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Popular science summary of the thesis 
Inspired by the Chinese idiom "the mantis, the cicada, and the siskin" (螳螂捕蝉，

黄雀在后) and the ongoing battle between medical researchers and cancer in 
saving patients' lives, we find a profound parallel between finding a cure for cancer 

and the predatory chain described in the idiom. Like the mantis swiftly moving 

and ready to strike the cicada, cancer cells possess a menacing ability to invade 
and migrate from one organ to another in patients via a process known as 

metastasis. 

Cancer, an elusive adversary, often outsmarts conventional treatment strategies. 

The cells mutate, adapt, and spread with a stealth comparable to the mantis 

catching its prey, making it a challenge for medical researchers to intercept and 

treat effectively. Hence, despite significant advances in the early detection and 
diagnosis of cancer, new methods to treat cancer have not dramatically improved 

outcomes in many cancers over the last decade. Metastatic cancers are largely 

incurable because of their systemic nature and their frequent resistance to 

therapeutic agents, including immunotherapy. Hence, the efficacy of cancer 
treatment predominantly hinges on our capability to intercept and, potentially, 

reverse the metastatic process. 

Our findings in medical research have brought new hope to the battlefield against 

cancer. We found that patients with high ANGPTL4-expressing cancers had a 

poorer prognosis and an overall shorter median survival time. Therefore, testing 
for ANGPTL4 expression as a prognostic marker in cancer patients helps to aid in 

early detection, treatment decision-making, and the development of more 

effective therapies, reminiscent of the siskin's ability to foresee and intervene in 

the predatory chain depicted in the idiom. Further findings from us also suggest 
that ANGPTL4 is a potential anti-metastatic target. Therefore, providing 

treatments targeting ANGPTL4 are analogous to the siskin at the top of the 

predatory chain, offering targeted approaches that aim to outmaneuver and 

defeat these metastatic cancer cells. 

To conclude, the fight against cancer echoes the relationship between the mantis 
and the siskin, where medical researchers continually evolve their strategies to 

intercept, outmaneuver, and ultimately triumph over this formidable opponent. 

With each scientific breakthrough and innovative approach, we hope to edge 

closer to the ending of this age-old tale, aiming to save and improve the lives of 
cancer patients worldwide.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 
The epithelial-mesenchymal transition (EMT) serves as a pivotal mechanism in the 
progression of metastatic cancer. However, current research, predominantly 

reliant on 2D monolayer cultures, inadequately replicates the intricate nature of a 
3D tumor microenvironment. In the main project (Paper I), we investigated the 

transcriptomes of various cancer cell types undergoing EMT in both 2D and 3D 

cultures with different EMT inducers. We identified a 3D EMT gene signature that 

has broad implications across different types of human cancers. Angiopoietin-like 
4 protein (ANGPTL4) was found to be a top ranked hub gene with clinical 

relevance and impact. Our study also revealed the mechanoregulation of 

ANGPTL4, which corroborated with its high expression in advanced tumors. 

Consistently, ANGPTL4 deficiency attenuated primary tumor growth and EMT of 
cancer cells. These findings suggest that targeting ANGPTL4 may be a promising 

approach to inhibit EMT and prevent cancer progression. In the collaborative 

project (Paper II), we studied the regulation of membrane microenvironment and 

signal transduction in natural killer (NK) cells, a group of innate immune cells 
involved in the tumor microenvironment (TME) and cancer immunotherapy. Here, 

we revealed the PIP2-regulated recruitment of DAP12 homodimer to lipid raft 

boundary of NK cells. In another collaborative project (Paper III), we introduce 

HTCA, a single-cell RNA-sequencing database with various user-friendly analysis 
tools. Collectively, our main findings reflect the intricate regulation of physical 

stiffness within the TME influencing EMT signaling in cancer cells, where ANGPTL4 

emerges as a crucial player. Our comprehensive analyses strongly underscore the 

clinical significance of ANGPTL4, particularly in advanced stage cancer, aligning 
with our broader understanding of tumors in patients. In essence, our study vividly 

demonstrates how the TME's stiffness orchestrates the mechanoregulation of 

ANGPTL4, a hub gene within the 3D EMT gene signature.  
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1 Introduction 
Cancer remains a prevalent and critical global health concern, representing a 

significant cause of mortality. In 2020 alone, approximately 19.3 million new cancer 
cases were diagnosed, resulting in 10 million cancer-related deaths [1]. In the same 

year, the World Health Organization (WHO) reported the diagnosis of 20 million 

new cancer cases, and these numbers are expected to increase exponentially in 

years to come [2]. As per WHO estimates in 2019, cancer ranks as the second 
leading cause of death before the age of 70 in 112 of 183 countries [1]. Female breast 

cancer was the most commonly diagnosed cancer in 2020, accounting for around 

2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0%), prostate 

(7.3%), and stomach (5.6%) cancers [1]. Furthermore, lung cancer remained the 
primary cause of death among cancer cases, resulting in approximately 1.8 million 

deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and 

female breast (6.9%) cancers. Significant advances in the early detection and 

diagnosis of cancer enable interventions that often prevent death [3]. However, 
new methods to treat cancer only benefit patients with some cancer types and 

have not dramatically improved outcomes in others over the last decade. Well-

confined, primary tumors are generally cured by surgical resection and adjuvant 

therapy. However, metastatic cancers are largely incurable because of their 
systemic nature and their frequent resistance to therapeutic agents, including 

immunotherapy [4, 5]. Indeed, the metastasis of cancer remains the primary cause 

of cancer-related deaths, accounting for over 90% of such deaths [6]. Hence, the 

efficacy of cancer treatment predominantly hinges on our capability to intercept 
and, potentially, reverse the metastatic process. 

1.1 Overview of cancer 

Tumorigenesis and tumor progression are complex multistep processes with 
different characteristics. The hallmarks of cancer provide a mechanistic 

framework for us to understand the multistep progression of a premalignant cell 

to a deadly metastatic cancer cell. These hallmarks and emerging characteristics 
of cancer are well described in two seminal reviews by Hanahan and Weinberg [7, 

8]. 

The six hallmarks are (i) sustaining proliferative signaling, (ii) evading growth 

suppressors, (iii) activating invasion and metastasis, (iv) enabling replicative 

immortality, (v) inducing angiogenesis and (vi) resisting cell death. The four 

emerging characteristics are (i) genome instability and mutation, (ii) tumor-
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promoting inflammation, (iii) avoidance of immune destruction, and (iv) 

deregulation of cellular energetics. In 2022, four new hallmarks were added: (i) 

unlocking phenotypic plasticity, (ii) nonmutational epigenetic reprogramming, (iii) 

polymorphic microbiomes, and (iv) senescent cells [9]. Appreciation of these 

hallmarks will help us to understand the response and resistance of various cancer 
therapies (Figure 1).  

 

Figure 1: The 14 hallmarks of cancer adapted from Hanahan 2022 [9] under CC BY 
4.0 license. 

The ability of cancer cells to grow and metastasize has been one of the puzzles for 
researchers for many years. More details and discussions on the complex and 

multistep processes of epithelial-mesenchymal transition (EMT) and metastasis 

will be discussed in the later sections and chapters of this thesis [7, 8]. 

1.2 Epithelial-mesenchymal transition (EMT) 

The process of metastasis is a complex multistep event that involves the spread 

of cancer cells from the primary site to distal organs. EMT is a key step in this 
process, which culminates in the loss of epithelial characteristics such as cell 

polarity and cell-cell adhesions and the de novo acquisition of mesenchymal 

phenotype features, including motility and metastatic potential (Figure 2) [10-14]. 

Upon aggressive tumor progression, EMT serves as a key step for cancer 
phenotypic plasticity and “stemness” properties similar to those of stem cells [15]. 

This transition is characterized by an increase in EMT transcription factors, such 

as Zinc finger protein SNAI1 (Snai1) and Zinc finger E-box binding homeobox 1 

(ZEB1), and a decrease in epithelial markers, such as Receptor Tyrosine Kinase 3 
(Erbb3). The adoption of a mesenchymal-like phenotype is a hallmark of increased 
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cancer aggressiveness. Although EMT is traditionally associated with the transition 

of epithelial cells, a parallel transformation is evident in cancers rooted in 

proneural cells, known as proneural-mesenchymal transition (PMT), as seen in 

glioblastoma multiforme. This shift towards a mesenchymal state seems to be a 

pivotal biological convergence, intensifying the metastatic capabilities of cancer 
cells. Whether originating from epithelial or proneural cell types, the transition to 

a mesenchymal phenotype imbues these cells with heightened invasiveness and 

aggressive behaviors. 

 

Figure 2: Epithelial-mesenchymal transition (EMT) adapted from Leggett et al. 
2021 [14] under CC BY 4.0 license. 
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The highest clinical significance of the EMT process is linked to its crucial role in 

promoting tumor cell invasion, which is required for both the metastatic 

dissemination of carcinomas as circulating tumor cells and extravasation into 

distant organs [16]. There is also accumulating evidence that EMT-phenotype 

changes are associated with and might cause therapy resistance [17]. Therefore, 
the paramount clinical importance of EMT arises from its pivotal role in enhancing 

both the metastatic spread of carcinomas and resistance to traditional therapies. 

