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Abstract: Applying the correct dose of nitrogen (N) fertilizer to crops is extremely important. The
current predictive models of yield and soil–crop dynamics during the crop growing season currently
combine information about soil, climate, crops, and agricultural practices to predict the N needs
of plants and optimize its application. Recent advances in remote sensing technology have also
contributed to digital modelling of crop N requirements. These sensors provide detailed data,
allowing for real-time adjustments in order to increase nutrient application accuracy. Combining
these with other tools such as geographic information systems, data analysis, and their integration in
modelling with experimental approaches in techniques such as machine learning (ML) and artificial
intelligence, it is possible to develop digital twins for complex agricultural systems. Creating digital
twins from the physical field can simulate the impact of different events and actions. In this article,
we review the state-of-the-art of modelling N needs by crops, starting by exploring N dynamics in the
soil−plant system; we demonstrate different classical approaches to modelling these dynamics so as
to predict the needs and to define the optimal fertilization doses of this nutrient. Therefore, this article
reviews the currently available information from Google Scholar and ScienceDirect, using relevant
studies on N dynamics in agricultural systems, different modelling approaches used to simulate
crop growth and N dynamics, and the application of digital tools and technologies for modelling
proposed crops. The cited articles were selected following the exclusion criteria, resulting in a total
of 66 articles. Finally, we present digital tools and technologies that increase the accuracy of model
estimates and improve the simulation and presentation of estimated results to the manager in order
to facilitate decision-making processes.

Keywords: process simulation; Internet of Things; data science; decision support systems; variable
rate fertilization

1. Introduction

The most recent industrial revolution (Industry 4.0) has significantly changed the agri-
cultural sector due to the increasing use of information technologies, sensors, autonomous
vehicles, data analysis, and predictive modelling, supported by cyber-physical systems
(CPS), Internet of Things (IoT), artificial intelligence (AI), and “big data”. This development
has great potential in terms of the sustainability of agricultural systems [1].

However, solutions to the imbalance between crop N needs and the amount of N
fertilizer applied continue to fall short. There is a clear need for a more innovative approach
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to optimizing efficient crop N fertilization and restricting N loss to the environment [1].
Applying an optimal amount of N fertilizer (Nopt) to a crop is a priority. The yield of
these plants is strongly dependent on the availability of N, although the N fertilizer use
efficiency by the crops rarely exceeds half of the applied fertilizer [2]. The significant losses
of N to the environment associated with the incorrect management of N in crops have an
impact mainly in terms of water pollution and the release of greenhouse gases (GEE) [3].
It is also important to consider the economic point of view, in which Nopt corresponds
to the fertilizer dose that maximizes the farmer’s financial return. However, there are
spatial variability of soil properties and crop conditions and Nopt varies across the field, so
site-specific practices are needed to estimate it correctly [1].

Predicting yield and soil−crop dynamics during the growing season faces the chal-
lenge of capturing variability in soil properties, crop genetics and management practices,
and their interaction with climate-related uncertainties [4]. The success of forecasting
through crop growth simulation methods depends on the model’s ability to accurately
represent all dynamic processes and the quality and availability of data inputs [5]. Fur-
ther development of models and various technical equipment to improve the quality and
resolution of site-specific issues can partially reduce the uncertainties of the input data,
the model itself, and the predictive calculation. However, weather forecasts over longer
periods are the main source of uncertainty for forecasting crop growth and N dynamics for
fertilizer recommendations [6].

Still, crop growth models (CGMs) are not the only tool used to monitor agricultural
systems. New technology has allowed for efficient and highly accurate monitoring, pro-
viding data on a variety of variables such as soil moisture and leaf area index. In this
sense, sequential data assimilation that merges models based on observed processes and
agricultural data has emerged as a viable solution in the world of CGMs, allowing them
to communicate and build on each other despite different time and spatial resolutions.
Thus, simulations are improved, and the dependence on the extensive calibration of the
model at the level of the location to which it is applied is also reduced. Recent literature
has proposed a wide range of examples of different technologies in crop modelling, includ-
ing remote sensing using unmanned aircraft vehicles (UAVs) or satellite platforms, other
sensors including global navigation satellite systems and yield monitors, and big data and
analytics that allow feeding IoT platforms. In the long term, one of the most important and
new challenges for the deployment of smart agriculture is the need to bring together a pack
of digital technologies that allow for the creation of a digital twin of the physical field that
can be used to simulate the impact of different events and actions in a cohesive platform.
Digital twin systems can support farmers as a next-generation digitalization paradigm,
continuously and in real-time monitoring the physical world (field) and updating the state
of the virtual world [5]. Still, there is always a divergence between the modelled and
the real world. In this sense, advances will have to be made to overcome the limitations
of classic modelling methods in order to increase their effectiveness in supporting the
manager’s decision.

Following this introduction, N dynamics in agricultural systems are presented in
Section 3.1, different modelling approaches used to simulate crop growth and N dynam-
ics will be explored in Section 3.2, and the application of digital tools and technologies
proposed for crop modelling are discussed in Section 3.3.

2. Material and Methods

In this article, we reviewed the state-of-the-art of modelling N needs by crops. Firstly,
the following five research questions (RQs) were defined:

• RQ1—How does N behave in the soil−plant system, and how does this dynamic
influence its estimation by classical CGMs?

• RQ2—What are the gaps and uncertainties in the estimates of CGMs?
• RQ3—How to integrate digital data sources into CGM estimates?
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• RQ4—Can the models generate estimates of the correct dose to be site-specific applied
in the field?

• RQ5—If the models fulfil a site-specific estimate, how does it interact and present that
site-specific solution to decision makers?

