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ABSTRACT
Background CKD is associated with fluid excess that can be estimated by bioimpedance spectroscopy.
We aimed to assess effects of sodium glucose co-transporter 2 inhibition on bioimpedance-derived “Fluid
Overload” and adiposity in a CKD population.

Methods EMPA-KIDNEY was a double-blind placebo-controlled trial of empagliflozin 10 mg once daily in
patients with CKD at risk of progression. In a substudy, bioimpedance measurements were added to the
main trial procedures at randomization and at 2- and 18-month follow-up visits. The substudy’s primary
outcome was the study-average difference in absolute “Fluid Overload” (an estimate of excess extra-
cellular water) analyzed using a mixed model repeated measures approach.

Results The 660 substudy participants were broadly representative of the 6609-participant trial popu-
lation. Substudy mean baseline absolute “Fluid Overload” was 0.461.7 L. Compared with placebo, the
overall mean absolute “Fluid Overload” difference among those allocated empagliflozin was20.24 L (95%
confidence interval [CI], 20.38 to 20.11), with similar sized differences at 2 and 18 months, and in
prespecified subgroups. Total body water differences comprised between-group differences in extra-
cellular water of20.49 L (95% CI,20.69 to20.30, including the20.24 L “Fluid Overload” difference) and
a 20.30 L (95% CI, 20.57 to 20.03) difference in intracellular water. There was no significant effect of
empagliflozin on bioimpedance-derived adipose tissue mass (20.28 kg [95% CI, 21.41 to 0.85]). The
between-group difference in weight was 20.7 kg (95% CI, 21.3 to 20.1).

Conclusions In a broad range of patients with CKD, empagliflozin resulted in a sustained reduction in a
bioimpedance-derived estimate of fluid overload, with no statistically significant effect on fat mass.

Trial Registration Clinicaltrials.gov: NCT03594110; EuDRACT: 2017-002971-24 (https://eudract.ema.
europa.eu/).
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INTRODUCTION

Patients with CKD are at increased risk of cardiovascular
disease,1,2 key features of which are structural heart disease,
heart failure, and sudden death.3–5 These risks increase pro-
gressively as eGFR decreases,6 with risk of death from cardio-
vascular disease exceeding risk of progression to kidney
failure for many people with CKD. Fluid excess is common
in CKD, especially when heart failure coexists,7 and can be
quantified using bioimpedance spectroscopy.8 Bioimpedance
can estimate a number of fluid- and adiposity-related param-
eters, including the excess constituent of total body extra-
cellular water (ECW) over and above what is considered
normohydration. We refer to this parameter as “Fluid
Overload” (refer to Figure 1 and the Supplemental Methods
for more details about bioimpedance spectroscopy and a glos-
sary of fluid-related terms).9 “Fluid Overload” can be used to
guide dialysis prescription,10 and epidemiologically there are
positive associations between bioimpedance-measured “Fluid
Overload” with cardiovascular outcomes and mortality in pa-
tients on dialysis, with nondialysis CKD, or with heart failure.8

The double-blind international multicenter Study of Heart
and Kidney Protection With Empagliflozin (EMPA-KIDNEY)
demonstrated that, compared with matching placebo, em-
pagliflozin 10 mg once daily reduced the risk of kidney
disease progression or cardiovascular death by 28% (95%
confidence interval [CI], 18% to 36%) in 6609 patients with
CKD at risk of progression.11 A meta-analysis of large
placebo-controlled trials extended these findings and showed
that in people with CKD, heart failure, or type 2 diabetes
at high cardiovascular risk, sodium glucose co-transporter 2
(SGLT2) inhibitors safely reduce the risk of kidney disease
progression by about two fifths and AKI by about a quarter,
with consistent effects irrespective of diabetes status.12

SGLT2 inhibitors also reduce the risk of cardiovascular out-
comes, particularly hospitalization for heart failure.12 These
cardiovascular benefits are particularly large in patients with
preexisting heart failure,12,13 but smaller numbers of cardio-
vascular events in patients with CKD without diabetes and at
low levels of eGFR mean effects are less certain in these
populations.11,12 The amount of glycosuria induced by
SGLT2 inhibition falls with decreasing eGFR and with am-
bient normoglycemia,14 so it is reasonable to hypothesize that

other effects of SGLT2 inhibitors could also be attenuated in
such patients.11,15 To address uncertainty about the effects of
SGLT2 inhibitors on fluid status and adiposity in CKD, we
embedded a bioimpedance-based substudy within the EMPA-
KIDNEY trial.11 The primary aim was to assess the effects of
empagliflozin 10 mg once daily versus placebo on fluid status
using the bioimpedance-derived parameter of absolute “Fluid
Overload” (i.e., estimated excess ECW). We also aimed to
assess effects on this “Fluid Overload” parameter over time
and in different types of patients with CKD. In this report, we
also put the substudy findings regarding empagliflozin’s effects
on bioimpedance-derived fluid and adiposity parameters in
the context of its potentially related effects on weight, BP,
glycated hemoglobin and hematocrit (as observed in the full
trial cohort).

