias de refrigeração que se apoia nos seguintes ciclos:

- Ciclo de compressão a vapor;
- Ciclo de absorção;
- Ciclo de adsorção;
- Ciclos de gás;
- Ciclo de Stirling;
- Arrefecimento Termoelétrico;
- Refrigeração Magnética.

Contudo, há a destacar que os sistemas de compressão a vapor são os mais utilizados na refrigeração industrial, nomeadamente na conservação de produtos alimentares [2], [3]. Desta forma o presente trabalho voltar-se-á com mais detalhe para este ciclo.

2.1.1. Ciclo de Compressão de Vapor

O ciclo de compressão de vapor simples é constituído pelos seguintes elementos: compressor, condensador, dispositivo de expansão e evaporador. Num ciclo de compressão simples evidenciam-se quatro processos fundamentais para o seu funcionamento:

- Compressão isentrópica Provindo do evaporador, o fluido frigorigéneo entra a baixa pressão e no estado de vapor saturado no compressor. É comprimido isentropicamente até ao condensador, verificando-se um aumento de pressão e, consequente, de temperatura;
- Rejeição de calor isobárica O vapor sobreaquecido entra no condensador a elevada pressão dando-se a ocorrência de rejeição de calor a pressão constante. Desta forma dá-se a condensação do fluido;
- Processo isentálpico O fluido frigorigéneo provindo do condensador a elevada pressão atravessa um dispositivo de expansão onde o fluido é expandido, verificando-se uma redução de temperatura e pressão, mantendose a entalpia constante;
- Absorção de calor isobárica Dá-se a evaporação do fluido através da absorção do calor existente no meio a refrigerar, causando assim o efeito frigorífico pretendido. Após o fluido se encontrar na fase de vapor saturado, retorna ao compressor de modo a reiniciar o ciclo termodinâmico simples [2], [3].

Na Figura 2 é possível observar o ciclo de compressão com os processos anteriormente descritos.

Figura 2 – Ciclo de compressão a vapor simples, adaptado de [4]

O diagrama de Mollier é uma ferramenta importante que permite observar as variações de um sistema de refrigeração e as trocas de energia envolvidas nos vários processos. Na Figura 3 representa-se, num diagrama de Mollier (Pressão-Entalpia), o ciclo de compressão de vapor simples constituído pelos pontos 1, 2, 3 e 4. Os pontos 1-2 representam a compressão isentrópica do fluido enquanto os pontos 2-3 caracterizam-se pela condensação. Nos pontos 3-4 dá-se a expansão e, por fim, os pontos 4-1 refletem o processo de evaporação. Para além disso encontram-se representadas as pressões de condensação, P_c , e de evaporação, P_0 . Os valores h_1 , h_2 , h_3 e h_4 representam as entalpias específicas dos já referidos pontos 1, 2, 3 e 4.

Figura 3 – Diagrama de Mollier do ciclo de compressão a vapor simples, adaptado de [5].

As Equações 2, 3, 4 permitem quantificar as potências envolvidas nos processos de compressão, condensação e evaporação respetivamente. Notar que o processo de expansão é isentálpico e como tal a entalpia mantém-se constante.

$$\dot{W}_{c_s} = \dot{m} \times (h_{2_s} - h_1)$$
 (2)

Onde,

 \dot{W}_{c_s} – Potência de compressão isentrópica [kW];

m – Caudal do fluido frigorigéneo [kg/s];

 h_{2_S} – Entalpia específica de saída no compressor (processo isentrópico) [kJ/kg];

 h_1 – Entalpia específica de entrada no compressor [kJ/kg].

$$\dot{Q}_c = \dot{m} \times (h_{2s} - h_3) \tag{3}$$

Onde,

 \dot{Q}_c - Calor rejeitado pelo condensador [kW];

 h_3 – Entalpia específica de saída no condensador [kJ/kg].

$$\dot{Q}_e = \dot{m} \times (h_1 - h_4) \tag{4}$$

Onde,

 \dot{Q}_e – Potência frigorífica [kW];

 h_4 – Entalpia específica de entrada no evaporador [kJ/kg].

Em relação ao COP do ciclo de compressão de vapor simples pode-se considerar o quociente entre o calor absorvido pelo evaporador e a potência fornecida ao compressor, tal como se apresenta na Equação 5.

$$COP = \frac{Q_e}{\dot{W}_{c_s}} \tag{5}$$

Onde,

COP – Coeficiente de desempenho [adimensional]; \dot{Q}_e – Potência frigorífica [kW];

 $\dot{W}_{c_{S}}$ - Potência de compressão isentrópica [kW].

Existem diferenças notórias entre o ciclo real e o ciclo simples devido, principalmente, à ocorrência de perdas de pressão e de temperatura associada à passagem do fluido frigorigéneo e à transferência de calor, cedida ou absorvida, entre a envolvente.

Por norma, a entrada de fluido no compressor dá-se durante a fase de vapor sobreaquecido de modo a evitar a aspiração de líquido o que levaria à ocorrência de golpes de líquido na unidade compressora. Este fenómeno ocorre quando o fluido frigorigéneo, que é aspirado pelo compressor, não evapora na totalidade. Como estes equipamentos são incapazes de comprimir líquido verifica-se a ocorrência de danos nos mesmos.

Notar também que, durante o processo de compressão, existem irreversibilidades e transferências de calor com a envolvente o que pode variar a entropia gerada neste processo. Deste modo a compressão deixa de ser isentrópica.

Em relação ao processo de condensação, evidencia-se que a pressão do fluido à saída da unidade condensadora é inferior à pressão de entrada, logo este processo sofre uma variação de pressão (ΔP_d). Para além disso, a temperatura do fluido no condensador é superior em comparação com a temperatura envolvente de modo a promover a cedência de calor para a atmosfera.

O decréscimo de temperatura pode também ser potenciado pelas trocas de calor entre a tubagem e a envolvente, revelando-se num acontecimento vantajoso já que permite a entrada de fluido no evaporador com uma menor entalpia (atendendo que o processo de expansão é isentálpico). Durante a evaporação existe também variação de pressão (ΔP_s) o que significa que a absorção de calor não é realizada a pressão constante [3].

Na Figura 4 evidencia-se o ciclo simples constituído pelos pontos 1, 2, 3 e 4 enquanto o ciclo real é formado pelos pontos 1', 2', 3' e 4' que contabilizam as irreversibilidades. Para a determinação do COP_{Real} considera-se que a compressão não é isentrópica conforme apresentado na Equação 7. Deste modo a potência de compressão, \dot{W}_c , será superior à potência de compressão isentrópica \dot{W}_{cs} .

Figura 4 – Comparação entre o ciclo de compressão teórico e real [5].

$$COP_{Real} = \frac{\dot{Q}_e}{\dot{W}_c} \tag{6}$$

Onde,

COP_{Real} – Coeficiente de desempenho real [adimensional];

 \dot{Q}_e – Potência frigorífica [kW];

 $\dot{W_c}$ - Potência de compressão [kW].

Por sua vez, a potência de compressão, \dot{W}_c , é dada pela Equação 7:

$$\dot{W}_c = \dot{m} \times (h_2 - h_1) \tag{7}$$

Onde,

 h_2 – Entalpia específica de saída no compressor (processo real) [kJ/kg].

2.1.2. Processos Inerentes ao Ciclo de Compressão de Vapor

2.1.2.1. Sobreaquecimento

É recorrente realizarem-se processos de sobreaquecimento e subarrefecimento presentes na Figura 4 através das variáveis ΔT_{sup} e ΔT_{sub} , respetivamente.

O sobreaquecimento serve para garantir que o fluido aspirado pelo compressor entra na fase de vapor sobreaquecido de modo a evitar danos na unidade compressora, nomeadamente choques de líquido provocados pela aspiração de líquido que não evaporou no evaporador ou na tubagem de aspiração.

Se o sobreaquecimento ocorrer no evaporador, a entalpia do fluido é aumentada e como consequência verifica-se uma absorção adicional de calor e um incremento no efeito frigorífico. Neste caso está-se perante um sobreaquecimento útil. Contudo se este processo acontecer na tubagem de aspiração o efeito frigorífico não é útil para a remoção de calor ao espaço a refrigerar.

Alguns sistemas de refrigeração recorrem a permutadores de calor líquido-vapor entre o líquido provindo do condensador e o vapor à saída do evaporador conforme ilustrado na Figura 5. Este permutador de calor tem a capacidade de realizar sobreaquecimento e subarrefecimento.

Figura 5 – Uso de permutador de calor líquido-vapor no circuito frigorífico, adaptado de [3].

Notar que a transferência de calor durante o sobreaquecimento tem um impacto negativo para o processo de compressão dado que aumenta o trabalho a fornecer ao compressor, tendo em conta que o fluido aspirado apresenta um volume específico superior em comparação com a ausência de sobreaquecimento e de temperaturas de evaporação mais baixas [3].

2.1.2.2. Dessobreaquecimento

Existem situações em que se recorre ao dessobreaquecimento de modo a remover o excesso de calor do vapor sobreaquecido originado pela compressão. Este processo ocorre após a saída do compressor e antes da entrada do condensador. O dessobreaquecimento tem um impacto positivo no COP caso se empregue um sistema externo como, por exemplo, o aquecimento de águas quentes sanitárias (AQS), tendo em conta que a energia obtida neste processo é aproveitada [3].

2.1.2.3. Subarrefecimento

O subarrefecimento caracteriza-se pelo arrefecimento do fluido abaixo da sua temperatura de condensação para uma determinada pressão. Esta técnica permite que o fluido entre no dispositivo de expansão na fase de líquido subarrefecido prevenindo o aparecimento de bolhas de vapor que dificultariam o fluxo de fluido frigorigéneo no dispositivo de expansão, provocando um decremento no desempenho do sistema [6].

Para além do permutador líquido-vapor anteriormente referido, o subarrefecimento pode também ser alcançado no interior do condensador, ou seja, este equipamento continua a

rejeitar calor (neste caso latente) até uma temperatura inferior à temperatura de líquido saturado. Existem ainda sistemas mecânicos dedicados ou integrados que têm como função realizar o processo de subarrefecimento. Na Figura 6 evidencia-se o sistema dedicado onde existem dois condensadores: um para o circuito principal e outro para a função de subarrefecimento.

Figura 6 – Ciclo de refrigeração com sistema dedicado de subarrefecimento, adaptado de [7].

Em relação ao sistema integrado, o condensador do circuito principal também serve para o cumprimento deste processo, tal como ilustrado na Figura 7.

Figura 7 – Ciclo de refrigeração com sistema integrado de subarrefecimento, adaptado de [8].

O subarrefecimento apresenta os seguintes aspetos [3]:

- Redução do consumo elétrico;
- Redução no tempo de arrefecimento do espaço (pulldown time);
- Temperaturas de refrigeração mais uniformes;
- Custos de instalação mais reduzidos.

2.1.2.4. Descongelamento

Os sistemas de refrigeração pretendem produzir e manter temperaturas num espaço através da circulação de ar em serpentinas de arrefecimento. Quando a temperatura da superfície fria é inferior ao ponto de congelação, a água presente no ar começa a congelar, acumulando-se nas serpentinas. O gelo formado bloqueia a passagem de ar e atua como isolante, penalizando o desempenho da serpentina. Deste modo deve-se aplicar um processo de descongelamento periódico [3].

Em evaporadores de convecção forçada podem utilizar os seguintes métodos de descongelamento [9], [10]:

- Descongelamento manual;
- Descongelamento por paragem simples;
- Descongelamento por paragem e circulação de ar;
- Descongelamento por aspersão de água;
- Descongelamento por pulverização de salmoura;
- Descongelamento por aquecimento elétrico;
- Descongelamento por circulação de salmoura quente;
- Descongelamento por gás quente;
- Descongelamento por inversão de ciclo.

Um dos processos mais utilizados é a aplicação de resistências elétricas, contudo existem outros métodos viáveis e amplamente utilizados como, por exemplo, o gás quente provindo da descarga do compressor.

O descongelamento por gás quente revela-se num processo simples e eficaz, capaz de remover o gelo formado rapidamente e é relativamente acessível em termos monetários a sua instalação. Contudo a seleção do controlo de válvulas e as sequências de operação devem ser

bem dimensionadas para um descongelamento seguro e eficiente. Notar que a água depois segue para um tabuleiro de condensados.

2.1.2.5. Múltiplos Estágios de Compressão

Em casos em que o quociente entre as pressões de aspiração e de descarga é elevado, torna-se impraticável realizar a compressão num único estágio devido às elevadas temperaturas que se verificariam para além de que a lubrificação revela-se mais difícil com propensão à carbonização do lubrificante [1].

A título informativo, nos compressores alternativos, quando o quociente entre as referidas pressões é elevado, aplicam-se múltiplos andares de compressão com volumes sucessivamente menores. Notar que quanto maior for o número de cilindros maior será a complexidade o que resulta em custos de aquisição monetários elevados. Contudo, quanto maior for o número de andares de compressão, maior será a eficiência teórica pelo que deve existir um estudo prévio entre estes dois fatores [1].

2.1.3. Refrigeração – Gama de Temperaturas

Os processos de refrigeração podem ser segmentados, tendo em conta as metodologias de conservação, os tipos de equipamento empregues e as temperaturas aplicadas nos processos.

Segundo a Linde, pode-se criar uma classificação, apenas como guia generalizado, inerente aos grupos encontrados no setor da refrigeração que se baseiam, principalmente, na temperatura de evaporação. Na Tabela 1 pode-se inferir estes grupos e a gama de temperaturas de evaporação mais comuns [11].

Tabela 1 – Refrigeração consoante a temperatura de evaporação [11].						
Classificação	Temperaturas					
Classificação	Altas	Médias	Baixas	Muito Baixas		
Temperatura de	Acima de 0 °C	0 °C a -25 °C	-25 °C a -50 °C	Abaixo de -50 °C		
Evaporação	Adinia de 0-e	0 0 0 25 0	25 64 50 6			

Adicionalmente, cada gama de temperaturas é utilizada consoante as necessidades de cada setor. A Tabela 2 permite ter uma noção das temperaturas utilizadas em cada setor. Evidencia-se que a refrigeração industrial aborda todas as gamas de temperaturas, desde altas até muito baixas.

		Tomno			
Refrigeração	remperaturas				
nemgeração	Altas	Médias	Baixas	Muito Baixas	
Doméstica	*	*			
Comercial		*	*		
Industrial	*	*	*	*	
Transporte		*	*		

Para o projeto em análise, foram apenas consideradas altas temperaturas de evaporação, já que o tema foca-se em temperaturas não negativas. Relativamente ao sector, para uma potência de frigorífica de 250 kW, está-se perante uma instalação de refrigeração industrial.

2.1.4. Sistemas de Controlo e Equipamentos Anexos

Os controladores permitem regular a quantidade de caudal de fluido frigorigéneo que atravessa o circuito, ou seja, o caudal mássico deve corresponder às necessidades de refrigeração. Se existir uma maior necessidade frigorífica, a quantidade de fluido a evaporar será, consequentemente, maior. Para além disso, os controladores são empregues de modo a assegurar que todos os componentes como os evaporadores, condensadores e compressores operam nas condições ótimas de temperatura e pressão. Deste modo pretende-se garantir que o sistema funciona de forma segura e económica [12]. Os controladores primários correspondem aos dispositivos de expansão que têm como função principal regular a quantidade de fluido a passar no evaporador de modo a alcançar o efeito frigorífico pretendido. Existem os seguintes equipamentos [13]:

- Válvulas manuais;
- Tubos capilares;
- Válvula com Flutuador ou boia;
- Válvula Pressostática;
- Válvula termostática;
- Válvulas eletrónicas.

Os controladores secundários permitem que as melhores condições de funcionamento estejam garantidas. São principalmente controladores de pressão que mantêm as condições de entrada e/ou de saída de equipamentos dentro de valores que se considerem aceitáveis.

Estes controladores podem, de igual modo, ser de temperatura ou eletrónicos, dependendo da instalação. Como controladores secundários tem-se [12]:

- Controlador de pressão de evaporação (KVP);
- Controlador de pressão de condensação (KVR);
- Controlador de pressão de entrada do compressor (KVL);
- Controlador de capacidade de descarga do compressor (KVC);
- Controlador de pressão de depósitos (KVD);

Notar que as designações KVP, KVR, KVL, KVC tiveram origem na Danfoss, empresa de componentes de ar condicionado e de refrigeração que esteve na vanguarda no desenvolvimento destes equipamentos [12]. Para além disso, existem também controladores de modo a regular a velocidade dos ventiladores das unidades de condensação e de evaporação. Por norma, as instalações refrigeradas apresentam sistemas controlados automaticamente de modo a facilitar as operações da instalação e otimizar a eficiência energética da mesma.

Segundo a Autoridade de Energia Sustentável da Irlanda (na literatura inglesa *Sustainable Energy Authority of Ireland*, SEAI), os equipamentos que constituem o sistema de controlo numa instalação refrigerada devem ter a capacidade de controlar e otimizar as temperaturas e pressões, ajustando automaticamente as operações com vista a minimizar os consumos energéticos [14].

Outros componentes como separadores, depósitos de óleo e de líquido, filtros desidratadores, visores, válvulas de retenção, termostatos, pressostatos, relés térmicos são necessários para o controlo e equilíbrio de instalações refrigeradas [15].

2.2. Fluidos Frigorigéneos

Segundo a norma EN 378-1, um fluido frigorigéneo é utilizado para a transferência de calor num sistema de refrigeração. O mesmo é responsável por absorver o calor existente num espaço (devido à baixa temperatura e pressão) e, consequentemente rejeitar esse mesmo calor através de um permutador de calor, nomeadamente um condensador (ou gas cooler se não ocorrer a condensação do fluido frigorigéneo) [16].

2.2.1. Características Ambientais dos Fluidos Frigorigéneos

Segundo o Programa das Nações Unidas para o Meio Ambiente (na literatura inglesa *United Nations Environment Programm*e, UNEP), desde o Protocolo de Montreal entendeu-se que a utilização dos hidroclorofluorcarbonetos (HCFC's) deveria ser posta em causa devido ao impacto nefasto que os mesmos apresentam na destruição da camada de ozono. Após a decisão XIX/6, tomada em 2007, houve um encorajamento para o desuso dos HCFC's e a promoção de alternativas de modo a minimizar os impactos ambientais [17].

O Potencial de Aquecimento Global (na literatura inglesa, *Global Warming Potential*, GWP) pretende quantificar a capacidade que um fluido frigorigéneo tem em promover o fenómeno de aquecimento global. É, de certa forma, um método que permite comparar o calor retido numa determinada massa de fluido e o calor retido pela mesma massa de dióxido de carbono (CO₂). A escolha de se utilizar o CO₂ como fluido comparativo veio por parte do Painel Intergovernamental sobre as Alterações Climáticas (na literatura inglesa, *Intergovernmental Panel on Climate Change*, IPCC) e determina que o GWP de fluido de referência seja igual a 1 [17].

De ressalvar que podem existir diferentes valores de GWP para o mesmo fluido, tendo em conta as seguintes razões [17]:

- Variedade de fontes na obtenção do GWP;
- Atualização dos valores de GWP consoante a atualização de informações e de novos avanços científicos;
- Os valores de GWP podem ser calculados sobre diferentes linhas temporais, ou seja, os valores típicos apresentados são para um horizonte temporal de 100 anos, contudo os dados apresentados por diferentes entidades podem variar consoante a linha temporal utilizada.

De forma resumida, quanto maior for o valor de GWP de um determinado fluido, maior será o seu impacto no aquecimento global em comparação com o CO₂.

Os valores de Potencial de Destruição da Camada de Ozono (na literatura inglesa, Ozone Depletion Potencial, ODP) fornecem uma comparação da capacidade relativa de várias substâncias promotoras da destruição da camada de ozono (na literatura inglesa, Ozone Depleting Substances, ODS). O ODP encontra-se definido como o rácio entre a perda global de ozono devido a uma determinada massa de substância nefasta para o ozono e a perda global de ozono provocada pela mesma massa só que neste caso através do fluido Triclorofluormetano (CFC-11). Desta forma, considerou-se o fluido CFC-11 como referência e toma um valor ODP igual a 1. Apesar de não se tratar do fluido com maior potencial de destruição da camada de ozono, foi o selecionado como referência para a determinação do ODP de outros fluidos [18].

Notar que, como nos valores de GWP, os valores de ODP também podem variar para a mesma substância o que pode levar a alguma confusão e imprecisões. Esta gama de valores para cada fluido deve-se principalmente aos seguintes fatores [18]:

- Variadas fontes de informação;
- Diferentes métodos de cálculo do ODP;
- Atualização dos valores ODP consoante os avanços científicos e aquisição de novas informações;

Contudo, notar que no Protocolo de Montreal foram incorporados 'valores base' de forma a criar uma estandardização de valores e uma referência base com o intuito de evitar confusões e incoerências [18].

2.2.2. Toxicidade e Inflamabilidade dos Fluidos Frigorigéneos

A toxicidade de um fluido caracteriza-se pela capacidade que tem em ser prejudicial ou letal aquando da existência de contato, inalação ou ingestão durante certos períodos. Notar que apenas a existência de desconforto temporário que não tenha impactos nefastos para a saúde não é motivo para considerar um fluido tóxico.

Os fluidos frigorigéneos são classificados em duas classes, nomeadamente A e B. Esta classificação é baseada nos níveis de concentração de exposição crónica aceitáveis.

Em ambos os casos a concentração média não deve criar um efeito adverso em quase todos os trabalhadores que possam estar expostos durante um dia normal de trabalho com a duração de 8 horas de trabalho ou durante uma carga horária de 40 horas semanais [16].

Para os fluidos da classe A, ou seja, de baixa toxicidade, não se verificam efeitos adversos com concentrações iguais ou superiores a 400ml/m³. Os fluidos da classe B ou seja, de elevada toxicidade, não se verificam efeitos adversos com concentrações abaixo de 400 ml/m³.

Relativamente à inflamabilidade do fluido deve-se considerar o limite inferior de inflamabilidade (na literatura inglesa, *Low Flammability Limit*, LFL) que se traduz na concentração mínima de fluido frigorigéneo que tem a capacidade de propagar uma chama quando se encontra envolvido homogeneamente com ar envolvente. Existem três classes de inflamabilidade (1, 2 e 3).

No que se refere à classe 1 (sem propagação de chama), um fluido deve ser inserido nesta classificação se o mesmo não apresentar uma propagação de chama quando testado num ambiente à temperatura e pressão de 60 °C e 101,3 kPa respetivamente.

Para a classe 2 (baixa inflamabilidade), um fluido deve ser inserido nesta categoria caso satisfaça as três seguintes condições:

- Exibe uma propagação de chama aquando testado num ambiente à temperatura e pressão de 60 °C e 101,3 kPa, respetivamente;
- Apresenta um LFL ≥ 3,5 Vol. %;
- Apresenta um calor de combustão inferior a 19 000 kJ/kg.

Por fim, os fluidos que se insiram na classe 3 (elevada inflamabilidade) devem apresentar todas as seguintes condições:

- Exibe uma propagação de chama aquando testados num ambiente à temperatura e pressão de 60 °C e 101,3 kPa respetivamente;
- Apresentam um LFL ≤ 3,5 Vol. %; ou tem um calor de combustão igual ou superior a 19 000 kJ/kg.

Tabela 3 – Classificação dos grupos de segurança, adaptado de [16].					
	Toxicidade				
Inflamabilidade	Baixa	Elevada			
Sem propagação de chama	A1	B1			
Baixa inflamahilidade	A2L	B2L			
	A2	B2			
Elevada inflamabilidade	A3	В3			

De ressalvar que houve uma atualização na Tabela de classificação de segurança de modo a incluir a subclasse 2L que se insere na classe 2 de inflamabilidade conforme enunciado

na Tabela 3. Esta subclasse destina-se a fluidos que apresentem uma velocidade de combustão lenta (≤ 0,1 m/s) [19].

2.2.3. Grupos de Fluido Frigorigéneo

2.2.3.1. Hidrocarbonetos halogenados

Os fluidos frigorigéneos podem ser agrupados através da sua constituição atómica. Segundo a Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar Condicionado (na literatura inglesa, *American Society Of Heating, Refrigerating And Air-Conditioning Engineers*, ASHRAE), os fluidos frigorigéneos hidrocarbonetos halogenados podem ser classificados em quatro grupos conforme se pode verificar na Tabela 4. Notar que os fluidos frigorigéneos halogenados mais utilizados ao longo dos tempos têm na sua constituição átomos de cloro e/ou fluor [15].

Tabela 4 – Grupos de fluidos halogenados				
Hidro	carbonetos Halogenados			
Clorofluorcarboneto (CFC)	Apresentam átomos de cloro fluor e carbono.			
Hidroclorofluorocarbonetos (HCFC)) Contém átomos de hidrogénio, cloro, fluor e carbono.			
Hidrofluorcarbonetos (HFC)	Constituídos por átomos de hidrogénio, fluor e			
	carbono.			
Hirofluorolefinas (HFO)	Constituídos por átomos de hidrogénio, fluor e carbono			
	(contém pelo menos 1 ligação dupla entre átomos de			
	carbono).			

O desenvolvimento dos fluidos halogenados deu os seus primeiros passos na década de 1920, período em que fluidos de primeira geração como o amoníaco (R-717), o clorometano (R-40) e o dióxido sulfúrico (R-764) tinham uma grande visibilidade, contudo apresentavam algumas desvantagens relacionadas com o facto de apresentarem algum nível de toxicidade e/ou inflamabilidade. O primeiro fluido CFC a ser comercializado foi o diclorofluorometano (R-12) em 1928, dando assim início à segunda geração de fluidos frigorigéneos que têm como característica principal a presença de cloro na sua constituição [20].

O uso dos CFC's e HCFC's, inicialmente, revelou-se vantajoso devido às suas características no que toca a questões de segurança, tendo em conta que possuem com uma

baixa toxicidade e inflamabilidade. Contudo devido às já referidas alterações climáticas, nomeadamente a depleção da camada de ozono, a utilização destes foi sendo limitada.

O desenvolvimento dos HFC's (fluidos frigorigéneos de terceira geração) teve em conta as medidas implementadas pelo Protocolo de Montreal de modo a travar a depleção da camada de ozono. Contudo, estes fluidos têm a capacidade de reter a energia radiante na atmosfera, promovendo, assim, o aumento do aquecimento global.

Os HFO's representam os fluidos de quarta geração e apresentam um baixo GWP em comparação com os HFC's, tendo também como característica principal, valores nulos ou próximos de zero em relação ao ODP [15].

2.2.3.2. Misturas

As misturas de fluidos frigorigéneos têm como principal característica serem constituídos por um ou mais fluidos frigorigéneos pelo que dão a oportunidade de ajustar a propriedade do fluido resultante com as necessidades da aplicação [21]. Além disso, as misturas podem ser classificadas consoante o seu comportamento durante a mudança de fase. Os fluidos azeotrópicos apresentam na sua constituição dois ou mais fluidos frigorigéneos. Contudo, para uma determinada pressão esta mistura evapora e condensa a temperatura constante. Isto porque as misturas azeotrópicas comportam-se como fluidos frigorigéneos puros.

Em relação aos fluidos zeotrópicos, estes têm temperaturas de evaporação e de condensação que variam para determinadas pressões (na literatura inglesa este fenómeno denomina-se por temperature *glide*). Durante o processo de evaporação, o componente mais volátil da mistura entrará em ebulição antes dos outros componentes. No processo de condensação verifica-se que o componente menos volátil será o primeiro a condensar [22].

2.2.3.3. Fluidos Naturais

Segundo a Linde, os fluidos frigorigéneos naturais são produzidos através de processos bioquímicos presentes na natureza. Estes fluidos têm a vantagem de não destruírem a camada de ozono. Para além disso, a sua contribuição para o aquecimento global é desprezável ou até mesmo nula. Os fluidos frigorigéneos naturais foram amplamente utilizados nos primeiros passos da refrigeração, tendo caído em desuso devido aos fluidos clorados e fluorados.

Contudo, nos últimos tempos têm sido novamente adotados pelo seu baixo impacto sobre o meio ambiente [23].

Apresentam-se alguns exemplos de fluidos naturais, nomeadamente o amoníaco (R-717), o dióxido de carbono (R-744), o propileno (R-1270) e o propano (R-290). Evidenciam-se, também os seus valores de GWP, ODP e o grupo de segurança onde estão inseridos (Tabela 5).

Fluido	GWP ODP Gr		Grupo de Segurança
R-717	0	0	B2L
R-744	1	0	A1
R-1270	2	0	A3
R-290	3	0	A3

Tabala F C ão CMR ODR o Classificação do So <u>دار .</u>: ما م

Idealmente, o fluido frigorigéneo a adotar deve apresentar as seguintes características

[24]:

- Não tóxico;
- Não inflamável; •
- Apresentar um valor nulo de ODP; •
- Apresentar um valor nulo de GWP; •
- Pressões de operação aceitáveis; •
- Capacidade volumétrica apropriada para a aplicação.

Até ao momento, não existe um fluido que esteja em consonância com todos os parâmetros acima apresentados. Atualmente, encontram-se em desenvolvimento misturas com fluidos HFO com maiores capacidades volumétricas de refrigeração em detrimento dos valores de GWP ou de inflamabilidade [24].

Entenda-se que a capacidade volumétrica de refrigeração depende da massa específica de vapor e do efeito frigorífico de um determinado fluido frigorigéneo. Em termos práticos um fluido com baixa capacidade volumétrica necessitará de maiores compressores para satisfazer as necessidades de uma instalação [25].

Em suma, não existe um fluido frigorigéneo ideal, ou seja, algumas características interessantes de um determinado fluido podem ser postas em causa pelo seu valor de GWP, ODP, inflamabilidade, entre outros.

2.2.4. Regulamentos e Legislação em Vigor

Conforme referido anteriormente, o Protocolo de Montreal, assinado em 1987, foi um passo importante para diminuir o uso de clorofluorcarbonetos (CFC's) [26]. Contudo, estas implementações visavam travar, o mais rapidamente possível, a depleção da camada de ozono.

Em 11 de Dezembro de 1997, adotou-se o Protocolo de Quioto que, segundo a Agência Portuguesa do Ambiente, foi o primeiro tratado jurídico internacional, tendo como objetivo principal limitar as emissões quantificadas de gases com efeito de estufa dos países desenvolvidos [27]. Durante a conferência de Doa, em Dezembro de 2012, acordou-se um segundo compromisso do Protocolo de Quioto que decorreu durante os períodos de 1 de Janeiro de 2013 a 31 de Dezembro de 2020. Sublinhar os seguintes pontos-chave que envolveram a União Europeia [28]:

- Reduzir as emissões de gases com efeito de estufa em, pelo menos, 18% em comparação com os níveis de 1990;
- Compromisso em conjunto com a Islândia em reduzir as emissões de gases com efeito de estufa de 20%.

Em Dezembro de 2015 alcançou-se um compromisso multilateral, tendo ficado conhecido como o Acordo de Paris. Teve-se como meta a limitação da temperatura média global em 2 °C comparativamente com os níveis pré-industriais através da implementação de medidas que limitassem as emissões de Gases de Efeito de Estufa (na literatura inglesa, *Greenhouse Gases*, GHG).

No que toca a Portugal, o Programa Nacional para as Alterações Climáticas 2020/2030 pretende reduzir de forma sustentável as emissões de GHG de -30% a -40% em 2030 em comparação com o período de 2005 [29].

Atualmente, encontra-se em vigor na Comunidade Europeia o Regulamento (UE) n.º 517/2014 que exige uma redução das quantidades de hidrofluorocarbonetos (HFC) que as empresas podem colocar no mercado da União Europeia (UE), seja por meio de importação ou de produção com o objetivo de reduzir as emissões destes GHG. Assim, em 2015 deu-se início à redução na produção autorizada de HFC em 79% até 2030 (em comparação com o período de 2009 a 2012). Pretende-se uma redução das emissões em dois terços até 2030, comparativamente com os valores de 2012 [30]. Desta forma, o presente regulamento

pretende proteger o ambiente através da redução de gases fluorados com efeito de estufa com os seguintes pontos [30]:

- Estabelecimento de regras inerentes ao confinamento, utilização recuperação e destruição de gases considerados fluorados co efeito de estufa e em matéria de medidas auxiliares conexas;
- Imposição de condições no que toca ao emprego no mercado de produtos e equipamentos específicos que contenham, ou cujo funcionamento dependa de gases fluorados com efeito de estufa;
- Imposição de condições às utilizações específicas de fases fluorados com efeitos de estufa;
- Estabelecimento de limites quantitativos à colocação de hidrofluorocarbonetos no mercado.

O Gráfico 1 representa a redução gradual da utilização de fluidos com elevado GWP. Notar que, a partir de 2030, a comercialização de fluidos frigorigéneos fica limitada a fluidos que apresentem um GWP médio abaixo de 420.

Gráfico 1 – Decréscimo gradual da comercialização/utilização dos gases fluorados segundo o GWP até 2030.

Existem normas adotadas a nível europeu que se encontram em conformidade com códigos e normas mais abrangentes, como, por exemplo normas IEC e ISO. As normas mais aplicadas à refrigeração são a EN 378 que toca nos requisitos de segurança e proteção ambiental e a IEC EN 60335-2-89 que aborda os requisitos de segurança para aparelhos de refrigeração comerciais integrais e à distância. Na Tabela 6 encontram-se algumas normas que devem ser empregues para as aplicações no sector da refrigeração [30].

Norma	Objetivos
ND EN 279. 2019	Sistemas frigoríficos e bombas de calor – requisitos de segurança e
NF EN 378. 2018	proteção ambiental.
IEC EN 60335-2-89	Requisitos de segurança para aparelhos de refrigeração comerciais.
EN 1127-1	Atmosferas Explosivas – prevenção e proteção contra explosão.
EN 60079	Requisitos para sistemas elétricos utilizados em atmosferas
211 00073	potencialmente explosivas.
EN 12/62	Aparelhos não elétricos destinados a utilização em atmosferas
LN 13+03	explosivas.

De ressalvar que a utilização de normas geralmente não é obrigatória (ao contrário do que se evidencia com a legislação). Contudo caso alguma norma seja especificamente definida na legislação ou em contratos comerciais então a aplicação da mesma será obrigatória [30].

Relativamente à Legislação Portuguesa, o Decreto-Lei nº 145/2017, de 30 de novembro revogou o antigo Decreto-Lei nº 56/2011 de modo a assegurar a execução, na ordem jurídica nacional, do Regulamento (EU) 517/2014 do Parlamento Europeu e do Conselho [31].

2.2.5. Alternativas aos Fluidos em Funcionamento em Portugal

Em 2019 realizou-se uma auditoria a sessenta empresas que se inserem na indústria de processamento de alimentos, nomeadamente na conservação de carne, produtos hortofrutícolas e panificação [32].

Através dos dados recolhidos foi possível inferir que fluidos frigorigéneos são mais utilizados no setor alimentar. Deste modo é possível aferir, de uma forma generalizada, se a indústria portuguesa está em sintonia com os mais recentes regulamentos europeus e com a legislação em vigor.

Apesar do universo ser bastante reduzido, é possível depreender pelo Gráfico 2 que o fluido R-404A é amplamente utilizado na refrigeração nacional. Notar que esta análise não contabilizou o emprego de fluidos secundários.

■ R-12 ■ R-22 ■ R-134a ■ R-404A ■ R-407A ■ R-417A ■ R-422D ■ R-427A ■ R-437A

Gráfico 2 – Fluidos utilizados nas instalações refrigeradas em Portugal 2019, adaptado de [32].

Pelo Gráfico 2 destaca-se que a maioria dos fluidos utilizados são misturas zeotrópicas nomeadamente, o R-404A, R-407A, R-417A, R-422D, R-427A, e R-437A. Os fluidos frigorigéneos o R-12, R-22 e R-134a apresentam-se como hidrocarbonetos halogenados, conforme diferenciado no subcapítulo (2.2.3) <u>Grupos de Fluido Frigorigéneo</u>.

Após ter-se uma noção dos fluidos empregues, a nível nacional, deve-se analisar se os mesmos se encontram em consonância com a informação disponibilizada no subcapítulo (2.2.4) <u>Regulamentos e Legislação em Vigor</u>. Em 2019, o R-404A representa 75% dos fluidos utilizados no universo das 60 empresas aferidas pelo que se revela importante comparar os níveis de GWP que este fluido apresenta em comparação com os valores regulamentados para os próximos anos.

Através da Gráfico 3 pode-se concluir que o fluido R-404A excede 4,36 vezes o valor regulado para o presente ano (2022) e 9,34 para o ano de 2030 pelo que a escolha deste fluido torna-se inviável e será cada vez mais importante adotar novas alternativas no que diz respeito à escolha do fluido frigorigéneo.

Gráfico 3 – Comparação dos valores de GWP entre o R-404A e os dos anos afetados pelo Regulamento (EU) 517/2014

Apesar de se encontrar desatualizado, um estudo realizado em 2014 reforça, no setor hortofrutícola, o uso do fluido R-404A na última década em Portugal, conforme ilustrado no Gráfico 4. Notar que a presente informação apenas serve para consolidar o facto deste fluido frigorigéneo ter uma grande utilização a nível nacional. Uma vez mais, esta análise não contabilizou o uso de fluidos secundários [26].

Fluidos Empregues na Indústria Portuguesa em 2014

Gráfico 4 – Fluidos utilizados no setor hortofrutícola em Portugal em 2014, adaptado de [26].