A literature review was conducted using Google Scholar® and ScienceDirect®, focusing
on the most recent articles (2019–2023) in which the most recent technological approaches
were assessed. The sentences used for the search were “nitrogen dynamics soil−plant
system”, “decision support systems and crop models nitrogen dynamic”, “process-based
crop nitrogen models”, and “data-driven approaches for crop modelling”. To exclude
irrelevant studies, the studies were analysed and graded based on removal criteria (RC),
as follows:

• RC 1—Publication is not related to the sustainability of the agricultural sector;
• RC 2—Publication is not related to soil-plant nitrogen dynamic;
• RC 3—Publication is not written in English;
• RC 4—Publication is a duplicate;
• RC 5—Full text of the publication is not available.

After applying the RC, the remaining articles were examined in greater depth to
identify the ones most representative of each theme. A total of 66 references were selected
for further analysis.

3. Results
3.1. N Dynamics

The N cycle in the soil−plant system is characterized by many related and complex
processes that transform and transport N through the system [5,7,8]. Increasing knowledge
about the determinant variables for soil and crop processes allows for the continuous
development and improvement of simulation models [9]. These may be independent on
a given scale, but as the scale increases in time or space, they may begin to interact with
new independent determinant variables. In this sense, our understanding of the factors
that cause spatial variability in crop yield, mainly physical and chemical attributes of the
soil, phenological indices of the crop, physiology of the crop, climate variation, or available
water [4], as well as their interactions, must be scaled appropriately in relation to the
objective of the study. An important step is the hierarchy of processes/factors and sets of
sub-processes according to their importance to the system [5,9].

N exists in soil water as dissolved gases or in the atmosphere in the forms of dinitrogen
gas (N2), oxides (N2O, NO, and NO2), and in the form of ammonia (NH3). The biochemical
cycle of N in terrestrial ecosystems is composed of the external cycle that encompasses the
processes that add N to ecosystems (fixation of N2, ammonia (NH4+), and nitrate (NO3−)
in rainwater, as well as applications of mineral and organic N fertilizers) and cause its loss
(denitrification, NO3 leaching, and NH3 volatilization), but also by the internal N cycle
consisting of processes that convert N into another chemical form, including assimilation
by plants, return of N to the soil by crop residues and root renewal, N mineralization, and
microbial immobilization [8,10].

3.1.1. N Supply by the Soil

The mineralization of organic into inorganic N (considered the main source of N
available to plants) is the process through which ammonia is released by soil microorgan-
isms when soil organic matter is used as an energy source. Mineralization is a key system
process [8,9] and an important starting point for potential N losses [8].

Influence of Soil Chemical Properties

The chemical properties of soil have a special impact on the activity of soil microor-
ganisms and on the concentrations of NH4+ and NO3− in the soil solution [8]. Populations
of soil microorganisms responsible for N mineralization are less sensitive to increases in



Agronomy 2023, 13, 1964 4 of 19

soil pH and electrical conductivity (EC) than populations of nitrifiers. Thus, nitrification
is fast in neutral and alkaline soils, but slower in acidic soils. N mineralization decreases
with increasing pH or salinity, but this dynamic can be changed by the presence of a crop
or residues from previous crops in the soil [11]. The quality of these residues determines
whether the microorganisms will immobilize mineral N or release it into the soil solution.
The supply of N to the soil is very low during the initial moments of waste decomposition,
as the C/N ratio is still very high, and there is a great demand for N by microorganisms
in response to carbon (C) input. In these phases, N immobilization occurs, while the
microorganisms assimilate recently mineralized N and inorganic N from the soil solution.
As decomposition proceeds, the C/N ratio of the residue becomes lower and the activity
and population of soil microorganisms decreases, resulting in the release of mineral N from
the decomposing residue and dead microorganisms [8]. Other properties, such as cation
exchange capacity (CEC), can influence potential N losses by leaching, as it represents the
soil’s ability to store and release cations such as NH4+ into the soil solution. As for OM,
soils with a higher OM content have higher populations and activity of microorganisms [8].
Akpinar and Ortas [12] concluded that facilitating access to high doses of P can increase
the concentration of C and N in the soil by increasing the OM remaining in the soil.

Influence of Soil Physical Properties

The physical characteristics of the soil greatly control the supply of N by the soil, due
to the considerable influence they have on the moisture content and porosity of the soil, on
its biochemical processes and on the activity of microorganisms [8,13]. Soils with higher
mineralization rates are generally sandy soils, which are very susceptible to N loss by
leaching due to greater aeration and less OM protection. OM confers chemical and physical
protection effects on N transformations and the use of the 15N isotope is important for
tracking this N [14,15].

The rate of N mineralization generally decreases with very dry or very humid soils,
by reducing the mobility of aerobic microorganisms [8]. Figueiredo et al. [11] indicated that
the total available N content (NH4+ and NO3−) in the soil increased by 93% under aerobic
conditions after the application of a bottom fertilizer. However, the flooding conducted
immediately afterwards decreased the total available N content in the soil and water by 23%
and 53%, respectively. Schaeffer et al. [16] also recorded a large release of NO3− following
the first rains in a Mediterranean climate. In this climate, soils are exposed to frequent
cycles of drying and rewetting, reaching maximum values of dissolved organic N (DON)
during the wet periods and low values in the dry season. In periods of higher water content
in the soil, the decomposing community is active, increasing the concentration of DON in
the soil [17].