Developing effective strategies against mesenchymal transformation is crucial for 

successfully combating cancer. 

Various signals received by cancer cells from the tumor microenvironment (TME) 
trigger EMT [18]. The activation of the EMT program can also be partial, and its 

success depends on the cancer cells and the TME, where the extracellular matrix 

(ECM) is a major component [13, 19-21]. The ECM composition and structure 

heavily influence the process of EMT and the eventual metastatic spread and 
therapy responses of cancer cells [22]. However, how exactly these factors affect 

EMT has yet to be determined. 

1.3 The tumor microenvironment (TME) 

Stephen Paget’s “seed-and-soil” hypothesis postulates that tumor progression 
depends on the reciprocal relationship between tumor cells and their local 

environments [19, 23, 24]. Indeed, cancer progression is not an autonomous cell 
process, and it progresses in concert with the evolving cellular and acellular 

heterogeneity in the tumor stroma (Figure 3) [25-27]. In addition to a 

heterogeneous population of cancer cells, growing evidence suggests that various 

resident and infiltrating host cells, secreted factors, and ECM proteins coexist in 
the tumor mass [28]. The collection of these tumor-associated cellular 

components (fibroblasts, macrophages, regulatory T cells (Tregs), myeloid-

derived suppressor cells (MDSCs), etc.) and acellular components (ECM, 

matricellular proteins (MCPs), etc.) forms the TME [29]. In addition, the TME can 
confer a proliferative advantage to tumor cells and reduce drug penetration during 

treatments [30]. Clinically, the TME also impacts drug response and resistance in 

treating cancer patients [31, 32]. Therefore, the interactions between cancer cells 

and their surrounding environment ultimately determine the fate of the tumor 
cells [33, 34]. 
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Figure 3: The tumor microenvironment (TME) adapted from Liao et al. 2019 [27] 

under CC BY 4.0 license. 

While our ability to effectively treat cancer depends on our capacity to curb and 

perhaps even revert the metastatic process, it is realistically impossible to 

prognosticate when patients’ tumors metastasize. Furthermore, anti-metastatic 
treatment options are severely limited due to the systemic nature of the disease 

and its associated characteristics, such as enhanced chemoresistance and 

invasiveness regulated by the complex crosstalk between cancer cells and the 

TME [5, 35, 36]. In order to effectively combat metastatic cancer, it is thus 
important to develop strategies that take into account the changes in the cellular 

and acellular components of the TME, curb the growth of the primary tumor, and 

eradicate cancer cells exhibiting a mesenchymal-like behavior [37, 38]. 

1.3.1 Cellular crosstalk in the TME 

Cancer-associated fibroblasts (CAFs) play a central role in cellular crosstalk in the 
TME. CAFs are a major cellular component of many tumors and are known to 

influence cancer progression in many ways [25]. Thus, studies in CAFs may shed 

light on some of the most pressing clinical problems in cancer: metastasis, tumor 
relapse, and drug resistance [39-41]. Interactions between CAFs and tumor cells 

promote invasiveness and metastasis. For example, at the mechanobiological 

level, metastasis initiates when tumor cells invade and breach the basement 

membrane (BM), which typically provides mechanical support to epithelial tissues 
[42-44]. Central to this process, CAFs play a pivotal role in degrading the BM by 

upregulating matrix metalloproteinases (MMPs). Consequently, the formation of 

gaps in the BM compromises its integrity, making it more permissive to invasion 

and migration by tumor cells [45-47]. Moreover, the breach of the BM can be 
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facilitated by the mechanical interactions and signaling between CAFs and the BM 

[45-47]. 

Furthermore, CAFs notably contribute to cancer metastasis and invasion by 

creating paths conducive to tumor cell invasion. In a specific study involving CAFs 

isolated from two patients diagnosed with salivary gland adenoid cystic 

carcinoma (ACC), the conditioned medium collected from CAFs significantly 
augmented ACC cell migration and invasion [48]. During co-culture of CAFs with 

ACC cells in a microfluidic device, the ACC cells visibly followed a path established 

by CAFs positioned at the invasion front. The invasive track facilitated by CAFs 

within the ECM involves the activity of MMPs and the CXCL12/CXCR4 pathway 
[48]. 

Additionally, modulation of many areas of the immune system has been found to 

involve CAFs [49]. CAFs have been found to interact with tumor-associated 

immune cells to increase tumor cell dissemination [25, 50]. In essence, tumor-

associated macrophages (TAMs), Tregs, and MDSCs can be recruited by CAFs to 
promote Th2 polarization of the TME [51]. TAMs and MSDCs are significant 

contributors to the production of Th2-inducing cytokines and various factors that 

actively inhibit the host's antitumor immune responses and foster tumor growth 

[52]. This alteration in the TME facilitates angiogenesis, lymphangiogenesis, and 
the inhibition of antitumor responses, effectively sustaining tumor growth and 

supporting metastasis.[53]. With the immunosuppressive role of CAFs in the TME 

as presented above, CAFs have major implications in cancer immunotherapy [49, 

54]. 

Many studies have indicated that CAFs play a protumorigenic role via the 

secretion of various growth factors, cytokines, chemokines, and ECM components 
[25]. Tumor cells, as well as immune cells and stromal cells, can express 

chemokines in the TME. Chemokines attract infiltrating immune cells into the TME, 

enforcing communication between CAFs and immune cells and regulating tumor 

immune responses (Figure 4) [49, 55]. Chemokines can also directly target tumor 
cells to regulate cancer cell proliferation, plasticity, invasiveness, and metastasis 

[55]. While the roles of chemokines and growth factors in tumor progression are 

well established, much less is known about the roles of reactive oxygen species 

(ROS) in tumor pathology. Cancer cells and CAFs produce and respond differently 
to ROS [25, 50]. For example, an elevated level of intracellular ROS, stemming from 
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defects in either ROS production or detoxification processes, has the potential to 

convert a normal cell into a malignant one [56].  

 

Figure 4: The immunosuppressive functions of different CAF subtypes in the TME 
adapted from Liu et al. 2019 [49] under CC BY 4.0 license. 

While CAFs are highly abundant and play a major role in the TME, many CAF-
targeting therapies hypothesized to be effective fail to achieve the expected 

clinical outcome [57]. This brings us to the noncellular components that increase 

the complexity of the study of the TME. 

1.3.2 Extracellular matrix (ECM) 

Cancer cells modify their microenvironment by secreting ECM components and 
ECM-modifying enzymes (Figure 5) [58, 59]. Similarly, CAFs alter the tumor stroma 
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by producing and depositing substantial amounts of ECM components [60, 61]. 

Under the influence of adjacent cancer cells, CAFs are differentiated from resident 

fibroblasts in the solid tumor mass [25]. Transforming growth factor-β (TGF-β) is 

a key regulator of fibroblast differentiation during wound healing and tumor 

progression [62]. The release and activation of TGF-β from the ECM promote the 
differentiation of fibroblasts into contractile CAFs, and increased tension 

promotes the further release of TGF-β [63]. 

 

Figure 5: The regulatory network within the extracellular matrix (ECM) during 

tumor invasion and metastasis adapted from Yuan et al. 2023 [59] under CC BY 

4.0 license. 

A major space-filling structural component of the TME is the ECM, which consists 
of fibrous proteins, glycoproteins, proteoglycans, and polysaccharides. The 

cancer ECM is a highly dynamic structure undergoing constant remodeling, which 

provides a biochemical and physical niche for cancer cells. In cancer, abnormal 

ECM synthesis, secretion, and modification are achieved by the dysregulated 
expression of matrix modelling enzymes. Furthermore, the ECM changes 

drastically in its composition and relative abundance at the primary and 
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metastatic tumor site [5, 35, 36]. Abnormal ECM dynamics affect the overall 

biochemical, physical, and mechanical cues of cancer cells in the TME. These 

biochemical changes cause the ECM to alter its biophysical properties, such as 

stiffness, rigidity, and tension [64, 65]. Various common extracellular proteins, 

such as collagens, fibrins, elastins, fibronectins and laminins, contribute to these 
properties of the ECM [66]. 

Fibrin is a component of the ECM that plays a critical role in wound healing. It is 

produced by converting fibrinogen to fibrin via the action of thrombin, a clotting 

enzyme, during tissue repair [67]. Platelets release growth factors, drawing 

fibroblasts to replace the transient fibrin matrix with a collagenous one. 
Subsequently, resident fibroblasts undergo differentiation into myofibroblasts 

[68, 69]. Cancer resembles “a wound that does not heal” [70], suggesting that the 

cellular and biochemical processes associated with wound healing are similar to 

those of the tumor stroma. Local and systemic activation of blood coagulation 
appears to be a common and important host response to growing tumors. Tumor 

cells, TAMs, and tumor-associated endothelial cells contain proteins with potent 

procoagulant activities, and fibrin deposition has been observed histologically on 

the surface of both tumor cells and stromal elements within tumors in situ [71]. 

