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High-energy spin waves in the spin-1 square-lattice antiferromagnet La2NiO4
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Inelastic neutron scattering is used to study the magnetic excitations of the S = 1 square-lattice antiferro-
magnet La2NiO4. We find that the spin waves cannot be described by a simple classical (harmonic) Heisenberg
model with only nearest-neighbor interactions. The spin-wave dispersion measured along the antiferromagnetic
Brillouin-zone boundary shows a minimum energy at the (1/2, 0) position as is observed in some S = 1/2
square-lattice antiferromagnets. Thus, our results suggest that the quantum dispersion renormalization effects or
longer-range exchange interactions observed in cuprates and other S = 1/2 square-lattice antiferromagnets are
also present in La2NiO4. We also find that the overall intensity of the spin-wave excitations is suppressed relative
to linear spin-wave theory, indicating that covalency is important. Two-magnon scattering is also observed.
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I. INTRODUCTION

Studies of quantum (low-spin) square-lattice antiferromag-
nets (SLAFMs) are motivated by the desire to understand
the ground state and excitations of a model Heisenberg sys-
tem, and because superconductivity can develop by doping
S = 1/2 systems with antiferromagnetic interactions such
as cuprates [1] and nickelates [2]. Large-S antiferromag-
nets (AFMs), such as Rb2MnF4 [3] (S = 5/2), are generally
well described by the semiclassical, harmonic, linear spin-
wave theory (LSWT). In contrast, significant deviations from
LSWT predictions have been observed in the spin excitations
of S = 1/2 SLAFMs, such as La2CuO4 (LCO) [4,5] and
copper deuteroformate tetradeuterate (CFTD) [6–8]. These
systems show an anomaly in the excitations at the (1/2,0)
position, on the antiferromagnetic Brillouin zone (mBZ)
boundary. The anomaly is characterized by a strongly sup-
pressed one-magnon energy and spectral weight as well as a
broadening of the response in energy (h̄ω) [5–11].

LCO [4,5] is a well-characterized S = 1/2 SLAFM based
on transition-metal-oxide layers. It shows an unusual spin-
wave dispersion which can be described with ferromagnetic
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longer-range exchange interactions [second-nearest-neighbor
(NN) interaction or cyclic exchange] rather than a renor-
malization of the dispersion by effects beyond the linear
spin-wave approximation. In the Hubbard model, the longer-
range exchange interactions result from the large t/U ratio [4].
Here we study the S = 1 system La2NiO4 (LNO) with smaller
t/U ratio. This is a square-lattice 3d transition-metal-oxide
antiferromagnet. Our aim is to determine whether the longer-
range exchange interactions and (1/2,0) or (0,1/2) anomaly,
respectively, observed in S = 1/2 systems, persist in other
systems.

LNO shows three-dimensional (3D) magnetic order below
TN ≈ 320 K with moderate spin-lattice coupling (the mag-
netic structure is discussed in Sec. II B). It is considered to
be a Hubbard-Mott insulator in the Zaanen-Sawatzky-Allen
scheme [12,13]. Above 75 K, LNO has the same Bmab
“low-temperature orthorhombic” (LTO) structure as LCO.
The magnitude of the ordered moments in La2NiO4 has been
found to be reduced with respect to the S = 1 value. The
moment reduction is believed to be due to a combination of
covalency effects, arising from the antibonding orbitals of the
Ni-O-Ni bonds [14–16], and zero-point spin fluctuations [17].

Previous inelastic neutron scattering (INS) [19,20] and
resonant inelastic x-ray scattering (RIXS) [21] studies show
the existence of spin waves up to ∼120 meV. A study [20]
of the spin-wave dispersion in the (H, H, L) plane observed
two distinct gapped modes corresponding to fluctuations in
and out of the ab plane. The gaps were assigned to single-ion
anisotropy. The Heisenberg NN interaction was determined
to be J ≈ 30 meV. No out-of-plane c-axis dispersion was
observed, implying J⊥/J < 10−3 and making the magnetic
excitations quasi-2D.

In this paper, we present time-of-flight (ToF) INS data col-
lected throughout the entire Brillouin zone and up to energy

2643-1564/2023/5(3)/033113(11) 033113-1 Published by the American Physical Society

https://orcid.org/0000-0003-1940-4649
https://orcid.org/0000-0002-3575-7471
https://orcid.org/0000-0003-4493-8597
https://orcid.org/0000-0002-3209-027X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.033113&domain=pdf&date_stamp=2023-08-18
https://doi.org/10.1103/PhysRevResearch.5.033113
https://creativecommons.org/licenses/by/4.0/


A. N. PETSCH et al. PHYSICAL REVIEW RESEARCH 5, 033113 (2023)

transfers of h̄ω ≈ 170 meV on a high-quality single crystal
of LNO. This enables us to resolve an anomalous high-h̄ω

spin-wave dispersion which resembles behavior observed in
the S = 1/2 SLAFM cuprate CFTD where it is assigned
to quantum-dispersion-renormalization effects beyond linear-
order spin-wave theory [6–8]. In addition, we show that the
spectral weights are well described by a LSWT+1/S model
if anisotropy, covalency effects, and two-magnon excitations
are considered.

