
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11478  | https://doi.org/10.1038/s41598-023-38251-1

www.nature.com/scientificreports

Stratification of diabetes 
in the context of comorbidities, 
using representation learning 
and topological data analysis
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Mohammad Mamouei 1,3, Dexter Canoy 1,3, Milad Nazarzadeh 1,3, Zeinab Bidel 1,3, 
Emma Copland 1,3, Kazem Rahimi 1,3 & Gholamreza Salimi‑Khorshidi 1,3

Diabetes is a heterogenous, multimorbid disorder with a large variation in manifestations, 
trajectories, and outcomes. The aim of this study is to validate a novel machine learning method for 
the phenotyping of diabetes in the context of comorbidities. Data from 9967 multimorbid patients 
with a new diagnosis of diabetes were extracted from Clinical Practice Research Datalink. First, using 
BEHRT (a transformer-based deep learning architecture), the embeddings corresponding to diabetes 
were learned. Next, topological data analysis (TDA) was carried out to test how different areas in high-
dimensional manifold correspond to different risk profiles. The following endpoints were considered 
when profiling risk trajectories: major adverse cardiovascular events (MACE), coronary artery disease 
(CAD), stroke (CVA), heart failure (HF), renal failure (RF), diabetic neuropathy, peripheral arterial 
disease, reduced visual acuity and all-cause mortality. Kaplan Meier curves were plotted for each 
derived phenotype. Finally, we tested the performance of an established risk prediction model 
(QRISK) by adding TDA-derived features. We identified four subgroups of patients with diabetes 
and divergent comorbidity patterns differing in their risk of future cardiovascular, renal, and other 
microvascular outcomes. Phenotype 1 (young with chronic inflammatory conditions) and phenotype 
2 (young with CAD) included relatively younger patients with diabetes compared to phenotypes 3 
(older with hypertension and renal disease) and 4 (older with previous CVA), and those subgroups had 
a higher frequency of pre-existing cardio-renal diseases. Within ten years of follow-up, 2592 patients 
(26%) experienced MACE, 2515 patients (25%) died, and 2020 patients (20%) suffered RF. QRISK3 
model’s AUC was augmented from 67.26% (CI 67.25–67.28%) to 67.67% (CI 67.66–67.69%) by adding 
specific TDA-derived phenotype and the distances to both extremities of the TDA graph improving 
its performance in the prediction of CV outcomes. We confirmed the importance of accounting for 
multimorbidity when risk stratifying heterogenous cohort of patients with new diagnosis of diabetes. 
Our unsupervised machine learning method improved the prediction of clinical outcomes.

Diabetes mellitus (DM) affects 422 million people worldwide, and 1.5 million deaths are directly attributed to 
diabetes and its complications each year1. DM is increasingly recognised as a highly heterogeneous disease with 
varying clinical manifestations, trajectories, and ranges of complications2. Identifying various phenotypes early in 
the diagnostic process, while consequences may still be avoidable, may allow for a more individualised approach 
to therapy and potentially improve clinical outcomes.

A wide spectrum of approaches and strategies has been employed to characterise different pathophysiologi-
cal and clinical phenotypes of diabetes, including emerging approaches integrating genomics, metabolomics, 
biomarkers, physiology, and behavioural medicine, to name a few3. On the other hand, the growing popularity 
and adoption of electronic health records (EHR), together with advances in machine learning (ML), includ-
ing deep learning (DL), have opened up unprecedented opportunities for characterising disease phenotypes, 
particularly in the presence of multimorbidity4. DL architectures have shown superior results, compared to 
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their simpler counterparts5, when dealing with EHR (i.e., large-scale and complex longitudinal mixed-type data 
containing “concepts” such as diagnoses, medications, measurements, and more). This is partly due to such 
models’ ability to learn valuable representations from raw (or minimally processed) data, instead of being given 
such representations by experts. For instance, BEHRT, a Transformer-based DL architecture6, which has shown 
superior performance in a range of EHR-based prediction tasks, turns EHR concepts into “representations” or 
“embeddings” (a numeric vector) that attempt to capture both their broader clinical meanings and their specific 
context in a given point in a patient’s record; the latter property is what makes such representations “contextual”. 
In other words, two different instances of diabetes (in the same patient or two different patients) can be mapped 
to two different representations7.

In this study, we employed a topological data analysis (TDA) technique called Mapper8 to assess that the 
contextual representation of diabetes derived from BEHRT contains the necessary information for phenotyping 
patients. Mapper allows studying how similarities of each patient’s contextual embedding of incident diabetes 
correspond to similarities in their future health trajectories. In this context, the TDA can help us understand the 
shape of such a “disease manifold” and find regions that show similar forward trajectories9,10.