METHODS

Substudy Design and Population
The full methods of the EMPA-KIDNEY trial and the main
results have been reported elsewhere (ClinicalTrials.gov num-
ber, NCT03594110; EudraCT number, 2017-002971-24).11,16

In brief, patients with CKD at risk of progression were
identified based on historical and screening local laboratory
measurements of an eGFR$20 but ,45 ml/min per 1.73 m2,
or an eGFR $45 but ,90 ml/min per 1.73 m2 with a urinary
albumin-creatinine ratio (uACR) $200 mg/g. This report
details the results of an optional substudy conducted in a subset
of sites in the United Kingdom and Germany which added
bioimpedance measurements at the randomization, 2- and
18-month follow-up visits to the trial’s main protocol-
specified procedures (substudy protocol supplement available
in the Supplemental Materials). All participants provided
written informed consent. Regulatory authorities, as well as
ethics committees at each center, approved the trial and the
substudy which adhere to the Declaration of Helsinki.

Bioimpedance Measurements
Bioimpedance spectroscopy is a tool used in the clinical care
of patients requiring dialysis to monitor fluid status.17 We
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used the Fresenius Medical Care Body Composition Monitor
(BCM) bioimpedance spectroscopy device because it has been
extensively validated for fluid status assessment in kidney
failure populations and used in randomized controlled tri-
als.18–20 The device passes low-level electrical current at fre-
quencies of 5–1000 kHz (with results extrapolated from zero
to infinity kHz) between electrodes attached to patients’ hands
and feet.8 All substudy bioimpedance measurements were
performed by trained local research coordinators. Body fluid
and adiposity indices were then derived centrally using age,
sex, a paired weight measurement, and height data combined
with bioimpedance measurements of electrical resistance,
and a validated three-compartment model formula using
proprietary coefficients.9,21

The primary outcome was based on the bioimpedance-
derived estimate of excess ECW which we refer to as abso-
lute “Fluid Overload” (sometimes referred to as “overhy-
dration”). It is reported in liters and can have positive or
negative values (Figure 1). Its reference range estimated
from the 10th and 90th centiles of a reference general
population distribution is 21.1 L to 11.1 L.22 “Fluid Over-
load” can be indexed to ECW volume and referred to as
percentage relative “Fluid Overload.” An absolute value

of 11.1 L approximately corresponds to relative “Fluid Over-
load” of 17%.23 Values above this threshold have been
consistently associated with an increased risk of death and
cardiovascular events,8 and we refer to it as moderate
“Fluid Overload” (.7%, #15%) or severe “Fluid Overload”
(.15%).8,23,24 Bioimpedance measurements were also used to
derive estimates of extracellular and intracellular water (ICW)
volume, lean tissue index (LTI), and fat tissue index (FTI) (see
Supplemental Methods for more details).

Local research coordinators were trained to repeat mea-
surements when the BCM device’s automated quality score
(the Q value) was below 80 (out of 100). Visual inspection of
reactance versus resistance plots (known as Cole–Cole plots)
were additionally used to assess data quality.25 It was not
always possible to obtain a Q value $80, so any measurement
with a Q value ,80 had its Cole–Cole plot assessed inde-
pendently by two researchers to determine data quality and
inclusion in the primary assessment using prespecified rules
blind to treatment allocation (see prespecified Data Analysis
Plan provided in the Supplemental Materials for details).
Absolute “Fluid Overload” values lower than 25 L were
consistently associated with low-quality bioimpedance mea-
surement and were considered invalid.

Total body
weight (kg)

“Fluid
Overload” (L)

Lean
tissue mass†

(kg)

Adipose
tissue mass†

(kg)

Excess ECW*

ICW

ECW

ECW
ICW
Proteins & minerals

Proteins &
minerals

Fat tissue mass

Bioimpedance-derived
parameters: three-compartment model

Figure 1. Relationship of the derived “Fluid Overload” parameter to body weight and tissue mass. Based on the three-
compartment model described by Chamney et al.9 *Excess ECW accumulates both in tissues and in the blood (although blood
volume is not specifically conceptualized in the three-compartment model), so changes in Fluid Overload could reflect changes in
excess ECW that might be residing in adipose tissue, lean tissue, or both. †Refers to normally hydrated lean and adipose tissue mass.
Total body water (TBW) is the sum of ECW and ICW, although TBW is not conceptualized in the three-compartment model. The figure
is not to scale because compartment proportions vary between individuals and “Fluid Overload” is usually smaller than depicted (and
can be a negative value in fluid depletion). The mean baseline values in the EMPA-KIDNEY substudy were total body weight 88.8 kg,
“Fluid Overload” 0.4 L, lean tissue mass 38.8 kg, and adipose tissue mass 49.6 kg. In the EMPA-KIDNEY substudy, mean total ECW at
baseline was 18.7 L and ICW 20.4 L. ECW, extracellular water; ICW, intracellular water.
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Outcomes
The substudy’s prespecified primary outcome was the effect
of empagliflozin versus placebo on mean absolute “Fluid
Overload” averaged over time, with effects on relative “Fluid
Overload” provided for completeness. It was estimated that at
least 382 participants would provide .90% power (at a two-
sided P value of 0.05) to detect at least a 0.3-L difference in
absolute “Fluid Overload” between treatment groups. The key
secondary outcome was the effect of empagliflozin versus
placebo on time to the first event of a cardiovascular com-
posite defined as death from heart failure, heart failure hos-
pitalization, or development of new moderate or severe “Fluid
Overload” (in participants without this level of “Fluid Over-
load” at baseline). The other secondary outcomes were the
effects of empagliflozin versus placebo on “Fluid Overload” at
the different measurement time points. Tertiary assessments
are detailed in the Supplemental Methods and include anal-
yses of the effects of empagliflozin versus placebo on all ECW
(of which “Fluid Overload” is a constituent) and ICW. In
addition, the effects of empagliflozin versus placebo on total
body water (the sum of all ECW and ICW) were assessed as a
post hoc analysis to contextualize effects on “Fluid Overload.”

