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Abstract

Variability is an intrinsic property of biological systems and is often at the heart of their com-

plex behaviour. Examples range from cell-to-cell variability in cell signalling pathways to var-

iability in the response to treatment across patients. A popular approach to model and

understand this variability is nonlinear mixed effects (NLME) modelling. However, estimat-

ing the parameters of NLME models from measurements quickly becomes computationally

expensive as the number of measured individuals grows, making NLME inference intracta-

ble for datasets with thousands of measured individuals. This shortcoming is particularly lim-

iting for snapshot datasets, common e.g. in cell biology, where high-throughput

measurement techniques provide large numbers of single cell measurements. We introduce

a novel approach for the estimation of NLME model parameters from snapshot measure-

ments, which we call filter inference. Filter inference uses measurements of simulated indi-

viduals to define an approximate likelihood for the model parameters, avoiding the

computational limitations of traditional NLME inference approaches and making efficient

inferences from snapshot measurements possible. Filter inference also scales well with the

number of model parameters, using state-of-the-art gradient-based MCMC algorithms such

as the No-U-Turn Sampler (NUTS). We demonstrate the properties of filter inference using

examples from early cancer growth modelling and from epidermal growth factor signalling

pathway modelling.

Author summary

Nonlinear mixed effects (NLME) models are widely used to model differences between

individuals in a population. In pharmacology, for example, they are used to model the

treatment response variability across patients, and in cell biology they are used to model

the cell-to-cell variability in cell signalling pathways. However, NLME models introduce

parameters, which typically need to be estimated from data. This estimation becomes

computationally intractable when the number of measured individuals—be they patients
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or cells—is too large. But, the more individuals are measured in a population, the better

the variability can be understood. This is especially true when individuals are measured

only once. Such snapshot measurements are particularly common in cell biology, where

high-throughput measurement techniques provide large numbers of single cell measure-

ments. In clinical pharmacology, datasets consisting of many snapshot measurements are

less common but are easier and cheaper to obtain than detailed time series measurements

across patients. Our approach can be used to estimate the parameters of NLME models

from snapshot time series data with thousands of measured individuals.

Introduction

Variability is an intrinsic property of biological systems and is often the reason for their com-

plex behaviour [1]. Examples are plentiful. One is the evolution of organisms, whereby vari-

ability in the genetic material across individuals is one of the key drivers for adaptation of

populations [2]. Another is the human adaptive immune system, wherein variability in the

antigen binding sites across antibodies is crucial for the defence against a large variety of path-

ogens [3]. However, variability in the function and regulation of cells is also the cause of many

diseases, such as cancer and Alzheimer’s disease [4–6]. Quantifying variability is therefore cen-

tral to understanding many biological systems.

Nonlinear mixed effects (NLME) modelling is a popular approach to model variability in

populations [7, 8]. NLME models introduce a set of model parameters which typically need to

be estimated from measurements. However, the inference of NLME models from measure-

ments quickly becomes prohibitively expensive when the number of measured individuals

increases [9]. This shortcoming is particularly limiting when individual entities can only be

measured once, since such ‘snapshot’ measurements do not capture individual trajectories and

are therefore relatively uninformative about the dynamics across individuals, requiring large

numbers of snapshot measurements for good inference results. In this article, we introduce a

novel inference approach, which we call filter inference. We demonstrate that filter inference

provides a scalable inference approach for snapshot time series measurements.

Snapshot measurements are particularly common in cell biology, where experimental tech-

niques, such as single-cell RNA sequencing and flow cytometry, provide high-throughput

measurements without the possibility to repeatedly measure individual cells [10–12]. The

availability of snapshot measurements paired with the limitations of the NLME inference has

led to the development of a variety of inference methods. Hasenauer et al (2011) simulate mea-

surements to construct an approximate likelihood for the model parameters using kernel den-

sity estimation (KDE) [9]. To this end, they make explicit assumptions about the population

parameter distribution. Dixit et al (2020) use the simulated measurements to fit the histogram

of the observed measurements exactly, making no explicit assumptions about the population

parameter distribution [13]. Instead, they require that the entropy of the model parameter dis-

tribution is maximised. Lambert et al (2021) use exhaustive simulations from a prior distribu-

tion of the model parameters to construct a contour volume distribution which enables an

efficient inference of the model parameters [14]. Similar to Dixit et al’s method, Lambert et al’s

approach also does not make any explicit assumptions about the population parameter distri-

bution. However, it does require the simplifying assumption that measurement noise is negli-

gible for the inference. Browning et al (2022) use an ABC inference approach to infer NLME

models from snapshot measurements, where summary statistics of simulated and observed

measurements are compared [15]. A comprehensive treatment of estimating NLME model

PLOS COMPUTATIONAL BIOLOGY Filter inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011135 May 22, 2023 2 / 29

Approaches to Biomedical Science: Responsible

and Reproducible Research, as well as the

Clarendon Fund for studentship support. B.L., M.R.

and D.G. acknowledge support from the EPSRC

Centres for Doctoral Training Programme. D.G.

acknowledge support from a Biotechnology and

Biological Sciences Research Council project grant.

A-C.W. and K.W. are employees of F. Hoffmann La

Roche Ltd. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: KW and ACW are

employees and shareholders of F. Hoffmann-La

Roche Ltd. DA, BL, MR and DG have declared that

no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011135


parameters with likelihood-free methods, such as ABC and the Bayesian synthetic likelihood

(BSL) approach, is provided by Drovandi et al (2022) [16].

With filter inference, we extend Hasenauer et al’s inference approach. We show that the

simulation-based KDE approximation of the likelihood can be generalised to approximating

the likelihood with any distribution based on simulated measurements. The choice of the dis-

tribution acts as an information filter for the comparison between simulated and real measure-

ments and influences the quality of the inference results. We show that choosing distributions

taking into account the nature of the problem can improve the inference results. The distribu-

tion or filter choice in filter inference has similarities with the choice of summary statistics in

ABC or BSL. We use this similarity to systematically study the properties of filter inference and

the consequences of different filter choices on the parameter estimates. We also introduce a

differentiable form of the approximate likelihood, making filter inference applicable for state-

of-the-art gradient-based sampling algorithms, such as Hamiltonian Monte Carlo (HMC) and

the No-U-Turn sampler (NUTS) [17–19]. This improves the inference efficiency, especially

for NLME models with many parameters.

The body of this article is divided into two sections: a methods and a results section. In the

methods we review the NLME modelling framework and introduce filter inference. In the

results we demonstrate the performance of filter inference for two NLME inference problems,

which both suppose access to snapshot measurements: 1. for an early cancer growth model;

and 2. for an epidermal growth factor (EGF) pathway model. We also use these modelling

problems to demonstrate the reduction of the computational costs when using filter inference,

and draw comparisons between filter inference, ABC and BSL. We conclude the article by

addressing potential sources for information loss and bias. The data, models and scripts used

in this article are hosted on https://github.com/DavAug/filter-inference. A user-friendly API

for filter inference has been implemented in the open source Python package chi [20].

Methods

NLME models account for the dynamics of heterogeneous populations using a hierarchical

modelling structure [7, 8]. First, a time series model, �yðc; tÞ, is used to model the dynamics of

an individual. Here, �y denotes a quantity of interest, t denotes the time and ψ denotes the

parameters of the model. An example time series model for early cancer growth is illustrated

in red in Fig 1, where the quantity of interest,

�yðc; tÞ ¼ y0elt; ð1Þ

captures a patient’s tumour volume over time. The parameters of the model, ψ = (y0, λ), are

the initial tumour volume and the growth rate.

Second, a population model, p(ψ|θ), with population parameters θ is used to capture the

inter-individual variability (IIV) by modelling the distribution of ψ in the population. For

example in Fig 1A, the initial tumour volume and the growth rate are normally distributed

across patients

pðcjyÞ ¼ N ðy0jmy0
; s2

y0
ÞN ðljml; s2

l
Þ; ð2Þ

where y ¼ ðmy0
; sy0

; ml; slÞ denotes the population means and standard deviations of ψ. For

clarity, we will refer to ψ as individual-level parameters and to θ as population-level parame-

ters. Although equivalent, note that our notation deviates from the standard NLME literature,

where the individual-level parameters are decomposed into fixed and random effects, c ¼

�c þ Z [7]. In this notation, we recover the population model in Eq 2, by letting the fixed
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effects, �c, be equal to the population means, and the random effects, η, be normally distributed

with zero means and variances equal to the population variances.

With this hierarchical structure, the variability in the dynamics can be simulated by repeat-

edly evaluating the time series model for different samples of the individual-level parameters.

