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ABSTRACT 

Conjunctive use of surface water and groundwater is rapidly growing in many developing 

countries as an adaptation strategy to climate variability and change. However, the interactions 

between the groundwater and the surface water systems are not adequately understood, especially 

among the East African rift valley lakes, where data paucity has limited studies and reporting on 

the spatial influence of catchment heterogeneity. In its humble contribution to sustainable water 

development, this study aimed to present a platform for understanding the influence of climatic 

variation and anthropogenic activities on surface water–groundwater interactions. To be relevant 

locally, Lake Babati, a freshwater lake in Northern Tanzania that provides the community with 

fish, freshwater, and a habit for hippopotamus, was studied. The study applied hydrological 

simulation, grey relational analysis, and stepwise regression analysis to model the hydrological 

behaviour of the lake. Further, it used hydrogeochemistry and environmental isotopes to identify 

groundwater fluxes and draw the conceptual understanding of surface water – groundwater 

interaction and applied topography-based indices to spatially map groundwater potentials within 

the catchment. The results showed that Lake Babati level is significantly declining (p-value < 0.01) 

at a rate of 25 mm per annum. The lake level decline could not be explained by climatic variability 

since the decline occurred when both evaporation and rainfall showed no significant changes either 

seasonally or annually. Instead, the consistent decline of the lake level in all seasons could be due 

to the expansion of the spillway, which effectively lowered the lake reservoir level and increased 

the lake outflow in rainy seasons. The hydro-geochemistry and isotopes data showed that the lake 

water and groundwater interact and are in hydraulic connections. Further, using Height Above 

Nearest Drainage based and Topography Wetness Index based methods,  the study developed two 

groundwater potential maps to predict groundwater spatial variability and guide groundwater 

prospecting efforts and subsequent development. Given that Lake Babati is in a hydraulic 

connection with the groundwater, its consistent decline will likely impact the groundwater system. 

Similarly, abstracting groundwater at unsustainable rates could lower the lake levels further. 

Therefore, integrated water resources management is required for sustainable water resources 

development and management in the catchment. Mandatory and continuous monitoring of the 

water resources (groundwater levels, river flows, and lake levels) is recommended to generate 

quality in situ data for future studies. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

Safe and clean water access is still low in sub-Saharan Africa (WWAP, 2019). By 2015, as many 

as 319 million people in the region had no access to safe and clean drinking water (UNICEF, 

2015). However, as the population grows, regional governments are exploring opportunities to 

boost the low per capita food production (Funk & Brown, 2009) through irrigated agriculture 

which still has a high potential for expansion in sub-Saharan Africa (Mashnik et al., 2017). 

Similarly, increasing access to improved water supplies is an international priority that will 

inevitably increase water consumption. Consequently, achieving these objectives implies that the 

water demand for domestic and economic activities such as agriculture, power generation and 

industrial purposes will increase (Clifton et al., 2010; WWAP, 2012). 

Since fresh surface water fluctuates with seasons and under the influence of climate variability, 

most people have turned their attention to the exploitation of groundwater (Clifton et al., 2010), 

which is considered reliable due to its slow response to seasonal variations (Kløve et al., 2014). 

The decisive role played by groundwater in adapting water resource management to climate 

variability (Clifton et al., 2010) has accelerated its use for agricultural and industrial purposes. 

This trend has been described as the ‘‘silent revolution’’ because numerous individual farmers, 

motivated by short-term benefits provided by groundwater, have drilled an uncountable number 

of groundwater abstraction wells without government knowledge and approval (Llamas & 

Martínez-Santos, 2005). Such uncontrolled developments are not incorporated into comprehensive 

land and water management plans at the basin scale; and, thus, often result in overexploitation and 

degradation of the groundwater aquifer. Groundwater overexploitation can go on for years because 

it is difficult to detect. This, coupled with climate variability and uncertainty, significantly 

challenges sustainable groundwater development worldwide. The East African region is no 

exception. Tanzania experiences a similar scenario (Mul et al., 2007; Chacha et al., 2018). The 

unregulated water use in many developing countries threatens the water resources regime 

(Seeteram et al., 2019; Tolche, 2020). It can also alter the temporal and spatial dynamics of surface 

water–groundwater interactions (Sakakibara et al., 2016). 

As natural resource managers and policymakers embrace evidence-based planning and 

management, they must be abreast with available water resources, exchange between reservoirs 

(surface water and groundwater reservoirs), limitations, and vulnerabilities (Biggs et al., 2015) to 

facilitate sustainable planning and management of the food-water-energy nexus (WWAP, 2012). 
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The variability of water resources under different stressors has already been widely studied 

(Christensen et al., 2004; Baguis et al., 2009; Ogiramoi, 2011; Taye et al., 2011; Serdeczny et al., 

2016); however, the focus on the lake - groundwater interaction has been limited (Clifton et al., 

2010). 

Studies on lake responses to climatic and anthropogenic stresses are essential for planning and 

managing water resources. In semi-arid areas like the East African rift valley regions, surface water 

and groundwater interactions play vital roles in the eco-hydrological system (Gilfedder et al., 

2012). However, these are threatened by unsustainable abstractions of water from shallow lakes 

and aquifers because they can alter surface water–groundwater interactions and, in the worst case, 

result in a decline in lake levels or drying of lakes. This can further lead to secondary impacts such 

as the disturbance of natural habitats of specialist species, the proliferation of nuisance and 

invasive species, biodiversity loss, and eutrophication in extreme cases (Zohary & Ostrovsky, 

2011; Lalika et al., 2015; Kalacska et al., 2017; Seeteram et al., 2019).  

A study of several lakes has shown that landscape setting, hydrogeology, and climatic interactions 

give lakes unique hydrological behaviour (Olaka et al., 2010). The uniqueness of each lake limits 

the transferability of one study’s results to another. Each lake would exhibit different behaviour, 

thus, justifying the need for site-specific analysis. 

1.2 Statement of the Problem 

Numerous studies on water balance have used lumped catchment models and ignored the spatial 

variation of catchment parameters and their impact on water balance components. For example, 

Swenson and Wahr (2009) and Tate et al. (2004) used aggregated and lumped seasonal climatic 

values to relate the evolution of water storage in Lake Victoria to the impacts of climatic changes 

and human management. Since such studies often report water balance components in a lumped 

way, they do not inform policy makers and users on the spatial variation of vital water balance 

components such as groundwater. Yet groundwater provides half of the world’s population with 

freshwater (WWAP, 2015), and it is a major source of drinking water for rural populations in sub 

– Saharan Africa (Pavelic et al., 2012) 

The increasing dependence of rural communities in developing countries on point boreholes 

equipped with or without motorized pumps for domestic and agricultural water requirements 

(Llamas & Martínez-Santos, 2005; Pavelic et al., 2012) have made groundwater a critical resource. 

However, a survey in Uganda, Malawi, and Ethiopia estimated that 30% of boreholes equipped 

with hand pumps fail within five years of commissioning, primarily due to low yield, poor quality, 

and mechanical failure (Macdonald & Helen, 2016). MacDonald et al. (2012) attributed this 
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hidden crisis to the poor understanding of the groundwater system occasioned by the limited 

instrumental groundwater observation stations across the African continent. 

Coupled surface water–groundwater models, which could improve the estimation of fluxes 

between the surface water and groundwater (Bailey et al., 2016), have been applied with 

limitations within sub-Saharan Africa. Such models require high quality hydrological and 

hydrogeological data, which unfortunately, are generally lacking in the region (Deus et al., 2013; 

WREM International, 2015; Mbanguka et al., 2016; Ligate et al., 2021). The lack of instrumental 

hydrological (observed) data in sub-Saharan Africa has forced most studies to ignore groundwater 

or assume it as a negligible water balance component (MacDonald et al., 2012). As a result, the 

documentation of the groundwater resources is limited and has thus constrained the understanding 

of the available groundwater resources despite a growing dependence on them (MacDonald et al., 

2012; Pavelic et al., 2012). These challenges are more pronounced among the East African Rift 

Valley lakes as they lack in situ hydrological data (Hassan & Jin, 2014; Chacha et al., 2018). 

Therefore, the interactions between the groundwater and the surface water systems are not 

adequately understood in most East African Rift Valley lakes.  

Mbanguka et al. (2016) studied the variability of Lake Babati level and reported cloudiness as a 

sensitive parameter to the lake’s level variability due to its significant influence on evaporation. 

However, their study used the energy balance equation (Anapalli et al., 2018), which has a higher 

sensitivity to air temperature and gives inconsistently higher evaporation than the combination 

methods of estimating evaporation, such as the Penman-Monteith method (Ershadi et al., 2011). 