II. EXPERIMENTAL DETAILS

A LNO single crystal with a mass of 21.1 g was grown
by the floating-zone technique and annealed at 1173 K in 5%
CO and 95% CO2 atmosphere to obtain the correct oxygen
composition. A superconducting quantum interference device
(SQUID) magnetometry measurement at 1 T shows a Néel
temperature of TN (1 T) ≈ 320 K and a structural and spin
reorientation transition at 75 K. Thus, the oxygen excess δ

in La2NiO4+δ is δ < 0.007 [18,22].
The ToF INS experiments were performed at the MAPS

instrument at the ISIS Neutron and Muon Source at the
Rutherford Appleton Laboratory [23,24] and the SEQUOIA
instrument at the Spallation Neutron Source at the Oak Ridge
National Laboratory [25]. Data were collected at T = 10 and
T = 6 K, respectively. The sample was aligned with (110)
vertically. All presented MAPS data are integrated over L ∈
[−15, 15] r.l.u. and all presented SEQUOIA data are inte-
grated over L ∈ [−10, 10] r.l.u.

A. Crystallographic notation

The low-temperature structure of LNO is the low-
temperature tetragonal (LTT) P42/ncm structure [18]. This
can be approximately described by the high-temperature
tetragonal (HTT) I4/mmm space group. We use the HTT
conventional unit cell with a = b = aHTT ≈ 3.89 Å and c ≈
12.55 Å to describe wave vectors in reciprocal space as q =
Ha� + Kb� + Lc� ≡ (H, K, L) for the presentation of our
data. For data integrated over L and the spin-wave theory,
we abbreviate to a square-lattice 2D notation (H, K ). For a
square-lattice, the points (H, K ) and (K, H ) are equivalent.

B. Magnetic structure

At low temperatures, the host lattice of the antiferromag-
netism in near stoichiometric LNO is believed to be P42/ncm
or LTT. Samples with a similar composition to ours develop
a ferromagnetic (FM) component (i.e., show canting of the
ordered moments) and have anomalies in the intensity of the
antiferromagnetic Bragg peak measured by neutron scattering
on entering the LTT state at T ≈ 75 K [26]. Rodriguez-
Carvajal et al. (Table 4) [18] show that only a magnetic
structure belonging to the �3g irreducible representation of the
P42/ncm space group is consistent with this. We therefore as-
sume that there is spin reorientation on entering the P42/ncm
structure and the antiferromagnetic structure is described by
this magnetic mode, as shown in Fig. 1. Note that this mag-
netic structure cannot be distinguished using diffraction from
the �4g representation of the Bmab space group proposed by
Ref. [18] if two domains, rotated by 90◦ around the c axis,
of equal population are present. In the P42/ncm space group,

FIG. 1. The low-temperature crystal and magnetic structure of
La2NiO4 based on Ref. [18]. Blue arrows denote the Ni spins. The
unit cell in this figure is labeled with the P42/ncm (LTT) space
group with aLTT = bLTT ≈ 5.5 Å and c ≈ 12.55 Å. Shaded squares
indicate the four planar-oxygen sites surrounding each Ni2+ ion and
the buckling of the plane.

the local-point-group symmetry of the Ni2+ ions is 2/m and
the moments are contained in the local mirror plane and point
along the square diagonals of the LTT crystal structure such
that the moments in adjacent layers are orthogonal, as shown
in Fig. 1. In relation to the HTT structure, moments in the
basal (middle) layer point almost along the a (b) direction in
HTT notation.

III. RESULTS

The data are plotted and analyzed with the HORACE pack-
age [27]. Figure 2 shows representative slices through the
data collected with an incident energy Ei = 190 meV at the
SEQUOIA instrument in terms of the scattering law
S(q, ω) = ki

k f

d2σ
d�dE ′ . Data are normalized to absolute units via

nuclear incoherent scattering from a vanadium standard, and
are symmetrized about the (H, H, 0), (H, H , 0), and (H, 0, 0)
lines. The data collected at the MAPS instrument appear very
similar. The slices in Figs. 2(a)–2(d) show strong scattering
as circles centered on (3/2,1/2), the center of an antifer-
romagnetic BZ. These are from one-magnon excitations, or
spin waves. The scattering is consistent with spin gaps pre-
viously observed [20]. Around 92 meV, spin-wave branches
dispersing from reciprocal lattice points [e.g., (200)] become
observable near the corners. In Figs. 2(e) and 2(f), lines
of scattering parallel to the magnetic BZ (mBZ) boundaries
(dashed lines) are the spin-wave branches originating from
the (3/2,1/2)- and (1,0)-type positions. The scattering in
Figs. 2(g) and 2(h) is believed to be multimagnon excitations.
At higher h̄ω, the spin waves appear stronger first at the
corners of the mBZ, and then at highest h̄ω, at the midpoints
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(g) (h)

FIG. 2. Representative constant-h̄ω slices through the LNO data
collected on SEQUOIA with Ei = 190 meV. The circles and other
structures in panels up to h̄ω = 122 meV are mostly due to single-
magnon scattering. For h̄ω � 130 meV, two-magnon scattering is
observed. The dashed lines are the mBZ boundaries.

of the mBZ edges. This is unexpected for a classical NN
Heisenberg SLAFM where no dispersion is expected along
the mBZ boundaries. There, equal scattering, except for the
magnetic form factor, is expected along the black dotted lines.

Our data are qualitatively consistent with a Néel SLAFM
with single-ion anisotropy, significant multimagnon scat-
tering, and an anomalous high-h̄ω dispersion. For further
analysis, a smooth function is fitted to a h̄ω-dependent cut
at the ferromagnetic reciprocal-lattice position (1,0) and sub-
tracted from all analyzed data. This removes most incoherent
and multiphonon background.

The calculated and measured intensities of the mag-
netic excitations after background subtraction are shown in
Figs. 3(a) and 3(b). The multimagnon scattering and anoma-
lous dispersion are clearly visible at the mBZ boundary. The

(a)

(b)

FIG. 3. Magnetic excitations in La2NiO4. (a) Scattering function
S(q, ω) simulated from Eqs. (5)–(7) convoluted with finite life-
time and resolution. (b) INS data collected with Ei = 260 meV at
SEQUOIA. A background consisting of a smooth interpolation of
a q = (1, 0) spectrum integrated over L ∈ [−15, 15] has been sub-
tracted from each q. A nonlinear color-coded intensity scale is used
to enhance the weak two-magnon scattering.

two, mostly dispersionless lines at ∼42 and ∼87 meV are
optical phonon modes.

