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Summary 
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adap-
tive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens 
presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an “innate-like” 
manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-
presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations 
of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens 
presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and 
is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites 
where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Keywords: MAIT cell, innate-like, unconventional, NKT, TMIC

Abbreviations: CAIT cell: Crohn’s-associated invariant T cell; GEM cell: germ-line encoded mycolyl-reactive T cell; MAIT cell: mucosal-associated invariant T 
cell; MHC: major histocompatibility complex; MR1: major histocompatibility complex, class I-related; iNKT cell: (invariant) natural killer T cell; PLZF: promyeloic 
leukema zinc finger protein; TMIC: MHC II-restricted, innate-like and commensal-specific T cell; TRM: tissue-resident memory cell; TCR: T-cell receptor; ZBTB16: 
zinc finger and BTB domain containing 16.

Introduction
T-cell receptor (TCR)-bearing lymphocytes are one of the 
most prominent and versatile immune cell populations. Most 
T cells respond to peptide-antigens presented by conven-
tional MHC I and MHC II molecules and display an adap-
tive immune behavior, allowing them to establish specific 
immune memory against their respective cognate antigens 
and the sources these are derived from. While these conven-
tional, adaptive T cells play essential roles in a wide range of 
important immunological processes including cell-mediated 
cytotoxicity, immunological help and immune regulation, 
several T-cell populations that differ in the way they recog-
nize antigen or function have also been discovered. These 
include cells interacting with unconventional antigen pre-
senting molecules, expressing limited and semi-invariant 
TCRs and often displaying features of antigen-independent 
responses driven by cytokine sensing. It has been more re-
cently observed that T cells with conventional restriction 
can also display innate-like features, as exemplified by the 
TMIC (MHC II-restricted, innate-like and commensal specific 
T cell) population observed in human and mouse intestine. 
In other words, innate-like behaviors and unconventional 
restriction are not always directly linked. This review aims 

to summarize our current knowledge about unconventional 
and innate-like T cells, their functions, differences from and 
similarities to conventional T cells, focusing on the newest 
populations.

Unconventional and innate-like T cells: two 
sides of the same coin?
There are two key features that distinguish some of the most 
well-known unconventional T-cell populations from conven-
tional, adaptive T cells:

(A) Their TCRs recognize non-peptide antigens presented 
by unconventional antigen-presenting molecules and (B) they 
are able to mount immune responses in a cytokine-dependent 
fashion independently of their TCRs, in a manner reminis-
cent of innate immune cells and hence, in the scope of this 
review, termed innate like. In contrast to the strict depend-
ency on unconventional antigen-presenting molecules, the de-
gree to which cells display this innate-like capacities can vary 
between different cell subsets and can be more accurately 
described as a gradient (Fig. 1). This behaviour is typically 
associated with expression of the transcription factor PLZF 
(Promyeloic leukema zinc finger protein, ZBTB16).
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MAIT cells
In humans the most abundant cell type displaying these fea-
tures are mucosal-associated invariant T (MAIT) cells. These 
cells are characterized by the expression of a semi-invariant 
TRAV1-2-TRAJ33/20/12 or TRAV1-TRAJ33 TCR in com-
bination with a limited number of β-chains humans and mice, 
respectively, and recognize riboflavin-derived antigens pre-
sented by the MHC-Ib molecule, major histocompatibility 
complex, class I-related (MR1) [1, 2]. While the abundance 
of MAIT cells differs between different mammalian species 
[3–5], MR1 shows a remarkably high degree of conservation 
suggesting an important evolutionary function.

MAIT cells constitute a notable percentage of human T 
cells in blood, liver, and other barrier organs like the lung [6] 
and express a large number of different cytokine receptors 
enabling them to respond in an innate-like fashion to cyto-
kines including IL-12, IL-18, IFN I, and TNF. This innate-like 
functionality allows MAIT cells to participate in immune re-
sponses even in the absence of their cognate antigen, including 
a range of viral infections and viral vector-based vaccinations 
[7, 8].

