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Abstract: The East-African lowland coastal forest (LCF) is one of Africa’s centres of species endemism,
representing an important biodiversity hotspot. However, deforestation and forest degradation due to
the high demand for fuelwood has reduced forest cover and diversity, with unknown consequences
for associated terrestrial carbon stocks in this LCF system. Our study assessed spatio-temporal
land use and land cover changes (LULC) in 1998, 2008, 2018 in the LCF ecosystem, Tanzania. In
addition, we conducted a forest inventory survey and calculated associated carbon storage for this
LCF ecosystem. Using methods of land use change evaluation plug-in in QGIS based on historical
land use data, we modelled carbon stock trends post-2018 in associated LULC for the future 30 years.
We found that agriculture and grassland combined increased substantially by 21.5% between the year
1998 and 2018 while forest cover declined by 29%. Furthermore, forest above-ground live biomass
carbon (AGC) was 2.4 times higher in forest than in the bushland, 5.8 times in the agriculture with
scattered settlement and 14.8 times higher than in the grassland. The estimated average soil organic
carbon (SOC) was 76.03 ± 6.26 t/ha across the entire study area. Our study helps to identify land use
impacts on ecosystem services, supporting decision-makers in future land-use planning.

Keywords: remote sensing and GIS; IVI; soil organic carbon; Wami Mbiki-Saadani ecosystem

1. Introduction

Tropical forests play an essential role in the global carbon cycle. They store approxi-
mately 40–50% of the total carbon stocks in terrestrial ecosystems of the world, account
for around 30–40% of global net primary production [1–3], are currently under threat due
to deforestation [4]. Tropical montane forest’s (TMFs) above-ground live biomass carbon
(AGC) varies along the elevation gradient and with soil physico-chemical properties [1]
but is not tested in lowland coastal forests (LCF). Land-use changes are associated with
ecosystem carbon stock changes and are the second largest cause of carbon emission after
fossil fuel combustion [5]. Intensification of human pressure associated with resource
extraction is widespread, but AGC losses and localized extinction of many important tree
species for carbon storage and climate regulation are uncertain [6,7].

Recently, human economic development and population increase have enhanced de-
forestation and forest degradation in East Africa [8–10], often related to fuelwood, selected
logging, which strongly changes the woody carbon balance [11]. It is clear that trees play
significant roles in carbon storage and forest ecosystem functioning; thus, any alteration in
their distribution in a forest ecosystem will likely exacerbate ecosystem degradation [12].
Forest plant species diversity can modify the rate of carbon fluxes and mitigate the effects
of climate change [13]. However, current forest degradation rates, including deforestation
and a general decline in plant species diversity and composition, have influenced forest
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ecosystem processes, such as carbon cycling [14]. Little is known about how tree biodi-
versity influences carbon storage in LCFs ecosystem [15,16]. Following forest loss, plant
species richness generally decreases while the plant species assemblage becomes less even
and more structurally homogeneous [17]. The loss of biodiversity substantially affects AGC
storage in lowland systems and diverse and complex tropical forests [18,19]. However,
the association of soil carbon stocks and functional diversity remains a knowledge gap in
LCFs [20]. It is still unknown if these patterns are reliable in the LCF ecosystem [10].

The eastern African LCF ecoregion is one of Africa’s centers of species endemism. It is
distributed over six countries (Somalia, Kenya, Tanzania, Mozambique, Zimbabwe, and
Malawi) [21], with Tanzania comprising large parts of it [21,22]. These coastal forests are
fragmented, small and surrounded by resource-poor communities with a high demand
for land and forest resources [23,24], and the LCF ecosystem in Tanzania faces high an-
thropogenic pressure, including deforestation and forest degradation [22,25,26]. It is not
well known how plant diversity and associated carbon stocks are affected in this LCF
system [27].

We assessed how ecosystem structure (above-ground biomass of live trees and associ-
ated carbon stocks (AGC), below-ground carbon stocks (BGC), herbaceous plant carbon,
soil organic carbon, plant species composition and diversity) has changed over two decades
following land use/land cover (LULC) class changes in the LCF ecosystem of Tanzania.
We aimed to estimate the forest cover change and quantify associated AGC and BGC using
Remote Sensing and a forest inventory data set between the years 1998 and 2018. We
assessed woody and herbaceous plant species diversity and important value index (IVI)
population structure of woody plants across 80 sample plots of 15-m radius in different
LULC classes in the LCFs ecosystem, Tanzania, from 1998 to 2018. We investigated whether
species with high IVI, an index that quantifies the ecological significance of a species in a
specific community [28], will be negatively affected by land use land cover change.

We hypothesized that a forest cover decline will negatively affect woody plant species’
diversity, IVI, and carbon stocks. We also hypothesized that land-use changes will result in
lower soil organic carbon across all LULC categories. We further expected that a higher
woody vegetation species richness and evenness would result in higher above-ground
carbon values. We projected future land use land cover change up to 2048 using module
for land use change evaluation (MOLUSCE) model in QGIS.

Our findings help to inform decision-makers on the urgent need to strengthen the
conservation of the highly fragile LCFs ecosystem to save its numerous endemic tree and
animal species. We further contribute to the understanding of how deforestation can
hamper climate change mitigation effects by reducing the terrestrial carbon sink.

2. Materials and Methods
2.1. Study Area Description

We studied the lowland tropical coastal forest (LCF) ecosystem in Tanzania, located
in 5◦0′40” and 6◦0′40” S, 37◦50′0” and 38◦50′0” E in the wildlife-rich north-eastern tourist
circuit ([29]; Figure 1). The area occupies approximately 5397 km2 and spans an altitudinal
gradient of approximately 875 m above sea level (masl) [26,30] around the Wami River
sub-basin, which links terrestrial and marine ecosystems [30–32] (Figure 1). This LCF lies
in one of the world’s known hotspots of biological diversity, including both the Eastern
Arc Mountains and coastal forest [26]. The mean daily temperature is 25 ◦C and means
annual rainfall of over 1000 mm [30,33], with dry periods from July to October and wet
periods from November to December and March to June. The area is comprised of a
complex mosaic land cover interspersed with human settlements and pastoralists, shifting
cultivation agriculturalists, and large-scale agriculture, mainly sugar plantations in the
eastern part of the ecosystem. There is a high demand for fuelwood, primarily charcoal,
which poses significant challenges for plant species diversity and carbon emissions due to
these anthropogenic activities [26].
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Figure 1. Map of the study area within the lowland coastal forest ecosystem, Tanzania, and location
of sampling plots for woody, herbaceous vegetation and soil assessment (red circles). WMA, wildlife
management area, National Park, Saadani National Park. Land use cover was based on the year 2018
land use classification.