In other words, we explore using contextual embeddings resulting from BEHRT to stratify a highly heterog-
enous group of multimorbid patients at the onset of their diabetes diagnosis. We then process these embeddings 
using TDA to derive the “diabetes manifold”11–13, a map where different regions correspond to different clinically 
meaningful diabetes phenotypes. We validated our results by profiling the patients using risk factors, associated 
comorbidities, and clinical outcomes, including their progress towards developing cardiovascular, renal, and 
other microvascular complications (Fig. 1).

Materials and methods
Data and study population.  This study has been carried out using linked electronic health records from 
the CPRD (Clinical Practice Research Datalink14,15) collected between 1985 to 2015 from a network of GP prac-
tices across the UK. All methods were performed by the relevant guidelines and regulations, and all experi-
mental protocols were approved by CPRD’s Research Data Governance (RDG) Process. CPRD never receives 
information that identifies patients and only provides anonymised health data to approved researchers. Patients 
registered with GP practices may opt out of his/her information being shared for research, but individual con-

Figure 1.   An overview of our investigative approach. (A) The process starts with EHR, where the baseline (T0) 
is defined as the date of incident diabetes for each patient. The data before the baseline is fed to BEHRT for 
learning the contextual representation of each patient’s incident diabetes; the data after the baseline are used for 
profiling the patients’ risk trajectories. (B) Each patient is summarised by their incident diabetes embeddings 
(i.e., 120-dimensional vectors). (C) A point cloud, where each point is a patient, is formed for TDA, which aims 
to mine the diabetes manifold. (D) Using TDA, these points are analysed, and homogeneous regions are mined 
and profiled. Note that each circle in the TDA graph consists of multiple patients.
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sent is not required. CPRD is linked to other national administrative databases including hospitalisations (Hos-
pital Episode Statistics), death registration (Office of National Statistics), and the Index of Multiple Deprivation, 
which makes the CPRD database a comprehensive resource for prospective analysis of UK primary care data. 
It encompassed 60 million patients, including 16 million registered patients, providing one of the largest EHR 
databases in the world. It contains data regarding demographics, diagnoses, therapies, and tests. CPRD has 
ethical approval from the Health Research Authority to support research using anonymised patient data. Many 
studies have demonstrated the utility of CPRD in establishing detailed clinical phenotypes5,16–18. The hospital 
encounters are provided with the corresponding ICD-10 code (International Classification of Diseases-10th 
Edition), whereas the general practitioner encounters are supplied with the corresponding Read code19,20. For 
this study, both these codes are mapped to CALIBER codes21, which provides a clinically meaningful classifica-
tion of diseases.

In this study, we used the same coding system of the original BEHRT paper; as such, diabetes mellitus (DM) 
is defined as per its CALIBER code, which combines the three main subtypes: diabetes type 1 (T1DM), type 2 
(T2DM) and unclassified diabetes21. However, in the second part of the analysis, we show to what extent our 
algorithm could distinguish between these subtypes. Similarly, comorbid conditions were also defined based 
on their CALIBER codes, including Read codes (for primary care diagnoses), ICD10 codes (for secondary care 
diagnoses) and OPCS4 (for secondary care procedures). Causes of death from the death registry were also used 
when relevant, as per CALIBER.

Representation learning and topological data analysis (TDA).  BEHRT has shown superior per-
formance in a range of risk prediction tasks compared to other ML/DL models. Unlike most of its counter-
parts, the representations learned by BEHRT are contextual. Thus, instead of learning a single representation 
of diabetes, BEHRT can learn a unique representation for each instance of diabetes. Depending on the context 
of a given example of diabetes (e.g., patient’s other morbidities, medications), its corresponding embedding 
can differ (Sect. 2 in the Supplementary Materials). A TDA technique called Mapper8 was then used to analyse 
differences in various areas in the high-dimensional manifold underlying these embeddings and test whether 
those areas correspond to distinct risk profiles (Sect. 3 in Supplementary Materials). BEHRT’s optimal hyper-
parameters were tuned using Bayesian optimisation. This includes the length of embedding, which was found 
to be optimal at 120. In other words, the “point cloud” for TDA will consist of 9967 diabetes embeddings, each 
of length 120; each expected to summarise its corresponding patient’s diabetes at the baseline sufficiently. TDA 
results in a graph where each node represents a group of patients. We partition this graph using multilevel k-way 
partitioning23 as implemented by the METIS graph partitioning software24 to derive meaningful diabetes pheno-
types. A high-level view of the process (from EHR to phenotypes) is outlined in Fig. 1. The resulting phenotypes 
can be characterised by age, gender, BMI distributions, and prevalence of hypertension, arterial fibrillation, 
chronic kidney disease, and high cholesterol at baseline (Sect. 4 in Supplementary Materials).