Shahnazari et al. [18] demonstrated that irrigation management that keeps the root
zone partially dry (partial root-zone dry; PRD) in sandy soils under a temperate climate
improved soil N availability, resulting in a longer lasting green canopy for the potato crop,
compared with a full-irrigated system that operates at field capacity or in a deficit irrigated
with the minimum amount of water that does not compromise production. The objective
of PRD is to frequently wet and dry the soil profile in the root zone to stimulate microbial
activity and, consequently, organic N mineralization, increasing the mineral N in the soil.
However, N losses via denitrification are increased. The authors recorded in both years of
the test that the residual mineral N in the soil reduced following the PRD management,
and in addition to the losses due to denitrification; this decrease could also have been a
result of the increase in the uptake of N by the plants. This management induced more
extensive and denser root systems, which reached deeper layers, improving the plant’s
ability to absorb water and nutrients [18]. If this PRD strategy is carried out considering
the phenological states suitable for doing so, then the authors indicate that yield is not
significantly affected in relation to full-irrigation management. The authors highlight that
this PRD system allowed them to save 30% of water consumption (maintaining yield), and
to reduce 33% of the residual N contained in the soil at the end of the season [18].
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Huang et al. [15] demonstrated that higher root growth rates can affect N uptake
strategies by plants and, thus, the efficiency of bioavailable N retention in the soil-plant
system. Plant species with higher root growth rates retained more of the 15N isotope and
promoted 15N retention within the plant−soil system, being considered more efficient than
slow-growing species in fertile soils. The mean total retention of the 15N isotope by the
plant−soil system was 67%, of which the plants retained 33% and soils retained 34%. These
plant species had a greater capacity to absorb bioavailable N directly from soils, and were
less dependent on the priming effect of the soil rhizosphere [15].

Steenwerth et al. [19] also indicated that N dynamics seem to be more sensitive to
changes in soil water content than temperature. However, the temperature directly controls
the mineralization of N, affecting the biochemical processes and, indirectly, affecting the
consumption of oxygen (O2) by the microorganisms. Mild temperatures (between 25 and
35 ◦C) are considered optimal for the activity of aerobic microorganisms, but in some
situations, the decomposition of organic waste can continue when temperatures drop below
zero [8]. Villar et al. [20] found that under specific conditions of Mediterranean humidity, at
temperatures below 5 ◦C, mineralization does not occur. However, in their test on rapeseed,
the average temperature was above this value for much of the winter, allowing for the
mineralization of previous crop residues and soil organic matter. Figueiredo et al. [11]
indicate that the total available N content is not directly affected by high temperature,
but the NH4+ content is significantly reduced. In summer crops, the higher temperatures
of the Mediterranean region increase the rates of gaseous emissions (NH3 volatilization
and denitrification) as well as the increase in absorption rates by plants under irrigation,
explaining the decrease in the total available N content [11].

Influence of Agricultural Practices

Cultivation practices and techniques have an influence on N mineralization and on
the supply of N to the soil. Villar et al. [20] reported that to avoid N losses when there is
no crop to absorb it, it is interesting to use secondary and cover crops or the incorporation
of crop residues with a high C/N ratio. Cover crops based on cereals or brassica with
a higher biomass production and high N uptake are more efficient at preventing nitrate
leaching compared with legumes [21]. Although residues from legumes or other crops
with lower C/N ratios have a high potential for N mineralization, the actual supply
of N by the soil largely depends on the soil preparation techniques [22]. Conventional
systems use soil preparation techniques that disrupt soil structural units, altering and
reducing soil aggregation, increasing O2 diffusion, and exposing physically protected OM
to microorganism activity, resulting in faster mineralization rates. On the other hand,
no-till systems increase soil aggregation and the establishment and stabilization of micro
aggregates within macro aggregates, thus increasing OM protection. Considering that
variations in the availability of soil N between conventional tillage and no-till systems seem
to be variable in the different phases of the crop cycle, to further enhance the transition
to no-till systems, there is a need to identify genotypes with N needs and to synchronize
them, if possible, with the N mineralization rates determined by the no-till technique [23].

The application of mineral and organic fertilizers can also stimulate the growth and
activity of microorganisms and increase N mineralization and soil N supply. The total
available N content (NH4+ and NO3−) increases immediately after basal and top dress-
ing [11,24]. Fernandéz-Ortega et al. [24] indicated that one month after fertilization, the
NO3− content registered a significant decrease, while Figueiredo et al. [11] indicated that
this period may last for days due to the high rates of N absorption by plants under high
temperatures during the summer in the Mediterranean region. Most of the applied N was
retained in the soil when crop requirements were low, protecting N from nitrification, and
thus being slowly released into the soil solution in a waterlogged condition [11].
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3.1.2. N Losses

Finding the balance between soil N supply and crop uptake prevents losses. Still,
this balance is not entirely possible, and losses always occur. Systems that favor the field
capacity or even water stress via waterlogging increase losses due to denitrification, as is the
case of no-till systems or rice fields. Denitrification occurs under anaerobic conditions and
is the biochemical reduction of NO3− or NO2− to gaseous N, with N2O being dominant. In
addition, losses can be accentuated by the combined application of fertilizers and residues
that increase the availability of NO3− and C [8,25]. Sosa et al. [26] demonstrated that under
Mediterranean conditions, the use of agro-industrial by-products does not significantly
contribute to N2O emissions. Ferrara et al. [27] indicated that after green manure, N2O
emissions were mainly produced by the nitrification process, and NH3 volatilization was
reduced compared with mineral fertilizers. According to Harper and Sharpe [28], NH3

volatilization is also influenced by its concentration in the surrounding atmosphere of
the crop. When there are higher levels in the atmosphere than plants, they absorb it;
otherwise, it is realised into the atmosphere. The parameters that most influences are air
temperature, plant N, atmospheric NH3 concentration, wind speed, and intensity of solar
radiation. It is necessary to consider that these parameters vary throughout the day, and
consequently, the NH3 compensation point varies, also varying the movements of NH3 in
the soil−plant−atmosphere system [28].

The application of mineral fertilizers generally increases the rates of nitrate leaching,
although this process is influenced by several other factors such as cultural practices, soil
structure, and the crop root system. The smaller the root system, the higher the leaching
rate can be. Even so, this process can be significantly reduced by using controlled-release
fertilizers together with manure, and determining the right time to apply, synchronizing
nutrient intake with crop demand [8]. When the soil is drier, the aerobic conditions favor
nitrification, increasing the inorganic N content and N20 emissions [29]. This variation was
also highlighted by Plaza-Bonilla et al. [30], but at an inter-annual level, maintaining the
variability of emissions related to the precipitation and water deficit in dryland Mediter-
ranean agroecosystems. Because of the lack of water in the soil, the crop’s response to the
application of N is restricted, and increasing the application rates in a conventional tillage
system would lead to a large increase in N2O emissions.