2.2. Remote Sensing Image Classification and Predictive Model

In consideration of seasonality, cloud cover and phenological effects, we selected dry
season remote sensing images (Landsat TM & Landsat 8) with a minimum cloud cover of
<10% from Earth Explorer (https://earthexplorer.usgs.gov (accessed on 25 January 2022))
from 1998, 2008, and 2018 for land use/cover (LULC) change classifications, downloaded
via Google Earth Code Editor [34,35]; see also [26]. The land use prediction was carried
out using open-source software QGIS version 2.18 using modules for land use change
evaluation (MOLUSCE) plug-in. MOLUSCE uses the Artificial Neural Network (ANN),
Multi-Criteria Evaluation (MCE), Weights of Evidence (WOE) and Logistic Regression
(LR) methods to model land use/cover transition potential and simulate future land use
change [36–41]. In this study, we used artificial neural network (multi-layer perceptron)
and cellular automata (CA) to map future land use for the years 2028, 2038 and 2048 [36].

2.3. Vegetation Assessment

Using stratified random sampling procedures, we assessed woody and herbaceous
vegetation in 80 sample plots (according to) [10]; i.e., Forest: N = 25, Bushland: N = 24,
Agriculture with scattered settlements: N = 11, and Grassland: N = 20 plots) based on the
proportional area cover of each LULC class according to the 2018 land use map. Within
these LULC classes [26], we assessed woody and herbaceous plant biomass, plant species
diversity, and plant and soil carbon stocks. The overall cover of these LULC classes summed
up to a total area of 526,285 ha (98.4% of the total area) in 2018.

We employed a concentric plot design within a radius of 15 m for woody vegeta-
tion [42] and used 1 m × 1 m plots for herbaceous vegetation, based on the most recent
land use map of the year 2018. We located inter-plot distances systematically 900 m apart

https://earthexplorer.usgs.gov
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in North-South directions. Our sampling strategy followed the National Forestry Resource
Monitoring and Assessment (NAFORMA) procedures [42]. For each woody species indi-
vidual within the plot, we measured diameter at breast height (DBH), defined as 1.3 m
above ground level, with adjustments for swollen tree bases, injuries, fluting and other
deformities [43–45]. We used allometric models for species-specific carbon stock estima-
tion across the different carbon pools of vegetation and soils according to the literature
(Table 1). We identified each woody plant species according [46–48] and each grass species
according to [49,50]. Plant species diversity was expressed as Shannon diversity index, and
we assessed evenness and richness [51]. We measured woody plant species composition
and population structure by counting and recording all plants with diameter less than five
centimetres as regenerating seedlings.

Within each woody vegetation plot, we established one (1 m × 1 m) quadrat at the
centre of the 15 m radius circle, whereby all grasses within this plot were identified, cut at
the stem base, collected, and fresh weight of vegetative samples was determined using a
weighing balance in the field. A portion of 50% of fresh grass from each quadrant was taken
for lab analysis [44]. In our analyses, we did not consider forbs as their cover was <5%
across all plots. The loss on ignition (LOI) method was used to determine the percentage of
carbon in herbaceous (grassy) materials [52,53] on 50% of fresh material collected in the
field, oven-dried and burnt in the furnace for organic carbon estimation [54]. We calculated
the herbaceous (grass) carbon percentage according to [52,53,55]. To estimate the BGC
components (e.g., for roots of grassy samples) in herbaceous sampling plots we used 0.24 as
a default root to shoot ratio for below-ground woody biomass [56]; (see also Table 1). The
herb assessment just focused on biomass and associated carbon stocks.

2.4. Soil Sampling and Physico-Chemical Analyses

Soil samples were collected in four compass directions at the rim of each woody
vegetation sample plot (15 m from the centre of the sample plot) in the east, south, west
and north directions [42]. We excavated 500 g of soil up to 30 cm deep using a standard
soil auger of 76 mm diameter and divided the sample into three composite samples at
three depths (0–10 cm, 10–20 cm, and 20–30 cm per plot [57]. In total, we collected 189 soil
samples from the four different LULC classes for laboratory soil analysis.

Soil bulk density was taken at a cross-section in each plot using a sampling cylinder
(10 cm height and 6.35 cm diameter) [58]. The wet weight of soils was measured using
a field-scale weigh balance, then samples were labelled and oven-dried for lab carbon
estimation. Samples were sieved through a 2 mm mesh and subsequently analyzed for soil
organic carbon via wet oxidation using the Walkley–Black method [59].

The following equation provided the respective organic carbon estimate:

Organic C% =
(meq of K2Cr2O7 −meq of FeSO4)× 0.336

Oven − dry soil (g)
(1)

The Walkley–Black method for the determination of organic carbon in soils has been
found to give approximately 89% recovery of carbon as compared to the dry combustion
method [60]. For our analyses, we considered the fine earth fraction of soil samples less
than 2 mm while fine roots, rocks and stone materials were left out as these fine particles
comprise the majority of the reactive soil surface [60–62]. Rocks and bigger soil aggregates
may physically trap elements/nutrients that cannot be extracted, hence, making carbon
quantification difficult [62]. We calculated soil organic carbon stocks for each sampling soil
depth separately [63].

The total nitrogen (N) in soils was estimated following the Kjeldahl method [64].
We estimated soil pH (at 1:2.5 soil/H2O) using a pH meter, whereby 10 g of soil sample

was placed into a 50 mL beaker and mixed with 20 mL of CaCl2 solution [65]. The pH
meter was calibrated using two buffer solutions, i.e., one with neutral pH (7.0), and the
other based on the range of pH in the soil.
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We used the common hydrometer method [60,61] on 50 g of oven-dried soil in a
baffled stirring cup containing distilled water and 10 mL of sodium hexametaphosphate
solution [60]. We took hydrometer readings precisely 2 h after the suspension had been
mixed [60]. From the percentage of sand, silt and clay calculated on the datasheet, the
textural triangle diagram was used to determine the texture class of the studied soil
samples [60,61].