Study design and inclusion criteria.  We have extracted data related to multimorbid DM patients. To 
have broad coverage of patients’ medical history and similarly to BEHRT22, only individuals with at least five 
visits in their records are considered in this study. Moreover, to provide our models with enough past events to 
learn from, we included only those patients whose diagnosis of DM was registered at least as nth comorbidity 
(i.e., DM occurrence is only considered if at least n−1 other disease was registered before it). For example, in this 
analysis, we used n = 7, which is large enough to enable the model to learn from many past events and produce 
a significant number of patients. This criterion identified 9967 DM patients for inclusion in our analysis. Reduc-
ing n significantly would make it hard for the model to pick up a meaningful "context” of patients. Meanwhile, 
increasing it significantly would increase the age and the comorbidities of our study population significantly and 
increase the risk of introducing bias in the results. For these patients, we have computed the contextual embed-
dings corresponding to their incident DM at baseline, defined as the first occurrence of diabetes that happened 
as the 7th comorbidity.

Clinical outcomes.  The following endpoints were included: composite major adverse cardiovascular 
events: cardiovascular death, coronary artery disease, stroke, heart failure (MACE), coronary artery disease 
(CAD), stroke, heart failure (HF), renal failure (RF), diabetic neuropathy, peripheral arterial disease, reduced 
visual acuity and all-cause mortality. These endpoints were defined using disease and procedures provided by 
CALIBER21. To analyse all clinical outcomes, patients were censored at the end of follow-up (10 years after enter-
ing the study), when lost to follow-up or if they died.

Statistical analysis.  Baseline characteristics and the prevalence of comorbidities among 9967 included 
patients were described when they were included in the study, which was defined as the time of new-onset 
diabetes. Kaplan Meier (KM) curves were plotted for each derived subtype for all endpoints. P-values for the 
probability of each clinical outcome in the four identified phenotypes were obtained using a multivariate log 
rank test25,26. All survival analyses were performed using the lifelines Python package27. Areas under the receiver 
operating curves (AUC) were calculated for prediction risk of MACE in the follow-up period using the estab-
lished QRISK model alone and augmented with TDA predictors. All predictors used in QRISK3 were included 
in computing the AUCs (see legend in Fig. 5). For comparison, AUCs were also produced for TDA-derived 
predictors and when augmenting the QRISK3 model with these TDA predictors. Only patients with complete 
data are considered in the denominator when producing counts for variables with missing data (such as BMI; 
Sect. 5 in Supplementary material).
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Ethics.  As described in the publication by Wolf et al. Titled: Data Resource profile: CPRD: “CPRD obtains 
annual research ethics approval from the UK’s Health Research Authority (HRA) Research Ethics Commit-
tee (REC) (East Midlands—Derby, REC reference number 05/MRE04/87) to receive and supply patient data 
for public health research. Therefore, no additional ethics approval is required for observational studies using 
CPRD data for public health research, subject to individual research protocols meeting CPRD data governance 
requirements.”

Results
Stratification of patients with the diagnosis of diabetes using the BEHRT‑TDA model.  We 
analysed the EHR of 9967 patients registered between 1985 and 2015. Among the total number of DM cases 
included in this study, type 1 diabetes and other diabetes type represented 5.9% (585) and 5.2% (514), respec-
tively. 93% (9266) were classified as type 2 diabetes. Figure 2 presents the flow chart of the study. Figure 3a shows 
the representative graph of the cohort of patients with a new diagnosis of diabetes, in which each node denotes 
patients with similar clinical characteristics. An interactive version of this graph is provided along with Fig. 3b, 
which shows the radar plot visualisation of the distribution of comorbidities among these four identified phe-
notypes.

Figure 2.   Flow chart showing key steps to reach our final cohort of patients.