Each sample of ψ represents an individual in the population. As the number of samples

increases, the histogram over the simulations converges to the population distribution of the

quantity of interest, which is illustrated in blue in Fig 1B. Formally, this population distribu-

tion is defined as

pðyjy; tÞ ¼
Z

dcdðy � �yðc; tÞÞ pðcjyÞ; ð3Þ

where δ(x) denotes the Dirac delta distribution. In the cancer growth example, p(y|θ, t) quanti-

fies the probability with which a randomly chosen individual in the population has a tumour

of volume y at time t. In general, the spread of p(y|θ, t) quantifies the IIV of the quantity of

interest. NLME models assume that each set of individual-level parameters, ψ, fully character-

ises the dynamics of an individual. As a result, the heterogeneity of the dynamics in the popula-

tion arises exclusively from the population model, p(ψ|θ).

Nonlinear mixed effects inference

The NLME model, as defined in Eq 3, is fully characterised by the population parameters θ.

For most biological modelling problems these parameters are unknown and need to be esti-

mated from data. Many algorithms and software packages for the inference of NLME models

have been developed and excellent reviews exist [20–23]. A key feature of these inference

approaches, henceforth referred to as ‘traditional NLME inference’, is a hierarchical represen-

tation of the data-generating process, where one time series model is calibrated to each mea-

sured individual. Here, we will review the Bayesian variant of traditional NLME inference,

partly to exposit existing approaches but also to introduce concepts necessary to understand

filter inference.

In order to infer parameters from measurements, it is customary to include an error model,

y ¼ �y þ �, in the NLME model definition [7]. The error model accounts for both measurement

noise and discrepancies between the model and the true process—these two processes are col-

lectively accounted for by �. This extends the deterministic time series model output to a

Fig 1. NLME model of early cancer growth. A: Shows the population model, p(ψ|θ), for θ = (10, 1, 2, 0.5) in shades of

blue and the parameters of a randomly chosen individual in red. The shades of blue indicate the bulk 20%, 40%, 60%

and 80% probability of the distribution. B: Shows the distribution of tumour volumes across individuals in the

population, p(y|θ, t), in blue and the tumour volume of a randomly chosen individual over time in red. The blue lines

indicate the 5th and 95th percentile of the tumour volume distribution at each time point. The quantities are shown in

arbitrary units. L denotes length dimensions and T denotes time dimensions.

https://doi.org/10.1371/journal.pcbi.1011135.g001
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distribution of measurements, pðyjc; tÞ ¼ pðyj�yðc; tÞ;cÞ. For ease of notation, we extend the

definition of ψ to also include the parameters of the error model. A common model choice is

assuming normally distributed residual errors, pðyjc; tÞ ¼ N ðyj�yðc; tÞ; s2Þ. The distribution

of measurements across individuals in the population can then be defined analogously to Eq 3

pðyjy; tÞ ¼
Z

dc pðyjc; tÞ pðcjyÞ; ð4Þ

where p(y|ψ, t) replaces the Dirac delta distribution. Thus, Eq 3 can be interpreted as a special

case of Eq 4, where measurements are assumed to capture the value of the time series model

output, �y, without any error. Note that Eq 4 implicitly defines a joint probability distribution

for measurement and individual-level parameters, p(y, ψ|θ, t) = p(y|ψ, t)p(ψ|θ), which is mar-

ginalised over ψ on the right hand side of Eq 4: p(y|θ, t) =
R

dψ p(y, ψ|θ, t).
Given measurements across individuals, the joint probability distribution, p(y, ψ|θ, t), can

be used to define a hierarchical log-likelihood for the model parameters

log pðD;CjyÞ ¼
X

ij

log pðyijjci; tjÞ þ
X

i

log pðcijyÞ; ð5Þ

quantifying the likelihood of parameter values, (θ, C), to capture the observed dynamics,

D ¼ ðY;TÞ. We use C = (ψ1, ψ2, . . ., ψN) to denote the individual-level parameters across N
measured individuals, and Y to denote the associated matrix of measurements across individu-

als and times. In particular, the ijth element of Y, yij, denotes the measurement of individual i
at time tj, where the vector of all unique measurement times is denoted by T. As a result, Y has

N rows, and K = dim(T) columns. Missing measurement values do not contribute to the likeli-

hood. Eq 5 shows that the hierarchical likelihood comprises a term accounting for the likeli-

hoods of individual-level parameters to describe the measurements, and a term accounting for

the likelihood of the population parameters to describe the distribution of the individual-level

parameters.

An example dataset suitable for the inference of the early cancer growth model is outlined

in Table 1. For simplicity, we neglect challenges of the measurement process and assume that

it is possible to measure the tumour volume across patients in vivo. In practice, it may be more

feasible to use the in vitro proliferation of cancerous cells from tissue samples as a proxy for

Table 1. Outline of an example tumour volume dataset. The dataset contains (fictitious) time series measurements of

tumour volumes across patients. Patients are labelled with unique IDs. The time and tumour volume are presented in

arbitrary units. T indicates the time dimension and L the length dimension.

ID Time [T] Tumour volume [L3]

1 1 1.5 11.00

2 2 1.5 8.30

3 1 2.1 11.52

4 3 2.1 9.80

5 1 4 12.03

6 2 4 8.50

..

. ..
. ..

. ..
.

https://doi.org/10.1371/journal.pcbi.1011135.t001
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the tumour growth. For inference, the dataset can be expressed in matrix form

Y ¼

11:00 11:52 12:03 � � � y1K

1:5 NA 8:50 � � � y2K

NA 9:80 NA � � � y3K

..

. ..
. ..

. . .
. ..

.

yN1 yN2 yN3 � � � yNK

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

ð6Þ

with T = (1.5, 2.1, 4, . . ., tK), where the first row contains the measurements of the patient with

ID 1, the second row contains the measurements of the patient with ID 2, and so on. NA

denotes missing values. An important feature of the dataset is that individuals are not necessar-

ily measured with the same frequency, or at the same time points. In the extreme, the dataset

may contain only one measurement per individual, i.e. snapshot measurements.

In a Bayesian inference approach, Bayes’ rule is used to translate the hierarchical likelihood

into a distribution of parameter values consistent with the observations and prior knowledge,

also known as the posterior distribution

log pðy;CjDÞ ¼ log pðD;CjyÞ þ log pðyÞ þ constant; ð7Þ

where p(θ) is the prior distribution of the population-level parameters [24]. p(θ) is used in

Bayesian inference to quantify knowledge about parameter values and is a modelling choice.

The model parameters can now be inferred from pðy;CjDÞ using sampling algorithms, such

as Markov chain Monte Carlo (MCMC) algorithms [19], see Alg 1. This concludes the review

of traditional Bayesian NLME inference.

For simplicity, Alg 1 in Box 1 illustrates the inference using the Metropolis-Hastings (MH)

algorithm [25]. However, the large dimensionality of the posterior, pðy;CjDÞ, will often limit

the sampling efficiency of the MH algorithm in practice, necessitating the use of more

advanced MCMC algorithms, such as Hamiltonian Monte Carlo (HMC) or the No-U-Turn

sampler (NUTS) [17, 18].

Filter inference

The intractability of traditional NLME inference for snapshot data stems from the increasing

cost of evaluating the log-likelihood as the number of measured individuals grows. This is

because the evaluation of the log-likelihood defined in Eq 5 requires one evaluation of the time

series model for each observed individual, resulting in computational costs that increase at

least linearly with the number of measured individuals. This expense renders traditional

NLME inference intractable when thousands of individuals are measured, especially when

time series models are defined by systems of differential equations that need to be solved

numerically.

In theory, this intractability can be avoided by fitting to the measurements on a population-

level, removing the need to evaluate the time series model for each individual separately. In

particular, using the population distribution of measurements defined in Eq 4, a log-likelihood

for the population-level parameters can be defined directly, log pðDjyÞ ¼
P

ij log pðyijjy; tjÞ.
From this population-level log-likelihood, we can derive a log-posterior,

log pðyjDÞ ¼ log pðDjyÞ þ pðyÞ þ constant, which can be inferred using MCMC sampling.
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However, in practice, the integral in Eq 4 is too expensive to compute to make p(y|θ, t) tracta-

ble for inference.

To address the computational costs, Browning et al (2022) propose a moment matching

algorithm, where p(y|θ, t) is approximated by its first moments [26]. Using a truncated Taylor

expansion, they derive approximate expressions for these moments, making their estimation

from just one evaluation of the time series model and its higher order derivatives possible,

thereby resolving the computational bottleneck.

Two alternative inference approaches, widely applicable to problems with intractable likeli-

hoods, are ABC and BSL [27, 28]. Here, summary statistics of simulated measurements are

compared to summary statistics of the observed measurements in order to construct an

approximate log-likelihood. In ABC, the similarity of the summary statistics is quantified

using kernel functions whose acceptance scale is defined by manually chosen error margins. In

contrast, BSL uses repeated simulation of summary statistics and parametric distributions to

construct synthetic likelihoods for the summary statistics [28–30]. For a detailed introduction

to NLME inference using ABC or BSL, we refer to [16].