The involvement of fibrin in cancer biology has been documented for more than a 
century [72]. In 1878, Billroth observed the presence of fibrin around tumor cells. 

Fibrin play a crucial role in tumor cell growth and metastasis [73]. Fibrin facilitates 

tumor cell growth and migration. The fibrin matrix can also support the migration 

of other tumor-associated cells such as macrophages, fibroblasts, and endothelial 
cells in the TME [74]. The fibrillary proteins also possess adhesive ligands for cell 

attachment and crawling [75]. In addition, due to their chemotactic properties, 

fibrin fragments can promote the migration of endothelial cells and immune cells 

in the stroma [76]. Furthermore, fibrin also binds to and shields growth factors 
from degradation, playing a pivotal role in promoting angiogenesis. [77, 78]. 

However, the importance of the resultant fibrin deposition to tumor growth 

remains uncertain. 

Tumor ECM is stiffer than normal ECM due to the overexpression of various ECM 

components, including collagen. Collagen is the most abundant type of fibrous 

protein and constitutes the scaffold of the TME. Collagen degradation and 
redeposition affect the TME and can promote tumor infiltration, angiogenesis, 

invasion, and migration. Collagen is traditionally thought to be a passive barrier to 
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resist tumor cells, as collagen must be degraded before tumor cell invasion [79]. 

However, current evidence highlights that collagen also plays an active role in 

driving tumor progression. Collagen alterations in the TME release biomechanical 

signals sensed by cancer and stromal cells, triggering a cascade of biological 

events. Integrin, when binding to collagen, regulates cancer cell behavior. This 
binding can activate signaling pathways involving AKT/PI3K, mitogen-activated 

protein kinase (MAPK), Rho family, and MEK/ERK, leading to the proliferation and 

invasion of cancer cells [80]. Furthermore, collagen-rich ECM often creates 

hypoxic conditions. Hypoxic signaling can activate, via various mechanisms, the 
promigratory and invasive phenotypes of tumor cells. For instance, by directly and 

indirectly regulating the transcription factors Snai1, Slug, Twist, and ZEB1, hypoxia-

inducible factor (HIF) signaling can induce EMT [81]. In addition, HIF signaling can 

also enhance the upregulation of proteolytic enzymes, such as MMPs, cathepsins, 
lysyl oxidases, and prolyl-4-hydroxylases (P4H), to support further matrix 

remodeling [82, 83]. The collagen-rich ECM-induced hypoxic environment leads 

to the expression of chemokines and cytokines by tumor cells, recruiting 

macrophages and mesenchymal stem cells (MSCs) into the TME to further 
support invasion, migration, and metastasis [84, 85]. 

Apart from primary tumor sites, the ECM of distant organs/sites can be primed by 

soluble factors from the primary tumor and remodeled to prepare for the arrival 

of metastatic cancer cells [67]. These premetastatic niches may explain the 

organotropic preference to colonize certain sites by specific cancer cells during 
metastasis. It has been discussed heavily whether tumor cells actively target a 

specific tissue for metastasis or accidentally arrive at a suitable site for 

engraftment and growth. Both options are partially realized, as the primary tumor 

has been proven to influence and prepare distant sites for cancer cell arrival at 
the target sites [86, 87]. These primed secondary sites are known as 

premetastatic niches. The primary tumor releases chemokines, matrikines, and 

exosomes into the blood and lymph, distributing those contents to the targeted 

tissues [88-91]. Exosomes carrying integrins adhere to the ECM of targeted sites 
and merge with normal cells, releasing contents like proteins, translatable mRNA, 

and miRNA [90, 91]. These mechanisms induce transformations in distant cells, 

altering their metabolism and prompting the secretion of ECM proteins or 

enzymes that modify the ECM, such as LOXs [92]. LOX, in particular, has the 
potential to induce tissue stiffening, laying the foundation for the premetastatic 

niche and eventual metastasis. [93-97]. 
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Over the past decade, cancer research has notably pivoted towards exploring the 

TME, particularly on the various cellular components and communication factors 

(e.g., cytokines, growth factors, and ROS) [98]. Current ECM research emphasizes 

biochemical mechanisms linked to tumor progression, particularly the intracellular 

pathways of signal transduction originating from the ECM and the cellular 
metabolic responses related to collagen remodeling [99, 100]. However, there is 

limited attention to the dynamic changes in ECM biomechanics, such as stiffness 

and elasticity, as crucial determinants of cancer progression [79]. 

1.3.3 Matricellular proteins (MCPs) in tumor progression 

Apart from collagen and fibrin, MCPs are also an important part of the ECM (Figure 
6) [101]. Tumor and neighboring stromal cells secrete MCPs, a class of ECM-

associated and structurally diverse glycoproteins, in the TME [102]. These MCPs 
do not contribute significantly to the structure of the ECM but are involved in 

modulating cell-matrix and cell–cell interactions. Furthermore, these proteins 

facilitate cancer cells in the acquisition of various hallmarks of cancer such as 

metastasis, angiogenesis, cell proliferation and survival [103]. Various MCPs such 
as Angiopoietin-like 4 (ANGPTL4), tenasin C, osteopontin and SPARC are involved 

in invasion and metastasis. However, we would like to highlight the key roles that 

ANGPTL4 plays in metastasis. Metastasis-related ANGPTL4 is a secretory protein 

from the angiopoietin (ANG)-like family [104]. The expression of ANGPTL4 can be 
upregulated by hypoxia, TGF-β, and peroxisome proliferator-activated receptor, 

among others [104, 105]. Full-length ANGPTL4 is proteolytically cleaved by pro-

protein convertases, giving rise to a functionally distinct N-terminal coiled-coil 

fragment (nANGPTL4) and C-terminal fibrinogen-like domain (cANGPTL4). 
ANGPTL4 regulates lipid and glucose metabolism, primarily as an inhibitor of 

lipoprotein lipase activity via nANGPTL4 [106, 107]. A premetastatic role for 

cANGPTL4, such as increased vascular permeability, anoikis resistance, cancer cell 

invasiveness and metabolic flexibility, has been described in many solid tumor 
types [104, 108-113]. Furthermore, ANGPTL4 secreted by stromal adipocytes also 

contributes to tumor growth [114]. 
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Figure 6: Activation of the biochemical, biomechanical, and metastatic effects by 
MCPs adapted from Gerarduzzi et al. 2020 [101] under CC BY 4.0 license. 

1.4 Models used to study EMT 

Many drug development studies have been performed on the primary tumor [115, 
116]. There is also an increasing focus on targets that arrest cancer metastasis [117]. 

However, the effect of TME that propels cancer cells to acquire metastatic 

properties is often overlooked. TGF-β and hypoxia are well-established 

biochemical and microenvironmental cues that trigger EMT. There is a growing 
interest to investigate the impact of the biophysical properties of the ECM on EMT 

and its accompanying attributes, which reflect ECM remodeling during cancer 

progression [64]. Matrix stiffness influences exosome secretion and specific 

oncogene expressions, thereby promoting tumor growth [118, 119]. In a stiffer TME, 
cells activate EGFR/Erk, integrin-linked kinase and mechano-sensing signaling 

pathways to promote cell plasticity and EMT processes [120-123]. Certain cellular 

characteristics, like contractility and adhesiveness, allow metastatic cells to 

navigate with or against the stiffness gradient present in the TME [124]. Given these 
significant biological consequences, it is essential to unravel the ways matrix 
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biophysical attributes modulate cellular behaviors. In this context, a variety of 3D 

cell culture techniques – ranging from liquid- or scaffold-based 3D matrices to 

contemporary methods like microfluidics and bioprinting – have been employed 

to replicate the in vivo nuances of metastasis, TME, and the cancer cells' response 

to treatment [125, 126]. These 3D systems play a vital role during early preclinical 
drug development, creating more efficacious therapies and predicting 

therapeutic outcomes. Among these, scaffold-based 3D hydrogels, composed of 

natural biopolymers (like proteins, polysaccharides, and decellularized ECM) [127], 

synthetic materials (such as polyesters and self-assembling peptides), or their 
hybrids [128, 129], are particularly popular. Their widespread adoption can be 

attributed to their exceptional biocompatibility and tunability. These unique 

features of scaffold-based hydrogels allow the in vitro modelling of biophysical 

features of TME. While reliable 3D culture systems have been developed that 
recapitulate the growth of a primary tumor, the complex mechanism by which the 

metastatic cancer cells activate/utilize the multiple hallmark 

attributes/capabilities remain more challenging to model in vitro. Therefore, our 

improved understanding of the metastasis/EMT mechanisms in 3D TMEs is 
essential for our ability to treat the metastatic disease.     