Figure 3.   Diabetes phenotypes identified using TDA. (a) The network resulting from TDA, where each node 
contains patients that have similar diabetes embeddings. (b) The distribution of known cardiovascular risk 
factors and pre-existing diseases within the four identified regions/subtypes. In the TDA network, nodes 
correspond to patients with similar representation; nodes are connected if they share at least one patient (see 
“Materials and methods”). The nodes and their colours represent the 4 clusters obtained using the METIS 
partitioning method. A fully interactive version of this figure that shows further details at the node and cluster 
level is available at: https://​deepm​edici​ne.​github.​io/​TDA/​multi​ple.​html.

https://deepmedicine.github.io/TDA/multiple.html
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Baseline characteristics of four identified distinct phenotypes.  Baseline characteristics of patients 
included in these four phenotypes at the time of a new diagnosis of diabetes have been described in Table 1. 
51.4% of all included patients were male with a mean (SD) age of 65.5 (12.9) years. Compared with phenotypes 
1 and 2, patients classified into phenotypes 3 and 4 were older (mean age in years (SD): phenotype 1—63 (13), 
phenotype 2—62 (12), phenotype 3—68 (12) and phenotype 4—67 (12)), more likely to have diabetes type 1 
(phenotype 1—4%, phenotype 2—4%, phenotype 3—6% and phenotype 4—9%), to be on insulin (phenotype 
1—2%, phenotype 2—2%, phenotype 3—4% and phenotype 4—7%), had a previous history of atrial fibrilla-
tion (phenotype 1—2.8%, phenotype 2—5%, phenotype 3—9% and phenotype 4—7.5%) and chronic kidney 

Table 1.   Baseline characteristics of four identified subgroups of patients with diabetes. BMI body mass index, 
T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus, CKD chronic kidney disease, MACE major 
cardiovascular events.

Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4 All patients

Number of patients 2587 1885 4461 2460 9967

Mean age (SD) 63.6 (13.4) 62.2 (12.9) 68.4 (12.0) 67.1 (12.4) 65.6 (12.9)

% Men (N) 45.8% (1185) 55.8% (1052) 51.9% (2314) 51.4% (1265) 51.40% (5123)

Mean weight (SD) 87.3 (21.2) 90.9 (22.1) 87.6 (20.3) 88.3 (20.7) 88.5 (21.0)

Mean BMI (SD) 31.2 (6.9) 31.7 (6.9) 31.2 (6.5) 31.4 (6.8) 31.4 (6.7)

Mean systolic blood pressure (SD) 140.54 (17.53) 139.77 (17.75) 139.85 (18.18) 138.70 (18.59) 139.66 (17.98)

% Patients using insulin (N) 2.16% 2.33% 4.37% 6.87% 3.96%

% Patients with T1DM (N) 4.0% (103) 4.1% (77) 6.1% (270) 8.8% (217) 5.9% (585)

% Patients with T2DM (N) 93.2% (2412) 92.5% (1743) 94.2% (4202) 91.2% (2244) 93.0% (9266)

% Patients with other DM (N) 5.5% (141) 5.7% (107) 4.2% (189) 5.9% (144) 5.2% (514)

% History of high cholesterol (N) 15.9% (412) 14.7% (277) 18.7% (832) 17.4% (427) 15.9% (412)

% History of atrial fibrillation (N) 2.8% (72) 5.2% (98) 9.0% (403) 7.5% (184) 2.8% (72)

% History of CKD (N) 4.1% (105) 3.1% (59) 11.0% (490) 8.9% (218) 4.1% (105)

% History of smoking (N) 49.6% (1269) 51.6% (957) 51.6% (2275) 54.1% (1310) 52.03% (5114)

Top diseases at baseline Percent of patients (N)

Dorsalgia 55.1% (1425) 44.6% (840) 46.4% (2072) 47.5% (1169) 48.5% (4832)

Other soft tissue disorders, not elsewhere classified 52.3% (1353) 42.8% (806) 46.9% (2092) 45.7% (1125) 47.2% (4703)

Essential (primary) hypertension 35.0% (905) 33.6% (634) 51.1% (2279) 43.0% (1057) 41.3% (4114)

Other joint disorders, not elsewhere classified 43.6% (1127) 35.6% (671) 37.7% (1684) 36.7% (904) 38.6% (3851)

Unspecified acute lower respiratory infection 38.1% (986) 29.2% (551) 34.0% (1518) 34.4% (846) 34.3% (3422)

Acute upper respiratory infections of multiple and unspeci-
fied sites 35.1% (909) 24.3% (458) 25.8% (1152) 25.0% (615) 27.5% (2742)

Mental and behavioural disorders due to use of tobacco 22.9% (593) 22.7% (427) 18.6% (831) 20.1% (494) 21.0% (2089)

Obesity 19.8% (512) 21.3% (402) 19.6% (873) 20.4% (503) 20.1% (1999)

Chronic rhinitis, nasopharyngitis and pharyngitis 25.0% (647) 18.8% (355) 15.6% (698) 16.4% (404) 18.8% (1877)

Other arthrosis 18.6% (480) 17.2% (324) 19.1% (853) 18.1% (446) 18.5% (1839)

Top drugs at baseline
Percent of patients (N)

Antibacterial drugs 95.7% (2475) 90.9% (1714) 93.0% (4150) 93.1% (2290) 93.3% (9303)