2.5. Woody Plant Species Diversity

We used the Shannon diversity index [66] and the important value index (IVI) [66] to
understand plant species composition. The importance value index is the index used to
determine the overall significance of each species in the community structure, which affects
the survival and dominance of many other species in the community [67]. The removal or
addition of species with a high importance value index (IVI) results in significant shifts in
the plant community’s composition and structure, which may affect carbon storage and
species diversity [68,69]. According to [69], we determined the IVI as the average of the
sum of the relative density (RD), relative frequency (RF), and relative dominance (Rdo),
each expressed as a percentage [70], of each tree species across all LULC classes. The higher
the IVI, the more influential the plant is for the community, and its loss would present more
significant damage [66]. We also estimated stem basal area based on diameter at breast
height (DBH) as a measure of tree density [71].

2.6. Carbon Estimation

The woody vegetation’s above and below-ground carbon stocks (AGC and BGC,
respectively) were estimated based on allometric equations for different lowland tree
species [72,73] in Tanzania (Table 1). Data on wood gravitation density (wood mass) of
species identified within the sampling plots during vegetation assessment were obtained
from a global database of wood specific gravity [74]. Grass carbon was estimated according
to [56]. Soil carbon was assessed according to [63,75], (Table 1).

Table 1. Summary of carbon pools estimated for different plant and soil components including
above-ground and below-ground woody, grassy and soil organic mean carbon stocks across different
land use land cover change classes [26] and according to the reference literature for methods used in
lowland coastal forests. AGC, above-ground live biomass carbon; BGC, below-ground carbon; SOC,
soil organic carbon; C Pool, carbon pools; SE, standard error of the mean. Ctotal refers to the carbon
pool across the entire system.

C Pool Allometric Equations Mean C Density
(t/ha) ±SE Reference

AGCwoody 0.9569× dbh2.0085 × ρ0.4908 61.2 17.8 [72,73]

BGCwoody 5.3854× dbh1.30709 × ρ1.047 34.9 7.3 [42,73]

Cgrass CH = B × C (%) 2.5 0.1 [56]

SOC SCO = C% × BD × Depth 76.0 6.3 [57,59,63]

Ctotal 172.1 31.4

2.7. Statistical Analysis

We correlated AGC against tree species Shannon diversity index, richness and even-
ness, based on the biodiversity-ecosystem function hypothesis that species diversity drives
biomass production [76–79]. The analyses were carried out using R-Software 3.0.1, Vienna,
Austria [80] and the vegan biodiversity library.

The woody carbon stocks within the LCF for the years 1998 and 2008 was estimated us-
ing average carbon stocks across forest, bushland, and agriculture with scattered settlement,
based on our field survey and LULC classes of the year 2018. Next, the woody biomass
value quantified using the LULC classes of the year 2018 was used to estimate carbon
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densities for the years between 1998 and 2008 [10,81–83]. Finally, we estimated the total
carbon stocks for the entire study area by multiplying the average carbon stocks per ha by
the total LULC class area (ha) for each of the time steps (1998, 2008) [81,83]. We conducted a
non-parametric analysis using Kruskal-Walli’s test followed by the Games-Howell post-hoc
test to determine variations in woody and grassy above and below-ground carbon, and
plant diversity index variations across different LULC classes.

3. Results
3.1. Land Cover Change in the LCF Ecosystem over the Last 20 Years

The LULC class maps for 1998, 2008, and 2018 showed significant variations in the
patterns of LULC classes (Figure 2). Forest cover dropped in the year 2018 to 31.4% of its
original value in the year 1998. On the other hand, grassland cover substantially increased
from 8.6% in the year 2008 to 27.6% in year 2018, suggesting high forest conversion to
grassland and other land cover classes. Over the past two decades, the LCF ecosystem has
witnessed a forest loss of almost 50% (Table A1). In contrast, agriculture with scattered
settlement and grassland increased threefold, while bushland remained relatively constant
between the years 1998 and 2018, as did bare soil and water resources (Table A1, Figure 2).
Urban settlement area only slightly and not significantly increased by less than 1%.
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Figure 2. Land use/land cover maps for the lowland coastal forest ecosystem, Tanzania, for the years
1998, 2008, and 2018. Categories are based on Landsat image classification for 1998, 2008 and 2018
(see also [26]). Agriculture, agriculture and scattered settlement.

We created two transition matrices on LULC classes for the 1998–2008 and 2008–2018 peri-
ods by analyzing change detection using cross-tabulation (see Appendix A: Tables A2 and A3).
The transition matrices clearly showed the large-scale conversion of forest land and bushland
into agriculture with scattered settlement and grassland over two decades (Table A3). However,
forest cover was gained from other cover classes in a few instances (see Tables A2 and A3). Our
LULC class change scenarios using open source QGIS and the Module of Land Use Change
Evaluation (MOLUSCE) plug in (Figure 3) showed that the forest area is expected to decrease
by 46.2 km2 from 2018 to 2048 while agriculture with scattered settlements is likely to increase
by 20.4 km2. Bushland is expected to decrease by 13.9 km2 over three decades (2018–2048). The
solid lines (grey = forest, yellow = bushland and blue = agriculture with scattered settlement)
indicate the measured land use/cover classes for 1998, 2008, and 2018, and the predicted linear
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trends of the land use/cover classes for 2028, 2038, and 2048 based on our model (dotted
lines). The total estimated carbon stocks were based on three land use/cover classes only
(i.e., agriculture with scattered settlement, forest, and bushland between 1998 and 2018). In
regression equations, x represents time, y represents area change of respective land use/cover
class (Figure 3).
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Figure 3. Land use/land cover class trends as assessed from 1998 to 2018 and further predicted
over the next 30 years (2028–2048) using QGIS and Module of Land Use Evaluation (MOLUSCE)
plugin [38–40] in the lowland coastal forest ecosystem, Tanzania.

3.2. Plant Species Diversity and Composition

We identified 87 different tree species from 25 families and 59 genera across all LULC
classes (Supplementary Material Table S1). The dominant families were Fabaceae (21 species),
Combretaceae (9 species), Euphorbiaceae (7 species) and Rutaceae and Sapotaceae (6 species
each). The tree species richness significantly differed among LULC classes (χ2 = 6.39, p = 0.041),
with forest having slightly higher species richness than bushland while agriculture with
scattered settlements had the lowest species richness. However, species evenness was not
significantly different between LULC classes (χ2 = 0.12, p = 0.939), nor was the Shannon
diversity index (χ2 = 0.12, p = 0.147), indicating few dominant species. (Table 2). We identified
13 different grass species belonging to 10 families (Supplementary Materials Table S2).
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Table 2. Mean (±SE) values for Shannon diversity index (Diversity), evenness, and richness for
woody and herbaceous plant species across different land use/cover classes in the lowland coastal
forest of the Wami Mbiki-Saadani ecosystem, Tanzania, in the year 2018. Mean values in the columns
followed by lower case letters are statistically significant at p < 0.05 based on a Games–Howell post
hoc test.