1.4.1 Cell culture models in 2D 

There are various studies of EMT using 2D monolayer cultures [130-132]. The 2D 
monolayer culture model is a system whereby cells grow on flat dishes, usually 

made of plastic. The cultured cells adhered to the surface of the dishes and 

spread into a monolayer. 2D cell culture is still a popular method due to some of 

its advantages [133]. First, it is an inexpensive method to grow and observe cell 
growth and treatment [134, 135]. Therefore, it is an inexpensive method to conduct 

pilot cell experiments and replicate previous cell experiments. Second, the 

process has been well established since it was developed in the early 1900s and 

gained widespread acceptance in the mid-1900s [136, 137]. Hence, comparative 
studies are abundant for various cell studies in 2D cultures. It is easy to compare 

these new studies with previous studies. Finally, 2D cell culture is also a simple and 

easily understood cell culture method that does not require long lab training [134]. 

2D cell cultures also make it easy to observe cell growth and analyze cell changes 
[138]. 

Although 2D monolayer cultures are popular for research, they have various 
limitations [139, 140]. Cells cultured on flat surfaces cannot adequately represent 

in vivo cell environments. In particular, growing cells on flat plastic surfaces are not 
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representative of the cancer cells’ function, growth and adaptation in a tumor, 

where the cells are surrounded by other heterogeneous cells and are exposed to 

various signals and mechanical forces in three dimensions [141-143]. The stiffness 

of 2D culture (plastic culture) is also approximately 2.4 GPa, which is only similar 

to bone stiffness and is not tunable to suit other organ stiffness [144]. Furthermore, 
as 2D culture models are not representative of the in vivo environment, 2D cell 

drug screening is generally not accurately predictive [145-147]. This increases the 

costs and failure rate of drug discovery due to unnecessary further clinical trials 

and development [145-148]. Hence, other models that are more representative of 
the in vivo environment have been developed. 

1.4.2 Cell culture models in 3D 

In the early 1980s, Mina Bissell proposed the importance of studying the TME using 
3D culturing techniques for cancer research [149, 150]. Her lab developed various 

3D culturing techniques for cancer discovery and treatments [151, 152]. In the 21st 

century, research interest in 3D cell culture has grown enormously as researchers 

have realized the shortcomings of 2D culture models [153]. Recent research has 
indicated that various 3D ECM models are superior to 2D monolayer cultures, as 

3D cell cultures can mimic the in vivo behavior of cancer cells within a tumor 

(Figure 7) [153, 154]. Although 2D cell culture techniques are still widely used in 

research, there is an upward trend in applying 3D cell culture techniques to cancer 
and stem cell research [135, 155, 156]. Indeed, cancer cells do not often grow in 2D 

surfaces in vivo, and it is necessary to model the actual growth environment of 

cells to understand cancer and develop more precise therapies against cancer. 
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Figure 7: Some methods available for 3D cell culture adapted from Lv et al. 2017 

[153] under CC BY 4.0 license. 

There are various key advantages of 3D culture over 2D culture. First, biomimetic 
3D cell cultures are much more physiologically relevant and predictive than 2D 

cell cultures [157-159]. The high degree of structural complexity in 3D cell cultures 

can mimic and maintain the cells' in vivo environment [157-160]. Such structural 

complexity is missing in 2D cell cultures. Hence, 3D culture systems are good in 
vivo simulators and are more realistic ways to grow and treat cancer cells, 

exhibiting similar growth and treatment patterns in vivo [125, 161, 162]. Second, 

different cell populations, such as CAFs and immune cells, can be cocultured with 

cancer cells in 3D spheroid structures, mimicking the cellular heterogeneity within 
in vivo tumors [163-165]. The interactions between these cells in vivo can be 

modeled and studied in 3D culturing systems [125]. In specific cases, 3D culturing 

systems can also act as barrier and help to understand the survival and function 

of cancer cells in 3D tissue microenvironments [166-168]. Finally, 3D cell cultures 
can more realistically simulate physical events in biological systems such as 

mechanical stress and fluid flow [139]. For example, blood flow is essential for the 

function of various tissues. The 3D models can be useful in studying how cells 

respond and adapt to changes in fluid flow (with changes in nutrients, etc.) [160, 
169]. Additionally, changes in mechanical stress, physiologically or pathologically, 
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can be replicated by mechanically tunable 3D cell culture systems [170, 171]. For 

example, collagen-alginate 3D culture has been found to be tunable to mimic the 

stiffness of the breast, giving researchers the opportunity to study the organ 

tropism of cancer and associated cells under this stiffness [172]. Hence, 3D cell 

culture is a much better in vitro method than 2D cell culture in representing in vivo 
conditions. Table 1 summarizes the various advantages of both 2D and 3D cell 

cultures. In addition, 3D cell culture is much cheaper and less cumbersome than 

animal work [136]. In some conditions, 3D cell cultures can be even more predictive 

and reproducible than those in vivo, and there is currently no universal in vivo 
model to study EMT and the TME [173]. In essence, as discussed above, 3D cell 

culture differs greatly in the biomechanical environment and type of substrates 

for cancer cells compared to those of 2D cell culture. Therefore, 3D cell culture is 

regarded as superior to 2D cell culture in mimicking actual tumor environments 
and progression. 

2D cell culture 3D cell culture 

Cheaper More representative of in vivo condition 

Very well established Very versatile to study different physical conditions 

Easily understood Very versatile to study cell co-cultures 

Easily analyzed Tunable to represent different biological conditions 

Table 1: Comparison of the advantages of 2D and 3D cell culture techniques. 

1.5 Cellular signaling in the 3D model 

Despite the advantages of the 3D model to recapitulate the in vivo TME and thus 

many phenotypes of cancer cells, such as increased resistance to drugs, the 

molecular mechanism by which the mechanical properties of the ECM affect 
cancer cell behavior remains unclear. Yes-associated protein (YAP), a 

transcription factor together with the transcriptional coactivator with PDZ-binding 

motif (TAZ), plays a crucial role in mechanotransduction [174]. Mechanical signals 

from the ECM are conveyed by YAP/TAZ to various intracellular signals [175]. High 
stiffness activates YAP, causing it to translocate to the nucleus from the 

cytoplasm [176]. Malignant cancer functions such as cellular proliferation and 

metastasis can be a result of enhanced activation of YAP. 
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Recently, studies have shown that YAP/TAZ-mediated ANGPTL4 expression is 

involved in human trophoblast cell invasion, ferroptosis and chemoresistance 

(Figure 8) [177, 178]. However, the exact roles of YAP/TAZ mediated ANGPTL4 

expression in metastasis are still largely unknown. There is a paucity of information 

regarding EMT in 3D and the acquisition of associated characteristics of 
metastasizing cancer cells. Thus, investigation into 3D cell-matrix communication 

through comparative transcriptomic analyses and proof-of-concept in vitro 

studies will enhance the general applicability of targets from drug screening as 

new adjunctive or therapeutic treatments. 

 

Figure 8: YAP/TAZ-mediated ANGPTL4 expression involved in human trophoblast 

cell invasion adapted from Cheng et al. 2021 [177] under CC BY 4.0 license. 
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2 Research aims 
Our central hypothesis is that 3D culture activates a distinct transcriptome in 

cancer cells to confer metastasis-associated characteristics. We aim to prove 
this through the specific methods as stated below: 

Aim 1: Identify common 3D EMT transcriptomes regardless of EMT inducers via 

meta-analysis of 2D vs 3D cultures of various cancer cell types. 

Aim 2: Identify key hub genes involved in 3D EMT. 

Aim 3: Validate the role of a key hub gene (ANGPTL4) as antimetastatic target 

using in vitro 3D culture models and in vivo animal models. 

We leveraged interdisciplinary research among Nanyang Technological University 

(NTU), National University of Singapore (NUS) and Karolinska Institutet (KI) to 

provide clinically relevant insights into the cancer cell transcriptomes during EMT 
induced in 2D and 3D environments. The findings from our studies will provide new 

insights into the interaction between cancer cells and ECM in 3D cultures.
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3 Materials and methods 
The main materials and methods used for our studies are outlined in this section. 

For specific details, please refer to the individual papers. 

3.1 Data retrieval and bioinformatics analyses 

Datasets consisting of cancer transcriptomes from 2D and 3D cancer cell cultures 
with and without mesenchymal inducers were retrieved from the Gene Expression 

Omnibus (GEO) repository. An in-house generated dataset using gastric 

adenocarcinoma (MKN74) treated with either dimethyloxallyl glycine (DMOG) or 

TGF-β1 to induce mesenchymal transition was included. Bioinformatics analyses 
of these data and RNA-seq data of MKN74 cells grown in 3D collagen-alginate 

culture were performed and analyzed as previously described [179].  

The protein-protein interaction network of 3D MES DEGs was constructed using 

Cytoscape [180]. Topological analysis of the network was performed using 

CytoHubba which computed the density of maximal neighborhood component 

(DMNC) scores of each node to reflect their interaction and importance [181]. 
Cohort data were retrieved from PREdiction of Clinical Outcomes from Genomic 

Profiles (PRECOG) [182] and The Cancer Genome Atlas (TCGA) Datasets. 