Analgesics 84.8% (2194) 79.1% (1491) 85.2% (3802) 86.3% (2122) 84.2% (8393)

Drugs used in rheumatic diseases and gout 86.9% (2247) 78.0% (1471) 81.2% (3621) 82.0% (2016) 82.2% (8194)

Topical corticosteroids 65.7% (1699) 55.2% (1041) 61.2% (2732) 61.8% (1520) 61.3% (6106)

Hypertension and heart failure 32.4% (839) 43.4% (819) 74.7% (3331) 68.7% (1689) 57.3% (5707)

Diuretics 39.6% (1025) 39.2% (739) 67.6% (3014) 63.1% (1552) 53.3% (5315)

Antisecretory drugs and mucosal protectants 49.2% (1274) 49.3% (929) 53.4% (2384) 57.0% (1401) 52.7% (5254)

Vaccines and antisera 52.1% (1348) 43.3% (817) 54.3% (2421) 51.7% (1271) 51.0% (5087)

Lipid-regulating drugs 32.7% (846) 38.4% (724) 60.7% (2707) 62.9% (1548) 50.8% (5065)

Nitrates, calcium-channel blockers & other antianginal 
drugs 35.1% (909) 35.2% (663) 65.4% (2918) 58.5% (1440) 49.7% (4950)

Previous diagnosis of outcomes of interest

Coronary artery disease 7.7% (200) 14.2% (268) 23.4% (1042) 21.7% (534) 17.5% (1741)

Stroke 4.3% (111) 5.7% (107) 8.5% (381) 9.3% (230) 7.1% (705)

Heart failure 0.6% (16) 3.2% (60) 5.8% (258) 5.5% (135) 4.1% (404)

Renal failure 4.4% (115) 4.4% (82) 12.1% (539) 10.0% (245) 8.3% (823)

MACE 12.1% (314) 21.0% (396) 33.1% (1477) 31.9% (785) 25.4% (2534)



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11478  | https://doi.org/10.1038/s41598-023-38251-1

www.nature.com/scientificreports/

disease (phenotype 1—4%, phenotype 2—3%, phenotype 3—11% and phenotype 4—9%). There was, however, 
no significant difference in body mass index (BMI), total cholesterol level, systolic blood pressure and history of 
smoking among the four subgroups.

Phenotype 1 (young with chronic inflammatory conditions) could be characterised by the younger age of 
included patients who frequently presented with dorsalgia and chronic inflammatory conditions and had the 
overall lowest risk of pre-existing cardiovascular and renal diseases. Phenotype 2 (young with CAD) included rela-
tively younger DM patients who more frequently had CV risk factors or pre-existing diagnosis of CAD. Patients in 
phenotypes 3 and 4 were relatively older and had a higher frequency of pre-existing cardio-renal diseases (HF 5%, 
MACE 32%, CAD 22%). Phenotype 3 (older with hypertension and renal disease) could be further distinguished 
by the highest percentage of patients with pre-existing diagnoses of HTN and RF at the time of inclusion into 
the study. In contrast, patients in phenotype 4 (older with previous CVA) had the highest percentage of patients 
with a prior history of CVA. They were more frequently started on insulin at the time of diagnosis of diabetes.

Top ten comorbidities and most frequently prescribed drugs at baseline.  At baseline, 4832 out 
of 9967 (48%) patients newly diagnosed with diabetes had a history of severe back pain, 4703 (47%) soft tissue 
disorders and 3851 (38%) joint disorders, and 1999 (20%) were diagnosed with obesity. Hypertension (HTN) 
was one of the most common comorbidities among DM patients (4114 (41%) with the highest percentage of 
2279 (51.1%) in phenotypes 3 and 4). At the time of the new diagnosis of diabetes, antibiotics (93%), analgesia 
(84%), drugs used for rheumatic disorders and gout (82%) and topical corticosteroids (61%) followed by anti-
hypertensive and HF medicines (57%) were most frequently present on prescriptions of those included in the 
analysis. Noteworthy, the frequency of pre-existing cardiovascular and renal comorbidities at baseline increased 
significantly in phenotypes 2, 3 and 4 (Table 1).