As escolhas relativamente ao fluido frigorigéneo a utilizar numa instalação refrigerada devem-se apresentar como alternativas viáveis para o futuro a médio prazo de forma a evitar *retrofittings* que representam custos adicionais. Para isso, com base nas soluções apresentadas pela Comissão Europeia, apresentam-se as seguintes alternativas na Tabela 7. Em relação às soluções apresentadas decidiu-se adicionar mais um fluido que não foi referenciado pela Comissão Europeia, nomeadamente o R-515B. Adicionou-se este fluido pelas suas características que se consideram vantajosas. Para além de ser um fluido A1, apresenta um GWP inferior aos valores limite estabelecidos para 2030 e tem um comportamento

semelhante ao R-134a. Apesar de ser um fluido recente, já existem unidades compressoras que o tornam numa solução fiável para futuras instalações refrigeradas [33].

	Substância	GWP	ODP	Composição	Grupo de	A Substituir	
				h1	Segurança		
	R-717	0	0	-	B2L	R134a, R404A, R407A	
Naturais	R-744	1	0	-	A1	R134a, R404A, R407A	
Naturais	R-1270	2	0	-	A3	R134a, R404A, R407A	
	R-290	3	0	-	A3	R134a, R404A, R407A	
	R-449A	1397	0	R-32/125/1234yf/134a	A1	P404A	
Misturas	R-450A	605	0	R-1234ze[E]/134a	A1	- N404A,	
HFC-HFO	R-513A	631	0	R-1234yf/134a A1		R134a,	
	R-515B	299	0	R-1234ze[E]/R-227ea	A1	<u> </u>	
HFO	R-1233zd	4,5	≈0	-	A1	R134a, R404A,	
	R-1234ze[E]	7	0	-	A2L	R134a, R404A	

Tabela 7 – Fluidos frigorigéneos com baixo GWP como alternativa [16], [34]

Através da Tabela 7 verifica-se que existe um leque de fluidos frigorigéneos que podem substituir o R-404A entre outros. Dentro das alternativas tem-se os fluidos frigorigéneos naturais, as misturas e os HFO's. Notar que a Comissão Europeia dá foco aos fluidos naturais já referenciados no Subcapítulo (2.2.3.3) <u>Fluidos Naturais</u>.

Em nota de curiosidade, a Agência Ambiental Alemã pretende banir o fluido R-1233zd já que o seu ODP é igual a 0,00034 ou seja, apresenta um potencial de depleção de ozono diferente de zero [35].

No Gráfico 5 pretende-se evidenciar quais as alternativas enumeradas que ainda serão aceitáveis para o ano de 2030. Verifica-se que as misturas HFC-HFO, exceto o R-515B, apresentam valores GWP muito superiores em comparação com o valor imposto para 2030. Desta forma não seria viável contabilizar estes fluidos enquanto alternativas. O mesmo se aplica ao fluido R-1233zd dado que o seu ODP é diferente de zero. Seria insensato considerar uma alternativa que tenha a capacidade, por mais reduzida que seja, de destruir a camada de ozono. Tendo em apreciação os dados apresentados, propõe-se que os fluidos a considerar no dimensionamento de uma nova instalação sejam o R-290, R-1270, R-717, R-744, R-1234ze[E] e R-515B.

Gráfico 5 – Níveis de GWP dos fluidos alternativos e GWP limite para 2030.

2.3. Produtos Frutícolas

2.3.1. Técnicas e Boas Práticas de Conservação

O manuseamento e conservação são fatores importantes na qualidade e aspeto dos produtos frutícolas e revelam-se como fatores determinantes na venda. As perdas de mercado mais notórias, relativamente à fruta, têm consequência devido a impactos mecânicos, maturação excessiva e envelhecimento do produto. Existem também perdas de humidade, vitaminas e açucares que têm de igual modo o seu peso na componente nutritiva. As perdas podem ser reduzidas caso existam cuidados no manuseamento e no armazenamento [15].

O armazenamento de fruta acabada de colher deve-se encontrar livre de qualquer rasgo/dano na sua pele/casca assim como deve apresentar a ausência de nódoas ou marcas/indentações. Qualquer defeito inevitavelmente irá reduzir o valor comercial do fruto e poderá aumentar o ritmo da sua deterioração [36].

É importante referir que frutas danificadas têm, por norma, uma produção superior de etileno, em comparação com um produto em bom estado, o que pode acelerar o amadurecimento do produto. Desta forma não é recomendado armazenar produtos com diferentes ritmos de amadurecimento já que um determinado produto poderá ter um ritmo de produção de etileno mais elevado o que levará a um amadurecimento prematuro de outros frutos o que não é desejável. A ventilação, nestes casos, é um parâmetro importante para a qualidade dos frutos.

No que toca à determinação da maturidade dos produtos frutícolas existe um leque de medidas que se pode revelar complexo, passando pela colheita, pela firmeza do fruto, cor, ou outros testes químicos ou biológicos que possam ser realizados [15]. Para o deslocamento e empilhamento são normalmente utilizados palotes, facilitando o transporte dos produtos. Deve-se garantir que o espaço entre os palotes assegura a boa refrigeração e ventilação do produto. Ter, também, em conta a profundidade das caixas onde se dispõem as frutas, isto é uma profundidade excessiva pode implicar um esforço excessivo no que produto que se encontra na base, danificando-o deste modo [15].

O amadurecimento e deterioração dos produtos frutícolas continuam após a colheita e, conforme já referido, a deterioração durante o armazenamento pode ser causada por vários fatores como a temperatura, humidade, doenças e danos mecânicos. Durante o processo de transporte e armazenamento deve-se prevenir o aumento de temperatura e processos de condensação (promotores de apodrecimento). Além disso, quando o produto é removido do armazenamento refrigerado este deve ser consumido o quanto antes ou deverá ser mantido a baixas temperaturas.

A existência de espaços com atmosfera controlada pode ser necessário para produtos que consomem oxigénio (O_2), nomeadamente frutas e legumes durante a sua respiração, produzindo, consequentemente, C O_2 . A durabilidade destes produtos, mantendo as suas características, pode ser aumentada através de um ambiente controlado com o ajuste dos níveis de temperatura, humidade e da concentração de gases não condensáveis, nomeadamente, O_2 , CO_2 e nitrogénio (N_2). Os espaços de armazenamento podem ser classificados tendo as seguintes características [15]:

- 1. Atmosferas geradas pelo produto;
- 2. Atmosferas geradas externamente;

No primeiro ponto, o espaço encontra-se suficientemente selado onde o consumo natural de O₂ e produção de CO₂ por parte da fruta conseguem realizar um balanço entre a infiltração de O₂ e a exaustão de CO₂ do espaço controlado. Em relação ao segundo ponto existe um suplemento na respiração desenvolvida pela fruta de modo a criar a composição atmosférica desejada através da produção de N₂, purificação de CO₂ ou consumo de O₂ [15]. O armazenamento em atmosfera controlada pode prolongar o período de conservação, mantendo uma qualidade superior dos produtos frutícolas através dos seguintes pontos:

- Retardar o amadurecimento da fruta;
- Redução no apodrecimento e distúrbios fisiológicos;
- Diminuição da perda massa;

aumentar o tempo de preservação da fruta [15].

• Viabilização de uma colheita mais retardada.

Contudo o facto de se implementar uma atmosfera controlada comporta um maior investimento na instalação e pode originar alterações indesejadas aos produtos [37]. Estes distúrbios podem ser causados através de condições anaeróbicas, ou seja, em atmosferas em que os níveis de O_2 encontram-se abaixo de 1%. Situações em que se verifique uma elevada concentração de CO_2 e baixa concentração de O_2 podem despoletar anormalidades relativamente ao metabolismo da fruta. [38]. Alguns danos para certos produtos frutícolas encontram-se na Tabela 8, dependendo das concentrações de CO_2 e de O_2 .

Cultivo Concentração de CO ₂		Danos provocados pelo CO ₂	Concentração de O ₂	Danos provocados pelo O ₂		
Maçã Red Delicious	>3%	Coloração interna acastanhada	<1%	Sabor a álcool		
Maçã Gala	>1,5% >5%	Perda de sabor	<1,5% <1%	Perda de sabor		
Banana	>7%	Perda rigidez	<1%	Descoloração		
Cereja	>30%	Descoloração acastanhada	<1%	Marcas na pele, perda de sabor		
Manga	>10%	Perda de rigidez	<2%	Descoloração da pele		

Tabela 8 – Exemplos de danos causados pela atmosfera controlada [39]

Existem produtos frutícolas que produzem e/ou que são bastante sensíveis à existência de etileno que promove a deterioração de frutas. Deste modo utiliza-se geradores de ozono (com o fim de neutralizar a presença de etileno) e absorvedores de etileno de modo a

Em contrapartida o etileno pode também ser empregue para aumentar o ritmo de amadurecimento do fruto. Tome-se o exemplo dos produtos cítricos onde é comum o emprego de etileno para promover a desverdização. Entenda-se desverdização como a homogeneização da cor da casca do citrino [40].

2.3.2. Panorama Português na Produção Frutícola

Segundo o Instituto Nacional de Estatística (INE) o ano agrícola 2020/2021, em território continental, revelou-se muito quente e seco em termos climatéricos, indo ao encontro das condições meteorológicas dos primeiros dois meses de 2022 [41], [42]. Para o presente estudo, contabilizaram-se as cinco culturas com maior produção, relativamente a 2020 e 2021 com o intuito de propor um produto frutícola a conservar. O Gráfico 6 apresenta as cinco maiores produções, em toneladas, relativamente a 2020. Destacam-se a laranja e a maçã com 355 284 t e 286 504 t produzidas respetivamente.

Gráfico 6 – Produção das 5 maiores culturas permanentes em 2020 [43].

Em relação a 2021, a maior produção passou a ser de maçã com 368 225 t, seguida da laranja com 363 918 t conforme evidenciado no Gráfico 7.

Produtos Frutícolas

Gráfico 7 – Produção das 5 maiores culturas permanentes em 2021 [43].

Através dos Gráficos 6 e 7 não é possível determinar qual dos frutos apresenta um crescimento produtivo gradual, contudo demonstram que a laranja e a maçã são os frutos com maior produção a nível nacional. Desta forma é necessário determinar qual a produção mais estável e consolidada.

O Gráfico 8 apresenta a produção de maçã e de laranja em território nacional entre 2016 e 2021. Nota-se que a produção de maçãs é inconstante ao longo destes seis anos ao contrário da produção de laranja que tem apresentado um crescimento gradual. Destaca-se ainda que, durante o período em análise, o ano mais produtivo para a maçã foi em 2019 com 370 708 t e para a laranja foi de 363 918 t em 2021.

Gráfico 8 – Produção de maçã e de Laranja entre 2016 e 2021 [43].

As análises realizadas aos produtos frutícolas revelam-se importantes de modo a determinar qual o fruto a conservar na instalação refrigerada. Isto porque diferentes frutos têm diferentes necessidades de frio. Verificou-se que existem dois frutos que se destacam pelos níveis de produção. A pera, tanto em 2019 como em 2020 apresentou-se em terceiro lugar, com níveis produtivos muito inferiores em comparação à laranja. Para além de se analisar os níveis de produção das culturas permanentes, deve-se contabilizar a localização das mesmas.

2.3.2.1. Necessidades de Frio de Cada Produto Frutícola

Neste ponto focaram-se apenas os requisitos de armazenamento dos dois produtos frutícolas mais produzidos a nível nacional. A metodologia passou por inferir quais os frutos

mais produzidos em Portugal e, a partir desse instante, restringir as variáveis em torno desses elementos. A Tabela 9 indica as condições de armazenamento e algumas características no que diz respeito à laranja e à maçã. Notar que estes valores podem variar consoante a variedade e o estado de maturação dos frutos.

Tabela 9 – Requisitos de armazenamento consoante o produto frutícola [44], [45].						
Fruto	Temperatura Ótima de	Humidade	Aspersão	Produção de	Sensível	Tempo de
indio	Armazenamento [°C]	Ótima [%]	de Água	Etileno	Etileno	Armazenamento
Laranjas	4,44 a 7,22	90-95	Não	Muito Reduzida	Não	3-8 Semanas
Maçãs	-1,11 a 4,44	90-95	Não	Elevada	Sim	1-12 Meses

2.3.2.2. Localização

Apesar de se conhecer os frutos mais produzidos a nível nacional, é importante analisar as regiões de produção e a superfície utilizada no cultivo destes produtos alimentares. Sabendo a região com maior produção será mais fácil propor a localização do entreposta para a conservação destes alimentos. Conforme demonstrado no Gráfico 9, infere-se que a produção de laranja se situa, principalmente, no território algarvio com uma produção próxima dos 78%. Nota-se que a produção de laranja se encontra concentrada numa determinada região pelo que seria oportuno implementar uma instalação refrigerada na região do Algarve. Para além disso, a superfície de produção aumentou, de 2020 para 2021, 31 hectares com 17 252 hectares em 2021 [43].

Gráfico 9 – Distribuição dos Hectares na Produção de Laranja em 2021.

Em relação à produção de maçã, pode-se concluir, através do Gráfico 10, que os principais locais de produção deste fruto se situam maioritariamente nas Regiões do Norte e Centro do território nacional. Caso se pretenda dimensionar uma instalação para conservar maçãs seria vantajoso localizar-se entre o Norte e o Centro do território nacional de modo a cobrir a necessidades de ambas as regiões. De 2020 para 2021, é importante referir que ocorreu um decréscimo de 394 hectares na área de produção (13 919 hectares em 2021) [43].

Gráfico 10 – Distribuição dos Hectares na Produção de Maçã em 2021 [43].

Atendendo aos valores analisados, nomeadamente a produção, localização e necessidades de frio das culturas permanentes, propõe-se que a instalação refrigerada se dedique à conservação de laranjas e que a localização da mesma seja na Região do Algarve pelos seguintes fatores:

- Crescimento produtivo gradual entre 2016 e 2021;
- Aumento da área de produção de 2020 para 2021;
- Necessidades de frio com temperaturas mais altas (temperaturas de conservação mais altas em comparação com a maçã);
- Produção focada maioritariamente numa só região (Algarve com 77,6 %).

3. Eficiência Energética

3.1. Panorama energético Nacional

Cada vez mais a sociedade considera relevante a aplicação de medidas de eficiência energética com a racionalização do consumo energético e a promoção de equipamentos eficientes. A 30 de Junho de 2021 foi oficializada a assinatura da Lei Europeia do Clima onde se pretende que a Europa seja o primeiro continente a atingir a neutralidade carbónica até 2050, devendo alcançar emissões negativas a partir desse mesmo ano. Em conformidade com as medidas propostas pela União Europeia, o Plano Nacional Energia e Clima 2021-2030 (PNEC 2030) considera a eficiência energética como uma prioridade nacional, tendo-se definido como objetivo a redução no consumo de energia de 35%, face ao que fora projetado no Cenário de Referência da União Europeia de 2007. [46]

Referir que Portugal encontra-se menos dependente do exterior. Em 2020 apresentou uma dependência energética de 65,2%, ou seja, menos 10,9% em comparação com o ano de 2010. Este dado encontra-se extremamente próximo com o valor estabelecido no PNEC 2030, ou seja 65%. Contudo, Portugal foi o 11° país com maior dependência energética na União Europeia com 7,7 pontos percentuais acima da média europeia (57,5%) conforme ilustrado no Gráfico 11 [47].

Gráfico 11 – Dependência energética a nível nacional [47], [48].

Notar que grande parte dos sistemas de compressão encontram-se acoplados a motores elétricos pelo que é relevante determinar quais as fontes e o seu peso na produção deste tipo de energia para os sistemas de compressão. Durante o ano de 2020, 60% da energia

elétrica produzida proveio de fontes renováveis. O Gráfico 12 quantifica a produção de energia elétrica primária através de fontes de energia renováveis e não renováveis relativamente ao ano de 2020. Dentro das energias renováveis notar que a fonte hídrica acima de 10 MW e a fonte eólica apresentam-se com as maiores fatias relativamente à produção em análise [49].

Gráfico 12 – Produção de energia primária elétrica em 2020.

Referir ainda que entre 2017 e 2020, a dependência energética a nível nacional tem vindo a reduzir. Isto revela-se um fator importante e positivo para o país, contudo deve-se atender que ainda não foram divulgados os valores inerentes aos anos de 2021 e 2022. Tendo em consideração o contexto geopolítico internacional [50], o aumento dos custos energéticos [51], o fecho das centrais a carvão em Portugal [52] e a redução de caudal nas barragens nacionais [53], devido a fenómenos de seca, a dependência energética nacional poderá sofrer aumentos consideráveis.

Com base nos dados apresentados torna-se cada vez mais importante selecionar uma tecnologia de refrigeração que se revele energeticamente eficiente (um dos fatores determinantes). A melhoria na eficiência energética baseia-se na diminuição da quantidade de energia despendida para realizar uma determinada atividade.

Este objetivo passa pela implementação de sistemas que, para a mesma potência frigorífica, apresentem potências de consumo mais reduzidas.

3.2. Exergia

Durante as últimas décadas a sociedade consciencializou-se que os recursos energéticos são limitados pelo que se deve priorizar novas técnicas de modo a utilizar da melhor forma os recursos existentes. A primeira lei da termodinâmica afirma que há conservação de energia durante um processo e afirma que a energia não pode nem ser criada ou destruída.

A segunda lei da termodinâmica trata da qualidade da energia, ou seja, incide na degradação da energia durante um processo (geração de entropia) e nas perdas de oportunidades em realizar ou conservar trabalho mecânico. A segunda lei da termodinâmica tem-se revelado numa ferramenta relevante na otimização de complexos sistemas termodinâmicos [54]. Permite identificar ineficiências nos sistemas e determinar áreas que podem sofrer uma melhoria na sua eficiência. Um dos conceitos importantes na aplicação da segunda lei é o trabalho reversível do sistema. Para uma determinada alteração de estado num volume de controlo, o trabalho reversível é a quantidade de trabalho máxima que se consegue produzir. Existem certos equipamentos, como as válvulas de expansão que têm o objetivo de destruir energia, o trabalho reversível nestes componentes é nulo.

O trabalho reversível apenas depende dos estados finais do processo para uma determinada condição no ambiente e representa a energia disponível no processo. Deste modo chega-se a outro conceito importante que se apresenta como disponibilidade termodinâmica, também conhecida como exergia. A alternação nesta disponibilidade significa uma alteração na capacidade de uma substância produzir trabalho. A energia indisponível é a porção de energia que não pode ser convertida em trabalho (até mesmo por uma máquina térmica ou máquina frigorífica reversível) [54]. A exergia destruída durante um processo pode ser quantificada pelo produto entre a temperatura envolvente e a entropia gerada conforme se pode evidenciar na Equação 8.

 $\psi_D = T_0 \times s_g \tag{8}$

Onde,

 ψ_D – Exergia destruída [kJ/kg]; T₀ – Temperatura estado morto [K];

s_q – Entropia específica gerada [kJ/kg.K]

As trocas exergia associadas ao fluxo de um determinado fluido podem ser quantificadas através da Equação 9. Notar que, para o presente estudo, considerou-se que as energias cinéticas e potencial são desprezáveis e que existem condições de funcionamento estáveis. Notar que as trocas de exergia do fluxo englobam as condições de entrada e de saída para um determinado volume de controlo.

$$\Delta \psi = \psi_2 - \psi_1 = (h_s - h_e) - T_0 \times (s_s - s_e) + \frac{V_s^2 - V_i^2}{2} + g \times (z_s - z_e)$$
(9)

Onde,

 $\Delta \psi$ - Variação de exergia no escoamento [kJ/kg];

 h_e – Entalpia específica de entrada [kJ/kg];

 h_s – Entalpia específica de saída [kJ/kg];

 T_0 – Temperatura estado morto [K];

s_e – Entropia específica de entrada [kJ/kg.K];

s_s – Entropia específica de saída [kJ/kg.K];

 V_i - Velocidade do escoamento à entrada [m/s];

 V_s - Velocidade do escoamento à saída [m/s];

g - Aceleração da gravidade [m/s²];

z_e – Altura à entrada [m];

z_s – Altura à saída [m].

A variação de exergia num escoamento representa a quantidade máxima de trabalho que pode ser realizado ou, para o caso dos compressores e bombas, a quantidade de trabalho mínima a ser fornecida.

3.3. Leis da eficiência

Conforme se evidenciou no subcapítulo (2.1.1) <u>Ciclo de Compressão de Vapor</u>, o *COP* permite medir o desempenho de um sistema, sendo apoiado pela base da primeira lei da termodinâmica. Assim a primeira lei da eficiência, para máquinas frigoríficas, traduz-se pelo quociente entre a quantidade de energia que se pretende remover de um local e a quantidade de energia a fornecer ao sistema. Contudo é importante referir que a primeira lei da eficiência expressa na Equação 10 não contabiliza o desempenho máximo possível que uma máquina pode atingir [54].

$$\eta_I = COP_{Real} = \frac{Q_e}{\dot{W}_c} \tag{10}$$

Onde,

 $\eta_{\rm I}$ – Primeira lei da eficiência energética [adimensional].

 \dot{Q}_e – Potência frigorífica [kW];

 \dot{W}_c - Potência de compressão [kW].

A segunda lei da eficiência, η_{II} , tem em conta a eficiência máxima que se pode atingir num sistema em determinadas condições. Uma das principais diferenças entre estas leis incide-se no facto de que a segunda lei da eficiência não pode apresentar valores superiores a 100%. Para ciclos de refrigeração pode-se comparar os COP Real e de Carnot de modo a determinar a eficiência destes ciclos em função da energia disponível conforme evidenciado na Equação 11 [54].

$$\eta_{II} = \frac{COP_{Real}}{COP_{Carnot}} \tag{11}$$

3.4. Operacionalidade de Sistemas de Refrigeração

Existem vários processos e parâmetros que influenciam o desempenho das instalações refrigeradas como:

- Temperaturas de condensação;
- Temperaturas de evaporação;
- Sobreaquecimento útil e não útil;
- Subarrefecimento;
- Múltiplos estágios de compressão.

Para o presente trabalho pretende-se avaliar os impactos que estes processos têm sobre a eficiência dos sistemas refrigerados. O tema deste trabalho referencia potências frigoríficas até 250 kW conforme já referido no subcapítulo (2.1.3) <u>Refrigeração – Gama de Temperaturas</u>. Desta forma será este o valor utilizado em futuras análises.

3.4.1. Impacto da Temperatura de Condensação

A temperatura de condensação do fluido frigorigéneo, por norma, encontra-se entre 6 °C a 20 °C acima da temperatura do ar que entra em contacto com as serpentinas. Notar que a temperatura de condensação varia de acordo com a temperatura ambiente onde o sistema se encontra pelo que é comum observar temperaturas de condensação entre os 30 °C e os 60 °C. Desta forma deve-se considerar os seguintes fatores para a determinação da temperatura de condensação [55]:

- Temperatura ambiente;
- Propriedades termofísicas do fluido frigorigéneo;
- Propriedades do compressor;
- Dimensões do condensador.

De modo a determinar o impacto que as temperaturas de condensação têm sobre o sistema, realizou-se uma análise voltada para as variações na potência absorvida pelo compressor e para o *COP*. Dimensionou-se um sistema composto por um único estágio de compressão, um condensador, um evaporador e um dispositivo de expansão. Utilizou-se a potência frigorífica proposta no subcapítulo (2.1.3) Refrigeração – Gama de Temperaturas ou seja, 250 kW e fixou-se a temperatura de evaporação que se propõe ser 0 °C. De seguida realizaram-se cinco dimensionamentos para cinco diferentes temperaturas de condensação, nomeadamente 30 °C, 35 °C, 40 °C, 45 °C e 50 °C. O fluido frigorigéneo proposto para esta análise foi o R-717, sendo um dos fluidos propostos pela Comissão Europeia, conforme apresentado na Tabela 7.

Não foram consideradas perdas de carga no sistema e assumiu-se que os rendimentos volumétrico e isentrópico do compressor apresentam um valor de 100%. Os dados presentes no Gráfico 13 foram estabelecidos com o auxílio do *Software* Coolpack [56] de modo a dimensionar ciclos de compressão simples, alterando-se apenas a temperatura de condensação.

Gráfico 13 – Variação da potência absorvida e do COP através da temperatura de condensação.

Verifica-se, por observação do Gráfico 14, que quanto maior for a temperatura de condensação maior será a potência absorvida pelo compressor. Contrariamente à potência do compressor, o COP diminui sempre que a temperatura de condensação aumenta (isto mantendo todas as outras condições de projeto inalteradas). Caso se compare as temperaturas de condensação de 30 °C e de 50 °C evidencia-se uma diferença de 25,2 kW de potência absorvida e de 3,61 relativamente ao *COP*, ou seja, a temperatura a que o fluido condensa no sistema tem um impacto relevante na eficiência energética. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração</u>.

O limite de arrefecimento do fluido frigorigéneo, ou seja, a melhor relação temperatura/pressão de condensação do sistema, encontra-se relacionado com a temperatura de bolbo húmido do ar onde o condensador se encontra. Os condensadores adiabáticos caracterizam-se pela implementação de um sistema de pré-arrefecimento composto por placas fibrosas que se encontram molhadas, permitindo diminuir a temperatura do ar envolvente.

Na Figura 8 apresentam-se temperaturas de bolbo seco que ajudam a ilustrar o processo envolvido num sistema adiabático. Para este exemplo tem-se ilustrado o ar com temperatura ambiente de bolbo seco de 35 °C que atravessa as placas de pré-arrefecimento. Após a passagem nas placas molhadas a temperatura do ar aproxima-se da temperatura de bolbo húmido o que permite ter uma temperatura de condensação igual à temperatura ambiente de bolbo seco. O processo de pré-arrefecimento consegue manter as temperaturas de condensação mesmo nos momentos em que a temperatura ambiente apresente valores acima dos expetáveis, ou seja, o processo adiabático aumenta significativamente a eficiência térmica do condensador com uma utilização mínima de água [57], [58].

Figura 8 – Permuta de calor num condensador adiabático, adaptado de [57].

Em casos em que se pretende reduzir a temperatura de condensação, o emprego de condensadores adiabáticos permite um aumento da eficiência térmica em contraste com uma redução da energia absorvida pelo compressor. o que resulta em COP mais elevados comparativamente com o uso de condensadores sem esse sistema [57].

Estudos realizados demonstram um benefício claro na utilização de condensadores adiabáticos com uma melhoria na eficiência do sistema utilizado a exceder os 23%. Comparativamente com um condensador sem pré-arrefecimento, verificou-se uma poupança energética de 9315 kWh durante um estudo de quatro dias. Contudo durante esse mesmo período, o condensador adiabático teve um consumo de 69 m³ de água (consumo inexistente nos condensadores sem pré-arrefecimento). Extrapolações realizadas permitiram inferir que a aplicação de condensadores adiabáticos possibilita uma poupança energética mensal a rondar os 9905,82 euros/mês (à data da realização do estudo). Neste estudo não foram considerados os custos relacionados com os gastos hídricos [59].

O Gráfico 14 expõe os consumos energéticos e de água para o condensador nos momentos em que se encontra em funcionamento com e sem pré-arrefecimento adiabático. Evidencia-se que a utilização de condensadores com pré-arrefecimento adiabático revela-se numa tecnologia viável para a promoção da redução dos consumos energéticos, tendo em conta que permite uma redução da temperatura de condensação.

consumos entre condensadores com e sem rie-Arrelecimento

Gráfico 14 - Resultados inerentes aos consumos durante o período de testes [59].

Apesar da redução dos consumos energéticos, deve-se considerar os consumos hídricos desta tecnologia, ou seja, sendo a água um recurso cada vez mais limitado, a sua aplicação deve ser racionalizada e sustentável.

3.4.2. Impacto da Temperatura de Evaporação

A capacidade de refrigeração de uma unidade evaporativa baseia-se na diferença de temperaturas entre o ar que passa nas serpentinas de arrefecimento e o fluido frigorigéneo que circula no interior das mesmas. Notar que a temperatura do ar é equivalente à temperatura do espaço refrigerado. A gama de diferença de temperaturas obtida na unidade de arrefecimento varia consoante a aplicação, ou seja, para armazenamentos húmidos pode-se utilizar diferenças de temperatura na ordem dos 4 K, enquanto para armazenamentos secos podem-se verificar diferenças de 15 K [15]. Desta forma infere-se, que quanto menor for a diferença de temperatura, menor será o efeito de desumidificação provocado pela serpentina de arrefecimento. Consoante a humidade relativa pretendida na instalação tem-se, por norma, os seguintes valores [15]:

- Humidades relativas muito elevadas (cerca de 90%) apresentam uma diferença de temperatura na ordem dos 4 a 6 K;
- Humidades relativas elevadas (aproximadamente 80%) exibem uma diferença de temperatura entre 6 e 7 K;
- Humidades relativas médias (aproximadamente 75%) geralmente dispõem-se uma diferença de temperatura entre 7 e 9 K.

À semelhança com o que se realizou no subcapítulo (<u>3.4.1</u>) <u>Impacto da Temperatura de</u> <u>Condensação</u>, determinou-se o impacto que as temperaturas de evaporação provocam à potência absorvida pelo compressor e ao COP. Notar que, uma vez mais, considerou-se que não existem perdas de carga e que os rendimentos isentrópicos e volumétricos do compressor apresentam valores iguais a 100%. Não se aplicaram os processos de subarrefecimento nem de sobreaquecimento. Para além disso, propôs-se uma temperatura de condensação de 45 °C que se manteve inalterada ao longo das variações da temperatura de evaporação

Observando o Gráfico 15 conclui-se que, para temperaturas de condensação contantes, o aumento da temperatura de evaporação tem efeitos benéficos tanto no consumo energético (diminuição das potências de compressão), como no COP.

Gráfico 15 - Variação do COP e da potência absorvida pelo compressor consoante a temperatura de evaporação

Ao comparar os resultados das duas temperaturas de evaporação mais distantes entre si (0 °C e 8 °C), tem-se uma diferença de 11,2 kW de potência e 1,48 de *COP*. Para a análise realizada infere-se que, por cada 2 °C de incremento de temperatura de evaporação, tem-se um aumento de 3 kW de potência absorvida.

Através das análises realizadas às temperaturas de condensação e às de evaporação, infere-se que quanto maior for a necessidade de frio maiores serão os consumos energéticos. Em adição, quanto maior for a temperatura exterior maior será a temperatura de condensação, o que significa que mais trabalho deve ser fornecido ao compressor, aumentando o consumo energético. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração</u>.

É importante referir que a eficiência dos permutadores de calor, sejam condensadores ou evaporadores, depende de alguns aspetos, nomeadamente da diferença de temperaturas entre o permutador e os espaços onde estes se encontram inseridos.

Pequenas diferenças de temperatura aumentam a eficiência na transferência de calor. Contudo nem todas as instalações podem operar com pequenas diferenças de temperatura. No caso dos evaporadores, quando se pretende reduzir a humidade relativa do espaço, a diferença de temperaturas deve ser significava conforme se evidenciou no presente subcapítulo (3.4.2) Impacto da Temperatura de Evaporação. A potência calorífica de um permutador de calor, \dot{Q}_P , é dada pela Equação 12 [55], [60].
$$\dot{Q}_P = U \times A \times \Delta T_{Log,m} \tag{12}$$

Onde,

 \dot{Q}_P – Potência calorífica de um permutador de calor [W];

U – Coeficiente global de transmissão de calor [W/m². °C];

A -Área de permuta de calor [m²];

 $\Delta T_{Log,m}$ – Diferença de temperatura logarítmica [°C].

Por sua vez $\Delta T_{Log,m}$ é dada pela Equação 13.

$$\Delta T_{Log,m} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} \tag{13}$$

Onde,

 ΔT_1 – Diferença entre a temperatura de entrada do ar e a temperatura do fluido frigorigéneo no evaporador [°C];

 ΔT_2 – Diferença entre a temperatura de saída do ar e a temperatura do fluido frigorigéneo no evaporador [°C];

Através da Equação 12 pode-se inferir que quanto menor for o $\Delta T_{Log,m}$, para a mesma potência calorífica e para o mesmo coeficiente global de transmissão de calor, maior será a área de permuta do equipamento. Logo para temperaturas de evaporação próximas da temperatura de conservação tem-se equipamentos com maiores dimensões. O mesmo se aplica a temperaturas de condensação próximas da temperatura de ambiente (ou local que recebe o calor rejeitado). Em suma, pequenas variações de temperatura nos permutadores aumentam a eficiência do mesmo, contudo implica um aumento nas suas dimensões (incremento de área) o que resulta em preços de aquisição mais elevados.

3.4.3. Impacto do Sobreaquecimento nos Sistemas de Compressão a Vapor

Conforme referido anteriormente, o sobreaquecimento pode ser útil ou não, dependendo se tem a capacidade de remover calor do espaço a refrigerar. Desta forma decidiu-se analisar o impacto que o sobreaquecimento tem sobre os sistemas de refrigeração. Neste estudo mantiveram-se as temperaturas de condensação (45 °C) e de evaporação (0 °C), alterando-se apenas as condições de sobreaquecimento. À semelhança dos estudos anteriores não se consideraram perdas de carga na instalação e o fluido utilizado foi, uma vez mais, o R-717.

O Gráfico 16 ilustra que o sobreaquecimento tem um comportamento negativo no sistema, já que promove o aumento de potência a fornecer aos compressores o que se traduz num aumento nos custos energéticos. Isto deve-se ao facto do aumento do efeito frigorífico no evaporador ser inferior ao incremento da energia de compressão, no caso do sobreaquecimento útil. Para o sobreaquecimento não útil o resultado é ainda pior, dado que o efeito frigorífico se mantém inalterado enquanto a energia de compressão aumenta.

Em adição, como o caudal volumétrico do compressor é constante, a massa específica do fluido diminui (dado ao aumento de temperatura), resultando numa redução no caudal mássico e no efeito frigorífico [3].

Gráfico 16 – Processos de sobreaquecimento, potências absorvidas pelo compressor e COP.

Assim, conclui-se que o *COP*, em ambos os processos de sobreaquecimento, decresce à medida que os valores de sobreaquecimento aumentam, tendo um efeito mais notório no sobreaquecimento não útil. Para os sobreaquecimentos útil e não útil de 10 K evidencia-se uma diferença no *COP* de 0,12.

Apesar de apresentar estes efeitos negativos no sistema, o sobreaquecimento é relevante dado que salvaguarda a integridade das unidades compressoras de forma a não chegar líquido aos compressores [61]. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração</u>.

3.4.4. Impacto do Subarrefecimento nos Sistemas de Compressão a Vapor

O subarrefecimento apresenta um efeito positivo, tendo em conta que promove o aumento do efeito frigorífico e permite que apenas líquido subarrefecido entre no dispositivo de expansão. Conforme referido anteriormente, existem várias formas de se obter o processo de subarrefecimento, nomeadamente através de permutadores de calor e por sistemas mecânicos dedicados ou integrados. Pode também ser realizado no interior do condensador.

Notar que os sistemas mecânicos têm uma unidade compressora e para calcular o COP do sistema deve-se considerar a potência absorvida por este componente. Deste modo, para esta análise, teve-se apenas em consideração que o subarrefecimento foi realizado por meio de um permutador de calor. À semelhança com as outras análises realizadas utilizou-se o mesmo fluido frigorigéneo, nomeadamente o R-717. Não foram consideradas perdas de carga e nos rendimentos isentrópicos e volumétricos assumiram-se valores de 100%.

Através do Gráfico 17 verifica-se que o aumento do subarrefecimento promove uma diminuição na potência absorvida pelo compressor. Isto deve-se ao facto do efeito frigorífico aumentar ou seja, quanto maior for o efeito frigorífico menor é o caudal mássico de fluido se a potência frigorífica se mantiver inalterada.

Gráfico 17 – Variação da potência absorvida e do COP em função do subarrefecimento.

O facto do caudal mássico apresentar valores inferiores em comparação com sistemas que não utilizem subarrefecimento implica que a potência de compressão será igualmente menor. Com o aumento dos valores de subarrefecimento, o *COP* sofre também um

incremento já que a potência frigorífica mantém-se inalterada (250 kW) enquanto a potência absorvida diminui. É importante referir que, caso se consiga realizar um subarrefecimento de 10 K, consegue-se diminuir a potência de compressão em 2,2 kW e provocar um aumento no *COP* de 0,23. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no Apêndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração.

3.4.5. Impacto de Múltiplos Estágios nos Sistemas de Compressão a Vapor

Conforme referido anteriormente os múltiplos estágios de compressão são aplicados em situações onde a razão de pressões de condensação e evaporação é considerada elevada para um determinado regime de funcionamento. O uso de múltiplos estágios promove alterações na potência absorvida e, consequentemente, verifica-se variações nos valores respeitantes ao *COP*. Para um sistema de compressão de vapor, as Equações 14 e 15 permitem obter valores aproximados para pressões intermédias ótimas para dois e múltiplos estágios de compressão respetivamente.

$$P_{int.} = \sqrt{P_1 \times P_2} \tag{14}$$

Onde,

 $P_{int.}$ – Pressão Intermédia num ciclo com dois estágios de compressão [bar]; P_1 – Pressão de aspiração [bar]; P_2 – Pressão de descarga [bar].

Para sistemas com mais de dois estágios, cada pressão intermédia pode ser obtida através de uma razão geométrica entre as pressões de evaporação e de condensação.

$$\frac{P_{int\ 1}}{P_1} = \frac{P_{int\ 2}}{P_{int\ 3}} = \dots = \frac{P_2}{P_{i\ (N-1)}} = \left(\frac{P_2}{P_1}\right)^{1/N}$$
(15)

Onde,

 $P_{int 1}$; $P_{int 2}$; $P_{int 3}$ - Pressões intermédias num sistema com N estágios de compressão [bar];

N - Número de estágios de compressão [adimensional].