LULC Classes Diversity Evenness Richness

Bushland 1.27 ± 0.16 a 0.29 ± 0.04 a 4.16 ± 0.63 a
Agriculture 0.38 ± 0.38 a 0.28 ± 0.14 a 1.00 ± 0.00 b
Forest 0.92 ± 0.18 a 0.28 ± 0.04 a 5.70 ± 0.79 c
Grassland 0.16 ± 0.03 a 0.25 ± 0.21 a 2.54 ± 0.69 a

The important value index (IVI) results revealed that only two tree species (Ehre-
tia amoena and Sterculia appendiculata) were found to occupy all three LULC classes
(Supplementary Material Table S3) while most species dominated in one or two land-
use types. Combretum molle and Diospyros squarrosa were dominant in both forest and
bushland. Agriculture with scattered settlements was dominated by Deinbollia borbonica,
and Flugea virrosa, whereas the dominant woody species in bushland were Steganotaenia
araliacea, Combretum collinum, Senegalia goetzei, Terminalia mollis and Senegalia nigrescens.
For the forest land use, dominant tree species were Spirostachys africana, and Tamarindus
indica (Table S3). In grassland, the most dominant species were Cyperus kyilingia, and
Cymbopogon plurrinotis (Table S2).

3.3. Carbon Stocks in Vegetation

The above-ground carbon stocks (AGC) of woody and grassy vegetation differed
significantly across LULC classes (χ2 = 9.71, df = 2, p = 0.008), with forest AGC being
more than twice as high as bushland and more than ten times as high as agriculture with
scattered settlement and grassland (Table 3). The below-ground carbon was significantly
different across LULC classes (χ2 = 11.37, df = 2, p = 0.003) with forest having more than
two times higher BGC than bushland, ten times higher than agriculture with scattered
settlement and more than thirty-eight times higher than grass land (Table 3). There was a
strong positive correlation between above-ground woody carbon and above-ground grassy
carbon (r = 0.79, p < 0.001) as well as a positive correlation between below-ground woody
and grassy carbon (r = 0.62, p = 0.003). Species richness and Shannon diversity index (H’)
explained 26.9% and 8.2% of the variations in the AGC stocks in bushland, 15.6%, 6.0%
in agriculture with scattered settlements and 11.8%, and 1.9% in the forest, respectively,
the contribution to carbon storage differed among the land cover types. The relationship
between AGC stock and species richness showed a significant positive correlation (r = 0.616,
p < 0.001). The relationship between species diversity (Shannon diversity) and AGC were
not significant different nor was species evenness among different LULC classes. The
most dominant plant species contributed to about 46% of total AGC. Tamarandus indica
contributed the most on AGC (10.8%) with mean DBH 38.0 ± 9.8 cm, followed by Diospyros
squarrosa (8.6%), mean DBH 12.5 ± 0.6 cm, followed by Manilkara mochisia (19.5%), mean
DBH 15.5 ± 1.1 cm and Spirostachys africana (4.6%) with a mean DBH of 16.0 ± 1.3 cm
and other plant species individually contributed less than 4.0% of the AGC. The dominant
plant species in the forest LULC class contributed most to the AGC (63.7%), and those for
bushland contributed to 10.2%.

There was a significant relationship between AGC and DBH class of trees (χ2 = 8.56,
df = 3, p = 0.036), whereby highest mean carbon storage was found in 10–15 cm DBH and
the lowest in the 3–5 cm dbh class (Table 4). Further, the highest mean BGC was also found
for the tree DBH class of 10–15 cm (χ2 = 8.39, df = 3, p = 0.039; Table 4).
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Table 3. Mean (±SE) values for woody and grassy above-ground live biomass carbon (tC/ha) and
below-ground carbon (tC/ha) combined across different land use/cover classes in the lowland coastal
forest ecosystem, Tanzania, in the year 2018. Mean values in the columns followed by lower case
letters are statistically significant based on a Games–Howell post hoc test.

Land Use AGC (tC/ha) BGC (tC/ha)

Grassland 2.51 ± 0.1 a 0.6 ± 0.0 a
Bushland 15.4 ± 5.6 a 8.9 ± 2.0 a
Agriculture 6.4 ± 5.8 a 2.3 ± 1.7 b
Forest 36.9 ± 6.3 b 23.0 ± 3.6 c

Table 4. Mean (±SE) values for woody above-ground live biomass carbon (AGC in tC/ha) and
below-ground carbon (BGC) across different diameter at breast height (DBH) classes in the lowland
coastal forest of Wami Mbiki-Saadani ecosystem, Tanzania, in the year 2018. Mean values in the
columns followed by lower case letter “a” are not statistically significant based on a Games–Howell
post hoc test.

DBH Class (cm) AGC (t/ha) BGC (t/ha)

10–15 46.0 ± 15.2 a 26.3 ± 6.3 a
>15 41.4 ± 11.3 a 23.2 ± 5.1 a
3–5 15.2 ± 2.6 a 11.2 ± 1.9 a
5–10 18.5 ± 4.6 a 11.9 ± 2.8 a

3.4. Soil Carbon (SOC) and Nitrogen (TN)

Soil Organic Carbon was not significantly different across LULC classes but slightly
higher in the agriculture with scattered settlement compared to forest and bushland
(χ2 = 3.53, df = 3, p = 0.317). The SOC concentration decreased significantly with soil depth,
being highest in upper soil depths, particularly in the forest (χ2 = 39.75, df = 2, p < 0.001)
(Figure 4a). Total nitrogen (TN) varied significantly among soil depths (χ2 = 51.0, df = 2,
p < 0.001) but not across different LULC classes (χ2 = 1.76, df = 3, p = 0.624) (Figure 4b).
The mean SOC at 0–10 cm depth was significantly higher in forest LULC class than other
LULC classes, and grassland showed the lowest SOC (Figure 4a). TN stocks significantly
decreased with increasing soil depths (Figure 4b) in all LULC classes. TN concentration
was higher in the upper 20 cm (0–20 cm) layer than in the lower soil layer.