In order for inferences from the bioimpedance substudy
to be put in the context of findings from all the available
EMPA-KIDNEY data, additional analyses included assess-
ments of the effects of empagliflozin versus placebo on
weight, body mass index (BMI), waist-to-hip ratio, glycated
hemoglobin, hematocrit, and BP (systolic and diastolic) in
the full trial cohort. Analyses emphasized results of study-
average effects including all available measurements from
routine trial visit time points (with effects at 2 and 18 months
also presented). The full cohort results are emphasized be-
cause of greater statistical power and wider generalizability
than the substudy. Substudy results were compared with
results from the full cohort using standard statistical tests
of heterogeneity. Analyses of weight and systolic BP also
considered results for the same subgroups as the substudy
(plus self-reported race, to explore effects by race in the full
trial cohort because the substudy took place in the United
Kingdom and Germany only). Prespecified sensitivity analysis
for the primary outcome included three analyses assessing any
effect of data quality assessments. Analyses of effects of
empagliflozin on diuretic use were included post hoc.

Statistical Analysis
Substudy analyses followed the intention-to-treat principle
and required a consenting participant to have provided at
least one valid bioimpedance measurement. The primary
outcome was prespecified to be assessed using a mixed
model repeated measures (MMRM) approach adjusted for
age, sex, previous diabetes, eGFR, and uACR in the cate-
gories used in the minimized randomization algorithm.11

The MMRM model also included fixed categorical effects
of time (to avoid assuming a linear association between
treatment allocation and “Fluid Overload” over time),

treatment allocation, and treatment-by-time interaction,
and continuous effects of baseline (randomization) measure-
ments and baseline-by-time interaction. The within-person
error correlations were assumed to be unstructured. Anal-
yses of the full trial cohort were additionally adjusted for
region.11 Effects at each follow-up time point were estimated
and used to derive study-average effects (with weights pro-
portional to the amount of time between visits). All between-
group differences are reported as empagliflozin minus pla-
cebo. To assess effect modification, subgroup-specific treat-
ment effects were estimated by fitting interaction terms in the
MMRM models. The null hypothesis was that the treatment
effect is the same across all subgroups. This was tested by
calculating a heterogeneity or trend statistic from subgroup-
specific means and standard errors, without correction for
multiplicity of testing.

The key secondary outcome and its components were
analyzed using an adjusted Cox proportional hazards regres-
sion using the same covariates in the minimization algorithm
(age, sex, previous diabetes, eGFR, and uACR) and included
the complete substudy population of 660 participants (i.e., it
included participants without a valid follow-up bioimpedance
measurement who were excluded from MMRM analyses but
were at risk of clinical outcomes). Tertiary analyses used the
same MMRM approach as described for the primary outcome
and assessed effects on ECW, ICW, LTI, FTI, body weight, and
BMI. Waist and hip circumference measurements were ob-
tained at a single follow-up time point (18 months) and were
therefore analyzed by analysis of covariance, adjusted for the
baseline value and minimization variables. Handling of miss-
ing data is outlined in the Supplemental Methods. P values for
hypothesis testing for outcomes are limited to the primary
outcome. P values for testing for any evidence of effect
modification between subgroups, and between treatment ef-
fect and effects by time are provided. The prespecified Data
Analysis Plan is provided in the Supplemental Materials.
Analyses were performed using R Studio version 4.2.2 (RStu-
dio: Integrated Development for R. RStudio, PBC, Boston,
MA) and SAS version 9.4 (SAS Institute, Cary, NC).

RESULTS

Substudy Baseline Characteristics and Adherence
Between May 22, 2019, and April 14, 2021, 668 participants
consented to join the substudy. One was excluded because of a
metal knee implant and no useable bioimpedance measure-
ment at baseline excluded a further seven, leaving 660 in-
cluded in analyses (Supplemental Figure 1, Supplemental
Material). MMRM analyses excluded 40 consenting partici-
pants with no valid follow-up bioimpedance measurement
(empagliflozin versus placebo: 21 versus 19, respectively; three
due to death before first follow-up measurement, 28 with no
follow-up measurement performed [e.g., due to coronavirus
disease 2019 precluding visits], and nine due to low data

JASN 35: 202–215, 2024 Empagliflozin and Fluid Overload, Mayne et al. 205

www.jasn.org CLINICAL RESEARCH

D
ow

nloaded from
 http://journals.lw

w
.com

/jasn by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dgG

j2M
w

lZ
LeI=

 on 06/19/2024

http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563


quality). This left a total of 620 participants for whom 1047
valid follow-up bioimpedance measurements were available
for MMRM analyses.

In the substudy, the mean age was 64 (15) years and 205
participants (31%) were female (Table 1). At recruitment, 136
(21%) reported a diagnosis of heart failure and 256 (39%) had
diabetes. The mean (SD) eGFR was 36.0 (12.4) ml/min per
1.73 m2 and median (Q1–Q3) N-terminal pro–B-type natri-
uretic peptide (NT-proBNP) was 211 (93–581) ng/L. The
mean body weight was 88.8 (19.8) kg and mean BMI was 30.3
(6.2) kg/m2. The mean absolute “Fluid Overload” at baseline
was 0.4 (1.7) L with 126 (19%) and 30 (5%) participants with
evidence of moderate and severe “Fluid Overload,” respec-
tively (Table 1). Severity of “Fluid Overload” mirrored estab-
lished markers of fluid excess: heart failure was twice as
common in those with severe “Fluid Overload” compared
with the normohydrated group and NT-proBNP was five-fold
higher (Supplemental Table 2). In addition, participants with

“Fluid Overload” were more likely to be older, be male, to
have previous diabetes, and have a lower eGFR (Supplemental
Table 2). The substudy cohort characteristics were broadly
representative of the full trial cohort,11 although were less
racially diverse due to being conducted only in the United
Kingdom and Germany (Supplemental Table 3).