At the end of the season, there will always be some nitrates left in the soil, which
are the biggest problem with leaching. Even in situations of high N use efficiency, some
nitrates are susceptible to being lost by leaching. To minimize these losses, it is advisable to
modify crop rotations and include secondary or cover crops capable of absorbing residual
N [9]. Special attention should also be given to the early stages of crop development, in
which Sanchez-Martín et al. [31] recorded the peak of N2O emission when the physiological
activity of pasture plants was lower. In the initial and final stages of development, plants
have a very low demand for nutrients, but the activity of soil microorganisms is high and
is reflected in increased emissions at these times [31].

3.1.3. Crop Absorption of N

Increasing the knowledge regarding the metabolic limitations and the genetic basis of
N uptake and use by crops allows for improvements in physiological efficiency [32]. This
efficiency is basically described by the relationship between the N uptake rate and the crop
growth rate. As the crop cycle advances, plants develop and increase biomass production,
while the critical concentration of N decreases. In this sense, it is advisable to adjust the
critical N concentration values throughout the development period.

The adverse conditions to which plants may be exposed reduce N uptake. Even so,
plants have some NH3 uptake and transport mechanisms that allow for increasing the
efficiency of N use in these types of conditions. According to Dubey et al. [32], plants
have five families of nitrate transporter genes (NRTs) that influence the uptake, transport,
and storage of NO3− in plant tissues. NO3− is absorbed from the soil by plant roots via
NRTs, and then assimilated into organic compounds by the action of NO3 assimilatory
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enzymes nitrate reductase and glutamine synthetase. Most stressful conditions cause a
decrease in NO3− uptake and inhibition of the activities of these enzymes. These and other
assimilatory enzymes behave differently in different plant genotypes so that some crop
varieties have greater tolerance or stress to adverse N uptake conditions [32].

It is necessary to bear in mind that N absorptions are always less than entire, that is,
100%. Soil exploration by plant roots is not fully effective, and the efficiency of N absorption
from fertilizer in most cases is below 50% [2]. Jia et al. [14] stated that mycorrhizal fungi
contribute to the absorption of N by plants and prevent N losses by expanding the exploited
soil area.

3.2. Crop N Modelling
3.2.1. Mechanistic CGMs

To integrate the soil–plant system dynamic data and simulate the behavior resulting
from possible future conditions to which the system may be exposed, we used CGMs.
These are a mathematical representation of the growth of a given crop installed in the soil
under defined climatic characteristics. These models are normally subdivided into specific
components for the crop, soil, and climate using the most appropriate mathematical equa-
tions in each of them and simulate the uptake of N by the crop throughout its development,
as well as how it is distributed among the plant [33].

Gallardo et al. [33] suggest grouping growth models into two large groups: static
models and dynamic models (Table 1).

Table 1. Characteristics of each group of CGMs: static and dynamic models.

Statics Dynamics

Standard conditions are assumed such as
expected yield and average weather conditions

Adjust the simulation of growth and
production to the moment according to the real

conditions of the crop
Require less input data Automatic input of real-time weather data

Long-term average climate databases
can be incorporated

Respond to real-time weather data or forecasts
for the next few days

More simplified

The issue of model complexity is important for their use in practical crop management.
Increasing the complexity can increase the model’s ability to predict a greater number of
outputs, but decrease the sensitivity of each of them, increasing uncertainty. To minimize
this we conducted an experiment with control plots in the field. This control was maintained
in optimal crop development conditions, ensuring it did not suffer stress, which made
it possible to build a model of the crop’s optimal development, from which the crop’s
responses to different stresses could be calculated, minimizing model uncertainties [34].

According to Pasley et al. [34], the three main groups of data to run the models are
daily precipitation, temperature, and solar radiation data. While temperature indicates the
speed with which nutrient reservoirs change and plants develop, solar radiation makes it
possible to estimate evapotranspiration and the evolution of photosynthesis in plants. Great
care is needed when verifying the data as any error increases the degree of uncertainty in
the estimates.

In more complex models, there are specific sub-models to estimate N losses and
displacements in the system, which require a large amount of data. Even so, the models can
be simplified and most estimate N uptake by the crop by simulating the dry matter and its
N content. Some models may require the expected crop yield as an input parameter. Other
approaches consider N dilution curves, which estimate the minimum N content of the crop
in which DM production is not compromised by this content. The values needed for this
calculation are the current N content of the crop, the amount of biomass, and the N content
of the unfertilized crop [33]. Archontoulis et al. [5] pointed out that the estimation of models
is more accurate if the initial phases of the crop’s development consider the parameters
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of biomass production, leaf area index, and N and water in the soil. Gallardo et al. [33]
listed some models that simulate N dynamics in the soil−plant system: STICS, CropSyst,
and DSSAT. These models are shown as demanding in terms of input parameters. Based
on the literature review, Table 2 presents the developed, tested, and widely used CGMs,
identifying their main objectives and input parameter data.

Table 2. CGMs, respective main objectives, and input parameter data.