3.5. Overall Carbon Stocks

We calculated total carbon stocks for the entire LCF ecosystem in WMS by summing
up mean carbon stocks for all carbon pools (vegetation = woody and herbaceous above and
below-ground carbon stocks) and SOC per area of different LULC classes. Based on our
allometric models and predicted values using the MOLUSCE model until 2048 for forest,
agriculture with scattered settlement and bushland [37,38,84], we found that overall carbon
stocks decreased from 8.8 million tons in 2018 to 7.0 million tons in 2048, assuming that the
rate of forest conversion remains the same.

3.6. Relationship between Soil Organic Carbon and Soil Physico-Chemical Properties

Mean soil pH ranged from 6.4 ± 0.1 to 7.4 ± 0.2 across all LULC classes, indicating
that the CLF ecosystem had soils that were moderately to slightly acidic [85].

There was a significant difference in soil pH (F = 5.75 p < 0.05) among LULC classes,
while% silt, % clay and% sand showed no significant differences among LULC classes
(Table 5). SOC showed a strong positive correlation with% clay and% silt in soils while it
was negatively correlated with% sand (Figure 5). Total SOC in the lowland coastal forest
ecosystem showed a significant positive correlation with TN stocks (r = 0.22, p < 0.05).
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Figure 4. Soil organic carbon (SOC, (a)), Total nitrogen (TN, (b)) at three soil depths (0 to 10 cm,
10 to 20 cm, 20 to 30 cm) in a lowland coastal forest ecosystem, Tanzania. Box plots show ranges of
25% and 75% quartiles. The tips of the whiskers indicate the 5th and 95th percentiles. The middle
line in the box indicates the median.

Table 5. Mean (±SE) values of soil physical properties and soil pH of the lowland coastal forest
ecosystem, Tanzania. Mean values in the columns followed by lower case letters are statistically
significant at p < 0.05 based on a Games–Howell post hoc test.

Land Use pH % Clay % Silt % Sand

Bushland 6.5 ± 0.1 a 36.8 ± 2.3 a 6.4 ± 0.6 a 56.8 ± 2.5 a
Agriculture 6.4 ± 0.1 b 50.3 ± 5.8 a 6.0 ± 1.0 a 43.7 ± 6.1 a
Forest 6.5 ± 0.2 c 46.0 ± 2.9 a 5.6 ± 0.6 a 48.4 ± 3.3 a
Grassland 7.4 ± 0.2 d 36.2 ± 3.2 a 5.4 ± 0.6 a 58.3 ± 3.6 a
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4. Discussion
4.1. Forest Loss and Agricultural Expansion in the LCF-Ecosystem

We found that agriculture with scattered settlement have expanded in the LCF ecosys-
tem over the last 20 years while forest has declined. Likely, these changes have been caused
by rapid human population growth, agricultural expansion, infrastructure development,
and forest clearance for timber and charcoal production [86,87]. Globally, a decline in
forest cover has been associated with increased human population and decreased biodi-
versity [88–90], as was seen in our study. Furthermore, the intensification of agriculture
is generally associated with human population growth in many African countries [91],
which has led to an increase in food and higher income demands in rural areas of the
LCF ecosystem [92]. These anthropogenic activities have caused vulnerability of land,
degradation, and loss of carbon and negatively affected biodiversity conservation [93]. We
observed that large areas had been cleared for large-scale agricultural expansion during
the ground-truthing, especially for pineapple and sugar cane plantations. Some of the
factors which might have caused changes in LULC classes, particularly during the second
decade (years 2008–2018), was an increase in socio-economic activities, population increase,
agriculture expansion and high demand for fuel wood, especially for mega cities such as
Dar-Es-Salaam and Tanga [25,26]. Other factors can be attributed to infrastructure projects
such as the construction of Msata-Bagamoyo tarmac road and the establishment of Saadani
national park during the year 2004, which promoted an increase in population due to
tourism activities. We, thus, highlight that the LCF ecosystem needs particular attention for
protection as infrastructure development and agriculture rises, since the LCF comprises a
fragile ecosystem of high biodiversity
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4.2. Woody Plant Species and Composition across LULC Classes

Our study showed that tree species diversity was high in forest LULC class compared
to other LULC classes, and can be compared with other studies [94] who reported high
species diversity and richness in closed forest, respectively, than in open woodland in
coastal forest, Kenya. Judged by the important value index (IVI), we found six domi-
nant tree species within the forest LULC class, while bushland was dominated by nine
plant species and agriculture with scattered settlement by three. These dominant plant
species are endemic and near endemic to lowland coastal forests, they are known for
their economic potential as they are being used for timber, charcoal production, medicinal
plants and for other non-timber forest products, which makes them more prone for over
exploitation [23,95]. Globally, most of the LCF are located ≤600 masl and within 50 km of
the coastal area, with high levels of endemism [95]. As we found fewer dominant species
across all LULC classes compared to other LCF systems [96], we presume that the LCF
will soon encounter reduced ecological functioning [96]. With expanding agriculture, more
diversity will be lost as forests are being converted into agriculture or settlements, similar
to studies in Ethiopia [97]. Our results also agree with other studies in LCFs [6,98] who
found the decline of plant species diversity as a result of forest degradation for charcoal
making, and forest conversion to farm land [99].

4.3. Relationship between Plant AGC, Diversity and Composition

This study found significant positive effects of species richness on AGC stocks. A pos-
itive correlation between AGC and tree species richness in the LCF ecosystem is similar to
other studies [44,98,100] who reported a positive association between species richness and
woody dry biomass in temperate and tropical forests at small plot size (<1 ha). While this
finding accords with some recent studies that controlled environmental variables [101,102],
it also supports the commonly described pattern in the highly diverse natural forest:
biomass and carbon stocks increases with an increase in diversity. Several local and global
studies on forest ecosystems have shown a positive association between species richness
and forest biomass or carbon [96,103–106]. We found some highly abundant and naturally
favoured dominant species such as, Tamarandus indica and Sterculia appendiculata in the
forest LULC class. However, mean tree species evenness and Shannon diversity were
not significantly different between the LULC classes, probably due to the generally high
land-use conversion in the LCF ecosystem over the last decades. A low plant diversity may
result in less effective resource utilization [44] and a decrease in forest biomass [107,108].
Our results also showed a unimodal pattern between species evenness and AGC, mainly at
smaller DBH classes, suggesting that tree size is an essential determinant of the diversity-
AGC relationship.