Transcriptionally, MAIT cells are regulated by a set of key 
transcription factors. These include T-bet and RoRγt, the 
archetypical transcription factors driving the production of 
TH1 and TH17 functions, respectively. Further, MAIT cells 
express high levels of PLZF, a transcription factor which is 
considered to be lineage-defining for unconventional, innate-
like T cells [9].

MAIT effector functions span classic Th1 and Th17 cyto-
kines [10], as well as cytotoxic effectors [11] and a follicular 

helper phenotype [12]. Consequently, roles for MAIT cells 
have been proposed in diverse contexts including anti-
bacterial and anti-viral defence, tumor immunology, regula-
tion of autoimmunity, and metabolic diseases [2, 13]. More 
recently, work from several groups also showed that MAIT 
cells are capable of promoting tissue repair in vitro and in the 
skin in vivo[14–17]. MAIT-mediated repair processes were in-
duced by TCR-dependent triggering in most models analyzed 
up to date and were absent in vitro when MAIT cells were ac-
tivated in a strictly TCR-independent fashion. This suggested 
the existence of separate adaptive and innate-like functional 
modules in MAIT cells which expression is regulated by the 
availability of the appropriate respective triggers and then 
would be integrated into cellular function. The study by du 
Halgoulet et al. [17] from 2023 through demonstrated the 
expression of a key repair factor, Amphiregulin (AREG), by 
MAIT cells in response to IL-18 without any apparent TCR 
signalling in vivo. Hence, while MAIT cells do express repair-
associated factors in a TCR-dependent manner, different 
TCR-independent signals, or combinations of them can also 
possess this potential, at least in regarding individual effector 
molecules. This suggests that MAIT cells overall represent a 
key population in maintaining and repairing barrier tissues.

iNKT cells
Natural killer T (NKT) cells were originally defined as T cells 
expressing molecules typically associated with NK cells, like 
NK1.1 in mice and CD161 or CD56 in humans. As these 
can be expressed by a large variety of both conventional 
and unconventional T cells, the modern definition of NKT 

Figure 1. Unconventional and innate-like T cells: T cells can be grouped as conventional or unconventional based on their restriction molecules: 
conventional polymorphic MHC-molecules or unconventional non-polymorphic molecules. In contrast, the classification as adaptive or innate-like can be 
done along a gradient with conventional CD4 and CD8 T cells and well-established unconventional populations like MAIT, iNKT, and potentially CAIT cells 
on the respective ends of the spectrum. Some unconventional T cells including MR1T, certain γδ and CD1d-restricted T-cell populations display adaptive 
behaviour upon activation, while on the other hand conventional T cell can acquire innate-like features as illustrated by the TMIC (MHC II-restricted, innate-
like, and commensal-reactive) phenotype found in colonic microbe-reactive T cells (see below for description) or arguably by the bystander activation of 
tissue-resident (TRM) cells. This figure was created with Biorender.com.
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cells was restricted to populations recognizing lipid antigens 
presented by the MHCIb molecule CD1d [18]. In mice, the 
majority of these cells belongs to an innate-like population 
termed type I or invariant NKT (iNKT) cells, defined by 
the expressing of a semi-invariant TRAV10-TRAJ18 TCR 
and are present in various tissues with a particular enrich-
ment within the liver [18, 19]. In humans, iNKT cells are 
less frequent and express TRAV11-TRAJ18 [20, 21]. MAIT 
and iNKT cells show some striking similarities in terms of 
development, function, expression of PLZF and tissue distri-
bution, but it is worth noting that iNKT cells seem to have 
a generally broader array effector functions spanning TH1, 
TH17, TH2, TFH as well as regulatory phenotypes, while MAIT 
cells based on our current knowledge are restricted to TH1, 
TH17, and TFH functions [10]. While human and murine iNKT 
cells recognize the murine-sponge-derived glycolipid antigen 
α-galactosyl-ceramide (α-GalCer) [22], as well as several bac-
terial derived lipid antigens via their TCR [23], they are also 
able to mount strong cytokine-mediated innate-like responses 
[24, 25]. Interestingly, while iNKT cells in general are well 
established and routinely described as innate-like popula-
tion, there is evidence that they in fact require some degree 
of TCR engagement by low affinity ligands to get activated in 
a cytokine-dependent manner [26, 27]. Mouse models have 

established important roles for iNKT cells in cancer, infec-
tion, autoimmunity, and tissue homeostasis [28–30], while 
their roles in humans—due to their low abundancy—are less 
well defined.