Mbanguka et al. (2016) further assumed the groundwater influx to be equal to the changes in the 

lake storage. Their study was based on a rough estimate of the lake's surface area and volume 

(drawn from five transects of a bathymetric survey of the lake). However, lake size and 

morphology can significantly influence the sensitivity of lakes to climatic forcing (Olaka et al., 

2010). Limited studies have investigated the groundwater dynamics of the Lake Babati catchment. 

The few studies that have analysed Lake Babati’s water balance (Sandstrom, 1995; Lopez, 2011; 

Mbanguka et al., 2016) lacked observed groundwater data and estimated the groundwater 

parameters based on the hydraulic properties without verification of the aquifer material. 

This study’s novelty was centred on analysing the influence of climatic variability on the lake 

levels, applying hydrogeochemistry and environmental isotopes to identify fluxes of surface–

groundwater interactions and topography-based indices to map groundwater potential (GWP). In 

addition, it incorporated the spatial variabilities of the influencing parameters to map GWP within 

the catchment. This study further adopted a multi-criteria approach for weighting the influence of 

hydrological parameters to cover the inadequacies that might result from a single method due to 

the lack of quality observed data.  
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1.3 Rationale of the Study 

Understanding lake water level dynamics and the variability of hydrological parameters is key for 

informed and timely management interventions, a prerequisite for sustainable water management. 

Moreover, as most water resource managers adopt conjunctive use and management of 

groundwater and surface water (Llamas & Martínez-Santos, 2005), understanding any exchange 

(interaction) and hydraulic connection between surface water and the groundwater becomes very 

crucial (Khan & Khan, 2019). This is in consideration that groundwater and surface water 

reservoirs are coupled and interdependent to the extent that what happens to one part of the system 

affects the other (Idowu, 2007). In addition to planning conjunctive use, understanding surface 

water-groundwater interactions is beneficial for many purposes, including the incorporation of 

groundwater in water resources planning, monitoring the evolution of pollution and control of 

contamination, water rights issues, and resolution of water-related conflicts (Khan & Khan, 2019) 

Lake Babati, whose catchment is the subject of this study, provides the local community with fish 

and supports several aquatic species like the hippopotamus that inhabit it (Stromquist, 1992; 

Sandstrom, 1995; Mbanguka et al., 2016). The main economic activities in Babati District (the 

administrative unit where the Lake Babati catchment lies) are agriculture and livestock production 

(Hongoa, 2014). Recently, Babati Town has expanded with more settlements, land cover 

modifications, and an increased population (Hongoa, 2014; Pantaleo et al., 2018). These 

anthropogenic activities have resulted in the development and construction of more abstraction 

wells on the lakeshore to supply water to the sprouting Babati town. However, the consistent 

decline of Lake Babati water levels has made the natural resource managers apprehensive that the 

abstraction wells around the lake could irrecoverably damage the groundwater–lake dynamics. 

Despite the importance of the lake, studies relating the wells’ abstractions (groundwater dynamics) 

and anthropogenic activities to the lake’s variability are scanty.  

Poor understanding of surface water – groundwater interactions challenges the ideals of integrated 

water resources management as natural resources managers resort to theoretical interactions 

without verification. For example, the increased number of abstraction wells was thought to drive 

the observed declines in Lake Babati levels. Unless this knowledge gap is bridged, Lake Babati 

levels will continue to decline with no remediation efforts or misplaced efforts because the drivers 

of the lake level decline would be unknown. In the worst case, a consistent lake level decline could 

lead to lake drying, drying of shallow wells, and disappearance of dependent organisms, which 

eventually will threaten the livelihood of the fishing community. 

This study took innovative approaches applicable in data-scarce catchments to enrich the 

understanding of interactions between surface water and groundwater sources. It developed a lake 
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balance model which can be employed to investigate the impacts of future scenarios such as 

increased pumping, land-use change, or climate change. The sensitivity of different drivers of lake 

level variability was assessed to inform management and prioritise intervention. Further, it 

demonstrated how groundwater resources could be mapped in regions lacking in situ / observed 

hydro-meteorological data. The findings of this study have been published in scientific peer-

reviewed journals with wide circulations to inform a wider audience of policy makers and the 

fraternity of the scientific community. 

1.4 Research  Objectives 

1.4.1 General Objective 

To investigate the influence of climatic variation and anthropogenic activities on the surface water 

– groundwater interactions within a semi-closed lake catchment. 

1.4.2 Specific Objectives 

(i) To assess the influence of climatic variations and anthropogenic activities on the lake level 

variability 

(ii) To identify the sources of groundwater influxes using stable isotopes and 

hydrogeochemistry and conceptualise the groundwater-lake interactions 

(iii) To evaluate the influence of catchment spatial heterogeneity on groundwater distribution 

1.5 Research Questions 

(i) How do climatic variations and anthropogenic activities impact the water level variability 

of a semi-closed lake?  

(ii) Are the groundwater systems hydraulically connected to Lake Babati, and if so, how? 

(iii) How does spatial heterogeneity of catchments influence groundwater distribution on 

spatial scales?  

1.6 Signficance of the Study 

The study takes innovative approaches applicable in data-scarce catchments to enrich the 

understanding of interactions between surface water and groundwater sources. It demonstrates 

how groundwater resources can be understood in regions lacking insitu / observed hydro- 

meteorological data. Considering Lake Babati, a shallow lake that responds rapidly to climatic 
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variations, as a study area, the study aimed at understanding the sensitivity of different drivers of 

lake level variability to inform management and prioritise intervention. 

Lake Babati provides the local community with fish and supports several aquatic species like the 

hippopotamus that inhabit it (Stromquist, 1992; Sandstrom, 1995; Mbanguka et al., 2016). The 

main economic activities in Babati District are agriculture and livestock production (Hongoa, 

2014). Recently, Babati town has expanded with more settlements, land cover modifications, and 

increased population (Hongoa, 2014; Pantaleo et al., 2018). These anthropogenic activities have 

resulted in the development and construction of more abstraction wells on the lakeshore to supply 

water to the sprouting Babati town. However, despite the importance of the lake, no study has yet 

analysed the possible influence of anthropogenic activities around Lake Babati and increasing 

water demand on the lake water level variability. The study further demonstrates a suitable 

approach for mapping GWP in a data-scarce catchment. The research outputs from this study have 

been published in scientific peer-reviewed journals. 

1.7 Delineation of the Study 

The study looked at the Lake Babati level variability trend in response to climatic variability and 

anthropogenic activities. Due to the lack of measured water abstraction rates and supply, the study 

was limited to qualitative assessments of whether water abstractions have increased. In addition, 

land use and land cover changes were used as indicators of anthropogenic interference. The impact 

of land use and land cover changes on water resources could not be quantified due to the lack of 

river and lake outflow data.  

Whereas surface water – groundwater interactions are as diverse as the surface water and landscape 

types (Winter, 1995), this study was concerned with identifying fluxes and evidence of interaction 

between Lake Babati and the groundwater systems. The fluxes of interests were those which could 

interact with Lake Babati because of the importance of the lake to the community. Surface water 

– groundwater interactions of rivers were not the subject of this study. The study area was the 

catchment of Lake Babati. However, it made a worthwhile comparison of hydrogeochemical and 

isotopic properties of river and lake waters within and outside Lake Babati catchment. Further, the 

study applied topography-based indices to identify and map the presence of groundwater within 

the catchment. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

The literature review chapter looks at water balance studies within the study region and the studies 

within the Babati catchment to understand the output of previous studies and the possible 

knowledge gaps. It further looked at the methods for understanding drought severity, surface 

water–groundwater interaction analysis methods, and the influence of topography on hydrological 

processes. Literature specific to methods used in this study has been reviewed under Chapter 

Three.  

2.2 Lake Water Balance 

Understanding lake water balance and the drivers of the hydrological systems is very important 

for the sustenance of ecosystems because an unplanned change may have detrimental effects on 

all dependent systems and subsequently influence the redistribution and productivity of the 

ecosystem (Woldeamlak et al., 2007; Stagl et al., 2014). This requires a comprehensive analysis 

and understanding of the hydrological response, which would be incomplete without considering 

the water balance of the system. The general equation of the water balance of a system or 

catchment is based on the continuity equation expressed in Equation  (1). 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝐼𝑛𝑝𝑢𝑡𝑠 − 𝑂𝑢𝑡𝑝𝑢𝑡 
 (1) 

The continuity equation can be rewritten mathematically for an open lake system as Equation (2) 

(Chow et al., 1988). 