4.4. Tree Species Population Structure and AGC

We estimated woody vegetation carbon stocks based on well-established allometric
model for lowland coastal forest ecosystem [42,109], there was no individual species
specific allometric model for the studied species thus we relied on these allometric models
for lowland coastal forest. The results showed that many trees (5–15 cm) contributed
substantially to AGC storage at the lowland coastal forest ecosystem. Wood density of
dominant tree species and basal area are the critical parameters for accurately estimating
biomass and associated carbon content [74]. Our results on total carbon estimation of the
LCF system, summing up to about 172.1 ± 31.4 MgC/ha, are within the range of estimates
reported by other studies in LCF [10,110–112]. For example, Erica 2019 reported that the
average AGC was 99.8 MgC/ha in South Africa while [99] reported AGC in LCF ranging
between 311.7 ± 23.7 MgC/ha in intact forest versus 73.5 ± 12.3 Mg C/ha in degraded
forest. Our carbon stock estimates can also be compared with those of other tropical
montane forests (TMFs) ranging between 16.8 MgC/ha and 222.1 MgC/ha [113,114]. We
found a significant correlation between woody plant species biodiversity and carbon
storage, consistent with several other studies’ findings [98,104,115,116].
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4.5. Impacts of Land Use Land Cover Change on Soil Organic Carbon Stocks

High SOC in the upper layer (0–10 cm) of the soil, in concordance with other stud-
ies [117–119], indicates that much carbon may be lost if the soil’s upper layer is disturbed.
The high SOC we found in the natural forest class, which was also found by [9,56,120],
might be attributed to the frequent addition of litter [121], the presence of root networks and
the modified microclimates, which retard the decomposition role of organic matter [9]. In
the LCF system, the conversion of natural forests into agriculture with scattered settlement
has likely induced a substantial reduction of organic carbon in the soils. In our study, the
contribution of SOC to the total carbon stocks of the LCF ecosystem was 44.2%, while
contributions of AGC and BGC were lower, highlighting the importance of keeping soils
undisturbed in this system.

We estimated that the total carbon stock of the LCF ecosystem had declined by almost
half over the last two decades by the year 2018, likely due to the extensive conversion
of forest cover into other LULC classes. Compared to other studies in the African conti-
nent [122], our estimates of annual forest conversion rates were high in the LCF ecosystem.
However, our results agree with [110], who reported that forest loss in protected areas in
LCF ecosystems is about nine times slower than in unprotected areas. Nevertheless, the
LCF still suffers from high forest loss, probably from the increased demand for fuelwood
and construction materials from nearby megacities of Dar-es-Salaam, Tanga, Kibaha, and
Morogoro [110,123].

5. Conclusions

Our study on impacts of LULC on tree species diversity and carbon storage has
shown variations in species diversity with LULC classes and carbon stocks. Generally,
the results showed significant variations in LULC between periods under investigation in
LCF ecosystem. Collectively these LCFs support many rare and poorly known plants and
animal species which believed to be endemic species and subspecies of global conservation
significance, several rare mammals, reptiles and amphibians and an invertebrate fauna
with many rare and undescribed species. Our results suggest that the intensity of land-use
conversion lowered the stored carbon, which is a consequence of biomass loss. This, in
turn, is associated with decreasing species composition across different LULC classes which
are very important for storing carbon. The most dominant plant species contributed to
about 46% of total AGC. Tamarandus indica contributed the most on AGC, followed by
Diospyros squarrosa, Manilkara mochisia, and Spirostachys africana. Our finding highlights
an urgent need to strengthen the conservation of LCF of the WMS ecosystem to save
the numerous trees and animal species endemic to these remaining coastal forests and
the centre of biological hotspots and mitigate climate change effects by reducing carbon
dioxide emissions. We highlight that the LCF ecosystem needs particular attention for
protection as infrastructure development and agriculture intensification, since the LCF
comprises a fragile ecosystem of high biodiversity. We also highlight that our LCF study
site harboring a large number of endemic species and being located within a biodiversity
hotspot of eastern Africa, must be protected to conserve biodiversity and carbon stocks for
long run. We recommend the joint effort for communities living within or adjacent to these
lowland coastal forests and government and other conservation agents to conserve these
vital ecosystems for current and future generations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su14148551/s1, Table S1: List of tree species identified in the study
area at lowland coastal forest ecosystem, Tanzania. Table S2: Herbaceous species composition and
dominance based on Important Value Index (IVI) of the grassland land-use types in lowland coastal
forest of Wami mbiki –Saadani (WMS) ecosystem, Tanzania (RF, relative frequency; RD, relative
density; Rdo, relative dominance; IVI, importance value index, N, number of species in a sampling
plot). Table S3: Plant species composition and dominance based on the importance value index
(IVI) of the three different land-use types in lowland coastal forest of Wami mbiki–Saadani (WMS)
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ecosystem, Tanzania (RF, relative frequency; RD, relative density; Rdo, relative dominance; IVI,
importance value index, BAN, basal area; N, number of species in a sampling plot).
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Appendix A

Table A1. Land use/land cover (LULC) class area (in ha and%) over 1998, 2008, and 2018 in Tanzania’s
Wami Mbiki-Saadani (WMS) ecosystem. LULC classes are based on Landsat image classification.

Year 1998 2008 2018 1998–2008 2008–2018 1998–2008 2008–2018 1998–2008 2008–2018

Land Cover Area
(ha)

Area
(%)

Area
(ha)

Area
(%)

Area
(ha)

Area
(%) Area (%) Area (%) ha/year km2/year (%/year) (%/year)

Agriculture 18,818 3.5 36,580 6.8 70,797 13.2 3.3 6.4 −2 −3422 −9.4 −9.4
Bare soil 776 0.2 2760 0.5 4364 0.8 0.4 0.3 −198 −160 −25.6 −5.8
Bushland 135,757 25.3 143,725 26.9 140,137 26.2 1.5 −0.7 −797 359 −0.6 0.2
Forest 323,250 60.4 301,197 56.3 167,958 31.4 −4.1 −24.9 2205 13,324 0.7 4.4
Grassland 50,146 9.4 45,720 8.6 147,393 27.6 −0.8 19 443 −10,167 0.9 −22.2
Urban area 66 0 213 0 336 0.1 0 0 −15 −12 −22.3 −5.8
Water 6235 1.2 4843 0.9 4046 0.8 −0.3 −0.2 139 80 2.2 1.6

Total 535,048 100 532,278 100 526,621 100.1

Table A2. Land use/land cover (LULC) matrix by cross-tabulation of 1998 to 2008 (in ha) for the low
land coastal forest of WMS ecosystem. The land use classes for the years 1998, 2008, and 2018 are
defined in Table 1.