Innate-like γδ T cells
While all γδ T cells are unconventional in the sense that they 
recognize antigens independently of conventional MHC mol-
ecules [31], different subsets either with or without innate-
like characteristics exist in both humans and mice.

A major set of human innate-like γδ T cells express a 
TRGV9-TRDV2 (Vγ9Vδ2) TCR [32, 33] reminiscent of the 
invariant TCRs expressed by MAIT and iNKT cells. The 
Vγ9Vδ2 TCR interacts with butyrophilin 3A1 (BTN3A1) 
[34–36] in the presence of host-derived prenyl pyrophosphate 
or microbial metabolites like 4-hydroxy-3-methyl-but-2-enyl 
pyrophosphate (HMB-PP) [37] constituting a unique form of 
indirect antigen recognition. Vγ9Vδ2 T cells are a relatively 
abundant cell population in the blood [38], can be found in 
tissues like the liver and duodenum [39], and are involved 
in anti-microbial responses [37, 40]. They parallel human 
MAIT cells transcriptionally [21, 41, 42] and phenotypically, 
expressing high levels of cytokine receptors, surface markers 
like CD161 and importantly transcription factors like PLZF 

Figure 2. Innate-like T cells as guardians of barrier sites: The potential to express tissue repair-associated factors and to contribute to tissue regeneration 
has been described for several innate-like T cells populations including MAIT, γδ, iNKT and also in cells with the newly discovered TMIC phenotype. This 
function seems to be particularly associated with the TCR-dependent activation pathway but can at least in part also triggered by individual cytokines 
like IL-18. The regulation of this function is not fully understood at the moment, but integration of these signals with additional input potentially provided 
by “danger”-signals like bacterial PAMPs or necrotic cell material could be crucial in determining whether a homeostatic or inflammatory response is 
initiated. While the former would contribute to maintenance and regeneration of barrier site, the later could play a key role in pathogen elimination and 
potentially exacerbating inflammatory conditions. This figure was created with Biorender.com.
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[39]. As a result, they can mount strong cytokine-induced re-
sponses independently of their TCR [39].

In mice, PLZF-expression was reported in TRGV1-1-
TRDV6-3 (Vγ1.1Vδ6.3) T-cells [43, 44] as well as in cells ex-
pressing the TRGV5 (Vγ5) and TRGV6 (Vγ6) chains [45]. 
Vγ1.1Vδ6.3 T-cells share striking phenotypically and tran-
scriptionally similarities with murine iNKT and MAIT cells 
[46, 47] and localize preferentially to spleen and liver [48, 
49]. Interestingly, the absence of PLZF-expression leads to a 
reduction of the functional capacities of Vγ1.1Vδ6.3 T cells 
but did not affect their total numbers [9, 43, 44]. In a similar 
manner, Vγ5 T cells, also known as dendritic epidermal T cells 
(DETC), which play important homeostatic roles in the skin 
[50, 51], do express PLZF, but do not depend on it for their 
development or ability to colonize the murine skin [45]. In 
contrast, PLZF is required for Vγ6 T-cell development and 
maturation [45]. This subset be found in the lung, the uterus, 
tongue, and liver [52] and are believed to be important con-
tributors to IL-17-dependent immune responses.