One-dimensional (1D) cuts are taken through the data
along high-symmetry lines marked in the inset of Fig. 4(b) to
fit the data with the model described in the following section.
The data sets from both instruments are individually fitted
to determine the model parameters. Some representative cuts
with fits are shown in Fig. 4(d).

IV. SPIN-WAVE MODEL FOR A SINGLE NiO2 PLANE

LNO is a Hubbard-Mott insulator; its magnetism is well
described by an extended Heisenberg model with spin quan-
tum number S = 1 on the Ni2+ (3d8) sites with the orbital
moments quenched by the octahedral-crystal-field environ-
ment of oxygen ions. We consider a single NiO2 layer (the
basal layer in Fig. 1) with the ordered moment along the
z axis or a (see Sec. II A). The spin Hamiltonian can be written
as [4,20,31–34]

H =
∑
〈i, j〉

Ji jSi · S j +
∑

i

[
Kc

(
Sy

i

)2 + Ka
(
Sz

i

)2]

+ J� ∑
〈i, j,k,l〉

[(Si · S j )(Sk · Sl ) + (Si · Sl )(Sk · S j )

− (Si · Sk )(S j · Sl )], (1)
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(a)

(b)

(c)

(d)

FIG. 4. Results of the data fitting and comparison with similar compounds. (a) Spin-wave dispersion (see Supplemental Material [28]) in
red (blue) for the in-plane (out-of-plane) mode with the peak positions from the MAPS data. (b) Amplitude of the spin-wave pole in units
of spin (multiply by g2μ2

B to get in units of μ2
B) from the HORACE [27] fitting of Eqs. (5) and (6) to the MAPS data, LSWT prediction with

Zco = 0.78(6) (red) and absolute results from LCO with Zco = 0.89(23) [5] for Zd (S = 1
2 ) = 0.57 [29,30] (blue dashed). (c) MAPS data in

comparison with CFTD [6] and LCO dispersion scaled by J (CFTD)/ZcJ (LCO) = 0.047 [5] (blue dashed). It is noted that (0, 1
2 ) is equivalent

to ( 1
2 , 0). (d) Representative cuts through the SEQUOIA data fitted with the one+two-magnon model with h̄� = 1.5 meV.

where Ji j represents the first- to third-NN Heisenberg
exchange interactions J , J ′, and J ′′, Ka � 0 is an easy-
axis anisotropy, and Kc � 0 is an out-of-plane hard-axis
anisotropy. Here, (x, y, z) are along the HTT (b, c, a) axes,
respectively (see Sec. II A). The local-anisotropy terms are
symmetry allowed in the 2/m local-point-group symmetry of
the Ni2+ ions in the LTT structure (the local mirror plane
is ac) and are attributed to higher-order effects of the local
crystal field and spin-orbit coupling. A bilinear-biquadratic
interaction, suggested for S = 1, is neglected as it becomes
indistinguishable from other interaction terms in the Néel state
[35–37]. Also, an out-of-plane spin canting of 0.1◦, assigned
to a finite Dzyaloshinskii-Moriya interaction (DMI), has been
observed [26]. Although DMI can induce nondegenerate spin-
wave modes, the spin canting is too small to describe the
previously reported gap size [20,26,38] (see Ref. [20] and Ap-
pendix D) and hence it is neglected in our analysis. The cyclic
term J� considered in LCO [39–42] is indistinguishable in
LSWT from J ′ and is considered later (see, also, Appendix B).

The spin-wave excitations of the Hamiltonian are deter-
mined in the harmonic limit, commonly referred to as LSWT.
For more details, see Appendices B and C. There are two
distinct spin-wave modes for Kc > 0 corresponding to spin
fluctuations along b (in plane) and c (out of plane), respec-
tively. Their dispersion relations are given by h̄ωq and h̄ω′

q =
h̄ωq+τAF , respectively, where

h̄ωq = Zc

√
A2

q − B2
q, (2)

Aq = 4S

[
−Ka

2
+ Kc

4
+ J − J ′(1 − νhνk )

]
, (3)

Bq = 4S

[
J
νh + νk

2
− Kc

4

]
, (4)

with νξ = cos(2πξ ) and τAF = (1/2, 1/2) the
Néel-magnetic-structure propagation vector, expressed in
reciprocal-lattice units of the HTT unit cell. Zc ≈ 1.09 is
a spin-fluctuation correction factor which renormalizes the
excitation energy [17,43]. The Bogoliubov transformation
parameters then yield the correlation (scattering) functions
for the one- and two-magnon excitations in the T → 0 limit
[44–48] (see Appendix B),

Sbb(q, ω) =Zd ZcoS

2
|uq − vq|2δ(h̄ω − h̄ωq), (5)

Scc(q, ω) =Zd ZcoS

2

∣∣uq+τAF + vq+τAF

∣∣2
δ(h̄ω − h̄ωq+τAF ), (6)

Saa(q, ω) = NZ2
co(S − �S)2δ(h̄ω)δ(q − τAF − τ)

+ Z2MZco

2N

∑
q1,q2

f (q1, q2)δ(h̄ω − h̄ωq1 − h̄ωq2 )

× δ(q − τAF − q1 − q2 − τ), (7)

where uq = cosh θq, vq = sinh θq, and tanh(2θq) = Bq/Aq,
f (q1, q2) = |uq1vq2 + uq2vq1 |2. N is the total number of spins
in the lattice, τ is a (HTT structural) reciprocal-lattice vec-
tor, and �S = 〈v2〉 is the zero-point spin reduction, where
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〈·〉 means the average over the full Brillouin zone. The first
term in Saa (denoting fluctuations along the a axis) contains
the elastic magnetic Bragg peak and the second term is the
inelastic two-magnon continuum, with one of the two wave
vectors in the sum restricted to one full Brillouin zone. The
above dynamical correlations and the dispersion relation ωq
have the translational periodicity of the full Brillouin zone.