Na Tabela 10 encontram-se os valores relativos à potência absorvida pelos compressores e ao *COP*, dependendo do número de estágios utilizado. Determinaram-se as pressões intermédias para cada análise pelo que não se recorreu aos processos de sobreaquecimento nem de subarrefecimento. Desta forma a potência frigorífica manteve-se inalterada, conforme noutras análises, independentemente do número de estágios aplicado. Foram analisadas as alterações até 6 estágios de compressão para uma pressão de admissão de 4,29 bar (0 °C) e uma pressão de descarga de 17,82 bar (45 °C). O fluido de trabalho manteve-se inalterado.

Para a determinação dos pontos admissão e de descarga dos vários estágios recorreuse ao *Software* Coolselector2 disponibilizado pela Danfoss [62] já que o CoolPack [56] não permite a construção de sistemas com mais de dois estágios de compressão. Os valores relativos às temperaturas de condensação e de evaporação propostos nos subcapítulos (<u>3.4.1</u>) <u>Impacto da Temperatura de Condensação</u> e (<u>3.4.2</u>) <u>Impacto da Temperatura de Evaporação</u> mantiveram-se inalterados, 45 °C e 0 °C respetivamente, não tendo sido aplicados os processos de sobreaquecimento e de subarrefecimento.

Evidencia-se um decréscimo na potência de compressão à medida que se aumenta o número de estágios do sistema (Tabela 10) [63]. Em contrapartida, o valor do COP aumenta já que a potência de arrefecimento mantém-se inalterada.

· · ·	N⁰	Potência de Compressão [kW]	СОР
	1	49,44	5,05
Estágios de	2	46,34	5,40
Compressão	3	45,14	5,54
	4	44,90	5,57
	5	44,43	5,63
	6	44,19	5,66

Tabela 10 – Impacto na eficiência e na potência de compressão na implementação de múltiplos estágios.

O decremento da potência absorvida deve-se à utilização de arrefecimentos intermédios como se ilustra na Figura 9.

Figura 9 – Arrefecimento intermédio entre estágios de compressão, adaptado de [3].

O arrefecimento intermédio promove a diminuição do volume específico do fluido sobreaquecido que será aspirado para o próximo estágio de compressão. O calor que se retira através do arrefecimento intermédio proporciona, deste modo, a diminuição de trabalho a fornecer às unidades compressoras. O processo de arrefecimento intermédio conta, normalmente, com fluidos secundários que absorvem o calor do fluido frigorigéneo sobreaquecido. Estes fluidos secundários necessitam de bombas de recirculação que não foram contabilizadas neste estudo.

No Gráfico 18 é possível observar os incrementos e decrementos existentes na potência de compressão e na eficiência energética, respetivamente. É evidente que a passagem de um para dois estágios de compressão representa a maior variação em ambos os parâmetros em análise, ou seja, obteve-se um incremento no *COP* de 0,35 e um decremento de 3,1 kW na potência absorvida com a passagem de um estágio de compressão para dois.

Contudo, verifica-se também que, com o aumento do número de estágios, o decremento da potência absorvida e o incremento do *COP* começam a ser negligenciáveis. Tome-se o exemplo da passagem de três para quatro estágios de compressão que apenas reduz a potência de compressão em 0,24 kW e aumenta o *COP* em 0,03.

Para além disso, o aumento do número de estágios incrementa a complexidade da instalação para além de encarecer os custos de manutenção e de instalação. Para além disso deve-se atender à praticabilidade do projeto, ou seja, para uma temperatura de evaporação e de condensação de 0 °C e 45 °C respetivamente, seria impossível aplicar seis estágios de compressão com o R-717 como fluido frigorigéneo. Isto porque as pressões de aspiração e de

descarga estariam muito próximas uma da outra pelo que o regime de trabalho estaria fora da gama de compressores disponíveis.

Gráfico 18 – Variação na potência de compressão e na eficiência energética.

Mais informação sobre a metodologia utilizada neste subcapítulo disponível no Apêndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração.

3.5. Medidas de Otimização

A otimização dos sistemas de refrigeração deve ter em conta os processos que provocam ineficiências pelo que se deve identificar e corrigir estes aspetos com o intuito de reduzir os consumos energéticos. Existem vários fatores que podem influenciar a eficiência energética dos equipamentos e, consequentemente dos sistemas de refrigeração. Deste modo as medidas de otimização devem abranger as seguintes premissas [64]:

- I. Minimizar as potências de arrefecimento;
- Minimizar o intervalo de temperaturas entre as condições de evaporação e de condensação (na literatura inglesa, *Temperature Lift*);
- III. Considerar condições variáveis de funcionamento;
- IV. Escolha dos ciclos e componentes mais eficientes;
- V. Projeção pragmática dos sistemas de controlo;
- VI. Verificação e monotorização do sistema.

A primeira premissa foca-se nos cuidados a ter com as potências frigoríficas de modo a minimizá-las, quando possível, através de medidas de isolamento que promovam a diminuição das trocas de calor indesejadas que reduzem a quantidade de calor útil de arrefecimento.

Em relação à segunda premissa, tem-se a importância da *temperature lift* e como este fator é relevante na eficiência energética. Quanto maior for o intervalo entre as temperaturas de evaporação e de condensação, maior será o trabalho a fornecer ao compressor. Segundo o UNEP, o aumento de 1 °C na *temperature lift* traduz-se num acréscimo entre 2% a 4% no consumo energético. Deste modo pretende-se, sempre que possível, promover o funcionamento do sistema com a maior temperatura de evaporação (sem colocar em causa a conservação e qualidade dos produtos) e a menor temperatura de condensação.

Em relação à terceira premissa, notar que poucos são os sistemas que trabalham nas condições de projeto que à partida consideram-se como as mais desfavoráveis. Deste modo deve-se atender à melhoria e otimização do sistema atendendo às condições de funcionamento mais comuns e não às mais adversas.

Escolher o ciclo de refrigeração e os componentes que o constituem são parâmetros fulcrais para quando se pretende um consumo energético eficiente. A escolha dos fluidos frigorigéneos revela-se também importante, dependendo das condições de funcionamento dos custos de obtenção e da disponibilidade comercial.

A quinta premissa representa uma das maiores oportunidades para melhorar a eficiência energética das instalações refrigeradas. Os sistemas de controlo mais recentes com a possibilidade de usar acionamentos com velocidade variável (na literatura inglesa, *variable speed drives*, VSD) oferecem uma melhoria no desempenho dos compressores e dos equipamentos auxiliares como bombas e ventiladores. Outro exemplo relevante no controlo de sistemas é o controlo do descongelamento realizado nas unidades de evaporação. Muitos sistemas utilizam temporizadores que funcionam independentemente da existência de gelo nas serpentinas, ou seja, o descongelamento em certos casos pode ser desnecessário. O controlo adequado através de sensores pode melhorar e reduzir os consumos energéticos em relação a este parâmetro.

Por último, a sexta premissa incide-se nas instalações já em funcionamento. Adotar uma metodologia preventiva de modo a que todos os equipamentos funcionem com os melhores desempenhos significa aumentar os níveis de eficiência energética. Segundo a UNEP, é possível atingir poupança no consumo energético entre 10% a 20% através da monotorização do desempenho do sistema e corrigir, caso seja necessário, irregularidades [64].

54

4. Caso de Estudo

4.1. Condições de Projeto

Evidenciou-se no subcapítulo (2.3.2) Panorama Português na Produção Frutícola que a laranja apresenta-se com um crescimento produtivo gradual ao longo dos anos, sendo um dos frutos mais produzidos a nível nacional.

Desta forma propõe-se que a instalação refrigerada conserve laranjas. Em relação à localização, faz sentido que a instalação se encontre nos locais onde a produção apresenta valores mais significativos pelo que a região do Algarve representa, por si só, 77,6% da produção de laranja, tendo-se proposto a cidade de Faro.

Para considerar as condições climatéricas desta cidade, recorreu-se ao *Software* Hourly Analysis Program 4.80, disponibilizado pela Carrier [65]. Para os parâmetros de projeto decidiu-se acertar os valores com uma probabilidade acumulada de ocorrência de 99% para as temperaturas de verão, tendo em conta que se apresentam como as temperaturas mais desfavoráveis (Tabela 11) [66].

 Tabela 11 – Temperaturas exteriores de projeto de verão com probabilidades acumuladas de ocorrência de 99% e amplitude térmica diária no mês mais quente [66].

Local	Temperatura Bolbo Seco	Temperatura Bolbo Húmido	Amplitude Térmica
	[°C]	[°C]	[°C]
Faro	31,8	20,8	11,2

Os valores referentes à latitude, longitude, e elevação foram retirados através de uma folha de cálculo Excel (CLIMAS-SCE 1_05) disponibilizada pelo Laboratório Nacional de Energia e Geologia (LNEG). Na Figura 10 destacam-se as temperaturas de bolbo seco e húmido necessárias para o dimensionamento da instalação.

Consequentemente a temperatura de condensação terá de ser superior à da atmosfera de modo a se realizar permuta de calor entre as unidades de condensação e o exterior. Notar que a temperatura ambiente tem um impacto relevante nos consumos energéticos das instalações, ou seja, quanto maior for a temperatura ambiente pior será a eficiência energética do sistema.

🛞 Weather Prope	erties - [Faro]		Concern of the local division of the local d
Design Paramete	Design Ten	nperatures	Design
Region: Eur	ope	•	
Location: Port	ugal	•	
<u>C</u> ity: Far)	•	
L <u>a</u> titude:	37,	.3	deg
L <u>o</u> ngitude:	8,0	1	deg
Ele <u>v</u> ation:	14	5,0	m
Summer Design <u>D</u>	B 31,	.8	°C
Summer Coincider	nt <u>₩</u> B 20 ,	.8	°C
Summer Daily <u>R</u> an	nge 11,	2	к
Winter Design DB	4,0	1	°C
Winter Coincident	WB 3,7	•	°C

Figura 10 – Parâmetros de Projeto inerentes à cidade de Faro.

4.1.1. Temperaturas de Condensação e de Evaporação

Para a temperatura de condensação considerou-se a temperatura de projeto de bolbo seco e húmido, de 31,8 °C e 20,8 °C, respetivamente. Conforme se evidenciou no subcapítulo (3.4.1) Impacto da Temperatura de Condensação as temperaturas de condensação encontramse entre 6 °C a 20 °C acima da temperatura de projeto. Deste modo para determinar a temperatura de condensação do presente trabalho realizou-se uma média entre a temperatura mínima e máxima de condensação.

$$T_{CMinS} = T_P + 6 \,^{\circ}\text{C} = 37,8 \,^{\circ}\text{C}$$
 (16)

Onde,

$$T_{CMinS}$$
 – Temperatura de condensação mínima de bolbo Seco [°C];

 T_P – Temperatura de projeto [°C].

$$T_{CMaxs} = T_P + 20 \,^{\circ}\text{C} = 51.8 \,^{\circ}\text{C} \tag{17}$$

Onde,

 $T_{CM \acute{a} xS}$ – Temperatura de condensação máxima bolbo seco [°C].

$$T_{CS} = \frac{T_{CM\acute{a}xS} + T_{CMinS}}{2} = 44,8 \,^{\circ}\text{C} \approx 45 \,^{\circ}\text{C}$$
(18)

Onde,

 T_{CS} - Temperatura de condensação bolbo seco [°C].

Para a temperatura de condensação de bolbo húmido, T_{CH} , aplicou-se a mesma metodologia com a temperatura de bolbo húmido de projeto exterior, tendo-se obtido um valor igual a 34 °C.

Relativamente à temperatura de evaporação atendeu-se às necessidades de frio no que diz respeito ao produto frutícola. Conforme explicitado na Tabela 9 a laranja deve-se encontrar entre 4,44 °C a 7,22 °C. Para além disso, no subcapítulo (<u>3.4.2</u>) <u>Impacto da Temperatura de Evaporação</u>, a humidade relativa do espaço de conservação deve ser muito elevada (igual o superior a 90%) pelo que a diferença de temperatura entre a condição mais desfavorável de conservação (4,44 °C) e a temperatura de evaporação deve rondar os 4 K. Deste modo, através da Equação 19 é possível determinar a temperatura de evaporação.

$$T_E = T_{Con_Min} - 4 = 0,22 \text{ °C} \approx 0 \text{ °C}$$
 (19)

Onde,

 T_E – Temperatura de conservação mínima bolbo seco [°C];

T_{Con_Mín} – Temperatura de conservação mínima do produto bolbo seco[°C];

4.2. Uma Aproximação Teórica

Para o presente tema pretende-se desenvolver o sistema mais eficiente para uma potência de arrefecimento de 250 kW, onde o esquema de princípio de mesmo é válido para qualquer fluido frigorigéneo a analisar. Isto significa que na construção de um determinado sistema os pontos envolvidos nessa construção serão idênticos independentemente do fluido empregue. A primeira abordagem passa pelo dimensionamento de vários sistemas de compressão a vapor para os fluidos frigorigéneos abordados no subcapítulo (2.2.5) Alternativas aos Fluidos em Funcionamento em Portugal com o objetivo de selecionar o que apresenta a melhor eficiência energética. Recorreu-se aos vários processos analisados no subcapítulo (3.4) Operacionalidade de Sistemas de Refrigeração como o sobreaquecimento, o subarrefecimento e os múltiplos estágios de compressão. Nesta fase, consideraram-se apenas sistemas com expansão direta. Para o caso de fluidos frigorigéneos A2L, A3 e B2L devem-se considerar aspetos como a carga de fluido presente no sistema. Se algum dos fluidos com estas características for o selecionado para o Projeto de Conservação de Frutas, a sua carga não deve exceder os limites impostos pela Norma EN 378. Caso contrário deve ser implementado um sistema com fluido secundário.

Relativamente ao rendimento isentrópico, este fator foi considerado na presente análise, sendo que varia consoante as pressões de admissão, de descarga e do tipo de compressor. Estes podem ser alternativos, de parafuso, de *scroll*, entre outros. Desta forma pretende-se reter que todos os sistemas foram dimensionados tendo em conta o rendimento isentrópico dos compressores. Para o cálculo deste rendimento recorreu-se à Equação 20 [67].

$$\eta_s = 0,8014 - 0.0484 \times \left(\frac{P_2}{P_1}\right) \tag{20}$$

Onde,

 η_{s} – Rendimento isentrópico [adimensional];

P₁ – Pressão de aspiração [bar];

P₂ – Pressão de descarga [bar];

É importante referir que para a realização deste estudo foram assumidos:

- Ganhos e perdas de calor nas tubagens não foram contabilizadas;
- Perdas de carga negligenciáveis;
- As energias cinéticas e potenciais desprezáveis;
- Consumo de ventiladores e de bombas de circulação não contabilizados.

Para além disso, todos os sistemas foram dimensionados em regime estacionário ou seja, os pontos que se consideraram na construção dos sistemas não sofrem variações nas temperaturas, pressões e entalpias durante o seu funcionamento. Na Tabela 12 descrevem-se os vários sistemas com a descrição dos processos que utilizam.

Tabela 12 – Sistemas dimensionados para a determinação do COP real mais elevado.

Sistemas	N⁰	
Sistema com subarrefecimento e sobreaquecimento não útil através de um permutador	1	
de calor (ambos de 5K) (um estágio de compressão)	T	
Sistema com subarrefecimento e sobreaquecimento útil (ambos de 5K) (um estágio de	2	
compressão)	Z	
Sistema com duplo estágio de compressão, arrefecimento intermédio, subarrefecimento	2	
e sobreaquecimento não útil através de um permutador de calor (ambos de 5K)		
Sistema com duplo estágio de compressão, arrefecimento intermédio com	л	
subarrefecimento e sobreaquecimento útil (ambos de 5K)	4	
Sistema com duplo estágio de compressão, depósito intermédio, subarrefecimento e		
sobreaquecimento útil (ambos de 5K)	Э	

Todos os sistemas foram analisados com os vários fluidos frigorigéneos propostos no subcapítulo (2.2.5) <u>Alternativas aos Fluidos em Funcionamento em Portugal</u>. De modo a tornar este processo mais acessível, para cada sistema foi a associado um número. Para as

temperaturas de evaporação e de condensação determinadas no subcapítulo (<u>4.1.1</u>) <u>Temperaturas de Condensação e de Evaporação</u>, nomeadamente 0 °C e 45 °C (valores de bolbo seco) determinou-se qual dos sistemas é o mais eficiente, dependendo do fluido frigorigéneo. O Gráfico 19 apresenta os valores obtidos da presente análise.

Gráfico 19 – COP Real dos Vários fluidos consoante o sistema analisado.

Evidencia-se que, para os fluidos R-290, R-1270, R-1234ze[E] e R-515B, o sistema nº 5 é o que se apresenta com maior eficiência energética. O mesmo não se verifica para o R-744 e R-717 pelo que o sistema nº 4 é o energeticamente mais eficiente. Esta análise é importante para entender que nem sempre um sistema representa a solução ótima para todos os fluidos frigorigéneos. Cada caso deve ser analisado e todas as variáveis devem ser contabilizadas.

De modo a visualizar os sistemas nº 4 e 5 apresenta-se na Figura 11 o esquema base para estes dois sistemas. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 2 – Análise à Aproximação Teórica</u>.

Figura 11 – Sistema nº 4 (a) e 5 (b).

4.3. Aplicabilidade do Projeto

Os sistemas ilustrados na Figura 11 apresentam um problema prático que inviabiliza a sua implementação na realidade. Isto porque a diferença de pressões entre estágios de compressão é reduzida ao ponto de colocar a operacionalidade dos sistemas fora dos limites de aplicabilidade dos compressores.

Por outras palavras significa que a pressão intermédia se encontra muito próxima tanto da pressão de evaporação como da de condensação. Note-se o exemplo de compressores a parafuso que utilizam a diferença de pressões para circular o óleo responsável pela lubrificação e arrefecimento. Caso a referida diferença se encontre abaixo dos níveis admissíveis do equipamento, não ocorre a circulação de óleo no compressor, forçando a paragem do mesmo. Infere-se que, para as temperaturas de evaporação (0 °C) e de condensação (45 °C), não é possível utilizar duplo estágio de compressão nem depósito intermédio.

Deste modo a metodologia empregue para o dimensionamento de um sistema aplicável passa, principalmente, pelos requisitos impostos durante a seleção das unidades de compressão. Durante a seleção, teve-se o cuidado de adotar os valores de sobreaquecimento recomendados pelo *Software* disponibilizado pela Bitzer [68] que se encontra em consonância com a Norma EN 12900 – Compressores de Refrigeração, pelo que estes podem sofrer pequenas variações consoante o fluido frigorigéneo. O rendimento isentrópico dos compressores foi obtido pela Equação 20 atendendo aos valores inerentes à temperatura de descarga fornecidos pelo *Software*.

$$\eta_s = \frac{h_{2s} - h_1}{h_2 - h_1} \tag{20}$$

Onde,

 $\eta_{\rm s}$ – Rendimento isentrópico dos compressores [adimensional]

 h_1 – Entalpia específica de entrada no compressor [kJ/kg];

 h_{2s} – Entalpia específica de saída no compressor (processo isentrópico) [kJ/kg];

 h_2 – Entalpia específica de saída no compressor (processo real) [kJ/kg].

Para o R-290, selecionou-se um compressor de parafuso compacto. Aplicaram-se as temperaturas de condensação e de evaporação de 45 °C e 0 °C respetivamente. Os valores de subarrefecimento e sobreaquecimento útil foram de 5 K, ocorrendo, também, um

sobreaquecimento não útil na tubagem de aspiração de 5 K (para todos os fluidos estes parâmetros mantiveram-se exceto para o R-717 devido às informações disponibilizadas durante a seleção que se encontram em consonância com a Norma EN 12900). A temperatura de descarga não arrefecida determinada pelo Bitzer *Software* é de 70 °C. Deste modo é possível determinar o rendimento isentrópico do equipamento compressor. É importante referir que os resultados inerentes à potência absorvida disponibilizados por este *Software* são determinados pela capacidade máxima de arrefecimento inerente ao compressor selecionado. Para o R-290 selecionou-se uma unidade com capacidade de arrefecimento de 280 kW, ou seja, está sobredimensionada.

Logo os resultados apresentados pelo Bitzer *Software* não correspondem às necessidades de 250 kW. Assim, a Tabela 13 apresenta valores determinados com o auxílio do *Software* Coolselector2 [62] disponibilizado pela Danfoss para potências de arrefecimento de 250 kW. Notar que a mesma metodologia foi utilizada para todos os fluidos.

Tabela 13 - Dados inerentes à unidade compressora para o R-290 sem sistema adiabático.				
Compressor	${\dot W}_c$ [kW]	η_s [%]	Nº Compressores	
	74,56	70,9	1	
CSHP8573-140P				

A seleção da unidade compressora para o fluido R-1270 não foi tão linear em comparação com o R-290. De momento o *Software* da Bitzer não tem o R-1270 disponível enquanto opção. Contudo a mesma entidade informa que ambos os fluidos R-290 e R-1270 podem operar com o mesmo compressor [69]. Assim, assumiu-se que o R-1270 funcionará com o mesmo compressor que o R-290. Para este caso adotou-se um rendimento isentrópico idêntico ao evidenciado com o fluido R-290 de modo a determinar a temperatura de descarga do R-1270.

Tabela 14 – Dados inerentes à unidade compressora para o R-1270 sem sistema adiabático.			
Compressor	\dot{W}_c [kW]	η _s [%]	Nº Compressores
	74,47	70,9	1
CSHP8573-140P-40P			

Relativamente ao fluido R-1234ze[E] selecionou-se um compressor de parafuso compacto à semelhança do R-290 e do R-1270. A Tabela 15 apresenta a potência absorvida, rendimento isentrópico e quantidade de unidades compressoras para o fluido R-1234ze[E].

Tabela 15 – Dados inerentes à unidade compressora para o R-1234ze[E] sem sistema adiabático.				
Compressor	\dot{W}_c [kW]	\dot{W}_c [kW] η_s [%] Nº Comp		
	71,28	71,9	1	
CSHP8573-140P-40P				

Para a utilização do R-744, o *Software* da Bitzer disponibiliza o sistema Gustav-Lorentzen. Gustav Lorentzen foi um professor universitário que dedicou a sua vida à refrigeração e à otimização de sistemas a CO₂ [70]. Durante o dimensionamento foram selecionados três compressores do modelo 6DTEU-50LK conforme apresentado na Tabela 16. Notar que uma das unidades compressoras encontra-se ligada a um variador de frequência ou seja, um dos compressores deverá absorver mais potência comparativamente com os outros dois individualmente. Este facto leva a temperaturas de descarga diferentes pelo que decidiuse determinar a média das três temperaturas de descarga para o dimensionamento do sistema.

Tabela 16 – Dados inerentes à unidade compressora para o R-744 sem sistema adiabático.

Compressor	${\dot W}_c$ [kW]	η _s [%]	Nº Compressores
	149,65	75,9	3
6DTEU-50LK			

Para o fluido frigorigéneo R-515B selecionou-se o compressor de parafuso compacto do modelo CSH9573-180Y-40D. Na Tabela 17 encontram-se os valores inerentes à potência absorvida, rendimento isentrópico e número de compressores.

Tabela 17 – Dados inerentes à unidade compressora para o R-515B sem sistema adiabático.			
Compressor	\dot{W}_c [kW]	η _s [%]	Nº Compressores
	73,03	71,0	1
CSH9573-180Y-40D			

Para o fluido frigorigéneo R-717, selecionou-se um compressor de parafuso do modelo OSKA8561-K explicito na Tabela 18. Notar que as temperaturas de condensação e de evaporação se mantiveram, contudo, para este caso, considerou-se apenas um sobreaquecimento não útil de 5 K e um subarrefecimento também de 5 K. Não se considerou um sobreaquecimento útil pelo facto da Norma EN 12900 recomendar apenas um sobreaquecimento de 5K na tubagem de aspiração.

Tabela 18 – Dados inerentes à unidade compressora para o R-717 sem sistema adiabático.			
Compressor	\dot{W}_c [kW]	η_s [%]	Nº Compressores
	70,24	70,2	1
OSKA8561-K			

A Figura 12 apresenta o esquema de refrigeração simplificado do sistema aplicável para os vários fluidos frigorigéneos. Referir que, nesta fase, apenas se pretende representar o esquema de princípio, ou seja, o número de compressores e de outros equipamentos não se encontram na Figura 12.

Figura 12 – Esquema de refrigeração simplificado para o sistema aplicável.

O Gráfico 20 apresenta os vários resultados relativamente ao coeficiente de desempenho real de cada fluido. Notar que os COP_{Real} do sistema com R-290, R-1270 e R-515B encontram-se muito próximos entre si. O sistema aplicável com o fluido R-717 destaca-se com o maior COP_{Real} de 3,38. Em contrapartida, a utilização do R-744 no mesmo sistema apresenta o pior coeficiente de desempenho real com um valor igual a 1,51.

Gráfico 20 – COP Real do sistema aplicável segundo os vários fluidos frigorigéneos em análise.

A implementação de um sistema adiabático na instalação refrigerada não altera os componentes previamente selecionados. Neste caso, os compressores apresentados nas Tabelas 13, 14, 15, 16, 17 e 18, apesar de absorverem menos potência, mantêm-se inalterados (notar que os valores de \dot{W}_c e de η_s apresentados nas Tabelas 13, 14, 15, 16, 17 e 18 não contabilizam o processo adiabático). O objetivo de instalar o pré-arrefecimento no condensador não implica que nenhum componente da instalação seja substituído, ou seja, o adiabático só funcionará em situações em que existe necessidade para tal.

Para o dimensionamento com sistema adiabático não se considerou subarrefecimento dado que a temperatura de condensação (com o sistema adiabático a funcionar tem-se uma temperatura de condensação igual a 34 °C) se encontra próxima da temperatura de projeto exterior de bolbo seco (31,8 °C), ou seja, não seria possível aplicar um subarrefecimento de 5 K já que a temperatura de condensação seria inferior à temperatura de projeto exterior de bolbo seco.

Através do Gráfico 21 evidenciam-se os resultados da eficiência energética para sistema aplicável, dependendo do fluido frigorigéneo. Verifica-se que o sistema com o fluido R-717 revela-se o mais eficiente a nível energético, seguido do R-1234ze[E] e do R-515B, contudo os valores encontram-se muito próximos entre si. O sistema aplicável com o fluido R-744 apresenta o COP_{Real} mais reduzido com o valor de 1,51 sem o sistema adiabático e 2,28 com o pré-arrefecimento em funcionamento.

Nota-se uma diferença notória no COP_{Real} entre o sistema aplicável com e sem o processo adiabático. evidencia-se que o sistema aplicável sofreu o maior incremento no COP_{Real} com a utilização do fluido R-717 (incremento de 1,06). Em contrapartida o sistema

com R-744 foi o que beneficiou menos com este processo, apresentando apenas um incremento no COP_{Real} de 0,77. A utilização de condensadores adiabáticos revela-se vantajosa na eficiência energética em grande parte pela diminuição da temperatura de condensação.

Um processo adiabático caracteriza-se pela ausência de transferência de calor entre as fronteiras de um sistema. Para o caso em análise, este facto implica que a soma entre o calor sensível e o calor latente seja nula conforme se evidencia na Equação 21.

$$\dot{Q}_L - \dot{Q}_S = 0 \tag{21}$$

Onde,

 \dot{Q}_L – Calor latente [kW];

 \dot{Q}_{S} – Calor sensível [kW].

Numa primeira fase, para determinar o consumo de água, pretende-se calcular a diferença de calor rejeitado entre os condensadores com e sem sistema adiabático através da Equação 22.

$$\Delta \dot{Q}_{Cr} = \dot{Q}_c - \dot{Q}_{CA} \tag{22}$$

Onde,

 $\Delta \dot{Q}_{Cr}$ – Diferença de calor realizado pelo sistema adiabático [kW];

 \dot{Q}_{CA} – Calor removido pelo condensador adiabático [kW];

Esta diferença de calor provada pelo sistema adiabático será igual ao calor latente removido pelo sistema e simétrica ao calor sensível.

$$\Delta \dot{Q}_{Cr} = -\dot{Q}_S = -(\dot{m}_{AS} \times cp_{\dot{a}gua} \times \Delta T)$$
⁽²³⁾

$$\Delta \dot{Q}_{Cr} = \dot{Q}_L = \dot{m}_{AL} \times L_{\nu} \tag{24}$$

Onde,

 \dot{m}_{AS} – Caudal de água inerente ao calor sensível [kg/s];

*cp*_{água} – Calor específico da água a pressão constante [kJ/kg.K];

 ΔT – Diferença de temperatura [K];

 \dot{m}_{AL} – Caudal de água inerente ao calor latente [kg/s];

 L_v – Calor latente específico de vaporização [kJ/kg].

A diferença de temperatura dá-se entre a temperatura de condensação sem o sistema adiabático, 45 °C, e com o sistema adiabático, 34 °C. Assumiu-se ainda que o sistema aplicável se encontra em funcionamento durante oito horas por dia, sete dias por semana, com o intuito de se obter um valor para o consumo hídrico anual.

Gráfico 22 – Consumo Anual de água com a implementação do sistema adiabático.

Através do Gráfico 22 infere-se que o sistema aplicável a funcionar com o fluido R-717 necessita de menos caudal de água, seguido do R-1234ze[E]. Em contraste, evidencia-se o R-744 com necessidades de água a rondar o 13091 m³ por ano. Seria interessante, para o sistema aplicável com R-717, aplicar o processo adiabático já que sofre o maior incremento no COP_{Real} em comparação com os outros fluidos, para além de utilizar a menor quantidade de recursos hídricos.

É importante referir que, em casos práticos, o sistema adiabático é apenas utilizado em situações onde a temperatura exterior de bolbo seco encontra-se acima das temperaturas determinadas na fase de projeto. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 3 – Análise à Aplicabilidade do Projeto</u>.

4.3.1. Análise Exergética

Tendo-se realizado uma análise energética, no subcapítulo (4.3) Aplicabilidade do Projeto, ao sistema aplicável com os fluidos frigorigéneos propostos é relevante desenvolver, de igual modo, uma análise exergética. A determinação das eficiências exergéticas revelam-se cada vez mais importantes, tendo em conta que permitem determinar quais os componentes que promovem uma maior destruição de energia convertível em trabalho útil. É importante referir que as temperaturas de fonte fria, quente e de estado morto aplicadas neste estudo têm um impacto relevante nos resultados. Tome-se o exemplo da fonte fria explícito no Gráfico 23. Pode-se inferir que, para a análise exergética, a temperatura da fonte fria nunca pode ser igual à temperatura de evaporação. Isto porque, se ambas as temperaturas forem iguais, não existem trocas de calor pelo que toda a energia convertível em trabalho útil poderia ser utilizada o que, na realidade, é impossível. Em contrapartida se a temperatura da fonte fria for igual a T_0 significa que o sistema se encontra no estado morto e como tal não existe

produção de energia convertível em trabalho útil. Notar que o mesmo princípio aplica-se à temperatura da fonte quente.

Gráfico 23 – Impacto da temperatura da fonte fria na eficiência exergética.

Deste modo assumiu-se uma temperatura da fonte fria igual 7,22 °C (igual à temperatura máxima que se apresentou na Tabela 9 relativamente à gama de temperaturas de conservação das laranjas). Para a temperatura da fonte quente adotou-se um valor compreendido entre a temperatura de estado morto, 31,8 °C, e a temperatura de condensação mais baixa, ou seja, com a utilização do sistema adiabático que apresenta um valor de 34 °C. Desta forma, propõe-se para a temperatura da fonte quente o valor de 33 °C.

No Gráfico 24 destaca-se o R-744 pela maior exergia destruída com valores a rondar os 115,4 kW sem o sistema adiabático e 71,6 kW com o sistema adiabático. Em contrapartida, o R-717 apresenta a menor exergia destruída com 40,5 kW e 30,3 kW com a instalação adiabática. Isto significa que cada fluido apresenta uma destruição de exergia diferente, devido às distintas propriedades termodinâmicas. Se se tivesse de selecionar algum fluido para o sistema aplicável, nesta etapa, seria o R-717 pela pouca energia convertível em trabalho útil que é destruída, em comparação com outros fluidos para o mesmo sistema.

Gráfico 24 – Exergia destruída no sistema aplicável, atendendo cada fluido.

Caso não se considere o funcionamento do sistema adiabático, evidencia-se, através do Gráfico 25, que os equipamentos que apresentam maior destruição de exergia são os compressores à exceção do sistema com R-717 com 43% da exergia destruída no condensador e do sistema com R-744 que apresenta 37% de exergia destruída apenas nas válvulas de expansão. É por este motivo que vários estudos têm sido realizados com ejetores e expansores, para sistemas a R-744, com o intuito de otimizar a eficiência dos sistemas. Estas diferenças na destruição de exergia em cada componente diferem de fluido para fluido apesar do sistema aplicável manter-se inalterado. Este facto deve-se pelas diferentes propriedades termodinâmicas intrínsecas a cada fluido.

Gráfico 25 – Exergia destruída em percentagem em cada equipamento.

Na Tabela 19 apresentam-se as eficiências exergéticas (sem o sistema adiabático) do sistema aplicável e dos componentes principais que os constituem, dependendo do fluido frigorigéneo. O sistema torna-se exergeticamente mais eficiente com a utilização do fluido R-717 com 31,1%, seguido do R-1234ze[E] com 28,8%.

Relativamente à eficiência exergética dos compressores, o sistema com o R-744 apresenta-se com o melhor valor, nomeadamente 81,1%. Conclui-se, de igual modo, que os evaporadores não sofrem uma variação notória, independentemente dos fluidos empregues, contudo destacar, uma vez mais, o R-744 com melhor eficiência neste componente com 77,4%, comparativamente com os restantes fluidos. Contudo o condensador é o equipamento que apresenta a maior variação de eficiência exergética, consoante o fluido utilizado. Assim pode-se afirmar que o condensador com pior eficiência foi o que utiliza o R-744 com 3,6%. Neste caso designa-se Gas Cooler porque não ocorre a condensação do fluido frigorigéneo neste permutador de calor. Em contrapartida o R-515B apresenta a melhor eficiência exergética no condensador com 9,1%.

Fluido	η_{II} Sistema η_{II}		$\eta_{II}^{}$ [%]			
	[%]	Compressor	Evaporador	Condensador		
R-290	27,8	73,3	75,7	8,4		
R-1270	28,1	74,1	75,1	8,1		
R-1234ze	28,8	74,4	75,5	8,8		
R-744	13,9	81,1	77,4	3,6		
R-515B	28,1	73,2	75,6	9,1		
R-717	31,1	77,7	75,4	5,9		

Tabela 19 – Eficiência exergética do sistema aplicável e de cada componente principal sem o sistema adiabático.

É importante referir que a eficiência exergética das válvulas de expansão é nula pelo facto deste equipamento ter a função de destruir energia da alta para a baixa pressão ou seja, apenas ocorre destruição de exergia nestes equipamentos. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 3 – Análise à Aplicabilidade do</u> <u>Projeto</u>.

4.4. Custos Inerentes ao Investimento e à Manutenção dos Componentes Principais

Os custos de investimento e de manutenção dependerão do tipo de tecnologia a escolher. Os custos totais dos sistemas de refrigeração contabilizam o somatório das despesas de capital (na literatura inglesa, *Capital Expenditure*, CAPEX) e das despesas operacionais (na literatura inglesa, *Operational Expenditures*, OPEX) [71]. O CAPEX considera custos inerentes à aquisição de bens e à melhoria no funcionamento das empresas. Encontra-se relacionado com o investimento de máquinas, equipamentos e instalações, sendo a soma total destes custos. Esta modalidade requer que um determinado capital da empresa seja despendido para a obtenção de certos bens. Consequentemente a aquisição destes bens passam a configurar o capital da empresa [72]. Para que o CAPEX seja viável é necessário que o lucro gerado pelos bens cubra todo o investimento dentro de um período que seja económica e financeiramente viável para a empresa. A Tabela 20 evidencia algumas vantagens e desvantagens inerentes ao uso da filosofia CAPEX.

Tabela 20 – Vantagens e desvantagens da metodologia CAF	'EX [72] .
CAPEX	

 Compreendido como investimento. Depreciação dos bens 	adquiridos.
Retorno a longo prazo. Custos inicias elevado	IS.

O OPEX carateriza-se pelos custos diários de um negócio. Ações como reparações ou manutenções de bens existentes nomeadamente equipamentos ou edifícios são consideradas OPEX. As despesas operacionais são necessárias e inevitáveis para a maioria dos negócios. Algumas empresas têm a capacidade de reduzir estas despesas com vista a alcançar uma vantagem competitiva e a aumentar a margem de lucro empresarial. Contudo notar que a redução das OPEX pode comprometer a integridade e a qualidade das operações pelo que é fulcral encontrar um equilíbrio que, na maioria dos casos, é difícil e complexo de alcançar, porém poderá culminar em vantagens significativas para a empresa [73].

A Tabela 21 permite observar algumas vantagens e desvantagens inerentes à metodologia OPEX.

	Tabela 21 – Vantagens e desvantagens inerentes ao OPEX [72] .					
	OPEX					
	Vantagens Desvantagens					
•	Dedução da tributação relativa ao ano	٠	Compreendido como despesas.			
	corrente.	•	Os custos podem ser elevados a longo			
٠	Maior flexibilidade de custos.		prazo.			
•	Adaptável a mudanças do mercado.	•	Maior inconstância.			