3.2 Cell cultures 

3.2.1 Cell lines 

The polarized human gastric adenocarcinoma cell line MKN74 and human urinary 
bladder transitional carcinoma cell lines, T24 and UMUC-3, were used in our 

studies. 

3.2.2 2D cell culture 

MKN74 cells were cultured in RPMI supplemented with 10% fetal bovine serum 

(FBS). T24 and UMUC-3 bladder cancer cells were cultured in DMEM and EMEM, 

supplemented with 10% FBS, respectively. The cell lines were routinely passaged 
and maintained at 37°C in 5% CO2. 

3.2.3 3D cell culture 

Micropatterned agarose hydrogel was used for the formation of 3D cell spheroids. 

For 3D collagen-alginate cell culture, a mixture of collagen, sodium alginate, and 

medium solution were used. The stiffness of these 3D cell cultures was adjusted 
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using varying concentrations of calcium chloride. Rheology testing was performed 

on the hydrogels using a rheometer (Anton Paar). 

For 3D PEGDA-GelMA cell culture, a mixture of Poly(ethylene glycol) diacrylate 

(PEGDA) and Gelatin methacryloyl (GelMA) in PBS with Lithium phenyl(2,4,6-

trimethylbenzoyl)phosphinate (LAP) was induced to crosslink using a 405 nm 

wavelength light source. The stiffness of these 3D cell cultures was adjusted using 
varying concentrations of PEGDA. Rheology testing was performed on the 

hydrogels using a rheometer (Anton Paar). 

3.2.4 Culture treatments 

For EMT induction, each culture medium was replaced with the corresponding 
serum-free medium containing TGF-β1 or DMOG. Recombinant cANGPTL4 protein 

was produced and purified as previously described [111, 183].  

For antibody treatments, indicated concentrations of 11F6C4mAb (antibody 

against cANGPTL4) were added. For negative control, IgG was used. ANGPTL4 

silencing was also performed using ON-TARGETplus SMARTpool siRNA (Horizon 
Discovery) targeting ANGPTL4 as previously described [184]. 

3.3 Microscopy 

The microstructures of the hydrogels were observed by scanning electron 
microscopy. 3D cell cultures were monitored using JuLi Stage: Real-Time Cell 

history Recorder (NanoEnTek, Singapore) or Inverted Fluorescence Live Cell 

Microscope AO7. Image processing and qualification were performed using ZEN 
software (Carl Zeiss) and ImageJ. 

3.4 Real-time PCR and immunoblots 

Total RNA was extracted using TRIzol® Reagent (Thermo Fisher Scientific, USA) 
followed by Pure NA. Fastspin). Total RNA was quantified based on the A260/280 

absorbance using Nanodrop ND1000 (Thermo Fisher Scientific, USA). Total RNA 

was reverse transcribed using iScript cDNA SuperMix (Quanta Biosciences, USA). 

Quantitative PCR was performed as previously described [185]. Immunoblots were 
performed as previously described [186]. 

3.5 Chromatin immunoprecipitation (ChIP) 

Human DNase-seq data across cancer cell lines were retrieved from Encyclopedia 
of DNA Elements (ENCODE). Active regulatory regions of ANGPTL4 gene were 
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identified. Chromatin immunoprecipitation (ChIP) experiments were carried out 

as previously described [187, 188]. Sonicated chromatin complexes were 

immunoprecipitated using an antibody against YAP. 

3.6 Hydroxyproline assay 

To examine the stability collagen-alginate hydrogel, 100 µL of culture media were 

collected from 0 h and 48 h wells and transferred to a 96-well plate. RPMI samples 

with known concentrations of collagen were included as standards. Chloramine T 
buffer was added to each sample and standard well, and incubated at room 

temperature. After that, Ehrlich's Reagent was added to each sample and standard 

well, and were incubated. Absorbance values at 560 nm were measured. Values 

from the standard wells were used to plot a standard curve. The relative amount 
of hydroxyproline present in the samples was determined from the standard 

curve to calculate the percentage of collagen degradation. 

3.7 Animal experiments and ethics 

Orthotropic xenograft for nonmuscle invasive bladder cancer in NSG mice was 
performed using UMUC3 cells as previously described [189].  

To study the effects of stiffness in vivo, MKN74 cells were mixed with PEGDA-

GelMA matrix (with LAP) and injected subcutaneously into NSG male mice. 

Crosslinking was triggered using 405 nm wavelength light source for 120 s. 

All animal experiments in our studies are approved by the relevant local ethical 
committees. All animal handlers involved in our studies are licensed to carry out 

experiments in the university animal facilities. 

3.8 Statistical analysis 

Appropriate statistical analyses were used based on the sample size, number of 
groups and whether the groups were paired. Statistical tests were performed 

using GraphPad Prism software (GraphPad Software Inc., USA). A p-value of < 0.05 

was considered significant (*P < 0.05; **P <0.01; ***P < 0.001; n.s., not significant).
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4 Results 

4.1 Paper I – Attenuating epithelial-to-mesenchymal transition in 
cancer through angiopoietin-like 4 inhibition in a 3D tumor 
microenvironment model 

4.1.1 Mechanosensitive gene signature of cancer cells undergoing mesenchymal 
transition in 3D culture 

In a differential gene expression analysis using RNA-seq datasets from different 

cell lines and GEO projects, we examined two main parameters, namely, 
mesenchymal induction (control or MES) and culture condition (2D or 3D). 

Comparing 3D to 2D cultures, we found 848 differential expressed genes (DEGs), 

of which more than 70% (610 DEGs) were significantly upregulated. The 

disproportionately high number of upregulated DEGs suggests the activation of a 
new set of genes that recapitulate new biological activities in 3D culture. 

Furthermore, mesenchymal induction resulted in 368 DEGs. Gene ontology 

analysis revealed that these DEGs can be broadly grouped into three clusters. 

Genes associated with angiogenesis, cell growth, cell-matrix adhesion and 
responses to mechanical stimulus and stress were more prominently elevated in 

3D cultures than in 2D cultures. Interestingly, genes involved in apoptosis and 

calcium ion transport were suppressed in 3D culture, suggesting that cancer cells 

in 3D culture are intrinsically more resistant to apoptotic signals. Gene set 
enrichment analysis (GSEA) of the mechanotransduction gene set [190] revealed 

that mechanosignaling plays a pivotal role in the regulation of gene expression in 

3D tumoroids and mesenchymal transition but not in 2D culture. 

By overlapping the DEGs from the two main effects, 3D culture and mesenchymal 

transition, we revealed 74 common genes implicated and hence termed the “3D 

MES DEGs”. Functionally, the 3D MES DEGs are primarily responsible for ECM 
remodeling, collagen metabolism, cellular motility, and cell‒cell adhesion. Protein‒
protein interaction (PPI) network analysis revealed that many inducers and 

remodelers of ECM, such as TGFB1, serine protease inhibitors (SERPINs) and MMPs, 

ANGPTL4, Fibronectin 1 (FN1) and integrins, form a highly intertwined network, 
highlighting the importance of these genes in orchestrating mesenchymal 

transition in a 3D context. Our analysis identified potential anti-metastatic targets 

involved in the growth and mesenchymal transition of cancer cells in 3D culture, 

which deliberate disruption can yield beneficial clinical implications.  
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4.1.2 ANGPTL4 gene is hub gene in 3D mesenchymal signature 

To uncover the underlying mechanisms, we examined the expression of the 74 “3D 
MES DEGs” established from our transcriptomic meta-analysis in our hydrogel-

encapsulated 3D cancer cultures. We observed a significant influence of the 

surrounding stiffness on gene expression related to ECM remodeling and integrin 

signaling. Specifically, genes such as ITGA2, COL13A1, ANGPTL4, and LAMB3 
displayed notable upregulation when cancer cells were encapsulated within a 

stiffer matrix. To identify key genes that regulate important aspects of 3D EMT, we 

performed a hub gene analysis of the PPI network (Figure 9). The top five hub 

genes based on Density of Maximum Neighborhood Component were TGFB1, 
SERPINB2, LAMB3, ANGPTL4 and COL22A1. TGF-β1, a well-established EMT inducer, 

has been shown to upregulate the expression of ANGPTL4 [191]. 

 

Figure 9: Protein‒protein interaction (PPI) network of the 3D MES DEGs. 

To assess the clinical relevance of these hub genes, we interrogated the PRECOG, 

Prognoscan cohort and TCGA databases [182]. ANGPTL4 was ranked highest for 

its prognostic value in cancer patients among the top five hub genes, ANGPTL 
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family and well-established oncogenes, thus implying a stronger association of 

ANGPTL4 expression with poorer cancer outcome. The stratification of the 

patients into high- and low- ANGPTL4-expressing tumors, as defined by the 

median expression of ANGPTL4, revealed that patients with high ANGPTL4-

expressing cancers had a poorer prognosis and an overall shorter median survival 
time. In the PrognoScan database, cohort studies that reported overall and 

relapse-free survival, which had significantly corrected P values, were used in the 

analysis. All identified studies, except for the Stockholm cohort (GSE1456) [192], 

illustrated the association between high ANGPTL4 expression and poor patient 
outcomes. These findings suggest that ANGPTL4 is a potential anti-metastatic 

target. 