Model Ref. Goals Main Input Parameters

DNDC [35]

Estimate crop growth
Estimate the dynamics of C and N

in the soil
Estimate GEE emissions

Estimate the water cycle in the soil

Daily weather data
Soil properties

Agricultural practices of the soil

DSSAT
(CERES-wheat) [35,36]

Estimate crop growth
Simulate water balance in the soil

Simulate C dynamic in the soil
Simulate crop phenology
Estimate Leaf Area Index
Estimate crop production

Daily weather data
Soil properties

Initial soil conditions
Agricultural practices

HortSyst [37] Estimate biomass production
Estimate N absorption

Hourly air temperature
measurements

Air relative humidity
Solar radiation

APSIM-wheat [36]
Simulate crop phenology
Estimate Leaf Area Index
Estimate crop production

Daily weather data
Soil properties

Initial soil conditions
Agricultural practices

SWAT [38] Estimate crop growth
Simulate N losses

Weather data
Soil data

STICS [39]

Estimate Leaf Area Index
Simulate biomass production

Estimate N absorption
Estimate crop production

Agricultural practices
Initial water content in the soil

Initial N content in the soil
Air temperature
Solar radiation
Precipitation

Wind
Relative air humidity

Planting density
Seeding date

Seeding depth
N application dates

Irrigation dates
Emergency density

Inter-row placement

In addition to the data itself, some models still need some specificities for each case.
Kherif et al. [39] identified the details of the parameters that they introduced in STICS, such
as the considered soil depth, which influences the calculation of N and water storage, and
the fact that the emergence density was used instead of the density of sowing, which makes
the simulation more realistic. Soil depth was pointed out by Puntel et al. [40] as a static
factor, and according to their results, static factors explained only 20% of the variability
in the optimal economic rate of N (ENopt). Dynamic factors such as precipitation or the
number of residues can explain up to 50% of the same variability. Although it is complex to
understand the importance of these variables and their relationships, static and dynamic
variables considered influential by Puntel et al. [40] in the calculation of the ENopt of the
corn crop are listed in Table 3.
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Table 3. Description of static and dynamic variables for calculating ENopt [40].

Factor Variable Soil Depth Unit

Static

Soil organic matter 0–20 cm %

Available Bray phosphorus 0–20 cm ppm

Electrical conductivity 0–20 cm ds/cm

pH 0–20 cm -

Sand content 0–20 cm %

Silt content 0–20 cm %

Clay content 0–20 cm %

Soil apparent electrical conductivity 0–30 cm ds/m

Elevation as meters above the sea level - M

Plan curvature - Deg

Slope of the field - %_raise

Soil organic matter 20–60 cm %

Sand content 20–60 cm %

Silt content 20–60 cm %

Clay content 20–60 cm %

Soil apparent electrical conductivity 0–90 cm ds/m

Variable

Number of residues from the previous crop
at planting - kg/ha

Ratio C/N of the residues - -

Yield of the previous crop - kg/ha

Nitrate content 0–20 cm kg/ha

Nitrate content 20–60 cm kg/ha

Soil water content 0–20 cm mm

Soil water content 20–60 cm mm

Soil water as a % of field capacity 0–20 cm %

Soil water as a % of field capacity 20–60 cm %

Number of rain events from planting
to silking - days

Number of days with rain >20 mm from
planting to silking - days

Cumulative rain from planting to silking - mm

Number of rain events from around silking - days

Cumulative rain around silking - mm

Number of rain events from harvest
to planting - days

Number of days with rain >20 mm from
harvest to planting - days

Cumulative rain from harvest to planting - mm

Number of rain events from planting
to harvest - days

Number of days with rain >20 mm from
planting to harvest - days

Cumulative rain from planting to harvest - mm

Number of heat days (daily temp > 35 ◦C)
around silking - days

Number of heat days from planting to harvest - days

Number of cold days (temp < 10 ◦C) from
planting to harvest - days



Agronomy 2023, 13, 1964 10 of 19

Each model assumes the most specific variables for the objective and crop in which it
is applied. In the case of HortSyst, which estimates crop biomass production, N uptake,
and LAI, it can assume variables other than those mentioned by Puntel et al. [40], and as
the focus of the estimate is restricted, these change and others with greater relevance for
the relationships to be estimated are incorporated.

Other models offer the possibility of summarizing N fertilizer needs in a single equa-
tion (Equation (1)), as is the case with FertiliCalc [41].

Nrate = (Nend + (1 + fNR)(Nyield + Nres) − kimFesN’res − fNR (N’yield + N’res) − Nother)/(1 − n) (1)

Nend represents the final inorganic N of the soil (residual N), for which FertiliCalc
uses a fixed value of 10 kg N ha−1 assuming that the crops are unable to recover N below
this limit. fNR is the ratio of N in the roots to N in the shoot. Nyield and Nres refer to
N accumulated in the crop organ and residues of the current crop, respectively, while
their counterparts N’yield and N’res correspond to the previous crop in the rotation. The
kim coefficient would have a maximum value of 1 if all of the aboveground residues are
mineralized without loss. Smaller values are expected if the residues are not incorporated
in the soil preparation and even when the N concentration in the residues is low.

The quality and relevance of the data collected to run the model are more important
than the number of variables. All of the models have gaps or errors in their estimates. That
is why it is essential to remain focused on the purpose of the data rather than the data itself
and on understanding the limitations of the data collected. For example, in large-scale field
model applications, it is not usual to collect data in great depth on each question, but rather
to collect data from various situations in different locations, crop varieties, or treatments.
This does not happen in studies that intend to be more detailed in a specific location and in
which plant or soil parameters are monitored in much greater depth [34,42].

3.2.2. Model Testing and Validation

The accuracy of the models depends on their calibration and validation. Firstly, the
calibration will adjust the model coefficients to the crop species installed and to the soil
and climate conditions in which it grows. Validation verifies the performance of the model
in relation to the measured values [33].

Pasley et al. [34] identified the root mean squared error (RMSE) and the coefficient of
determination (R2) as the most common statistical tests. RMSE conveys model error in prac-
tical units that allow for a greater understanding of the model (Equation (2)). Meanwhile,
R2 acts more as a measure of precision than accuracy.

RMSE = (∑ (Ysim − Yobs)2)/n (2)

Other alternatives used and recommended by Pasley et al. [34] that analyse the accu-
racy of the model in relation to the accuracy of the observed data are the Nash−Sutcliffe
efficiency (NSE), root mean squared deviation (RMSD), and standard deviation ratio RMSE
observation system (RSR). NSE shows the flexibility of simulated data to adjust for variabil-
ity in observed data (Equation (3)).