Para o presente trabalho consideraram-se apenas os custos de investimento e de manutenção, assumindo-se que não existem cenários de depreciação nem outros fatores que complementam o cálculo do CAPEX [71].

4.4.1. Custos de Investimento

Cada fluido apresenta temperaturas e pressões distintas entre si ao longo dos pontos no diagrama de Mollier ou seja, existem características únicas que alteram a seleção dos equipamentos. Tome-se, uma vez mais, o exemplo do R-717 que não pode entrar em contacto com equipamentos formados por cobre devido ao seu efeito corrosivo.

A Tabela 22 apresenta os valores de cada equipamento principal que configura o sistema, atendendo ao fluido selecionado. Para as unidades compressoras, recorreu-se a dados fornecidos pela Bitzer [68]. Os condensadores e evaporadores foram selecionados através do *Software* Güntner Product Calculator fornecido pela Güntner [74] à exceção do sistema com o fluido R-744 que utiliza permutadores de calor disponibilizados pela Centauro [75].

Notar que os preços disponibilizados pela Güntner não se encontram atualizados, contudo permitem ter uma visão realista dos preços praticados neste setor. Sempre que

possível selecionou-se três evaporadores para cada sistema. Apenas durante a utilização do fluido R-744 foram selecionados quatro evaporadores de forma a garantir a potência frigorífica de 250 kW referida no subcapítulo (2.1.3) <u>Refrigeração – Gama de temperaturas</u>.

Relativamente ao R-515B, sendo um fluido recente, existe pouca informação e equipamentos disponíveis. Contudo, segundo a Honeywell, este fluido pode ser utilizado em equipamentos desenvolvidos para o R-1234ze[E] [76]. Desta forma o R-515B utiliza o mesmo condensador e evaporadores que o R-1234ze[E].

As válvulas de expansão foram selecionadas com o auxílio do *Software* Coolselector2 e o preço das mesmas foi fornecido pela Electric Automation [77]. É importante referir que os dados da Tabela 22 não tiveram em consideração o sistema adiabático por falta de resposta por parte dos fornecedores e os equipamentos acessórios não foram contabilizados.

	Equipamentos						
Fluidos	Compressor Condensador		Evaporador	Válvulas de Expansão			
R-290	73.451	20.972	3 X 21.179	3 X 268,23			
R-1270	73.451	20.972	3 X 19.257	3 X 266,09			
R-1234ze[E]	46.821	22.656	3 X 24.034	3 X 592,59			
R-744	3 X 22.013	40.146	2 X 12.817 + 2 X 8.499	4 X 1.784,38			
R-515B	46.821	22.656	3 X 24.034	3 X 919,19			
R-717	24.650	36.644	3 X 19.918	3 X 598,93			

Tabela 22 - Custos inerentes aos equipamentos principais que formam cada circuito.

Na Tabela 23 encontra-se o preço específico de cada fluido, contudo este valor pouco indica sobre os custos totais de cada instalação. Isto porque cada sistema apresenta diferentes necessidades de carga de fluido frigorigéneo.

Apesar do dimensionamento das tubagens não ter sido realizado é possível determinar a quantidade necessária de fluido nos principais componentes. Neste caso analisaram-se as especificações técnicas dos condensadores e evaporadores por forma a determinar capacidade volumétrica destes equipamentos. Referir que os preços dos fluidos foram disponibilizados pela RACE S.A., POLO ZERO e MATINALCA.

De seguida contabilizou-se a massa específica de cada fluido para o sistema aplicável. Esta propriedade altera-se consoante as variações de pressão, temperatura e entalpia. Deste modo infere-se que a massa específica à saída do condensador, com o sistema adiabático a funcionar, apresenta o maior valor para todos os fluidos (34 °C a líquido saturado). Para o Caso do R-744 utilizou-se o ponto a 34 °C a 84 bar (o fluido encontra-se na fase transcrítica).

Fluidos	Preço	0.[kg/m3]	Volume	Quantidade	Custos
Fiuluos	[€/kg]	$p_f[x_0, x_0]$	Equipamentos [L]	de Fluido [kg]	[€]
R-290	7,50	477,8	586,4	280,2	2101,36
R-1270	12,20	490,1	512,6	251,2	3064,95
R-1234ze[E]	63,90	1133,0	589,7	668,1	42693,51
R-744	2,36	633,8	346,9	219,9	518,91
R-515B	27,00	1149,0	589,7	677,6	18294,26
R-717	4,10	589,2	398,2	234,6	961,94

 Tabela 23 – Determinação da quantidade de fluido utilizado nos evaporadores e condensadores para cada fluido.

Após determinar os custos dos principais componentes e de cada fluido utilizado no sistema aplicável é possível determinar qual a tecnologia mais acessível a nível monetário. O Gráfico 26 apresenta os custos de investimento de cada tecnologia. Observa-se que o sistema aplicável com o fluido R-717 apresenta os custos de investimento mais acessíveis, seguido do R-1270.

Gráfico 26 – Custos de investimento do sistema para cada fluido.

Em contraste, o sistema com R-1234ze[E] apresenta-se com maiores custos de investimento seguido pelo sistema com R-515B. Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Anexo 1 – Análise aos Custos de Investimento</u>.

4.4.2. Custos de Manutenção

Os custos de manutenção apresentam-se como uma variável que contabiliza vários fatores. É importante referir que o sistema aplicável apresentado não se baseia em nenhuma instalação em funcionamento pelo que se torna complexa a determinação de custos inerentes à manutenção, que passa bastante pelo fluido frigorigéneo. Contudo a RACE S.A. propôs uma metodologia de cálculo para contabilizar estes custos:

- 1500 a 2000 €/ano para manutenções preventivas (assume-se uma média entre estes valores de 1750 €/ano);
- 7 %/ano do custo de investimento, durante um período de 15 anos para manutenções corretivas.

Com estes valores pode-se construir uma aproximação dos custos inerentes à manutenção do sistema aplicável, dependendo do fluido. Na Tabela 24 apresentam-se os custos da manutenção preventiva e corretiva consoante o fluido empregue. Os custos da manutenção preventiva mantem-se inalterados independentemente do fluido frigorigéneo. Os custos da manutenção corretiva variam consoante os custos de investimento. Deste modo infere-se que, segundo esta abordagem, o sistema aplicável com R-717 apresenta os menores custos de manutenção seguido do sistema a R-1270.

Fluido	Manutenção Corretiva	Manutenção Preventiva	Custos Totais	
Fiuldo	[€/ano]	[€/ano]	[€/ano]	
R-290	11261	1750	13011	
R-1270	10924	1750	12674	
R-1234ze[E]	13024	1750	14774	
R-744	10953	1750	12703	
R-515B	11384	1750	13134	
R-717	8666	1750	10416	

Outro fator a considerar nos custos de manutenção serão os custos de operação que, em grande parte, baseiam-se nos consumos energéticos do sistema. Este consumo advém da utilização dos equipamentos compressores. O Gráfico 27 apresenta a potência absorvida pelos compressores. Estes valores são inversamente proporcionais relativamente aos valores determinados para o COP_{Real} . Infere-se também que o sistema aplicável a R-717 apresenta-se como o mais económico relativamente a consumos energéticos (caso se considere apenas o consumo inerente aos compressores) já que tem a potência de compressão mais reduzida.

Gráfico 27 – Potência absorvida pelos compressores.

5. Projeto de Conservação de Frutas

5.1. Dados Contabilizados para Dimensionamento do Projeto

5.1.1. Segurança e Limite de Carga do Fluido Frigorigéneo

Ao longo do presente trabalho foram propostos parâmetros fundamentados para a realização do subcapítulo (5) Projeto de Conservação de Frutas. Destes destacam-se o tipo de fruta a conservar, a localização do entreposto, as temperaturas de condensação, de evaporação, de conservação e de projeto exterior (temperatura ambiente).

Através do capítulo (4) Caso de Estudo infere-se que o sistema com R-717 apresenta melhor eficiência energética com um COP_{Real} de 3,38 (sem o processo adiabático), menor exergia destruída com um valor de 47 kW, menores consumos energéticos (potências de compressão inferiores em comparação com o mesmo sistema a utilizar outros fluidos) e menores custos de investimento, apresentando um valor monetário de 123 807 euros pelo que se propõe dimensionar uma instalação com base neste sistema. Sendo o R-717 um fluido B2L, conforme evidenciado nos subcapítulos (2.2.2) Toxicidade e Inflamabilidade dos Fluidos Frigorigéneos e (2.2.3.3) Fluidos Naturais, deve-se considerar as restrições relativamente à quantidade de fluido utilizado na instalação.

Segundo a norma EN 378, existem limites de carga de fluido frigorigéneo consoante o espaço e a ocupação. Propõe-se que as câmaras de conservação sejam acedidas apenas e só por funcionários autorizados [16]. Na Tabela 25 encontram-se as restrições de carga do fluido consoante a localização do sistema e da ocupação do espaço.

Grupo de Segurança – B2L						
Localização do Sistema de Refrigeração Ocupação Apenas com Acesso Autorizado						
Compressor e depósito de líquido	Carga máxima de 50 kg ou sem restrição se a					
encontram-se na casa das máquinas ou	densidade de ocupação seja inferior a 1 pessoa					
em espaço aberto.	por 10 m².					

Tabela 25 – Restrições à guantidade de fluido utilizado no sistema, adaptado de [16].

5.1.2. Planta do Entreposto Frigorífico

Para a conservação de laranjas deve-se analisar a instalação proposta. Através da Figura 13 é possível observar a constituição do entreposto frigorífico assim como as suas dimensões em milímetros. É composto por três câmaras de conservação, por um cais fechado de admissão de frutas e pela casa de máquinas onde se encontra o equipamento compressor e o depósito de líquido. O cais de admissão e a casa de máquinas são espaços que não se encontram climatizados pelo que a sua temperatura de bolbo seco é igual à temperatura de projeto exterior, ou seja 31,8 °C. Todos os compartimentos representados na planta foram considerados ter um pé direito de 5 m.

Figura 13 – Planta do entreposto para a conservação de laranjas.

Considerando a área do entreposto, propõe-se uma ocupação de nove trabalhadores qualificados para o manuseamento do produto frutícola. Deste modo, infere-se que não existem restrições relativamente à carga de fluido frigorigéneo na instalação, tal como referido no subcapítulo (<u>5.1.2</u>) <u>Segurança e Limite de Carga do Fluido Frigorigéneo</u>.

Na Figura 14 encontra-se a disposição dos equipamentos que compõem o entreposto. Notar que a instalação foi dimensionada com o auxílio do *Software* SOLIDWORKS disponibilizado pela Dassault Systèmes [78]. As paredes não se encontram representadas para facilitar a visualização destes equipamentos que se encontram com diferentes cores para agilizar a identificação dos mesmos. A azul-escuro tem-se representado os evaporadores enquanto o condensador apresenta-se em roxo. A verde encontra-se o compressor, a castanho o separador de óleo e a cinzento-escuro tem-se o depósito de líquido.

Relativamente às tubagens, a vermelho tem-se a linha de descarga; a azul-claro as linhas de aspiração; a azul-escuro as linhas de líquido e a laranja acastanhado a linha entre o condensador e o depósito.

Figura 14 – Disposição dos equipamentos e linhas de tubagem

5.1.3. Palotes para o Armazenamento de Laranjas

Conforme referenciado no subcapítulo (<u>2.3.1</u>) <u>Técnicas e Boas Práticas de</u> <u>Conservação</u>, o produto frutícola deve ser devidamente armazenado com o objetivo de garantir a qualidade e integridade do fruto. Desta forma propõe-se utilizar palotes de plástico que asseguram um fácil armazenamento e transporte. Na Figura 15 encontra-se ilustrado um palote semelhante ao que se pretende utilizar para o presente trabalho.

Figura 15 - Palotes 1200 X 1000 X 760 [79].

Para palotes com dimensões 1200 X 1000 X 760 mm (valores exteriores), o volume interno é de 6,233922 m³. De forma a determinar a quantidade de laranjas que cada palote consegue armazenar, considera-se que cada palote encontra-se 80% carregado. De seguida contabilizou-se a massa específica do produto frutícola. Esta variável é incerta, ou seja, cada laranja apresenta um peso e dimensão único. Estudos realizados inferiram que, dependendo da variedade e de outras características do fruto, a massa específica varia entre 4,40 X 10⁻⁷ a 1,03 X 10⁻⁶ kg/mm³ [80]. Assumiu-se o valor de 4,40 X 10⁻⁷ kg/mm³ visto que quanto menor for a massa específica do fruto maior será o volume ocupado nas câmaras de conservação. Para o cálculo da massa de laranjas por palote, M_{oc} , recorreu-se à Equação 25. Infere-se que cada palote de laranjas apresenta uma massa de 219,43 kg.

$$M_{oc} = v_p \times 0.8 \times \rho_{ML} \tag{25}$$

Onde,

 M_{oc} – Massa de laranjas por palote [kg]; v_p – Volume de cada palote [mm³]; ρ_{ML} – Massa específica média das laranjas [kg/mm³].

5.2. Dimensionamento

5.2.1. Balanço Térmico

Durante o dimensionamento de um entreposto frigorífico deve-se realizar um balanço térmico à instalação de modo a determinar os ganhos caloríficos que se pretendem remover. Pelo subcapítulo (2.1.3) <u>Refrigeração – Gama de Temperaturas</u> tem-se um conhecimento de que a potência frigorífica disponível é de 250 kW pelo que a quantidade de produto a conservar dependerá do balanço realizado nas cargas térmicas presentes no entreposto. Desta forma deve-se considerar os seguintes aspetos [81]:

- Carga térmica pela envolvente (paredes, teto e solo);
- Carga térmica interna (Iluminação, equipamento e ocupação);
- Carga térmica das infiltrações de ar;
- Carga térmica do produto armazenado;

Para além disso, através da Figura 13 presente no subcapítulo (5.1.2) <u>Planta do</u> <u>Entreposto Frigorífico</u> observa-se que o entreposto para a conservação do produto frutícola é constituído por três câmaras de conservação. Cada câmara serve para armazenar o mesmo produto, contudo com diferentes estados de maturação. Conforme evidenciado no subcapítulo (2.3.1) <u>Técnicas e Boas Práticas de Conservação</u>, dependendo do período da colheita e do estado de maturação, o mesmo fruto pode apresentar diferentes níveis de produção de etileno. Desta forma cada câmara de conservação dispõe de uma potência frigorífica de 83,33 kW.

5.2.1.1. Carga Térmica Pela Envolvente

Na maioria dos casos, deve-se ajustar a temperatura de projeto de forma a compensar o efeito solar. Na Tabela 26 encontram-se os valores tipicamente utilizados no incremento da temperatura de projeto exterior relativamente à absorção de calor pelas paredes e teto que se encontram expostos à radiação solar.

Tabela 26 – Efeito Solar e consequente incremento de temperaturas, adaptado de [15].						
Superfície	Parede Este [K]	Parede Sul [k]	Parede Oeste [K]	Teto [K]		
Superfícies Claras	3	2	3	5		

Relativamente à seleção dos painéis isotérmicos, deve-se considerar a espessura que apresentam segundo a temperatura de conservação que exibe o valor mais baixo de 4,44 °C, conforme evidenciado no subcapítulo (2.3.2.1) <u>Necessidades de Frio de Cada Produto Frutícola</u>. A Tabela 27 permite selecionar a espessura do painel segundo a temperatura de conservação [82]. Desta forma propõe-se que os painéis isotérmicos a selecionar tenham uma espessura de 80 mm.

Tabela 27 – Espessuras dos painéis isotérmicos segundo a temperatura de conservação, adaptado de [82].

	Temperatura de conservação [°C]		
	0	5	
Espessura dos painéis [mm]	80	80	

Através de dados disponibilizados pela empresa metalomecânica O FELIZ, infere-se que os painéis com uma espessura de 80 mm apresentam um coeficiente global de transmissão de calor de 0,29 W/m².K [83]. Os painéis propostos têm uma superfície clara o que minimiza o incremento de temperatura provocado pelo efeito solar. Com os presentes dados é possível determinar os ganhos de calor inerentes à envolvente através da Equação 26. O calor permutado com a envolvente caracteriza-se pelo balanço térmico de todas as superfícies que constituem as câmaras do entreposto.

$$\dot{Q}_{Env} = \sum \dot{Q}_S = \sum (A_S \times U \times \Delta T_{Env})$$
⁽²⁶⁾

Onde,

 \dot{Q}_{Env} – Calor da envolvente [kW];

 \dot{Q}_{S} – Calor da superfície [kW];

 A_S – Área da superfície [m²];

U – Coeficiente global de transmissão de calor [W/m². °C];

 ΔT_{Env} – Diferença de temperaturas entre a envolvente e a câmara de conservação [°C].

Desta forma determinou-se que os ganhos caloríficos para as câmaras 1 e 3 foram de 10,35 kW e para a câmara 2 foi de 8,98 kW. A câmara 2 apresenta uma menor quantidade de calor absorvido porque encontra-se entre as câmaras 1 e 3 logo as paredes posicionadas a este e oeste não apresentam ganhos de calor. Para além disso a parede a sul da câmara 2 não contabiliza o efeito solar devido ao posicionamento da casa de máquinas. Não sendo um espaço climatizado, infere-se que a casa de máquinas encontra-se à temperatura de projeto exterior de 31,8 °C. Relativamente ao chão, contabilizou-se a mesma temperatura (31,8 °C).

Para efeitos exemplificativos, tem-se a Tabela 28 que apresenta os valores considerados no balanço térmico da câmara 1. Considere-se T_{EA} como a temperatura que se encontra no exterior da câmara de conservação. Quando necessário este valor tem em consideração o efeito solar (Tabela 26).

Carga	Comprimento	Largura	Altura	Área	T _E	T _{EA}	U	Delta	
Térmica	[m]	[m]	[m]	[m²]	[°C]	[°C]	[W/m².k]	T [°C]	Q [W]
Norte	Х	15	5	75	4,44	31,80	0,29	27,36	595,08
Sul	Х	15	5	75	4,44	33,80	0,29	29,36	638,58
Este	Х	30	5	150	4,44	34,80	0,29	30,36	1320,66
Oeste	Х	30	5	150	4,44	4,44	0,29	0,00	0,00
Teto	30	15	Х	450	4,44	36,80	0,29	32,36	4222,98
Chão	30	15	Х	450	4,44	31,80	0,29	27,36	3570,48

Tabela 28 – Balanco térmico da câmara 1

5.2.1.2. Carga Térmica Interna

A carga térmica interna presente nas câmaras de conservação é composta por vários fatores como a iluminação, equipamentos e ocupação.

A carga térmica inerente à iluminação pode ser considerada segundo a iluminância recomendada pela norma EN 12464-1 – Iluminação dos Espaços de Trabalho. Para câmaras de armazenamento frigoríficas é indicado uma iluminância de 100 lux. De forma a determinar o número de lâmpadas que cada câmara terá propõe-se determinar o fluxo luminoso total que pode ser determinado através da Equação 27:

$$\phi_t = E \times S \times \frac{d}{\mu_{ut}} \tag{27}$$

Onde,

 ϕ_t – Fluxo luminoso total [lm];

E – Iluminância [lux];

S – Área de cada câmara de conservação [m²];

d – Coeficiente de depreciação [adimensional];

 μ_{ut} – Coeficiente de utilização [adimensional].

Os valores relativos ao coeficiente de depreciação, d, consoante o local de trabalho, encontram-se na Tabela 29. Notar que as câmaras de conservação são consideradas locais limpos pelo que o valor utilizado para este coeficiente foi de 1,15.

Tabela 29 – Coeficiente de depreciação consoante o ambiente de trabalho, adaptado de [84].			
Ambiente	Coeficiente de Depreciação		
Locais limpos	1,15		

O coeficiente de utilização é disponibilizado pela Philips através de uma tabela com vários fatores de utilização consoante um determinado índice local presente na Equação 28 [85]. Notar que a altura útil, h_u , foi determinada pela subtração entre a altura das câmaras (5 m) e a altura média de um trabalhador (propõe-se 1,7 m).

$$K = \frac{C \times L}{((C+L) \times h_u)}$$
(28)

Onde,

K -Índice local [adimensional]

C – Comprimento [m];

L – Largura [m];

Na Tabela 30 apresenta-se o fluxo total e o fluxo da lâmpada selecionada. O quociente entre estes dois valores representa o número de lâmpadas que, no mínimo, deve ser instalado em cada câmara. Sabendo que cada lâmpada apresenta uma potência de 0,02 kW e que cada câmara tem 10 lâmpadas, infere-se que o calor ganho pela iluminação é de 0,20 kW.

Tabela 30 – Valores inerentes à determinação da potência consumida pelas lâmpadas em cada câmara						
$oldsymbol{\phi}_t$ [lm]	Fluxo da lâmpada [lm]	Nº Lâmpadas	Potência [kW]	Potência de Consumo [kW]		
17077,5	2100	10	0,02	0,2		

Relativamente às perdas térmicas inerentes aos ventiladores tem-se a Tabela 31 que disponibiliza um coeficiente de ganhos térmicos consoante a potência absorvida e eficiência do motor.

Tabela 31 – Ganhos térmicos provocados pelos motores elétricos segundo a sua potência nominal [86].						
Potência do Motor [kW]	Eficiência [%]	Ganhos Térmicos [kW/kW]				
0-2	75	0,25				
3-15	85	0,15				
15-150	90	0,10				
150	92	0,08				

No subcapítulo (<u>4.4.1</u>) <u>Custos de Investimento</u> selecionaram-se três evaporadores, um para cada câmara refrigerada. Pelos dados fornecidos pela Güntner, sabe-se que cada evaporador tem três ventiladores com uma potência absorvida de 1,40 kW. Assim, o ganho térmico associado a estes equipamentos é de 1,05 kW por câmara.

Propõe-se que existam três empilhadores para facilitar a movimentação do produto frutícola, ou seja cada empilhador estará em funcionamento em cada câmara. Recorreu-se à empresa STILL para a seleção destes equipamentos de forma a movimentar os palotes do produto a conservar. Cada empilhador é constituído por um motor elétrico com 7,60 kW de potência [87] pelo que a determinação dos ganhos térmicos deste equipamento foi realizada da mesma forma em comparação com os ventiladores que constituem os evaporadores, tendo-se chegado a um valor igual a 1,14 kW.

Para as cargas térmicas provocadas pela ocupação, o calor equivalente por pessoa pode ser estabelecido através da Equação 29 [15]:

$$q_p = (272 - 6 \times T_E) \times 10^{-3} \tag{29}$$
Onde,

 q_p - Calor equivalente por pessoa [kW];

 T_E – Temperatura de conservação mínima bolbo seco [°C];

Considerou-se que cada câmara do entreposto tem três trabalhadores qualificados para o manuseamento dos equipamentos presentes no espaço e com conhecimentos necessários para garantir a qualidade do produto frutícola. Desta forma pode-se inferir que a carga térmica inerente à ocupação de cada câmara é igual a 0,74 kW.

Referir que na determinação das cargas térmicas internas, a carga latente não foi considerada pelo facto de apresentar valores reduzidos que têm pouco impacto no dimensionamento das câmaras de conservação.

5.2.1.3. Carga Térmica das Infiltrações de Ar

As infiltrações de ar ocorrem normalmente pelas diferenças de pressão entre as câmaras de conservação e o espaço de admissão de fruta. Isto deve-se pela diferença de massa específica do ar refrigerado e do ar infiltrado. Para este caso propõe-se contabilizar os períodos em que as portas se encontram abertas e as situações de abertura e fecho de portas. A Equação 30 permite determinar a carga térmica ganha através das infiltrações de ar.

$$\dot{Q}_{inf} = V_{ar} \times A_P \times \left(h_{inf} - h_{ref}\right) \times \rho_{ref} \times D_t \tag{30}$$

Onde,

 \dot{Q}_{inf} – Carga térmica inerente às infiltrações de ar [kW];

*V*_{ar} - Velocidade do ar [m/s];

 A_P – Área da porta [m];

 h_{inf} – Entalpia específica do ar infiltrado [kJ/kg];

 h_{ref} – Entalpia específica do ar refrigerado [kJ/kg];

 ρ_{ref} – Massa específica do ar refrigerado [kg/m³];

 D_t – Porção decimal de tempo em que a porta se encontra aberta [adimensional].

Para a velocidade do ar, considerou-se a média dos valores típicos apresentados pela ASHRAE, sendo estes 0,3 m/s e 1,5 m/s pelo que se obteve um valor de 0,9 m/s [15]. A porção decimal de tempo em que a porta se encontra aberta, D_t , pode ser calculada através da Equação 31.

$$D_t = \frac{(N_p \times \theta_p + 60 \times \theta_o)}{3600 \times \theta_d}$$
(31)

Onde,

- D_t Porção decimal de tempo em que a porta se encontra aberta [adimensional];
- N_p Número de passagens [adimensional];
- θ_p Período de abertura/fecho de porta [s];
- θ_o Período em que a porta se encontra aberta [min];

 θ_d – Período diário [h].

Propõe-se que o número de passagens seja igual a 1 já que cada câmara apenas tem uma porta de assegura a estanquicidade do espaço. Relativamente ao período de abertura/fecho de porta, θ_p , esta variável representa o tempo que um operador leva a abrir e a fechar a porta. Propõe-se um valor de 300 segundos de forma a considerar qualquer imprevisto que possa ocorrer durante esta ação. Para o período em que a porta se encontra aberta, θ_o , utilizou-se 10 minutos para situações em que seja necessário deslocar o produto frutícola. Desta forma a carga térmica inerente às infiltrações de ar apresenta-se com um valor de 2,56 kW.

Notar que as variáveis consideradas nas Equações 30 e 31 mantêm-se inalteradas para as três câmaras já que os três espaços têm portas com as mesmas dimensões e as operações realizadas são idênticas em todos os espaços. Para além disso as condições de infiltração e de refrigeração são iguais para os três casos.

5.2.1.4. Carga térmica do Produto Armazenado

A carga térmica do produto pode ser calculada pela diferença entre a potência frigorífica de cada câmara e o somatório das restantes cargas térmicas. Desta forma deve-se contabilizar as cargas térmicas já calculadas com o objetivo de determinar a carga térmica do produto (Equação 32).

$$\dot{Q}_{Pd} = \frac{\dot{Q}_{EC}}{CS \times \left(\frac{24}{TFE}\right)} - (\dot{Q}_{Env} + \dot{Q}_{Int} + \dot{Q}_{Int})$$
(32)

Onde,

 \dot{Q}_{Pd} – Carga térmica do produto [kW];

 \dot{Q}_{EC} – Potência frigorífica em cada câmara [kW];

CS – Coeficiente de segurança [adimensional];

TFE – Tempo de funcionamento dos evaporadores [horas];

 \dot{Q}_{Env} – Carga térmica da envolvente [kW];

 \dot{Q}_{Int} – Carga térmica interna [kW];

 \dot{Q}_{Inf} – Carga térmica inerente às infiltrações de ar [kW].

Segundo informações disponibilizadas pelos catálogos da Centauro, para evaporadores com a mesma gama de potência, ou seja, 83,33 kW, o tempo de arrefecimento do espaço é de 18 horas [88]. Desta forma considerou-se o presente valor no tempo de funcionamento dos evaporadores, *TFE*. Para o fator de segurança, *CS*, recomenda-se um valor de 1,1 ou seja 10 % de sobredimensionamento de forma a considerar possíveis discrepâncias entre o dimensionamento e o funcionamento real da instalação [15].

Na Tabela 32 encontram-se as cargas térmicas da envolvente, do interior e das infiltrações de cada câmara. Como a potência frigorífica é igual nos três espaços têm-se valores diferentes relativamente à carga térmica do produto.

	\dot{Q}_{EC} [kW]	\dot{Q}_{Env} [kW]	\dot{Q}_{Int} [kW]	\dot{Q}_{Inf} [kW]	$\dot{oldsymbol{Q}}_{Pd}$ [kW]
Câmara 1	83,33	10,35	2,39	2,56	41,50
Câmara 2	83,33	8,98	2,39	2,56	42,89
Câmara 3	83,33	10,35	2,39	2,56	41,50

Tabela 32 – Cargas térmicas determinadas para cada câmara de conservação.

Após a determinação da carga térmica do produto e sabendo a potência frigorífica disponível para cada câmara de conservação, foi possível calcular a quantidade de produto a conservar no entreposto de modo a garantir a qualidade das laranjas. Desta forma atendeu-se ao calor específico acima do ponto de congelamento do fruto, a temperatura de armazenamento (considera-se a mais desfavorável de 4,44 °C), a temperatura de entrada do fruto (considera-se a mesma temperatura determinada no subcapítulo (<u>4.1</u>) <u>Condições de Projeto</u>, nomeadamente 31,8 °C) e, por último, o calor de respiração do produto. Alguns destes dados encontram-se apresentados na Tabela 33.

Tabela 33 – Ponto de congelamento inicial, calor específico da laranja e massa de conservação [15].

Fruta	Calor Específico acima do congelamento	Calor de respiração a 4,44 °C	
	[kJ/(kg.K)]	[mW/kg]	
Laranja	3,81	17,8	

Para o caso de produtos frutícolas refrigerados é importante referir que a carga térmica do produto, \dot{Q}_{Pd} , é composta por duas cargas, nomeadamente a carga térmica de arrefecimento do produto, \dot{Q}_{Af} , e a carga térmica de respiração, \dot{Q}_{Re} conforme evidenciado na Equação 33 [89].

$$\dot{Q}_{Pd} = \dot{Q}_{Af} + \dot{Q}_{Re} \tag{33}$$

Onde,

 \dot{Q}_{Af} – Carga térmica de arrefecimento do produto [kW]; \dot{Q}_{Re} – Carga térmica de respiração [kW].

Para o presente estudo, considerou-se que as câmaras de conservação se encontram vazias no momento da introdução das laranjas. Para além disso existe uma rotatividade diária do produto. Desta forma o cálculo da quantidade do produto a conservar pode ser realizado com recurso à Equação 34.

$$M_{Pr} = \frac{\dot{Q}_{Pd} \times 24 \times 3600}{(cp_a \times (T_i - T_E) + E_{Re})}$$
(34)

Onde,

 M_{Pr} – Caudal mássico de produto diário [kg/dia];

 \dot{Q}_{Pd} – Carga térmica do produto [kW];

*cp*_a – Calor específico acima do congelamento [kJ/(kg.K)];

 T_i – Temperatura de entrada [°C];

 T_E – Temperatura de conservação mínima [°C];

 E_{Re} - Calor de respiração [mW/kg].

Na Tabela 34 tem-se o caudal mássico diário de laranjas em cada câmara consoante a carga térmica do produto que se determinou. Nas câmaras 1 e 3, estes valores são coincidentes expecto na câmara 2 devido à menor carga térmica ganha pela envolvente.

Tabela 34 – Carga térmica do produto e caudal mássico diário de produto por câmara de conservação.

	\dot{Q}_{Pd} [kW]	M_{Pr} [kg/dia]
Câmara 1	41,50	34410,20
Câmara 2	42,89	35545,71
Câmara 3	41,50	34410,20

Considerando a informação obtida no subcapítulo (<u>5.1.3</u>) <u>Palotes para o</u> <u>Armazenamento de Laranjas</u>, sabe-se que, em média, cada palote contém 219,4 kg de laranjas. Desta forma sabe-se que as câmaras 1 e 3 armazenam 157 palotes enquanto a câmara 2 armazena uma quantidade superior, nomeadamente 162 palotes. Na Figura 16 encontra-se esquematizada a disposição dos palotes ao longo das câmaras de conservação. Teve-se o cuidado de deixar um intervalo entre os palotes de forma a garantir uma boa ventilação. Os paralelepípedos a laranja que preenchem as câmaras representam os palotes com o produto frutícola.

Figura 16 – Disposição dos palotes nas três câmaras de conservação.

5.2.2. Tubagens

O sistema a R-717 distingue-se de outras instalações por vários aspetos, contudo destaca-se a tubagem utilizada nesta tecnologia. Em comparação com os outros fluidos analisados no capítulo (<u>4</u>) <u>Caso de Estudo</u>, o fluido R-717 comporta-se como um agente corrosivo nos equipamentos construídos em cobre.

Desta forma, a tubagem a dimensionar deve ser em aço e todos os equipamentos como filtros, válvulas, cuvas e tês não podem conter na sua constituição cobre. As tubagens devem estar a 2,3 m acima do pavimento e devem contabilizar situações de contração e expansão [15].

Nas linhas de aspiração é recomendado que a perda de carga (correspondente a uma redução de temperatura equivalente) não seja superior a 1,5 K para evitar um decréscimo acentuado na eficiência do sistema. Para as linhas de descarga a temperatura equivalente de perda de carga não deve ultrapassar 1 K. Quanto maior for a perda de carga no sistema, maior será a diminuição da eficiência energética [90].

Na Tabela 35 encontram-se os diâmetros das tubagens inerentes às linhas de aspiração e de descarga consoante a potência frigorífica e a temperatura saturada de aspiração para uma perda de carga por metro de 0,02 K. Realizaram-se interpolações com o objetivo de determinar a potência frigorífica, dependendo do diâmetro da tubagem, para a temperatura de aspiração saturada de projeto, nomeadamente 0 °C [15].

Dimensão Nominal	Linhas de AspiraçãoLinhas de Descarga[Perda de Carga=0,02 K/m][Perda de Carga=0,02 K/m]				
[mm]	${\dot Q}_e$ Para uma Temperatura de	e Aspiração Saturada de 0 °C			
50	187,2	372,7			
65	298,8	593,9			

 Tabela 35 – Diâmetros de tubagem consoante as linhas do circuito e da temperatura saturada de aspiração,

 adaptado de [15].

Estes valores são baseados para temperaturas de condensação de 30 °C. Contudo os resultados obtidos ao longo do trabalho foram determinados com uma temperatura de condensação de 45 °C (isto se o sistema adiabático não estiver em funcionamento). Desta forma deve-se ajustar os valores da Tabela 35 consoante a temperatura de condensação pretendida. Na Tabela 36 encontram-se os fatores de correção para as linhas de aspiração e de descarga.

Tabela 36 – Fatores de correção para as linhas de aspiração e de descarga consoante a temperatura decondensação, adaptado de [15].

Temperatura de Condensação [°C]	Linha de Aspiração	Linha de Descarga
30	1	1
45	0,94	1,34

Além da perda de carga determinada com recurso à Tabela 35, deve-se contabilizar a perda de carga associada à altura das tubagens ascendentes na instalação através da Equação 35:

$$\Delta P_L = \rho_l \times g \times \Delta H_l \tag{35}$$

Onde,

 ΔP_L – Perda de carga inerente à altura das tubagens [Pa];

 $\rho_{\rm f}$ – Massa específica do fluido nas tubagens [kg/m³];

g – Aceleração gravítica [m/s²];

 ΔH_l – Altura da tubagem de líquido [m].

Evidencia-se que a tubagem de descarga é ascendente, ou seja, o fluido frigorigéneo tem de superar uma altura de 5,65 m. A perda de carga provocada pela altura deste troço representa 3,24 kPa que, em temperatura equivalente, traduz-se em 0,1 K.

Desta forma, apresenta-se a Tabela 37 com os comprimentos, perdas de carga e dimensões nominais para as linhas de aspiração e de descarga. Notar que a escolha dos diâmetros contabilizou os fatores e correção disponibilizados na Tabela 36 para uma temperatura de condensação de 45 °C.

Tabela 37 – Comprimentos, perdas de carga e dimensões nominais das linhas de aspiração e de descarga.						
Troço	Comprimento [m]	Perda de Carga [K]	DN [mm]			
Aspiração Evaporador Câmara 1	7,60	0,152	50			
Aspiração Evaporador Câmara 2	2,90	0,058	50			
Aspiração Evaporador Câmara 3	14,90	0,298	50			
Aspiração	18,33	0,367	65			
Descarga	6,60	0,232	50			

Para as tubagens de líquido tomou-se uma abordagem distinta com o objetivo de determinar o diâmetro adequado. Segundo a ASHRAE, é boa prática limitar o escoamento do fluido frigorigéneo para um valor de 0,5 m/s [15]. Para além disso a perda de carga admissível para estas linhas apresenta valores entre 0,5 K e 1 K [15]. Desta forma o diâmetro da tubagem pode ser determinado através da Equação 36.

$$D_{Tub} = \sqrt{\frac{4 \times \dot{m}}{\rho_f \times \pi \times V_e}}$$
(36)

Onde,

D_{Tub} - Diâmetro interno do tubo [m];

 \dot{m} – Caudal mássico de fluido frigorigéneo [kg/s];

 ρ_{f} – Massa específica do fluido nas tubagens [kg/m³];

 V_e – Velocidade de escoamento do fluido [m/s].

A perda de carga ao longo de qualquer tubagem pode ser determinada através da Equação 37.

$$\Delta P_T = \rho_f \times f_a \times \left(\frac{L_T}{D_{TC}}\right) \times \left(\frac{V_e^2}{2}\right)$$
(37)

Onde,

 ΔP_T – Perda de carga nas tubagens [Pa];

 ρ_{f} – Massa específica do fluido nas tubagens [kg/m³];

 f_a – Fator de atrito [adimensional];

L_T – Comprimento das tubagens [m];

 D_{TC} – Diâmetro interno do tubo comercial [m];

 V_e – Velocidade de escoamento do fluido [m/s].