Filter inference is a conceptually related NLME inference approach, with elements from

moment matching, ABC and BSL. Similar to moment matching, filter inference approximates

the population measurement distribution to estimate the log-likelihood of model parameters.

However, instead of using a Taylor expansion, it uses parametrised distributions constructed

from simulated measurements to do so

log pðDjyÞ �
X

ij

log pðyijj~Y jðyÞÞ: ð8Þ

Box 1. Algorithm 1: Traditional Bayesian NLME inference using MH MCMC sampling.

The details of the proposal and acceptance step are omitted for clarity, but may be found

in [25].

Input : 1. Hierarchical log-likelihood: log pðD;CjyÞ;
2. Log-prior: log p(θ);
3. Starting point: (θ(0), Ψ(0));
4. Metropolis-Hastings sampler: Sampler;
5. Number of iterations: n

Output: Samples from the posterior pðy;CjDÞ.
1 samples = [] // Initialise sampling
2 θ = θ(0), Ψ = Ψ(0)

3 score = log pðD;CjyÞ þ log pðyÞ // Eval. log pðy;CjDÞ up to
const.
4 for i  1 to n do
5 θ0, Ψ0 = Sampler.propose(θ, Ψ) // Propose next sample
6 score0 = log pðD;C0jy0Þ þ log pðy0Þ // Eval. log pðy0;C0jDÞ up to
const.
7 accepted = Sampler.check(score0, score) // Accept or
reject
8 if accepted then
9 θ = θ0, Ψ = Ψ0, score = score0 // Continue from proposal
10 end if
11 samples.append([θ, Ψ]) // Store current sample
12 end for
12 return samples
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pðyj~Y Þ denotes the approximate distribution, which we will refer to as filter. ~Y j ¼ ð~y1j; . . . ; ~ySjÞ
t

denotes S simulated measurements sampled from p(y|θ, tj) at time tj. Filters can be constructed

from any summary statistics of the simulated measurements, including their moments. As a

result, filter inference may be seen as a sampling-based generalisation of Browning et al’s

moment matching algorithm.

The filter choice in filter inference has similarities with the choice of summary statistics in

ABC or BSL and can be used to capture different information about the measurement distribu-

tion. For example, a Gaussian filter, introduced below in Filters, compares the mean and vari-

ance of the measurements, while a Lognormal filter compares the median and the scale of the

measurements. In contrast to ABC, filter inference does not require manually chosen error

margins, while also avoiding BSL’s repeated simulation of summary statistics per log-likeli-

hood evaluation (see Relationship to ABC and BSL). The algorithmic details of filter inference

are presented in Alg 2 (Box 2).

Alg 2 (Box 2) uses MH MCMC sampling, similar to Alg 1 (Box 1), to infer the posterior dis-

tribution. The main difference between the algorithms is the replacement of the hierarchical

log-likelihood evaluation by the estimate of the population-level log-likelihood, defined in Eq

8. In particular, we estimate the log-likelihood by simulating measurements from the model, p
(y|θ, t), by first sampling simulated individuals, ~C, from the population model, p(ψ|θ), see Alg

2 (Box 2) lines 17–21. We then simulate measurements for each simulated individual by sam-

pling from p(y|ψs, t) in lines 24–29. Here, we use s to label simulated individuals, instead of i
which we reserve for real individuals. Using the simulated measurements, we construct a filter

that summarises population-level information of the measurements. The details of this con-

struction are filter-specific and are discussed below. The filter defines a population-level distri-

bution of measurements, which we use to estimate the likelihood of the model parameters, see

lines 21–29. From this estimate we can derive an estimate of the posterior which is computa-

tionally tractable.

Filter inference makes the number of time series model evaluations independent of the

number of observed individuals. In this way, filter inference remains tractable even when mil-

lions of snapshot measurements are used for parameter estimation. In particular, in Alg 2

(Box 2) the number of time series model evaluations is determined by the number of simulated

individuals, S, and the number of measured time points, see line 27 and its surrounding for-

loops. In an optimised implementation, this number can be reduced to a total of S time series

model evaluations per log-likelihood estimation, see S1 Text. The dominant computational

costs of filter inference therefore do not scale with the number of measured individuals, but

instead are set by the number of simulated individuals.

This form of approximate inference was first introduced by Hasenauer et al for a specific fil-

ter choice: the lognormal KDE filter introduced below [9]. Alg 2 (Box 2) generalises this

approach to a framework, where filters can be chosen specific to the needs of the inference

problem. However, Hasenauer et al’s algorithm reportedly becomes inefficient for models with

more than a few parameters [13]. This is because the approach samples from the posterior

using the Metropolis-Hastings (MH) MCMC algorithm, whose sampling efficiency is known

to scale poorly with the dimension of the posterior distribution [25].

As highlighted for traditional NLME inference, efficient sampling algorithms for high

dimensional models exist, such as the Hamiltonian Monte Carlo (HMC) MCMC algorithm

and its variants [17, 19]. HMC uses gradient-information to produce better proposals, result-

ing in a higher sampling efficiency per step. However, the estimate of the log-likelihood from

Eq 8 changes non-deterministically with the population-level parameters θ, making its deriva-

tives less useful for the HMC algorithm. In particular, the estimation of the log-likelihood
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Box 2. Algorithm 2: Filter inference using MH MCMC sampling. The details of the pro-

posal and acceptance step are omitted for clarity, but may be found in [25].

Input : 1. Measurements: D ¼ ðY;TÞ;
2. Filter: pðyj~YÞ;
3. Number of simulated individuals: S;
4. NLME model: p(y|ψ, t), p(ψ|θ);
5. Log-prior: log p(θ);
6. Starting point: θ(0);
7. Metropolis-Hastings sampler: Sampler;
8. Number of iterations: n

Output: Samples from the posterior pðyjDÞ.
1 samples = [] // Initialise sampling
2 θ = θ(0)

3 estimate = estimateLogLikelihood(θ)
4 score = estimate + log p(θ) // Approx. log pðyjDÞ up to
const.
5 for i  1 to n do
6 θ0 = Sampler.propose(θ) // Propose next sample
7 estimate = estimateLogLikelihood(θ0)
8 score0 = estimate + log p(θ0) // Approx. log pðy0jDÞ
9 accepted = Sampler.check(score0, score) // Accept or
reject
10 if accepted then
11 θ = θ0, score = score0 // Continue from proposal
12 end if
13 samples.append([θ]) // Store current sample
14 end for
15 return samples
16 define estimateLogLikelihood (θ)
17 ~C ¼ ½ � // Simulate individuals
18 for s  1 to S do
19 ψs * p(ψ|θ) // Sample an individual
20 ~C.append(ψs)
21 end for
22 estimate = 0 // Initialise estimate
23 n_times = length(T)
24 for j  1 to n_times do
25 ~Y ¼ ½ � // Simulate measurements at tj
26 for cs 2

~C do
27 �y ¼ �yðcs;tjÞ // Evaluate time series model
28 ~ysj � pðyj�y;csÞ // Sample a measurement
29 ~Y.append(~ysj)
30 end for
31 f ¼

P
ilog pðyijj~YÞ // Compute filter log-likelihood at

tj
32 estimate += f // Add filter log-likelihood to
estimate
33 end for
34 return estimate

PLOS COMPUTATIONAL BIOLOGY Filter inference

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011135 May 22, 2023 9 / 29

https://doi.org/10.1371/journal.pcbi.1011135


involves random sampling from the population model and from the individual-level measure-

ment distributions, see lines 19 and 28 in Alg 2 (Box 2). As a result, estimates of the log-likeli-

hood will vary due to the stochasticity inherent in both the population-level distribution and

the measurement noise distribution, even for fixed population-level parameters.

To make gradient-based methods useful for filter inference, we can recast the log-likelihood

estimate from Eq 8 into a hierarchical form that changes deterministically with its input

parameters. In particular, we can define a joint distribution of measurements, simulated mea-

surements and simulated individual-level parameters,

pðy; ~Y ; ~Cjy; tÞ ¼ pðyj~Y Þ
Q

spð~ysjcs; tÞ pðcsjyÞ, making the dependence on the realisation of

the simulated measurements and parameters explicit. From this joint distribution, we can

define a hierarchical log-likelihood comprising the filter estimate of the population-level log-

likelihood, and the log-likelihood of model parameters ðy; ~CÞ to describe the simulated mea-

surements, ~Y ,

log pðD; ~Y ; ~CjyÞ ¼
X

ij

log pðyijj~Y jÞ þ
X

sj

log pð~ysjjcs; tjÞ þ
X

s

log pðcsjyÞ: ð9Þ

We can use this log-likelihood and Bayes’ rule to derive a log-posterior analogously to the hier-

archical log-likelihood and the NLME log-posterior in Eqs 5 and 7

log pðy; ~Y ; ~CjDÞ ¼ log pðD; ~Y ; ~CjyÞ þ log pðyÞ þ constant: ð10Þ

This log-posterior depends deterministically on its parameters, ðy; ~Y ; ~CÞ. As a result, we can

use HMC to efficiently sample from pðy; ~Y ; ~CjDÞ, even for high-dimensional NLME models.