4.1.3 Mechanoregulation of human ANGPTL4 gene 

The expression of many activated genes in 3D culture is mechanosensitive, 
including the hub gene ANGPTL4. However, the mechanoregulation of the hub 

gene ANGPTL4 has not been thoroughly investigated. We first identified regulatory 

sites in the human ANGPTL4 gene. Two DNAse I hypersensitive sites (DHS 1-2) are 
potential regulatory sites in ANGPTL4, as revealed by data from various cancer cell 

lines in the ENCODE database. DHS1 corresponds to the proximal regulatory 

promoter, and DHS2 corresponds to the characterized peroxisome proliferator 

response element (PPRE) [193]. 

Proto-oncogene YAP and TAZ are master regulators of mechanotransduction in 

response to various physical cues, such as substrate stiffness and dimensionality, 
which regulate critical cellular functions and tissue homeostasis [194]. Since 

MKN74 is a YAP-dominant cancer cell line [195], quantitative ChIP was performed 

to examine the occupancy of these DHSs associated with YAP protein. Primers for 

Ch10 and CTGF were used as the negative control and positive control, 
respectively. Quantitative ChIP revealed that YAP was associated with DHS1, but 

not DHS2, of the ANGPTL4 gene. As matrix stiffness increased, the occupancy at 

DHS1 similarly increased. 

4.1.4 ANGPTL4 deficiency attenuates EMT-augmented chemoresistance 

ANGPTL4 has been recurrently highlighted in numerous studies for its role in highly 
aggressive oncogenic processes, including EMT, chemoresistance, anoikis 

resistance and metabolic reprogramming [110, 112, 191, 196, 197]. These ANGPTL4-
mediated activities could empower cancer cells with metastatic capabilities. 

Notably, within the 3D architecture, ANGPTL4 emerges as a hub gene in the 
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transcriptomic landscape of cancer EMT, which is implicated in its involvement in 

mechano-signal transduction.  

Consequently, we would like to investigate if ANGPTL4 is a potential anti-

metastatic target. To simulate the biophysical environment encountered by cells 

in various body tissues for EMT induction tissues, we established two types of 

hydrogels, i.e., collagen-alginate and PEGDA-GelMA hydrogels, with tunable 
stiffness for 3D MKN74 cancer cell cultures. The collagen-alginate hydrogel 

comprises of interpenetrating network of alginate and type 1 collagen with matrix 

of different stiffness [198, 199]. Also, the PEGDA-GelMA hydrogel forms UV-

inducible crosslinks with tunable stiffness of ~100-4000 Pa. The choice of 
stiffness were ~160Pa (denoted as 3D160) and ~1600Pa (3D1600) which 

corresponded to the stiffness of adipose tissues and liver, respectively [200]. 

Importantly, it also recapitulates the changes in biophysical properties of TME as 

the tumor progresses. Furthermore, by tuning the matrix stiffness to either 160 or 
1600 Pa, we can also mimic the evolving matrix stiffness observed as tumors 

advance in their stages. Using the two hydrogels, we examined the EMT response 

of 3D MKN74 cancer cell cultures. After treatment with the EMT inducers, DMOG 

(mimics hypoxia) and TGF-β1, a higher expression level of Snai1 and ZEB-1 was 
detected in cancer cells in 3D1600, with concomitant downregulation of Erbb3, 

than cells in 3D160. Therefore, a more robust EMT was detected in a high stiffness 

matrix, compared to low stiffness matrix. 

Next, we validated the expression profile ANGPTL4 in cancer cells undergoing EMT 

in 2D, 3D160 and 3D1600 conditions. The expression of ANGPTL4 was higher in 3D 
culture compared with 2D culture, which was further increased when stimulated 

with DMOG and TGF-β1. To ascertain a pivotal role for ANGPTL4 in 3D EMT, we 

blocked the function of ANGPTL4 using a neutralizing monoclonal antibody 

mAb11F6C4, which has previously been shown to neutralize the function of 
ANGPTL4 effectively [110, 112]. The co-treatment with mAb11F6C4 either abolished 

or diminished the changes in EMT-associated gene expression in 3D160 and 

3D1600 compared with control. These observations from both the collagen-

alginate and PEGDA-GelMA hydrogels consistently suggest that a stiffer TME 
elicits a more robust EMT response, which is attenuated by ANGPTL4 deficiency.  

To understand the effect of matrix stiffness and ANGPTL4 on the well-recognized 
EMT-associated chemoresistance of cancer cells, we determined the mean IC50 

of MKN74 for cisplatin and 5-fluorouracil (5FU), two common chemodrugs. A 
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higher IC50 for the two drugs was observed in cancer cells cultured in 3D 

compared with 2D culture. In addition, cells culture at 3D1600 were more resistant 

to the drugs than at 3D160. The IC50 of MKN74 further increased during 3D EMT, 

suggesting a greater EMT-associated enhanced chemoresistance at a stiffer 

matrix. Notably, immunoblocking of ANGPTL4 by mAb11F6C4 lowered the IC50 of 
MKN74 to chemodrugs in 3D160 and 3D1600 cultures. In summary, these 

observations suggest that ANGPTL4 deficiency reduces cell viability in cancer cell 

spheroids and attenuates EMT-augmented chemoresistance. 

4.1.5 Matrix stiffness enhances EMT in vivo 

In our in vivo study, MKN74 cells were combined with liquid PEGDA-GelMA (with 
LAP) and subcutaneously injected into mice before initiating UV-induced gelation. 

Our results revealed a ~4-fold increase in ANGPTL4 in MKN74-derived tumors with 
3D1600 PEGDA-GelMA hydrogel compared to the 3D160 in vivo. These findings 

are in line with our in vitro results, as we observed elevated expression levels of 

EMT-associated transcription factors Snai1 and ZEB-1 in MKN74-derived tumors 

from the 3D1600 hydrogel. Additionally, we detected a concomitant 
downregulation of the epithelial Erbb3 gene compared to the 3D160 hydrogel in 

vivo. Zymography analysis revealed more MMP9 activity in tumor derived from 

3D1600 than 3D160 hydrogels. Taken together, our data demonstrate that a stiffer 

matrix elicits more robust EMT response (Figure 10).  

 

Figure 10: A schematic diagram illustrates the effect of TME stiffness in 
mechanoregulation of ANGPTL4, a hub gene within the 3D EMT gene signature. Our 

results revealed ANGPTL4 as a promising target to curtail cancer EMT in a 3D 

tumor architecture at physiological-relevant stiffness. 
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4.2 Paper II – Molecular dynamics of the recruitment of 
immunoreceptor signaling module DAP12 homodimer to lipid raft 
boundary regulated by PIP2 

Immune evasion is a hallmark of cancer. T cells has been widely identified for their 
important roles in the adaptive immune response and the TME. However, less is 

known regarding the role of natural killer (NK) cells in the TME [201]. Furthermore, 

it was also widely studied that lipid rafts were involved in the T cell receptor 
signaling transduction but not in NK cells.  

In this collaborative paper, we illustrate that phosphatidylinositol 4,5-

bisphosphate (PIP2) lipids are positioned at the boundary of lipid rafts in our 

coarse-grained (CG) model of membrane organization (Figure 11) [202]. These 

negatively charged lipids attract DAP12 homodimers to the lipid raft boundary 
through interactions between the basic-rich areas and the signaling 

immunoreceptor tyrosine-based activation motifs (ITAMs) of DAP12 and PIP2. 

Moreover, our findings indicate that the interaction between proteins and lipids 

can be interrupted by the presence of Ca2+, which competes with DAP12 for 
binding to PIP2. Consequently, the cytoplasmic segment of the DAP12 homodimer 

separates from the membrane and returns to the nonraft region, exposing the 

ITAMs for subsequent downstream signaling. These discoveries offer essential 

insights into comprehending how signal transduction in NK cells is controlled by 
the microenvironment of the cell membrane. 

 

Figure 11: The graphical abstract of Paper II. PIP2 regulates the recruitment of 

immunoreceptor signaling module DAP12 homodimer to lipid raft boundary. 
Reprinted with permission from [202]. Copyright 2023, American Chemical 

Society. 
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4.3 Paper III – HTCA: a database with an in-depth characterization of 
the single-cell human transcriptome 

Single-cell RNA-sequencing has become a widely utilized approach in recent 
years for analyzing individual cells in a population at the transcriptomic level. While 

attempts have been made to consolidate published single-cell data, a 

comprehensive characterization is still lacking.  

Here, we introduce HTCA, an interactive database developed from over two million 
high-quality cells sourced from about 3000 single-cell RNA-seq samples and 

includes detailed profiles of some healthy adult tissues and their respective 

matching fetal tissues [203]. It serves as a platform for exploring transcription 

factor (TF) activities, TF motifs, gene signatures, enriched gene ontology terms, 
receptor-ligand interactions, and more across different cell types in fetal and 

adult tissues. 

