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Introduction
SARS-CoV-2 is an RNA virus that causes COVID-19, a disease that has

killed over six million people worldwide since 2019 [1]. It is important to

understand the features of a SARS-CoV-2-specific immune response, which

is comprised a general innate response and a disease-specific adaptive

response (see Figure 1) [2,3]. Some aspects include:

- Neutrophils and macrophages ingest harmful foreign particles.

Monocytes differentiate into macrophages.

- T cells kill infected host cells.

- Antibody secreting B cells produce antibodies, which are proteins that

bind to the surface of antigens and facilitate removal. IgG is often an

important indicator of long-term protection against a virus [5,6].

Mathematical models have been developed since the start of the

COVID-19 pandemic to study the effects of SARS-CoV-2 in the human

body. Jenner et al. 2021 developed a compartmental model of the immune

response to this virus that is focused on innate and T cell dynamics during

primary infection and does not yet consider humoral immune dynamics [4].

This study aims to introduce antibodies, namely immunoglobulin G (IgG),

and antibody secreting B cells (ASC) into the model to study their effects on

the human immune response to SARS-CoV-2.

Conclusions

Figure 1. Modeled A) immune cell dynamics, B) cytokine production dynamics, and

interactions, adapted from Jenner et al. 2021 [4].

- What are the impacts of antibody dynamics on the human immune

response to SARS-CoV-2?

- How does the presence of antibodies affect different disease and

immune measures, such as viral load, infected cell count, immune

activation, and viral clearance?
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Results

Figure 3. Viral load decreases rapidly

between days 4 and 5 due to B cell activation

at day 4.5. Virus passes under the detectable

infection threshold around day 7 versus

around day 9 when IgG is present in the

model.
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Figure 7. Varying the initial amount of

antibody (𝐴0) is representative of monoclonal

antibody treatment. Larger amounts of initial

antibody delay infection and decrease total

viral load.

Figure 9. Varying the antibody production

rate (𝑝𝐴) can drastically change the length of

detectable infection. A change of 102

titer/(cells/ml)/day shifts the infection period

by about 2 days. With a larger 𝑝𝐴 value, viral

load drops immediately after IgG production

initiates.

Parameterization
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When antibody dynamics are incorporated into the model, the length of

infection is shortened. The delay in ASC production means that antibodies

decrease viral load after virus peaks.

- Refine preliminary parameterization (see Figure 3).

- Validate model results against independent datasets.

- Use virtual cohorts to investigate individual patient antibody responses,

as in Jenner et al. 2021 [4].

- Introduce memory B cells to model secondary infections.

- Modeling suggests IgG antibodies do not prevent or substantially

decrease severity of primary SARS-CoV-2 infection, but they can shorten

the duration of infection.

- Efficiency of antibody production and/or rate of virus removal by IgG

determine how quickly viral load is lowered.

- An initial pulse of antibody, such as from monoclonal antibody treatment,

may delay infection, but at modeled dosages, infection is not prevented.

However, the curve of infection is flattened, and total virus (area under

the curve) is lessened.

- Flatter curves associated with higher amounts of initial B cells suggest

that unmodeled memory B cells could play a role in decreasing the

severity of secondary infections of SARS-CoV-2.

Figure 10. Varying the viral removal rate by

antibody ( 𝛿𝑉,𝐴) can change the length of

detectable infection. Viral load is more

sensitive to smaller values of 𝛿𝑉,𝐴.

Submodel & Parameterization 

Figure 6. IL-6 stimulates IgG release from

ASC, which decrease unbound IL-6 when IgG

is present. Bound IL-6 increases due to

additional receptors being present on ASC.

Figure 5. Epithelial cell dynamics from the

antibody model are nearly identical to those

of the model without antibody.

Figure 4. In a primary infection, antibody

production is delayed until ASC are

stimulated around day 4.5.
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Figure 8. Increasing amounts of initial B cells

( 𝐵0 ), which mimics unmodeled immune

memory, has the potential to delay infection

and decrease disease severity in terms of viral

load.
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Parameter Defined Value Units Citation

𝑑𝑉 viral decay rate 7.73 1/day Fit to [7]

𝛿𝑉,𝐴 virus removal rate by IgG 116 1/day Fit to [8]

𝑛 amount of IgG bound to virus 1 dimensionless Fit to [8]

𝜖𝑉,𝐴 half-effect of virus removal by 

IgG

4.51 titer Fit to [8]

𝑝𝐵 ASC production 2.54 x 10-5 1/day Fit to [9]

𝜏𝐵 ASC delay time 4.5 day Estimated 

from [4]

𝑑𝐵 ASC decay rate 0.23 1/day Calculated 

from [10]

𝑝𝐴 IgG production rate 2.75 x 106 titer/(cells/ml)

/day

Fit to [8]

𝜖𝐴,𝐿 half-effect of IgG stimulation by 

IL-6

1 pg/ml Fit to [8]

𝑑𝐴 IgG decay rate 0.311 1/day Fit to [8]

𝑛𝑉,𝐴 amount of IgG bound to virus 1 titer 𝑛 with units

Submodel

Datasets used in order of fitting:

B cells: ASC data taken from Rowntree et al [9].

IgG: Antibody data from Rode et al. Data are IgG titer, and all cases (mild,

moderate, severe) were used [8].

Viral load: Virus data from Goyal et al. expressed in log(cop/ml) of RNA [7].

Figure 2. Full model outputs of ASC, IgG, and viral load plotted against the data used in

parameterization as well as the best-fit parameterization of the submodel [7,8,9]. Differences

can be attributed to additional equations present in the full model vs. smaller submodels used

for fitting. Future calibration against other datasets could refine parameter values to more

precisely capture data trends.

Sensitivity Analysis

We first develop and parameterize a submodel of antibody dynamics based

on IgG and ASC behavior. Then, we incorporate the submodel into the

systemic immune model by Jenner et al. 2021. Outputs of the new model

with IgG and ASC are compared to the original model, and sensitivity of

outputs to parameter values is assessed.

Biological Questions

In the following figures, the original IgG model (baseline) parameter value is represented by
the blue dotted line.
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