Substudy adherence to study treatment was consistent with
adherence in the full-trial population.11 At 12 months of
follow-up (the approximate midpoint of the trial), of substudy
participants who remained alive, 282 of 318 (88.7%) in the
empagliflozin group and 292 of 320 (91.3%) in the placebo
group reported taking at least 80% of their allocated
study treatment.

Effects on Bioimpedance-Derived Parameters
The primary assessment found that the study-average mean
absolute “Fluid Overload” was 0.24 L lower in those allocated
to the empagliflozin group compared with the placebo group

Table 1. Bioimpedance substudy cohort: baseline characteristics

Baseline Characteristic Empagliflozin (n5332) Placebo (n5328)

Demographics
Age (yr) 65.2 (14.2) 64.1 (14.9)
Female sex 102 (30.7) 103 (31.4)
White race 321 (96.7) 315 (96.0)

Previous disease
Diabetes 135 (40.7) 121 (36.9)
Heart failure 62 (18.7) 74 (22.6)

Clinical measurements
Weight (kg) 89.8 (20.2) 87.9 (19.3)
Body mass index (kg/m2) 30.5 (6.2) 30.1 (6.3)
Waist-to-hip ratio 1.0 (0.1) 1.0 (0.1)
Systolic BP (mm Hg) 137.0 (18.8) 137.5 (18.9)
Diastolic BP (mm Hg) 77.8 (12.2) 78.6 (11.9)

Bioimpedance measurementsa

Absolute “Fluid Overload” (L) 0.45 (1.68) 0.32 (1.68)
Relative “Fluid Overload” (%)
Mean (SD) 1.9 (8.7) 1.3 (8.3)
Moderate “Fluid Overload” 70 (21.1) 56 (17.1)
Severe “Fluid Overload” 14 (4.2) 16 (4.9)

Extracellular water (L) 19.0 (3.8) 18.4 (3.7)
Intracellular water (L) 20.7 (4.5) 20.1 (4.6)
Lean tissue index (kg/m2) 13.3 (3.1) 12.9 (3.0)
Fat tissue index (kg/m2) 12.6 (5.4) 12.5 (5.1)

Laboratory measurements
eGFR (ml/min per 1.73 m2)
Mean (SD) 36.1 (13.4) 35.8 (11.4)
Distribution
,30 123 (37.0) 118 (36.0)
$30 ,45 148 (44.6) 154 (47.0)
$45 61 (18.4) 56 (17.1)

Urinary albumin-creatinine ratio (mg/g) 203 (26–958) 205 (29–865)
HbA1c (mmol/mol) 43.9 (11.3) 43.5 (10.9)
NT-proBNP (ng/L) 197 (90–596) 225 (95–550)

Medications
RAS inhibitor 304 (91.6) 288 (87.8)
Any diuretic therapy 180 (54.2) 173 (52.7)

Data are presented as mean (SD) or median (Q1–Q3) for continuous variables and n (%) for categorical variables. HbA1c, glycated hemoglobin; NT-proBNP,
N-terminal pro–brain-type natriuretic peptide; RAS, renin-angiotensin system.
aBioimpedance measurements are presented for 644 of 660 participants with a baseline measurement (missing for 16/660) irrespective of validity for inclusion in
the primary analysis.

206 JASN JASN 35: 202–215, 2024

CLINICAL RESEARCH www.jasn.org

D
ow

nloaded from
 http://journals.lw

w
.com

/jasn by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dgG

j2M
w

lZ
LeI=

 on 06/19/2024

http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563
http://links.lww.com/JSN/E563


(absolute difference in means 20.24 L, 95% CI, 20.38
to 20.11), with similar differences at 2 months (20.23 L,
95% CI, 20.37 to 20.08) and 18 months (20.26 L, 95%
CI,20.46 to20.06) (Figure 2, Table 2). Findings were robust
in sensitivity analyses assessing the effect of data quality
assessments (Supplemental Table 4). The effect of empagli-
flozin on the primary outcome was similar in subgroups by
sex, diabetes status, and across the spectrum of NT-proBNP
and eGFR studied (P values for heterogeneity or trend .0.3,
Figure 3 and Supplemental Table 5). Neither was there any
evidence of heterogeneity in post hoc exploratory subgroups
divided by baseline fluid status (fluid depletion, low and high
normohydration, and moderate and severe “Fluid Overload”;
P 5 0.71), diuretic use (P 5 0.07), or uACR (P 5 0.33,
Supplemental Figure 2).