Once ðy; ~Y ; ~CÞ are inferred, the approximate posterior for the population-level parameters

can be obtained by considering only the θ estimates (i.e. marginalisation). The algorithmic

details of the approach are presented in Alg 3 (Box 3). The algorithm is illustrated using a MH

sampler for easier comparison with Algs 1 and 2. Note that line 11 in Alg 3 (Box 3) already

implements the marginalisation over ~Y and ~C.

Importantly, the posteriors for θ inferred using the stochastic likelihood, Eq 8, and using

the deterministic likelihood, Eq 9, are identical. The main difference is that the implementa-

tion of the stochastic form uses ancestral sampling to simulate individuals and measurements

to estimate the log-likelihood, which makes its estimates change non-deterministically with its

input parameters. This stochastic dependence is eliminated in Eq 9 by explicitly formulating a

log-likelihood term for each random variable contributing to the overall likelihood of the pop-

ulation-level parameters. In this way, the likelihood becomes a deterministic function of the

random variables ðy; ~Y ; ~CÞ.

Filters

Filters are the central element of filter inference, making inference of NLME models from

measurements of thousands of individuals possible. Below we introduce five filters that we

have found useful in our experiments.

1. Gaussian filter. A Gaussian filter summarises the population measurement distribution

using a Gaussian distribution

pðyj~Y jÞ ¼ N ðyj~m j; ~s
2
j Þ; ð11Þ

where ~m j and ~s2
j are given by the empirical mean and variance of the simulated measurements,
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~m j ¼
P

s~ysj=S and ~s2
j ¼

P
sð~ysj � ~m jÞ

2
=ðS � 1Þ, where S denotes the number of simulated

individuals.

A Gaussian filter is illustrated with other filters in Fig 2, where we simulate S = 100 mea-

surements from the early cancer growth model at t = 1, using the population model introduced

in Early cancer growth model inference. We use the simulated measurements to construct the

filters, e.g. for the Gaussian filter we compute the mean and variance of the simulations. A ran-

dom realisation of each filter is illustrated in red. Repeating this construction 1000 times, we

estimate the 5th to 95th percentile of the filter density distribution, illustrated in blue. As a ref-

erence for the filter approximations, the figure shows the exact population measurement distri-

bution, p(y|θ, t), in black.

2. Lognormal filter. A lognormal filter summarises the population measurement distribu-

tion using a lognormal distribution

pðyj~Y jÞ ¼ LNðyj~m j; ~s jÞ; ð12Þ

where the location and scale of the lognormal distribution, ð~m j; ~s jÞ, are given by the empirical

mean and standard deviation of the log-transformed simulated measurements.

3. Gaussian mixture filter. A Gaussian mixture filter summarises the population mea-

surement distribution using a Gaussian mixture distribution

pðyj~Y jÞ ¼
1

M

XM

m¼1

N ðyj~m j;m; ~s
2

j;mÞ; ð13Þ

Box 3. Algorithm 3: Filter inference (deterministic form) using Metropolis-Hastings

MCMC sampling. The details of the proposal and acceptance step are omitted for clarity,

but may be found in [25].

Input : 1. Filter log-likelihood: logpðD; ~Y ; ~CjyÞ;
2. Log-prior: log p(θ);
3. Starting point: ðyð0Þ; ~Y ð0Þ; ~Cð0ÞÞ;
7. Metropolis-Hastings sampler: Sampler;
8. Number of iterations: n

Output: Samples from the posterior pðyjDÞ.
1 samples = [] // Initialise sampling
2 θ = θ(0), ~Y ¼ ~Y ð0Þ, ~C ¼ ~Cð0Þ,
3 score = log pðD; ~Y ; ~CjyÞ þ log pðyÞ // Eval. log pðy; ~Y ; ~CjDÞ up to
const.
4 for i  1 to n do
5 y

0
; ~Y 0; ~C 0 = Sampler.propose(y; ~Y ; ~C) // Propose next sample

6 score0 = log pðD; ~Y 0; ~C 0jy
0
Þ þ log pðy0Þ // Eval. log pðy0; ~Y 0; ~C 0jDÞ

up to const.
7 accepted = Sampler.check(score0, score) // Accept or
reject proposal
8 if accepted then
9 θ = θ0, ~Y ¼ ~Y 0, ~C ¼ ~C 0, score = score0 // Continue from
proposal
10 end if
11 samples.append([θ]) // Store current sample
12 end for
13 return samples
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where M is a hyperparameter and determines the number of Gaussian kernels. For computa-

tional efficiency, the mean and the variance of the Gaussians are estimated from the simulated

measurements by assigning S/M simulated individuals to each subpopulation. The parameters

of the mth kernel are then estimated using the empirical mean and variance of the measure-

ments of the mth subpopulation.

A more general implementation of the Gaussian mixture filter, not explored in this publica-

tion, estimates the maximum likelihood estimates of the filter parameters from the simulated

measurements using the expectation-maximisation (EM) algorithm [31]. While computation-

ally less efficient, this implementation provides more flexibility, making it possible to approxi-

mate the population measurement distribution more faithfully.

4. Gaussian KDE filter. A Gaussian KDE filter summarises the population measurement

distribution using a Gaussian kernel density estimation

pðyj~Y jÞ ¼
1

S

XS

s¼1

N ðyj~ysj; b
2

j Þ; ð14Þ

where S is the number of simulated individuals. A Gaussian KDE population filter is a Gauss-

ian mixture population filter, where each individual is assigned to its own subpopulation, i.e.

M = S. The bandwidth of the kernels, ~b2
j , is a hyperparameter of the population filter. In this

article we use the widely used rule of thumb for bandwidth selection, b2
j ¼ ð4=3=SÞ2=5

~s2
j , fol-

lowing Hasenauer et al (2011) [9]. Here, ~s2
j is the empirical variance of the simulated measure-

ments at time tj.
5. Lognormal KDE filter. A lognormal KDE filter summarises the population measure-

ment distribution using a lognormal kernel density estimation

pðyj~Y jÞ ¼
1

S

XS

s¼1

LNðyj~ysj; bjÞ; ð15Þ

The bandwidth is computed using the rule of thumb, b2
j ¼ ð4=3=SÞ2=5

~s2
j , where ~s2

j is the

empirical variance of the log-transformed simulated measurements.

Results and discussion

To demonstrate the properties of filter inference, we first infer posterior distributions from

snapshot measurements for two modelling problems: 1. early cancer growth; and 2. EGF path-

way signalling. We then compare the computational costs of traditional NLME inference and

filter inference and quantify the impact of using NUTS on the sampling efficiency. We con-

clude the section by highlighting the similarities between the filter choice in filter inference

and choosing summary statistics in ABC or BSL. We also illustrate how inappropriate choices

of filters may result in information loss or bias. Python scripts to reproduce the results are

hosted on https://github.com/DavAug/filter-inference. All models are implemented in the

open-source Python package chi [20], which we have extended to provide a user-friendly

API for filter inference. For the inference, we use pints’ implementations of NUTS and the

MH algorithm [32]. The gradients of the log-posterior, needed for NUTS, are automatically

computed by chi, using the open-source Python package myokit [33].

Early cancer growth model inference

To establish that filter inference is a sound approach for the inference of NLME models, we

compare the results of filter inference and NLME inference on a common dataset. We
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synthesise snapshot measurements from the early cancer growth model, Eq 1, with a Gaussian

error model, pðyjc; tÞ ¼ N ðyjy0elt; s2Þ, by first sampling individual-level parameters from the

population model, pðcjyÞ ¼ N ðy0jmy0
; s2

y0
ÞN ðljml; s2

l
Þ dðms � sÞ. We then measure each

individual by sampling from p(y|ψ, t). The population parameters are set to y ¼

ðmy0
; sy0

; ml; sl; msÞ ¼ ð10; 1; 2; 0:5; 0:8Þ for the data-generation. 15 snapshot measurements

are synthesised for 6 time points between 0 and 0.6 time units. The resulting dataset with a

total of 90 measured individuals is illustrated by scatter points in Fig 3A. This dataset is still

tractable for traditional NLME inference. The details of the inference procedure and the con-

vergence assessment are reported in S2 Text and S1 Table.

