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ABSTRACT 

Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated 

striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. 

Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the 

aetiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout 

(Gria1-/-) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective 

deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are 

unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic 

voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1-/- mice to 

determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There 

was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, 

demonstrating normal endogenous release properties of dopamine neurons in Gria1-/- mice. Furthermore, 

dopamine signals were initially similar in Gria1-/- mice compared to controls in response to both sucrose 

rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of 

delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with 

repeated presentations in Gria1-/- mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, 

here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of 

enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and 

psychosis in psychiatric disorders like schizophrenia.  
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INTRODUCTION 

Psychosis is a key feature of several neuropsychiatric disorders, including schizophrenia. Current thinking 

posits that psychosis is a disorder of aberrant salience [1–3]. Aberrant salience describes when a stimulus 

grabs inappropriately high levels of attention and thus drives maladaptive behavior. Aberrant salience is 

likely mediated via elevated dopamine (DA) levels, which have been strongly implicated in schizophrenia 

[3, 4]. However, the underlying causes of this DA dysregulation are often unspecified [5]. Although this 

hyper-dopaminergic state and aberrant salience could stem from primary abnormalities within the DA 

system, it could also constitute a final common pathway [5], resulting as a secondary consequence of 

other brain disturbances like glutamatergic dysfunction and impairments in synaptic plasticity, which are 

also strongly linked to schizophrenia [6–8]. Nevertheless, direct evidence for this hypothesis has remained 

elusive.  

Recent large scale GWAS meta-analyses of schizophrenia have revealed an over-representation of genes 

associated with glutamate synapses and synaptic plasticity. For example, a genome-wide significant 

association to schizophrenia has been established for the Gria1 locus which codes for the GluA1 subunit 

of the AMPA glutamate receptor [9, 10]. GluA1 plays a key role in AMPAR trafficking and thus can support 

the expression of long-term potentiation (LTP), an experimental model of synaptic plasticity. Post-mortem 

studies have also demonstrated that GluA1 protein and mRNA expression are decreased in patients with 

schizophrenia (e.g. [11–15], which are unlikely to be attributed to long term neuroleptic treatment e.g. 

[16–19]). Together, these studies point to an important role for GluA1 in the aetiology of the disorder. 

Gria1-/- mice therefore represent an important model of impaired synaptic plasticity in schizophrenia. 

Gria1-/- mice lack a form of short-term memory which results in deficits in short-term habituation [20–24]. 

As such, Gria1-/- mice are unable to reduce the attention paid to a recently presented stimulus [25]. For 

example, whereas wild-type animals will reduce orienting and exploration, and pay less attention to a 

specific stimulus they have just experienced, Gria1-/- mice fail to habituate and continue to pay attention 

to the stimulus when experienced again soon after [23, 24, 26]. This abnormally persistent attention to 

stimuli has been proposed as a model of aberrant salience [27]. However, the relationship between GluA1, 

short-term habituation and striatal DA release is unknown. Here we address this by recording phasic DA 

signals in the nucleus accumbens of wild-type and Gria1-/- mice using fast-scan cyclic voltammetry (FSCV). 

We show that electrically evoked DA in anaesthetized Gria1-/- mice is comparable to controls. However, 

phasic DA signals in response to both sucrose rewards and neutral light stimuli fail to habituate in awake 

behaving Gria1-/- mice, resulting in a behaviourally relevant, hyper-dopaminergic phenotype. 
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METHODS 

See Supplementary Information for detailed methods. 

Subjects 

Genetic construction, breeding, and genotyping of Gria1-/- mice was as previously described [28]. Briefly, 

homozygous knockout (Gria1-/-) and wild-type (WT) littermates were generated from heterozygous-

heterozygous breeding pairs. All procedures were performed in accordance with the United Kingdom 

Animals (Scientific Procedures) Act of 1986 and were approved by the University of Oxford Ethical Review 

Board. Subjects for anaesthetised voltammetry recordings were 6 WT mice (Male n=3) and 6 Gria1-/- mice 

(Male n=3). During freely moving in-vivo voltammetry, data were obtained from N = 25 working electrodes 

(WT n=16, Gria1-/- n=9) targeting the nucleus accumbens (NAcc) in N=14 mice (Male WT n=9, Male Gria1-

/- n=5).  

Fast scan cyclic voltammetry in anaesthetised recordings 

Carbon fibre electrodes were constructed as described previously [29–31].  Those used in anaesthetised 

recordings were pre-calibrated using a flow cell to establish a conversion between current signals (nA) 

and DA concentrations (nM). Mice were surgically implanted with a bipolar stimulating electrode targeting 

the ventral tegmental area (VTA) and a carbon-fibre voltammetry electrode targeting the NAcc, and 

maintained under urethane anaesthesia for the recording procedure. 