The prefactor Zd is a one-magnon intensity renormalization
factor due to higher-order effects neglected at linear order
in spin-wave theory; Z2M is a corresponding factor for the
two-magnon scattering. We have also included an additional
factor Zco in Eqs. (5)–(7) to take account of covalency effects,
Zco = 1 in the absence of these. For Kc = 0, Zd = 1 − �S/S,
and assuming Z2M = 1, the total-spin sum rule is satisfied
such that elastic, one-magnon and two-magnon scattering in-
tegrated over all energies and a full Brillouin zone add up
to S(S + 1) per spin, shared between the three contributions
as (S − �S)2, (S − �S)(2�S + 1), and �S(�S + 1), respec-
tively. To derive the above, we have used the fact that u is
even and v is odd with respect to a wave-vector shift by the
magnetic propagation vector τAF, so the average 〈uv〉 = 0. For
finite Kc, this is no longer the case and, to satisfy the total sum
rule, one needs to use

Zd = 1 − �S

S
− 〈uv〉2

S(2�S + 1)
(8)

as the integrated two-magnon scattering becomes �S(�S +
1) + 〈uv〉2.

Significant two-magnon scattering is observed even in
spin-5/2 systems. So we expect to also see this in the present
S = 1 system [3] and signatures are presented in Fig. 4(d)
and Figs. 2(g) and 2(h), as shown in Figs. 5(b) and 5(c),
respectively. Equation (7) is evaluated on a three-dimensional
grid (q2D, h̄ω) and then convolved with a q-independent in-
verse lifetime of h̄� = 1.5 meV per excited magnon. To fit
the data, Eqs. (5) and (6) are added after lifetime broadening
to the three-dimensional grid and these spin-spin correlation
functions are then multiplied by the anisotropic magnetic
form factor of the Ni2+ eg orbitals [49–53]. Deviations due
to covalency are included through the factor Zco. Finally,
these functions are convolved with the instrument resolution
function by TOBYFIT in the HORACE package [27]. Simulations
of Saa(q, ω) without instrumental and lifetime broadening
are shown in Fig. 5. The two-magnon term appears unusual
due to the anisotropy gaps resulting in a “peak” above h̄ωq,
rather than a tail arising at h̄ωq. It is further observed that the
instrument resolution dominates the broadening.

V. DISPERSION

In order to plot the dispersion, we fitted Gaussian functions
to 1D cuts through the data to obtain the peak positions,
plotted in Fig. 4(a). Constant-q cuts with Ei = 45 meV at
low h̄ω clearly show two distinct gapped spin-wave modes
(not shown). The high-h̄ω excitations show dispersion along
the mBZ boundary. From the lower-h̄ω data (�50 meV),
we can obtain an estimate of the J ≈ 29 meV and the spin
gaps at (1/2,1/2), �1 ≈ 4Zc

√
J (−Ka) ≈ 5 meV and �2 ≈

4Zc
√

J (Kc − Ka) ≈ 16 meV, are in good agreement with

(a)

(b) (c)

FIG. 5. (a) Simulation of two-magnon scattering using Eq. (7).
The solid white lines show the magnon dispersions h̄ωq and h̄ωq+τAF .
(b),(c) Simulations of S(q, ω) due to two-magnon scattering with
an added constant background of 0.28 or 0.24 mb−1 sr−1 f.u.−1, re-
spectively. These closely resemble the slices in Figs. 2(g) and 2(h),
respectively.

previous work [20]. We mostly fixed Ka (see Table I) when
fitting the whole dispersion curve below.

The high-h̄ω dispersion cannot be described by J only in
LSWT, but requires a finite J ′. The upturn from q = (1/2, 0)
to q = (1/4, 1/4) can be described by an antiferromag-
netic J ′ > 0, with J ′ ≈ 5.8(3)% of J which yields, including
the anisotropy, a difference of ∼6% between (1/2, 0) and
(1/4, 1/4). The J ′ > 0 describes the dispersion along the
mBZ boundaries, as well as the local dispersion minimum at
(1/2, 0). Adding J ′′, described in Eq. (B2), does not improve
the fitting and is hence neglected from now on.

TABLE I. Fitted Heisenberg coupling and anisotropy constants
which determine the dispersion given in Eq. (2). The rows describe
different fitting models: the first row includes no J ′′, the second row
includes all terms but with Ka fixed and adapted from Ref. [20], and
the third row excludes J ′′ and again uses the value from Ref. [20] for
Ka. The fourth row parameterizes the second row in terms of J and
J�. Parameters marked (−) are fixed during fitting.

J J ′ J ′′ J� Ka Kc

(meV) (meV) (meV) (meV) (meV) (meV)

29.02(8) 1.68(5) 0 (−) 0 (−) −0.035(3) 0.443(11)
28.2(11) 1.3(5) −0.2(3) 0 (−) −0.04 (−) 0.46(2)
29.00(8) 1.67(5) 0 (−) 0 (−) −0.04 (−) 0.445(11)
32.34(13) 0 (−) 0 (−) −1.67(5) −0.04 (−) 0.445(11)
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TABLE II. Comparison of exchange constants for square-lattice
3D transition-metal-oxide AFMs. Here, S is the spin and t/U
indicates results from fitting with the extended t/U expansion
[39–41,54].