𝑑𝐻

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) +

𝑅𝑖𝑛(𝑡) − 𝑅𝑜𝑢𝑡(𝑡) + 𝐺𝑊𝑖𝑛(𝑡) − 𝐺𝑊𝑜𝑢𝑡(𝑡) −𝑊𝑎𝑏

𝐴(ℎ)
+ 𝜀𝑡 

(2) 

Whereby, H is the lake level, A(h) is the lake surface area corresponding to a particular lake level 

h, and P(t) is the precipitation received over the lake area. The E(t) is the lake evaporation rate, 

and  Rin(t) and Rout(t) are the surface water inflow and outflow to the lake, respectively. 

Additionally, Wab represents the water abstractions from the lake, GWin and GWout are 

groundwater inflow and outflow of the lake, and the error term, which is representative of the 

errors in data and unaccounted-for water losses, is given by 𝜀𝑡. 

Considering a basin at equilibrium where the change in storage is zero or tends towards zero over 

a long period of time t, the equation can be rewritten as a net basin supply given in Equation (3). 
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𝑁 = 𝑃(𝑡) + 𝑅𝑖𝑛(𝑡) − 𝐸(𝑡) = 𝑃(𝑡) + 𝛼𝑃(𝑡)
𝐴𝑐
𝐴𝐿
− 𝐸(𝑡) 

(3) 

Whereby, 𝑁 is the net basin supply to the catchment from the climatic sources. 

2.3 Studies on Lake Water Balance 

Numerous lakes in sub-Saharan Africa have been investigated, with a focus mainly on the lake 

water balance (Deus et al., 2013; Swenson & Wahr, 2009; Tate et al., 2004).  Lake Victoria and 

the closed basin lakes of the East African Rift System (EARS) (i.e., Lake Ziway-Shalla, Awassa, 

Turkana, Suguta, Baringo-Bogoria, Nakuru-Elmenteita, Naivasha, Magadi-Natron, Manyara) 

exhibit high sensitivity to climate, lake size, and morphology (Olaka et al., 2010). However, 

through water balance analysis, Kebede et al. (2006) found that the level variability of Lake Tana 

neither responds to human impact nor rainfall variability. Lake Malawi, one of the most studied 

lakes within the region, was investigated for its sensitivity to climate change (Kumambala & 

Ervine, 2013) and the long-term variations of net inflow to the lake (Sene et al., 2017). Calder et 

al. (1995) also modelled the impact of land cover changes on Lake Malawi water levels, but no 

studies focused on groundwater–lake interactions. Generally, a few studies within the region have 

reported exhaustively on the lake–groundwater interactions, probably due to the scarcity of 

observed data. 

The water balance analysis of the lakes mentioned above varied in methods depending on the case, 

data availability, and study objectives. Due to limitations of observational data, most of the studies 

explored remote sensing data, while others used environmental isotopes. For example, Weitz and 

Demlie (2013) used isotopes to conceptually model the groundwater interaction within Lake 

Sibayi in the eastern part of South Africa. Olaka et al. (2010) and Deus et al. (2013) modelled the 

behaviour of Lake Manyara’s water balance using remotely sensed data from the Gravity Recovery 

and Climatic Experiment (GRACE) (Tapley et al., 2004). They reported that the lake undergoes 

high temporal variations. Kalacska et al. (2017) used remotely sensed data to study the land cover 

and subsurface water changes over Lake Chala. However, none of the studies focused on the 

groundwater interactions with the lake systems. 

Although the balance between input and output controls the changes in lake water levels, complex 

hydrological processes also drive responses in lakes. The processes themselves are influenced by 

soil, climate, groundwater, vegetation, and land cover changes, which vary spatially and 

temporally (Hayashi & Van der Kamp, 2007). However, many regional studies have ignored the 

influence of spatial variability of water balance components and lumped them. 
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2.4 Previous studies on Lake Babati 

Studies within the Lake Babati catchment have focused on several issues. The earliest study was 

by Sandstrom  (1995), who attempted to relate the lake’s flooding to reduced forest cover by 

developing a lumped catchment model. However, the author reported significant uncertainties in 

the simulated lake levels, probably because the study did not consider the groundwater influx and 

interactions. Sjoin (2010) studied the management capacity to deal with the persistent flooding of 

Lake Babati. A study by Lopez (2011) built a lumped water balance model of Lake Babati, 

calibrated it using evapotranspiration, and applied the calibrated model to predict the lake’s 

responses to the future climate based on International Panel on Climate Change emission 

scenarios. Lopez (2011) concluded that the lake’s water balance is most sensitive to cloud cover, 

and precipitation primarily drives outflow. Mbanguka et al. (2016), while analysing the sensitivity 

of Lake Babati to climatic factors such as temperature, precipitation, humidity, and cloudiness, 

concluded that the lake’s water level was most sensitive to cloudiness due to its significant 

influence on evaporation. Their study solely used the energy balance equation to compute 

evaporation which gives higher evaporation rates than the combination methods of computing 

evaporation (Ershadi et al., 2011). Recently, Pantaleo et al. (2018), while investigating 

groundwater pollution by sanitary facilities, established that faecal pollution occurs especially in 

shallow wells of depths < 30 m.  

2.5 Analysis of Drought Variability and Index  

Drought is essential in water balance analysis as it defines the moisture availability or deficit in a 

basin based on meteorological variables. Its determination permits the evaluation of the influence 

of drought on the hydrological cycle components (Byakatonda et al., 2018). Misidentification of 

recurring temporal droughts and continued droughts due to long below average rainfall leads to 

the progression of meteorological drought into a hydrological, agricultural, and economic drought 

(Byakatonda et al., 2018; Maliva & Missimer, 2012). According to Palmer (1965), drought is a 

meteorological phenomenon characterized by ‘‘prolonged and abnormal moisture deficiency’’. 

Specifically, drought is an interval of time, generally about months or years, during which the 

actual moisture supply at a given place consistently falls short of climatically expected or 

appropriate moisture supply (Palmer, 1965). 

Numerous methods based on indices (proxies) are available to quantify drought or estimate the 

severity of its impacts. Palmer Drought Severity Index (PDSI), developed by Palmer (1965), is a 

commonly used drought index. The PDSI is a soil moisture balance method that uses precipitation, 

evapotranspiration computed using the Thornwaite method, and the soil’s available water capacity 

as primary inputs. Limited data, especially the lack of soil available water capacity, limits its 
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application in many places. Further, the fixed time scale and autoregressive characteristics built in 

PDSI sometimes influence conditions for unnecessarily a long time (Vicente - Serrano et al., 2010; 

Yu et al., 2013), and as well its calibration period influences the results (Vicente - Serrano et al., 

2010). 

Palmer Drought Severity Index and Standardized Precipitation Index (SPI) (Mckee et al., 1993) 

are the most used among other drought indices because of their low data requirements, ease of 

calculations, and multi-scaler characteristics, allowing time and space comparison. They, however, 

use only precipitation data (Yu et al., 2013), leaving out the influence of temperature, soil 

moisture-holding capacity, and wind speed unaccounted on the estimated drought. The 

standardized Precipitation Index defines the difference from the mean for a specified period 

divided by the standard deviation, where the mean and standard deviation are determined from 

records (Mckee et al., 1993). It is widely accepted because of its versatility in comparing drought 

at different time and space scales and determining and comparing the temporal changes in drought 

with respect to other usable water resources. The magnitude of the negative or positive SPI 

determines the probability of occurrence (or frequency) of the drought severity or extreme wet 

conditions. When the magnitude of SPI values is 1, it implies the values are within 1 standard 

deviation or occur 68% of the time, an SPI of 2 means 95% of the time, and an SPI of 3 implies a 

sigma of 3 or occurs 99% (Hayes et al., 2000). Negative SPI values indicate drought or less than 

median precipitation values, while the positive values mean vice versa. Mckee et al. (1993) 

classified SPI values with corresponding magnitude and frequencies as in Table 1. A drought with 

an SPI <-2 is defined as extreme and would occur 2 or 3 times in 100 years. 

The importance of the drought indices, which incorporate temperatures such as PDSI and SPEI, 

cannot be underscored for change studies applications (Yu et al., 2013). Palmer Drought Severity 

Index requires soil moisture data whose paucity has limited its applications in many places. 

Although the SPEI was, developed recently, it is gaining popularity because it considers both 

precipitation and the influence of the ambient conditions in driving drought. Standard precipitation 

and evapotranspiration index integrates the sensitivity of PDSI to evaporation with the ease of 

computation and the multi-scaler characters of SPI. Several studies have already implemented 

SPEI, including Byakatonda et al. (2018); Yu et al. (2013). Drought severity is classified based on 

SPEI and SPI values presented in Table 1.  
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Table 1:  Drought Severity classes 

SPEI /SPI values  Drought severity class 

               Less than - 2 Extreme Drought 

-1.99 to – 1.50 Severe Drought 

-1.49 to 1.00 Moderate Drought 

1.00 to 1.49 Near Normal 

1.50 to 1.99 Severely Wet 

 More than >2.00 Extremely Wet 

2.6 Groundwater Study Methods 

Numerous techniques including field techniques that explore the subsurface to determine 

groundwater distribution, such as ground invasive techniques like excavation, direct push probes, 

and drilling, are employed for groundwater investigations. In addition, numerous non-invasive 

field methods are also in use, including seismic refraction surveys, resistivity, and electromagnetic 

& radar surveys (Fitts, 2002). However, the field methods are disadvantaged by their inability to 

predict groundwater levels under varying conditions.  