Year: 1998
Year: 2008 Agriculture Bare Soil Bushland Forest Grassland Urban Water Total 2008 Gross Gain
Agriculture 18,555 1 9047 5788 3130 0 60 36,580 18,025
Bare Soil 75 218 717 619 989 0 142 2760 2541
Bushland 0 21 53,016 68,350 22,065 1 269 143,723 90,707
Forest 0 57 54,735 239,048 6885 2 472 301,199 62,151
Grassland 175 466 17,976 8978 16,860 0 1266 45,721 28,861
Urban
Area 11 0 80 28 42 52 0 213 161

Water 2 12 205 422 175 0 4024 4841 817
Total 1998 18,819 776 135,776 323,232 50,145 55 6234 535,036
Gross loss 264 557 82,760 84,185 33,285 3 2209 203,263
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Table A3. Land use/land cover (LULC) matrix by cross-tabulation between 2008 and 2018 low land
coastal forest of WMS ecosystem. The land use classes for 1998, 2008, and 2018 are defined in Table 1 (ha).

Year 2018
Year 2008
Agriculture Bare Soil Bushland Forest Grassland Urban Water Total 2018 Gross Gain

Agriculture 6561 807 18,746 40,563 4052 0 63 70,793 64,232
Bare Soil 171 126 774 1132 1702 0 458 4362 4236
Bushland 11,567 657 44,284 66,010 17,448 14 155 140,135 95,851
Forest 7495 291 35,839 116,704 7260 3 361 167,952 51,249
Grassland 10,718 793 44,025 76,670 15,068 0 132 147,407 132,339
Urban
Area 56 16 19 18 30 196 1 336 140

Water 12 71 34 99 159 0 3672 4046 374
Total 2008 36,580 2760 143,721 301,196 45,721 213 4842 535,032
Gross loss 30,018 2634 99,438 184,492 30,652 17 1170 348,422

References
1. Phillips, J.; Ramirez, S.; Wayson, C.; Duque, A. Differences in carbon stocks along an elevational gradient in tropical mountain

forests of Colombia. Biotropica 2019, 51, 490–499. [CrossRef]
2. Häger, A.; Schwendenmann, L. Forest Carbon Sequestration and Global Change. In The Paradigm of Forests and the Survival of the

Fittest; CRC Press: Boca Raton, FL, USA, 2018; pp. 39–86. ISBN 1315367173.
3. Olorunfemi, I.E.; Olufayo, A.A.; Fasinmirin, J.T.; Komolafe, A.A. Dynamics of land use land cover and its impact on carbon stocks

in Sub-Saharan Africa: An overview. Environ. Dev. Sustain. 2021, 1–37. [CrossRef]
4. Kauppi, P.E.; Sandström, V.; Lipponen, A. Forest resources of nations in relation to human well-being. PLoS ONE 2018,

13, e0196248. [CrossRef] [PubMed]
5. Massetti, A.; Gil, A. Mapping and assessing land cover/land use and aboveground carbon stocks rapid changes in small oceanic

islands’ terrestrial ecosystems: A case study of Madeira Island, Portugal (2009–2011). Remote Sens. Environ. 2020, 239, 111625.
[CrossRef]

6. Ahrends, A.; Burgess, N.D.; Milledge, S.A.; Bulling, M.T.; Fisher, B.; Smart, J.C.; Clarke, G.P.; Mhoro, B.E.; Lewis, S.L. Predictable
waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl. Acad. Sci. USA 2010, 107,
14556–14561. [CrossRef]

7. McNicol, I.M.; Ryan, C.M.; Dexter, K.G.; Ball, S.M.J.; Williams, M. Aboveground carbon storage and its links to stand structure,
tree diversity and floristic composition in south-eastern Tanzania. Ecosystems 2018, 21, 740–754. [CrossRef]

8. Duguma, L.A.; Atela, J.; Minang, P.A.; Ayana, A.N.; Gizachew, B.; Nzyoka, J.M.; Bernard, F. Deforestation and forest degradation
as an environmental behavior: Unpacking realities shaping community actions. Land 2019, 8, 26. [CrossRef]

9. Teucher, M.; Schmitt, C.B.; Wiese, A.; Apfelbeck, B.; Maghenda, M.; Pellikka, P.; Lens, L.; Habel, J.C. Behind the fog: Forest
degradation despite logging bans in an East African cloud forest. Glob. Ecol. Conserv. 2020, 22, e01024. [CrossRef]

10. Kashaigili, J.; Mdemu, M.V.; Nduganda, A.R.; Mbilinyi, B.P. Integrated assessment of forest cover change and above-ground
carbon stock in Pugu and Kazimzubwi forest reserves, Tanzania. Adv. Remote Sens. 2013, 2. [CrossRef]

11. Houghton, R.A.; Goodale, C.L. Effects of land-use change on the carbon balance of terrestrial ecosystems. Ecosyst. Land Use Chang.
2004, 153, 85–98.

12. Lopez-Toledo, L.; Ibarra-Manríquez, G.; Burslem, D.F.R.P.; Martínez-Salas, E.; Pineda-García, F.; Martínez-Ramos, M. Protecting a
single endangered species and meeting multiple conservation goals: An approach with Guaiacum sanctum in Yucatan Peninsula,
Mexico. Divers. Distrib. 2012, 18, 575–587. [CrossRef]

13. Díaz, S.; Hector, A.; Wardle, D.A. Biodiversity in forest carbon sequestration initiatives: Not just a side benefit. Curr. Opin.
Environ. Sustain. 2009, 1, 55–60. [CrossRef]

14. Butchart, S.H.M.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.;
Brown, C.; Bruno, J. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [CrossRef] [PubMed]

15. Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Baker, T.R.; Ojo, L.O.; Phillips, O.L.; Reitsma, J.M.; White, L.;
Comiskey, J.A.; et al. Increasing carbon storage in intact African tropical forests. Nature 2009, 457, 1003–1006. [CrossRef] [PubMed]

16. Sullivan, M.J.P.; Talbot, J.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Begne, S.K.; Chave, J.; Cuni-Sanchez, A.; Hubau, W.;
Lopez-Gonzalez, G. Diversity and carbon storage across the tropical forest biome. Sci. Rep. 2017, 7, 39102. [CrossRef]