There was no significant difference in the composite
outcome between treatment groups (empagliflozin 35/332
[11%] versus placebo 38/328 [12%], hazard ratio (HR)
0.91, 95% CI, 0.57 to 1.45, P 5 0.69) with consistent effects
for its components (Table 3). The number of outcomes was
low, limiting statistical power: development of new mod-
erate “Fluid Overload” occurred in 7.8% of substudy par-
ticipants allocated empagliflozin versus 10.1% allocated
placebo, and development of new severe “Fluid Overload”
occurred in 2.6% versus 1.3% of empagliflozin and placebo
groups, respectively. The tertiary outcome of regression of
moderate or severe “Fluid Overload” did not differ signif-
icantly between the empagliflozin and placebo groups
(54.8% versus 48.6%; Table 3). Heart failure events were
also infrequent; there were no deaths due to heart failure in

the substudy population. In the full trial cohort, hospital-
ization for heart failure occurred in 2.7% and 3.2% of
participants allocated empagliflozin and placebo, respec-
tively (HR 0.80, 95% CI, 0.60 to 1.06), and findings from
the substudy cohort considered in isolation were consistent
(empagliflozin 3.3% versus placebo 4.9%; HR 0.67, 95% CI,
0.31 to 1.46; Table 3).

Bioimpedance estimated that the study-average absolute
difference in total body water was 20.82 L (21.24 to 20.40).
This consisted of differences in ECW of 20.49 L (95%
CI, 20.69 to 20.30) (of which the 20.24 L between-group
difference in “Fluid Overload” is a constituent) and ICW
of 20.30 L (95% CI, 20.57 to 20.03). There were no
significant between-group differences in bioimpedance-
derived fat or lean tissue index or related tissue mass param-
eters (lean, fat, and adipose tissue mass in kg; Table 2,
Supplemental Tables 6 and 7). In the bioimpedance substudy
population, the study-average between-group difference in
weight was 20.7 kg (21.3 to 20.1). Supplemental Figure 3
shows the change in weight (relative to baseline) with the
change in different biompedance indices at the 2-month
follow-up visit.

Effects on Anthropometry, BP, and Relevant
Laboratory Values in the Full Trial Cohort
In the full trial cohort, the between-group difference in weight
was20.9 kg (95% CI,21.2 to20.6) (Figure 4, Supplemental
Table 8) and the effect of empagliflozin on weight did not vary
significantly over time (interaction P value by time 5 0.47,
Supplemental Table 8). In the full cohort, there was no
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Figure 2. Effects of empagliflozin on mean bioimpedance-derived absolute “Fluid Overload” by time. The value at time 0 is the
average across all randomized participants. Follow-up means (and their CIs) are derived from a repeated measures mixed model
adjusted for baseline values, age, sex, diabetes, eGFR, and uACR. Follow-up values are plotted at the median follow-up day in each
time window. There was no significant interaction between treatment allocation and time (P 5 0.11). The study average is the between-
group difference (empagliflozin minus placebo) in weighted averages of both time points (see Supplemental Methods). Analyses
excluded 40 consenting participants with no valid follow-up measurements. Median (Q1–Q3) follow-up since randomization for
empagliflozin versus placebo groups at the 2-month visit: 64 (57–74) versus 64 (57–75) days, Wilcoxon rank sum P 5 0.871; and at the
18-month visit: 540 (519–555) versus 532 (505–554) days, P 5 0.026. CI, confidence interval; uACR, urinary albumin-creatinine ratio.
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evidence of heterogeneity of the effect of empagliflozin on
weight in subgroups by sex, baseline eGFR, or diabetes
(Figure 4, or in post hoc analyses by race: Supplemental
Figure 4). The waist-to-hip ratio at 18 months was also not
significantly different between the empagliflozin versus pla-
cebo groups (Supplemental Table 9). The study-average
difference in glycated hemoglobin (HbA1c) in the full co-
hort was20.4 mmol/mol (95% CI,20.8 to20.0), with a20.9
mmol/mol (95% CI, 21.6 to 20.1) difference in HbA1c in
participants with diabetes at randomization and no significant
difference in participants without diabetes (0.0 mmol/mol,
95% CI, 20.2 to 0.2; Supplemental Table 10). The full trial
cohort average between-group difference in hematocrit at 18
months postrandomization was 2.3% (95% CI, 1.9 to 2.7).

The study-average between-group differences in systolic
and diastolic BP were 22.6 (95% CI, 23.3 to 21.9)
and 20.5 mm Hg (95% CI, 20.9 to 20.1), respectively. In
the full trial cohort, there was no evidence of heterogeneity
of the effect of empagliflozin on systolic BP when subdivided
by sex, baseline eGFR, NT-proBNP (Figure 4), or race
(Supplemental Figure 4), but there was some evidence to
suggest a larger systolic BP difference in patients with diabetes
(Figure 4). Effects on anthropometry, HbA1c, hematocrit, and
BP in the substudy were approximately consistent with the full
trial cohort results (Supplemental Tables 8–11).

Effects on Diuretic Use
Among those participants in the full trial cohort who were not
taking a loop diuretic at randomization, 159 of 2453 (6.5%) in
the empagliflozin group compared with 212 of 2409 (8.8%) in
the placebo group started such medication during follow-up,
representing a 26% lower likelihood of a new loop diuretic
prescription among the empagliflozin group (risk ratio 0.74,
95% CI, 0.60 to 0.90).