Other unconventional innate-like T cells
In addition to the major populations of MAIT, iNKT and Vδ2 
T cells, several smaller T-cell subsets have been described that 
can be classified as both unconventional and innate-like. In 
2011, Uldrich, Patel et al. identified a small subset of T cells 
expressing a public Vα10-Jα50 TCR in mice [53]. This TCR 
represents an alternative iNKT TCR, as, while allowing better 
responses to glucose-containing glycolipid ligands than the 
TRAV10 TCR, it recognizes α-GalCer presented by CD1d. 
Recently, a CD8-positive population of T cells expressing an 
invariant TRAV12-1-TRAJ6 TCR, termed Crohn’s-associated 
invariant T (CAIT) cells was found in the blood of Crohn’s 
disease patients [54]. Transcriptionally, CAIT cells clustered 
together with MAIT and iNKT cells and expressed high levels 
of IL18R, suggesting that they might also be able to mount 
TCR-independent innate-like responses. A follow-up study 
revealed that CAIT cells can recognize small sulfonate mol-
ecules presented by CD1d [55], firmly placing these cells in-
side the unconventional T-cell family.

Unconventional cells lacking innate-like 
functionality
While innate-like behaviour is a key characteristic of MAIT 
and iNKT cells, it is not a feature shared with all T-cell subsets 
restricted by unconventional antigen-presenting molecules.

Several populations restricted by MR1, CD1 molecules, 
and others have been identified in humans and animals that 
can be distinguished from conventional, innate-like T cells by 
the lack of PLZF-expression and innate-like behavior, as well 
as the use of a diverse TCR-repertoire suggesting adaption to 
multiple different cognate antigens (Fig. 1).

MR1T cells
Like MAIT cells, MR1T cells recognize antigens presented by 
MR1. However, in blood MR1T cells are considerably rarer 
than MAIT cells, lack PLZF-expression and are found in 
similar frequencies (<0.1%) as peptide-specific conventional 
T cells [56]. Further paralleling conventional T cells, MR1T 
cells were shown to express a broad range of different TCRs, 
and different clones were shown to differ substantially in their 
transcriptional phenotype [57] and functional profiles [56]. 
Some MR1T cells were found to respond to a large variety 

of tumor cells lines in a TCR- but not riboflavin-dependent 
manner and are currently being explored for their potential 
in cancer immunotherapy [56, 58, 59]. In addition, MR1-
restricted T cells expressing different TCRs and responding 
to microbial antigens [60–62] have been described, pointing 
towards a very versatile role for MR1 as an immune sensor 
in different settings. While the targets of MR1T cells, at least 
for some of the known clones, are known, due to their overall 
low frequencies they are typically identified and studies by 
in vitro cloning approaches in humans. Thus, many aspects 
of their biology such their thymic development remain to be 
defined.

Type II NKT cells
Type II NKT cells is an umbrella term summarizing all CD1d-
resticted αβT cells not expressing the α-GalCer-reactive 
TRAV10-TRAJ18/TRAV11-TRAJ18 TCR. While some of 
these like CAIT cells are possibly innate like, many, also 
known as diverse NKT cells, are not. They are not as nu-
merous in mice as iNKT cells but outnumber them in hu-
mans [63]. Several different subsets responding to different 
lipid antigens were described [64, 65] and accordingly type 
II NKTs express a larger range of different TCRs [64, 66]. 
Expression of PLZF is much lower in type II NKTs compared 
to iNKT cells [65] and different models have shown that their 
activation is mainly dependent on TCR-signals [25, 67, 68]. 
Type II NKTs were suggested to play regulatory roles in a 
range of different diseases including infections, cancer, and 
metabolic disorders [31, 65].

H2-M3: restricted T cells
H2-M3 is an MHC Ib molecule present in mice but ab-
sent in humans that presents microbial and mitochon-
drial N-formulated peptide antigens [69]. H2-M3-resticted 
CD8 T cells participate in the immune response against 
Listeria monocytogenes [70–72], Chlamydia pneumoniae 
[73], Mycobacterium tuberculosis [74], and Streptococcus 
epidermidis [75]. In 2018, Linehan et al. provided a compre-
hensive characterization skin derived in H2–M3-restricted 
CD8 T cells, demonstrating the use of a diverse TCR reper-
toire and the lack of notable PLZF expression, distinguishing 
these cells from unconventional innate-like T cells like MAIT 
cells and iNKT cells. Functionally, H2-M3-restricted T cells 
can show diverse phenotypes [73, 75, 76] and S. epidermidis-
specific H2–M3 CD8 T cells were shown to express tissue-
repair-associated gene signatures, in line with the observation 
that healing of skin injuries is delayed in H2-M3−/− mice.