S J J ′ J ′′ J�

(meV) (meV) (meV) (meV)

La2CuO4 [5] 1/2 114(2) −12(2) 2.9(2) 0(−)
La2CuO4, t/U [5] 1/2 143(2) 2.9(2) 2.9(2) 58(4)
La2NiO4 1 28.2(11) 1.3(5) −0.2(3) 0(−)
La2CoO4 [55] 3/2 9.69(2) 0.43(1) 0.12(2) 0(−)

La2CuO4 shows an inverted dispersion (with respect to
LNO) along the mBZ boundary [(0, 1/2) − (1/4, 1/4)] and
J ′ < 0 (when J� = 0) [4] [see Fig. 4(c)]. The dispersion in
LCO can be explained by higher-order terms in the t/U ex-
pansion of the Hubbard model for hopping between Cu sites.
This yields terms in J�, J ′, and J ′′ [39–41,54]. The term in
J� has the same effect on the dispersion as J ′ in LSWT [see
Eq. (B2)] so cannot be distinguished from J ′.

The S = 3/2 3d square-lattice transition-metal-oxide AFM
La2CoO4 (LCoO) has the same LTT structure as La2NiO4 and
neutron scattering measurements of the magnon dispersion
have also been carried out on this material [55]. The spin-wave
excitations in LCoO also show dispersion along the mBZ with
a minimum at (1/2, 0), as in LNO, but the effect is weaker in
LCoO than in LNO. In Table II, we compare the exchange
couplings of LCO, LNO, and LCoO. Both LNO and LCoO
have J ′ > 0. Thus, the anomalous compound is LCO, which
yields J ′ < 0 when fitted with J� = 0. The natural conclusion
is that cyclic exchange is present in LCO, but negligible in
LNO and LCoO, which is consistent with the more substantial
t/U in LCO.

As shown in Fig. 4(c) the high-h̄ω dispersion in LNO, how-
ever, closely resembles the dispersion in the S = 1/2 SLAFM
copper deuteroformate tetradeuterate (CFTD) [6–8] as well
as similar compounds such as Cu(pyrazine)2 (ClO4)2 [9,10]
and CuF2(H2O)2 (pyrazine) [11]. In these compounds, the
dispersion along the mBZ is explained by quantum effects
which renormalize the dispersion. The dispersion in S = 1/2
SLAFMs is predicted by various theoretical calculations. Al-
though all models predict a dispersion on the mBZ boundary,
they disagree over the magnitude of the dispersion and its
origin. To our knowledge, no calculations are available at
the time of the submission for S = 1 SLAFMs, but from the
Holstein-Primakoff transformation, a suppression of quantum
effects by at least a factor of two from S = 1/2 to S = 1
systems is predicted [56].

VI. SPECTRAL WEIGHT

The 1D cuts, taken from the MAPS instrument data, are
used to fit the overall spectral weights due to the better
resolution at low h̄ω. The cuts are fitted with the inten-
sities calculated from Eqs. (5) and (6) convolved with a
q-independent inverse lifetime �. A linear function is added
to remove multimagnon scattering and a q-dependent back-
ground. The fitted one-magnon spectral weights throughout
the lattice BZ are depicted in Fig. 4(b). The q dependence

of the one-magnon spectral weights is qualitatively well de-
scribed by the LSWT model. Small deviations arise near
the antiferromagnetic BZ center; first, because the anisotropy
prevents the divergence of the spectral weight there, and
second, the fitting is hindered by contamination from the mag-
netic Bragg peak and the multimagnon scattering. Utilizing
the Hamiltonian parameters determined from the dispersion
relations, we find �S = 0.188(1) and 〈uv〉 = −0.017(1),
yielding Zd ≈ 0.812(1). For a fit of the high-h̄ω one-magnon
excitations using Eqs. (5)–(7), with Zd ≈ 0.812(1), the
SEQUOIA data yield Zco = 0.78(6). The Zd follows from
�S = 0.188(1) and 〈uv〉 = −0.017(1), therein derived from
the Hamiltonian parameters of the fitted dispersion relation.
We believe Zco < 1 because there is a reduction of the ordered
Ni2+ moment due to oxygen covalency effects, as observed in
neutron diffraction [14–16].

In the related spin-1/2 compounds LCO and CFTD,
anomalous scattering is observed near the (1/2,0) and equiv-
alent (0,1/2) point. To study if such scattering also arises in
LNO, the one+two-magnon model is fitted to 59 constant-q
cuts through the high-h̄ω excitations in the SEQUOIA data.
The model includes Zco and the subsequent analysis focuses
particularly on the comparison of (1/4,1/4) and the anoma-
lous (1/2,0) point. All cuts are fitted with a small individual
constant background term to account for q-dependent varia-
tions in the background. Some representative fits are shown in
Fig. 4(d), where � = 1.5 meV and the fits are unchanged for
smaller � values.

As shown in Fig. 4(d), the model gives a good descrip-
tion of peak shapes and continua and, further, of the relative
intensities of one- and two-magnon spectral weights. The cal-
culated spectral weights also agree quantitatively well with the
measured spectral weights after rescaling for Zco. Moreover,
the model including Zco gives a good description along all
high-symmetry directions, as shown in Figs. 3(a) and 3(b).

In contrast to the S = 1/2 compounds CFTD [6–8] and
LCO [5], in LNO neither the reduced one-magnon spectral
weight [see Fig. 4(b)] nor the enhanced multimagnon spectral
weight is observed at (1/2,0) within the statistical limitations.