O fator de atrito relaciona-se com o número de Reynolds, determinado com recurso à Equação 38, e com a rugosidade relativa, *e*, da tubagem. O fator de atrito pode ser determinado através do Diagrama de Moody representado na Figura 17.

$$Re = \frac{\rho_f \times V_e \times D_{TC}}{\mu}$$
(38)

Onde,

Re – Número de Reynolds [adimensional];

 D_{TC} – Diâmetro interno do tubo comercial [m];

μ – Viscosidade dinâmica [Pa.s].

Relembrar que deve-se contabilizar a perda de carga associada à altura das tubagens ascendentes de líquido com recurso à Equação 35. Desta forma é possível selecionar os diâmetros das tubagens relativamente às linhas de líquido.

Na Tabela 38 encontram-se os comprimentos, diâmetros internos calculados e comerciais, perdas de carga em temperatura equivalente, ΔT_p , e dimensões nominais, DN, selecionados para as linhas de líquido.

Troço	<i>L_T</i> [m]	<i>D_{Tub}</i> [m]	<i>D_{TC}</i> [m]	ΔT_p [K]	DN [mm]
Líquido Evaporador Câmara 1	7,53	0,01836	0,02279	0,066	20
Líquido Evaporador Câmara 2	2,75	0,01836	0,02279	0,054	20
Líquido Evaporador Câmara 3	14,85	0,01836	0,02279	0,083	20
Condensador/Depósito	6,22	0,03224	0,03735	0,006	32
Linha de Líquido	15,47	0,03224	0,03735	0,386	32

Tabela 38 – Comprimentos, diâmetros e perdas de carga nas tubagens de líquido.

O Instituto Internacional de Refrigeração a Amoníaco (na literatura inglesa, *International Institute of Ammonia Refrigeration*, IIAR) recomenda que, para os diâmetros selecionados, a tubagem a utilizar deve ser Schedule 80. Esta denominação relaciona-se com a espessura do tubo de forma a garantir a integridade do mesmo aquando submetido às pressões de funcionamento [15].Para além das perdas nas tubagens, existem perdas de carga noutros equipamentos que constituem o sistema. Desta forma, deve-se contabilizar componentes como válvulas, curvas, tês e filtros. Na Tabela 39 encontram-se as perdas de carga nos vários componentes e tubagens.

Os valores inerentes às curvas e tês representam o produto entre os coeficientes de perda, K_{ν} , [15] e a perda de carga por metro de 0,02 K/m (o mesmo valor adotado nas linhas de aspiração e de descarga). As perdas nos filtros e nas válvulas foram determinadas pelo *Software* Coolselector2 [62] contudo, a variação de pressão nestes equipamentos é reduzida, apresentando, em certos casos, variações de temperatura abaixo das milésimas. Assim, os valores apresentados para as válvulas e filtros são superiores relativamente aos resultados reais.

Troço	Válvulas Vários Tipos	Filtros	Curvas	Tês	Tubagem	Total			
		ΔT_p [K]							
Líquido Evaporador Câmara 1	0,004	0,001	0,036	0	0,066	0,107			
Líquido Evaporador Câmara 2	0,004	0,001	0,036	0,016	0,054	0,111			
Líquido Evaporador Câmara 3	0,004	0,001	0,06	0	0,083	0,148			
Aspiração Evaporador Câmara 1	0,002	-	0,09	0	0,152	0,244			
Aspiração Evaporador Câmara 2	0,002	-	0,06	0,06	0,058	0,180			
Aspiração Evaporador Câmara 3	0,002	-	0,15	0	0,298	0,450			
Aspiração	0,003	-	0,144	0,096	0,367	0,610			
Descarga	0,004	-	0,396	0,06	0,232	0,692			
Condensador/Depósito	0,003	-	0,16	0,042	0,001	0,211			
Linha de líquido	0,002	0,100	0,18	0,084	0,386	0,752			

Tabela 39 – Perdas de carga, em K, para válvulas, filtros curvas, tês, tubagens e total.

Outro fator importante será a equalização da perda de carga nos ramais que seguem para os evaporadores, ou seja, as linhas de líquido com dimensões nominais de 20. Desta forma, como o ramal para o evaporador três apresenta maior perda de carga, deve-se instalar válvulas de regulação nos ramais dos evaporadores 1 e 2 com uma perda de carga de 0,041 K e 0,037 K respetivamente. Comprova-se que nos troços de aspiração e de descarga a perda de carga encontra-se abaixo do valor máximo admissível de 1,5 K, com 1,01 K e 0,692 K respetivamente.

Para as linhas de líquido, a premissa baseou-se em velocidades de escoamento baixas, nomeadamente 0,5 m/s pelo que não se ultrapassou a perda de carga admissível de 1 K (valor do troço com maior perda de carga apresenta-se com 0,9 K). Mais informação sobre a metodologia utilizada neste subcapítulo disponível no <u>Apêndice 4 – Análise ao</u> <u>Dimensionamento da Instalação Refrigerada</u>.

Ao longo do presente subcapítulo foi referenciado componentes como válvulas, filtros, dimensões nominais entre outras características. A Figura 14 não permite visualizar estes aspetos que são importantes para perceber a constituição da instalação.

Desta forma decidiu-se, com recuso ao *Software* AutoCAD [91], criar um esquema unifilar para expor a localização dos equipamentos e medidas já determinadas do sistema a R-717 conforme ilustrado na Figura 18. Notar que a simbologia presente está de acordo com a Norma EN 1861:1998 – Sistemas de Refrigeração e bombas de Calor. Outras imagens com recurso ao SOLIDWORKS encontram-se no <u>Apêndice 5 – Vistas da Central Para a Conservação de Laranjas e Folhas de Cálculo</u>.

Figura 18 – Esquema unifilar da instalação refrigerada.

6. Conclusões e Trabalhos Futuros

Para a realização do presente trabalho foi proposto selecionar a tecnologia mais eficiente para instalações refrigeradas sem temperaturas negativas para potências até 250 kW. Dentro dos ciclos termodinâmicos existentes, concluiu-se que o ciclo de compressão de vapor é o mais utilizado para a conservação de alimentos. Inferiu-se a que refrigeração industrial abrange um vasto leque de temperaturas de conservação, desde temperaturas altas até temperaturas muito baixas.

Durante a análise realizada para os fluidos frigorigéneos notou-se que tem existido um esforço da comunidade europeia para reduzir os impactos ambientais que os sistemas de refrigeração têm sobre as alterações climáticas. Inferiu-se que as soluções passam por fluidos naturais, por fluidos HFO e por misturas HFC-HFO com reduzido GWP e nulo OPD. Teve-se o cuidado de selecionar, para avaliação, os fluidos com GWP abaixo do valor regulamentado para 2030 com o intuito de prolongar a longevidade da instalação dimensionada.

Um dos objetivos principais passou pela conservação de produtos frutícolas pelo que a metodologia de seleção passou por aferir a produção, localização, crescimento produtivo anual, crescimento anual de superfície de plantação e necessidades de frio das maiores culturas frutícolas nacionais. Evidenciou-se que a produção de laranja apresentou um crescimento gradual de 2016 a 2021 de 21,5 %, pelo que exibiu a segunda maior produção em 2021 com 363 918 t. A produção deste fruto encontra-se localizada na região do Algarve com 77,6% e verificou um crescimento na área de cultivo de 31 hectares de 2020 para 2021. Para além disso, a conservação de laranjas apresenta temperaturas altas, entre 4,44 °C e 7,22 °C, logo as temperaturas de evaporação da instalação podem ser mais elevadas do que seriam com a conservação de maçãs (produto frutícola mais produzido em 2021) o que significa que os consumos energéticos para a conservação de laranjas são mais reduzidos.

A eficiência energética foi um tópico central no desenvolvimento deste trabalho. Deste modo considerou-se importante analisar a dependência energética nacional que, em 2020, apresentou valores a rondar os 65,2 %. Este valor encontra-se bastante próximo da meta de 2030 (65 %), contudo verificou-se que o contexto geopolítico global, a crise energética mundial, e a redução de a cota de água nas barragens podem provocar um aumento nos valores de dependência energética nacional. Infere-se que a eficiência energética dos sistemas de refrigeração é importante para auxiliar a reduzir os valores obtidos em 2020. Desta forma os estudos realizados à operacionalidade dos sistemas de compressão de vapor simples permitiram observar o impacto que os mesmos têm sobre a eficiência energética. Para a análise ao impacto das temperaturas de condensação, verificou-se uma diferença na potência de compressão de 25,2 kW entre as temperaturas de condensação de 30 °C e 50 °C e uma diferença de 3,61 relativamente ao *COP*. Sobre o impacto que as temperaturas de evaporação têm sobre o ciclo de compressão de vapor nota-se que, por cada 2 °C de incremento de temperatura de evaporação, tem-se uma diminuição aproximado de 3 kW de potência absorvida. Os sobreaquecimentos útil e não útil de 10 K evidencia-se uma diferença no *COP* de 0,12, para a análise realizada ao sistema. Na análise ao subarrefecimento evidencia-se a possibilidade de diminuir a potência de compressão em 2,2 kW e provocar um aumento no *COP* de 0,23 com um subarrefecimento de 10 K. No que diz respeito aos múltiplos estágios de compressão evidencia-se que a vantagem mais notória é da passagem de um para dois estágios de compressão onde se verifica um incremento no *COP* de 0,35 e um decremento na potência de compressão de 3,1 kW.

Após a análise das operações envolvidas num ciclo de compressão de vapor simples passou-se à construção de cinco sistemas de compressão para determinar qual o mais eficiente, dependendo do fluido frigorigéneo utilizado. Conclui-se que o sistema nº 4 era o energeticamente mais eficiente com os fluidos R-717 e R-744 enquanto o sistema nº 5 era mais eficiente com os fluidos R-290, R-1270, R-1234ze[E] e R-515B. Esta análise foi importante para entender que nem sempre um sistema representa a solução ótima para todos os fluidos frigorigéneos. Cada caso deve ser analisado e todas as variáveis devem ser contabilizadas. Infelizmente estes sistemas não eram praticáveis dado que para o intervalo de pressões de aspiração e de descarga é reduzido para se implementar sistemas com duplo estágio de compressão. Deste modo criou-se um sistema aplicável para determinar qual o fluido mais eficiente tanto energética com exergeticamente. Inferiu-se que o sistema aplicável com o fluido R-717 apresenta-se como a melhor solução com um COP_{Real} de 3,38 (4,44 com o adiabático em funcionamento).

Para além disso o funcionamento do sistema aplicável com R-717 exibiu a menor exergia destruída com um valor de 47,0 kW (29,5 kW com adiabático). Isto porque, para as condições de funcionamento impostas para a conservação de laranjas, as propriedades termodinâmicas do R-717 destacam-se sobre os outros fluidos analisados. Para além disso, os custos de investimento e de manutenção com a utilização do R-717 foram os mais acessíveis com 123 807 € com os custos de investimento e 10 416 €/ano com os custos de manutenção. Assim o sistema aplicável com o fluido R-717 revela-se o mais eficiente energética e exergeticamente e o mais acessível monetariamente.

Durante o dimensionamento do sistema de refrigeração para a conservação de laranjas inferiu-se que, para área das câmaras de conservação e para o número apresentado de trabalhadores, não existem restrições à quantidade de fluido utilizado no sistema. Concluiuse, através de um balanço térmico, que é possível conservar nas três câmaras dimensionadas uma quantidade aproximada de 104,37 t. Por último dimensionou-se a tubagem tendo-se inferido que as perdas de carga em todas as linhas não ultrapassam os valores máximos estabelecidos, ou seja, a linha de descarga tem uma perda de carga de 0,692 K. Já o troço com maior perda de carga na linha de líquido apresenta um valor de 0,9 K enquanto o troço mais desfavorável na linha de aspiração tem um valor de 1,01 K.

Relativamente a trabalhos futuros, a otimização dos vários sistemas é um aspeto que seria interessante rever. Adaptar cada sistema analisado de forma a melhorar a sua eficiência seria um dos objetivos principais. No que toca ao sistema a R-744 existe a possibilidade de inserir um sistema de dessobreaquecimento (por exemplo um sistema AQS) que reaproveite o calor disponível logo após a descarga. Este processo para o sistema a R-744 é possível devido às elevadas temperaturas de descarga. A aplicação de expansores e ejetores nos sistemas a R-744 têm ganho relevância visto que permitem utilizar parte da energia envolvida no processo de expansão (algo que não é possível realizar com uma válvula de expansão) [92].

Para o caso do R-717 poder-se-ia otimizar o sistema com recirculação de líquido já que o amoníaco apresenta melhor desempenho no estado líquido, relativamente à permuta de calor. Existem ainda outros processos, como sistemas *booster* que têm o objetivo de aumentar a pressão de admissão para a aproximar da pressão de descarga, contudo é importante referir que cada sistema deve atender aos regimes de funcionamento e às características do fluido. De forma a analisar todos os processos existentes e todas as possibilidades de construção de um sistema de refrigeração, o presente trabalho seria, obrigatoriamente mais extenso e complexo.

Outro ponto a desenvolver futuramente seria os custos de manutenção das várias instalações e rever, de uma forma mais pormenorizada, as premissas a contabilizar para a determinação dos custos envolvidos neste processo. Relativamente aos custos de investimento seria relevante analisar detalhadamente os valores monetários dos vários componentes incluindo tubagens, equipamentos auxiliares e quadro elétrico com o objetivo de obter uma imagem mais fidedigna do custo de cada instalação.

95

Referências Bibliográficas

- T. Trindade, J. M. Silva, V. Palmeira e P. Anastácio, "Compressão e Frio Industrial -Modelação e Simulação de Unidades Processuais," ISEL, Lisboa, 2005.
- [2] A. T. P. Ramos, A investigação e a Inovação na Fabricação de Equipamentos de Frio Industrial em Portugal, Lisboa: ISEL, 2016.
- [3] I. Dinçer e M. Kanoglu, Refrigeration Systems and Applications, Departamento de Engenharia Mecânica, KFUPM, Arábia Saudita: WILEY, 2003.
- [4] G. F. Hundy, A. R. Trott e T. C. Welch, "Refrigeration, Air Conditioning and Heat Pumps," Butterworth-Heinemann, Oxford, 2016.
- [5] "Refrigeração e ar condicionado," [Online]. Available: https://pt.slideshare.net/mjmcreatore/apostila-ar-cond. [Acedido em 12 Fevereiro 2022].
- [6] Cool Concerns Ltd, "Subcooling," Setembro 2013. [Online]. Available: https://www.coolconcerns.co.uk/imagelib/pdfs/CS_8_Subcooling.pdf. [Acedido em 22 Maio 2022].
- [7] R. Llopis, R. Cabello, D. Sánchez e E. Torrella, "Energy improvements of CO2 transcritical refrigeration cycles using," Espanha, 2017.
- [8] J.-u.-R. Khan e S. M. Zubair, "Design and rating of an integrated mechanical-subcooling vapor-compression refrigeration system," Pergamon, Arábia Saudita, 2000.
- [9] Refrigeration Service Engineers Society, "Defrosting Methods," 2001. [Online]. Available: http://www.rses.org/assets/serviceapplicationmanual/620-49A.pdf. [Acedido em 13 Junho 2022].
- [10] G. Lester, "Understanding Types of Defrost," Fridge Freezer Direct Ltd, 22 Abril 2022.
 [Online]. Available: https://www.fridgefreezerdirect.co.uk/ffd-info-centre/latestnews/understanding-types-of-defrost. [Acedido em 13 Junho 2022].
- [11] Linde, "Industrial Gases," Linde plc, [Online]. Available: https://www.lindegas.com/en/processes/refrigeration_and_air_conditioning/refrigeration_processes_and_ temperatures/index.html. [Acedido em 14 Abril 2022].
- [12] Gunt Hamburg, "Components of Refrigeration Primary and Secondary Controllers," [Online]. Available: https://www.gunt.de/images/download/primary-and-secondarycontrollers_english.pdf. [Acedido em 5 Março 2022].
- [13] Geson, "Six Throttling Devices for Refrigeration Equipment," Geson, [Online]. Available: https://www.gesonchiller.com/six-throttling-devices-for-refrigeration-equipment/.

[Acedido em 10 Março 2022].

- [14] Sustainable Energy Authority of Ireland, "Refrigeration System Controls," [Online]. Available: https://www.seai.ie/publications/Refrigeration_system_controls.pdf. [Acedido em 16 Março 2022].
- [15] ASHRAE, Handbook Refrigeration (SI Edition), Atlanta: ASHRAE, 2018.
- [16] European Standard EN 378-1, "Refrigerating systems and heat pumps Safety and environmental requirements - Part 1: Basic requirements, definitions, classification and selection criteria," Comité Europeu de Normalização, Bruxelas, 2016.
- [17] United Nations Environment Programme, "Global Warming Potential (GWP) of Refrigerants: Why are Particular Values Used?," 2014.
- [18] United Nations Environment Programme, "Ozone Depleting Potential (ODP) of Refrigerants: Which Particular Values are Used?," 2014.
- [19] ASHRAE; UNEP, Update on New Refrigerants Designations and Safety Classifications, ASHRAE; UNEP, 2020.
- [20] DARMENT, "The history of refrigerant industry," DARMENT, [Online]. Available: https://darment.eu/history-of-refrigerant-industry/. [Acedido em 22 Março 2022].
- [21] S. Benhadid-Dib e A. Benzaoui, "Refrigerants and their Environmental Impact Substitution of Hydro Chlorofluorocarbon HCFC and HFC Hydro Fluorocarbon. Search for an Adequate Refrigerant," *Energy Procedia*, vol. 18, pp. 807-816, 2012.
- [22] SWEP, "Azeotropic/Zeotropic refrigerants," SWEP, [Online]. Available: https://www.swep.net/refrigerant-handbook/5.-refrigerants/sd1/. [Acedido em 14 Março 2022].
- [23] Linde, "Natural Refrigerants," Linde, [Online]. Available: https://www.gas.linde.co.th/en/products_and_supply/refrigerants/old/natural_refrigerants/index.html. [Acedido em 26 Março 2022].
- [24] W. Goetzler, T. Sutherland, M. Rassi e J. Burgos, "Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants," 2014.
- [25] S. S. Vali, T. P. Setty e A. Babu, "Analytical computation of thermodynamic performance parameters of actual vapour compression refrigeration system with R22, R32, R134a, R152a, R290 and R1270," EDP Sciences, 2018.
- [26] Inovenergy, "Fluidos Frigorigéneos," Inovenergy, 2014.
- [27] Agência Portuguesa do Ambiente, "Protocolo de Quioto," Agência Portuguesa do Ambiente, 2021. [Online]. Available: https://apambiente.pt/clima/protocolo-de-quioto.

[Acedido em 26 Março 2022].

- [28] União Europeia, "Council Decision (EU) 2015/1339 of 13 July 2015 on the conclusion, on behalf of the European Union, of the Doha Amendment to the Kyoto Protocol to the United Nations Framework Convention on Climate Change and the joint fulfilment of commitments thereunder," Official Journal of the European Union, 2015.
- [29] Portal Diplomático, "Acordo de Paris," Ministério dos Negócios Estrangeiros da República Portuguesa, [Online]. Available: https://portaldiplomatico.mne.gov.pt/politicaexterna/temas-multilaterais/acordo-de-paris. [Acedido em 26 Março 2022].
- [30] Comissão Europeia, "Relatório da comissão sobre os obstáculos colocados pelos códigos, pelas normas e pela legislação ao uso de tecnologias respeitadoras do clima nos setores da refrigeração, do ar condicionado, das bombas de calor e das espumas," Comissão Europeia, Bruxelas, 2016.
- [31] Agência Portuguesa do Ambiente, "Gases Fluorados," Agência Portuguesa do Ambiente, 2021.
- [32] D. MORAIS, P. D. GASPAR, P. D. SILVA, L. C. PIRES, L. P. ANDRADE e J. NUNES, "Characterization of refrigeration systems in the Portuguese food processing industry," 2019.
- [33] Bitzer, "BITZER ADDS R515B TO BITZER SOFTWARE," Bitzer, 21 10 2020. [Online].
 Available: https://www.bitzer.de/gb/en/press/bitzer-adds-r515b-to-bitzer-software.jsp.
 [Acedido em 3 Abril 2022].
- [34] Comissão Europeia, "Climate-friendly alternatives to HFCs," Comissão Europeia, [Online]. Available: https://ec.europa.eu/clima/eu-action/fluorinated-greenhouse-gases/climatefriendly-alternatives-hfcs_en. [Acedido em 3 Abril 2022].
- [35] Arkool, "Germany plans to ban R1233zd refrigerants," Arkool, 1 Janeiro 2021. [Online]. Available: https://www.ecmrefrigerant.com/germany-plans-to-ban-r1233zd-refrigerants. [Acedido em 5 Abril 2022].
- [36] A. Kader, "FRUIT MATURITY, RIPENING, AND QUALITY RELATIONSHIPS," ISHS, 1999.
- [37] A. Brackmann, R. F. H. Giehl, R. B. Antes, D. A. Neuwald, I. Sestari e J. A. V. Pinto, "Condições de atmosfera controlada para o armazenamento de maçãs 'Royal Gala' de diferentes tamanhos," 2005.
- [38] "CONTROLLED ATMOSPHERE STORAGE," [Online]. Available: https://www.researchgate.net/profile/Anoop_Srivastava7/post/What_are_the_applicati ons_of_CA_Controlled_atmosphere_storage_other_than_fruits_and_vegetables/attachm ent/5a0b1a67b53d2fed8ad5bfef/AS%3A560634528239616%401510677095298/downloa d/32113_20Controlled. [Acedido em 9 Abril 2022].

- [39] A. Thompson, Controlled Atmosphere Storage of Fruits and Vegetables, 1999.
- [40] D. Antunes e J. Mendonça, "Colheita e Pós-Colheita de Citrinos," Agronegócios, 21 Julho 2014. [Online]. Available: http://www.agronegocios.eu/noticias/colheita-e-pos-colheitade-citrinos/. [Acedido em 12 Abril 2022].
- [41] Instituto Nacional de Estatística, "Estatísticas Agrícolas : 2021," INE, Lisboa, 2022.
- [42] Instituto Português do Mar e da Atmosfera, IPMA, [Online]. Available: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&idDep=cli &idTema=pcl&curAno=-1. [Acedido em 25 Agosto 2022].
- [43] Instituto Nacional de Estatística, INE, [Online]. Available: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&contecto=pi&indOc orrCod=0011095&selTab=tab0. [Acedido em 25 Agosto 2022].
- [44] Engineering ToolBox, "Fruits and Vegetables Optimal Storage Conditions," Engineering ToolBox, 2002. [Online]. Available: https://www.engineeringtoolbox.com/fruitsvegetables-storage-conditions-d_710.html. [Acedido em 30 Abril 2022].
- [45] J. S. e. a. AGOSTINI, "Conservação pós-colheita de laranjas Champagne (Citrus reticulata × Citrus sinensis)," Brasil, 2014.
- [46] Entidade Reguladora dos Serviços Energéticos, "Eficiência Energética," ERSE, [Online]. Available: https://www.erse.pt/atividade/eficiencia-energetica/. [Acedido em 3 Maio 2022].
- [47] Conselho Europeu, "Infographic How dependent are EU member states on energy imports?," Conselho Europeu, 13 Junho 2022. [Online]. Available: https://www.consilium.europa.eu/pt/infographics/how-dependent-are-eu-memberstates-on-energy-imports/. [Acedido em 30 Julho 2022].
- [48] Direção Geral de Energia e Geologia; Agência para a Energia, Unidade de Informação, "Energia em Números - Edição 2021," 2021.
- [49] PORDATA, "PORDATA Estatísticas sobre Portugal e Europa," [Online]. Available: https://www.pordata.pt/Subtema/Portugal/Energia-90. [Acedido em 27 Abril 2022].
- [50] Comité Económico e Social Europeu, "A guerra na Ucrânia e o seu impacto económico, social e ambiental," Comité Económico e Social Europeu, 24 Março 2022. [Online]. Available: https://www.eesc.europa.eu/pt/news-media/press-releases/guerra-naucrania-e-o-seu-impacto-economico-social-e-ambiental. [Acedido em 20 Agosto 2022].
- [51] XXIII Governo, "Novas medidas para conter o aumento dos preços energéticos e agroalimentares," 2022.

- [52] Parlamento Europeu, "Encerramento da central do Pego," Parlamento Europeu, 14 Dezembro 2021. [Online]. Available: https://www.europarl.europa.eu/doceo/document/E-9-2021-005561_PT.html. [Acedido em 20 Agosto 2022].
- [53] Observador, "Há barragens a Norte com nível de água entre 15% e 20%. APA acompanha com particular atenção," Observador, 3 Fevereiro 2022. [Online]. Available: https://observador.pt/2022/02/03/ha-barragens-a-norte-com-nivel-de-agua-entre-15-e-20-apa-acompanha-com-particular-atencao/. [Acedido em 20 Agosto 2022].
- [54] M. A. Boles e Y. A. Çengel, Thermodynamics An Engineering Approach, Mc Graw-Hill, 2009.
- [55] H. Acül, "Air Cooled Condensers and Their Effect on Energy Efficiency," FRITERM, 2008.
- [56] CoolPack, V1.5.0: Software de Cálculo.
- [57] FRICK Industrial Refrigeration, "FACS Adiabatic Condenser," 2018. [Online]. Available: https://www.johnsoncontrols.com/-/media/jci/be/united-states/refrigeration/industrialrefrigeration/files/be_sg_facs_adiabatic.pdf. [Acedido em 7 Maio 2022].
- [58] Evapco, Evapco, [Online]. Available: https://www.evapco.com/products/condensers-aircooled/eco-air-series-v-configuration-adiabatic-condenser. [Acedido em 13 Maio 2022].
- [59] S. A. BILAL e A. A. ALANSARI, "Efficiency And Energy Savings Provided By Adiabatic Pre-Cooling System," International Journal of Scientific & Technology Research, vol. 10, nº 4, pp. 86-90, 2021.
- [60] M. Arnemann, "Energy Efficiency of Refrigeration Systems," Purdue e-Pubs, 2014.
- [61] R. Walker, "Refrigeration and Air Conditioning Training Superheating Suction Vapor," HVAC Training Solutions, 1 Fevereiro 2013. [Online]. Available: https://www.hvactrainingsolutions.net/refrigeration-and-air-conditioning-trainingsuperheating-suction-vapor/. [Acedido em 10 Maio 2022].
- [62] Danfoss, Coolselector2, v5.1.0.
- [63] V. Kadambi e M. Prasad, An Introduction to Energy Conversion, Volume 2, New Age International Publisher, 1974.
- [64] United Nations Enviroment Programme, "The Potential to Improve the Energy Efficiency of Refrigeration, Air-conditioning and Heat Pumps," 2018.
- [65] Carrier, Hourly Analysis Program, v4.80.
- [66] J. C. Mendes, M. R. Guerreiro, P. d. Santos e J. VasconcelosPaiva, Temperaturas exteriores

de projecto e números de graus-dias, LNEC, 1995.

- [67] B. HU, D. WU, L. WANG e R. WANG, "Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression," 2017.
- [68] Bitzer, Bitzer Software, v6.17.8: Rev2725.
- [69] Bitzer, "SÉRIE CSHP65 CSHP95," Bitzer, [Online]. Available: https://www.bitzer.de/pt/pt/compressores-de-parafuso/serie-cshp/. [Acedido em 13 Junho 2022].
- [70] Hafner A., "Development of CO2 refrigeration technology between 1995 and 2020," em 14th IIR-Gustav Lorentzen Conference on Natural Refrigerants(GL2020), Japão, 2020.
- [71] M. P. A. Calado, "Modeling and design synthesis of a CCS compression train system via MINLP optimization," IST, Lisboa, 2012.
- [72] Diferença, "CAPEX e OPEX Qual a diferença entre capex e opex," [Online]. Available: https://www.diferenca.com/capex-e-opex/. [Acedido em 14 Junho 2022].
- [73] W. Kenton, "Operating Expense Definition and How It Compares to Capital Expenses," Investopedia, 19 Junho 2022. [Online]. Available: https://www.investopedia.com/terms/o/operating_expense.asp. [Acedido em 12 Julho 2022].
- [74] Güntner, Güntner Product Calculator 2019.
- [75] Centauro, Brochura Técnica disponibilizada pela Centauro, 2022.
- [76] Honeywell, SOLSTICE N15 (R-515B) Technical Data Sheet, 2021.
- [77] Electric Automation Network, "Danfoss Refrigeration," Electric Automation Network, [Online]. Available: https://www.electricautomationnetwork.com/es/danfossrefrigeration. [Acedido em 15 Agosto 2022].
- [78] D. Systèms, SOLIDWORKS, 2014.
- [79] For Demand, "Palotes Perfurados 1200 X 1000 X 760 com 4 Pés," For Demand, [Online]. Available: https://www.fordemand.pt/palotes-perfurados-1200-x-1000-x-760-com-4-pes.
 [Acedido em 17 Agosto 2022].
- [80] M. Sharifi, S. Rafiee, A. Keyhani, A. Jafari, H. Mobli, A. Rajabipour e A. Akram, "International Agrophysics," vol. 21, nº 4, pp. 391-397, 2007.
- [81] D. M. d. Almeida, "Câmara frigorifica com atmosfera controlada para conservação de produtos frutícolas refrigerados," ISEL, Lisboa, 2015.

- [82] RAUTA, "Sandwich panel thickness selection for refrigerators," RAUTA, 31 Janeiro 2021. [Online]. Available: https://rautagroup.com/en/sandwich-panel-thickness-selection-forrefrigerators/. [Acedido em 20 Agosto 2022].
- [83] O FELIZ, Brochura Técnica disponibilizada pelo O FELIZ.
- [84] *Diapositivos disponibilizados pela Unidade Curricular de Sistemas Eletromecânicos,* Lisboa: ISEL, 2021.
- [85] Philips Lighting, T12 20T12 EM LED/48-4000 IFG 10/1, 2021.
- [86] Engineering ToolBox, "Electrical Motors Heat Loss," 2005. [Online]. Available: https://www.engineeringtoolbox.com/electrical-motor-heat-loss-d_898.html. [Acedido em 27 Agosto 2022].
- [87] STILL S.A., Brochura técnica STILL para a seleção de empilhadores elétricos, 2022.
- [88] Centauro, Catálogo MT-DD.
- [89] Paul Evans, "Cooling Load Calculation Cold Room," The Engineering Mindset, 26 Dezembro 2017. [Online]. Available: https://theengineeringmindset.com/cooling-loadcalculation-cold-room/. [Acedido em 28 Agosto 2022].
- [90] A. J. d. A. Santos, Refrigeração II Manual de Apoio ao Ensino e à Profissão -Complementos, PUBLINDUSTRIA, 2016.
- [91] Autodesk, AutoCAD 2022, 2022.
- [92] Z. Zhang, L. Tong e X. Wang, "Entropy," Thermodynamic Analysis of Double-Stage Compression Transcritical CO2 Refrigeration Cycles with an Expander, pp. 2545-2555, 22 Abril 2015.

Apêndice 1 – Análise à Operacionalidade de Sistemas de Refrigeração

Impacto da Temperatura de Condensação

Apesar de se encontrar explícito no subcapítulo <u>Operacionalidade de Sistemas de</u> <u>Refrigeração</u>, pretende-se aprofundar quais os parâmetros considerados para determinar o impacto das temperaturas de condensação. Através da Figura 19 pode-se evidenciar que a pressão de evaporação permanece inalterada, contudo incrementa-se a temperatura de condensação e, consequentemente, a pressão. Para além disso, cada temperatura de condensação analisada encontra-se representada no diagrama de Mollier com diferentes cores:

- Vermelho: Temperatura de condensação de 50 °C;
- Laranja: Temperatura de Condensação de 45 °C;
- Amarelo: Temperatura de condensação de 40 °C;
- Verde-Seco: Temperatura de condensação de 35 °C.
- Verde: Temperatura de condensação de 30 °C.

Figura 19 – Representação das várias temperaturas de condensação.

Conforme referido no subcapítulo <u>Impacto da Temperatura de Condensação</u>, utilizouse o fluido R-717. Na Tabela 40 apresentam-se os pontos necessários para a construção dos ciclos representados na Figura 19.

	τ [°C]		P [bar]		h [k]/Kg]		s [k]/Kg.K]
T1	0	P1	4.294	h1	1460	s1	5.6163
T2s	103,94	P2s	17,82	h2s	1668,5	s2s	5,6153
Т3	45	P3	17,82	h3	410,49	s3	1,703
Т4	0	P4	4,294	h4	410,49	s4	1,770

Tabela 40 – Dados dos principais pontos para o fluido frigorigéneo R-717 para temperaturas de condensação de 45 °C e de evaporação de 0 °C (Análise do impacto das temperaturas de condensação).

Através da informação disponibilizada na Tabela 40 é possível determinar o *COP* e a potência absorvida pelo compressor consoante a variação da temperatura de condensação. Na Tabela 41 encontram-se os resultados obtidos para esta análise.

$$\dot{m} = \frac{\dot{Q}_e}{(h_1 - h_4)} = \frac{250}{(1460 - 410,49)} = 0,2382 \, kg/s$$

 $\dot{W}_{c_{S}} = \dot{m} \times \left(h_{2_{S}} - h_{1}\right) = 0,2382 \times (1668, 5 - 1460) = 49,48 \, kW$

$$COP = \frac{\dot{Q}_e}{\dot{W}_{c_s}} = \frac{250}{49,48} = 8,06$$

Temperatura de Condensação [°C]	Temperatura de Evaporação [°C]	Potência Absorvida Pelo Compressor [kW]	СОР
30	0	31,01	8,06
35	0	36,91	6,77
40	0	43,06	5,81
45	0	49,48	5,05
50	0	56,18	4,45

Tabela 41 – Variação do COP e da potência absorvida pelo compressor com a variação da temperatura.

Impacto da Temperatura de Evaporação

A análise realizada à variação da temperatura de evaporação é semelhante com o estudo das temperaturas de condensação. Neste caso fixou-se a temperatura de condensação a 45 °C e de seguida analisou-se a variação da potência absorvida e do *COP* para as diferentes temperaturas de evaporação. Na Figura 20 encontra-se um digrama de Mollier com os vários ciclos de refrigeração com diferentes temperaturas de evaporação. Cada ciclo apresenta-se com uma cor:

- Vermelho: Temperatura de condensação de 0 °C;
- Laranja: Temperatura de Condensação de 2 °C;

- Amarelo: Temperatura de condensação de 4 °C;
- Verde-Seco: Temperatura de condensação de 6 °C.
- Verde: Temperatura de condensação de 8 °C.

Figura 20 – Representação das várias temperaturas de evaporação.

Impacto do Sobreaquecimento nos Sistemas de Compressão a Vapor

A análise relativa ao sobreaquecimento contabilizou apenas as variações impostas por este processo, ou seja, todos os outros parâmetros mantiveram-se inalterados. Na Figura 21 encontram-se evidenciadas, num diagrama de Mollier, as variações entre as diferentes temperaturas de sobreaquecimento. Notar que cada ciclo apresenta a sua própria cor:

- Verde-Escuro: Sobreaquecimento de 0 °C;
- Verde: Sobreaquecimento de 2 °C;
- Verde-Seco: Sobreaquecimento de 4 °C;
- Amarelo: Sobreaquecimento de 6 °C;
- Laranja: Sobreaquecimento de 8 °C;
- Vermelho: Sobreaquecimento de 10 °C;

Figura 21 – Representação do processo de sobreaquecimento.

Na Tabela 42 encontram-se os valores obtidos deste processo. Notar que, para a mesma potência de compressão, o *COP* pode sofrer variações, dependendo se o sobreaquecimento foi realizado no evaporador (sobreaquecimento útil) ou fora do evaporador (sobreaquecimento não útil).

СОР
lão Útil]
5,05
5,00
4,96
4,91
4,87
4,82

 Tabela 42 – Variações do COP e da potência absorvida pelo compressor consoante a variação do sobreaquecimento.

Impacto do Subarrefecimento nos Sistemas de Compressão a Vapor

Para a análise ao subarrefecimento procedeu-se à semelhança do processo de sobreaquecimento. Na Figura 22 é possível evidenciar as variações, no diagrama de Mollier, do valor definido para o subarrefecimento. Cada valor definido para este estudo apresenta as seguintes cores:

- Vermelho: Subarrefecimento de 0 °C;
- Laranja: Subarrefecimento de 2 °C;
- Amarelo: Subarrefecimento de 4 °C;
- Verde-Seco: Subarrefecimento de 6 °C;

- Verde: Subarrefecimento de 8 °C;
- Verde-Escuro: Subarrefecimento de 10 °C.

Figura 22 – Representação do processo de subarrefecimento.

Impacto dos Múltiplos Estágios de Compressão nos Sistemas de Compressão a Vapor

Relativamente à análise realizada para os múltiplos estágios de compressão consideraram-se ciclos até 6 estágios de compressão. Conforme referido no subcapítulo <u>Impacto de Múltiplos Estágios nos Sistemas de Compressão a Vapor</u>, o número de ciclos considerado para esta análise apenas pretende determinar o impacto que este processo tem sobre a potência absorvida pelos compressores e sobre o *COP*, ou seja, não se ponderou qual o número aceitável de compressores em série para a praticabilidade do sistema. Para efeitos ilustrativos, apresenta-se na Figura 23, ou seja, um com um estágio de compressão, outro com dois estágios e o terceiro com três compressores em série. Cada ciclo encontra-se representado com uma cor:

- Vermelho: Um estágio de compressão;
- Laranja: Dois estágios de compressão;
- Verde: Três estágios de compressão.