Adaptive γδ T cells
Comparisons between different γδ T-cell populations revealed 
that several of them show features also found in adaptive con-
ventional T cells. In humans, blood-derived γδ T cells utilizing 
TRDV1 (Vδ1) and TRDV3 (Vδ3) chains cluster transcrip-
tionally closer to conventional CD4 and CD8 T cells than to 
MAIT or iNKT cells [21], in line with the expression of mol-
ecules associated with naïve T cells [77]. Human Vδ1 and Vδ3 
TCRs bind to a range of different antigens presented by CD1 
molecules or directly interact with stress-associated MHC 
I-like molecules [31] and play roles in antiviral immunity [32] 
and tumor-surveillance [78]. An adaptive phenotype and be-
havior in response to HCMV infection was also reported for 
a subset of human Vδ2 T cells not expressing the Vγ9 chain 
associated with human innate-like Vδ2 T cells [33].
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In mice, besides the PLZF-expressing TRGV1-1, TRGV6, 
and TRGV6 cells, a range of other subsets exists, often as-
sociated with particular tissues and specific effector profiles. 
These include intestinal TRGV7, dermal, lung, and hepatic 
TRGV4 T cells and other TRGV1 T-cell subsets [52, 79]. Not 
all ligands for the various murine γδ T-cell populations have 
been identified to date, but direct recognition of the murine 
stress-induced molecules and recognition of CD1d-presented 
antigens has been described [31].

Group 1 CD1-restricted T cells
In addition to CD1d, humans express three more antigen-
presenting members of the CD1-family: CD1a, b, and c [80]. 
CD1a-resticted T cells are relatively abundant in blood and 
skin and respond to a variety of antigens including squalene, 
wax esters, and skin oils [81–83], constituting an auto-reactive 
T-cell population. Functionally, these cells were shown to be 
producers of IL-22 [83] and are localized to the skin [31]. 
Auto reactivity was also observed in CD1c-restricted T cells 
and they have been specifically linked to tumour-derived 
lipid-antigens [81, 84]. CD1b-resticted T cells also recognize 
diverse lipid antigens and feature an overall diverse TCR rep-
ertoire, but subsets with a restricted or even-semi-invariant 
TCR usages have been described in LDN5 like [85] and germ-
line encoded mycolyl-reactive (GEM) T cells [86] respectively. 
Interestingly, both subsets respond to mycobacterial lipid 
antigens and GEM T cells, despite the expression of a semi-
variant TRAV1-2-TRAJ9 TCR, lack the expression of PLZF 
or NK-associated markers found in innate-like T cells [86].

Innate-like T cells responding to antigen 
presented by conventional MHC molecules
Just as restriction to unconventional antigen-presenting mol-
ecules can be found in certain adaptive T-cell populations, 
certain T cells that would be considered conventional in terms 
of their antigen-restriction and TCR-usage turned out to dis-
play innate-like features in certain settings (Fig. 1).

Tissue-resident memory T cells
Several lines of evidence show that murine memory T cells 
can mount antigen-independent responses under certain cir-
cumstances, although human memory T cells do this only to 
a very limited extent [87, 88]. This phenomenon, which is 
often referred to as bystander activation, is very prominent 
in CD8+ tissue-resident T cells (TRM), where it was shown in 
different mouse models comparing cells with defined antigen 
specificities [89–91] and different virus-specific memory 
populations in humans [91]. Bystander activation could be 
considered an innate-like activation mode as it does not re-
quire TCR signalling but instead is mediated via cytokines. 
In particular, IL-15 signaling was shown to play a crucial role 
mainly driving the acquisition of TCR-independent cytotoxic 
effector functions [91–93], while activation by IL-18, par-
ticular in synergy with IL-12 allows TCR-independent pro-
duction of IFNg in TRM cells to a much higher extent than 
in blood-derived memory cells [90, 91, 94]. A comparable 
innate-like behavior by CD4 TRM is less well studied [91, 95], 
but nevertheless has been observed in mouse models [91] and 
recently in human Crohn’s disease patients [96]. It is note-
worthy that particular CD4 T cells at barrier sites, e.g., intes-
tine show high levels of key cytokine receptors like IL18R1 
[97] supporting the idea that tissue-resident cells might be 

especially sensitive to cytokine signaling. Despite these char-
acteristics, TRM cells are usually not considered innate like as 
they lack several other features associated with established 
innate-like population, notably expression of PLZF.