The inference results show that filter inference with a Gaussian filter and S = 100 simulated

individuals and NLME inference produce almost identical fits to the measurements (see

Fig 3A) and similar posterior distributions (see Fig 3B). Notably, the posterior distributions of

Fig 2. Filters in filter inference. The figure shows a Gaussian filter, a lognormal filter and a Gaussian KDE filter of the

early cancer growth model for S = 100 simulated individuals at time t = 1. Each filter is illustrated by a randomly

chosen realisation, illustrated in red, and the 5th to 95th percentile of the filter distribution for different sets of

simulated individuals. As a reference, the exact population measurement distribution is illustrated in black.

https://doi.org/10.1371/journal.pcbi.1011135.g002

Fig 3. Filter inference versus traditional NLME inference. A: Shows 90 snapshot measurements in arbitrary units,

generated from the early cancer growth model, and the fitted NLME models obtained using filter inference with a

Gaussian filter (blue) and traditional Bayesian NLME inference (red). The measurements are illustrated with jitter on

the time axis. The fitted models are illustrated by the medians and the 5th to 95th percentile range of the inferred

measurement distributions, EyjD½pðyjy; tÞ�. The filter is constructed using S = 100 simulated individuals. B: Shows the

inferred posterior distributions obtained using filter inference (blue) and NLME inference (red). The data-generating

parameters (solid lines) as well as the prior distributions used for the inference (dashed lines) are also shown.

https://doi.org/10.1371/journal.pcbi.1011135.g003
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both approaches encompass the data-generating parameter values within their main bulk

probability mass. The measurements appear highly informative about the population means of

the parameters but less so about the variability in the population. Importantly, the measure-

ments are not informative about the noise parameter, μσ, since the posterior distributions do

not differ substantially from the prior distribution. This is because observed variability is not

easily attributed to either IIV or measurement noise when individuals are not measured

repeatedly. While the increase of the tumour volume variability over time indicates that IIV is

present at least in one of (y0, λ), since a Gaussian error model cannot capture heteroscedasti-

city, the measurements in Fig 3A leave room for attributing all observed variability at t = 0 to

just noise, or just IIV in y0. Thus, as long as the combined variability is of the same magnitude

as the observed variability, each contribution may assume any magnitude between zero and

the observed variability at t = 0. The variance of the measurements at t = 0 is 1.0 ± 0.4 (see S3

Text for the details of the estimation), while the prior of μσ focusses on values between 0.5 and

1 as shown in the right-most figure in Fig 3, constraining the noise variance to be at most of

order Oð1Þ. As a result, all values from the prior of μσ are compatible with the observations,

and the posterior is not informed by the measurements.

This lack of IIV-noise identifiability can be overcome when variability contributions from

IIV and noise lead to distinct shapes of the measurement distribution, p(y|θ, t), and sufficiently

many measurements are available to resolve such distributional differences. However, tradi-

tional NLME inference from large snapshot datasets is computationally intractable and filter

inference requires a large number of simulated individuals in order to distinguish IIV and

noise, diminishing its computational advantages (see S4 Text for a detailed discussion). The

efficient inference from snapshot measurements using filter inference with only a small num-

ber of simulated individuals is therefore reliant on informative noise priors. In many applica-

tions, such priors may be informed by the specifications of measurement devices. Where

possible, repeated measurements of a few individuals may also be used to estimate noise

parameters.

The inferred population distributions, represented by the averages over the posterior distri-

butions, EyjD½pðcjyÞ�, are illustrated together with the data-generating distribution in the left

panel of Fig 4A (see S5 Text for details on the computation of EyjD½pðcjyÞ�). The comparison

shows that the inference from 90 snapshot measurements with either inference method pro-

vides only a crude estimate of the IIV. This inaccuracy is a direct consequence of sampling bias

—90 individuals do not faithfully depict the whole population. To test whether this sampling

bias can be mitigated by increasing the number of measured individuals, we exponentially

Fig 4. Quality of IIV estimates for varying dataset sizes. A: Shows inferred population distributions from snapshot

measurements of varying numbers of individuals (IDs) using filter inference with a Gaussian filter and S = 100

simulated individuals in blue. The different shades of blue indicate the bulk 20%, 40%, 60% and 80% probability

regions. The distribution inferred from measurements of 90 individuals using NLME inference from Fig 3 is illustrated

by red dashed lines. The data-generating distribution is illustrated in black. B: Shows the KL divergences between the

data-generating population distribution and the inferred distributions from A.

https://doi.org/10.1371/journal.pcbi.1011135.g004
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increase the number of snapshot measurements per time point from 15 to 3 × 15 = 45, 32 ×
15 = 135 and 33 × 15 = 405 snapshot measurements, resulting in datasets totalling N = 270,

N = 810 and N = 2430 measurements. The inferred population distributions using filter infer-

ence are illustrated in panels 2, 3 and 4 of Fig 4A. The figure demonstrates that the estimation

of the IIV improves with the number of measured individuals, as also quantified by the Kull-

back-Leibler (KL) divergence between the data-generating population distribution and the

inferred distributions shown in Fig 4B. Overall, Fig 4 illustrates that many more than 90 snap-

shot measurements are needed to obtain accurate estimates of the IIV for the early cancer

growth model. For higher dimensional NLME model, snapshot measurements from even

more individuals are likely required, causing computational challenges for traditional NLME

inference. In contrast, the computational costs of filter inference are not dominated by the

number of measured individuals, and thus inference remains tractable.

EGF pathway model inference

The EGF pathway plays an important role in regulating the behaviour of epithelial cells and

tumours of epithelial origin [34]. Understanding the cell-to-cell variability in the biochemical

signalling is therefore of great interest [13]. Here, we demonstrate the ability of filter inference

to estimate the parameters of a published EGF signalling pathway model from snapshot

measurements.

In particular, we consider a model of inactive and active EGF receptor (EGFR) concentra-

tions [35]

dcr
dt
¼ p � konclcr þ koffca � kdeg;rcr; and

dca
dt
¼ konclcr � koffca � kdeg;aca: ð16Þ

cr models inactive and ca active EGFR. The model assumes that inactive EGFR is produced at a

constant rate, p. Upon binding of EGF, inactive EGFR is activated at a rate proportional to the

surrounding EGF concentration cl. Once activated, receptors deactivate at a rate koff. Both,

active and inactive receptors are assumed to degrade over time at rates kdeg,a and kdeg,r, respec-

tively. In our study, the cell-to-cell variability is modelled by varying production and activation

rates. The remaining model parameters are fixed across cells. We synthesise two distinct data-

sets, each comprising 1200 cells and use the collective data from both datasets to perform filter

inference. The first dataset contains snapshot measurements of cells exposed to a constant

EGF concentration of cl = 2ng/mL, henceforth denoted as ‘data (low)’. The second dataset,

‘data (high)’, contains snapshot measurements of the same experiment with a higher constant

EGF concentration of cl = 10ng/mL. The data are simulated using a lognormal error model

centred on the model outputs with scale parameter μσ. The measurements are generated over a

period of 25 min with population parameters

y ¼ ðmp; sp; mkon
; skon

; mkoff
; mkdeg;r

; mkdeg;a
; msÞ ¼ ð1:7; 0:05; 1:7; 0:05; 8; 0:25; 0:015; 0:05Þ. Both

receptor concentrations are initialised at 0 ng/mL. The generated datasets are illustrated by

black scatter points (data (low)) and grey scatter points (data (high)) in Fig 5A. We infer the

model parameters from the synthetic datasets using Gaussian filters with S = 100 simulated

cells. The noise parameter, μσ, is fixed to the data-generating value during the inference.

Details on the inference procedure are reported in S6 Text and S2 Table.

Fig 5A shows that filter inference is able to infer measurement distributions that capture

the dynamics of the observed EGF signalling pathway. Fig 5B shows that the inferred posteri-

ors assign substantial weights to the data-generating parameters. The inferred cell-to-cell vari-

ability of the model parameters is of a reasonable magnitude, as the comparison of the data-

generating population distribution and the inferred distribution in Fig 5C shows. However,
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the data appears to be more informative about the production rate variability than the activa-

tion rate variability. To investigate this further, in Fig 6A, we plot the posterior distribution of

the population-level mean activation rate versus the deactivation rate. The strong correlation

between the two parameters in the posterior distribution indicates that it is not possible to

identify both the activation rate and deactivation rates from the synthesised datasets. In Fig 6B,

we show inference results when we fix the deactivation rate to its known data-generating

value—in this case, the inferred population distribution is closer to the true one.

Scaling & computational costs

Filter inference is able to infer the parameters of NLME models from thousands of snapshot

measurements. This is because the dominant computational costs of the log-posterior evalua-

tion do not scale with the number of measured individuals, as demonstrated in Fig 7. The fig-

ure shows the evaluation time of the NLME log-posterior and its gradient (blue lines), defined

in Eq 7, and the filter log-posterior and its gradient (red lines), defined in Eq 9, for the early

cancer growth model and the EGF pathway model with increasing numbers of measured indi-

viduals. The filter log-posterior is defined using a Gaussian filter with varying numbers of sim-

ulated individuals. The gradients of the posteriors are automatically computed using chi [20].