In addition to its pre-compiled data, HTCA includes user-friendly web-based 

analysis tools that offer adjustable parameters for a diverse range of interactive 

bioinformatics analyses. Moreover, it allows for the comparison of data from other 
experiments with its in-built datasets, enabling swift comparisons across multiple 

studies. Overall, HTCA serves as a comprehensive solution for quick and thorough 

analysis of multi-omics single-cell data encompassing diverse tissues and cell 

types. 

For the central theme of this thesis, transcriptomic expression of ANGPTL4 across 

different organs and cell types in fetal and adult samples are presented using 
HTCA (Figure 12).  

 

Figure 12: Transcriptomic expression of ANGPTL4 across different organs and cell 

types in fetal and adult samples presented using HTCA.
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5 Discussion 

5.1 Mechanosensitive gene signature related to metastasis 

Many therapeutic strategies focused on the key biological regulators in EMT 
mechanisms, our study cemented the critical involvement of the not only the 3D 

biophysical TME of the cancer cells, but also the mechanical stress rendered by 

varying stiffness of the TME of the organs or tumor. This is highlighted in our meta-

analysis of transcriptomes of cancer cells undergoing EMT across various 2D and 
3D experiments, which revealed a distinct metastasis-related gene signature in 

3D-EMT cultures. Notably, many genes in this 3D EMT gene signature exhibited a 

mechanosensitive expression profile, which may contribute to the ability of 

cancer cells to adapt to mechanical stresses, such as those present in the TME, 
and invade surrounding tissues. Indeed, 3D culture systems have been 

documented to induce cancer EMT, enhance stemness traits and promote 

chemoresistance in different cancer types [204-206]. These increased 

aggressive behaviors are, in part, mediated by mechanosensory such as ZEB1 and 
YAP1, activated via the interplay with ECM-binding integrins [207]. Furthermore, 

various secretory molecules like TGF-β1, ANGPTL4 and proinflammatory 

cytokines, known for their dual roles in mechano-signaling and EMT, are 

overexpressed in 3D cancer milieu [208]. It is also noteworthy that 3D EMT might 
manifest with a different set of biomarkers compared to the traditional 2D 

benchmarks, hinting at the intricacies of the third dimension in cellular behavior. 

In congruence with the meta-analysis, transcriptomes of cancer cells in collagen-

alginate 3D EMT culture with varying stiffness revealed exacerbation of these 
distinct metastatic gene signatures in 3D culture models of higher stiffness. These 

data suggests that the varied stiffness of the organ-specific microenvironments 

is crucial in aggravating EMT signaling. 

5.2 ANGPTL4 is an important hub gene 

Several hub genes were identified within the 3D EMT gene signature which form a 

highly interconnected network, regulating key aspects of EMT and cancer 
progression. The top ranked hub genes include TGFB1, SERPINB2, LAMB3, ANGPTL4 

and COL22A1. Transcriptome analysis of SerpinB2-deficient breast tumors 

showed that SerpinB2 deficiency delayed mammary tumor progression. SerpinB2 

also regulates stromal remodeling and local invasion in pancreatic cancer [209, 
210]. LAMB3 has been shown to mediates proliferative, invasive, and metastatic 

behavior of several cancer types, such as pancreatic and colorectal cancers [211, 
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212]. A direct role for COL22A1 in metastasis is unclear, however, it is involved in 

remodeling of the TME [213, 214]. TGF-β1, a well-established EMT inducer, has been 

shown to upregulate the expression of ANGPTL4, also a hub gene [191]. ANGPTL4 

is involved in different processes in metastasis such as anoikis resistance, 

metabolic reprogramming and chemoresistance [110, 112, 197].  

5.2.1 ANGPTL4 is a key player in cancer metastasis and growth 

ANGPTL4 is a secreted protein that can undergo proteolytic cleavage to generate 

the N-terminal coiled-coil fragment (nANGPTL4) and the C-terminal fibrinogen-
like domain (cANGPTL4) [215]. While nANGPTL4 is mainly responsible for the 

regulation of lipids, cANGPTL4 has been found to regulate cell migration by 

conferring anoikis resistance, promoting cancer growth and invasiveness and 

acting as a key player in fueling energy in cancer cells for EMT and metastasis [216-
220]. 

The importance of ANGPTL4 in cancer metastasis and growth has been explored 
in many studies. Earlier work by Le Jan et al suggested that various perinecrotic 

tumors express ANGPTL4 under hypoxia, leading to the growth of nodules and 

vasculature [221]. Furthermore, the involvement of ANGPTL4 in metastasis can also 

be shown by its expression profile in tumors. Elevated expression of ANGPTL4 has 
been found across all epithelial tumors, and progression of these tumors 

correlates with ANGPTL4 expression [109]. Indeed, cANGPTL4 promotes 

metastasis to the lung by stimulating vascular leakiness within tumors [109]. 

Furthermore, a recent study on the proteolytically cleaved fragments of ANGPTL4 

revealed that cANGPTL4 (C-terminal fragment) promotes cancer growth and 
metastasis, but nANGPTL4 (N-terminal fragment) prevents metastasis [222]. In 

our study, we focused on cANGPTL4 as a potential metastatic target. More 

mechanistic details on how cANGPTL4 is regulated and involved in metastasis will 

be discussed in the following sections. 

According to our gene ontology analysis, 3D MES DEGs are mainly responsible for 
ECM remodeling, collagen metabolism, cellular motility, and cell‒cell adhesion. All 

these characteristics of metastasis have been studied in ANGPTL4 in vitro. A 

major strength of our study is that we incorporated multiple cell lines in our 

analysis, and we found that ANGPTL4 is mechanosensitive, which is not cell 
specific. However, other than ANGPTL4, there are other hub genes that are also 

mechanosensitive. For example, TGF-β is mechanosensitive and has been found 
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to be involved in mechanobiological signaling in tissues and cells of the bone and 

cartilage [223]. 

5.2.2 ANGPTL4 is a key player in mechanosensing 

We found that most 3D MES DEGs are mechanosensitive because our GSEA of 
the mechanotransduction gene set [190] revealed that mechanosignaling plays a 

pivotal role in the regulation of gene expression in 3D tumoroids and EMT but not 

in 2D culture. Previously, gene expression changes when cells cultured in 3D have 

been investigated, however little is known about their regulation. Furthermore, 
despite 3D tumoroid being a better model to mimic in vivo tumor biology, few 

studies investigated EMT in 3D and even less is known about how genes are 

regulated in 3D EMT, which may have major scientific and clinical impact.  

In our results, we systematically revealed the 74 common genes implicated in both 

the 3D culture and EMT (“3D MES DEGs”) using meta-analysis of 95 RNA-seq data 

from 14 cell lines in GEO. As our analysis suggests that most 3D MES DEGs are 
mechanosensitive, an important aspect is to identify key hub genes underlying 

the observed phenotype, i.e., 3D EMT and metastasis. We then performed a hub 

gene analysis of the PPI network and identified ANGPTL4 to be one of the top five 

hub genes based on the density of the maximum neighborhood component.  

In addition, by interrogating the PRECOG, PrognoScan and TCGA database, we 
discovered that ANGPTL4 is the most clinically relevant hub gene, associated with 

poor clinical prognosis. In our 3D culture model, we recapitulate these findings that 

mechanotransduction of EMT signaling involved the increase expression of 

ANGPTL4. As 3D culture stiffness is increased, the expression of EMT biomarkers 
was further elevated, indicating that the physical properties of TME reshape the 

biological properties of the cancer cells. In particular, this effect aggravates EMT 

processes in tumor. Similarly, using a dynamic magneto-softening matrix, it was 

reported that matrix stiffness increases tumor malignancy, EMT and hypoxia. 
These malignant transformations could be halted or reversed with matrix 

softening [224]. Consistent with our clinical and transcriptomic analysis, targeting 

ANGPTL4 through ASO or mAb immunoneutralization successfully delayed EMT 

and suppressed tumor growth. The critical role of ANGPTL4 in the 3D TME and 
chemoresistance could potentially be a common trait in many cancer types as 

exemplified by our data from multiple cancer cell types including the gastric 

tubular adenocarcinoma (MKN74) and human bladder transitional cell carcinoma 

(UMUC3 and T24). This underscores the broader implications of targeting 
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ANGPTL4 as a potential treatment against cancer undergoing EMT beyond a 

singular cancer type. Therefore, ANGPTL4 is a potential target for antimetastatic 

therapy. 

5.3 Regulation of ANGPTL4 expression 

5.3.1 PPAR-mediated expression of ANGPTL4 

Peroxisome proliferator-activated receptors (PPARs) are transcription factors in 

the nuclear hormone receptor superfamily [225]. There are three subtypes of 

PPARs, PPARα, PPARβ/δ and PPARγ, which can be activated by various ligands, 
such as free fatty acids and eicosanoids [226]. Although the three subtypes share 

significant homology, they have different biological functions and tissue 

distributions. PPARα regulates fatty acid catabolism and is elevated in tissues with 

elevated fatty acid oxidation, such as the heart, liver, skeletal muscle and brown 
adipose tissues [227]. PPARβ/δ is expressed in almost all tissues and is 

characterized by elevated lipid metabolism [228]. PPARγ plays an important role 

in regulating adipogenesis, glucose metabolism, fat storage and the expression of 

proinflammatory cytokines [225]. The expression of PPARγ is also elevated in white 
and brown adipose tissues. 