NSE = [∑ (Yobs − Ysim)2/∑ (Yobs − Ymean)2] (3)

RMSD indicates the mean deviation between the predicted values and the predicted-
observed regression line (Equation (4)).

RMSD =

√
1

n− 1
(∑ (Ysim − Yobs)2) (4)

RSR normalises RMSE to the standard deviation of values in the observed data
(Equation (5)).

RSR =
RMSE

STDEVobs
(5)
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Percentage bias (PBIAS) analyses the tendency of simulated data to be higher or lower
than observed data (Equation (6)). The perfect value is zero.

PBIAS = (∑n
i=1(Yobs − Ysim) × 100)/(∑n

i=1(Yobs)) (6)

Kherif et al. [39] evaluated their model quantitatively using RMSE, normalized model
root mean squared error (NRMSE), model efficiency (EF), and Pearson’s correlation coeffi-
cient (R2). NRMSE (Equation (7)) is the normalized RMSE, which facilitates the comparison
when considering different scales.

NRMSE = RMSE/Ō × 100 (7)

EF (Equation (8)) is a valuable indicator to compare model simulations with different
parameter sets.

EF = 1 − (∑ ni = 1 (Oi − Si)2)/(∑ ni = 1 (Oi − Si)2) (8)

R2 (Equation (9)) is used to evaluate the accuracy of the linear regression between the
observed and simulated values.

R2 = [(∑ ni = 1 (Si − Śi) (Oi − Ōi))/(σSσO)] (9)

Jiang et al. [35] validated the performance of their simulations by comparing the
estimates with data measured in corn crop. For this, they used four indicators: PBIAS,
NRMSE, and the concordance index (d). The d (Equation (10)) is intended to be a descriptive
measure and is a relative and limited measure.

d = 1− (∑n
i=1(Si−Mi)2)/(∑n

i=1( |Si− ∼ M|+ Mi− ∼ M)2) (10)

where Si is the simulated value, Mi is the measured value, n is the number of measured
values, and M¯ is the average of the measured values. The values resulting from these
indicators allow for classifying the simulation accuracy of the models, with standard values
that must fit with those presented in Table 4.

Table 4. Standard values to classify the accuracy of the simulation models.

Indicator Ref. Poor Reasonable Good Excellent

PBIAS [35] - <±70% - -
nRMSE [35] 30% < x 20 < x ≤ 30% 10 < x ≤ 20% x ≤ 10%

NSE
[35] 0.0 < x < 0.5 0.5 < x < 1 - =1
[34] x ≤ 0.5 0.5 < x ≤ 0.65 0.65 < x ≤ 0.75 0.75 < x ≤ 1

RSR [34] 0.7 < x 0.6 < x < 0.7 0.5 < x < 0.6 0 ≤ x ≤ 0.5
d [35] x < 0.7 0.7 ≤ x < 0.8 0.8 ≤ x < 0.9 0.9 ≤ x

This sensitivity analysis and model validation are essential for understanding and
using the models [35,43]. Jiang et al. [35] validated the DNDC and DSSAT models with a
“good” performance in the simulation of corn production, aboveground biomass produc-
tion, and N uptake. DSSAT handled situations of no N fertilization better, and both models
struggled to estimate maize growth and soil nutrient dynamics under dry conditions [35].

3.2.3. Climate Sensitivity of the Models

The need for correct calibration and validation of CGMs, mainly ensuring that they are
suitable for the site specific to which they are applied, is essential to obtain good simulations.
Moot et al. [44] validated the APSIM-Lucerne model in New Zealand and noted that the crop
was regularly exposed to temperatures below 15 ◦C, which was uncommon and with very
little relevance in applying the model in subtropical regions. In addition, Wilson et al. [45]
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also found it necessary to improve simulations in the corn crop in temperate climates using
calibrated models for subtropical climates. They achieved good agreement between the
data simulated by the modified model and the data observed in tropical, subtropical, and
cold climates, through changes in plant phenology responses to low temperatures, the
reduction in the radiation use efficiency, the increase in the rate of the harvest index, and
the increase in the time interval between flowering and the beginning of grain growth [45].
Jégo et al. [46] highlighted that most CGMs do not consider the effect of snow cover in
the regions where it occurs and essentially change the simulation of soil water content
and the N cycle. Furthermore, soil temperature is underestimated as it is derived from the
measured air temperature and does not consider the snow that covers the soil isolating
it. In their trial, they demonstrated that STICS can be used in wet and cold continental
climates using snow cover models and pre-processed climate data, predicting soil moisture
and temperature conditions during the growing season of crops. They indicated that this
type of data incorporation can also be used in other models such as DSSAT or CropSyst.

The potential global impacts caused by the climate on crop yields are a major concern
for society; however, models can allow for early decision making, which is why increased
sensitivity to the factors surrounding the crop are required [47]. Some authors [48,49]
have indicated that the rise in temperature in arid and semi-arid regions may be associ-
ated with the effect that will most contribute to the increase in drought and degradation
of water resources, according to the application of the SWAT and SALTMED models.
Montenegro et al. [49] calibrated and validated the SALTMED model for carrot and cab-
bage crops in a semi-arid region of Brazil and indicated that the impact of climate change
on temperature resulted in an increase of 11 to 17% in requirements for water resources
of these cultures. Saseendran et al. [50] applied the CERES-rice model in five locations
in India characterized by a humid tropical climate, and concluded that for the projected
climate change scenario of a temperature increase of 1.5 ◦C and 2 mm of precipitation per
year, with an atmospheric concentration of 460 ppm, there was an average increase of 12%
in production and a shortening of the crop development period. However, if precipitation
conditions and atmospheric CO2 concentration levels were maintained, there would be an
average reduction of about 9% in rice grain production.