Figura 23 – Representação dos múltiplos estágios de compressão.

Para a determinação do impacto dos estágios de compressão determinaram-se as entalpias específicas dos vários pontos de admissão e de descarga dos compressores e o caudal mássico que circula no sistema. Na Tabela 43 encontram-se, para efeitos exemplificativos, os valores inerentes à entalpia específica e pressão dos vários pontos de interesse para um sistema com quatro estágios de compressão. Como resultado obtém-se a potência de compressão (para uma potência frigorífica de 250 kW) que resulta do somatório das potências de cada estágio que compõe o sistema.

4 Estágios							
Pressão 1 Pressão 2 Pressão 3 Pressão 4 Pr						Pressão 5	
4,29)	6,13	8,75 12,49		9	17,82	
			Cauda	al Mássico			
0,2388							
h1	h2	h3	h4	h5	h6	h7	h8
1462	1508	1472	1518	1480	1528	1487	1535

Tabela 43 – Valores relativos a um sistema com quatro estágios de compressão.

Apêndice 2 – Análise à Aproximação Teórica

Durante a aproximação teórica, o objetivo principal foi dimensionar um sistema com o maior valor de eficiência energética. Ao início não se sabia se, para as temperaturas de condensação e de evaporação o sistema poderia funcionar com dois estágios de compressão pelo que essa possibilidade foi tida em conta. Para os fluidos frigorigéneos naturais propostos, observou-se que o sistema nº 4 proporcionava o maior COP_{Real} . Em relação aos restantes fluidos propostos, evidencia-se que o sistema nº 5 apresentava o maior valor relativamente ao COP_{Real} .

Construíram-se esquemas para representar o ciclo de funcionamento dos sistemas e diagramas de Mollier para cada ciclo. Referir que esta análise foi realizada para todos os fluidos frigorigéneos para determinar qual o mais eficiente, consoante cada sistema. Na Figura 24 é possível observar os esquemas e o diagrama de Mollier respetivamente para o sistema Nº 1.

Na Figura 25 observam-se de igual modo os esquemas e o diagrama de Mollier para o sistema № 2.

Figura 25 - Representação do esquema do ciclo número 2 (a) e do respetivo diagrama de Mollier (b).

Na Figura 26 observam-se os esquemas e o diagrama de Mollier para o sistema № 3.

Figura 26 - Representação do esquema do ciclo número 3 (a) e do respetivo diagrama de Mollier (b).

Na Figura 27 encontram-se representados os esquemas e o diagrama de Mollier para o sistema Nº 4.

Na Figura 28 observam-se de igual modo os esquemas e o diagrama de Mollier para o sistema nº 5.

Figura 28 – Representação do esquema do ciclo número 4 (a) e do respetivo diagrama de Mollier (b).

Apêndice 3 – Análise à Aplicabilidade do Projeto

Durante a realização dos cálculos para determinar o COP dos vários sistemas atendendo a cada fluido teve-se em consideração o esquema de funcionamento e o diagrama de Mollier apresentados na Figura 29.

Figura 29 – Esquema de funcionamento e diagrama de Mollier considerado para a aplicabilidade do projeto.

Na Tabela 44 encontra-se os valores das temperaturas, pressões, entalpias e entropias dos vários pontos que formam o sistema com o fluido R-290. Notar que esta metodologia foi adotada para todos os restantes fluidos que se propôs analisar.

T [°C]		P [bar]		h [kJ/Kg]		s [kJ/Kg.K]	
T01	0	P01	4,745	h01	574,9	s01	2,372
T001	5	P001	4,745	h001	583,4	s001	2,403
T1	10	P1	4,745	h1	592,2	s1	2,435
T2s	59	P2s	15,34	h2s	650,6	s2s	2,435
T2	70	P2	15,34	h2	674,6	s2	2,507
Т03	45	P03	15,34	h03	321,8	s03	1,405
Т3	40	P3	15,34	h3	307,1	s3	1,358
T4	0	P4	4,745	h4	307,1	s4	1,392

Tabela 44 – Dados dos principais pontos do sistema a R-290.

Sabendo que, para o estudo em causa, a potência frigorífica proposta é de 250 kW é possível determinar o caudal mássico através do efeito frigorífico do fluido e com recurso à Equação 4 apenas com a substituição do h_1 para h_{001} que representa o sobreaquecimento útil deste ciclo.

$$\dot{m} = \frac{Q_e}{(h_{001} - h_4)} = \frac{250}{(583, 4 - 307, 1)} = 0,9048 \ kg/s$$
Outro ponto a ser considerado foi o rendimento isentrópico que foi obtido através da Equação 20 com recurso à temperatura de descarga disponibilizada pelo *Software* da Bitzer. Desta forma, para o sistema com R-290 tem-se:

$$\eta_s = \frac{h_{2s} - h_1}{h_2 - h_1} = \frac{(650, 6 - 592, 2)}{(674, 6 - 592, 2)} = 0,7083 = 70,83\%$$

Para além disso pode-se determinar o COP_{Real} através da Equação 6:

$$COP_{Real} = \frac{\dot{Q}_e}{\dot{W}_c} = \frac{250}{0,9048 \times (674,6-592,2)} = 3,03$$

Para a análise exergética teve-se em consideração a exergia destruída nos componentes principais que constituem o sistema. Recorreu-se à Equação 8 para determinar a exergia destruída e à Equação 9 para determinar o fluxo exergético em cada componente. No caso do rendimento exergético do compressor deve-se considerar o quociente entre o fluxo exergético e o \dot{W}_c .

$$\begin{split} \psi_D &= T_0 \times S_g = (273,15+31,8) \times 0,9048 \times (2,507-2,435) = 19,77 \text{ kW} \\ \Delta \psi &= \psi_2 - \psi_1 = (h_2 - h_1) - T_0 \times (s_2 - s_1) <=> \\ <=> 0,9048 \times ((674,6-592,2) - (273,15+31,8) \times (2,507-2,435) = 54,69 \text{ kW} \\ \eta_{II} &= \frac{\Delta \psi}{\dot{W}_c} = 0,7335 = 73,35\% \end{split}$$

Para a análise exergética do evaporador deve-se contabilizar o calor que este equipamento absorve ao espaço onde se encontra inserido. Desta forma a entropia gerada deve contabilizar a potência frigorifica e a temperatura de fonte fria que, para esta análise, considerou-se a maior temperatura de armazenamento mais elevada para o caso das laranjas, nomeadamente 7,22 °C.

$$\psi_D = (273,15+31,8) \times 0,9048 \times \left(2,403-1,392+\frac{250}{(273,15+7,22)}\right) = 7,04 \, kW$$

 $\Delta \psi = 28,96 \, kW$

De forma a determinar o rendimento exergético do evaporador considerou-se o quociente entre a exergia destruída e o fluxo exergético conforme explicitado na Equação 39:

$$\eta_{II} = 1 - \frac{\psi_D}{\Delta \psi}$$
(39)
$$- \frac{7,04}{28,96} = 0,7569 = 75,69\%$$

Relativamente à análise exergética do condensador tem-se uma abordagem semelhante à do evaporador. Notar que a temperatura de fonte quente proposta foi de 33 °C.

1

$$\psi_D = (273,15+31,8) \times 0,9048 \times \left(2,507-1,358+\frac{250}{(273,15+33)}\right) = 7,04 \, kW$$
$$\Delta \psi = 28,96 \, kW$$

$$\eta_{II} = 1 - \frac{\psi_D}{\Delta \psi} = 0,7569 = 75,69\%$$

Por último tem-se a válvula de expansão que, do ponto de vista exergético, apenas serva para destruir exergia e como tal a sua eficiência exergética é nula.

$$\psi_D = T_0 \times S_g = (273,15+31,8) \times 0,9048 \times (1,392-1,358) = 9,38 \text{ kW}$$

Notar que o COP_{Carnot} , para as temperaturas de fonte quente e fria propostas para esta análise, apresenta um valor de 10,88 pelo que a eficiência exergética do sistema pode ser determinada da seguinte forma:

$$\eta_{II} = \frac{COP_{Real}}{COP_{Carnot}} = \frac{3,03}{10,88} = 0,2786 = 27,86\%$$

Reforçar que esta análise foi realizada para todos os fluidos frigorigéneos propostos para além de se realizar um estudo semelhante com a utilização do sistema adiabático que permite baixar a temperatura de condensação se a temperatura exterior de projeto se mantiver inalterada. Apêndice 4 – Análise ao Dimensionamento da Instalação

Refrigerada

O dimensionamento das tubagens para o sistema com o fluido R-717 revelou-se moroso pela determinação das perdas de carga menores e pela construção tridimensional da instalação com recurso ao *Software* SOLIDWORKS. Decidiu-se determinar as perdas de carga através da redução da temperatura de saturação equivalente que, para certos acessórios, é praticamente nula. Conforme explicitado no subcapítulo (<u>5.2.2</u>) <u>Tubagens</u>, as perdas de carga admissíveis para as linhas de líquido são, no máximo de 1 K. Para as linhas de aspiração e de descarga apresentam-se valores de 1,5 K e 1 K respetivamente.

Apenas para exemplificar o método utilizado para o dimensionamento das tubagens apresentam-se os cálculos para o dimensionamento da tubagem de líquido.

$$D_{Tub} = \sqrt{\frac{4 \times 0,233}{58,48 \times \pi \times 0,5}} = 0,032 \rightarrow D_{TC} \text{ deve ser maior ou igual a } D_{Tub}$$
$$Re = \frac{58,48 \times 0,5 \times 0,038}{0,0001102} = 98272$$

Na Tabela 45 apresenta-se os vários valores determinados apenas para a linha de líquido geral que constitui a central de frio a R-717.

			•			8 1		,
<i>L_T</i> [m]	<i>D_{Tub}</i> [m]	<i>D_{TC}</i> [m]	Re	е	fa	ΔP Total [bar]	∆ P [K]	DN [mm]
15,5	0,032	0,037	98272	0,00267	0,026	0,180	0,386	32

Tabela 45 – Valores determinados para o dimensionamento da tubagem de líquido da instalação.

O cálculo do fator de atrito realizou-se com o auxílio do digrama de Moody. Através da rugosidade relativa, *e*, e do número de Reynolds foi possível determinar o fator de atrito (Figura 30).

Figura 30 – Determinação do fator de atrito através do diagrama de Moody.

Desta forma calculou-se a perda de carga total da linha de líquido (teve-se em consideração que a tubagem em análise é ascendente).

$$\Delta P_T = 58,48 \times 0,026 \times \left(\frac{15,5}{0,038}\right) \times \left(\frac{0,5^2}{2}\right) = 780,36 \ Pa$$
$$\Delta P_L = 58,48 \times 9,81 \times 3,1 = 17663,78 \ Pa$$

A determinação da perda de carga, em K, pode ser ilustrada da seguinte forma:

Pressão de condensação@45°C = 17,820 bar Perda de carga = 780,36 + 17663,78 = 18444,14 Pa = 0,184 bar Pressão de condensação a considerar a perda de carga = 17,82 - 0,184 = 17,636 Bar Temperatura de condensação@17,636 Bar = 44,614 °C Perda de carga = 45 - 44,614 = 0,386 K < 1 K

Tendo em consideração que a perda de carga em temperatura de saturação equivalente encontra-se abaixo do valor máximo recomendado (1 K), conclui-se que a tubagem com uma dimensão nominal de 32 é aceitável.

De seguida, pretende-se contabilizar as perdas de carga menores, ou seja, perdas de carga provocadas por tês, curvas, válvulas e filtros. Para este caso recorreu-se ao Coolselector2 para determinar a perda de carga em temperatura saturada equivalente. Através da Figura 31 conclui-se que a perda de carga, para uma curva a 90°, é bastante reduzida pelo que não é considerada para esta situação. Relembrar que os valores inerentes às perdas de carga causadas por curvas, tês e acessórios foram sobredimensionados, ou seja, os valores apresentados na Tabela 39 são superiores aos apresentados pelo *Software* utilizado. Na Figura 32 encontram-se as dimensões nominais assim como as suas características.

Coolselector2

Project information	
Project name:	
Comments:	
Created by:	
Coolselector2 version:	5.1.0. Database: 89
Printed:	21 de September de 2022
Preferences used:	All applications

Piping: Piping 1

Operating conditions					
Refrigerant:	R717		Cooling capacity:	250,0	kW
Mass flow in line:	838,6	kg/h	Heating capacity:	323,4	kW
Evaporating temperature:	0,0	°C	Condensing temperature:	45,0	°C
Evaporating pressure:	4,292	bar	Condensing pressure:	17,82	bar
Useful superheat:	0	К	Subcooling:	5,0	к
Additional superheat:	5,0	К	Additional subcooling:	0	к
Discharge temperature:	146,2	°C			
System and line: Dry expansion sy	stem. L	iquid line			
Selection criteria: Velocity: 0,50 m/s	5				

Selection: Steel bend 90 DIN-EN 25-3

Туре	90 DIN-EN 15-3	90 DIN-EN 20-3	90 DIN-EN 25-3	90 DIN-EN 32-3	90 DIN-EN 40-3
NS	15	20	25	32	40
DP [bar]	0,002	0,001	0,000	0,000	0,000
DT_sat [K]	0,0	0,0	0,0	0,0	0,0
DP [K/m]	-	-	-	-	-
Velocity, in [m/s]	1,83	1,09	0,63	0,37	0,28
Velocity, out [m/s]	1,83	1,09	0,63	0,37	0,28

Figura 31 – Determinação da perda de carga em K para a linha de líquido da instalação.

					Maximum A	lowable Ope	erating Pre	ssure (MP	a)				
Nor	ninal	Outside			Wall			Ten	nperature (°C)			
S	ize	Diameter			Thickness	-29 to +38	204	260	343	371	399	427	
(DN)	(NPS)	(mm)	Sche	dule	(mm)		M	laximum A	llowable St	ress (MPa)		
						137.9	137.9	130.3	117.2	113.8	89.6	74.5	
15	1/2	21.3	STD	40	2.77	34.5	34.5	32.6	29.3	28.5	22.4	18.6	
20	3/	26.7	STD	40	2.87	28.1	28.1	26.5	23.8	23.1	18.2	15.1	
20	74	20.7	XS	80	3.91	39.4	39.4	37.2	33.5	32.5	25.6	21.3	
25		22.4	STD	40	3.38	26.3	26.3	24.8	22.3	21.7	17.1	14.2	
25		33.4	XS	80	4.55	36.3	36.3	34.3	30.9	30.0	23.6	19.6	
			STD	40	3.56	21.6	21.6	20.4	18.4	17.8	14.1	11.7	
32	11/4	42.2	42.2	XS	80	4.85	30.2	30.2	28.5	25.6	24.9	19.6	16.3
						160	6.35	40.6	40.6	38.4	34.5	33.5	26.4
		48.3	STD	40	3.68	19.4	19.4	18.4	16.5	16.0	12.6	10.5	
40	1½		XS	80	5.08	27.4	27.4	25.9	23.3	22.6	17.8	14.8	
				160	7.14	39.8	39.8	37.6	33.8	32.8	25.9	21.5	
	2	60.3	STD	40	3.91	16.4	16.4	15.5	13.9	13.5	10.7	8.9	
50			XS	80	5.54	23.7	23.7	22.4	20.1	19.5	15.4	12.8	
			-	160	8.74	38.9	38.9	36.8	33.1	32.1	25.3	21.0	
		1	STD	40	5.16	17.9	17.9	17.0	15.3	14.8	11.7	9.7	
65	21/2	73.0	XS	80	7.01	24.8	24.8	23.5	21.1	20.5	16.1	13.4	
				160	9.53	34.7	34.7	32.8	29.5	28.6	22.5	18.7	
			STD	40	5.49	15.6	15.6	14.7	13.2	12.8	10.1	8.4	
80	3	88.9	XS	80	7.62	22.0	22.0	20.8	18.7	18.2	14.3	11.9	
				160	11.13	33.1	33.1	31.3	28.1	27.3	21.5	17.9	
			STD	40	6.02	13.2	13.2	12.5	11.2	10.9	8.6	7.1	
			XS	80	8.56	19.1	19.1	18.0	16.2	15.7	12.4	10.3	
100	4	114.3		120	11.13	25.2	25.2	23.8	21.4	20.8	16.4	13.6	
		111-11		160	13.49	31.0	31.0	29.3	26.4	25.6	20.2	16.8	
			XXS		17.12	40.4	40.4	38.2	34.3	33.3	26.2	21.8	

Figura 32 – Tubagens schedule 40 e schedule 80.

Apenas para reforçar o impacto reduzido que as perdas menores têm sobre o sistema, apresenta-se a Figura 33 com os resultados inerentes ao filtro implementado na linha de líquido.

Coolselector2

Informação de projete	0
Nome do projeto:	
Comentários:	
Criado por:	
Coolselector2 versão:	4.8.1. Banco de dados: 85
Impresso:	Quarta-feira, 10 de Agosto de 2022
Preferências usadas:	Todas as aplicações

Filtro: Filtro 1

Condições de opera	ação				
Refrigerante:	R717		Carga térmica:	250,0	kW
Fluxo de massa na linha:	838,6	kg/h	Capacidade de aquecimento:	323,4	kW
Temperatura de evapora	ção: 0,0	°C	Temperatura de condensação:	45,0	°C
Pressão de evaporação:	4,292	bar	Pressão de condensação:	17,82	bar
Superaquecimento útil:	0	К	Sub-resfriamento:	5,0	к
Superaquecimento adicio	onal: 5,0	К	Sub-resfriamento adicional:	0	К
Temperatura de descarg	a: 146,2	°C			
Sistema e linha:	Sistema de expansão	seco. Linh	a de líquido		
Critérios de seleção:	Velocidade: 0,50 m/s				

Seleção: FIA-65B 32-150 straight-p

Tipo	65B 50-250 straight-p	65B 32-250 straight-p	65B 32-150 straight-p	65B 40-250 straight-p	i5B 40-150 straight-p
NS	50	32	32	40	40
Kv_calc [m^3/h]	47,6	24,7	23,9	26,4	25,5
Kv [m^3/h]	47,6	24,7	23,9	26,4	25,5
DP [bar]	0,001	0,002	0,002	0,002	0,002

Coolselector2

	DT_sat [K]	0,0	0,0	0,0	0,0	0,0
elocidade	e, entrada [m/s]	0,17	0,37	0,37	0,28	0,28
em có	digo selecio	onado para Fl	A-65B 32-150	straight-p		
	la dagampa	nho				
urva u	ie desempe	nno				
		F	IA-65B 32-150	0 straight-p		
	Link	na de líquido	(Sistema de e	xpansão seco.	R717. Filtro).	
	0,00357					/
_ (0,0030 -					
[bar	0.0025					
são	.,					
pres	0,0020					
ade	0,0015					
reng						
Dife	0,0010					
(0,0005					
(0,0000					
	0	50	100 150	200	250 30	0 350

Figura 33 – Resultados obtidos para o dimensionamento do filtro na linha de líquido.

Documentação Técnica das Lâmpadas Utilizadas nas Câmaras

T12

20T12 EM LED/48-4000 IFG 10/1

Philips UniversalFit TLEDs offer unique ballast compatibility working with both electronic (instant-start) and magnetic ballasts while meeting the revised UL1993 standards. The UniversalFit TLEDs are engineered to deliver excellent lighting effects and substantial energy savings while providing unmatched user & installer safety.

Product data

General Information		Warm Up Time to 60% Light (Nom)	0.5 s
Base	G13 [Medium Bi-Pin Fluorescent]	Power Factor (Nom)	0.5
EU RoHS compliant	Yes	Voltage (Nom)	120-277 V
Nominal Lifetime (Nom)	36000 h		
Switching Cycle	50000X	Temperature	
		T-Ambient (Max)	35 °C
Light Technical		T-Ambient (Min)	-20 °C
Color Code	841 [CCT of 4100K (841)]	T-Storage (Max)	65 °C
Beam Angle (Nom)	240 °	T-Storage (Min)	-40 °C
Initial lumen (Nom)	2100 lm	T-Case Maximum (Nom)	65 °C
Color Designation	Cool White (CW)		
Correlated Color Temperature (Nom)	4000 K	Controls and Dimming	
Luminous Efficacy (rated) (Nom)	105.00 lm/W	Dimmable	No
Color Consistency	<6		
Color Rendering Index (Nom)	82	Mechanical and Housing	
LLMF At End Of Nominal Lifetime (Nom)	70 %	Product Length	48 in
		Bulb Shape	Tube, double-ended
Operating and Electrical			
Input Frequency	60 Hz	Approval and Application	
Power (Rated) (Nom)	20 W	Energy Efficiency Label (EEL)	A+
Lamp Current (Max)	220 mA	Energy Saving Product	Yes
Lamp Current (Min)	90 mA	Approbation Marks	RoHS compliance UL certificate
Starting Time (Nom)	0.5 *		

Product Data		Numerator - Packs per outer box	10
Order product name	20T12 EM LED/48-4000 IF G 10/1	Material Nr. (12NC)	929001226504
EAN/UPC - Product	046677463113	Net Weight (Piece)	0.001 kg
Order code	463117		
Numerator - Quantity Per Pack	1		

Warnings and Safety
• Philips LED T8 InstantFit lamps will only operate properly on compatible instant-start ballasts. Please refer to the Philips LED T8 InstantFit
Installation Guide, which can be obtained through your local Philips Sales Representative, or visit www.philips.com/tled

Dimensional drawing

 Product
 D1
 D2
 A1
 A2
 A3

 20112 EM LED/48-4000 IF G 10/1
 26 mm
 28 mm
 1198 mm
 1205 mm
 1212 mm

TLED T12 120-277V 20-34/40W 4000K G13 ND

Photometric data

Documentação Técnica dos Empilhadores Elétricos

RXE 10-16C Empilhador elétrico Esta ficha de especificações, que está em conformidade com a diretriz VDI 2198, fornece os valores técnicos apenas para o dispositivo standard. Pneus diferentes, outros mastros, dispositivos adicionais, etc., podem produzir valores diferentes.

	11	Fabricante			STILL	STILL	STILL	STILL
	1.2	Designação do fabricante			RXE 10	RXE 13	RXE 15	RXE 16C
	1.2.1	Número do modelo do fabricante			5510	5513	5515	5516
fica	1.3	Propulsão			Elétrico	Elétrico	Elétrico	Elétrico
ere	1.4	Modo de operação			Sentado	Sentado	Sentado	Sentado
ad	1.5	Capacidade de caroa	0	ka	1000	1300	1500	1600
ő	1.6	Centro de gravidade da carga	C	mm	500	500	500	500
	1.8	Distância da carga	x	mm	355	355	355	355
	1.9	Distância entre eixos	У	mm	974	1136	1190	1190
	2.1	Peso incl. bateria		kg	2455	2717	2867	3022
20	2.2	Carga sobre o eixo, com carga à frente/atrá	8	kg	2953/502	3459/557	3803/563	3950/672
æ	2.3	Carga sobre o eixo, sem carga à frente/atrá	8	kg	1075/1380	1181/1536	1226/1641	1200/1822
	3.1	Pneus			Superelástico	Superelástico	Superelástico	Superelástico
	3.2	Dimensão dos pneus à frent	9	mm	180/70-8	180/70-8	180/70-8	180/70-8
-10	3.2	Dimensão dos pneus atrá	8	mm	180/60-10	180/60-10	180/60-10	180/60-10
æ	3.5	Número de rodas (x - motrizes) à frente/atrá	8		2/1x	2/1x	2/1x	2/1x
	3.6	Distância entre rodas à frent	e bio	mm	840	840	840	840
	4.1	Inclinação do mastro à frente/atrá	8	۵	3/5	3/5	3/5	3/5
	4.2	Altura do mastro recolhido	h h	mm	2155	2155	2155	2155
	4.3	Elevação livre	h ₂	mm	150	150	150	150
	4.4	Elevação	h	mm	3170	3170	3170	3170
	4.5	Altura do mastro mastro elevado	b ha	mm	3732	3732	3732	3811
	4.7	Altura do topo da cabina	hs	mm	1980	2050	2050	2050
	4.8	Altura do assento	h ₇	mm	953	953	953	953
32	4.19	Comprimento total	-h	mm	2384	2546	2600	2635
iĝ.	4.20	Comprimento até à face dos garfos	12	mm	1584	1746	1800	1835
E.	4.21	Largura total	bi	mm	990	990	990	990
0	4.22	Espessura dos braços do garfo	s/e/I	mm	40/80/800	40/80/800	40/80/800	40/80/800
	4.23	Suporte dos garfos de acordo com as normas ISO 2328, classe			ISO II A	ISO II A	ISO II A	ISO II A
	4.24	Largura do suporte do garfo	ba	mm	980	980	980	980
	4.31	Distância ao solo sob o mastro, com carga	m	mm	84	84	84	84
	4.32	Distância ao solo no centro da distância entre os eixos	m2	mm	94	94	94	94
	4.34.1	Largura do corredor com uma paleta de 1000 x 1200 transversal	Act	mm	2911	3073	3127	3162
	4.34.2	Largura do corredor com uma palete de 800 x 1200 de comprimento	A _{st}	mm	3035	3197	3251	3286
	4.35	Raio de viragem	Wa	mm	1229	1391	1445	1480
	5.1	Velocidade de marcha com/sem carg	3	km/h	12,0/12,5	12,0/12,5	12,0/12,5	12,0/12,5
	5.2	Velocidade de elevação com/sem carg	а —	m/s	0,42/0,52	0,36/0,52	0,33/0,52	0,32/0,52
•	5.3	Velocidade de descida com/sem carg	3	m/s	0,51/0,51	0,51/0,51	0,51/0,51	0,51/0,51
÷.	5.5	Tração com/sem carg	а	N	1911/2121	1947/2216	1729/2032	1676/2004
Ê.	5.6	Tração máxima com/sem carg	3	N	2399/6919	3529/7062	3498/7008	4329/7033
8	5.7	Capacidade subida com/sem carg	3	%	6,1/9,5	4,95/8,4	4,4/7,8	4/7,3
	5.8	Inclinação máxima com/sem carg	a	%	20,9/31	17,6/27,56	16/25,8	14,9/24,4
	5.9	Tempo de aceleração de 15 m com/sem carg	3	S	6,9/6	7/6,2	7,7/6,3	7,7/6,6
_	5.10	Travão de serviço			Hidráulico	Hidráulico	Hidráulico	Hidráulico
	6.1	Motor de tração, potência S3 60 min		kW	4,9	4,9	4,9	4,9
	6.2	Motor de elevação, capacidade a S3 15%		kW	7,6	7,6	7,6	7,6
8	6.3	Bateria de acordo com DIN 43531/35/36 A, B, C, não			DIN 43535 A	DIN 43535 A	DIN 43535 A	DIN 43535 A
in the	6.4	Voltagem da bateria	U	V	24	24	24	24
D.	6.4.1	Capacidade da bateria	Ks	Ah	500	875	1000	1000
Mot	6.5	Peso da bateria		kg	3/2	600	6/6	6/6
	0.0	Consumo de energia de acordo com DIN EN 16796		kwh/h	2,40	2,9	3,1	3,32
	0./	Capacidade de movimentação		t/h	02,0	6U, I	90,7	99,4
	6.8	Consumo energetico baseado na velocidade de manuseamento		kWh/h	3,61	4	4,2	4,39
12	10.1	Pressao de funcionamento para acessorios		Dar	170	200	220	220
Ę	10.2	Volume de oleo para acessorios		dP(A)	23	60.0	60.0	60.0
0	10.7	Niver de pressad sonora L _{P/Z} (posição do operador) -		0B(A)	0.54	0.54	0.54	00,0
	10.7.1	vibrações numatias: aceleração de acordo com a norma EN 13059		111/5*	0.04	0.04	0.04	0.04

¹ Sem cabine. Valores diferentes com cabine

Apêndice 5 – Vistas da Central Para a Conservação de Laranjas e

Folhas de Cálculo

Figura 34 – Vista da instalação refrigerada sem paredes/tetos.

Figura 35 – Vista da central de frio.

Figura 36 – Vista do condensador da instalação.

Figura 37 – Vista de topo da instalação refrigerada.

Figura 38 – Vista da instalação e das câmaras com produto.

	Temperatura de Con Temperatura de Eva	densação 45,0 ºC_	Tar = 31,8 °C			Temperatura	a de Condensa moeratura de	ção 34,0 ºCTa Evaporação 0 ºC	r = 20,8 °C (Bolbo H Tcamara = 8 °C	úmido]
T ISC	1 P [Bar	R-290	lk1/Ke1	S [k]/Kg K]		T [9C]	P II	R-290	[k]/Ka]	S [k1/Kg K]
T01 T001	0 P01 5 P001	4,745 h01 4,745 h001	574,9 s01 583,4 s001	2,372 2,403		T01 T001	0 P01 5 P001	4,745 h01 4,745 h001	574,9 s01 583,4 s001	2,3 2,4
T1 T2s	10 P1 59 P2s	4,745 h1 15,34 h2s	592,2 s1 650,6 s2s	2,435 2,435		T1 T2s 47	10 P1 5 P2s	4,745 h1 11,89 h2s	592,2 s1 637,6 s2s	2,4 2,4
T2 T03	70 P2 45 P03	15,34 h2 15,34 h03	674,6 s2 321.8 s03	2,507		T2 57 T03	,1 P2 34 P03	11,89 h2 11.89 h03	657,7 s2 290 s03	2,49
T3 T4	40 P3 0 P4	15,34 h3 4,745 h4	307,1 s3 307,1 s4	1,358 1,392		T3 T4	34 P3 0 P4	11,89 h3 4,745 h4	290 s3 290 s4	1,30 1,32
Subarrefecin	nento [K] 5	Tcond	45			Subarrefecimento (I	a o	Tcond	34	
Sobreaquecin	mento [K] 10	Tevap	0			Sobreaquecimento [K] 10	Tevap	0	
R_isentróp	ico [%] 0,70873786	10	51,6			R_isentrópico [%]	0,69313	10	51,8	
Caudal_Máss W. cor	ico [kg/s] 0,90481	Qevap	250 332.519			Caudal_Mássico [kg/ W. comp	s] 0,85208 55,81118	Qevap	250 313.3095	
COP_R	eal 3,02960526	quona	552,525			COP_Real	3,948856	quanta	515,5055	Neste conden
COP_Ca R_Exerge	mot 10,8754849 ético 0,27857197					COP_Carnot R_Exergético	10,87548 0,363097			
**	Compress	or list	lt a		ļ	-	Compre	ssor	lin.	
304,95	0,90481 2,435	2 n1 2,507 592	,2 674,6			304,95 0,852	08 2,435	2,497 592	1,2 657,7	
Xdest						Xdest				
19,86645	ŋli					16,11017	ηll			
X2-1	0,73353883				50,46864	X2-1	0,711345			
54,690192						39,70101				
T0 m	Evaporador	4 6001	Tf = 7,22	7,22		T0 meyan	Evaporador S001	S4 6001	Tf = 7,22	7,22
304,95	0,90481 2,403	1,392 583	,4 307,1 2	80,37		304,95 0,852	08 2,403	1,329 583	1,4 290 28	10,37
Xdest						Xdest				
7,0405957	ηII 0.75686924					7,152319	ηII 0.75396			
X8-1						X8-1				
28,958062	0,75686924					29,06979	ηι 0,75396			
Qevap 21,917466						Qevap 21,91747				
	Condensador		Tq = 33	33			Condensador		Tq = 33	33
T0 m	cond S4 S	5 h4	h5 Tq	06.15		T0 mcond	S4	55 h4	h5 Tq	16.15
304,93	0,00401 2,307	2,330 074	,0 307,1 3			Udent 0,852	uu 2,497	1,303 037	,, 250 St	
Xdest 14,18022	ηll					2,350329	ηll			
ve.1	0,08417675					V9.1	0,343188			
15,483578	ηli					3,578391	ηll			
Qcond	0,08417675					Qcond	0,343188			
1,3033572						1,228063				
	Válvula de Evo	ansão					Válvula de F	xpansão		
T0 m	_alta S3 S	4 h3	h4			TO m_alta	\$3	S4 h3	h4	
304,95	0,90481 1,358	1,392 307,	,1 307,1			304,95 0,852	08 1,305	1,329 2	90 290	
Xdest 9.3813789	possibilidade de se conve	rter energia em tr	abalho útil.			Xdest possibilid	ade de se con	verter energia em t	rabalho útil.	

Figura 39 – Folha de cálculo com o sistema aplicável a utilizar o R-290.