PLZF-Expressing MHC-Restricted T Cells
The innate-like phenotype of MAIT was shown to be linked 
to a specific transcriptional core program that is shared with 
related populations and cells displaying innate-like behav-
iour [21, 42]. Key features of this program aside from cyto-
kine receptors (IL18R1, IL12RB2, and IL23R) include the 
expression of transcription factors like RoRγt and especially 
ZBTB16, encoding PLZF. It is noteworthy that PLZF expres-
sion has not been reported in the aforementioned memory cell 
subsets, separating them from MAIT cells, iNKT cells, and 
human Vδ2 cells. However, PLZF-expression in T cells not 
belonging to the established unconventional, innate-like T-cell 
populations were identified in the fetal human intestine [98], 
the murine thymus [99] and to a small degree within CD8 
T cells expressing intermediate levels of CD161 and PLZF 
[87]. It is not well established what roles these subsets play 
in health and disease, but they all show increased capacities 
to produce effector molecules compared to other conven-
tional T cells. Fetal human PLZF+ CD4 T cells produce large 
amounts of IFNγ and could be involved in perinatal inflam-
matory diseases and are enriched in the cord blood of new-
borns with gastroschisis. In contrast, conventional PLZF+ T 
cells from the murine thymus were described to express IL-4 
and regulate the phenotype of CD8 T cells. Interestingly, both 
of these subsets seem to be linked to the presence of microbial 
antigens. Lastly, at least some human CD161int CD8 T cells 
bind to MHC I-dextramers loaded with antigens derived from 
common viruses like CMV, EBV, or influenza and in general 
show higher expression of cytotoxic effector molecules like 
Granzyme B and Perforin compared to other CD8 T cells. 
Hence, CD161int CD8 T cell might be particularly effective at 
dealing with viral infections.

TMIC cells
Elevated PLZF expression was also recently shown in MHC 
II-restricted T cells in the murine and human colon [100]. 
There, it was specifically linked to T cells responding to 
antigen derived from commensals including Escherichia 
coli and Candida albicans in humans or bacterial flagellin 
in mice. Transcriptionally, these MHC II-restricted, innate-
like, and commensal-reactive T cells (TMIC) cluster together 
with murine iNKT cells, share transcriptional signatures with 
human MAIT cells, and also display innate-like functionality 
in response to TCR-independent stimulation with cytokines. 
Interestingly, while human TMIC cells express CD4 and, like 
other innate-like cells, comparatively high levels of CD161, 
the corresponding murine population does not express either 
the CD4 or CD8 co-receptor nor NK1.1. In addition to 
their MHC II-restriction, murine TMIC cells express THPOK, 
the master regulator of CD4 lineage commitment, clearly 
showing that these cells are related to the CD4 lineage [100]. 
It is currently unclear which signals drive the development 
of TMIC cells in either species and what is the reason behind 
the superficial differences, particular regarding CD4 expres-
sion, between humans and mice. However, over 80% of Cbir1 
flagellin-specific T cells displayed a TMIC phenotype in the co-
lonic lamina propria, while in other tissues the majority of these 
cells had a conventional CD4+ phenotype. Similarly, human 
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microbe-reactive CD4 T cells in the blood were shown to be 
relatively heterogenous in terms of CD161 and chemokine 
receptor expression [101] as well as a mixture of central and 
effector memory phenotypes, in contrast to the CD161hi ef-
fector memory TMIC cells in the human colonic lamina propria 
[100]. These data suggest that antigen-availability, potentially 
in combination with yet-to-be-identified local cues, plays a 
key role in bestowing innate-like properties onto these cells. 
Importantly, the human TMIC gene signature showed only a 
weak correlation with several previously published gene sig-
natures of TRM cells [100] indicating that the TMIC phenotype 
is not a necessary consequence the adaptation of memory T 
cells to peripheral tissues but rather represents a unique phe-
nomenon restricted to certain subpopulations, possibly these 
responding to commensal microbes.