VII. DISCUSSION

In the preceding sections, we have seen that although
aspects of the magnetic excitations of LNO are qualita-
tively described by a simple linear spin-wave theory with
two-magnon scattering, the intensity and dispersion show
some significant deviations. The measured spin-wave disper-
sion is well described by an anisotropic semiclassical NN
Heisenberg AFM below ∼100 meV. This theory also qual-
itatively describes the two-magnon excitations observed for
h̄ω ≈ 130 meV. Two aspects of the excitations that are not
well described by LSWT are the overall intensity of the exci-
tations and the dispersion of the high-h̄ω excitations.

The overall intensity of the excitations is determined by
the absolute normalization of the measured signal and yields a
scaling factor of Zco = 0.78(6) through Eqs. (5) and (6) when
the quantum renormalization factor Zd is taken into account.
The most likely explanation for the difference from Zco = 1
is the covalency effects [14–16] present in nickel oxides.
This results in some of the ordered and fluctuating magnetic
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moments residing on the oxygen atoms, reducing the signal
seen in the present experiment.

We also observe a deviation from the predictions of LSWT
for a NN SLAFM in the form of significant dispersion along
the mBZ boundaries. The dispersion indicates the presence
of longer-range exchange interactions. The structurally related
compound LCO also shows dispersion along the mBZ bound-
aries, but with the opposite sense [4]. In the case of LCO,
the dispersion is due to the substantial t/U ≈ 0.11, resulting
in a substantial ferromagnetic next-NN exchange J ′ < 0 in
superexchange theory [39–41,54]. Such a mechanism cannot
explain the antiferromagnetic J ′ > 0 observed in LNO and
LCoO. An anisotropy in J as the origin of the high-h̄ω dis-
persion is also excluded, as this would imply two distinct
high-h̄ω spin-wave modes with differing dispersion, as shown
in Ref. [57].

Thus, our observation of a downward dispersion from
(1/4,1/4) to (1/2,0) seems to have two possible explana-
tions. Either further-NN superexchange in La2NiO4 yields an
antiferromagnetic J ′ or the quantum renormalization of the
spin-wave dispersion proposed for the S = 1/2 NN SLAFMs
[6–11] is also present in S = 1 systems. Testing the first
proposal will require detailed electronic structure calcula-
tions of the next-NN superexchange in La2NiO4. This is
beyond the scope of this present study. However, we note that
t/U is smaller in La2NiO4 and that other pathways such as
Ni-O-O-Ni with direct overlap between the oxygens may
be more important in La2NiO4 than La2CuO4 [58]. Thus,
the t ′ hopping involving these oxygens could yield an
antiferromagnetic J ′.

A second proposal, that the downward dispersion is due
to a renormalization of the spin-wave energies, is sup-
ported by the similarity to S = 1/2 SLAFMs: CFTD [6–8],
Cu(pyrazine)2 (ClO4)2 [9,10], and CuF2(H2O)2 (pyrazine)
[11]. Furthermore, it resembles the dispersion predicted by
various theoretical models for S = 1/2 NN SLAFMs. These
models suggest that quantum effects lead to an anomaly in
the dispersion at (1/2,0). The techniques used in the models
are series expansions (SEs) of the NN Heisenberg-Ising model
[59,60], quantum Monte Carlo simulations [61,62], exact
diagonalization [63], continuous similarity transformations
[64,65], and density matrix renormalization group (DMRG)
simulations [56].

In CFTD [6–8] and LCO [5], the one-magnon spectral
weight is suppressed near (1/2,0) relative to LSWT and a
strong continuum with longitudinal and transverse character
is observed. LSWT predicts the same one-magnon spectral
weight along the entire mBZ boundary. However, some of the
other models for S = 1/2 quantum SLAFM mentioned above
predict the suppressed spectral weight and continuum near
(1/2, 0). We find no evidence for a wave-vector-dependent
variation of the one-magnon spectral weight or continuum at
(1/2,0) in LNO.

VIII. CONCLUSION

Our results show that magnetic excitations in La2NiO4

are not described by a simple classical (S → ∞) Heisenberg
model with only nearest-neighbor interactions. The energy
of the spin waves disperses along the antiferromagnetic

Brillouin zone boundary from (1/4,1/4) to a minimum at
(1/2,0). This is in the opposite sense to that in the S = 1/2
system La2CuO4, but the same sense as in other S = 1/2
systems with smaller t/U and the isostructural S = 3/2 com-
pound La2CoO4. The origin of the dispersion in La2NiO4

is unclear. It may be due to a quantum renormalization
of the spin-wave energies or an antiferromagnetic second-
nearest-neighbor superexchange. The overall intensity of the
spin-wave excitations is suppressed relative to linear spin-
wave theory, probably due to covalency effects.
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APPENDIX A: NEUTRON SCATTERING AND DYNAMIC
CORRELATION FUNCTIONS

Inelastic neutron scattering measures dynamic spin-spin
correlation functions defined as

Sαβ (q, ω) = 1

2π h̄

∫ ∞

−∞
e−iωt 〈Sα

q (0)Sβ
−q(t )〉 dt, (A1)

where Sq is the Fourier-transformed spin operator [34,66]
(multiply by g2μ2

B to get in units of μ2
B). Our model spin-wave

calculations compute Sαβ (q, ω), which is diagonal in our case.
In the dipole approximation, the magnetic inelastic neutron
scattering cross section is given by

d2σ

d�dE ′ = k f

ki
S(q, ω)

= k f

ki

(
γ re

2μB

)2

|F (q)|2e−2W

×
∑
αβ

(
δαβ − qαqβ

q2

)
g2μ2

B Sαβ (q, ω), (A2)

where g ≈ 2, e−2W ≈ 1 for low temperatures, F (q) is
the magnetic form factor, μB is the Bohr magneton, and
(γ re/2)2 = 72.4 mb.