Figura 40 – Folha de cálculo com o sistema aplicável a utilizar o R-1270.

remperati	de Condensação 45,0 °C_ ra de Evaporação 0 °C	Tar = 31,8 °C Tcamara = 8 °C		Temperatura de Condensação 34,0 °CTar = 20,8 °C [Bolbo Húmido Temperatura de Evaporação 0 °CTcamara = 8 °C
	R-1234ze[E]			R-1234ze[E]
T [ºC]	P[Bar] h[k.	J/Kg] S [kJ/Kg	3.K]	T [°C] P [Bar] h [kJ/Kg] S [kJ/K T01 0 P01 2 165 b01 284 2 c01
1 5 P001	2,165 h001	388.6 <001	1,69	T001 5 P001 2,165 h001 388.6 s001
10 P1	2,165 h1	393.1 s1	1.706	T1 10 P1 2,165 h1 393,1 s1
52,4 P2s	8,761 h2s	420,5 s2s	1,706	T2s 42,2 P2s 6,488 h2s 414,6 s2s
62,4 P2	8,761 h2	431,2 s2	1,738	T2 51,3 P2 6,488 h2 423,8 s2
45 P03	8,761 h03	262,3 s03	1,209	T03 34 P03 6,488 h03 246,4 s03
40 P3	8,761 h3	255 s3	1,186	T3 34 P3 6,488 h3 246,4 s3
0 P4	2,165 h4	255 s4	1,201	T4 0 P4 2,165 h4 246,4 s4
ubarrefecimento [K]	5 Tcond	45		Subarrefecimento [K] 0 Tcond 34
breaquecimento [K]	10 Tevap	0		Sobreaquecimento [K] 10 Tevap 0
Sobread. Util [K]	5 10	31,8		Sobreaq. Util [K] 5 10 31,8
K_ISENTROPICO [%] U, /	.916	250		R_Isentropico [%] 0,70033
W comp 71.1	120 Qevap	200		Caudal_Massico (kg/s) 1,75009 Qevap 250
COR Real 3.1	0491 QC010	529,7130		COR Real 4 020772
COP_real 3,1	1013			COP_real 4,039775
R Evergético 0.20	340			R Everation 0.371457
N_EXEIGENCO 0,20	1303			1-CKEBEILCO 0,371437
C	mpressor			Compressor
m_comp1 S1	S2 h1	h2		T0 m_comp1 S1 S2 h1 h2
04,95 1,87126	,706 1,738 393,1	431,2		304,95 1,75809 1,706 1,735 393,1 423,8
est	_			Xdest
,26048 η ΙΙ				15,54773 nll
0,74	1874		Xdest	0,711936
-1			47,37549	X2-1
,03443				36,42333
Evapo	ador	Tf = 7,22 7,22		Evaporador Tf = 7,22 7,22
mevap S001	54 h001	h4 Tf		T0 mevap 5001 54 h001 h4 Tf
304,95 1,87126	1,69 1,201 388,6	255 280,37		304,95 1,75809 1,69 1,17 388,6 246,4 280,37
est				Xdest
25479 ηll				6,869454 ηll
0,75	1657			0,761369
1				X8-1
				28,78692 nii
,04295 ηll	663			0,761369
04295 ηll 0,75	1657			0.5.45
04295 ηΙΙ 0,75 'ap 91747	1657			Qevap 21.91747
9,04295 qll 0,75 I,91747	1657			Qevap 21,91747
ر,04295 קاا 0,75 پ91747 Conder	ador	Tq = 33 33		Qevap 21,91747 Condensador Tg = 33 33
ر04295 קاا 0,75 9,91747 Conder mcond \$4	1657 iador 55 h4	Tq = 33 33 h5 Tq		Qevap 21,91747 T0 mcond S4 S5 h4 h5 Tq
1,04295 nli 0,75 vap 1,91747 Conder <u>mcond S4</u> 304,95 1,87126	4657 .ador .738 1,186 431,2	Tq = 33 33 h5 Tq 255 306,15		Qevap 21,91747 Condensador Tq = 33 33 T0 mcond [54 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15
1,04295 nli 0,75 vap ,91747 Conder mcond 54 304,95 1,87126 :	4657 ador S5 h4 7,738 1,186 431,2	Tq = 33 33 h5 Tq 255 306,15		Condensador Tq = 33 33 T0 Incond S5 In4 In5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15
,04295 nli 2007 1,91747 Conder 1 mcond 54 304,95 1,87126 :	ador SS h4 ,738 1,186 431,2	Tq = 33 33 h5 Tq 255 306,15		Condensador Tq = 33 33 T0 mcond 54 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 30 3
0,04295 nll 0,75 vap 91747 Conder 1,87126 est (42994 nll	4657 ador 55 h4 7,738 1,186 431,2	Tq ≈ 33 33 h5 Tq 255 306,15		Qevap 21,91747 Condensador Tq = 33 33 T0 mcond S4 S5 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nll
04295 nli nap 91747 Conder 9104,95 1,87126 : st 42994 nli	1657 14607 15 h4 738 1,186 431,2 783	Tq = 33 33 h5 Tq 255 306,15		Qevap 21,91747 Tq = 33 33 To moond S4 S5 h4 N5 Tq 304,95 1,75809 1,755 1,159 423,8 246,4 306,15 Xdest 1,852065 njll 0,397613 0,397613 0 0
04295 nll ap 91747 <u>mconders</u> 104,95 1,87126 : st 42994 nll 42994 nll	14657 13 65 h4 ,738 1,186 431,2 783	Tq = 33 33 h5 Tq 255 306,15		Condensador Tq = 33 33 T0 mcond 54 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nll 0,397613 X8-1 1 1
04295 nli ap 0,75 91747 Conder incond 54 104,95 1,87126 : st 42994 nli 0,08 1 72231 nli	1657 13dor 155 h4 7738 1,186 431,2 7783	Tq = 33 33 15 Tq 255 306,15		Qevap 21,91747 Condensador Tq = 33 33 T0 mcond S4 S5 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nll 0,397613 X8-1 3,074543 nll
04295 nll ap 91747 Conder moond 54 1004,95 1,87126 : st 42994 nll 0,08 1 72231 nll 0,08	4657 ador 55 h4 783 1,186 431,2 783	Tq = 33 33 h5 Tq 255 306,15		Qevap 21,91747 T = 33 33 TO mcond 54 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 n II 0,397613 X8-1 3,074543 n II 0,397613
04295 nli ap 0,75 91747 Conden mcond 54 304,95 1,87126 : st 42994 nli 0,08 1 72231 nli 0,08	14657 13 65 h4 ,738 1,186 431,2 1783 783	Tq = 33 33 h5 Tq : 255 306,15		Qevap 21,91747 Condensador Tq = 33 33 T0 mcond S4 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 n/li 0,397613 X8-1 3,074543 n/li 0,397613 Qcond 4,233,270
14295 nll ap 11747 00,75 11747 00,95 1,87126 : t 12994 nll 0,08 '2231 nll 0,08 '2231 nll 0,08	14657 13607 155 14 1,186 431,2 1783 1783	Tq = 33 33 15 Tq 255 306,15		Qevap 21,91747 To mcond S4 S5 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nll 0,397613 X8-1 3,074543 nll 0,397613 Qcond 1,222478
0,4295 nli 0,75 0,91747 Conder mcond S4 304,95 1,87126 : 4,2994 nli 0,08 1 1,72231 nli 0,08 992369	4657 55 h4 738 1,186 431,2 783 1783	Tq = 33 33 h5 Tq 255 306,15		Qevap 21,91747 Tq = 33 33 T0 mcond 54 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,822065 nll 0,397613 X8-1 3,074543 nll 0,397613 Qcond 1,222478
,04295 nli 9,1747 vap ,91747 Conder mond S4 304,95 1,87126 : est ,42994 nli ,42994 nli 0,08 1 0,08 ond 0,08 ond 0,08 Válvu	4657 55 h4 738 1,186 431,2 783 783 8 de Expansão	Tq = 33 33 h5 Tq 255 306,15		Condensador Tg = 33 33 10 mcond 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest
04295 nll yap y1747 Conden mcond S4 304,95 1,87126 : st ,42994 nll 0,08 1 ,72231 nll 0,08 1 y2369 Válvu m_aita S3	1657 13007 155 h4 1,186 431,2 1783 1783 1783 1783 166 Expansão 154 h3	Tq = 33 33 h5 Tq 255 306,15		Condensador Tq = 33 33 10 mcond 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nli 0,397613
0,4295 nli o,75	4657 sador 55 h4 738 1,186 431,2 1783 1785 178	Tq = 33 33 H5 Tq 255 306,15		Condensador Tq = 33 33 To mcond 54 55 h4 h5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nil 0,397613 423,8 246,4 306,15 X8-1 0,397613 0,397613 0,397613 423,8 424,4 423,8 Qcond 1,222478 1,222478 1,17 246,4 246,4
04295 nll rap 91747 Condei mcond [54 304,95 1,87126 : st 42994 nll 0,08 1 72231 nll 0,08 0,08 1 22369 Válvu m_atta [53] 304,95 1,87126 : Readmenta [gu	14657 1307 155 144 1,738 1,186 131,2 1783 146 1,201 255 146 1,201 255 146 1,201 255 146 1,201 255 147 1,202 1,20	Tq = 33 33 Ih5 Tq 255 306,15		Qevap 21,91747 Tq = 33 33 To mcond S4 S5 Ivit H5 Tq 304,95 1,75809 1,735 1,159 423,8 246,4 306,15 Xdest 1,852065 nil
04295 nll ap 91747 Conder 1747 Conder 142994 nll 04,95 1,87126 : st 42994 nll 0,08 1 72231 nll 0,08 1 72231 nll 0,08 1 92369 Válvu (m_alta [S3 04,95 1,87126 : m_alta [S4 04,95 1,97126 : m_alta [S4 04,97126 : m_a	iador iss h4 738 1,186 431,2 7783 1 186 431,2 7783 1 186 18 126 1,201 255 126 126 1,201 255 126 expon Na vibrua de expa 126 1,201 255 126 expon Na vibrua de expa	Tq = 33 33 In5 Tq 255 306,15 1 255 3 1 1 2 1 2 1 3		Válvula de Expansão Válvula de Expansão 1,22478

Figura 41 – Folha de cálculo com o sistema aplicável a utilizar o R-1234ze[E].

	Temperatura de Co Temperatura de	ondensação 45,0 ° Evaporação 0 °C	PCTar = 31,8 PC Tcamara = 8 PC	
T [90	:] P [Ba	R-744 r] h	[kJ/Kg] S	kJ/Kg.K]
T01	0 P01	34,85 h01	430,9 s01	1,845
T001 T1	5 P001 10 P1	34,85 h001 34,85 h1	439,9 s001 447,4 s1	1,877
T2s	102 P2s	110,8 h2s	499,9 s2s	1,905
T2	113,7 P2	110,8 h2	516,6 s2	1,948
T03	45 P03	110,8 h03	324,3 s03	1,386
13 T4	45 P3 0 P4	34,85 h4	324,3 53 324,3 54	1,386
Subarrefecin	mento (K) 5	Tcond	45	
Sobreaquecir	mento [K] 10	Tevap	0	
Sobreaq. I	Útil [K] 5	то	31,8	
R_isentróp	bico [%] 0,75867			
Caudal_Máss	sico [kg/s] 2,16263	Qevap	250	
COP B	mp 149,65 teal 1.507171	Qcond	415,8737	
COP Ca	rnot 10,87548	3 em pa	ralelo	
R_Exerge	ético 0,138584			
	Compre	ssor		
T0 m	1_comp1 51 5	2 h1	h2	
304,95	2,16263 1,905	1,948 447	,4 516,6	
Xdest				
28,35824	ηII			
	0,810508			
X2-1				
111,2337				
	Evaporador		Tf = 7,22 7,	22
TO m	nevap SOO1 S	4 h001	h4 Tf	
304,95	2,16263 1,877	1,455 439	,9 324,3 280,	37
Xdest				
6,388978	ηII			
	0,774292			
X8-1	- 11			
28,30644	ηli 0.774292			
Qevap	0,774232			
21,91747				
	Condonsador		To = 22	
то Іт	ncond S4 S	5 h4	h5 To	55
304,95	2,16263 1,948	1,386 516	,6 324,3 306,	15
Xdest				
43,60803	ηII 0.036033			1
X8-1	0,050033			
45,23811	ηll			1
	0,036033			
Qcond				
1,030078				
	Válvula de E	xpansão		
T0 m	n_alta S3 S	4 h3	h4	
304,95	2,16263 1,386	1,455 324	,3 324,3	
Xdest	ná possibilidade de se	o. Na valvula de e converter energia	em trabalho	
45,50508		útil.		

Figura 42 – Folha de cálculo com o sistema aplicável a utilizar o R-744.

	Temperatura de O	ondensação 45,0	PCTar = 31,8 PC			Temperatura	de Condensação	34,0 ºCTa	ar = 20,8 ºC (Bolbo H	úmido]
	Temperatura de	Evaporação 0 ºC_	Tcamara = 8 ºC			Tem	peratura de Evaj	ooração 0 ºC	Tcamara = 8 ºC	
		R-515B						R-515B		
T [9	C] P (Bi	ar] h	[kJ/Kg] S	[kJ/Kg.K]		T [ºC]	P [Bar]		h [kJ/Kg]	S [kJ/Kg.K]
L	0 P01	2,161 h01	378,7 s01	1,654	4	T01	0 P01	2,161 h01	378,7 s01	1,65
01	5 P001	2,161 h001	383 s001	1,67	7	T001	5 P001	2,161 h001	383 s001	1,6
	10 P1	2,161 h1	387,5 s1	1,686	5	T1 1	0 P1	2,161 h1	387,5 s1	1,68
s	51,7 P2s	8,743 h2s	414,2 s2s	1,686	5	T2s 41,	7 P2s	6,474 h2s	408,5 s2s	1,68
	62 P2	8,743 h2	425,1 s2	1,719	9	T2 50,	9 P2	6,474 h2	417,7 s2	1,71
3	45 P03	8,743 h03	261,5 s03	1,206	5	T03 3	4 P03	6,474 h03	245,8 s03	1,15
1	40 P3	8,743 h3	254,3 s3	1,183	3	тз з	4 P3	6,474 h3	245,8 s3	1,15
	0 P4	2,161 h4	254,3 s4	1,199	9	T4	0 P4	2,161 h4	245,8 s4	1,16
ubarrefeci	mento [K] 5	Tcond	45			Subarrefecimento [K]	0	Tcond	34	
breaqueci	mento [K] 10	Tevap	0			Sobreaquecimento [K]	10	Tevap	0	
Sobreaq.	Útil (K) 5	то	31,8			Sobreaq. Útil [K]	5	то	31,8	
R_isentró	oico [%] 0,71011					R_isentrópico [%]	0,69536			
udal_Más	sico [kg/s] 1,94250	Qevap	250			Caudal_Mássico [kg/s	1,82216	Qevap	250	
W co	mp 73,03807	Qcond	331,7793			W comp	55,02915	Qcond	313,2289	
COP	Real 3.057007					COP Real	3,95389			
COP C	rnot 10.87548					COP Carnot	10.87548			
R Exerc	ético 0.281092					R Exergético	0.36356			
	0,202032						-,			
	Compr	essor			1		Compresso	r		
	n comp1 S1	52 h1	h2			TO m comp1	S1 S2	h1	h2	
304.95	1.94250 1.686	1.719 387	5 425.1		ľ	304.95 1 8221	6 1.686	1.715 39	37.5 417.7	
	2,000	-,	,			1,011	2,000	-,		
loct						Vdort				
0 5 4 9 0 9	nll					16 11 424	oll			
9,34000	0 733358				Vdest	10,11434	0 707167			
	0,752556				AD OP255	Y2 1	0,707187			
2-1					49,08355	X2-1 20.01.401				
55,49					L	38,91481				
	Europeador		7(-7.2) 7	22			Fueneradas		76 - 7.22	7.22
<u> </u>	Evaporador	the line of	IT = 7,22 7,	22		70	Evaporador	liant	11 = 7,22	1,22
0 r	nevap SOO1 S	54 h001	h4 If			TO mevap	5001 54	h001	h4 If	
304,95	1,94250 1,67	1,199 3	33 254,3 280,	37		304,95 1,8221	6 1,67	1,168	383 245,8 2	80,37
dest						Xdest				
,086904	ηll					7,027322	ηli			
	0,755661						0,757216			
3-1						X8-1				
9,00437	ηll					28,94479	ηll			
	0,755661						0,757216			
evap						Qevap				
1,91747						21,91747				
	Condensador	•	Tq = 33	33		(Condensador		Tq = 40	33
0 r	ncond S4 S	55 h4	h5 Tq			TO mcond	S4 S5	h4	h5 Tq	
304,95	1,94250 1,719	1,183 425	,1 254,3 306,	15		304,95 1,8221	6 1,715	1,157 41	17,7 245,8 3	06,15
dest						Xdest				
2,97072	ηll					1,938981	ηll			
	0,091125						0,387702			
8-1						X8-1				
4.27117	pli					3.166727	nll			
	0.091125					-,	0 387702			
bood	0,091125					Ocond	0,307702			
200458						1 227747				
,300458					•	1,227/47				
					I					
_	Váhaula da	Evenencia					Váhula do Ever	ncão		
	vaivula de	Expansao	line .			TO 1	valvula de Expa	IIS40	1.4	
u r	n_aita S3 S	54 h3	n4			10 m_aita	53 54	h3	h4	
304,95	1,94250 1,183	1,199 254	,3 254,3			304,95 1,8221	6 1,157	1,168 24	5,8 245,8	
	Rendimento igual a ze	ro. Na válvula de e	xpansão não			Rendimente	igual a zero. Na	válvula de exc	oansão não há	
dest	na possibilidade de se	converter energia	em trabalho			Xdest	de de se convert	er energia em	trabalho útil	
177955		útil				6.112336	ac ac ac convent	er energia enti	the statile statil	

Figura 43 – Folha de cálculo com o sistema aplicável a utilizar o R-515B.

NVL1 NVL1 NVL1 T [*C] P [Bar] h [kl/Kg] S [kl/Kg,K] T01 0 P01 4,292 h01 1462 s001 5,619 T01 0 P001 4,292 h01 1462 s001 5,619 T1 5 P1 4,292 h01 1462 s001 5,672 T2 11,2 P2s 17,82 h2s 1660 s2s 5,672 T2 146,2 P2 17,82 h2s 1660 s2s 5,672 T03 45 P03 17,82 h2s 1660 s2s 5,672 T03 45 P03 17,82 h2 145,3 s03 1,721 T03 46 P03 17,82 h3 390,5 s3 1,643 T4 0 P4 4,292 h4 301,5 s3 1,643 T4 0 P4 4,292 h4 361 s3 T4 0 P4 4,292 h4 361 s4	S [kJ/Kg.K] 5,619 5,619 5,672
I (Cc) (F) (a) (F) (a) <th< td=""><td>5,619 5,619 5,672</td></th<>	5,619 5,619 5,672
No. O FOZ AL22 HOZ AUX ST AUX ST <thaux st<="" td="" th<=""><td>5,619 5,672</td></thaux>	5,619 5,672
No.1 O F Vol. 4,222 hol. 1402 8002 5,672 Ti S P I 4,722 hol. 1402 8002	5,672
T2s 112 P3 17,82 h2s 160 s2s 5,672 T2s 86,4 P2 13,120 h2s 1638 s2s T03 45 P03 17,82 h03 415,3 s03 1,721 T03 34 P03 13,120 h03 361 s03 T3 40 P4 4,292 h4 390,5 s4 1,697 T4 0 P4 4,292 h4 361 s3 Subarrefecimento [K] 5 Tcond 45 Subarrefecimento [K] 0 Tcond 34	3,012
T2 146,2 17,8 179 52 5,894 T2 114,5 10,10	5 672
TO3 45 P03 17,82 h3 17,93 k3 1,721 TO3 34 P03 13,120 h3 361 s03 T3 40 P3 17,82 h3 390,5 s3 1,643 T3 34 P3 13,120 h3 361 s03 T4 0 P4 4,292 h4 390,5 s4 1,697 T4 0 P4 4,292 h4 361 s4 Subarrefecimento [K] Subarrefecimento [K] 0 Tcond 34	5,866
T3 40 P3 17,82 h3 30,5 s3 1,643 T3 34 P3 13,120 h3 361 s3 T4 0 P4 4,292 h4 390,5 s4 1,697 T4 0 P4 4,292 h4 361 s3 Subarrefecimento [K] 5 Tcond 45 Subarrefecimento [K] 0 Tcond 34	1 55
T4 0 P4 4,292 h4 390,5 s4 1,697 T4 0 P4 4,292 h4 361 s4 Subarrefecimento [K] 5 Toond 45 Subarrefecimento [K] 0 Toond 34	1,55
Subarrefecimento [K] 5 Tcond 45 Subarrefecimento [K] 0 Tcond 34	1.589
Subarrelecimento (k) 5 ricono 45 Subarrelecimento (k) 0 ricono 54	
February administration (V) F Taura 0	
soureaquecimiento (n) 5 revep 0 soureaquecimiento (n) 5 revep 0	
Sourced, Out [K] 0 10 51,0 Caddal_CVapoladol 0,070700 Sourced, Out [K] 0 10 51,0 D isoart-foice [K] 0.00077 D isoart-foice [K] 0.00031	
rsentropico (%) 0,7027 r	
Caudai_massico (kg/s) 0,2332 Qevap 230 Caudai_massico (kg/s) 0,22707 Qevap 230	
W_COMP //055 QCOM 325,501/ 894 W_COMP 55,15551 QCOM 505,124	
CUP_neal 3,360120 0,12211/ CUP_neal 4,453510	
CUP_calliot 10,67346 1,55 CUP_calliot 10,67346	
R_Exergetico 0,510802 b2,2 b0,/ R_Exergetico 0,408213	
Compressor Compressor	
T0 m_comp1 S1 S2 h1 h2 79,51913 T0 m_comp1 S1 S2 h1 h2	
304,95 0,23332 5,672 5,894 1476 1779 304,95 0,22707 5,672 5,866 1476 1710	
Xdest Xdest	
15,79536 nii 13,43331 nii	
0,776571 Xdest 0,747178	x
X2-1 47,00349 X2-1	2
54,89993 39,7002	
Evaporador Tf = 7,22 7,22 T0 mevap S001 S4 h001 h4 Tf	7,22
304,95 0,23332 5,619 1,697 1462 390,5 280,37 304,95 0,22707 5,619 1,589 1462 361 28	0,37
Xriest Xriest	
7 13584 nli 7 13537 nli	
0.75444 0.754401	
X8-1 X8-1	
25,05251 III 25,05275 III 0.75444	
Operan Operan Operan	
21,91747 21,91747	
	_
Condensador Tq = 33 33 Condensador Tq = 40	33
T0 mcond S4 S5 h4 h5 Tq T0 mcond S4 S5 h4 h5 Tq	
304,95 0,23332 5,894 1,643 1779 390,5 306,15 304,95 0,22707 5,866 1,550 1710 361 30	6,15
Xdest Xdest	1
20,23218 nii 6,255267 nii	1
0,059056 0,161032	1
85-1 X8-1	
21,5017aa dii 2,422304 dii	
u,U\$9056 0,161032	
Licond Cond	1
1,2095/	
·	
Válvula de Expansão Válvula de Expansão	
TO m_alta S3 S4 h3 h4 TO m_alta S3 S4 h3 h4	
304,95 0,2332 1,643 1,697 390,5 390,5 390,5 304,95 0,22707 1,55 1,589 361 361	
Pandimento invol a saro. Na véhada de avenanção não há	
Xdest variable expansion normal texplansion normal	
3,842114 postoniume de se converter energia em trabaino dui.	

Figura 44 – Folha de cálculo com o sistema aplicável a utilizar o R-717.

			Cálculo d	e Cargas Térmio	as				
				-					
			(Câmara 1					
Carga Térmica	Comprimento (m)	Largura (m)	Altura (m)	Área (m^2)	Tint (ºC)	Tinf (ºC)	U (W/m^2.k)	Delta T (ºC)	Q (W)
Norte	Х	15	5	75	4,44	31,8	0,29	27,36	595,08
Sul	х	15	5	75	4,44	33,8	0,29	29,36	638,58
Este	х	30	5	150	4,44	34,8	0,29	30,36	1320,66
Oeste	х	30	5	150	4,44	4,44	0,29	0	0
Tecto	30	15	х	450	4,44	36,8	0,29	32,36	4222,98
Chão	30	15	х	450	4,44	31,8	0,29	27,36	3570,48
								Soma	10347,78

			(Câmara 2					
Carga Térmica	Comprimento (m)	Largura (m)	Altura (m)	Área (m^2)	Tint (ºC)	Tinf (ºC)	U (W/m^2.k)	Delta T (ºC)	Q (W)
Norte	Х	15	5	75	4,44	31,8	0,29	27,36	595,08
Sul	х	15	5	75	4,44	31,8	0,29	27,36	595,08
Este	х	30	5	150	4,44	4,44	0,29	0	0
Oeste	х	30	5	150	4,44	4,44	0,29	0	0
Tecto	30	15	х	450	4,44	36,8	0,29	32,36	4222,98
Chão	30	15	Х	450	4,44	31,8	0,29	27,36	3570,48
								Soma	8983,62

			(Câmara 3					
Carga Térmica	Comprimento (m)	Largura (m)	Altura (m)	Área (m^2)	Tint (ºC)	Tinf (ºC)	U (W/m^2.k)	Delta T (ºC)	Q (W)
Norte	Х	15	5	75	4,44	31,8	0,29	27,36	595,08
Sul	Х	15	5	75	4,44	33,8	0,29	29,36	638,58
Este	Х	30	5	150	4,44	4,44	0,29	0	0
Oeste	х	30	5	150	4,44	34,8	0,29	30,36	1320,66
Tecto	30	15	х	450	4,44	36,8	0,29	32,36	4222,98
Chão	30	15	х	450	4,44	31,8	0,29	27,36	3570,48
	••							Soma	10347,78

	Cálculo d	de Cargas T	érmicas do	Produto		
	QEC	Q _{Env}	Qine	Qinj	Qpd	Mpy
Câmara 1	83,33	10,35	2,39	2,56	41,52	34410,20
Câmara 2	83,33	8,98	2,39	2,56	42,89	35545,71
Câmara 3	83,33	10,35	2,39	2,56	41,52	34410,20

Volume	Interno das Palotes [mm^3]
498713600	
Massa esp	ecífica das laranjas [kg/mm^3]
0,00000044	
Qui	los de laranja por palote
219,433984	
	Número de palotes
Câmara 1	157
Câmara 2	162
Câmara 3	157

Dimensão dos palotes [m] Comprimento Largura Altura 1 1,2 0,76

	Cálculo Cargas In	ternas		[
	Ocupação					
Pessoas	Calor/pessoa	Calor	rocupação			
	3	0,24536	0,73608			
Equipamentos						
Empilhador	Carbon Términan IIA			Users Frankrausses		
Potencia (kw)	Gannos Termicos (K)	V/KWJ Poter		Horas Funcionamento		
/	,6	0,15	1,14			
		Eva	aporador			
Potência [kW]	Ganhos Térmicos [k	W/kW] Potêr	ncia Térmica [kW]	Horas Funcionamento		
1	,4	0,25	1,05	16	0,7	
		lluminação				
Iluminância [Lux]	Superfície [m^2]	Índio	e Local	Coeficiente de utilização		
10	00	450	3,03	0,862		
Fluxo Luminoso [lm]	fluxo lâmpada [lm]	Nº Lâ	impadas	Nº Lâmpadas arredondado	Potência [kW]	Potência de Consumo [kW]
17077	,5	2100	8,13	10	0,02	0,2

Figura 45 – Folha de cálculo inerente ao balanço térmico

						Pela Danfoss					
0,752	0,366	0,002	2	1 0,1	0,084	2,1	2	1 0,18			Linha de líquido
0,211	0,205	0,003	3	0 0	0,042	2,1		1 0,16			Condensador/Depósito
0,692	0,46	0,004	4	0	0,06	1		3 0,396	1,8		Descarga
0,610	0,243	0,003	3	0	0,096	1,2	4	3 0,144	1,8		Aspiração
0,450	0,152	0,002	2	0	0	з	0	0,15	1,5		Aspiração Evaporador Câmara 3
0,180	0,122	0,002	2	0	0,06	ω		0,06	1,5		Aspiração Evaporador Câmara 2
0,244	0,092	0,002	2	0	0	3	0	50,0	1,5		Aspiração Evaporador Câmara 1
0,148	0,065	0,004	4	1 0,001	0	8,0	0	5 0,06	0,6		Líquido Evaporador Câmara 3
0,111	0,057	0,004	4	1 0,001	0,016	0,8		5 0,036	0,6	<u> </u>	Líquido Evaporador Câmara 2
0,107	0,041	0,004	4	1 0,001	0	8,0	0	5 0,036	\$ 0,6		Líquido Evaporador Câmara 1
Inerentes à Tubagem [k]	[K]	Dt [K]	ΩΩ	Dt [K]	t[K] №	Kv [m] Dt	₽	Dt [K]	Kv [m]	ΒŪΝ	Ramal
Perda de Carga com Adição dos Valores	Perda de Carga Total	nuito reduzidos pelo	Válvulas Vários (Valore Coolselector2 (valores	coolselector2 e coolpack)	Filtr		T's			Curvas	
			18444,1						0,0001102	579,9 571,4	T 40 ºC subarrefecido T 45 ºC saturado
								15	viscosidade c	massa específica	
								•			
32	0,386	0,184	17663,8	0,026 780,4	0,002677376	98272,52722	0,03735	0,032008655	15,465	15465	Linha de líquido
32	0,006	0,003	0,0	0,026 309,1	0,002677376	101627,5714	0,03735	0,032245852	6,216	6216	Condensador/Depósito
20	0,083	0,040	2275,5	0,037 1747,6	0,004387889	59963,34392	0,02279	0,018360279	14,85	14850	Líquido Evaporador Câmara 3
20	0,054	0,026	2275,5	0,037 323,6	0,004387889	59963,34392	0,02279	0,018360279	2,75	2750	Líquido Evaporador Câmara 2
20	0,066	0,032	2275,5	0,037 886,2	0,004387889	59963,34392	0,02279	0,018360279	7,53	7530	Líquido Evaporador Câmara 1
Diâmetro Nominal [mm]	dT [K]	dP total [Bar]	dP altura [Pa]	dP [Pa]	f	Reynolds e	Diâmetros comerciais	d Diâmetros] Compriment	Comprimento tubagem [mm	Tubagens de Líquido
								1			
					0,1		17,78758658	2 0,032413417	3241,34172	58,41	T 146,2 ºC sobreaquecido
					r [K]	denssação [bar] d] Impacto pressão de con] dP altura [bar	dP altura [Pa	massa específica	
							50	0,23196	6,598	6598	Descarga
							65	0,3665	18,325	18325	Aspiração
							50	0,298	14,9	14900	Aspiração Evaporador Câmara 3
							50	0,058	2,9	2900	Aspiração Evaporador Câmara 2
							50	0,152	7,6	7600	Aspiração Evaporador Câmara 1
							Diâmetro Nominal [mm	Perda de Carga [K]	Comp. [m]	Comprimento de tubagem [mm]	Troços de Aspiração e Descarga

Figura 46 – Folha de cálculo inerente às tubagens.

Anexo 1 – Análise aos Custos de Investimento

Para os custos de investimento selecionaram-se os principais equipamentos de forma a construir um valor monetário simplificado para cada sistema. Conforme referido no subcapítulo (<u>4.4.1</u>) <u>Custos de Investimento</u>, os principais equipamentos, nomeadamente, compressor, evaporador, condensador e dispositivo de expansão, foram selecionados com o auxílio dos *Softwares* disponibilizados pela Bitzer, Güntner, Danfoss e pelo catálogo da Centauro.

Compressor Para os Fluidos R-290 e R-1270

Valores de entrada CSHP8573-140P Compressor modelo 2 Refrigerante R290 Temperatura de referência Ponto de Orvalho 45.0°C Temp. Evaporação SST 0°C 70,0°C Temp. Condensação SDT 45,0 °C Sub resfriamento líquido 5,00 K 40.0°C (após o condensador) 10.0°C Superaquecimento do gás 10,00 K Succão Superaquecimento útil 5,00 K 5.0°C Modo de operação Padrão CSHP8573-140P (100%) 0.0°C Tensão Elétrica 400V-3-50Hz Regulador de capacidade 100% Resfriamento adicional Automatico Máxima temp. de descarga 110,0 °C

Seleção: Compressores Parafuso Compactos CS // CSV

Resultado	
Compressor	CSHP8573-140P-40P
Etapas de capacidade	100%
Capac. Frigorífica	289 kW
Capac. Frigorífica *	275 kW
Capacidade Evaporador	280 kW
Potência absorvida	85,3 kW
Corrente (400V)	145,8 A
Faixa de Tensão	380-415V
Capacidade do Condensador	375 kW
COP/EER	3,29
COP/EER*	3,22
Vazão em massa LP	3663 kg/h
Vazão em massa HP	3663 kg/h
Modo de operação	Padrão
Temp. do líquido	40,0 °C
Temp. gás de Descarga não	70,0 °C
resfriado	

Dados Provisórios

compressor disponível com acordo individual com a BITZER

Temperatura do gás de descarga pelo menos 30K (54ºF) acima da temperatura de condensação.

Considerar as Normas Nacionais p/ o uso de refrigerantes inflamáveis

*de acordo c/ EN12900 (superaquecimento na sucção de 10K, sem sub-resfriamento). Ver Dados Técnicos/ Nota

Limites de aplicação Standard CSHP8573-140

Dados Técnicos: CSHP8573-140P

Dimensões e Conexões

Dados Técnicos

dados técnico	
Deslocamento (2900 RPM 50 Hz)	410 m³/h
Deslocamento (3500 RPM 60 Hz)	495 m³/h
Peso	870 kg
Pressão máxima (LP/H)	19 / 28 bar
Conexão da linha de sucção	DN 100
Conexão da linha de descarga	76 mm - 3 1/8"
Tipo de óleo R290	SHC230 (Standard)
dados motor	
Motor versão	1
Voltagem do motor (outras sob consulta)	380-415V PW-3-50Hz
Máxima corrente de trabalho	246.0 A
Relação de torque	50/50
Corrente de partida (rotor bloqueado)	665.0 A D / 1023.0 A DD
Máx. Potência absorvida excedida	150,0 kW
extenção do fornecimento	
Classe da proteção	IP54
Resistência de aquecimento de óleo	300 W (Standard)
Separador de óleo	Standard
Filtro de óleo	Standard
Proteção da temperatura de desgarga do gás	Standard
Alívio de partida	Standard
Controle de capacidade 4- estágios	100-75-50-25% (Standard)
Controle de capacidade linear	100-25% (Standard)
Válvula de retenção interna	Standard

Condensador Para o Fluido R-290

		Data: 2022-07-06 Data de pedido: Projeto: Nº do orçamento: Item: Referência:
Condensador	GCDC PD 080.1/14	-62-3960711E
Capacidade:	335.0 kW	Refrigerante: R290 ⁽¹⁾⁽²⁾
Fluxo de ar:	87853 m ³ /h	Temperatura de condensação: 45.0 °C
Entrada de ar:	31.8 °C	Saída de condensação: 42.7 °C
altitude:	145 m	Fluxo de aás auente: 103.10 m ³ /h
Ventiladores (EC): 4 P	2000/c) 2~400\/ 50 60L	dz Nível de proceão de ruído: 62 dP/A) ⁽³⁾
Dedos por motor (dado	eça(s) 5 400V 50-00r	a uma distância de: 10.0 m
Valacidada:	1100 min 1	Potôncia de ruíde: 10.0 m
Potôncia (el.):	3 10 100	Fotencia de fuido. 54 dB(A)
Corrente:	4.20 A ⁽⁵⁾	EIP. Compliant
Consumo de energia e	elétrica total: 10.44 kW	Classe de eficiência de energia: E (2014)
Carenagem: Aco ga	alvanizado, RAL 7035	Tubos: Cobre ⁽⁶⁾
Superfície:	1043.8 m ²	Aletas: Alumínio ⁽⁶⁾
Volume do tubo:	89.3	Conexões por unidade:
Espacamento das aleta	as: 2.10 mm	Conexão de entrada: 2 x 54.0 * 2.40 mm
Passagens:	4	Saída: 2 x 54.0 * 2.40 mm
Peso seco:	823 kg ⁽⁷⁾	Distribuição: 2 * 60
Pressão máx. de opera	ação:32.0 bar	PED classification: Categoria II, module A
Dimensões::		
L = 4256 mm W = 1200 mm H = 1458 mm L1 = 1995 mm L2 = 86 mm W1 = 656 mm W2 = 27 mm D = 13 mm L2	2 L1 Xtenção: Desenhos e dimen	sões não são válidos para todas as opções de acessórios!
UI: 158.3960711E		
Preço de tabela sem Preço unitário Total (Preço de tabela	VAT: a sem VAT, inclusa a	Peça(s) Preço unitário Preço total 1 20972.00 EUR 20972.00 EUR proteção de transporte) 20972.00 EUR
Termos de entrega:	nto	
Tempo de entrega:	desconhecido (Statu	us: 2022-06-22)
validade: Nossos termos derais (de vendas e entreca s	e aplicam!
Observações importa	ntes.	
(1) Grupo do fluídos 1 do	ordo com a dirativa do	são de equipamentos 2014/68/EU
 (2) Para o uso deste refriger (raio/escopo explosivo) é Para unidades que caem com esta diretiva podem 	rante, o operador deve exar é compulsório. 1 no escopo de aplicação do ser utilizados.	ninar se o uso dos componentes de acordo com a diretiva 94/9/EG o 94/9/EG, somente componentes e ventiladores que estão de acordo

⁽³⁾ utilizando o métodos de envelopamento de superfície de acordo com a EN 13487/EN 9614-1
 ⁽⁴⁾ This unit is equipped with fans that meet the efficiency requirements of Directive 2009/125/EC (ErP Directive).

Evaporadores Para o Fluido R-290

		Data: Data de Projeto: № do or Item: Referên	2022-07-06 pedido: rçamento: cia:	
Evaporador (dx)	S-GHN 080.2H/310	-AND50	.E Para cálculo somente!	
Capacidade: Reserva de superfície: Fluxo de ar: Entrada de ar: Saída de ar: Pressão do Ar:	85.0 kW ⁽¹⁾ 36.9 % 53910 m³/h 7.2 °C 3.9 °C 1013 mbar		Refrigerante: Temperatura de evaporação: Superaquecimento: Temp. de condensação: Temp. de sub-resfriamento:	R290 ⁽²⁾⁽³⁾ 0.0 °C 5.0 K 45.0 °C 40.0 °C
Ventiladores (AC): 3 Pe Dados por motor (dados Velocidade: 890 r Potência (mech./el.): Corrente: ErP: Cor	ça(s) 3 [∼] 400V 50Hz∆ s nominais): nin-1 / (650 min-1) 1.03 kW/1.40 kW 2.70 A ⁽⁶⁾ npliant ⁽⁷⁾	√(Y)	Contato térmico: Nível de pressão de ruído: Potência de ruído: Flecha de ar: Gelo:	externo 67 dB(A) em 3.0 m ⁽⁴⁾ 91 dB(A) aprox. 45 m ⁽⁵⁾ 0.0 mm
Consumo de energia el	étrica total: 4.04 kW		Classe de eficiência de energ	gia: B (2014)
Superfície: Superfície: Volume do tubo: Espaçamento das aleta Peso seco: Pressão máx. de opera Distribuição:	469.3 m² 165.7 l s:10.00 mm 751 kg ⁽⁹⁾ ção:32.0 bar 2 * 24		Aletas: Distribuição da queda de pre Conexão de saída: 2 x 6 Conexão de entrada: PED classification: C Passagens: Circuitos:	Alumínio ⁽⁸⁾ ssão: 0.5 bar 64.0 * 2.50 mm 2 x 22.0 mm ategoria II, module A2 ⁽¹⁰⁾ 4
Dimensões:: L = 5550 mm $_{ØD}$ B = 975 mm H = 1260 mm E = 1600 mm ← F = 865 mm C = 380 mm A = 700 mm ØD = 18 mm K = G2"	F A A			
Dr At	eno de acordo com DIN I enção: Desenhos e dime	SSO 228-1 nsões não s	com roscas G (vedação plana) são válidos para todas as opções de	acessórios!
(S = Tubos capilares: 5.0 * 0 Preço de tabela sem V Preço unitário Total (Preço de tabela Termos de entrega: Condições de pagamer Tempo de entrega:	.75 mm, 600 mm) /AT: sem VAT, inclusa a nto: desconhecido (Stat	a proteçã	Peça(s) Preço unitári 1 21179.00 EUI o de transporte)Determinaçã	io Preço total R 21179.00 EUR io pelo departamento de
Validade: Nossos termos gerais d	e vendas e entrega	se aplicar	n!	
Observações importar (1) Capacity including Humid (2) Grupo de fluídos 1 de aco (3) Para o uso deste refrigera	Ites: ity Factor rdo com a diretiva de pre inte, o operador deve exa	ssão de equ	uipamentos 2014/68/EU uso dos componentes de acordo cor	n a diretiva 94/9/EG

com esta diretiva podem ser utilizados.