To establish whether GluA1-receptor knockout alters electrically-evoked DA release, we tested the 

following stimulation parameters: (1) Baseline responses (6 x baseline stimulations with 5 mins 

interstimulus interval (ISI)); (2) Stimulation intensity which was varied at 50, 100, 150, 200, 250, 300 µA; 

2 measurements per stimulation amplitude, in ascending intensity order with a 3 min ISI; and (3) Number 

of pulses (5, 10, 20, 30, 40; 2 measurements per stimulation amplitude, in ascending intensity order with 

a 3 min ISI).  (4) Finally, a second baseline of 6 responses was taken to assess the stability of the evoked 

response. 

Fast Scan Cyclic Voltammetry in Freely Moving Animals 

Mice were implanted with bilateral carbon fibre voltammetry electrodes targeting the NAcc. Following 

post-operative recovery, mice were food restricted and maintained >85% of their free feeding weight. 

Mice were first acclimatized to the operant chambers (Med Associates), to the liquid sucrose reward and 

to the voltammetric headstage. They were then trained to nose poke in the food magazine. 22 µL sucrose 
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reward was delivered upon magazine entry on a variable interval (VI) 60s and 120s schedule for 3 days 

each. Each session lasted 30 mins.  

During two recording sessions, in addition to the VI120s nose poking schedule for sucrose, the mice were 

given non-contingent presentations of one of two different neutral visual stimuli lasting 10s each 

(comparable to [24]). One stimulus consisted of two flashing (0.909Hz) LED lights positioned either side 

of the reward magazine (‘LED’) and the other was the continuously illuminated house light on top of the 

conditioning box (‘House’). Presentation of lights occurred independently of the reward delivery schedule 

enabling an independent analysis of reward and stimulus evoked DA. To assess stimulus-specific short-

term habituation of DA signals, each session consisted of 8 pairs of stimulus presentations (a pair of 

stimulus presentations constitutes a trial), with the delay between 1st and 2nd stimulus presentations in 

each pairing being 30s and the inter-trial interval being 310s (based on [24]). The trials in a session 

consisted of a pseudorandom permutation of the 4 possible pair types: House->House, LED->LED (both 

“same” trials), House->LED or LED->House (both “different” trials). If the DA response habituated in a 

stimulus-specific manner, then it would be smaller to the presentation of the identical cue as the second 

target stimulus on same trials than to the alternative cue as the second target stimulus on different trials. 

In separate sessions, the mice were presented with a variable reward task. Rewards were again delivered 

contingent on a nose poke into the food magazine on a VI120s schedule, but now the magnitude of the 

sucrose reward was pseudorandomly varied (11, 22, and 44 µL; small, medium, and large rewards 

respectively).  

Histology 

At the end of experimental procedures, mice were deeply anesthetized with pentobarbital (200mg/kg), 

and microlesions were made at the working electrode locations via current stimulation. The animal was 

transcardially perfused with saline followed by 10% formalin solution. Brains were sectioned in 40 μm 

coronal slices using a cryostat and were stained with Cresyl violet allowing histological identification of 

the electrode location.  
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RESULTS 

GluA1 deletion does not alter sensitivity to electrically evoked VTA-NAcc DA release in anaesthetized 

mice 

We first wanted to assess whether there were intrinsic differences in the strength of the mesolimbic 

pathway, in the releasable pool of DA, and in the kinetics of DA transmission in NAcc in the Gria1-/- mice.  

To do this, we examined DA release following electrical stimulation of the VTA in anaesthetized mice (Fig 

1A,B; Supplementary Fig 1A). Following stimulation, there were no significant genotype differences in the 

release and reuptake of DA. Specifically, there were no significant genotype differences on peak DA 

release (t10 = .42, p = .68; Fig 1C), latency to peak (t10 = 1.55, p = .15; Fig 1D), or rate of decay 

(t50 from model fit of negative exponential decay for traces with model fit R2 > 90%; t10 = .32, p = .76; Fig 

1E). Given that release and reuptake parameters are closely related, we used a multivariate ANOVA to 

directly compare these three outcome measures (peak DA, latency to peak, and rate of decay) to ensure 

there were no significant genotype differences in some simultaneous combination of these parameters. 

There was no significant effect of Genotype (F1,10 = .17, p = .69), or interaction between Genotype and the 

three outcome measures (Hotelling’s Trace (2,9) = .44, p = .66). Furthermore, there was no evidence of any 

genotype differences in the peak electrically evoked DA levels across a number of pulses (Fig 1F), or a 

range of stimulation intensities (Fig 1G; all F’s < 1.57; p > 0.22; Supplementary Fig 1B,C and Supplementary 

Results). Surprisingly, there was a significant sex difference such that peak electrically evoked DA was 

higher in male than female mice. However, this sex difference did not interact with Genotype 

(Supplementary Fig 1C,D). Together, this demonstrates that GluA1 deletion does not lead to intrinsic 

differences in electrically-evoked release or the balance of DA release/reuptake in this mesolimbic DA 

pathway. 
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Figure 1. GluA1 deletion does not alter intrinsic VTA-NAcc DA pathway release properties.  (a) Electrical 

stimulation of the VTA and FSCV measurement of NAcc DA release in anaesthetized WT and Gria1-/- mice. 