While the model is derived for the basal NiO2 layer in
Fig. 1 with the spins aligned along the HTT a axis, Saa and Sbb

for neighboring NiO2 planes in the LTT structure are related
by a 90◦ rotation around c. This implies that in successive
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planes, the fluctuations along the HTT a and b axes are inter-
changed. In the analysis, this is considered by averaging the
polarization factor over both axes.

Furthermore, although S(q, ω) is averaged over a range in
L by utilizing the HORACE [27] package, the q vectors of the
averaged pixels (neutrons) are retained and are then included
in the calculations of Eq. (A2). It is then averaged over the
calculated values of S(q, ω). This accounts for the q depen-
dence of the polarization factor and the magnetic form factor.
For more details, see Ref. [27] and HORACE documentation.

APPENDIX B: DERIVATION OF CORRELATION
FUNCTIONS USING ROTATING REFERENCE FRAME

Here we summarize the derivations of the dynamical cor-
relations (included two-magnon correlations) within linear
spin-wave theory for a square-lattice spin Hamiltonian ap-
propriate for the S = 1 Ni2+ layers in La2NiO4, as given
in Eq. (1) with a collinear two-sublattice Néel magnetic
structure.

It is convenient to transform the Hamiltonian to a rotating
reference frame [48] where the local xyz spin axes at every site
are defined such that z is along the local ordered spin direc-
tion. In this frame, the ground state is ferromagnetic and the
magnetic unit cell is the same as the structural primitive unit
cell (one spin per cell). This can be achieved by labeling the
spin axes on the Néel A sublattice (which contains the origin)
with ordered spins along the +a axis as (x, y, z) along (b, c, a)
and for the B sublattice with spins along −a as (x, y, z) along
(b,−c,−a), so that at a general site r, the spin components are
given by Sx

r = Sb
r , Sy

r = −Sa
r sin(τAF · r) + Sc

r cos(τAF · r) and
Sz

r = Sa
r cos(τAF · r) + Sc

r sin(τAF · r) with τAF = (1/2, 1/2)
the Néel magnetic structure propagation vector, expressed
in reciprocal lattice units of the structural HTT cell. Here,
(Sa

r , Sb
r , Sc

r) are the spin components along the crystallographic
HTT axes. In the rotating frame, the spin-wave Hamiltonian to
quadratic order is obtained as

Hrot = 1

2

∑
q

[a†
q a−q]

[
Aq Bq
Bq Aq

][
aq

a†
−q

]
, (B1)

where the sum extends over all wave vectors q in the full
(structural) Brillouin zone and a†

q is the Fourier-transformed
spin creation operator. Here (including the cyclic exchange),
we have

Aq = 4S

[
− Ka

2
+ Kc

4
+ (J − 2S2J�)

− (J ′ − S2J�)(1 − νhνk ) − J ′′(2 − ν2
h − ν2

k

)]
,

Bq = 4S

[
(J − 2S2J�)

(
νh + νk

2

)
− Kc

4

]
, (B2)

with νξ = cos(2πξ ). The 2 × 2 Hamiltonian matrix in
Eq. (B1) can be brought to diagonal form using a Bogoliubov
basis transformation,[

aq

a†
−q

]
=

[
uq −vq

−vq uq

][
αq

α
†
−q

]
, (B3)

where α†
q creates a spin wave with dispersion h̄ωq =

Zc

√
A2

q − B2
q , uq = cosh θq, vq = sinh θq, and tanh(2θq) =

Bq/Aq. Here, Zc is a dispersion renormalization factor due
to higher-order effects neglected at linear order in spin-wave
theory. The dynamical correlations in the rotating frame (at
zero temperature) are obtained as

Sxx(q, ω) = Zd
S

2
|uq − vq|2δ(h̄ω − h̄ωq)

= Zd
S

2

√
Aq − Bq

Aq + Bq
δ(h̄ω − h̄ωq), (B4)

Syy(q, ω) = Zd
S

2
|uq + vq|2δ(h̄ω − h̄ωq)

= Zd
S

2

√
Aq + Bq

Aq − Bq
δ(h̄ω − h̄ωq), (B5)

Szz(q, ω) = N (S − �S)2δ(h̄ω)δ(q − τ)

+ Z2M

2N

∑
q1,q2

f (q1, q2)δ(h̄ω − h̄ωq1 − h̄ωq2 )

× δ(q − q1 − q2 − τ ). (B6)

The dynamical correlations in the original (fixed) reference
frame [Eqs. (5)–(7)] are obtained through Fourier transfor-
mation, such that Sbb ≡ Sxx, whereas Saa(q, ω) = Szz(q +
τAF, ω) and Scc(q, ω) = Syy(q + τAF, ω), i.e., the latter two
correlation functions are momentum shifted by τAF. In obtain-
ing Eqs. (5)–(7), we have used the fact that 2τAF is a vector of
the reciprocal lattice of the HTT structural cell, so wave vec-
tors q − τAF and q + τAF are equivalent by reciprocal-space
translational symmetry.

The in-plane (along b) spin correlations shows a magnon
mode with dispersion ωq [red line in Fig. 4(a)] with the gap

�1 = 4ZcS

√(
2J − Ka

2
+ Kc

2

)−Ka

2

≈ 4ZcS
√

J (−Ka), (B7)

and strong intensity above the antiferromagnetic Bragg peaks
at τ + τAF, and the larger gap

�2 = 4S

√(
2J − Ka

2

)(−Ka

2
+ Kc

2

)

≈ 4ZcS
√

J (Kc − Ka), (B8)

and weak intensity at τ. The out-of-plane correlations (along
c) will show the wave-vector-shifted dispersion ω′

q = ωq+τAF

[blue line in Fig. 4(a)] with reversed gaps compared to ωq, i.e.,
gap �1 at τ and �2 at τ + τAF. The longitudinal correlations
(along a) will show the elastic magnetic Bragg peaks at τ +
τAF and a two-magnon continuum, with a gap of �1 + �2 at
τ and onsets with gaps at 2�1 and 2�2 at τ + τAF.