DISCUSSION

In the EMPA-KIDNEY substudy of 660 patients with CKD,
empagliflozin resulted in a sustained reduction in bioimpedance-
derived “Fluid Overload” for at least 18 months, irrespective of
diabetes status or level of kidney function. Using the three-
compartment model, we observed a 20.24 L between-group
difference in “Fluid Overload” but no significant differences in
normally hydrated lean or adipose tissue compartments. Fluid
volume differences consisted of approximately 0.8 L less total
body water of which approximately 0.5 L was ECW and
approximately 0.3 L ICW (with the approximately 0.5 L total
ECW difference including the 20.24 L between-group differ-
ence in excess ECW referred to as “Fluid Overload”). These
data raise a hypothesis that an important determinant of the

Table 2. Effects of empagliflozin on bioimpedance-derived parameters

Bioimpedance-Derived Parameter

Empagliflozin (n5311) Placebo (n5309)
Absolute
Difference

95% CI
P Value for
Primary
Outcome

Adjusteda

Mean
SE

Adjusteda

Mean
SE

Primary assessments
Absolute “Fluid Overload”, L
Study average 0.10 0.05 0.34 0.05 20.24 (20.38 to 20.11) ,0.001

Relative “Fluid Overload”, %
Study average 0.14 0.25 1.33 0.25 21.19 (21.90, to 20.48) 0.001

Secondary assessments
Absolute “Fluid Overload”, L
Randomization 0.50 0.09 0.35 0.09
2-mo follow-up 0.18 0.05 0.40 0.05 20.23 (20.37 to 20.08)
18-mo follow-up 0.01 0.07 0.27 0.07 20.26 (20.46 to 20.06)

Relative “Fluid Overload”, %
Randomization 2.24 0.47 1.39 0.45
2-mo follow-up 0.52 0.27 1.65 0.27 21.12 (21.88 to 20.37)
18-mo follow-up 20.36 0.38 0.92 0.37 21.28 (22.32 to 20.23)

Tertiary assessments
Extracellular water, L
Study average 18.16 0.07 18.66 0.07 20.49 (20.69 to 20.30)

Intracellular water, L
Study average 20.10 0.10 20.40 0.10 20.30 (20.57 to 20.03)

Lean tissue index (LTI), kg/m2

Study average 12.90 0.09 13.05 0.09 20.14 (20.39 to 0.10)
Fat tissue index (FTI), kg/m2

Study average 12.34 0.10 12.42 0.10 20.07 (20.35 to 0.20)

CI, confidence interval; SE, standard error.
aMean effects are adjusted for baseline values of the dependent variable (in continuous form) and for any differences in key baseline characteristics (categories of
age, sex, diabetes, eGFR, and urinary albumin-creatinine ratio) between treatment groups with study averages weighted in proportion to the amount of time
between follow-up visits (see Supplemental Methods). Analysis excluded 40 consenting participants with no valid follow-up measurements (3 deaths before first
follow-up measurement, 28 with no measurement performed, and 9 excluded because of inadequate data quality). Effects on “Fluid Overload” did not vary by
time: P value for interaction with time50.11 and 0.39 for absolute and relative “Fluid Overload”, respectively.
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substudy 20.7 kg weight difference was due to effects on fluid
status. Along with other mechanisms,26 this effect may con-
tribute to the cardiovascular benefits of SGLT2 inhibitors.

Osmotic diuretic and natriuretic actions are considered
potentially important contributing mechanisms to the car-

diovascular benefits of SGLT2 inhibitors, but their effects
on fluid status in CKD—where effects may be hypothesized
to be attenuated by decreased kidney function—have not
previously been quantified in randomized trials.15,26–28 In
patients with type 2 diabetes without kidney disease,

Subgroup Baseline Mean (SE) Difference (95% CI) Phet/trend

Sex

  Male

  Female

Diabetes

  Absent

  Present

NT-proBNP, ng/L

  <110

  �110 <330

  �330

Estimated GFR, ml/min/1.73m2

  <30

  �30 <45

  �45

Overall

0.64 (0.08)

-0.05 (0.10)

0.18 (0.07)

0.83 (0.11)

-0.33 (0.10)

0.22 (0.09)

1.30 (0.11)

0.72 (0.11)

0.22 (0.09)

0.36 (0.15)

0.43 (0.06)

-0.24 (-0.40, -0.08)

-0.25 (-0.50, -0.00)

-0.19 (-0.36, -0.02)

-0.32 (-0.54, -0.10)

-0.36 (-0.61, -0.10)

-0.07 (-0.30, 0.15)

-0.30 (-0.53, -0.07)

-0.11 (-0.34, 0.12)

-0.30 (-0.50, -0.11)

-0.27 (-0.59, 0.05)

-0.24 (-0.38, -0.11)

0.93

0.38

0.82

0.33

-1.0 -0.5 0 0.5

Favors Empagliflozin Favors Placebo

Figure 3. Effects of empagliflozin on mean bioimpedance-derived absolute “Fluid Overload” (in liters) by prespecified substudy
subgroups. Study-average differences are adjusted for baseline values of the dependent variable (in continuous form) and for any
differences in key baseline characteristics (categories of age, sex, diabetes, eGFR, and urinary albumin-creatinine ratio) between
treatment groups and weighted in proportion to the amount of time between follow-up visits (see Supplemental Methods). Analysis
excluded 40 consenting participants with no valid follow-up measurements (3 deaths before first follow-up measurement, 28 with no
measurement performed, and 9 excluded because of inadequate data quality). Further details are available in Supplemental Table 5.
NT-proBNP, N-terminal pro B-type natriuretic peptide; SE, standard error.