Outline of stimulation protocol involving a baseline session before and after the stimulus response curve 

protocol. Baseline stimulation parameters were 30Hz, 40 pulses, 2ms pulse width, 300 µA. (b) Average 

traces showing the time course of electrically evoked DA release during baseline stimulations before and 

after the stimulation response curves (shown in f and g).  Peak DA (c), latency to peak (d), and rate of 

decay (e) of these baseline stimulations did not differ between genotypes. Rate of decay was quantified 

using the t50 from model fit of negative exponential decay for traces during the baseline period with model 

fit R2 > 90%. Box and whisker plots show range (error bars), 25th-75th percentile (box limits), and median 

values (line), and individual animal data points. (f) Effects of varying number of stimulation pulses on the 

peak DA release expressed as a percentage of release to the maximum (40) pulses. (g) Effects of varying 

stimulation amplitude on the peak DA release expressed as a percentage of release to the maximum (300 
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µA) amplitude. Varying the number of pulses and stimulation amplitude significantly changed DA release 

but this did not depend on genotype. Significant main effect of stimulation amplitude (F5,45 = 59.87, p < 

.001), and number of pulses (F4,45 = 83.91, p < .001), but no significant main effects of genotype or 

genotype x stimulation interactions (all Fs < .59, ps > .61, and Fs < 1.57, ps > .22 respectively). See 

Supplementary Fig 1 for histology and additional analyses. All error bars represent ± standard error of the 

mean. 

 

GluA1 deletion leads to hyper-dopaminergic responses to unsignalled rewards across repeated reward 

presentations  

We next wanted to determine how stimulus-evoked DA in behaving mice was influenced by GluA1 

deletion and how this changed with repeated presentation of stimuli. It is well established that reliable 

NAcc DA responses can be evoked following unpredicted and unsignalled reward delivery [32, 33]. We 

therefore assessed phasic DA responses to unsignalled rewards (VI120s) in Gria1-/- and control mice (see 

Supplementary Fig 2 for histology).  

On average, peak DA responses following reward delivery were markedly higher in Gria1-/- than in WT 

mice (main effect of Genotype: F1, 22.48 = 26.45, p < .001; Fig 2A). However, closer inspection of the data 

revealed that this was due to differences in the dynamics of reward-evoked DA across the session in the 

two groups (Fig 2B). Specifically, while the size of the phasic DA responses decreased progressively across 

the session in wild-type mice, this decrease was much smaller in Gria1-/- mice leading to the development 

of a hyper-dopaminergic phenotype in these animals. This was supported statistically by a significant 

Genotype x Reward Numberquadratic interaction (F1, 22.20 = 9.85 p = .005).  Release was significantly higher in 

Gria1-/- mice after the 6th (F1, 22.69 = 11.75, p = .002), 12th (F1, 22.50 = 25.74, p < .001), 18th (F1, 22.50 = 26.36, 

p < .001), and 24th rewards (F1, 21.82 = 4.97, p = .04).  Crucially, however, there were no significant 

differences in reward evoked DA between genotypes to the first reward (F1, 22.87 = 1.59, p = .22).  

Next, we tested the sensitivity of the DA responses to changes in reward magnitude (Fig 2C) in a separate 

recording session. DA signals scaled with reward size in all mice and both genotypes showed an equal 

sensitivity to reward magnitude (Genotype x Reward Size F2, 18.40 = 0.24, p = .79; Reward Size F2, 18.40 = 6.66, 

p = .007) (Fig 2D). However, there were again significant genotype differences in the magnitude of the 

reward response across repeated trials within this session (Genotype x Reward Number x Time F1, 8.99 = 

16.21, p = .003) (Fig 2E). Follow up comparisons revealed that while peak DA was again indistinguishable 

between genotypes at the start of the session, it was significantly greater in Gria1-/- than wild-type mice 

by the last block of rewards (1st Reward: F1, 14.62 = 0.61, p = .45, 4th Reward:  F1, 9.13 = 3.03, p = .12, 8th 
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Reward: F1, 14.64 = 6.07, p = .027). Taken together, these findings show that Gria1-/- mice exhibit augmented 

reward-elicited DA release.  Importantly, this is an emergent property caused by a progressive decrease 

in DA responses observed in WTs to repeated presentations of the same reward which is significantly 

attenuated in Gria1-/- mice.  
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Figure 2. GluA1 deletion leads to hyper-dopaminergic responses to unsignalled rewards as a result of 

impaired short-term habituation.  (a) Average DA response to unsignalled reward in WT and Gria1-/- mice. 