The advent of computers has boosted the popularity of mathematical modelling of groundwater 

(Anderson, 2005) to disadvantage physical and analogue model methods. The MODFLOW by 

McDonald and Harbaugh (1988) is the most popular of the numerous existing groundwater 

modeling codes. Several graphical user interfaces have been developed to ease input and output 

processing in MODFLOW groundwater models. The graphical user interfaces are either 

commercially available such as Visual MODFLOW, GMS, or freely available, like Processing 

MODFLOW (Simcore Software, 2011). Model Muse or FREEWAT are also freely available 

graphical user interfaces and are equally powerful. 

However, the paucity of reliably observational hydrological data in the study area limits the 

exploitation of the methods mentioned. Proxy methods based on the available topography data and 

environmental /hydrogeochemical methods present an opportunity to conceptualise the 

groundwater–lake water interaction in the area. The applications/development of the topography-

based method is anchored on the understanding that topography controls groundwater level and 

saturated overland flow and influences soil and vegetation cover in certain climatic and geological 

conditions (Savenije, 2010). This study explored the use of readily available topography data to 

predict the groundwater potential zones. 

2.7 Surface Water - Groundwater Interaction Study Methods 

Interest in surface water–groundwater interactions has increased steadily within the last two 

decades (Fleckenstein et al., 2010). The main focus of surface water–groundwater interactions has 
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been streams–groundwater aquifer interactions (Winter, 1995; Idowu, 2007). The assessment of 

surface water–groundwater interactions is mainly based on quantifying groundwater recharge and 

discharge (Idowu, 2007). Groundwater discharge can be baseflow, spring flow, and capillary rise. 

The increasing interests in surface-groundwater interactions are probably due to the conjunctive 

use of surface water and groundwater in agriculture, industries, and domestic water supply 

systems. 

The techniques for assessing groundwater-surface water interactions can be hydrological, 

biogeochemical, ecological, or geological (Idowu, 2007). Although there is no agreement on 

categorising assessment methods, Winter (1995) identified analytical, field, biogeochemical, and 

numerical modelling methods. The commonly used methods are hydrograph separation (analytical 

method), water budgeting of different hydrological components and numerical modelling, and 

field methods (both ground-invasive methods like drilling and exploration and non-invasive 

techniques like geophysical surveys) to establish groundwater heads and flow directions (Winter, 

1995). The chemical methods use anions, cations, and stable isotopes to trace water, pollutant 

sources, and dating water (Idowu, 2007). 

Due to their ability for prediction, numerical modelling is increasingly applied, with several 

integrated surface water-groundwater models being developed or improved. The integrated surface 

water-groundwater models include GSFLOW, which couples the US Geological Survey 

Precipitation-Runoff Modeling System with MODFLOW (Markstrom et al. 2005), SWATMOD, 

which combines Soil and Water Assessment Tool (SWAT) and MODFLOW (Bailey et al., 2017).  

SHETRAN is another coupled model that combines and models the flow and transport of sediment 

and solutes in surface and subsurface systems (Ewen et al., 2000). Similarly, Batelaan and Smedt 

(2001) developed a WETSPASS model, which can be coupled with MODFLOW to simulate 

surface water - groundwater interaction (McDonald & Harbaugh, 1988). However, the application 

of these robust modelling tools is limited by data availability. As such, this study focused on 

methods applicable to the available datasets.  

Environmental isotopes also provide insights into the hydrological processes within a catchment 

and help assess surface water-groundwater interactions. Differences in the isotopic composition of 

water from the different sources and the conservative nature of isotopes (Kendall & Doctor, 2003) 

allow the determination of the relative mixing ratios of different water using isotopic mass balance 

equations described by Gibson et al. (2016). It allows for the separation of groundwater 

contribution (baseflow) from streamflows (Idowu, 2007), the distinction of young water (recent 

recharge) from old water, the determination of recharge and discharge points (González-Trinidad 

et al., 2017), or the development of a conceptual understanding of lake-groundwater interactions 
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(Weitz & Demlie, 2013). This methodology also helped develop the conceptual model of the study 

area in the present study. 

In the analysis, a linear relation between the deuterium (𝛿𝐷) and Oxygen -18 (𝛿18O) isotope 

values of precipitation that have not been evaporated, first reported by Dansgard (1964) and now 

termed as the Global Meteoric Water Line (GMWL), expressed mathematically in Equation (4), 

were usefully applied. 

𝛿2𝐻 =  8𝛿18𝑂 + 10 
(4) 

Any variation of the 𝛿18O and 𝛿2H isotopes that result in a deviation from the GMWL form the 

basis for studying sources of water because atmospheric processes and groundwater recharge 

sources influence their compositions (Jabal et al., 2018). However, the interaction of additional 

factors such as rainfall amount, temperature, and seasonal effect may influence the variations of 

the isotopic compositions in precipitations in a nonlinear way (Gibson et al., 2016; Gonfiantini et 

al., 2001; González-Trinidad et al., 2017; Kendall & Doctor, 2003). Deuterium excess (d – excess) 

is a useful second-order isotope parameter for understanding moisture sources. It is often applied 

to provide information on the roles of diffusive transport in the atmospheric boundary layer and 

the effect of temperatures on fractionation (Pfahl & Sodemann, 2014). The applications of the 

stable isotopes in water are extensive, including establishing aquifer hydrogeological 

characteristics, groundwater flow dynamics, and interconnections with different sources (Jabal et 

al., 2018; Krishan et al., 2019; Maurya et al., 2019).  

2.8 Influence of Topography on Hydrological Processes 

There is a growing interest in how topography (a readily available data) influences water table 

response (Detty & McGuire, 2010; Condon & Maxwell, 2015). It probably started with Toth 

(1963), who observed that groundwater level imitates topography. However, Savenije (2010) later 

demonstrated that topography controls groundwater levels. The study observed that hill slopes 

generate large floods through Hortonian overland flow. However, little runoff comes from 

undulating plateaus because vertical flow to recharge groundwater and evaporation losses 

dominate. Savenije (2010) then related the landscape with dominant hydrological processes 

irrespective of the geological formation and climate. Savenije (2010) concluded that topography 

is more important in distinguishing hydrological processes than geology without discounting the 

influence of soils and climate on hydrological processes. The study further showed that soil 

characteristics and climate are correlated with topography. For example, he observed that riparian 

zones tend to be endowed with heavy clayey soils while hill slopes have heterogeneous soils with 

dual porosity. Therefore, the study concluded that important landscape signatures could be 
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extracted from topography to build a conceptual architecture for predicting behaviour in an 

ungauged catchment or an unknown future using a calibrated model (Savenije, 2010; Gao et al., 

2014). Further, Condon and Maxwell (2015) observed that topographic gradients drive 

groundwater fluxes more than pressure head gradients. These linkages between topography or its 

derivatives with the hydrological processes have been applied to map wetness and wetlands (Grabs 

et al., 2009) and in modelling studies using TOPMODEL (Nystrom & Burns, 2011) and FLEX - 

Topo (Gao et al., 2014). 

The advances in remote sensing and Geographical Information Systems (GIS) have offered several 

techniques to extract more hydrological information from topography instead of merely applying 

altitude, a piece of first-order information. One of these techniques is the Topographic Wetness 

Index (TWI), developed on the assumption that the local topographic slope equals the hydraulic 

gradient of a shallow water table (Nystrom & Burns, 2011; Infascelli et al., 2013). The TWI 

indirectly measures the topographic control of hydrological processes that influence groundwater 

infiltration rates (Arulbalaji et al., 2019). Several studies (Bretzke et al., 2012; Mallick et al., 2019) 

have applied TWI as a proxy for surface water availability and subsurface water movement driven 

by the terrain gradient.  Kopecký and Čížková (2010) used it in ecological studies. Height Above 

the Nearest Drainage (HAND) is the other equally important topography derivative, as it is directly 

linked to the hydraulic gradient (Nobre et al., 2011). Beyond the topography, usually measured 

“above mean sea level”, HAND can differentiate environmental classes into either wetlands or 

uplands (plateau and slope) without overlapping (Nobre et al., 2011). The HAND, when combined 

with slopes, provides sufficient information for landscape classification (Gharari et al., 2011) with 

broad applications, including soil water condition estimation (Renno et al., 2008), rainfall-runoff 

modelling (Gao et al., 2019), and identification of groundwater potential (Hamdani & Baali, 2019).  