Details on the estimation of the evaluation times are presented in S7 Text.

The figure shows that the evaluation time of the NLME log-posterior scales linearly with

the number of measured individuals, while the cost of the filter log-posterior remains constant.

The figure also shows that the computational costs of the filter log-posterior are roughly pro-

portional to the number of simulated individuals, as discussed in the Methods. As a result, the

speed up provided by filter inference is of order OðN=SÞ, where N and S denote the number of

measured and simulated individuals, respectively. This reduces the log-posterior evaluation

costs 34-fold for the early cancer growth model, and 13-fold for the EGF pathway model for

Fig 5. Inference results of EGF pathway model I. A: Shows snapshot measurements of active and inactive EGFR

concentrations across cells. The cells are exposed to one of two EGF concentrations: data (low) with cl = 2ng/mL (black

scatter points); and data (high) with cl = 10ng/mL (grey scatter points). The shaded areas illustrate the 5th to 95th

percentile of the inferred measurement distributions using filter inference with Gaussian filters and S = 100 simulated

cells. B: Shows the inferred posterior distributions of the model parameters illustrated by blue density plots, together

with the data-generating parameter values illustrated by black solid lines. The density of the prior distribution is

illustrated by dashed lines for each parameter. C: Shows the inferred population distribution of the production rate and

the activation rate in blue. The different shades of blue indicate the bulk 20%, 40%, 60% and 80% probability regions.

The probability regions of the data-generating distribution are illustrated by black contours.

https://doi.org/10.1371/journal.pcbi.1011135.g005
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datasets with 1000 snapshot measurements and filters with S = 100 simulated individuals. This

cost reduction increases as the number of measured individuals grows.

However, in addition to the evaluation time of the log-posterior, the computational costs of

inference are also determined by the total number of evaluations needed for convergence of

the MCMC sampler. Since MCMC is a form of dependent sampling, there are typically auto-

correlations between samples, reducing the number of i.i.d. samples drawn from the posterior

distribution [36]. In order to determine the total computational costs of the approaches, we

thus need to compare the number of log-posterior evaluations of traditional NLME inference

and filter inference needed for convergence.

Several metrics for the convergence assessment of MCMC samples exist, such as the R̂-met-

ric or the R*-metric [37, 38]. These metrics could be used to determine the number of log-pos-

terior evaluations needed to reach a certain degree of convergence for different MCMC

Fig 6. Inference results of EGF pathway model II. A: Shows the joint posterior distribution of the mean activation

rate, mkon
, and the deactivation rate, mkoff

from Fig 5B. B: Shows the inferred posterior distribution and the inferred

population distribution from a separate inference run, where we fixed the deactivation rate to its data-generating value.

All other inference settings, including data and priors, remain unchanged from the inference approach used to

generate Fig 5.

https://doi.org/10.1371/journal.pcbi.1011135.g006

Fig 7. Computational costs of filter inference and traditional NLME inference I—Evaluation time of log-

posterior. The figure shows the evaluation time of the traditional NLME log-posterior and its gradient, defined in Eq

7, (blue lines) and the filter inference posterior and its gradient, defined in Eq 10, with a Gaussian filter and S = 50,

S = 100 and S = 150 simulated individuals (red lines). The left and right panel illustrate the results for the early cancer

growth model and the EGF pathway model, respectively.

https://doi.org/10.1371/journal.pcbi.1011135.g007
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algorithms. An alternative approach to compare the computational costs of traditional NLME

inference and filter inference is to infer the posteriors using an MCMC algorithm that uses an

initial calibration phase to adjust the number of log-posterior evaluations per MCMC step in

order to maximise the convergence rate across inference problems. Such an algorithm is

NUTS [18, 19]. Using its calibration strategy, NUTS converges within 1000 MCMC iterations

post calibration for the early cancer growth model and the EGF pathway model. We choose to

estimate the total computational costs of traditional NLME inference and filter inference using

the latter approach, and run 1500 NUTS iterations for both, the early cancer growth model

and the EGF pathway model for different datasets with varying numbers of measured individ-

uals (see Fig 8). The initial 500 iterations of each inference run are used to calibrate the algo-

rithm. Each evaluation includes the evaluation of the log-posterior and its gradient.

The figure shows that the number of log-posterior evaluations of traditional NLME infer-

ence and filter inference are of the same order of magnitude for the investigated models. Each

log-posterior evaluation includes the evaluation of the log-posterior gradient. For the early

cancer growth model, NUTS requires fewer evaluations during filter inference, while for the

EGF pathway model NUTS evaluates the log-posterior less often during traditional NLME

inference. Overall, the linear cost scaling of traditional NLME with the number of measured

individuals, and the comparable total number of evaluations demonstrate that the benefit to

using filter inference scales linearly with the number of measured individuals, meaning, for

large datasets typical in cell biology, filter inference can be orders of magnitude faster than tra-

ditional NLME inference.

Sampling efficiency

Filter inference can reduce the costs of inference in both its stochastic and its deterministic

form. In this section, we investigate the degree to which the deterministic version and the use

of NUTS improves the efficiency of filter inference.

To this end, we estimate the sampling efficiency of the approaches using the effective sam-

ple size (ESS) metric, defined in [39]. The ESS estimates the number of i.i.d. samples drawn

from each posterior dimension by an MCMC algorithm. Thus, the larger the ESS for a fixed

number of log-posterior evaluations, the better the sampling efficiency of the algorithm. In

Fig 9 we show the minimum ESS across dimensions, obtained from inferring the early cancer

growth model posterior and the EGF pathway model posterior. We infer the posteriors twice:

Fig 8. Computational costs of filter inference and traditional NLME inference II—Number of log-posterior

evaluations. The figure shows the number of log-posterior evaluations of traditional NLME inference (blue lines) and

filter inference, with a Gaussian filter and S = 100 simulated individuals, (red lines) for the early cancer growth model

and the EGF pathway model using varying sizes of snapshot datasets. Each log-posterior evaluation includes the

evaluation of its gradient. The posterior distributions are inferred using 1000 MCMC iterations of NUTS after

calibrating the algorithm for 500 iterations.

https://doi.org/10.1371/journal.pcbi.1011135.g008
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1. using the MH algorithm and filter inference with a stochastic posterior, defined in Alg 2;

and 2. using NUTS and filter inference with a deterministic posterior, defined in Alg 3.

The figure shows that the sampling efficiency is improved when using NUTS. After 35,000

iterations, the MH algorithm generated an ESS of approximately 600 when the posterior was

inferred from the cancer growth dataset with 90 measured individuals (see left panel in Fig 9),

while NUTS generated an ESS of 932 after 1500 iterations, using the first 500 iterations for cali-

bration. These 1500 iterations translate into 34,985 log-posterior and gradient evaluations (see

S3 Table) out of which the majority (20,000 evaluations) are from the calibration phase and

therefore do not contribute to the ESS. Evaluating the gradient in addition to the log-posterior

using chi’s forward sensitivities approximately doubles the evaluation costs for the consid-

ered problems (see S4 Fig). As a result, NUTS generated an ESS that is 1.5 times greater with

approximately the same (2 × 14, 985/35, 000� 1) computational costs post calibration. This

efficiency advantage becomes more pronounced as the number of measured individuals

increases. Despite extensive efforts to tune its hyperparameters (see S8 Text for details), the

ESS of the MH algorithm is smaller than 10 after 90,000 MH iterations for both the early can-

cer growth model and the EGF pathway model, when datasets with thousands of measure-

ments are used for the inference (see panels 4 and 5 in Fig 9). At the same time, NUTS is able

to generate an ESS of order 100 for all datasets and models by automatically tuning the number

of evaluations per MCMC step during the calibration phase. The number of log-posterior eval-

uations across all inference runs are reported in S3 Table.

Our study indicates that filter inference with the deterministic posterior and NUTS

improves the sampling efficiency across inference problems relative to the MH algorithm and

the stochastic variant. This improved efficiency is achieved, despite the increase of the poste-

rior dimension from θ to ðy; ~Y ; ~CÞ. For example, for the cancer growth problem θ has 5

dimensions, while ðy; ~Y ; ~CÞ has 805 dimensions. For more advanced gradient-free sampling

methods than the MH algorithm or problems where the gradients cannot be accurately com-

puted, this efficiency advantage may change.

Fig 9 also reveals that sampling from filter posteriors appears to be more challenging when

more individuals are measured (see ESS per evaluation). While NUTS is still able to achieve

good sampling efficiencies by adaptively using more log-posterior evaluations during the cali-

bration phase, we were not able to achieve comparable sampling rates with the MH algorithm

and the stochastic filter posterior. To understand this behaviour, we investigate the relation-

ship between filter inference, ABC and BSL in the next section.