APPENDIX C: DERIVATION OF CORRELATION
FUNCTIONS USING ANTIFERROMAGNETIC UNIT CELL

The dynamical correlation functions, derived in
Appendix B, can also be derived in the antiferromagnetic unit
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cell. Utilizing this unit cell implies a doubling of the number
of Ni2+ ions per unit cell, and thus an effective doubling of the
spin-wave modes, but does not require the transformation of
the Hamiltonian to a rotating reference frame. The notations
used in this section are the same as in Appendix B.

For the antiferromagnetic unit cell, the spin-wave
Hamiltonian to quadratic order can be written as

H = 1

2

∑
q

⎡
⎢⎢⎢⎢⎣

a†
q

bq

a−q

b†
−q

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

Aq B′
q −SKc 0

B′
q Aq 0 −SKc

−SKc 0 Aq B′
q

0 −SKc B′
q Aq

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

aq

b†
q

a†
−q

b−q

⎤
⎥⎥⎥⎥⎦, (C1)

where B′
q = Bq + SKc, b† is the local spin deviation creation

operator on the B sublattice, the sum extends over all wave
vectors in the mBZ, and Aq, Bq are the same as in Eq. (2).
As can be seen, there are two flavors of operators. This 4 × 4
Hamiltonian matrix again can be brought to diagonal form us-
ing the following Bogoliubov basis transformation including
two flavors of new spin-wave creation (annihilation) oper-
ators, corresponding to spin-wave modes polarized along b
and c,⎡

⎢⎢⎢⎢⎣
aq

b†
q

a†
−q

b−q

⎤
⎥⎥⎥⎥⎦ = 1√

2

⎡
⎢⎢⎢⎢⎣

uq −v′
q −vq −u′

q

−vq u′
q uq v′

q

−vq −u′
q uq −v′

q

uq v′
q −vq u′

q

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

αq

β†
q

α
†
−q

β−q

⎤
⎥⎥⎥⎥⎦. (C2)

The transformation thus yields two sets of terms, uq, vq, and
ωq and u′

q = cosh θ ′
q, v′

q = sinh θ ′
q, and ω′

q, with

tanh(2θq) = B′
q − SKc

Aq
= Bq

Aq
,

tanh(2θ ′
q) = B′

q + SKc

Aq

= −Bq+τAF

Aq+τAF

= − tanh(2θq+τAF ), (C3)

and

h̄ωq = Zc

√
A2

q − (B′
q − SKc)2 = Zc

√
A2

q − B2
q,

h̄ω′
q = Zc

√
A2

q − (B′
q + SKc)2

= Zc

√
A2

q+τAF
− B2

q+τAF
= h̄ωq+τAF . (C4)

Here we again use the fact that 2τAF is a reciprocal-lattice
vector.

The correlations functions Sbb and Scc follow as

Sbb(q, ω) =Zd S

2
|uq − vq|2δ(h̄ω − h̄ωq), (C5)

Scc(q, ω) =Zd S

2
|u′

q − v′
q|2δ(h̄ω − h̄ω′

q)

=Zd S

2
|uq+τAF + vq+τAF |2δ(h̄ω + h̄ωq+τAF ). (C6)

Using the relations between tanh(2θq) and tanh(2θ ′
q) through

the translation by τAF from Appendix B, Eqs. (C5) and (C6)
can be written as Eqs. (5) and (6), and thus yield the same
results as the rotating frame method.

The longitudinal dynamical correlations take the form

Saa(q, ω) = N (S − �S)2δ(h̄ω)δ(q − τ − τAF)

+ Z2M

2N

∑
q1,q2

f ′(q1, q2)δ(h̄ω − h̄ωq1 − h̄ω′
q2

)

× δ(q − q1 − q2 − τ ), (C7)

where f ′(q1, q2) = |vq1 u′
q2

− uq1v
′
q2

|2. Using the transforma-
tions relations, we find that

f ′(q1, q2) = |vq1 u′
q2

− uq1v
′
q2

|2

= |vq1 uq2+τAF + uq1vq2+τAF |2
= f (q1, q2 + τAF). (C8)

Thus, we can transform Eq. (C7) to yield Eq. (7). In the anti-
ferromagnetic unit cell description, the two spin-wave modes
appear mixed in the two-magnon scattering and applying the
shift by τAF effectively “decouples” the modes.

APPENDIX D: DZYALOSHINSKII-MORIYA
INTERACTION

A finite Dzyaloshinskii-Moriya interaction (DMI) in a Néel
SLAFM yields two nondegenerate spin-wave modes simi-
lar to the hard-axis anisotropy Kc. Contrary to a hard-axis
anisotropy, DMI also yields a spin canting, which can be
estimated from Eq. (3) in Ref. [26]. The reported spin canting
of 0.1◦ implies a DMI of �0.1 meV. Conversely, to establish
the observed gap between the two spin-wave modes [20], for
Kc = 0, numeric LSWT calculations [37] suggest a required
DMI of ≈3.5 meV, yielding a spin canting of ≈3.5◦, which
is 35× larger than the reported value [26]. So, the effect from
the DMI on the dynamics is much smaller than the effect from
the Kc and is hence negligible.
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