Nobre et al. (2011) compared the two topography-based indices but reported a weak correlation 

between TWI and HAND in the lower Rio Negro catchment in Central Amazonia. Other studies, 

however, demonstrated that the two topographic indices describe similar parameters. For example, 

Gharari et al. (2011) showed that areas defined by HAND as wetlands and hillslopes in the Wark 

catchment were the wettest and driest in the TWI map of the same catchment. Thus, high TWI 

implies areas with a high saturation likelihood and large contributing areas, but with low slopes 

primarily located in wetlands, along streams, or groundwater discharge areas (Wolock & Price, 

1994).  

On the other hand, low TWI areas are mainly located on hills and groundwater recharge areas 

characterised by high slopes and small flow contributing areas (Nystrom & Burns, 2011). While 

low HAND values generally occur in areas prone to saturation, high HAND areas are either 
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plateaus or highlands, depending on whether they have low or high slopes. The TWI and HAND 

have been applied to determine potential groundwater zones (Rahmati et al., 2018; Hamdani & 

Baali, 2019; Mallick et al., 2019). Although TWI and HAND have been applied to determine the 

potential groundwater zones (Rahmati et al., 2018; Hamdani & Baali, 2019; Mallick et al., 2019), 

little information is available on their comparison as predictors of GWP. Groundwater discharge 

and recharge areas are surface water–groundwater interaction points that should be identified and 

protected as they can also be points of water contamination. Therefore, groundwater potential maps 

are proxy indicators of groundwater availability as they assess spatial groundwater discharge and 

recharge potentials. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area Description 

3.1.1 Location and Geology 

This study was conducted within the catchment of Lake Babati, which lies between Longitude 

35.55° and 35.81° East and Latitude 4.20° and 4.30° South. Figure 1 shows the extent and the 

location of the catchment within the Manyara Region in Tanzania (The Location of the study area 

within Africa (a) and Tanzania (b),  (c) shows the extent of the catchment, the elevation of the 

study area, and the meteorological stations within the region). Normal meteorological stations are 

generally regular stations that observe precipitation and some selected weather parameters, while 

climatic stations observe all weather parameters.. Based on a 30 m resolution Shuttle Radar 

Topographic Mission (SRTM) Digital Elevation Model (DEM), the 390 km² catchment was 

delineated. It lies between an altitude of 1201 meters above sea level (MASL) in the valleys near 

Lake Babati to 2388 MASL in the boundary hills (Fig. 1). Gentle slopes characterise the land 

terrain in the lake valley, while steep slopes define highlands at southern and northeast catchment 

boundaries.  

The southwest and western catchment borders lie on the high elevation bounded by an outcrop of 

the Bubu cataclasites of Precambrian rocks (Mineral Resources Division, 1966). The boundary 

rocks are mostly granite and gneiss types. Similarly, the southern catchment boundary lies on a 

range of metasediment mountains of mixed granitoid and permeated gneiss and quartzo – 

feldspathic gneiss (Fig. 2). The metasediment rocks of micaceous quartzite of the Usagaran 

formation from the Precambrian era bound the southeast and eastern catchment borders. 

The boundary rocks enclose an endowment of superficial and volcanic deposits from the recent 

Neogene era. There are dark soils from weathered tuffs with quartzo – feldspathic gneiss at some 

sections interspersed with agglomerate and crystal tuffs from the volcanic formation. Lightly 

coloured sandy soils (superficial deposits) dominate the valleys, whereas dark brown soils from 

weathered tuffs cover the eastern side of the lake. The west of the lake is a complex formation with 

no dominant formation. A combination of red and red-brown soils, dark-brown soils from 

weathered tuff endows it, sometimes with tuff and lava floats as the superficial deposits. Volcanic 

formations such as the crystal tuffs and agglomerate intersperse the alluvial deposits of the sand, 

silt, and clay that form the aquifer surrounding the lake. The Neogene era volcanic materials 

dominate the northern border of the catchment, forming hills and mountains. 
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Figure 1:  A Map of the Location of the study area  

3.1.2 Soils 

The soil map of the area was sourced from different agencies. The 1977 soil map from the 

Geological Survey of Tanzania classified the site with eutric nitosols (with FAO soil code Ne42-

2c-837) as the dominant soil in the study catchment, but it was a coarse map. The Soter Map 

(MARI, 2006) was more detailed and indicated three prevalent soil types within the catchment, 

distributed as shown in Fig. 2. The luvisols of humi – rhodic luvisols occupy about 57% of the 

catchment, mainly the flat or gently sloping areas of the southern part of the catchment. Luvisols 

profiles have less clay at the top but accumulate clay in the subsurface (Driessen et al., 2001). 

They are moderately weathered soils that overlay unconsolidated materials of alluvial deposits, 

thus forming the principal aquifer of the catchment. 
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Figure 2:  The geology of the study catchment with a detailed specification of the soil 

types comprised in superficial formation 

The eutric leptosols occasionally have shallow groundwater depths and low water holding capacity 

because of their high gravel content resulting in freely drained soil. Shallow depth to bedrock 

generally characterises leptosols due to the high erosions on steep slopes (Driessen et al., 2001). 

Leptosols originate from different rocks with less than 10% finer earth materials. The eutric 

leptosols comprise 28% of the coverage and occupy the northeast and northwestern parts of the 

catchment. Meanwhile, chromic – luvi Phaeozams are porous, dark, well-aerated, organic matter-

rich soils in flat or gently undulating landforms. Chromic – luvi Phaeozams often cover 

unconsolidated parent material of either aeolian or alluvial origin (Driessen et al., 2001), thus 

providing a higher chance of infiltration. Soils with a higher infiltration rate received the highest 

weight for groundwater potential as they would infiltrate and percolate more water into the 

groundwater aquifers. The chromic luvi Phaeozams is near the lake and covers 14.6% of the 

catchment. 
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Figure 2:  The soil map of the catchment 

3.1.3 Climate 

The catchment experiences a semi-arid climate (Sandstrom, 1995). The annual rainfall varied 

between 563 mm (observed in 1995) and 1505 mm (observed in 2006), with an average annual 

precipitation of 861 mm and a standard deviation of 270 mm. This was according to the 1980 – 

2020 rainfall records from Babati meteorological station (Station ID 9435030) maintained by the 

Tanzania Meteorological Authority. The shifting Intertropical Convergence Zone and the Indian 

Ocean Dipole (IOD) influence the rainfall distribution (Deus et al., 2013; Awange et al., 2016). 

For example, the positive IOD of 2006 was responsible for the peak rainfall of 93 mm/day on April 

6, 2006, and 85 mm/day on April 7, 2006. Generally, the influence of IOD that year resulted in 

1505mm of rainfall compared to the 1377 mm observed in Babati in 1989 without a record of IOD. 

The main rainy season of the bimodal distribution occurs from March to May, while a minor rainy 

season occurs from October to January of the following year (Fig. 4). The June to September 

period is a long dry but cold season, referred to as a dry season in most parts of this report. A short 

dry spell in February separates the two rainy seasons.  
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Figure 3:  Mean monthly rainfall observed at Babati meteorological station from 1980 to 

May 2021 (Station ID 9435030). The whisker is plus one standard deviation: 

Source: Tanzania Meteorological Authority 

Except for precipitation data, the other climatic parameters for the study area are scanty. Only 

monthly minimum and maximum temperatures for 1923 and 1947 for Mbulu, a nearby station to 

Babati, were obtained. Although the records were old, they were compared to reanalysis 

temperature data obtained from MERRA 2 for the Babati area. The maximum temperature at 

Babati was about 2°C higher than Mbulu’s maximum temperature from 1923 to 1947, as shown 

in Fig. 5. Similarly, the minimum temperature of Babati was about 2°C higher than Mbulu’s 

minimum temperature. Due to the time and location difference, it was neither practical to delve 

further into the possible causes for the observed differences nor prudent to use Mbulu temperature 

for detailed studies at Babati. Both places, however, exhibited similar temperature patterns. The 

maximum and minimum temperatures were highest from August to March of the following year, 

which coincided with the rainfall period. On the other hand, the April to July period had the lowest 

temperatures and coincided with the dry seasons. This implied that rain falls in the summer while 

the cooler season is characteristically dry. 
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Figure 4:  Comparison of the temperature of Babati (from NASA) and Mbulu (from 

TMA) for different periods for which data was available. (a) is the mean 

maximum temperature, while (b) is the mean minimum temperature 

3.1.4 Lake Babati Hydrology  

Lake Babati is among the few freshwater lakes in the East African Rift Valley. It is a graben semi-

closed lake formed due to land subsidence within the Internal Drainage Basins of Tanzania. Land 

subsidence within the region and the lake catchment resulted in several smaller craters observable 

today in the catchment.  