Heat plots depict changing DA dynamics within the session over repeated rewards (each reward is a row, 

and reward is delivered at time = 0). (b) Peak DA response plotted as a function of reward number in the 
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session. Average responses depicted as semi-transparent symbols, and predicted values (estimated 

marginal means) from the statistical model represented as dashed lines. Within-session habituation of 

reward evoked DA declines rapidly in WT but not Gria1-/- mice. (c) Average DA response to variable reward 

sizes (small, medium, large) in WT and Gria1-/- mice. A subset of the mice from the previous behavioural 

task (WT n = 6, KO n = 5 electrodes; WT n = 5, KO n = 4 mice) had patent electrodes for a subsequent test 

using variable reward sizes (11 µL, 22 µL, 44 µL; small, medium, large rewards respectively). (d) Average 

peak DA response to each reward magnitude. The peak and persistence of the reward evoked DA response 

were sensitive to reward size (Reward Size F2, 9.00 = 6.66, p = .01; Reward Size x Time F2, 18.22 = 6.72, p = .01). 

These reward size specific differences in evoked DA did not differ between genotypes (Genotype F1, 9.00 = 

3.56, p = .09, Genotype x Reward Size F2, 18.40 = 0.24, p = .79, Genotype x Reward Size x Time F2, 18.22 = 0.14, 

p = .87). Peak evoked dopamine was significantly greater for large than for small rewards (Sidak corrected 

threshold of significance p < 0.017; Small vs. Medium F1, 18.50 = 5.22, p = .034, Small vs. Large F1, 18.42 = 13.31, 

p = .002, Medium vs. Large F1, 18.47 = 1.85, p = .19). Reward evoked DA was also significantly higher for large 

rewards than for medium or small rewards 3s post peak (Small vs. Medium F1, 27.41 = 6.01, p = .021, Small 

vs. Large F1, 27.39 = 27.55, p < 0.001, Medium vs. Large F1, 27.40 = 7.82, p < . 0.01), and 5s post peak (Small vs. 

Medium F1, 21.21 = 4.46, p = .047, Small vs. Large F1, 21.11 = 23.47, p < 0.001, Medium vs. Large F1, 21.12 = 7.47, 

p = 0.012). (e) Peak DA responses plotted as a function of reward number in the session, in blocks of 3 

rewards (averaging across reward size). Average responses depicted as semi-transparent circles, and 

predicted values (estimated marginal means) from the statistical model represented as dashed lines. All 

error bars represent ± standard error of the mean. 

 

GluA1 deletion disrupts within-session habituation of light cue evoked DA responses  

The data presented above could reflect either a failure in habituation to the sensory-specific stimulus 

properties of the sucrose reward (e.g., its flavour, texture) or differences in hunger/motivation levels. 

Striatal DA responses can also be evoked by neutral, non-rewarding stimuli, especially when those stimuli 

are novel [32, 34–36]. To test whether GluA1 deletion disrupts habituation of the DA response to purely 

sensory stimuli we next analyzed DA responses to neutral light cues using an established orienting task in 

which behavioural habituation is sensitive to GluA1 deletion [24, 25].  

Presentation of 10 sec neutral light cues evoked robust and reliable phasic DA responses (Fig 3).  These 

signals were comparable in magnitude to the reward-evoked DA (Fig 2), even though these cue-elicited 

DA responses were independent of any association with reward. Note, we found identical DA responses 

to a neutral light cue even in naïve mice with no prior exposure to rewards in the operant chamber 

(Supplementary Fig 5).  
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Figure 3. GluA1 deletion disrupts within-session habituation of light cue evoked DA responses.  Average 

DA release to the LED light cue separated into the first (Early) and second (Late) half of the session to 

assess stimulus habituation. (a) Pictorial representation of relevant task parameters, assessing DA release 

in response to presentations of the LED light stimulus early and late in the session. (b) WT mice show 

significant habituation of DA responses to the LED. * Simple effects revealed significant differences at 1-4 

seconds into stimulus presentation, F1, 15.00 = 16.29, p = .001, F1, 15.50 = 12.90, p = .003, F1, 20.06 = 6.71, p = 

.017, F1, 24.27 = 4.38, p = .047, respectively. (c)  Gria1-/- mice do not show habituation of DA responses to 

the LED. Inset bar graphs depict the peak DA estimated at 1s post stimulus onset. All error bars represent 

± standard error of the mean. 

 

We first looked for evidence of habituation in evoked DA signals that might occur with repeated 

presentations of light stimuli across the test session by comparing stimulus elicited DA responses early 

and late in the session (i.e. first vs second half of the session; Fig 3A). WT mice showed clear evidence of 

within-session habituation with significantly reduced late session DA signals after repeated presentations 

of the lights (Fig 3B; WT mice; significant effects of EarlyLate F1, 15.00 = 16.29, p = .001, EarlyLate x Time F1, 

45.48 = 9.15, p = .004). In contrast, DA responses remained high throughout the session in Gria1-/- mice with 

no evidence of habituation of this signal (Fig 3C; Gria1-/- mice; no effects of EarlyLate F1, 8.00 = 0.67, p = .44, 

or EarlyLate x Time F1, 24.24 = 0.29, p = .59 interactions; Genotype differences supported by significant 