Follow‑up and prognosis of four identified phenotypes..  Patients had a follow-up duration of up to 
ten years with a median follow-up of 6.08 years and a total of 64,000 person-year. Within ten years of follow-up, 
2592 patients (26%) experienced a MACE, 2515 patients (25%) died, and 2020 patients (20%) suffered RF. The 
following percentages of patients within each phenotype have been hospitalised over the ten years of follow-up 
(phenotype 1—71%, phenotype 2—73%, phenotype 3—76.5%, phenotype 4—78.5%). The new DM diagnosis 
prompted the initiation of lipid-lowering drugs, drugs used in DM and HTN in all four phenotypes, reaching 
the highest use in phenotypes 2 and 3. Those two subgroups also had the highest percentages of patients with 
prescribed drugs used to manage CAD and HF (beta-blockers: 33.42% phenotype 2 and 46.02% phenotype 3; 
nitrites and calcium channel blockers: 45.52% phenotype 2 and 61.17% phenotype three and antiplatelets: 47.6% 
phenotype 2 and 59.87% phenotype 3).

The probability of cardio‑renal outcomes in four identified phenotypes.  Kaplan–Meier survival 
curves demonstrating the probability of survival for outcomes of interest in each identified phenotype are pre-
sented in Fig. 4.

Although the difference in survival curves for all chosen clinical outcomes was significant among four phe-
notypes identified by our model, the differentiation was least evident for diabetic neuropathy, reduced visual 
acuity and stroke. Median survival time to MACE and CAD diagnosis over ten years follow-up did not differ-
entiate between phenotypes 3 and 4, which had significantly higher risks of all-cause mortality and cardio-renal 
outcomes than phenotypes 1 and 2. For RF and all-cause mortality outcomes, there was a split between four 
phenotypes with significantly lower median survival probability in phenotypes 1 and 2 compared to phenotypes 
3 and 4. Phenotype 4 had the highest probability of all-cause mortality, CVA, RF, PAD and diabetic neuropathy 
outcomes.

The additive role of TDA features in identifying patients with increased risk of MACE.  Figure 5 
compares areas under the receiver operating curves (AUC) for various predictors and several QRISK mod-
els assessing the CVD risk. QRISK, QRISK 2 and QRISK 3 and models integrating TDA features with QRISK 
assessments in predicting the risk of MACE within ten years from the diagnosis of diabetes (and inclusion in 
the study). QRISK3 model’s AUC was augmented from 67.26% (CI 67.25–67.28%) to 67.67% (CI 67.66–67.69%) 
by adding two features derived from the TDA graph: specific TDA-derived phenotype and the distances to both 
extremities of the TDA graph (this improvement is by an extent which is larger than the one obtained when 
upgrading from QRISK2 (0.6716) to QRISK3 (0.6725)). Moreover, the TDA features had higher predictive val-
ues than all individual predictors of QRISK3.

Discussion
In this study, we demonstrated the utility of an unsupervised machine learning BEHRT-TDA method in strati-
fying a highly heterogenous group of DM patients using an example of a cohort diagnosed with diabetes as the 
seventh’s comorbidity. First, by leveraging contextual embedding with topological data analysis in a novel way, 
we developed and validated a model allowing us to study diabetes in the multimorbidity context. Second, we 
identified four distinct phenotypes of patients and confirmed their differential baseline characteristics at the 
time of new-onset diabetes. Third, we confirmed their distinct disease progression over time by analysing their 
cardiovascular, renal, and other microvascular outcomes. Lastly, we showed that features derived from TDA, 
when added to a known CV risk model called QRISK, can improve the prediction of CV outcomes in DM patients 
with comorbidities. Our analysis proves that deep learning can be used for multiscale phenotyping of diabetes 
in the context of multimorbidity.
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Diabetes is regarded as a highly heterogeneous disease with significant variation among clinical subtypes and 
a wide range of patterns of disease progression28. As a chronic condition, diabetes frequently occurs in the context 
of other diseases, which cumulatively have a more substantial impact on a patient’s quality of life and the risks 
of developing severe complications and mortality than when diabetes is considered in the separation29–31. The 
consensus report from the American Diabetes Association (ADA) and the European Association for the Study 
of Diabetes (EASD) in 2020 emphasised the personal approach to managing DM patients. It encouraged disease 
phenotyping and risk stratification, especially when considering novel glucose-lowering therapies32. Current 
clinical guidelines suggest stratification of DM patients into low, moderate, high, and very high-risk groups based 
on their CV risk profile and provide evidence for using CV risk factors targeted therapies in those classified as 