The lake is shallow and reaches its maximum depth of 7 m in mostly the rainy season. Due to its 

shallowness, the lake rapidly responded to climatic variations and overflooded its banks following 

episodes of high rainfall in 1964, 1979, and 1990 (Stromquist, 1992). The lake size has since varied 

many times. The current lake surface area is smaller than shown in Fig. 2. Mbanguka et al. (2016) 

underestimated the current lake size as just 7 km² compared to the 17 km² surface area digitised 

from the 1966 geological map (Mineral Resources Division, 1966) and 15.9 km² estimated by 

Yekom (URT, 2014) 

As a semi-closed, Lake Babati receives runoffs from surrounding torrential rivers and possibly 

groundwater flows. However, it generally has no outflow during the low-level seasons except for 

groundwater fluxes which are not visible. When the lake water level exceeds the levels of the 

artificial outlet created (usually occurs in rainy seasons), it outflows through River Kiongozi (also 

called River Farahani). Initially, it had no natural outlet, but an artificial outlet was first constructed 

after the 1964 floods and modified in 1990 as a relief to protect Babati town from flooding 
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(Sandstrom, 1995; Mbanguka et al., 2016). By 2013, four box culverts (as spillways), each of 3 m 

wide box culverts, were constructed on the northeastern part of the lake to relieve its excess water. 

The outlet level is high enough to allow outflow only when the water elevation exceeds 4.740 m 

(Lake Stage). The discharge joins the Kiongozi River, which acts as the physical link between 

Lake Babati and Lake Manyara, located further downstream. Babati catchment lies within the 

larger basin of Lake Manyara but at a higher elevation, giving it the characteristics of an 

independent lake. 

3.1.5 Groundwater Level and Flow Directions 

Data from 323 shallow wells from the catchment showed a contour map of groundwater levels 

(Fig.  6), and groundwater flow directions were determined from it. The groundwater levels varied 

with topography but remained shallow in the lake’s valleys and flood plains (Fig. 6). Generally, 

the groundwater contours converged, indicating a flow direction towards the lake. After the lake, 

the flow directions were in the northeastern part of the catchment, implying that the lake and 

groundwater precisely drain in the direction of the artificial outlet (channel) constructed to relieve 

the lake of excess water during floods.  

The groundwater contours were steeper in the eastern lake boundary than in the western one, 

indicating that the former had a more substantial groundwater inflow than the latter. Although the 

south of the lake had flattened flow contours that signify a low gradient groundwater flow 

potential, the contours generally indicated a gradient that mobilises the lake flow from the 

southernmost border to the northeastern part, where it is deepest (Mbanguka et al., 2016).  

Since the groundwater level in an unconfined catchment imitates topography and flows to low 

elevation (Toth, 1963),  a general groundwater flow direction towards the lake was assumed in 

areas without borehole water levels as dictated by the topography.  
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Figure 5:  Groundwater level contours in meters above sea level based on the water levels 

of the shallow wells 

The granitic rocks at the southern boundary of the catchment area were believed to establish a no-

flow boundary due to the consolidated formation of granite. The mountains are perceived to 

obstruct any possibility of large-scale regional groundwater flow. Pyroclastic rocks within the 

watershed provide the opportunity for a localised network of groundwater to interact with the lake. 

A cross-section A – A (shown in Fig. 2 ) drawn through deep boreholes drilled to an average depth 

of 80 m around Lake Babati showed the presence of unconsolidated materials and an aquifer with 

a high yield of groundwater flow (Fig.  7). From the available data on ten deep boreholes, the first 

water strike was at an average depth of 12 m, but the piezometric water heads in all the wells 

averaged 1.5 m. This implies that the deep wells are probably abstracting from confined aquifers 

with a contribution from the unconfined aquifer since well screens are installed in the unconfined 

aquifer. A hydrogeological section drawn from the well logs (Fig.  7) shows that clay layers confine 

the aquifer in the lake area. The presence of clayey sand layers in the lake’s neighbourhood  as 

shown in 7 drawn based on the logs of boreholes along Cross Section A – A, shown in Fig. 2, 

indicates a possibility of interactions between the lake and aquifers through leaky sections.  

No-flow boundaries are intimated by steep slopes at the eastern and the western catchment 

boundaries and the convergences of groundwater head contours towards the lake. In addition, the 
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contours of the groundwater suggest a northeast groundwater flow after the lake and indicate the 

possibility of a leaky or flow boundary at the northern catchment boundary. 

 
Figure 6:  Hydrogeological cross-section A-A beneath Lake Babati  

3.2 Data Collection and Analysis 

3.2.1 Climatic Data 

In the tropics, rainfall is the primary type of precipitation that inputs in the hydrological systems 

either as a quick runoff or baseflow attenuated through groundwater media and aquifers. On the 

other hand, evaporation is a derivative parameter of the climate that facilitates water movement 

within the hydrological cycle by removing water from the reservoirs such as lakes, rivers, and the 

ground and transferring it to the atmosphere. Therefore, evaporation drives water availability in 

one reservoir and influences precipitation through a feedback system. As a derivative of climatic 

parameters, evaporation is influenced by temperature, humidity, water availability in the reservoir, 

wind speed, and solar radiation, which provides the energy required to convert water from the 

liquid phase to vapour. 

Evaporation pans are crucial for measuring evaporation over an open surface. However, they 

cannot measure the combined evaporation from soil and plant surfaces, and plant transpiration. 
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Furthermore, the sparse spatial distributions of measurement instruments do not allow for an 

excellent spatial assessment of evaporation and evapotranspiration. Therefore, evapotranspiration 

and evaporation in the present study were estimated from climatic parameters using the methods 

described in Section 3.2.6. 

Some observed climatic data were scarce because of limited in-situ observations. The study 

obtained monthly averages of minimum air temperatures at Mbulu from 1923 to 1946 and 

maximum temperatures from 1924 to 1947. These old records were used to evaluate and 

crosscheck the applicability of MERRA 2 data (Global Modeling and Assimilation Office, 2022) 

in the study area. After satisfactory evaluation, the study downloaded the area’s minimum and 

maximum air temperatures, dew point temperature, relative humidity, wind speed, sunshine hours, 

and precipitation from the Global Modeling and Assimilation Office (2022). The datasets were 

essential to study the influence of climatic parameters on the hydrological systems.  

(i) Rainfall Data Sources, Quality Check and Covariation Analysis 

The study collected rainfall records from the Tanzania Meteorological Authority for stations 

within Lake Babati catchment and its neighbourhoods (Table 2). The availability of quality data 

and the relevance of the stations to the study area motivated its choice. The study carefully 

inspected and evaluated the records to resolve the problems of apparent errors such as outliers and 

erroneous entries. Graphical plots played critical roles in the identification of errors. After 

evaluating the records, the analysis omitted years missing more than three months of rainfall in the 

dry season except when they were used for monthly data computation. A year with at least one 

month of missing data in the rainy season was also omitted from the computation of annual rainfall. 

Further data quality analysis was done by testing consistency and homogeneity. Finally, months 

with more than four days of missing data were omitted from the study.  
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Table 2:  Meteorological and gauging stations within and near the catchment that 

provided rainfall records 

No Longitude Latitude Station ID From Name 
Elevation 

(MASL) 
Timestep 

1 35.5500 -3.8667 9335001 01/06/1990 - 

31/01/2017 

Mbulu 

District Office 

1737 Monthly 

rainfall 

2 35.3833 -4.0500 9435003 Jan 1960 - 

Dec 2017 

Dongobesh 

Sec. School 

2042 Daily 

record 

3 35.3833 -4.0500 9435003 Jan 1932 - 

Dec 2008 

Dongobesh 

Sec. School 

2042 Monthly 

rainfall 

4 35.3833 -4.5333 9435008 Jan 1980 - 

Dec 2015 

Katesh 1829 Monthly 

rainfall 

5 35.8667 -4.300 9435010 Jan 1980 -

Dec 1988 

Galappo 

Mission 

1524 Monthly 

rainfall 

6 35.7500 -4.2167 9435030 01/01/1980 - 

31/12/2020 

Babati 999 Daily 

record 

7 36.5667 -5.2833 9536000 Jan 1980 -

Dec 2014 

Kibaya 1457 Monthly 

rainfall 

8 35.7395 -4.2369  Jan 1981 – 

Mar 2019 

MERRA 2 1493 Daily 

rainfall 

(ii) Filling gaps in the climatic data 

The nearby stations that correlated with records from Babati (Station ID: 9435030) were used for 

filling in the missing rainfall data of Babati. However, to use portions of dataset Xi to replace Yi, 

both datasets Xi, and Yi had to be homogeneous (Allen et al., 1998). Therefore, the following 

procedure for substituting data from the nearby station into an incomplete dataset, according to 

Allen et al. (1998), was followed:  

(a) Select a nearby weather station for which the dataset length covers all periods of missing 

data.  