Fig 9. Sampling efficiency of filter inference variants. The figure shows the minimum ESS across dimensions as a

function of log-posterior evaluations for different posterior distributions inferred with: 1. NUTS and the deterministic

filter posterior (blue); and 2. MH and the stochastic filter posterior (orange). For NUTS, the number of evaluations

include evaluations of the log-posterior gradient. For MH, the log-posterior gradient is not evaluated. Panels 1, 2, 3 and

4 show the minimum ESS of the cancer growth model posteriors from Fig 4 and panel 5 shows the EGF pathway

model posteriors from Fig 6B.

https://doi.org/10.1371/journal.pcbi.1011135.g009
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Relationship to ABC and BSL

In the Methods, we highlighted that the filter choice in filter inference has similarities with the

summary statistics choice in ABC or BSL. In this section we illustrate this similarity and use it

to shed light on the result from the previous section that the deterministic filter posterior

appears to be better suited for the inference from large numbers of snapshot measurement

than the stochastic variant.

ABC is a hugely successful inference strategy across fields, such as population genetics [40],

epidemiology [41] and climate modelling [42]. A common criticism of ABC is the need for

manually choosing error margins in order to quantify the distance between summary statistics

of real and simulated measurements, although methods for automatically tuning the error

margin exist [43, 44]. Too large error margins reduce the quality of the inference results, while

too narrow error margins lead to high rejection rates and, thus, to a poor sampling efficiency.

Filter inference does not require manually chosen error margins, despite some filters, such

as the Gaussian filter, being defined by summary statistics. We will denote such filters hence-

forth as summary statistics-based (SS-based) filters. In Fig 10 we show that error margins arise

naturally for SS-based filters in filter inference using Gaussian filters as an example.

The figure revisits the filter inference results from Fig 4 and shows the simulated means and

variances for t = 0.6 (black points), accepted during the inference. The first panel illustrates the

inference results for the dataset with 90 snapshot measurements. Panels 2, 3 and 4 correspond

to the datasets with 270, 810 and 2430 snapshot measurements, respectively. As a reference, we

visualise the mean and variance of each dataset (red cross) and the true mean and variance of

the data-generating process (red bars). We estimate the true mean and variance of the data-

generating process repeatedly by sampling 1000 realisations of each dataset. For each dataset

size, we then compute the means and the variances of the dataset realisations and plot the 5th

to 95th percentile interval in the corresponding panel (red bars). The true mean and variance

of the data-generating distribution are approximately equal to the median, i.e. the value

marked by the intersection of the red bars. As the true data-generating mean and variance are

independent of the estimation procedure, the bars intersect approximately at the same point

across the panels. This estimation procedure provides an estimate of data-generating mean

and variance, as well as the sampling variation of the data summary statistics, illustrated by the

size of the 5th to 95th percentile intervals.

Fig 10. ABC interpretation of filter inference. The figure shows the accepted means and variances of the Gaussian

filter at t = 0.6 from the inference results in Fig 4, where filter inference is performed on datasets with 90, 270, 810 and

2430 snapshot measurements of the cancer growth model. The accepted summary statistics are illustrated as black

scatter points with the corresponding KDE plots shown in blue. The summary statistics of each dataset is illustrated by

a red scatter point. The sample variation of the dataset summary statistics is represented by the 5th to 95th percentile of

the summary statistic distribution (red bars), estimated from 1000 realisations of each dataset. The exact mean and

variance of the data-generating distribution is close to the intersection of the bars.

https://doi.org/10.1371/journal.pcbi.1011135.g010
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The figure shows that filter inference accepts simulated summary statistics within an error

margin around the data summary statistics (blue area), notably without explicitly computing

the data summary statistics during the inference. The magnitude of the error margins scales

with the number of measured individuals and is comparable to the 5th to 95th percentile inter-

val of the data summary statistics across dataset sizes.

These observations suggest that filter inference with a Gaussian filter is similar to a special

variant of ABC based on the mean and variance, where the error margin is automatically

scaled with the uncertainty of the summary statistic estimates. This similarity is a consequence

of the Gaussian filter construction, defined in Eq 11. The Gaussian filter likelihood assigns

high likelihood only to simulated means and variances that are compatible with the data.

When the dataset contains few observations, the filter likelihood is flat and permits large devia-

tions from the mean and variance of the data, while datasets containing more observations

become more restrictive. This leads to an automatic scaling of the error margin with the uncer-

tainty of the data summary statistics. In S9 Text, we provide a proof that in the limit N!1
filter inference with a Gaussian filter is equivalent to ABC based on the mean and variance

with vanishing error margins. In S10 Text, we further prove that this equivalence also extends

to other SS-based filters, provided the filter likelihood has a unique and identifiable maximum

and the maximum likelihood estimates (MLEs) converge to the summary statistics of the data.

We will henceforth refer to these filters as sufficient filters.

Revisiting the results in Figs 9 and 10 also provides an explanation of why the number of

measured individuals reduces the ESS for the stochastic approach. Alg 2 (Box 2) simulates

measurements, and thus summary statistics, for each proposal randomly. The estimation error

of these simulated summary statistics is determined by the number of simulated individuals.

The error margin around the data summary statistics, on the other hand, is set by the number

of measured individuals. As a result, proposals close or equal to the data-generating parameters

may still be randomly rejected when the error margin is smaller than the estimation error of

the simulated summary statistics.

The scaling behaviour of the error margin in filter inference explains why for a fixed num-

ber of simulated individuals (S = 100), the rejection rate becomes larger as the number of mea-

sured individuals increases (see Fig 9). Especially, the ESS of the inference using the stochastic

variant of the filter posterior deteriorates quickly with the dataset size. In contrast, the deter-

ministic filter posterior performs significantly better, suggesting that random rejections due to

ancestral sampling can be avoided by giving the sampling responsibility of all random variables

involved in the posterior estimation to the MCMC algorithm.

A complementary way to understand the sampling efficiency of filter inference is provided

by the BSL literature. For BSL, low sampling efficiencies have been reported when too few real-

isations are used to reliably estimate the mean and the covariance of the simulated summary

statistics [30]. Interpreting each simulated measurement as a ‘summary statistic’ of the data-

generating process, filter inference with a Gaussian filter is a BSL approach and therefore dis-

plays the same sampling behaviour.

Information loss and bias

In contrast to traditional NLME inference, filter inference is an approximate inference

approach. This approximation may result in information loss and bias. The potential for inac-

curate inference results is common to all approximate methods, including ABC and BSL, and

in this case comes from the filter approximation of the population-level log-likelihood, Eq 8.

Filters construct a noisy estimate of the likelihood from measurements of a small number

of simulated individuals. The fewer individuals are simulated, the lower the costs of the log-
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likelihood evaluation. This provides an incentive to reduce the number of simulated individu-

als as much as possible. However, as illustrated in Fig 11, there is a trade-off between computa-

tional costs and the accuracy of the IIV estimation. The figure shows inference results for the

cancer growth dataset with 2430 snapshot measurements using filter inference with Gaussian

filters with different numbers of simulated individuals. The fewer individuals are simulated,

the more information contained in the data is lost. In this case the information loss manifests

itself in an overestimation of the IIV.

In our experiments we achieve reasonable inference results with S = 100 simulated individ-

uals across models. However, the number of simulated individuals that achieves an optimal

tradeoff between computational costs and information loss will likely vary between problems

and modelling rationales.

A second source for information loss and bias is the choice of the filter itself. To illustrate

this effect we modify the cancer growth model to two patient subpopulations with different

variants of cancer: an aggressive variant and a moderate variant. This is implemented by defin-

ing a covariate-dependent mean growth rate, μλ(χ) = μλ,m + χΔμλ, where χ = 0 indicates

patients with the moderate variant and χ = 1 patients with the aggressive variant, resulting in a

multi-modal population distribution

pðcjy; wÞ ¼ N ðy0jmy0
; s2

y0
ÞN ðljmlðwÞ; s2

l
Þ dðms � sÞ: ð17Þ

We synthesise two datasets: one dataset with snapshot measurements from 120 individuals;

and one with snapshot measurements from 3000 individuals. In both cases, half of the individ-

uals have the aggressive cancer variant and the other half the moderate variant. The data are

synthesised with ðmy0
; sy0

; ml;m;Dml; sl; msÞ ¼ ð10; 1; 2; 2; 0:5; 0:8Þ.

The inference results for different choices of filters and S = 100 simulated individuals are

illustrated in Fig 12. Where tractable, traditional NLME inference is used to infer the exact

posterior distribution. Otherwise, the data-generating distribution is used as a reference for

the inference results. The figure shows that the quality of the results varies substantially with

the choice of the filter. The Gaussian and lognormal filters yield reasonable approximations of

the overall individual-level variability, but are not able to resolve the multi-modal structure of

the growth rate when only 120 patients are measured. For 3000 measured patients, both filters

begin to distinguish the moderate and aggressive cancer growth subpopulations. In compari-

son, inference with a Gaussian mixture filter with two kernels resolves the multi-modal popu-

lation structure for both numbers of measured individuals (see middle panel in Fig 12).