Figure 4.   Kaplan–Meier survival curves demonstrate the probability of each clinical outcome in the four 
identified phenotypes. All clinical outcomes were defined per their CALIBER codes (21). P-values for this 
analysis are obtained using a multivariate log rank test25,26.
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high-risk groups33. Such an approach stresses the role of cardiometabolic precursors in the overall mortality. Still, 
it does not fully consider the impact of higher multimorbidity burden, which includes the number of concordant 
and discordant conditions, the longer duration of living with multimorbidity, polypharmacy and the higher risk 
of associated adverse events. Our methodology derived from unsupervised deep learning considers not only the 
multitude of variabilities but, most importantly, looks at diabetes in the context of other comorbidities and offers 
an alternative approach to previously described clustering methods. We classified patients into four subgroups 
based on the regions of the TDA networks. Similarly to the stratification of DM patients based on pre-existing 
CVD, we have shown the correlation between an increased prevalence of pre-existing CV and renal disease in 
phenotypes 3 and 4. We identified that those two subgroups included more patients with T1DM and T2DM 
treated with insulin. It is in line with general observations that with early onset DM, longer duration, and the 
advanced stage of the disease, insulin-dependent T2DM is associated with a worse prognosis, higher risk of 
complications and an increased death rate.

A recent review paper summarises studies using various methodologies to cluster T2DM in the setting of 
multimorbidity. It concludes that age and deprivation are the leading drivers of multimorbidity in DM patients. 
In our study, using ML-derived phenotyping, older age was a proxy for multimorbidity and a higher prevalence 
of cardio-renal disease at baseline. It defined the future outcomes in our cohort of DM patients. The probabil-
ity of cardio-renal outcome differed between younger patients classified to phenotypes 1 (young with chronic 
inflammatory conditions) and 2 (young with CAD) when compared to relatively older patients in phenotype 
3 (older with hypertension and renal disease) and phenotype 4 (older with previous CVA). The prevalence of 
cardio-renal disease was also higher in phenotypes 3 and 4 (among relatively older patients), which may sug-
gest that biological rather than chronological age would be more accurate in determining the risk of mortality.

Diabetes rarely presents without comorbidities. We identified musculoskeletal diseases and HTN as the most 
frequent conditions in all four subgroups. Such conditions as dorsalgia and other musculoskeletal diseases are 
frequently related to physical inactivity leading to obesity, recognised as an essential risk factor for the devel-
opment of T2DM. In this cohort, we observed a significantly higher prevalence of musculoskeletal conditions 

Figure 5.   AUC assessed the risk of developing MACE within ten years of DM diagnosis. QRISK, QRISK2 and 
QRISK3 of developing a MACE within the ten years following the DM diagnosis. All the individual predictors 
used in the QRISK3 model were included in our analysis in addition to the predictors derived from our TDA 
analysis (such as distance to extremities, TDA phenotypes, TDA clusters and the distance to extremities). The 
list of other predictors includes the following: body mass index (BMI), migraine, systemic lupus erythematosus, 
corticosteroids, erectile dysfunction, HIV/AIDS, mental illness, rheumatoid arthritis, atypical antipsychotics, 
HDL cholesterol ratio, smoking status, chronic kidney disease, family history of coronary artery disease, 
ethnicity, index of deprivation, systemic blood pressure, atrial fibrillation, gender, treated hypertension. The 
AUC was calculated for these models and models using individual predictors of QRISK3. The results show 
that augmenting QRISK3 with TDA features significantly increased the AUC (to an extent larger than the one 
obtained when upgrading from QRISK2 to QRISK3). Moreover, TDA features score better than all individual 
predictors of QRISK3. Even when taken individually, they score better than most QRISK3 individual predictors. 
The predictive value of the QRISK3 model also improves by adding two features derived from the TDA graph: 1) 
the TDA-derived phenotype and 2) the distances to both extremities of the TDA graph (as defined by Dijkstra’s 
algorithm).
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(50%) than obesity (20%). Additionally, on average, 41% of DM patients had HTN, and 57% were treated with 
medications recognised as treatments for HTN and HF. A large meta-analysis of randomised controlled trials 
utilising various BP-lowering strategies has recently provided evidence of the causal relationship between elevated 
BP and the risk of T2DM34—https://​pubmed.​ncbi.​nlm.​nih.​gov/​34774​144/. The results demonstrated that BP-
lowering by five mmHg reduced the risk of diabetes by 11%, comparable to the well-established cardioprotective 
effect of antihypertensive therapy. In the current study, we showed a higher prevalence of HTN in subgroups 
of DM people with the highest future risk of renal and cardiovascular complications and increased mortality. 
It highlights the importance of early screening for signs of heart and kidney disease in hypertensive patients 
diagnosed with diabetes. It supports the initiation of novel glucose-lowering therapies with cardio-renal benefits 
as their first treatment line.