Dispositivos de Expansão Para o Fluido R-290

Coolselector2

Project information	
Project name:	
Comments:	
Created by:	
Coolselector2 version:	5.1.0. Database: 89
Printed:	21 de September de 2022
Preferences used:	All applications

Electronic expansion valve: Electronic expansion valve 1

Operating condit	ions				
Refrigerant:	R290		Cooling capacity:	83,30	kW
Mass flow in line:	1085	kg/h	Heating capacity:	110,8	kW
Evaporating temperat	ture: 0,0	°C	Condensing temperature:	45,0	°C
Evaporating pressure	4,745	bar	Condensing pressure:	15,34	bar
Useful superheat:	5,0	к	Subcooling:	5,0	к
Additional superheat:	5,0	к	Additional subcooling:	0	к
Discharge temperatur	re: 70,0	°C			
System and line:	Dry expansion system. L	iquid line			
Selection criteria:	Load: 80 %. Distributor p	ressure dro	p: 0 bar		

Selection: ETS Colibri 12C-22

Туре	ETS Colibri 12C-12	ETS Colibri 12C-16	ETS Colibri 12C-22	ETS Colibri 24C-12	ETS Colibri 24C-16
NS	12	16	22	12	16
Max. capacity [kW]	95,46	102,4	109,3	135,2	143,4
Min. capacity [kW]	7,178	4,795	5,044	10,41	12,16
Load [%]	87	81	76	62	58
DP [bar]	10,60	10,60	10,60	10,60	10,60
Velocity, in [m/s]	8,20	4,12	2,06	8,20	4,12

Coolselector2

No code numbers selected for ETS Colibri 12C-22

Danfoss	Search by keyword, reference or code	Cart (empty)
Home Brands Cate	egories FAQ Contact u	s How to buy 🛧 Comments
A > DANFOSS REFRIGERATION > 034G7	7502 DANFOSS REFRIGERATION Electric expansion valve	
< Previous Product		Next Product >
	034G7502 DANFOSS REFRIGERATION Electric expansion valve ☆☆☆☆ 05 - 0 Opiniones Reference: 034G7502 Manufacturer: DANFOSS REFRIGERATION Standard lead time: 21 days 0 These delivery times are estimations and may vary when the item order has been processed. You will be patified of any change to delivery times once the	Unit price: 268,23 € Special discounts for registered customers. Login or register and prices will be updated. Calculate price by quantity 1 - + Quantity Price 1+
View larger 🔍	order has been processed. Description:	2+ 246,00 € *This price is per unit and is the net value (not including taxes if another including taxes including taxes in the including taxes incl
	Electric expansion valve	
Images are for illustrative purposes only. Pl refer to data sheet for details.	ETS 12C Electric exp. valve 7/8x7/8	Send message

Condensador Para o Fluido R-1270

(3) utilizando o métodos de envelopamento de superfície de acordo com a EN 13487/EN 9614-1

(4) This unit is equipped with fans that meet the efficiency requirements of Directive 2009/125/EC (ErP Directive).

Evaporadores Para os Fluidos R-1270

			CIINTNER
	Data: Data de Projeto: № do or Item: Referên	2022-07-06 pedido: rçamento: cia:	GUNINER
Evaporador (dx) S-GHN 071.2H	I/47-AND50.E	Para cálculo somente!	
Capacidade:85.0 kW(1)Reserva de superfície:46.2 %Fluxo de ar:44760 m³/hEntrada de ar:7.2 °CSaída de ar:3.3 °CPressão do Ar:1013 mbar		Refrigerante: Temperatura de evaporação Superaquecimento: Temp. de condensação: Temp. de sub-resfriamento:	R1270 ⁽²⁾⁽³⁾ 0: 0.0 °C 5.0 K 45.0 °C 40.0 °C
Ventiladores (AC): 4 Peça(s) 3~400V 50 Dados por motor (dados nominais): Velocidade: 900 min-1 / (690 min- Potência (mech./el.): 0.70 kW/0.90 kW Corrente: 1.65 A ⁽⁶⁾ ErP: Compliant ⁽⁷⁾	HzΔ/(Y) .1) /	Contato térmico: Nível de pressão de ruído: Potência de ruído: Flecha de ar: Gelo:	externo 59 dB(A) em 3.0 m ⁽⁴⁾ 83 dB(A) aprox. 37 m ⁽⁵⁾ 0.0 mm
Consumo de energia elétrica total: 3.22	kW	Classe de eficiência de ener	rgia: B (2014)
Carenagem:Aço galvanizado, Pintura Eg Superfície: 553.5 m ² Volume do tubo: 141.1 l Espaçamento das aletas: 7.00 mm Peso seco: 858 kg ⁽⁹⁾ Pressão máx. de operação: 32.0 bar Distribuição: 36 Dimensões:: L = 6180 mm B = 1050 mm	póxi RAL 9003	3Tubos: Aletas: Distribuição da queda de pre Conexão de saída: Conexão de entrada: PED classification: Passagens: Circuitos:	Cobre ⁽⁸⁾ Alumínio ⁽⁸⁾ essão: 0.9 bar 76.1 * 3.00 mm 35.0 mm Categoria II, module A2 ⁽¹⁰⁾ 4 1N
H = 965 mm E = 1360 mm F = 865 mm C = 380 mm G = 1908 mm ØD = 18 mm K = G2"	G		G G
Dreno de acordo com Atenção: Desenhos e	DIN ISSO 228-1 dimensões não s	com roscas G (vedação plana) são válidos para todas as opções de	e acessórios!
(S = Tubos capilares: 5.0 * 0.75 mm, 750 mm) Preço de tabela sem VAT: Preço unitário Total (Preço de tabela sem VAT, inclu Termos de entrega: Condições de pagamento: Tempo de entrega: desconhecido (Validade: Nossos termos gerais de vendas e entre	isa a proteção (Status: 2022- ega se aplicar	Peça(s) Preço unitá 1 19257.00 EU o de transporte)Determinaçã -06-22) n!	rio Preço total JR 19257.00 EUR ão pelo departamento de
Observações importantes:			
(1) Complete including Hamidity Fronts			

⁽¹⁾ Capacity including Humidity Factor
 ⁽²⁾ Grupo de fluídos 1 de acordo com a diretiva de pressão de equipamentos 2014/68/EU

Dispositivos de Expansão Para o Fluido R-1270

Coolselector2

Project information	
Project name:	
Comments:	
Created by:	
Coolselector2 version:	5.1.0. Database: 89
Printed:	21 de September de 2022
Preferences used:	All applications

Electronic expansion valve: Electronic expansion valve 1

Operating condit	ions				
Refrigerant:	R1270		Cooling capacity:	83,30	kW
Mass flow in line:	1067	kg/h	Heating capacity:	110,6	kW
Evaporating temperat	ture: 0,0	°C	Condensing temperature:	45,0	°C
Evaporating pressure	5,841	bar	Condensing pressure:	18,43	bar
Useful superheat:	5,0	К	Subcooling:	5,0	к
Additional superheat:	5,0	К	Additional subcooling:	0	К
Discharge temperatur	re: 75,9	°C			
System and line:	Dry expansion system. L	iquid line			
Selection criteria:	Load: 80 %. Distributor p	ressure dro	p: 0 bar		

Selection: ETS Colibri 12C-12

Туре	ETS Colibri 12C-12	ETS Colibri 12C-16	ETS Colibri 12C-22
NS	12	16	22
Max. capacity [kW]	108,0	115,4	122,8
Min. capacity [kW]	8,051	5,379	5,658
Load [%]	77	72	68
DP [bar]	12,59	12,59	12,59
Velocity, in [m/s]	7,87	3,96	1,98

Coolselector2

No code numbers selected for ETS Colibri 12C-12

Performance curve

Danfoss Retrigeration	Search by keyword, reference or code	Q	🐂 Cart (empty) 🔹			
Home Brands Catego	ies FAQ C	Contact us	How to buy	★ Comments		
A > DANFOSS REFRIGERATION > 034G7500	DANFOSS REFRIGERATION Electric expansion valve, ETS 12C					
< Previous Product				Next Product >		
	034G7500 DANFOSS REFRIGERATION Electric expansion valve, ETS 12C CONTRACTOR 015 - 0 Opiniones Reference: 034G7500 Manufacturer: DANFOSS REFRIGERATION Standard lead time: 14 days 0 These delivery times are estimations and may vary when the item order been processed. You will be notified of any change to delivery times once order has been processed.	has se the	Unit price: 266,09 € Spacial discounts for registered customers. Login or register and prices will be updated. Calculate price by quantity 1 Quantity Price 1+ 266,09 €			
View larger 🕘	Description:		*This price is per unit and is the r applicable).	et value (not including taxes if		
Images are for illustrative purposes only. Pleas refer to data sheet for details.	ETS 12C Electric exp. valve 1/2x1/2		Send message			

Compressor Para o Fluido R-1234ze[E]

Seleção: Compressores Parafuso Compactos CS // CSV

110,0 °C

Valores de entrada

Compressor modelo Refrigerante Temperatura de referência Temp. Evaporação SST Temp. Condensação SDT Sub resfriamento líquido (após o condensador) Superaquecimento do gás Sucção Superaquecimento útil Modo de operação Tensão Elétrica	CSH9573-180Y R1234ze Ponto de Orvalho 0 °C 45,0 °C 5,00 K 10,00 K 5,00 K Padrão 400V-3-50Hz	40,0°C 40,0°C CSH9573-180Y (100%)	62,4°C
Tensão Elétrica	400V-3-50Hz		
Regulador de capacidade	100%		
Resfriamento adicional	Automatico		

Resultado

Máxima temp. de descarga

Compressor	CSH9573-180Y-40D
Etapas de capacidade	100%
Capac. Frigorífica	284 kW
Capac. Frigorífica *	269 kW
Capacidade Evaporador	275 kW
Potência absorvida	79,1 kW
Corrente (400V)	133,8 A
Faixa de Tensão	380-415V
Capacidade do Condensador	363 kW
COP/EER	3,47
COP/EER*	3,40
Vazão em massa LP	7445 kg/h
Vazão em massa HP	7445 kg/h
Modo de operação	Padrão
Temp. do líquido	40,0 °C
Vazão de óleo	1,10 m³/h
Método resfriamento	
Temp. gás de Descarga não	62,4 °C
resfriado	

Temperatura do gás de descarga pelo menos 20K (36ºF) acima da temperatura de condensação Considerar as Normas Nacionais p/ o uso de refrigerantes inflamáveis *de acordo c/ EN12900 (superaquecimento na sucção de 10K, sem sub-resfriamento). Ver Dados Técnicos/ Nota

Limites de aplicação Standard CSH9573-180

Technical Data: CSH9573-180Y

Dimensions and Connections

	A	B	C	D	F	l mm	J	L	M	DL	SL
CSH9553 CSH9563 CSH9573	1824	717	776	224	417	746	930	744	106	Ø76 (3 ¹ /8")	DN100
CSH9583-210Y CSH9593-240Y	1842	717	776	242	417	764	948	751	113	DN100	DN125
CSH9583-280(Y) CSH9593-300(Y)	1869	717	776	269	417	791	975	751	113	DN100	DN125
CSH95103-280Y	1955	731	796	269	431	791	975	758	113	DN100	DN125
CSH95103-320(Y) CSH95113-320Y	1975	731	796	289	431	810	995	758	113	DN100	DN125

Die Verwendung größerer Sauggasflansche führt zu längeren Maßen A, D und J. Using larger suction gas flanges changes the dimensions A, D and J.

Condensador Para o Fluido R-1234ze[E]

(6) Dimensões e pesos não são válidos para todas as opções possíveis! Eles podem ser diferentes para unidades com acessórios ou unidades especiais (S-...).
Evaporadores Para o Fluido R-1234ze[E]

1

Data: Data o Projet № do Item: Refer	2022-07-06 de pedido: lo: orçamento: ência:
Evaporador (dx) GHN 090.3H/27-AND50.E	Para cálculo somente!
Capacidade:85.0 kW(1)Reserva de superfície:46.4 %Fluxo de ar:48600 m³/hEntrada de ar:7.2 °CSaída de ar:3.6 °CPressão do Ar:1013 mbar	Refrigerante:R1234ze(2)Temperatura de evaporação:0.0 °CSuperaquecimento:5.0 KTemp. de condensação:45.0 °CTemp. de sub-resfriamento:40.0 °C
Ventiladores (AC): 2 Peça(s) 3 [~] 400V 50Hz∆/(Y) Dados por motor (dados nominais): Velocidade: 940 min-1 / (820 min-1) Potência (mech./el.): 1.75 kW/2.20 kW Corrente: 4.80 A ⁽⁵⁾ ErP: Compliant ⁽⁶⁾	Contato térmico:externoNível de pressão de ruído:59 dB(A) em 3.0 m(3)Potência de ruído:83 dB(A)Flecha de ar:aprox. 32 m(4)Gelo:0.0 mm
Consumo de energia elétrica total: 3.58 kW	Classe de eficiência de energia: B (2014)
Superfície: 610.5 m ² Volume do tubo: 161.6 l Espaçamento das aletas: 7.00 mm Peso seco: 1023 kg ⁽⁸⁾ Pressão máx. de operação:32.0 bar Distribuição: 2 * 30	Aletas:Alumínio(7)Distribuição da queda de pressão:0.6 barConexão de saída:2 x 76.1 * 3.00 mmConexão de entrada:2 x 35.0 mmPED classification:Categoria II, module A2 ⁽⁹⁾ Passagens:4Circuitos:2N
Dimensoles:: L = 4310 mm B = 1220 mm H = 1560 mm E = 1800 mm C = 460 mm A = 900 mm D = 18 mm K = G2" Dreno de acordo com DIN ISSO 228 Atenção: Desenhos e dimensões ná	P C T C C C C C C C C C C C C C
Preço de tabela sem VAT: Preço unitário Total (Preço de tabela sem VAT, inclusa a protec Termos de entrega: Condições de pagamento: Tempo de entrega: desconhecido (Status: 202 Validade:	Peça(s) Preço unitário Preço total 1 24034.00 EUR 24034.00 EUR ção de transporte)Determinação pelo departamento d
Nossos termos gerais de vendas e entrega se aplic	:am!

Observações importantes:

- (3) utilizando o métodos de envelopamento de superfície de acordo com a EN 13487/EN 9614-1
- (4) Distância em que uma velocidade de ar de 0.5 m/s ainda pode ser medida isotermicamente em um espaço ideal. A profundidade de penetração possível do fluxo de ar na câmara fria, depende da geometria espacial e outros fatores.

Dispositivos de Expansão Para o Fluido R-1234ze[E]

Coolselector2

Project information	
Project name:	
Comments:	
Created by:	
Coolselector2 version:	5.1.0. Database: 89
Printed:	21 de September de 2022
Preferences used:	All applications

Electronic expansion valve: Electronic expansion valve 1

Operating conditi	ons				
Refrigerant:	R1234ze(E)		Cooling capacity:	83,30	kW
Mass flow in line:	2245	kg/h	Heating capacity:	109,9	kW
Evaporating temperate	ure: 0,0	°C	Condensing temperature:	45,0	°C
Evaporating pressure:	2,165	bar	Condensing pressure:	8,761	bar
Useful superheat:	5,0	К	Subcooling:	5,0	к
Additional superheat:	5,0	К	Additional subcooling:	0	к
Discharge temperature	e: 62,4	°C			
System and line:	Dry expansion system. L	iquid line			
Selection criteria:	Load: 80 %. Distributor p	ressure dro	p: 0 bar		

Selection: ETS Colibri 50C

	O	1	
-			

Туре	ETS Colibri 24C-22	ETS Colibri 25C	ETS Colibri 50C	ETS Colibri 100C
NS	22	22	28	35
Max. capacity [kW]	102,6	102,6	194,3	378,7
Min. capacity [kW]	8,740	8,740	10,82	16,46
Load [%]	81	81	43	22
DP [bar]	6,596	6,596	6,596	6,596
Velocity, in [m/s]	1,79	1,79	1,05	0,69

Coolselector2

No code numbers selected for ETS Colibri 50C

Performance curve

Danfoss Refrigeration	Search by keyword, reference or code	Q	🏲 Cart (em	oty) 👻
Home Brands C	tegories FAQ	Contact us	How to buy	★ Comments
A > DANFOSS REFRIGERATION > 03	G7701 DANFOSS REFRIGERATION Electric expansion valve			
< Previous Product				Next Product >
	034G7701 DANFOSS REFRIGERATION Electric expansion valve ☆☆☆☆☆ 05 - 0 Opiniones Reference: 034G7701 Manufacture: DANFOSS REFRIGERATION Standard lead time: 20 days ① These delivery times are estimations and may vary when the item been processed. You will be notified of any change to delivery time order has been processed.	ic order has es once the	Unit price: 592, Special discounts for customers. Login or register and updated. Calculate price by 1	59 € rregistered 1 prices will be quantity net value (not including taxes if
View larger 🔍	Description: Electric expansion valve		📜 Ado	to cart
Images are for illustrative purposes only refer to data sheet for details	Please ETS 50C Electric exp. valve 7/8x11/8		If our p Send messa	ge

Compressores Para o Fluido R-744

COP/EER Evaporator: 1	,67	
Input Values		
System		Gustav-Lorentzen
Series		ECOLINE+
Operating mode		Transcritica
Number compressors		3
Evaporating SST		0 °C
Evaporator superheat		5,00 K
Suction line superheat		5,00 K
High pressure		Auto
Gas cooler outlet		45,0 °C
Power frequency	50Hz	
Power voltage	400V	

Result

Compressor		6DTEU-50LK	6DTEU-50LK	6DTEU-50LK
Frequency compressor	-	67,0 Hz	-	-
Evaporator capacity	251 kW	106,0 kW	72,3 kW	72,3 kW
Ratio		42,3 %	28,8 %	28,8 %
Gas cooler capacity	418 kW	176,9 kW	120,6 kW	120,6 kW
Power input	150,5 kW	60,9 kW	44,8 kW	44,8 kW
Current	255 A	96,7 A	79,0 A	79,0 A
Voltage range				
Mass flow	7827 kg/h	3312 kg/h	2257 kg/h	2257 kg/h
Discharge gas temp. w/o cooling	113,7 °C	111,7 °C	115,2 °C	115,2 °C
optimal high pressure	110,8 bar(a)			
Tentative Data				

Power consumption at compressor inlet.

Application Limits 100%

Technical Data: 6DTEU-50LK

Dimensions and Connections	
CRII (1) CRII (2) CRII (24 SL 2 (HP) 1 (HP) 16 22 1/8-27 NPTF 1/4-18 NPTF 491 1/8-27 NPTF 1/4-18 NPTF 491 1/4-18
Technical Data	
Technical Data	
Displacement (1500 RPM 50Hz) Displacement (1800 RPM 60Hz)	31,4 m3/h 37,6 m3/h
Weight Max. pressure (LP/HP) Connection suction line Connection discharge line Oil type R744 (CO2)	244 kg 100/160 bar 35 mm - 1 3/8" 28 mm - 1 1/8" BSE85K (Standard), BSG68K (Option)
Motor version	1
Motor voltage (more on request) Max operating current Starting current (Rotor locked)	380-420V Y-3-50Hz 102.1 A 329.0 A
Extent of delivery (Standard)	
Motor protection Enclosure class Vibration dampers Oil charge Crankcase heater	SE-B3(Standard), SE-B2(Option), CM-RC-01(Option) IP65 Standard 2,80 dm ³ 0140 W PTC (Standard)
Available Options	
Connection suction line Discharge shut-off valve Discharge gas temperature sensor Controller	Option Option
Capacity Control - infinite	100-33% (Option)
Oil pressure monitoring	Delta-PII(Option)
Sound measurement	
Sound power level (-10°C / 90bar)	84 dB(A) @ 50Hz
Sound pressure level @ 1m (-10°C / 90bar)	75 dB(A) @ 50Hz

Condensador Para o Fluido R-744

Evaporadores Para o Fluido R-744

		_				_							
DF - DFL CO2		S										DD C Ø300 m 2,01 kV	7,0 m m ▶ Ø450 W ▶ 59,84
		1 8K)	=10K)						Ve	ntiladores Fans			
TA - TAL CO2	odelo	Capacidade QSrr Capacity QSm (TC=+2°C / DTm=	Capacidade QS1 Capacity Qs1 (Tse=+4°C / DT1 [±]	Superficie Surface	Volume interno Internal Volume	N°. Nr.	Diâmetro Diameter	Caudal de ar Air flow	Projecção ar Air throw	Rotação Revolutions	Potência total Total power	Corrente total Total current	Alimentação MPS
	≦ F	0.00	W	m ²	dm ³		mm	m³/h	m 40	rpm 4075	W	A	V/F/Hz
	DD 7C1/2 CO2	2,39	2,32	7,82	3,25	1	300	1350	12	1275	98	0,44	230/1/50
	DD 7C1/3 CO2	4.25	3,62	12,51	3,20	1	350	1250	16	1275	110	0,44	230/1/50
o XX	DD 7C2/5 CO2	6.86	6.67	18.77	6.92	2	300	2600	12	1275	196	0.88	230/1/50
Ω.	DD 7E2/7 CO2	8,52	8,28	22,34	7,20	2	350	3880	16	1230	220	0,96	230/1/50
XL	DD 7C3/9 CO2	11,95	11,62	37,53	13,26	3	300	3750	12	1275	294	1,32	230/1/50
	DD 7E3/11 CO2	13,79	13,41	33,26	10,10	3	350	5820	16	1230	330	1,44	230/1/50
	DD 7G2/13 CO2	18,32	17,36	54,21	19,10	2	400	6000	18	1440	340	1,06	400/3/50
	DD 7J2/19 CO2	23,95	22,70	61,96	21,84	2	450	8200	20	1330	920	1,90	400/3/50
_	DD 7G3/21 CO2	28,27	26,79	81,30	25,00	3	400	9000	18	1440	510	1,59	400/3/50
RW	DD 7J3/25 CO2	33,78	32,01	92,93	31,82	3	450	12300	20	1330	1380	2,85	400/3/50
82	DD 7L2/29 CO2	39,88	37,79	112,45	38,91	2	500	11600	22	1300	1540	3,40	400/3/50
2 2	DD 7J4/34 CO2	47,22	44,/5	123,70	41,80	4	450	16400	20	1330	1840	3,80	400/3/50
~	DD 7L3/38 CO2	50.84	56,71	168,68	45,64	3	500	17400	22	1300	2310	5,10	400/3/50
	DD 7C1/2 CO2-ES	2 09	2.01	7.82	3 25	1	300	11400	12	1300	35	0.27	230/1/50
	DD 7C1/3 CO2-ES	3.27	3.14	12.51	5.20	1	300	1010	12	1300	35	0.27	230/1/50
	DD 7E1/4 CO2-EV	4.29	4,13	11,17	3,60	1	350	1940	16	1230	85	0.48	230/1/50
Ω	DD 7C2/5 CO2-ES	6,01	5,78	18,77	6,92	2	300	2160	12	1300	70	0,54	230/1/50
o B	DD 7E2/7 CO2-EV	8,61	8,28	22,34	7,20	2	350	3880	16	1230	170	0,96	230/1/50
ន ភ្ន	DD 7C3/9 CO2-ES	10,29	9,90	37,53	13,26	3	300	3030	12	1300	105	0,81	230/1/50
۳	DD 7E3/11 CO2-EV	13,94	13,41	33,26	10,10	3	350	5820	16	1230	255	1,44	230/1/50
	DD 7G2/13 CO2-EC	18,32	17,36	54,21	19,10	2	400	6000	18	1140	300	1,88	230/1/50
	DD 7J2/19 CO2-EC	23,95	22,70	61,96	21,84	2	450	8200	20	1130	464	2,94	230/1/50
	DD 7G3/21 CO2-EC	28,27	26,79	81,30	25,00	3	400	9000	18	1140	450	2,82	230/1/50
	DD 7J3/25 CO2-EC	33,78	32,01	92,93	31,82	3	450	12300	20	1130	696	4,41	230/1/50
_ 3	DD 7L2/29 CO2-EC	39.88	37,79	112,45	38,91	2	500	11600	22	1204	/02	3,08	230/1/50
81	DD 7J4/34 CO2-EC	41,22	44,75	123,70	41,80	4	450	10400	20	1212	928	5,88	230/1/50
00		32.70	00.00	134.90	40.04	3	200	10000			1020	4.0U	230/1/50

DF - DFL CO2		3			* *				M			Evapora Cut MT C Ø300 mi 2,68 kV	udores cúbic oic coolers O2 4,2 mm m ► Ø500 r V ► 81,61 k	ios nm N	
TA - TAL CO2	odelo	Capacidade QSm Capacity QSm (TC=+2°C / DTm=8K)	E Capacidade QS1 Capacity Qs1 (Tse=+4°C / DT1=10K)	Surface Surface	Volume interno - Internal Volume	N°. Nr.	Diâmetro Diameter	Caudal de ar [*] Air flow	Projecção ar Air throw ar	ntiladores Fans Kervolutious	Potência total Total power	Corrente total Total current	Alimentação MPS		
BXN-BXL CO2	MT 4C1/3 CO2 MT 4E1/5 CO2 MT 4E2/5 CO2 MT 4C2/6 CO2 MT 4E2/9 CO2 MT 4E3/10 CO2 MT 4E3/16 CO2 MT 4E3/16 CO2 MT 4E3/16 CO2	3,25 5,14 7,43 8,98 12,08 14,69 18,17 21,40	3,10 4,91 7,10 8,58 11,54 14,03 17,36 20,44	12,43 17,76 24,80 29,60 44,76 44,28 71,05 86,21	3,25 3,60 5,77 6,00 9,10 8,60 14,40 19,10	1 2 2 3 3 3 2	300 350 300 350 300 350 350 350 400	1300 1800 2600 3800 3750 5700 4950 6000	11 14 11 14 11 14 14 14 14 16	1275 1230 1275 1230 1275 1230 1275 1230 1230 1230 1440	98 110 196 220 294 330 330 340	A 0,44 0,48 0,88 0,96 1,32 1,44 1,44 1,06	V/F/H2 230/1/50 230/1/50 230/1/50 230/1/50 230/1/50 230/1/50 230/1/50 400/3/50		
RWK - BWK CO2	MT 4J2/24 CO2 MT 4G3/29 CO2 MT 4L2/36 CO2 MT 4J4/49 CO2 MT 4L3/53 CO2 MT 4L4/68 CO2 MT 4L4/72 CO2 MT 4L4/72 CO2 MT 4L4/72 CO2	26,54 32,67 40,09 53,22 60,35 76,48 81,61 2,83	25,35 31,21 38,30 50,84 57,65 73,06 77,96 2,68	98,09 129,31 143,10 196,83 214,85 250,66 286,50 12,43	21,84 27,84 31,13 41,80 45,64 52,64 60,16 3,25	2 3 2 4 3 4 4 4 1	450 400 500 450 500 500 500 300	7900 9000 12000 15800 18000 25000 24000 1060	18 16 20 18 20 20 20 20	1330 1440 1300 1330 1300 1300 1300 1300	920 510 1540 1840 2310 3080 3080 35	1,90 1,59 3,40 3,80 5,10 6,80 6,80 0,27	400/3/50 400/3/50 400/3/50 400/3/50 400/3/50 400/3/50 400/3/50 230/1/50		
CBN - CBL CO2	MT 4E1/5 CO2-EV MT 402/6 CO2-ES MT 4E2/9 CO2-EV MT 403/10 CO2-ES MT 4E3/13 CO2-EV MT 4E3/16 CO2-EV MT 4G2/20 CO2-EC MT 4J2/24 CO2-EC	5,18 6,63 9,06 10,63 14,81 18,32 21,40 26,54	4,91 6,28 8,58 10,07 14,03 17,36 20,44 25,35	17,76 24,80 29,60 44,76 44,28 71,05 86,21 98,09	3,60 5,77 6,00 9,10 8,60 14,40 19,10 21,84	1 2 3 3 3 2 2	350 300 350 300 350 350 400 450	1800 2120 3800 3030 5700 4950 6000 7900	14 11 14 11 14 14 16 18	1115 1300 1115 1300 1115 1115 1115 1220 1175	85 70 170 255 255 255 360 530	0,73 0,54 1,46 0,81 2,19 2,19 2,30 3,40	230/1/50 230/1/50 230/1/50 230/1/50 230/1/50 230/1/50 230/1/50 230/1/50		

Dispositivos de Expansão Para o Fluido R-744

Coolselector2

Тіро	ICMTS 20-A33	ICMTS 20-A	ICMTS 20-B66	ICMTS 20-B	ICMTS 20-C
NS	25	25	25	25	25
Capacidade máxima [kg/h]	959,9	2881	7687	11550	22430
Capacidade mínima [kg/h]	11,49	34,46	117,9	176,8	281,0
Carga [%]	306	102	38	25	13
DP [bar]	73,10	73,10	73,10	73,10	73,10
Velocidade, entrada [m/s]	3,43	3,43	3,43	3,43	3,43

Sem código selecionado para ICMTS 20-B66

Compressor Para o Fluido R-515B

Seleção: Compressores Parafuso Compactos CS // CSV

Valores de entrada

Compressor modelo	CSH9573-180Y	10		
Refrigerante	R515B			
Temperatura de referência	Ponto de Orvalho			
Temp. Evaporação SST	0 °C	45,0°C		A 62.0°C
Temp. Condensação SDT	45,0 °C	- white		
Sub resfriamento líquido (após o condensador)	5,00 K	40,0°C		
Superaquecimento do gás Sucção	10,00 K	×	a	10,0°C
Superaquecimento útil	5,00 K	¥		
Modo de operação	Padrão	CSH9573-180Y (100%)	0,0°C	
Tensão Elétrica	400V-3-50Hz			
Regulador de capacidade	100%			
Resfriamento adicional	Automatico			
Máxima temp. de descarga	110,0 °C			

Resultado

Compressor	CSH9573-180Y-40D
Etapas de capacidade	100%
Capac. Frigorífica	281 kW
Capac. Frigorífica *	265 kW
Capacidade Evaporador	271 kW
Potência absorvida	79,1 kW
Corrente (400V)	133,8 A
Faixa de Tensão	380-415V
Capacidade do Condensador	360 kW
COP/EER	3,43
COP/EER*	3,35
Vazão em massa LP	7584 kg/h
Vazão em massa HP	7584 kg/h
Modo de operação	Padrão
Temp. do líquido	40,0 °C
Vazão de óleo	1,10 m³/h
Método resfriamento	
Temp. gás de Descarga não resfriado	62,0 °C

Dados Provisórios

*de acordo c/ EN12900 (superaquecimento na sucção de 10K, sem sub-resfriamento). Ver Dados Técnicos/ Nota

Limites de aplicação Standard CSH9573-180

Dados Técnicos: CSH9573-180Y

Dimensões e Conexões

Die Verwendung größerer Sauggasflansche führt zu längeren Maßen A, D und J.

Using larger suction gas flanges changes the dimensions A, D and J.

Condensador Para o Fluido R-515B

Para este sistema utilizou-se o mesmo equipamento empregue na instalação que funciona com o fluido frigorigéneo R-1234ze[E].

Evaporador Para o Fluido R-515B

Para este sistema utilizaram-se os mesmos equipamentos empregues na instalação que funciona com o fluido frigorigéneo R-1234ze[E].

Dispositivos de Expansão Para o Fluido R-515B

Coolselector2

Project information		
Project name:		
Comments:		
Created by:		
Coolselector2 version:	5.1.0. Database: 89	
Printed:	21 de September de 2022	
Preferences used:	All applications	

Electronic expansion valve: Electronic expansion valve 1

Operating condit	ions						
Refrigerant:	R515B		Cooling capacity:	83,30	kW		
Mass flow in line:	2329	kg/h	Heating capacity:	119,9	kW		
Evaporating temperat	ure: 0,0	°C	Condensing temperature:	45,0	°C		
Evaporating pressure:	2,160	bar	Condensing pressure:	8,742	bar		
Useful superheat:	5,0	К	Subcooling:	5,0	К		
Additional superheat:	5,0	К	Additional subcooling:	0	к		
Discharge temperatur	e: 75,9	°C					
System and line:	Dry expansion system. L	iquid line.					
Selection criteria: Load: 80 %. Distributor pressure drop: 0 bar							
Selection criteria: Load: 80 %. Distributor pressure drop: 0 bar							

Туре	AKV 15-4	AKV 20-1	AKV 20-2	AKV 20-3	AKV 20-4
NS	28	32	32	32	40
Max. capacity [kW]	68,50	69,84	111,2	172,0	269,9

Coolselector2

Min. capacity [kW]	6,850	6,984	11,12	17,20	26,99
Load [%]	122	119	75	48	31
DP [bar]	6,582	6,582	6,582	6,582	6,582
Velocity, in [m/s]	1,17	0,53	0,53	0,53	0,39

No code numbers selected for AKV 20-2

Performance curve

Compressor Para o Fluido R-717

Seleção: Compressores Parafuso Abertos OS

Valores de entrada

Compressor modelo	OSKA8561-K
Refrigerante	R717
Temperatura de referência	Ponto de Orvalho
Temp. Evaporação SST	0 °C
Temp. Condensação SDT	45,0 °C
Sub resfriamento líquido	5,00 K
(após o condensador)	
Superaquecimento do gás	5,00 K
Sucção	
Modo de operação	Padrão
Velocidade	2900 /min
Superaquecimento útil	-
Resfriamento adicional	Automatico
Máxima temp. de descarga	80,0 °C
Capac. Frigorífica	100 %

Resultado

Compressor	OSKA8561-K
Capac. Frigorífica	100%
Capac. Frigorífica	311 kW
Capac. Frigorífica *	304 kW
Capacidade Evaporador	308 kW
Potência no eixo	87,2 kW
Capacidade do Condensador	347 kW
COP/EER	3,53
COP/EER*	3,49
Vazão em massa LP	1033 kg/h
Vazão em massa HP	1033 kg/h
Modo de operação	Padrão
Temp. do líquido	40,0 °C
Vazão de óleo	2,96 m³/h
Método resfriamento	Externo
Temp injeção de óleo comp.	44,0 °C
Carga Térmica Resfriador de Óleo	51,4 kW
Motor de Acionamento	110,0 kW
Temp. de descarca c/ resfriamento	80,0 °C
adcional	
Temp. gás de Descarga não	146,2 °C
resfriado	

Dados Provisórios

Resfriamento adicional/ limitações (ver limites)!

Seleção do motor ver "Dados Técnicos" *conforme EN12900 (superaquecimento na sucção de 5K, sem sub-resfriamento do líquido).

Limites de aplicação Standard OSKA8561

Dados Técnicos: OSKA8561-K

Dimensões e Conexões

dados tecnico	
Deslocamento (2900 RPM 50 Hz)	359 m³/h
Deslocamento (3500 RPM 60 Hz)	433 m³/h
Limite de velocidade permitido	1450 4000 min-1
sensor rotação (compressor)	rechts / clockwise
Peso	340 kg
Pressão máxima (LP/H)	19 / 28 bar
Conexão da linha de sucção	DN 100
Conexão da linha de sucção (NH3)	DN 100
Conexão da linha de descarga	76 mm - 3 1/8"
Conexão da linha de descarga (NH3)	DN 80
Adaptador para ECO (NH3)	DN 30 (Option)
Tipo de óleo NH3	Reniso KC68 , SHC 226E
extenção do fornecimento	
Válvula alívio de pressão	Standard
Válvula de retenção	Standard
Controle do fluxo de óleo	Standard
Válvula de óleo	Standard
Filtro de óleo	Standard
discharge gas temperature monitoring	2xSE-B3
Proteção da temperatura de desgarga do gás	Standard
Alívio de partida	Standard
Controle de capacidade	100-75-50% or 100-50% (Standard)
carga protetiva	Standard
opções disponíveis	
Válvula de sucção	Option

Condensador Para o Fluido R-717

(2) utilizando o métodos de envelopamento de superfície de acordo com a EN 13487/EN 9614-1

(3) This unit is equipped with fans that meet the efficiency requirements of Directive 2009/125/EC (ErP Directive).

(4) O consumo atual pode variar dependendo da temperatura do ar e da variação da voltagem do sistema de acordo com a diretriz VDE.

Evaporadores Para o Fluido R-717

Dispositivos de Expansão Para o Fluido R-717

Coolselector2

Project information	
Project name:	
Comments:	
Created by:	
Coolselector2 version:	5.1.0. Database: 89
Printed:	21 de September de 2022
Preferences used:	All applications

Electronic expansion valve: Electronic expansion valve 1

Operating condition	ions				
Refrigerant:	R717		Cooling capacity:	83,30	kW
Mass flow in line:	276,2	kg/h	Heating capacity:	91,98	kW
Evaporating temperat	ure: 0,0	°C	Condensing temperature:	45,0	°C
Evaporating pressure:	4,292	bar	Condensing pressure:	17,82	bar
Useful superheat:	5,0	К	Subcooling:	5,0	к
Additional superheat:	5,0	К	Additional subcooling:	0	к
Discharge temperatur	e: 75,9	°C			
System and line:	Dry expansion system. L	iquid line.			
Selection criteria:	Load: 80 %. Distributor p	pressure dro	p: 0 bar		

Selection: AKVA 15-1

Туре	AKVA 10-6	AKVA 10-7	AKVA 15-1	AKVA 10-8	AKVA 15-2
NS	10	15	20	15	20
Max. capacity [kW]	62,62	98,48	151,8	152,4	242,5

Min. capacity [kW]	6,262	9,848	15,18	15,24	24,25
Load [%]	133	85	55	55	34
DP [bar]	13,52	13,52	13,52	13,52	13,52
Velocity, in [m/s]	1,06	0,60	0,34	0,60	0,34

Selected code number for AKVA 15-1

AKVA 15-1. Electric expansion valve: 068F5020. May not be available in your country

Danfots		AKV20-2 Q			Cart (empty)		
Home Brands Categorie	s		FAQ	Contact us	How to buy	🗙 Comments	
A > DANFOSS REFRIGERATION > 068F5020 DA	FOSS REFRIGERATION	Electric expansion valve					
< Previous Product						Next Product >	
	068F5020 expansion	DANFOSS REFRIGERATION valve 205 - 0 Opiniones	Electric		Unit price: 598,93 € Special discounts for registered customers. Login or register and prices will be updated.		
	Manufacturer: DAN Standard lead These deliver been process order has bee	VFOSS REFRIGERATION time: 114 days 0 y times are estimations and may vary whe ied. You will be notified of any change to de an processed.	4 days 0 are estimations and may vary when the item order has u will be notified of any change to delivery times once the essed.		Calculate price by quantity 1		
View larger O	Description: Electric expan AKVA15-1 Val	ision valve ve Flange Con.3/4in Exp.Vlv.	Add to cart				