Genotype x EarlyLate interaction F1, 23.00 = 7.63, p = .011, and Genotype x EarlyLate x Time interaction F1, 

23.00 = 6.34, p = .019). Importantly, when directly comparing DA release between genotypes, there was 

significantly higher peak DA in the Gria1-/- mice, compared to WT mice, late in the session (F1, 28.60 = 4.34, 

p = .046), but no significant differences between genotypes early in the session (F1, 34.75 = 0.12, p = .727)). 
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Thus, mirroring the earlier results with unsignalled rewards and the robust behavioural impairments in 

short-term habituation reported previously in Gria1-/- mice to a variety of different stimulus types [24, 

25], deletion of Gria1 impairs this within-session habituation of this stimulus elicited DA signal over 

repeated stimulus presentations, resulting in a hyperdopaminergic phenotype.  

 

GluA1 deletion disrupts stimulus-specific habituation of light cue evoked DA responses 

An important question is whether these observed differences in habituation reflect general changes in 

arousal and attention in the Gria1-/- mice, or are instead a stimulus-specific effect reflecting the recent 

history of stimulus presentations. We have previously demonstrated Gria1-/- deficits in stimulus-specific 

habituation at the behavioral level in a number of different behavioral settings [25], and replicate this 

finding in the present task (Figure 4a,b,c). If the habituation of cue evoked striatal DA release is stimulus 

specific, then the second “same” presentation of a target cue in a pairing should elicit lower DA signals 

than if a “different” cue is presented as the second target cue in a pair (e.g. LED→LED DA response < 

House→LED DA response) (Fig 4a). In WT mice (Fig 4e) presentation of the LED as the second stimulus of 

a pair elicited less DA if it was preceded by the same stimulus (i.e., the LED) as compared to a different 

stimulus (house light) (Same vs Different F1, 77.16 = 4.22, p = .043). Thus, WT mice exhibited stimulus-specific 

habituation of DA responses. In contrast, Gria1-/- mice did not show this stimulus-specific habituation 

effect (Fig 4f); their DA signals to presentation of the second stimulus was the same, irrespective of the 

identity of the first stimulus (Same vs Different F1, 77.16 = 0.23, p = .627). Interestingly, there was little, if 

any, stimulus-specific habituation to the house light within a trial in either genotype (Supplementary Fig 

3). These Genotype differences were supported by a significant Genotype x HouseLED x Stimulus Novelty 

interaction (F2, 46.00 = 3.50, p = .038). These stimulus-specific habituation effects in DA responses were also 

sensitive to the duration of the inter-stimulus interval (Supplementary Figure 4), consistent with theories 

of habituation and with our previous findings [22]. Thus, we provide evidence that the magnitude of NAcc 

DA release to unpredicted presentations of sensory stimuli in WT mice undergoes stimulus-specific 

habituation.  Crucially, disruption of this habituation process in Gria1-/- mice results in the emergence of 

a relative amplification of dopaminergic responses to neutral sensory cues.  
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Figure 4. GluA1 deletion disrupts stimulus-specific habituation of light cue evoked dopamine responses. 

(A) Representation of the trial structure in the task. On each trial two stimuli were presented 30s apart. 

The identity of stimulus 2 in each pair was either the same or different to stimulus 1. Mice have been 

shown to reduce attention to stimulus 2 when it is the same as stimulus 1, but attention remains high 

when stimulus 2 is different to stimulus 1 [24, 25]. This selective attentional effect is stimulus specific 

habituation. Magazine activity in WT (a) and KO (b) mice immediately prior to stimulus presentation 

(Baseline), during the first stimulus of a pair (First) and during the second stimulus of a pair depending on 

whether it is the same or a different stimulus to the first (Same and Different). Suppression of this 

magazine directed behaviour during stimulus presentation, relative to baseline, provides a measure of a 

behavioural orienting response [24]. Planned comparisons revealed that WT mice showed significantly 

less suppression to the Same than the Different stimulus (F1, 44.01 = 3.18, p = .04), and significantly more 

suppression to the Different stimulus than Baseline (F1, 44.01 = 4.54, p = .04; all remaining F1, 44.01 < 2.06, ps 

> .16) suggesting that suppression of magazine behaviour to the light stimuli habituated in a stimulus 

specific manner. In contrast there was no evidence of habituation to the light stimuli in the KO mice (no 

significant differences between any Periods, all F1, 44.01 < 3.18, ps > .08). This pattern of behaviour replicates 

earlier findings [24], although the genotype by period interaction did not reach statistical significance 

(Genotype F1, 14.95 = 1.44, p = .25, Period F3, 44.11 = 2.08, p = .117, Genotype x Period F3, 44.11 = 1.33, p = .28). 