(b) Characterise the datasets from the nearby station, Xi, and of the station with missing data, 

Yi, by computing the mean 𝑥̅ , 𝑦̅ and the standard deviation 𝑆𝑥, 𝑆𝑦 for the datasets 𝑥𝑖 and 

𝑦𝑖 using Equation (5) and Equation (6).   

𝑥̅ =∑
𝑥𝑖
𝑛

𝑛

𝑖=1

 

(5) 

𝑆𝑥 = √(
∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

(𝑛 − 1)
) 

(6) 
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The above comparison was applicable for periods when both stations had datasets available. 𝑥𝑖 

and 𝑦𝑖 above are individual observations from datasets 𝑋𝑖 and 𝑌𝑖, and n is the number of 

observations in each set.  

(c) A regression of y on x was performed for the periods when the data in both datasets were 

available using Equation (7):  

𝑦𝑖̂ = 𝑎 + 𝑏𝑥𝑖 
(7) 

b is given by Equation (8) and a by Equation (9). 

𝑏 =
𝑐𝑜𝑣𝑥𝑦

𝑆𝑥
2 =

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1

 

(8) 

𝑎 = 𝑦̅ − 𝑏𝑥 (9) 

Whereby, a and b are empirical regression constants, and 𝑐𝑜𝑣𝑥𝑦 is the covariance between 𝑋𝑖 

and 𝑌𝑖. 

All xi and yi and the regression line for the range of observed values were then plotted. Substitution 

is not recommended if deviations from the regression line increase as y increases. This indicates 

that the two sites behave differently relative to the weather variable and may not be homogeneous. 

In that case, another nearby station would be selected and tested. Finally, the procedure for 

completing datasets was applied after the homogeneity test, and any needed correction for non-

homogeneity was performed. 

(d) The correlation coefficient r 

To measure the relationship among the neighbouring stations, a Spearman rank correlation 

coefficient 𝑟𝑠  (Equation (10)) was preferred to Pearson Moment correlation to eliminate the 

influence of outliers, the non–linearity, and non–normality of the datasets.  

𝑟𝑠 = 1 − (
6∑𝑑2

𝑛3 − 𝑛
) 

(10) 

Whereby, n is the sample size, d is the difference between the ranks of the two variables, and 𝑟𝑠  

the Spearman rank correlation.  

The covariation analysis considered the daily, monthly, and annual time scales and was based on 

hydrological years. The decision to accept or reject Spearman’s rank test was based on a 

comparison of 𝑟𝑠 against a critical r value from Spearman’s rank table for n < 30 and Pearson’s 

rank table for n > 30. A null hypothesis (Ho) was set that “the variables do not have an order 
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relationship in the population represented by the sample”. The null hypothesis was rejected when 

the absolute value of the obtained 𝑟𝑠 was greater than the critical r values for a 5% significance 

level. Otherwise, Ho was accepted.  

The station for which the Ho was rejected and the value for b was within the range 

(0.7 ≤ 𝑏 ≤ 1.3) was used to replace the missing data in the incomplete data series. The data for 

the missing periods k = n+1, n+2..., m were computed using the regression equation characterised 

by the parameters a and b in Equation (8) and Equation (9) using Equation (11).  

𝑦̂𝑘 = 𝑎 + 𝑏𝑋𝑘 
(11) 

3.2.2 Hydrological Data – Lake Levels and Well Data 

Lake Babati’s water level records spanning from November 1964 to December 2020 were obtained 

from the Internal Drainage Water Basin Authority of Tanzania, which oversees all the water 

resources within the basin. The water level records, however, had patches of missing data. The 

main periods with missing observation ran from June 1970 to September 1976, April 1986 to 

August 1989, and July 2002 to January 2008. The years with data missing for > 4 months were 

1979, 1991, 1993, 1994, 1995, 1996, and 1997. Some variations were also observed in the lake 

level records. Unfortunately, the metadata of the lake level records offers no further information 

on whether these variations could have resulted from a change of gauging stations, units of 

measurement, or any changes whatsoever. However, the missing records between 1970 and 1975 

may suggest that after 1975, a change occurred either in measurement, the station locations, 

measurement accuracy, or all together. Due to the inconsistencies in lake level observations before 

1975, we selected the portion of the records from August 1976 to December 2020 for further 

analysis. Graphical plots of time series data were used to detect errors related to entries that were 

sometimes unrealistically larger or smaller by many fractions than the preceding or succeeding 

values. This error type occurred in three incidences and was corrected by interpolating the 

preceding and succeeding values to obtain the erroneously entered value.  

The study obtained water levels of 13 deep wells (boreholes with depths > 30 m) and 323 shallow 

wells (hand-dug wells and boreholes with depths < 30 m) surrounding the lake from the Internal 

Drainage Basin Authority of Tanzania, research data of Pantaleo et al. (2018) and the Babati Water 

Supply Authority (BAWASA).  Out of these, the depths of 12 deep wells and 288 shallow wells 

were available.   
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3.2.3 Trends Analysis of Lake Levels and Climatic Variability 

Numerous methods, broadly characterized as parametric or non-parametric, are available to 

analyze the trends of climatic variables. Parametric methods like Pearson Rank Correlation require 

data with a normally distributed population or those which can be approximated using the central 

limit theorem (Kwak & Kim, 2017). However, weather-driven events rarely meet this condition 

(Duan et al., 2018).  

The Mann-Kendall method (Kendall, 1975; Mann, 1945) and Spearman rho test are the most used 

non-parametric methods as they do not require normally distributed data. Most importantly, the 

two non-parametric methods can handle missing data because they measure or consider ranks of 

measurements instead of the actual values of measurements and are less sensitive to outliers.  

However, Mann-Kendall and Spearman’s rho suffer from internal correlation in the time series, 

leading to a false conclusion of trend or no-trend (Amaya et al., 2018). Therefore, checking the 

time series data against autocorrelations was vital when using the Mann-Kendall method. The 

Mann-Kendall method tests for Ho (no trend) and the alternative hypothesis (trend exists). Trends 

can be either negative or positive. A negative Mann-Kendall coefficient means a decreasing 

monotonic trend, while a positive one means an increasing monotonic trend. 

(i) Homogeneity and Mann-Kendall Tests 

Homogeneity tests were performed on all the lake levels and climatic data time series records to 

check for changes or breakpoints within the time series (Hussain et al., 2023) before the Mann-

Kendall analysis. This was a quality check to ensure that trend analyses were performed on datasets 

without breakpoints and that the data came from the same population distribution.  

The lake levels and climatic data were evaluated as an ordered time series, and their Mann-Kendall 

test statistic S was calculated using the formula adopted from Gilbert (1987) expressed in Equation 

(12). For example, if the time series is 𝑥𝑗 and 𝑥𝑘, the test statistics S increases by one when 𝑥𝑗 −

𝑥𝑘 is positive and reduces by one if the difference between the successive time-series data is 

negative but remains constant when successive numbers are equal (𝑥𝑗 − 𝑥𝑘 = 0) as summarized 

in Equations (12) and (13). 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 

(12) 
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𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) = {

+1     𝑖𝑓    𝑥𝑗 − 𝑥𝑘 > 0

   0     𝑖𝑓    𝑥𝑗 − 𝑥𝑘 = 0

−1    𝑖𝑓   𝑥𝑗 − 𝑥𝑘 < 0
 

(13) 

where 𝑥𝑗 and 𝑥𝑘 are values in days, months, or years j and k, j >k. 

Equations (12) and (13) are valid if the observations (n) are not > 40. The period can be a day, 

week, month, season, or year. For distribution with > 40 values or with many tied data values, the 

S statistics are computed by Equation (12), but test statistics Z is computed using Equations (14) 

and (15). 

𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝐴𝑅(𝑆)
  𝑖𝑓    𝑆 > 0

0                  𝑖𝑓     𝑆 = 0
𝑆 + 1

√𝑉𝐴𝑅(𝑆)
  𝑖𝑓     𝑆 < 0

 

(14) 

where the variance of S, 𝑉𝐴𝑅(𝑆) is computed as in Equation (15). 