Inference with a Gaussian KDE filter or a lognormal KDE filter similarly resolves the multi-

Fig 11. Information loss I—Number of simulated individuals. The figure shows inferred population distributions

from 2430 snapshot measurements of the early cancer growth model, using filter inference with a Gaussian filter and

S = 3, S = 10, S = 100 and S = 500 simulated individuals. The inferred distributions are visualised in blue. The different

shades of blue indicate the bulk 20%, 40%, 60% and 80% probability regions. The data-generating distribution is

illustrated by black contours.

https://doi.org/10.1371/journal.pcbi.1011135.g011
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modal population structure, but, here, the filter posteriors underestimate the IIV for both

numbers of measured individuals.

The reasons for the observed information loss and biases are different for SS-based filters

and KDE-based filters. Intuitively, it is not surprising that SS-based filters with a single mode,

such as the Gaussian filter and the lognormal filter, may produce inaccurate inference results

when the true measurement distribution is multi-modal. We nevertheless observe in Fig 12

that both filters resolve the multi-modal structure in the population distribution when 3000

individuals are measured.

To develop an understanding for this behaviour we refer to the ABC literaure: ABC also

infers an approximate posterior distribution based on summary statistics. This posterior con-

verges to the exact posterior distribution in the limit where 1. the error margin of the summary

statistics goes to zero; 2. the summary statistics are sufficient; and 3. the number of simulated

measurements is the same as the number of observed measurements [45, 46]. Filter inference

is equivalent to ABC for certain SS-based filters in the limit where N!1 and the error mar-

gin of ABC vanishes (see Relationship to ABC and BSL). The filter posterior therefore also con-

verges to the true posterior in an analogous limit where 1. the number of measured individuals

goes to infinity; 2. the filters are sufficient; and 3. the number of simulated measurements is

the same as the number of observed measurements. While we have no formal proof that the

Gaussian filter or the lognormal filter are sufficient for the cancer growth model, the conver-

gence of filter inference for N!1may provide an explanation why the Gaussian and the log-

normal filters start to resolve the multi-modal population structure for 3000 measured

individuals, but not for 120 measured individuals.

We support this intuition by comparing the histogram over accepted simulated measure-

ments to the data-generating distribution in Fig 13. The closer the histogram approximates the

data-generating distribution, the more accurate the inference results. The left panel shows the

data-generating distribution (black) and the histogram over accepted simulations at t = 0.6

(blue) during the Gaussian filter inference from Fig 12 for the dataset with 3000 measured

Fig 12. Information loss II—Choice of filter. The figure shows inferred population distributions from 120 (top row)

and 3000 (bottom row) snapshot measurements, using filter inference with different filter choices and S = 100

simulated individuals. The inferred distributions, EyjD½pðcjyÞ�, are visualised in blue. The different shades of blue

indicate the bulk 20%, 40%, 60% and 80% probability regions. The data-generating distribution is illustrated by black

solid lines. The posterior inferred with NLME inference is illustrated by black dashed lines.

https://doi.org/10.1371/journal.pcbi.1011135.g012
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individuals. The histogram over the accepted measurements approximates the multi-modal

data-generating distribution well, despite the use of the unimodal Gaussian filter (see red

curve for a typical Gaussian filter sampled during the inference). This indicates that for this

model the means and the variances at the measured time points are sufficient statistics for the

inference.

KDE-based filters do not have the same convergence behaviour as SS-based filters, as illus-

trated in Fig 12. In fact, the posterior distributions appear to become less accurate for the

Gaussian KDE filter and the lognormal KDE filter as the number of snapshot measurements

increases. In the right panel of Fig 13, we repeat the analysis of the histogram over the accepted

simulations during the inference for the dataset with 3000 measured individuals for the Gauss-

ian KDE filter. The panel shows that the histogram provides a less faithful approximation of

the data-generating distribution than the histogram in the left panel, despite typical Gaussian

KDE filters providing more accurate approximations of the data-generating distribution than

the Gaussian filter.

To develop an understanding for this behaviour, note that the filter log-likelihood is maxi-

mised when the KL divergence between the filter and the observed measurement distribution

is minimised

KLðq jj pÞ ¼
X

j

Z

dy qjðyÞðlog qjðyÞ � log pðyj~Y jÞÞ � constant �
X

ij

log pðyijj~Y jÞ: ð18Þ

Here, KL(q||p) denotes the KL divergence and qj denotes the data-generating distribution at

time tj, which we approximate by the observed measurements on the right hand side. We iden-

tify the last term on the right as the negative log-likelihood of the filter (see Eq 8). Conse-

quently, maximising the filter likelihood is equivalent to approximating the observed

measurement distribution as closely as possible.

For KDE-based filters, the objective of closely approximating the measurement distribution

leads to a mismatch between the observed measurement distribution and the simulated mea-

surement distribution. This mismatch is a direct consequence of the filter construction. KDE

filters are constructed by averaging the densities of S kernels centered at the simulated mea-

surements (see Eqs 14 and 15). Each kernel carries 1/S of the total probability density and has a

finite width. For example for the inference in the right panel in Fig 13, typical kernels extend

Fig 13. Accepted simulated measurements during filter inference. The figure shows the histograms over all accepted

simulated measurements at t = 0.6 (blue) during inference with a Gaussian filter (left panel) and a Gaussian KDE filter

(right panel) from the bottom panel in Fig 12. The data-generating measurement distribution is illustrated in black. A

typical realisation of each filter is illustrated in red. The inset figure in the right panel shows a typical kernel (blue)

placed on a simulated measurement (black cross) during the construction of the Gaussian KDE filter. The simulated

measurement is placed at a tumour volume of 350 for illustration purposes. The scale of the kernel is taken from the

filter realisation.

https://doi.org/10.1371/journal.pcbi.1011135.g013
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50 tumour volume units in both directions and carry 1/100 of the total porbability density (see

inset). As a result, simulated measurements never have to directly occupy regions of low prob-

ability density in order to approximate those regions well, as long as their kernels are wide

enough to cover them. The finite probability density of the kernels makes it even unfavourable

to occupy low probability density regions of the observed measurement distribution with

much less than 1/S probability density, resulting in a bias of rejecting simulated measurements

in low density regions. This explains the underrepresentation of accepted simulations in the

low density regions of the data-generating distribution in the right panel of Fig 13. The absence

of simulated measurements in low density regions results in an underestimation of the width

of the simulated measurement distribution which, in turn, leads to an underestimation of the

IIV (see Fig 12).

As the number of simulated measurements tends to infinity, the packaging of the probabil-

ity density becomes more granular (see Eqs 14 and 15) and the bias towards high density

regions vanishes. If the observed measurement distribution is identical to the data-generating

distribution, this implies convergence to the data-generating parameters. But, if the observed

measurement distribution is not representative for the whole population, KDE-based filters

will overfit the observed distribution, leading to the underestimation of both, the variability in

the population and the uncertainty in the parameter estimates.

In practice, inference is performed on datasets with a finite number of measured individu-

als using a finite number of simulated individuals. In this context, SS-based filters appear to

provide a better accuracy-cost trade-off, especially when informed summary statistic choices

are possible, as the middle column of Fig 12 demonstrates. Here, we infer the population dis-

tribution from the synthesised datasets using a Gaussian mixture filter with S = 100 simulated

individuals and two kernels. Two Gaussian kernels are able to represent the bimodal structure

of the observed measurement distribution more faithfully, resulting in inference results with

negligible information loss.

Conclusion

Filter inference is an efficient and scaleable inference approach for NLME models, enabling

the study of variability from previously intractable datasets, for example, snapshot measure-

ments of potentially thousands of individuals. However, filter inference also introduces new

challenges, such as the potential for information loss and bias, which currently can only be

understood with the help of repeated synthetic data-generation and inference cycles. The effi-

ciency and scalability of filter inference may also depend on the availability of gradients, which

can be difficult to obtain for large systems of differential equations.
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S3 Fig. IIV-noise identifiability of early cancer growth model II. The figure is an extension

of S1 Fig and shows filter inference results for the early cancer growth model from 60 000

snapshot measurements using Gaussian filters with S = 5000 simulated individuals. The prior

distributions are illustrated by black dashed lines and the data-generating parameter values are

depicted by solid black lines.

(PDF)

S4 Fig. Computational costs of log-posterior evaluation with and without gradients. The

figure is an extension of Fig 7 and shows the evaluation time of the filter log-posterior with gra-

dients in units of the evaluation time of the filter log-posterior without gradients for different

numbers of measured individuals. The evaluation times are estimated according to S7 Text.

The left panel shows the results for the early cancer growth model and the right panel the

results for the EGF pathway model for S = 50 (blue), S = 100 (red) and S = 150 (green) simu-

lated individuals.

(PDF)
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