Average DA release to the LED light stimulus when it was stimulus 1 (d), and when it was stimulus 2 for 

the WT (e) and Gria1-/- mice (f). Inset bar graphs depict the peak DA estimated at 1s post stimulus onset. 

All error bars represent ± standard error of the mean. 

 

DISCUSSION 
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Aberrant salience is the dominant mechanism thought to underlie psychosis in neuropsychiatric disorders 

like schizophrenia, and it is commonly linked to elevated striatal DA [3]. However, there is still little known 

about its underlying aetiology. Using Gria1-/- mice, a mouse model of impaired synaptic plasticity in 

schizophrenia, here we show the rapid emergence of a hyperdopaminergic state that is directly tied to 

deficits in short-term habituation in these animals, and thus to inappropriate and maladaptive levels of 

attention.  

Classically, midbrain DA signals and DA release in the NAcc have been attributed to quantitative reward 

prediction errors that decrease as rewards are effectively predicted by other cues [37–39]. However, there 

is increasing evidence that the activity of midbrain DA neurons can also be influenced by the sensory 

properties of stimuli, particularly when those stimuli are novel, salient, and surprising [35, 40–44]. We 

saw clear, rapid and transient phasic increases in striatal DA levels in response to not only unsignalled 

naturalistic food rewards but also unsignalled, task irrelevant, neutral light cues. Furthermore, we also 

provide evidence that a component of these DA responses to unsignalled presentations of both neutral 

lights and rewards is sensitive to the recent temporal history of stimulus presentations as well as to reward 

size. This is consistent with recent evidence suggesting that DA neurons may respond more broadly to 

prediction errors beyond the reward domain [44]. Notably, these DA signals diminished with repeated 

exposure to the light cues and the rewards in wild-type mice. In contrast, in Gria1-/- mice dopamine signals 

remained high and at levels comparable to the first novel stimulus presentation. Therefore, a 

hyperdopaminergic state emerged in Gria1-/- mice in parallel with the attentional demands of the task. 

Thus, we can now provide a mechanistic link between the development of a hyperdopaminergic state and 

aberrant salience in which high levels of attention to stimuli are inappropriately maintained as a result of 

deficits in habituation. 

The present data, combined with previous behavioral studies in Gria1-/- mice, demonstrate that GluA1 

dysfunction can lead to both aberrant salience and hyperdopaminergic signals in striatum [25]. These 

phenotypes are highly relevant to psychosis in schizophrenia given the numerous lines of evidence linking 

GluA1 and associated synaptic plasticity processes with the disorder [11–15] (see also Supplementary 

Discussion). Furthermore, rather than glutamatergic deficits being distinct from dopaminergic 

hyperfunction, the present findings show how glutamatergic deficits can directly lead to dopaminergic 

hyperfunction [2, 45]. Thus, by increasing DA signals to environmental cues and generating inappropriate 

levels of attention such that stimuli remain “as if novel” when they would otherwise habituate, GluA1 

dysfunction effectively increases the window of contiguity which increases the likelihood that associations 
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will form between cues [46, 47]. In this way, GluA1 dysfunction provides a mechanism through which 

maladaptive associations could be formed between stimuli and events that would otherwise be perceived 

as unrelated, and thus for generating delusional beliefs. 

So, what is the locus of these GluA1 effects? Notably, we found no genotypic differences in electrically 

evoked DA release in anaesthetized Gria1-/- and WT mice, confirming that there were no differences in 

the intrinsic release properties of DA neurons in the Gria1-/- mice. Normal DA release has previously been 

reported in anaesthetized Gria1-/- mice using chronoamperometry in dorsal striatum, although DA 

clearance was significantly retarded [48]. We found no evidence for altered clearance in the present study 

and this discrepancy may reflect either regional differences in the effect of GluA1 deletion within the 

striatum, or differences between the FSCV and chronoamperometry approaches. Nevertheless, these 

data suggest that the hyperdopaminergic phenotype in Gria1-/- mice is unlikely to be due to differences in 

the intrinsic properties of DA neurons in these mice.  

The hippocampus is an attractive alternative candidate. Hippocampal deficits in synaptic function and 

plasticity, including reduced GluA1, have long been associated with schizophrenia [8, 49–59]. The 

hippocampus can generate sensory expectations and acts as a comparator to compute surprise signals 

[60–63]. Consequently, it is implicated in habituation to spatial and non-spatial stimuli [64–67]. A 

hippocampal surprise signal could then be relayed to DA neurons in the VTA via established polysynaptic 

circuits [62, 68, 69], thus regulating DA cell activity which, in turn, can promote an increase in attention 

to novel stimuli via salience networks [70–73] (albeit in a sensory specific manner). A hippocampal 

surprise signal could also potentially modulate terminal DA release in NAcc directly [74, 75]. Notably, 

GluA1-dependent plasticity mechanisms in the hippocampus, particularly in CA2/3 subfields [76–78], 

contribute to the development of short-term memory representations as stimuli become familiar (see 

Supplementary Discussion). Thus, synaptic plasticity in the hippocampus is likely to be a key regulator of 