When activated by a ligand, PPAR changes in conformation and translocates to 

the nucleus to form a heterodimer with the retinoid X receptor (RXR), another 

nuclear receptor [225]. The PPAR-RXR heterodimer then binds to a specific 

portion of the DNA, known as the PPRE, to regulate the expression of the target 
gene under various conditions [225, 227, 228]. Indeed, PPREs have been found in 

both the promoter and intron-3 regions of the ANGPTL4 gene (Figure 19) [229, 

230]. For example, ANGPTL4 is a direct transcriptional target of PPARγ with a 

regulatory site located upstream of the ANGPTL4 transcription start site [229]. 
PPARγ-mediated expression of ANGPTL4 usually leads to cell proliferation, 

migration and angiogenesis in physiological and pathological processes [229]. 

5.3.2 TGFβ and hypoxia mediated expression of ANGPTL4 

TGF-β is a cytokine that plays a pivotal role in various cellular functions, such as 
proliferation, differentiation, migration, apoptosis, and EMT [231]. While TGF-β1 was 

the hub gene with the highest connectivity in our PPI analysis, ANGPTL4 was the 

hub gene that was most clinically relevant. Indeed, both TGF-β1 and ANGPTL4 have 

been heavily studied in vitro and have been found to promote tumor invasiveness 
and metastasis [231]. Furthermore, high expression of ANGPTL4 defines patients 
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with poor prognosis in multiple types of cancer [232]. Interestingly, TGFβ also 

induces the expression of ANGPTL4 via the Smad signaling pathway [233]. 

Furthermore, under hypoxic conditions, HIF-1 upregulates the expression of 

ANGPTL4 to promote angiogenesis and metastasis. This further implies the major 

connectivity and importance of ANGPTL4 in cancer progression and metastasis. 

5.3.3 YAP/TAZ regulation of ANGPTL4 

In our study, we confirmed using quantitative ChIP that YAP/TAZ regulates the 

transcription of the ANGPTL4 gene via the promoter region (DHS1). YAP/TAZ-
mediated ANGPTL4 expression in cells has also been suggested in earlier 

published works [177, 188]. In 2021, Cheng et al studied YAP-mediated ANGPTL4 

expression in trophoblast cells and revealed that YAP activation was required for 

GPER-stimulated ANGPTL4 expression [177]. However, a direct causal relationship 
between YAP and ANGPTL4 was not established, as no experiment on the direct 

binding of YAP (or associated complexes) to the ANGPTL4 gene was performed. 

Therefore, there were no mechanistic details on how YAP/TAZ regulates ANGPTL4. 

It was also not known whether the YAP regulation of ANGPTL4 can be found in 
other types of cells. 

In another earlier work on ovarian cancer cells, Yang et al found that ferroptosis 
can be promoted by TAZ in ovarian cancers by regulating ANGPTL4 and NOX, and 

hence, TAZ activation can be offered as a potential therapy for ovarian cancers 

[188]. In this study, TAZ (complex) was shown to bind to the promoter region and 

directly regulate the transcription of the ANGPTL4 gene in CAOV2 cells. However, 
there was no systematic study on whether YAP/TAZ binds to the intron-3 region 

of the ANGPTL4 gene, the other DHS site. The result from our study aligns with the 

results of this study that YAP/TAZ binds to the promoter region but not to intron-

3 and regulates the transcription of the ANGPTL4 gene in MKN74 cells. 

5.4 Limitations of study 

Although our study aims to explore the role of ANGPTL4 in metastasis and offer 
an antimetastatic strategy, most of our work mainly focuses on EMT, which is only 

the initiation of metastasis in solid tumors. There are many other stages of 

metastasis that were not explored in detail during our in vivo study [12]. While it is 

realistically impossible to prognosticate when patients’ tumors metastasize, there 
are methods that we can explore in vivo to precisely control (or accelerate) and 

study metastasis in the future. One example is to use a transgenic cancer cell line 

harboring a Snai1-ER transgene, which can provide direct initiation of EMT via 4 
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hydroxytamoxifen (4-OHT) in vivo and induce metastasis to the lungs in mice 

[234]. Additionally, a potential method to accelerate the stages of metastasis in 

vivo is to use a more aggressive cell line, such as the breast cancer cell line MDA-

MB-231 [235]. Therefore, future studies should incorporate these in vivo methods 

to fully explore the potential of targeting ANGPTL4 during other stages of 
metastasis as an antimetastatic strategy.
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6 Conclusions 
In summary, we have identified 74 common genes implicated in both 3D culture 

and EMT, termed the 3D MES DEGs, via meta-analysis of 2D vs 3D culture RNA-
seq data of various cancer cell types from the GEO database. By performing a PPI 

network analysis of the 3D MES DEGs and screening for clinical relevance of the 

top five hub genes in TCGA, PrognoScan and PRECOG, we showed that ANGPTL4 

is the most clinically relevant hub gene. Indeed, we also found that cancer cells 
undergoing EMT have higher transcriptomic and protein expression levels of 

ANGPTL4. 

Furthermore, we validated that ANGPTL4 is a good anti-metastatic target in vitro 

because treatments using an antibody against ANGPTL4 (mAb11F6C4) diminished 

the elevation of mesenchymal markers in cancer cells as well as reduced 3D 
spheroid formation. Similarly, treatment with an antibody against ANGPTL4 in in 

vivo orthotropic xenografting of noninvasive muscle bladder cancer and 

subcutaneous xenografting of MKN74 cells also reduced the growth of bladder 

tumor xenografts and MKN74 xenografts compared with the control, respectively. 
Mechanistically, we showed that ANGPTL4 expression is regulated by YAP/TAZ via 

the promoter region of the ANGPTL4 gene. Hence, ANGPTL4 deficiency can curb 

the growth of primary tumors and tumors undergoing EMT, fulfilling the criterion 

of an antimetastatic strategy. 

Taken together, these findings reflect the dynamic control of the physical stiffness 
in tumor microenvironment in EMT signaling of cancer cells and the intricate 

involvement of ANGPTL4 as a key player. Our multi-facet analyses also indicates 

that ANGPTL4 is of high clinical importance with regards to advanced stage 

cancer, corroborating with our clinical understanding of tumors in patients [236-
238]. In summary, our study demonstrated the effect of TME stiffness in 

mechanoregulation of ANGPTL4, a hub gene within the 3D EMT gene signature. 
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7 Points of perspective 
Metastatic cancer continues to be the leading cause of mortality in cancer 

patients, primarily due to the lack of therapeutics targeting metastasis. In cancer, 
EMT has emerged as a critical mechanism key mechanism that promotes tumor 

progression, invasion, and metastasis. The cancer cells gain cellular plasticity 

during EMT, which facilitates their dissemination from the primary tumor, 

migration to other parts of the body, entry into the bloodstream or lymphatic 
system, and colonization at distant organs, leading to the formation of secondary 

tumors [239]. As a result, patients with tumor cells undergoing EMT manifest into 

increased tumor aggressiveness, decreased response to therapy, higher 

metastatic cancer, and cancer recurrence. Particularly, the presence of EMT 
markers in patients’ primary and secondary tumors have been found to be 

associated with advanced cancers and severely declining clinical prognosis. 

Despite the advancement of cancer therapeutics, very few therapeutics targeting 

EMT were developed and made it to the bedside [240]. Together with the high 

failure rate of treatments resulting in terminal metastatic cancer of patients, this 
highlights a major disconnect in the development anti-metastasis strategies. To 

effectively combat metastatic cancer, it is important to develop multi-pronged 

strategies that consider the changes in the TME, curb the growth of the primary 

tumor, and eradicate cancer cells undergoing EMT. 

As a final point, the 3D culture systems are increasingly recognized as superior to 
traditional 2D cultures in replicating physiological and pathological cell behaviors. 

Critically, the physicochemical attributes of the 3D matrix, such as porosity, 

permeability, and viscoelasticity, can modulate cellular responses independent of 

biological factors. For instance, cancer cells can perceive the matrix pore size and 
rewire the mechano-signaling pathways to migrate out of their local environment 

[241-243]. Notably, recent research has spotlighted the role of matrix 

viscoelasticity - a characteristic inherent to many biological tissues - in governing 

cellular spheroid arrangement and tumor proliferation [244, 245]. The interplay 
between matrix stiffness and viscoelasticity shapes the proliferative capacity and 

motility of cells in 3D condition [245]. Thus, a deeper exploration into how various 

physicochemical properties of 3D matrices and their interactions impact cell 

behaviors is paramount. Bridging these gaps will provide a framework for refining 
3D culture techniques. 
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