3.3. Modelling with Digital Tools and Technologies
3.3.1. Integrate Digital Data into CGMs

CGMs are considered a very useful tool for monitoring agricultural systems when
they are well-calibrated and validated, but their digitization and integration with new
technologies allow them to increase their efficiency and accuracy. Digitization allows for
the autonomy of growth models through automatic data entry, maintaining model accuracy,
and an accessible level of complexity [33]. While data from manually recorded field trials
are essential for improving the understanding of many processes in soil−plant systems,
data analysis from field experiments alone is often limited and does not allow for capturing
and understanding the complexity in time.

According to Cesco et al. [1], the complexity of an agricultural system requires a
detailed analysis and interpretation of the data, in addition to the stages of data collection
and final use of information, as happens in most industrial systems. The initial phase, which
is data collection, must consider the necessary data set as well as all the details that make the
difference in process monitoring. The solution to a specific problem or set of problems must
be the basis of the developed information system. Approaches are needed that start with
the problem and end with the solution of the smart agriculture system that retroactively
designs a scenario to solve it [51]. The process can start by identifying the potential causes
of the problem, and then define the necessary parameters to understand the real causes.
Once the parameters are defined, the sensors and tools capable of providing them are
identified. The monitoring of systems at environmental, productive, and operational levels
can be achieved using a set of tools including meteorological, soil, and water sensors; optics;
positioning systems; and other identification and monitoring systems [1,52].
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Secondly, concerning data processing, all data preparation for further analysis is
carried out. This stage includes steps such as selecting, filtering, aggregating, or archiving
data through GIS, geostatistics, and image processing [53]. The combination of CGMs
with Geographic Information Systems (GIS) makes it possible to consider information
from crop simulation models for each site specific in the field and to identify the amount
of inputs that must be applied to reach the maximum yield and the expected profit [54].
However, beyond the combination of GIS, remote sensing data, and data from soil−plant
sensors in real time, climate history allows for identifying and delimiting spatially and
temporally homogeneous zones, where the limiting factors behave in an identical way,
and thus identical practices should be adopted [55]. Gobbo et al. [56] achieved results
that confirm that a system that integrates data from these information sources can be used
to develop an intuitive tool that allows farmers to know the best N fertilization doses
for the simulated crop. In this way, systems that deliver the response of the appropriate
fertilization recommendation, to the detriment of systems that only create hypothetical
scenarios of predictable conditions, will allow interested parties to make more informed
decisions [5].

The third stage provides the information that will allow for decision making and
process optimization. It consists of data analysis and evaluation, which can be supported
by artificial intelligence tools and ML algorithms. ML algorithms can be used to predict
ENopt recommendations based on the final output [53]. Currently, ML methods have been
applied in the development of prediction systems using past experiences in agro-industrial
systems. ML provides techniques that can automatically build computational models
as a closed input−output relationship, based on the available data and maximizing a
performance criterion depending on the problem [57]. Considering the performance of four
ML models in three scenarios, according to Wen et al. [53], the RF model demonstrated the
best performance, with the lowest standard deviation and highest correlation coefficient,
especially when considering climate data (10-year history and current climate until the
application of N coverage) and field measurements. The model recommends reducing the
amount of N supplied under conditions of abiotic stress, with benefits such as a reduction
in costs for producers as well as the potential for GEE emissions. Also noteworthy is the
fact that these models indicate ENopt reference values for normal years that are higher than
those for dry years, as crop productivity and profit in dry years were less responsive to
increased N application. Some research has also been done in the sense of inserting data
into the DSSAT model through ML models, which achieved quite satisfactory results in
the simulation of crop yields, N losses, N uptake, and, mainly, the optimal amount of N to
apply [58,59].

To avoid taking destructive samples to gather essential input data, these can be
replaced by real-time sensors of soil and crop conditions [5]. Remote sensing can provide
spatial information in a timely, non-destructive, and instantaneous manner and improve
the accuracy of CGMs predictions [42].

Kasampalis et al. [42] highlighted three methods through which remote sensing data
are integrated into cropping models. Through an indirect approach in which the remote
sensing data are assimilated through a simulation model, calibrating the main model, or
through two other methods, one of them through CGM forcing and the other through CGM
recalibration, both after integrating the remote sensing data (Figure 1).
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Figure 1. Schematic representation of possible methods for integrating remote sensing data on
CGM forecasts.

Ruan et al. [60] estimated the above-ground biomass (AGB), plant N content, plant N
uptake, and N nutrition index based on an evolutionary algorithm-deep learning frame-
work. Proximal sensing data collected at wheat key growth stages and corresponding
meteorological data were fed into the model. They highlighted that deep neural network
(DNN), random forest, and DNN-MTL (multi-task learning) all achieved promising accu-
racy in estimating the wheat N status. The effect of AGB accumulation and N concentration
dilution across the entire growing season could be successfully captured in a single model
such the one presented by Ruan et al. [60].

Clearly, the main advantage of integrating remote sensing data in CGMs is the detail of
the spatial information with all the precision conferred by these data in terms of describing
the real conditions of the crop. However, these data can also bring errors into the estimation,
starting from the choice of method and the sensor for data collection [42,61]. Although
difficulties have been pointed out for satellite platforms, mainly in terms of spatial res-
olution and due to the difficulty in dealing with the occurrence of clouds, launches of
missions are being planned to overcome these difficulties [61]. Even so, with the existing
platforms, there are results that demonstrate the pertinence of integrating remote sensing
data from these platforms into CGMs. Zhuo et al. [62] demonstrated that using the LAI
calculated through the MODIS platform greatly increased the estimation accuracy of the
WOFOST model.

The difficulty of CGMs in generating forecasts increases as the measurements and
information sources that feed the estimate increase, and which are sometimes found
in different temporal and spatial resolutions [63]. A correct data assimilation process
that combines process-based CGMs with agricultural data collected manually or through
digital sources increases the precision and accuracy of the simulations while decreasing the
reliance on extensive model calibration to a site-specific level. This assimilation reduces the
uncertainties of the models, mainly regarding spatial and temporal heterogeneity [63].