17. Gordon, C.E.; Bendall, E.R.; Stares, M.G.; Collins, L.; Bradstock, R.A. Aboveground carbon sequestration in dry temperate forests
varies with climate not fire regime. Glob. Chang. Biol. 2018, 24, 4280–4292. [CrossRef]

18. Yousefi, S.; Khatami, R.; Mountrakis, G.; Mirzaee, S.; Pourghasemi, H.R.; Tazeh, M. Accuracy assessment of land cover/land use
classifiers in dry and humid areas of Iran. Environ. Monit. Assess. 2015, 187, 641. [CrossRef]

19. Noulèkoun, F.; Birhane, E.; Mensah, S.; Kassa, H.; Berhe, A.; Gebremichael, Z.M.; Adem, N.M.; Seyoum, Y.; Mengistu, T.;
Lemma, B. Structural diversity consistently mediates species richness effects on aboveground carbon along altitudinal gradients
in northern Ethiopian grazing exclosures. Sci. Total Environ. 2021, 776, 145838. [CrossRef]

http://doi.org/10.1111/btp.12675
http://doi.org/10.1007/s10668-021-01484-z
http://doi.org/10.1371/journal.pone.0196248
http://www.ncbi.nlm.nih.gov/pubmed/29758029
http://doi.org/10.1016/j.rse.2019.111625
http://doi.org/10.1073/pnas.0914471107
http://doi.org/10.1007/s10021-017-0180-6
http://doi.org/10.3390/land8020026
http://doi.org/10.1016/j.gecco.2020.e01024
http://doi.org/10.4236/ars.2013.21001
http://doi.org/10.1111/j.1472-4642.2011.00857.x
http://doi.org/10.1016/j.cosust.2009.08.001
http://doi.org/10.1126/science.1187512
http://www.ncbi.nlm.nih.gov/pubmed/20430971
http://doi.org/10.1038/nature07771
http://www.ncbi.nlm.nih.gov/pubmed/19225523
http://doi.org/10.1038/srep39102
http://doi.org/10.1111/gcb.14308
http://doi.org/10.1007/s10661-015-4847-1
http://doi.org/10.1016/j.scitotenv.2021.145838


Sustainability 2022, 14, 8551 16 of 19

20. Asase, A.; Asitoakor, B.K.; Ekpe, P.K. Linkages between tree diversity and carbon stocks in unlogged and logged West African
tropical forests. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 217–230. [CrossRef]

21. Younge, A.; Negussie, G.; Burgess, N. Eastern Africa Coastal Forest Programme. In Proceedings of the Regional Workshop Report,
Nairobi, Kenya, 4–7 February 2002; pp. 4–7.

22. Sheil, D. Tanzanian coastal forests–unique, threatened, and overlooked. Oryx 1992, 26, 107–114. [CrossRef]
23. Azeria, E.T.; Sanmartín, I.; Ås, S.; Carlson, A.; Burgess, N. Biogeographic patterns of the East African coastal forest vertebrate

fauna. Biodivers. Conserv. 2007, 16, 883–912. [CrossRef]
24. Brooks, T.M.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Rylands, A.B.; Konstant, W.R.; Flick, P.; Pilgrim, J.;

Oldfield, S.; Magin, G. Habitat loss and extinction in the hotspots of biodiversity. J. Conserv. Biol. 2002, 16, 909–923. [CrossRef]
25. Mariki, S.B. Successes, threats, and factors influencing the performance of a community-based wildlife management approach:

The case of Wami Mbiki WMA, Tanzania. In Wildlife Management-Failures, Successes and Prospects; Kideghesho, J.R., Rija, A., Eds.;
IntechOpen: London, UK, 2018.

26. Ntukey, L.T.; Munishi, L.K.; Kohi, E.; Treydte, A.C. Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami
Mbiki–Saadani Wildlife Corridor, Tanzania. Land 2022, 11, 307. [CrossRef]

27. Kideghesho, J.R. Realities on deforestation in Tanzania—Trends, drivers, implications and the way forward. Precious For. Earth
2015, 21–47. [CrossRef]

28. Jochum, M.; Fischer, M.; Isbell, F.; Roscher, C.; Van der Plas, F.; Boch, S.; Boenisch, G.; Buchmann, N.; Catford, J.A.;
Cavender-Bares, J. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 2020, 4, 1485–1494.
[CrossRef] [PubMed]

29. Debonnet, G.; Nindi, S. Technical Study on Land Use and Tenure Options and Status of Wildlife Corridors in Tanzania: An Input to the
Preparation of Corridor; USAID: Washington, DC, USA, 2017.

30. Nobert, J.; Jeremiah, J. Hydrological response of watershed systems to land use/cover change. a case of Wami River Basin. Open
Hydrol. J. 2012, 6, 78–87. [CrossRef]

31. Riggio, J.; Caro, T. Structural connectivity at a national scale: Wildlife corridors in Tanzania. PLoS ONE 2017, 12, e0187407.
[CrossRef]

32. Riggio, J.; Mbwilo, F.; Van de Perre, F.; Caro, T. The forgotten link between northern and southern Tanzania. Afr. J. Ecol. 2018, 56,
1012–1016. [CrossRef]

33. Kikoti, A. Where Are the Conservation Corridors for Elephants in Saadani National Park and the Lower Wami-Ruvu River Basin of Eastern
Tanzania? Summary Report of Elephant Collaring Operation; Coastal Resources Cwnter, University of Rhodes Island: Narragansett,
RI, USA, 2010.

34. Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing:
Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17. [CrossRef]

35. Thieme, A.; Yadav, S.; Oddo, P.C.; Fitz, J.M.; McCartney, S.; King, L.; Keppler, J.; McCarty, G.W.; Hively, W.D. Using NASA Earth
observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed.
Remote Sens. Environ. 2020, 248, 111943. [CrossRef]

36. Bhattacharya, K.; Chatterjee, N.; Das, K. An integrated GIS approach to analyze the impact of land use change and land cover
alteration on ground water potential level: A study in Kangsabati Basin, India. Groundw. Sustain. Dev. 2020, 11, 100399. [CrossRef]

37. Bhattacharya, R.K.; Das Chatterjee, N.; Das, K. Land use and Land Cover change and its resultant erosion susceptible level: An
appraisal using RUSLE and Logistic Regression in a tropical plateau basin of West Bengal, India. Environ. Dev. Sustain. 2021, 23,
1411–1446. [CrossRef]
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