In line with the idea that TMIC cells arise in response to 
various microbes, a diverse oligoclonal TCR repertoire can be 
found in both humans and mice.

Like MAIT cells [15–17], TMIC cells can express tissue-repair 
associated factors like VEGF and Amphiregulin upon TCR-
triggering in vitro, although they were also shown to possess 
strong pro-inflammatory capacities as illustrated by aggra-
vated pathology in a murine DSS-colitis model and cells ex-
pressing key molecules of the TMIC phenotype were present and 
showed signs of activation in human ulcerative colitis [100].

Given their large numbers, especially in the human colon 
(approx. 30% of all lamina propria CD4 T cells on average), 
further research is required to fully elucidate the develop-
mental pathways leading to TMIC formation, as well as their 
specific roles in both homeostasis as well as in infection and 
inflammation.

Conclusion
While unconventional and innate-like properties go together 
in prominent populations like MAIT and iNKT cells, certain 
T cell subsets present as unconventional adaptive or conven-
tional innate-like instead.

This on the one hand broadens the repertoire of antigens 
the immune system can screen for and allows for the forma-
tion of adaptive responses and immune memory based on 
lipids, metabolic components, and modified peptides in re-
sponse to microbes and cancer. Innate-like features in con-
ventional T cells on the other hand enable them to participate 
in a wider range of immune response even in the absence of 
their cognate antigen. Such non-specific activation could be 
helpful in containing pathogens by a larger initial innate re-
sponse, but also has the potential to be harmful as illustrated 
by the detrimental effects of TRM bystander activation in dif-
ferent models or the pro-colitogenic action of TMIC cells in 
murine colitis. Future studies will be needed to elucidate the 
mechanisms driving these and to elucidate if they could be 
manipulated.

An interesting feature seen in several innate-like and un-
conventional T cells is the ability to contribute to tissue 
homeostasis and accelerate wound-repair. Several studies 
using MAIT cells have linked the expression of tissue repair-
associated factors to TCR signaling [14–16], suggesting that 
promoting tissue repair results from an adaptive response. 
In line with this idea, wound healing by H2M3-restriced 
CD8 T cells in mice is accelerated after topic association 
with ligand-providing bacteria and reduced in H2M3−/− mice 
[75] and repair-associated factors are expressed in TMIC cells 

specifically upon TCR- but not cytokine triggering in vitro 
[100]. Additional work is needed to elucidate in detail how 
tissue repair by innate-like T cells is regulated however, as 
a more recent paper suggests that MAIT-dependent skin 
healing is independent of MR1 and does not require sustained 
TCR signaling [17]. Establishing which cytokines or combin-
ations of cytokine can contribute to this important process 
and which factors specifically they can or cannot induce con-
stitutes a key task for future studies in the field.

Another specific question important in this context and 
beyond it relates to the role of TCR signalling in innate-
like T-cell activation. As mentioned above, in the context of 
certain infections iNKT cells require TCR signals from en-
dogenous low affinity ligands to allow for their cytokine-
dependent responses and in MAIT cells somewhat similar 
observations have been made in the context of SARS-CoV2 
infection, where MAIT activation and responses are to some 
extent dependent on MR1 [102], even though the virus does 
provide any ligand. The surprisingly ubiquitous presence of 
riboflavin ligands [103] in vivo could provide an explanation 
for the latter finding. Further studies are required to establish 
whether what we consider “innate-like” behaviour is in fact 
to some degree enabled by low degree TCR-activation.

Given the large numbers of MAIT or iNKT cells in the 
human or murine livers, γδ T cells in the skin and TMIC cells 
in the colonic lamina propria, innate-like T cells have a large 
potential to play an important role in guarding barrier and 
tissue integrity (fig. 2) and hence, understanding the mechan-
isms regulating their different functions could open-up new 
avenues for therapeutic interventions in the future.
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