Table 3. Effects of empagliflozin on cardiovascular composite outcome (bioimpedance substudy cohort)

Outcome

Empagliflozin Placebo
Hazard
Ratio

95% CI P ValueNo. of
Participants / Total

%
No. of

Participants / Total
%

Key secondary assessment
Death from heart failure, hospitalization for heart

failure, development of new moderate or severe
“Fluid Overload”

35/332 10.5 38/328 11.6 0.91 (0.57 to 1.45) 0.69

Death from heart failure 0/332 0.0 0/328 0.0 — —

Hospitalization for heart failure 11/332 3.3 16/328 4.9 0.67 (0.31 to 1.46)
Development of newmoderate “Fluid Overload”a 18/232 7.8 25/247 10.1 0.68 (0.37 to 1.26)
Development of new severe “Fluid Overload”b 8/302 2.6 4/303 1.3 1.96 (0.57 to 6.71)

Tertiary assessment
Regression of “Fluid Overload”c 46/84 54.8 35/72 48.6 1.33 (0.82 to 2.18)

All analyses use a time-to-first-event approach. Cox proportional hazards models include adjustment for the covariates used in the minimization algorithm: age,
sex, diabetes status, eGFR, and urinary albumin-creatinine ratio. Results were consistent in post hoc sensitivity analyses additionally adjusted for use of any diuretic
or loop diuretics at baseline (hazard ratios [95% CIs] 0.89 [0.56 to 1.42] and 0.92 [0.58 to 1.47]; respectively). CI, confidence interval.
aRequires randomization value of relative “Fluid Overload” #7% and follow-up value .7%, #15%.
bRequires randomization value of relative “Fluid Overload” #15% and follow-up value .15%.
cRequires randomization value consistent with moderate or severe relative “Fluid Overload” and regression to any lower hydration category at any follow-up
(limited to first event). All 660 participants were included in the composite outcome analysis because all participants were at risk of the clinical components of the
composite. In the full-trial cohort, there were 88 (2.7%) first hospitalizations for heart failure in the empagliflozin group versus 107 (3.2%) in the placebo group:
hazard ratio 0.80, 95% CI, 0.60 to 1.06.
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mechanistic trials have reported plasma volume reductions
by SGLT2 inhibitors29 and raised a hypothesis that SGLT2
inhibitors reduce interstitial volume more than plasma
volume.28 Previously collected bioimpedance data in pa-
tients taking SGLT2 inhibitors are limited to mainly non-
randomized studies.30–33 To the best of our knowledge, the
16-week DECREASE trial provides the only peer reviewed
published randomized evidence on the effects of SGLT2
inhibitors on bioimpedance parameters to date. It found
that, in 66 participants with type 2 diabetes—CKD status

not reported—dapagliflozin reduced extracellular fluid by
approximately 1 L and systolic BP by approximately 4 mm
Hg at 10 days versus placebo.34 EMPA-KIDNEY now sub-
stantially extends these previous findings by studying
longer term effects (over 18 months) in a much larger
number of participants in a placebo-controlled trial.

Before the results of this substudy, attenuation of diuretic
effects at low levels of kidney function was considered plau-
sible as SGLT2 inhibitors have little effect on glycemia at lower
eGFR due to attenuated levels of glycosuria.11,14,35–37 Despite

Sex
  Male
  Female
Diabetes
  Absent
  Present
NT-proBNP, ng/L
  <110
  �110 <330
  �330
Estimated GFR, ml/min/1.73m2

  <30
  �30 <45
  �45
Overall

Sex
  Male
  Female
Diabetes
  Absent
  Present
NT-proBNP, ng/L
  <110
  �110 <330
  �330
Estimated GFR, mL/min/1.73m2

  <30
  �30 <45
  �45
Overall

WEIGHT (kg)

SYSTOLIC BP (mm Hg)

Subgroup Baseline Mean (SE) Difference (95% CI) Phet/trend

87.4 (0.3)
76.9 (0.5)

79.5 (0.3)
89.2 (0.4)

82.4 (0.4)
83.7 (0.5)

86.2 (0.5)

84.8 (0.4)

85.0 (0.4)
80.5 (0.6)
84.0 (0.3)

137.4 (0.3)

134.8 (0.4)

134.3 (0.3)

139.2 (0.3)

133.2 (0.3)

137.6 (0.4)
139.6 (0.5)

137.6 (0.4)
136.0 (0.3)
136.0 (0.5)

136.5 (0.2)

-0.8 (-1.2, -0.5)
-1.0 (-1.5, -0.5)

-0.8 (-1.1, -0.4)
-1.1 (-1.5, -0.7)

-1.1 (-1.6, -0.6)
-1.2 (-1.7, -0.7)

-0.3 (-0.8, 0.2)

-0.8 (-1.3, -0.4)

-0.7 (-1.1, -0.3)
-1.4 (-2.0, -0.8)
-0.9 (-1.2, -0.6)

-2.6 (-3.5, -1.8)

-2.5 (-3.6, -1.3)

-1.5 (-2.5, -0.6)

-3.8 (-4.7, -2.8)

-2.1 (-3.3, -1.0)

-3.2 (-4.4, -2.0)
-2.5 (-3.7, -1.2)

-3.0 (-4.1, -1.8)
-2.6 (-3.5, -1.6)
-2.0 (-3.5, -0.5)

-2.6 (-3.3, -1.9)