VTA DA cell activity which, in turn, can shape the levels of attention and behavioural resources focused 

on particular stimuli in the environment. Altered hippocampal-VTA connectivity is a key feature in 

schizophrenia [79]. Furthermore, habituation to a range of neutral and emotional stimuli is significantly 

impaired in schizophrenic subjects and this correlates with impaired repetition suppression of BOLD 

activity in the hippocampus [27, 70, 80–82]. We cannot completely rule out the possibility that this 

phenotype is a consequence of developmental changes in Gria1-/- mice. However, Gria1-/- mice do not 

differ from WT mice on a range of relevant biomarkers [28, 83] and, importantly, the short-term 
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habituation deficit can be rescued in adulthood by reintroduction of GluA1 into the hippocampus of adult 

Gria1-/- mice [78]. 

Future work is needed to understand how this aberrant salience mechanism might contribute to more 

complex behaviours with translational relevance to schizophrenia [84–87]. Indeed, Gria1-/- mice show a 

pattern of deficits consistent with cognitive symptoms in schizophrenia when tested for many of these 

complex behaviours with touch-screen tasks [25, 88]. This aberrant salience mechanism may account for 

the mixed efficacy of antipsychotic medication [5, 45, 89], which often targets dopamine D2 receptors. 

For example, the D2 antagonist haloperidol effectively treats locomotor hyperactivity in Gria1-/- mice but, 

in contrast, has no effect on short-term working memory performance in WT or Gria1-/- mice [90]. The 

mixed efficacy of antipsychotics targeting the dopaminergic system, both in patients and animal models, 

are again consistent with the idea that striatal hyperdopaminergia and aberrant salience may arise from 

multiple upstream mechanisms, reflecting the heterogeneity of schizophrenia. 

To conclude, striatal hyperdopaminergia and aberrant salience may encompass a range of different 

mechanisms, reflecting the heterogeneity of schizophrenia. Gria1 is one of many candidate genes and we 

do not rule out the possibility that other genetic and environmental disturbances could contribute to 

aberrant salience via different mechanisms and pathways [2–5, 9, 10]. We also do not exclude the 

possibility that different molecular mechanisms and different psychological processes underlie the altered 

DA function reported for dorsal striatum in schizophrenia [27, 91]. Nevertheless, these combined 

behavioral and neurochemical phenotypes in Gria1-/- mice may represent a core mechanism leading to 

the development of aberrant salience and psychosis as a result of deficits in glutamate synapses and 

synaptic plasticity in schizophrenia.  
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Figure Legends 

Figure 1. GluA1 deletion does not alter intrinsic VTA-NAcc DA pathway release properties.  (a) Electrical 

stimulation of the VTA and FSCV measurement of NAcc DA release in anaesthetized WT and Gria1-/- mice. 

Outline of stimulation protocol involving a baseline session before and after the stimulus response curve 

protocol. Baseline stimulation parameters were 30Hz, 40 pulses, 2ms pulse width, 300 µA. (b) Average 

traces showing the time course of electrically evoked DA release during baseline stimulations before and 

after the stimulation response curves (shown in f and g).  Peak DA (c), latency to peak (d), and rate of 

decay (e) of these baseline stimulations did not differ between genotypes. Rate of decay was quantified 

using the t50 from model fit of negative exponential decay for traces during the baseline period with model 

fit R2 > 90%. Box and whisker plots show range (error bars), 25th-75th percentile (box limits), and median 

values (line), and individual animal data points. (f) Effects of varying number of stimulation pulses on the 

peak DA release expressed as a percentage of release to the maximum (40) pulses. (g) Effects of varying 

stimulation amplitude on the peak DA release expressed as a percentage of release to the maximum (300 

µA) amplitude. Varying the number of pulses and stimulation amplitude significantly changed DA release 

but this did not depend on genotype. Significant main effect of stimulation amplitude (F5,45 = 59.87, p < 

.001), and number of pulses (F4,45 = 83.91, p < .001), but no significant main effects of genotype or 

genotype x stimulation interactions (all Fs < .59, ps > .61, and Fs < 1.57, ps > .22 respectively). See 

Supplementary Fig 1 for histology and additional analyses. All error bars represent ± standard error of the 

mean. 

 

Figure 2. GluA1 deletion leads to hyper-dopaminergic responses to unsignalled rewards as a result of 

impaired short-term habituation.  (a) Average DA response to unsignalled reward in WT and Gria1-/- mice. 