One of the main objectives of disease phenotyping is to derive meaningful subgroups in the data that show 
similarities in both representation and clinical outcomes. Such segmentations have been previously achieved 
through clustering techniques applied to expert-defined representations. In this study, however, we explored 
combining learned contextual representations with TDA to introduce a novel alternative for mining latent struc-
tures in complex high-dimensional data. TDA attempts to identify the underlying “shape” of the data35 and is 
often perceived as an alternative to both algebraic methods, which are often too rigid to deal with complex data, 
and to clustering methods that usually require setting thresholds and producing output which is too discrete. 
TDA has been previously applied to answer biomedical research questions11–13,36,37. Our study confirms those 
previous reports that TDA has the potential to characterise DM phenotypes in the context of multimorbidity. 
Our results suggest that the manifold underlying these representations/embeddings shows distinct neighbour-
hoods, which can provide policymakers and medical guidelines with tools for stratifying and segmenting large, 
diverse patient populations. Lastly, this study explored the utility of TDA and contextual embedding to identify 
subgroups. We demonstrated that adding TDA features to the QRISK score significantly improves model per-
formance. Unsurprisingly, our unsupervised ML method outperformed a CV risk prediction statistical model.

Further interventional studies are needed to confirm whether such classification can guide pharmacotherapy 
with novel glucose-lowering treatments offering cardiovascular and renal protection as part of the personalised 
therapy. Although other groups have previously proposed that approach, it has yet to enter clinical practice. If 
successful, such an approach of using ML and TDA to select subgroups of patients with the highest risk of certain 
outcomes could justify the development of clinical pathways for early screening, long-term monitoring, and the 
use of lifelong targeted therapies in those high-risk groups of patients.

Our study has some limitations. First, our method has a few free parameters that need to be empirically set, 
which may impact its direct applicability. Moreover, the current evaluation is labour-intensive. Early reports may 
suggest that using so-called knowledge graphs could offer an alternative evaluation tool and improve feasibility. 
Furthermore, during the cohort selection, we kept only those DM patients who had registered several encoun-
ters with their GPs before the DM diagnosis. Although this was an important step to assure the robustness of 
our method, it might have compromised the model’s generalizability towards the low-risk group (exclusion of 
subjects with diabetes and no other known comorbidities and those with fewer interactions with health ser-
vices). Another limitation is the fact that in the survival analysis, we omitted cases with missing data, following 
the principle of ‘complete case analysis’, which may introduce systematic bias if data are not missing at random 
and if patients with missing data are systematically different than those included in the analysis. In our cohort, 
patients with missing data could potentially represent a sicker subgroup of multimorbid DM patients missing 
follow-up appointments or not engaging with their healthcare providers. Moreover, the current work only uses 
the limited information available within EHR. The future work will couple EHR with detailed information about 
lifestyle and environment, available through digital devices and technologies and possibly with genetic analysis. 
Such blood biomarkers as HbA1c are included in the EHR but were not available in our data set and therefore 
were omitted from our study. Our approach focused on the impact of comorbidities on the longer-term disease 
prognosis and did not consider the level of glucose control.

Conclusions
This study confirmed that our novel ML approach combining contextual embeddings with TDA could be utilised 
for the deep phenotyping of diabetes in the context of other associated chronic conditions. Our analysis highlights 
the importance of considering multimorbidity when risk-stratifying patients with a new diagnosis of diabetes. 
Expanding on previously proposed classification based on CV risk factors alone, such strategy identified cohorts 
of patients with different disease progression and long-term clinical outcomes. We confirmed that a higher 
prevalence of HTN in people diagnosed with diabetes is associated with a higher risk of renal and cardiovascular 
complications and increased mortality. The excess risk of all-cause mortality, renal and cardiovascular outcomes 
was primarily related to pre-existing conditions. It could be predicted in that population without considering 
the profile of changes in the HbA1c.

Data availability
The CPRD database used for this study has been approved by an Independent Scientific Advisory Committee 
(ISAC). The ISAC protocol number for this study is: 16_049. To obtain access to CPRD data, researchers are 
advised to follow the required procedure on the CPRD website Data Access page (https://​www.​cprd.​com/​Data-​
access). The data supporting this study’s findings are available from Clinical Practice Research Datalink (CPRD). 
The link: https://​www.​cprd.​com/​Data explains more in-depth about the nature and accessibility of the data. 
Furthermore, regarding accessibility, https://​www.​cprd.​com/​prima​ry-​care explains: “Access to data from CPRD 
is subject to a full licence agreement containing detailed terms and conditions of use. Patient-level datasets can be 
extracted for researchers against specific study specifications, following protocol approval from the Independent 

https://pubmed.ncbi.nlm.nih.gov/34774144/
https://www.cprd.com/Data-access
https://www.cprd.com/Data-access
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Scientific Advisory Committee (ISAC).” Thus, restrictions apply to the availability of these data, which were used 
under license for the current study and are not publicly available.
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