0.56

0.25

0.03

0.26

0.79

0.001

0.64

0.30

-5 -4 -3 -2 -1 0 1

Favors Empagliflozin Favors Placebo

Figure 4. Full trial cohort: effects of empagliflozin on weight and systolic BP overall and by key bioimpedance substudy pre-
specified subgroups. Study-average differences are adjusted for baseline values of the dependent variable (in continuous form) and
for any differences in key baseline characteristics (categories of age, sex, diabetes, eGFR, urinary albumin-creatinine ratio, and region)
between treatment groups and weighted in proportion to the amount of time between follow-up visits (see Supplemental Methods).
Each analysis includes all individuals with at least one follow-up measurement of the outcome variable with mean imputation of
missing baseline measurements. For comparison, between-group differences in the substudy cohort were 20.7 (95% CI 21.3 to 20.1)
kg and 23.3 (25.5 to 21.2) mm Hg for weight and systolic BP, respectively.
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this, we found consistent effects on “Fluid Overload” across
the eGFR-based subgroups. Similarly, effects did not vary by
baseline fluid status, diuretic use, or albuminuria. These
findings are analogous to results from large randomized trials
in heart failure populations that included a large proportion
of patients with CKD and low eGFR and demonstrated
consistent effects of SGLT2 inhibitors on cardiovascular death
or hospitalization for heart failure irrespective of sex, diabetes,
eGFR, or NT-proBNP at baseline.13

It is also relevant that the effect of empagliflozin on fluid
loss in EMPA-KIDNEY was achieved safely. Although esti-
mates of ECW reduction reflected loss of ECW that is not
considered to be in excess by the three-compartment model,
there was no increased risk of participant reports of symp-
tomatic dehydration in the full trial or substudy cohorts
(Supplemental Table 12) nor any increased risk of AKI.11

We also report assessments of the effects of empagliflozin on
anthropometry, BP, HbA1c, and hematocrit for the full trial and
substudy cohorts, with the full trial data providing better
statistical power to assess for any effect modification between
subgroups of participant. The effects of empagliflozin on weight
and HbA1c in EMPA-KIDNEY are generally consistent with
results from other CKD trials. Evaluation of the Effects of
Canagliflozin on Renal and Cardiovascular Outcomes in Par-
ticipants With Diabetic Nephropathy (CREDENCE) studied
4401 participants with type 2 diabetes and a mean eGFR of 56
ml/min per 1.73 m2

. Compared with placebo, the mean weight
was 0.80 kg (95% CI, 0.69 to 0.92) lower in the canagliflozin
group, and there was a relatively modest difference in
HbA1c (20.25%, 95% CI, 20.31 to 20.20).38 The Study
to Evaluate the Effect of Dapagliflozin on Renal Outcomes and
Cardiovascular Mortality in Patients With Chronic Kidney
Disease trial studied 4304 participants with a mean eGFR of
43 ml/min per 1.73 m2 and included 2996 participants with
diabetes.39 The between-group difference in HbA1c in those
with diabetes was 21.1 mmol/mol (95% CI, 22.1 to 0.0).40

The overall between-group difference in systolic BP in
EMPA-KIDNEY of 22.6 mm Hg (95% CI, 23.3 to 21.9)
was also similar to the other large CKD trials: CREDENCE
difference 23.3 mm Hg (95% CI, 23.9 to 22.7)38 and DAPA-
CKD difference 22.9 mm Hg (95% CI, 23.6 to 22.3).41,42 In
EMPA-KIDNEY, there were somewhat larger antihypertensive
effects in participants with diabetes (heterogeneity P 5 0.001).
This pattern was not observed in bioimpedance-derived “Fluid
Overload” analyses, raising the hypothesis that SGLT2 inhibition
may have additional antihypertensive effects that are more
prominent in patients with diabetes, and which are distinct
from their diuretic effects (possibly through effects on vascular
stiffness or endothelial function).43–45 The lack of measured
effect of empagliflozin on adiposity is consistent with its modest
effects on glycated hemoglobin observed in CKD populations.

Study Limitations
EMPA-KIDNEY demonstrated the clear benefits of SGLT2
inhibition on kidney disease progression in a wide range of

patients with CKD at risk of progression, including about a
one-third reduction in the risk of needing to start kidney
replacement therapy.11 This large EMPA-KIDNEY substudy
benefits from its sample size, long duration, systematic mea-
surements, and randomized double-blind design. These help
ensure between-group differences are unbiased and reliable.
The BCM device has some technical limitations. For example,
BCM parameters are derived, not direct measurements and are
based on formulae normalized to healthy reference popula-
tions. Estimations may also be less accurate at extremes of
“Fluid Overload” (although extremes of levels were uncommon
in the substudy population). Furthermore, imprecision in fat
mass estimates mean the lack of statistical effect on fat mass
does not exclude some effect. The BCM device also does not
reliably assess subtypes of adiposity (e.g., visceral versus pe-
ripheral). Follow-up was affected by coronavirus disease 2019
restrictions resulting in some missed bioimpedance measure-
ments, and the prespecified key secondary composite analysis
was underpowered because of lower cardiovascular risk in the
trial population than was predicted during its design. Never-
theless, this substudy collected sufficient data to provide reliable
and clear results for the primary and other continuously
measured outcomes. Owing to the regions contributing to
the substudy, Asian, Black, Mixed, and Other races were un-
derrepresented, but effects on weight, HbA1c, and BP for the
full trial cohort were broadly similar to the substudy results
across the studied races, suggesting our conclusions are likely to
be generalizable. Finally, the use of other diuretics was de-
termined by local doctors and not controlled by the protocol.
We observed more new use of loop diuretics among those
allocated to placebo, so the presented estimates of effects on
fluid parameters, weight, and BP may be slight underestimates
of the full effect of empagliflozin.

In summary, the EMPA-KIDNEY bioimpedance substudy
found that fluid excess is common in a broad population of
patients with CKD at risk of progression and that empagli-
flozin resulted in sustained reductions in “Fluid Overload,”
weight, and BP in patients with CKD with and without
diabetes, even in patients with low levels of kidney function.
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