Heat plots depict changing DA dynamics within the session over repeated rewards (each reward is a row, 

and reward is delivered at time = 0). (b) Peak DA response plotted as a function of reward number in the 

session. Average responses depicted as semi-transparent symbols, and predicted values (estimated 

marginal means) from the statistical model represented as dashed lines. Within-session habituation of 

reward evoked DA declines rapidly in WT but not Gria1-/- mice. (c) Average DA response to variable reward 

sizes (small, medium, large) in WT and Gria1-/- mice. A subset of the mice from the previous behavioural 

task (WT n = 6, KO n = 5 electrodes; WT n = 5, KO n = 4 mice) had patent electrodes for a subsequent test 

using variable reward sizes (11 µL, 22 µL, 44 µL; small, medium, large rewards respectively). (d) Average 

peak DA response to each reward magnitude. The peak and persistence of the reward evoked DA response 

were sensitive to reward size (Reward Size F2, 9.00 = 6.66, p = .01; Reward Size x Time F2, 18.22 = 6.72, p = .01). 

These reward size specific differences in evoked DA did not differ between genotypes (Genotype F1, 9.00 = 

3.56, p = .09, Genotype x Reward Size F2, 18.40 = 0.24, p = .79, Genotype x Reward Size x Time F2, 18.22 = 0.14, 

p = .87). Peak evoked dopamine was significantly greater for large than for small rewards (Sidak corrected 

threshold of significance p < 0.017; Small vs. Medium F1, 18.50 = 5.22, p = .034, Small vs. Large F1, 18.42 = 13.31, 

p = .002, Medium vs. Large F1, 18.47 = 1.85, p = .19). Reward evoked DA was also significantly higher for large 

rewards than for medium or small rewards 3s post peak (Small vs. Medium F1, 27.41 = 6.01, p = .021, Small 

vs. Large F1, 27.39 = 27.55, p < 0.001, Medium vs. Large F1, 27.40 = 7.82, p < . 0.01), and 5s post peak (Small vs. 

Medium F1, 21.21 = 4.46, p = .047, Small vs. Large F1, 21.11 = 23.47, p < 0.001, Medium vs. Large F1, 21.12 = 7.47, 

p = 0.012). (e) Peak DA responses plotted as a function of reward number in the session, in blocks of 3 

rewards (averaging across reward size). Average responses depicted as semi-transparent circles, and 
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predicted values (estimated marginal means) from the statistical model represented as dashed lines. All 

error bars represent ± standard error of the mean. 

Figure 3. GluA1 deletion disrupts within-session habituation of light cue evoked DA responses.  Average 

DA release to the LED light cue separated into the first (Early) and second (Late) half of the session to 

assess stimulus habituation. (a) Pictorial representation of relevant task parameters, assessing DA release 

in response to presentations of the LED light stimulus early and late in the session. (b) WT mice show 

significant habituation of DA responses to the LED. * Simple effects revealed significant differences at 1-4 

seconds into stimulus presentation, F1, 15.00 = 16.29, p = .001, F1, 15.50 = 12.90, p = .003, F1, 20.06 = 6.71, p = 

.017, F1, 24.27 = 4.38, p = .047, respectively. (c)  Gria1-/- mice do not show habituation of DA responses to 

the LED. Inset bar graphs depict the peak DA estimated at 1s post stimulus onset. All error bars represent 

± standard error of the mean. 

 

Figure 4. GluA1 deletion disrupts stimulus-specific habituation of light cue evoked dopamine responses. 

(A) Representation of the trial structure in the task. On each trial two stimuli were presented 30s apart. 

The identity of stimulus 2 in each pair was either the same or different to stimulus 1. Mice have been 

shown to reduce attention to stimulus 2 when it is the same as stimulus 1, but attention remains high 

when stimulus 2 is different to stimulus 1 [24, 25]. This selective attentional effect is stimulus specific 

habituation. Magazine activity in WT (a) and KO (b) mice immediately prior to stimulus presentation 

(Baseline), during the first stimulus of a pair (First) and during the second stimulus of a pair depending on 

whether it is the same or a different stimulus to the first (Same and Different). Suppression of this 

magazine directed behaviour during stimulus presentation, relative to baseline, provides a measure of a 

behavioural orienting response [24]. Planned comparisons revealed that WT mice showed significantly 

less suppression to the Same than the Different stimulus (F1, 44.01 = 3.18, p = .04), and significantly more 

suppression to the Different stimulus than Baseline (F1, 44.01 = 4.54, p = .04; all remaining F1, 44.01 < 2.06, ps 

> .16) suggesting that suppression of magazine behaviour to the light stimuli habituated in a stimulus 

specific manner. In contrast there was no evidence of habituation to the light stimuli in the KO mice (no 

significant differences between any Periods, all F1, 44.01 < 3.18, ps > .08). This pattern of behaviour replicates 

earlier findings [24], although the genotype by period interaction did not reach statistical significance 

(Genotype F1, 14.95 = 1.44, p = .25, Period F3, 44.11 = 2.08, p = .117, Genotype x Period F3, 44.11 = 1.33, p = .28). 

Average DA release to the LED light stimulus when it was stimulus 1 (d), and when it was stimulus 2 for 

the WT (e) and Gria1-/- mice (f). Inset bar graphs depict the peak DA estimated at 1s post stimulus onset. 

All error bars represent ± standard error of the mean. 
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