3.3.2. Virtual Representation of CGMs

There is currently a great need to bring together the data integration processes to
smart agriculture in a cohesive platform that guarantees the collection of relevant data and
the respective analysis adapted to real problems, capable of facilitating decision making.
From the moment that the manager has access to the different possible scenarios and is
aware of their degree of uncertainty, they can make more appropriate and sustainable
decisions. Being able to monitor the most unstable specific sites practically in real time
allows for understanding their behavior and comparing them with the areas of high and low
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production, providing the manager with the ability to decide whether to apply N fertilizer
topdressing and in what quantity [1]. Decision support systems (DSS) can manage one or
more models and multiple sources of information after their calibration and validation.
Even after these steps, it is important to evaluate DSSs in the field conditions for which they
were designed and to compare them with the practices of farmers to measure the impact
and the benefits of the implementation, such as savings of irrigation water, fertilizers, and
economic profit based on growth models [33].

Due to the logical structure of process management and decision-making characteristic
of a true agricultural information system, digital twins can be considered as digital technolo-
gies capable of virtually representing a complex physical system, such as agrosystem. The
creation of a digital twin of the physical environment can be used to simulate the impact
of events or practices carried out, anticipating and preventing eventual problems. Digital
twins eliminate some restrictions on displacement and time spent on human observation,
based on data collected remotely in real time, very specific from the geographic and tempo-
ral points of view and in relation to each input parameter of the CGM [1,64] (Purcell et al.,
2023). Various sensors can communicate with each other and with the general platform
through communication that is supported by IoT technology. While remote sensing and IoT
are already well developed, adapted, and applied in the agro industry, the technology that
facilitates communication between the real world and the cyber world is the cyber-physical
system (CPS), which truly harnesses data and creates the digital twin. At the end of this
process is the interface that allows the human user to interact and manage to integrate
the system themselves. Although there is still little research on the application of this
technology to the agricultural reality, it represents an excellent opportunity to achieve true
digitization in an area as complex as agriculture [64].

According to Cesco et al. [1], the two main advantages of using digital twins in crop
modelling are the (i) validation of management and decisions taken in the application of
agricultural practices, especially when based on modelled predictions, and (ii) real-time
monitoring allowed by data collected at the time, mainly by remote sensing such as satellite
platforms, which inform how to adjust the N side-dresses throughout the season.

4. Conclusions

This review article describe the main movements and transformations that N under-
goes in the plant−soil system, and the influence of the surrounding atmosphere of this
system is also taken into account, which also ends up influencing the entire behaviour
of the nutrient. It has become clear that the soil and its characteristics have the capacity
to alter the entire behavior of N, making it available to be absorbed by crops, but also
immobilizing or even losing it to the surrounding environment, leaving it out of reach of
the plants. All of these movements can be monitored by collecting the correct data for each
variable that changes them. In addition to soil variables, data on meteorological conditions,
crops, and their specificities, as well as data on the agricultural practices adopted, are key
to being able to calculate the movements of N in the system. These data feed tested and
validated mathematical models for situations such as those we intend to predict, which
end up making an estimate of the crop absorptions of N, its needs, and the possible losses
of the nutrient.

It is necessary to consider that all models have gaps and uncertainties in their estimates,
and it is essential to remain focused on their intended objective when using them. It must
be ensured that the data that feed the model are suitable for the intended purpose. It is
necessary to calibrate the model so that it is suitable for the situation in question, as well as
for the subsequent validation that indicates the degree of certainty with which it manages to
estimate the possible scenarios for plant growth. This review highlights statistical tests such
as RMSE, NSE, and PBIAS for measuring the level of convergence of models. According
to the statistical tests made by some authors, the DSSAT and DNDC models performed
“good” when estimating maize N uptake.
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The issue of spatial resolution of data is quite important in terms of modelling crop
growth and development, as most models do not consider the spatial heterogeneity char-
acteristic of agricultural systems. As this heterogeneity is important in the estimations
of agricultural managers, it is necessary to add the ability to detail the estimates at the
site-specific level to the modelling. Integrating data collected from digital sources into
models makes it easier to increase the accuracy of estimates. On the one hand, it increases
complexity, due to the large number of sources and data that can be incorporated, but
without increasing the degree of uncertainty, as this increase in data collection does not
necessarily mean an increase in errors in its collection. Remote sensing can provide timely,
non-destructive spatial information and instantly improve the accuracy of model predic-
tions. Digital data can be integrated into models right from the model calibration stage, but
also through model forcing or recalibration. This assimilation reduces the uncertainties of
the models, mainly regarding spatial and temporal heterogeneity.

Proper integration of digital data, such as remote sensing data, into CGMs increases the
precision and accuracy of simulations, and further decreases the reliance on extensive model
calibration to a site-specific level. There are different models to simulate the sensitivity of the
crop yield to temperature change at a local or regional level. According to Wang et al. [65],
the variation at the local scale is correlated with the global scale across the set of models.
Temperature variability throughout the year has less influence on model prediction than the
increase in variability between years. They added that this prediction is more compromised
in places where the temperature increase is more pronounced [66]. Furthermore, this
assimilation reduces the uncertainties of the models, mainly regarding spatial and temporal
heterogeneity. It is this integration of detailed data at the site-specific level that ensures that
model estimates are generated at the same level of spatial resolution.

When a level of great digitization of data collection from the agricultural system is
reached, there are many sources that are capable of interacting with each other, but also
with the manager, most of the time in real time. The advantage of this interaction allows
for the creation of a virtual representation of the monitored system, commonly referred to
as a digital twin, which allows managers to simulate the impact of their decisions on crop
management and to avoid potential economic or environmental losses.
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