𝑉𝐴𝑅(𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑔

𝑝=1

] 

(15) 

𝑔 is the number of tied groups and 𝑡𝑝 is the number of data in the 𝑝𝑡ℎ group. 

A positive (negative) value of S or Z indicates an upward (downward) trend. If the null hypothesis 

(Ho) of no trend is true, the Z statistic has a standard normal distribution; thus, the Standard 

Cumulative normal distribution table is used to decide whether to accept or reject the Ho. To test 

for either an upward or downward trend (a two-tailed test) at the 𝛼 level of significance is used; 

Ho is rejected if the computed probability value (p-value) is less than the specified alpha or if the 

absolute value of Z is greater than 𝑍1−𝛼
2
, where 𝑍1−𝛼

2
 is obtained from the standard cumulative 

normal distribution table. 

(ii) Sen’s Slope Estimator 

The magnitude of trends in the lake levels and climatic datasets were determined using the method 

of Sen (1968). Although linear regression methods can determine the slope of distributions with a 

linear trend, outliers or gross errors in the data may influence the slope (Gilbert, 1987). Sen’s 

method provides an opportunity to determine the true slope because it uses a non-parametric 

procedure that is neither greatly affected by gross data errors nor outliers. It can also be computed 
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even when some data is missing. Sen’s estimate of slope is derived by first computing the 𝑁′ slope 

estimates, 𝑄, which for each station is given by Equation (16): 

𝑄 =
𝑥𝑖′ − 𝑥𝑖
𝑖′ − 𝑖

 
(16) 

where 𝑥𝑖′ and 𝑥𝑖 are data values at times (or during periods) i’ and i, respectively, and i’> i; 𝑁′  is 

the number of data pairs for which 𝑖′ > 𝑖. The median of the 𝑁′  values of 𝑄 is Sen’s slope 

estimator. 

When one datum exists in each period, then 𝑁′ = 𝑛(𝑛 − 1)/2,  where n is the number of periods. 

However, if multiple observations exist in one or more periods, then 𝑁′ < 𝑛(𝑛 − 1)/2, where 𝑛 

is now the total number of observations, not periods. Since 𝑄 cannot be computed with two data 

from the same period, i.e., when 𝑖′ = 𝑖. If 𝑥𝑖 is below the detection limit, half of the detection limit 

may be used for 𝑥𝑖. The median of the 𝑁′ slope estimates is obtained by ranking 𝑄 from the 

smallest to the largest, and the slope estimator is the median slope obtained as in Equation (17). 

𝑆𝑒𝑛′𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 =  

{
 

 
𝑄[𝑁′+1] 

2  
                        𝑖𝑓   𝑁′ 𝑖𝑠  𝑜𝑑𝑑

1

2
(𝑄[𝑁′]

2

+ 𝑄[𝑁′+2]
2

)      𝑖𝑓   𝑁′ 𝑖𝑠  𝑒𝑣𝑒𝑛 
 

(17) 

In addition to statistical methods, graphical plots were used to complement and help identify and 

present the trends. The variables were plotted against observation time, and a simple linear 

regression was added to relate the variable to time. A simple t-test was added to ensure the true 

slope was closer to zero. The t-test, however, can be misleading if seasonal cycles are present, as 

the data are not normally distributed or are serially correlated (Gilbert, 1987).  

(iii) Changepoint Analysis 

The non-parametric Pettit Test method was used to analyze abrupt changes in the time series of 

the datasets. The Ho tested for the absence of a change point within the data series. In contrast, the 

alternative hypothesis (Ha) tested change point occurrence (1 ≤ t ≤ T) using the non-parametric 

statistic expressed in Equations (18), (19), and (71). 

𝐾𝑇 = 𝑀𝑎𝑥|𝑈𝑡,𝑇|, 1 ≤ 𝑡 ≤ 𝑇 
(18) 

𝑈𝑡,𝑇 =∑ ∑ 𝑠𝑔𝑛

𝑇

𝑗=𝑡+1

𝑡

𝑖=1

(𝑥𝑖− 𝑥𝑗) 

(19) 
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𝑠𝑔𝑛(𝑥𝑖− 𝑥𝑗) = (

+1 𝑖𝑓 𝑥𝑖 − 𝑥𝑗 > 0

0 𝑖𝑓 𝑥𝑖− 𝑥𝑗 = 0

−1 𝑖𝑓 𝑥𝑖 − 𝑥𝑗 < 0
) 

(20) 

𝑈𝑡,𝑇 would continue rising with no turning points when a change point does not exist but the 𝑈𝑡,𝑇 

would decrease, and a turning point would form when a change point exists. The probability of 

detecting a change point was calculated by Equation (21). 

𝑃 ≅ 2 × 𝑒𝑥𝑝 [
6𝐾𝑇

2

𝑇3 + 𝑇2
] 

(21) 

The change was analyzed at a 5% level of significance. The Ho was rejected when the computed 

p-value was smaller than the 5% significance level, and the appropriate decisions were taken once 

a change was detected. Pettit tests were run using the XLSTAT software and the Monte Carlo 

simulations for a quicker determination of the change point. The change point analysis was 

performed on the lake levels and the climatic datasets to determine if any significant changes 

occurred in the time series and when the changes occurred. The analysis was aimed to understand 

the possible triggers for changes in the datasets. 

3.2.4 Lake Babati Bathymetry 

A bathymetric survey of Lake Babati was done from the 17th to the 19th of July 2020. This study 

used an echosounder mounted on a motorboat to conduct the survey. The echosounder measured 

the topography of the lake bottom every second (spaced less than 5 m depending on the boat speed) 

along the transects. All the crew members used a life jacket, among other safety kits required when 

in water. Two sets of 12  volts batteries and a power inverter were loaded on the boat to charge 

and power the surveying equipment and the computers. A Real-Time Kinematic Global 

Positioning System (RTK GPS) was used to measure the X-Y coordinates of the location of 

sounding data. The base station of the RTK GPS was located on the lakeshore at the exact location 

for all three days of the bathymetric survey. 

After mounting and setting up the echosounder, transducer, and computer, the sounding depths 

were verified by comparing them with the manually measured lake depths near the lakeshore each 

day before and after surveying. The sounding depth was measured by the echosounder, mounted 

on a motorboat, and the transducer hung 0.5 m below the water level.  

Transects spaced at about 100 m drawn on a computer with Eye4Software Hydromagic with the 

Lake shapefile as a background map were used to guide the field navigation. Figure 7 shows the 

final hydrographic survey routes followed. Due to thickets of water weeds and grasses, the water 

banks could not be sounded as the vegetation obstructed the echosounder, and in some cases, the 
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water depth was shallower than the 0.5 m required for proper sounding. The Hydromagic software 

monitoring panel was projected on an additional computer monitor configured to display the 

survey route, the coordinates, and the depths being logged during the survey. An additional 

computer monitor was included to ease navigation and troubleshoot the survey process whenever 

any component stopped collecting or logging the sounding data. Routinely, the boat would be 

stopped to clear the echosounder of any debris or materials obstructing it.  

The sounding depth and the X-Y coordinates were logged every second to measure the depth at a 

specified lake location. A total of 62 048 depths with corresponding coordinates were measured. 

Subsequent cleaning and processing of the sounding depths were done within the Hydromagic 

software, including interpolation to visualise the sounding data. On July 19, 2020, the Lake 

elevation was 1350 MASL, with a lake stage of 4.75 m (given by a limnographic gauge), and a 

maximum depth of 6.39 m was measured within the lake. It was established that the lake starts to 

overflow when the lake stage is 4.74 m. The lake was overflowing when the bathymetric survey 

was undertaken. Figure 8 presents the final bathymetric chart of Lake Babati, which was used to 

compute the lake stage–surface area and volume relationship. 



34 

 
Figure 7:  Transect route followed during the bathymetric survey 
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Figure 8:  Bathymetric chart of Lake Babati surveyed in July 2020 

The lake banks were mapped from Google Earth, and the water level at the banks was set at 0. 

Next, we extracted the topography of the lake banks and surrounding areas from Google Earth. 

Finally, the lake depth and bank’s topography were combined and interpolated using the natural 

neighbour method to generate the bathymetric chart in Fig. 8 and compute the lake stage–area–

volume relationship in Fig. 9 (The lines poly (Stage – Area) and poly (Stage – Volume) are 
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polynomial regression lines). Mathematically, the relationships were expressed in Equation (22) 

and Equation (23). 

 
Figure 9:  The lake stage - area - volume relationship based on bathymetric (data from 

this study) 

  

𝐿𝑉 = 3929610 + 2950450ℎ − 139382ℎ2 
(22) 

𝐿𝑆𝐴 = 4328680 + 4559830ℎ + 1140820ℎ2 
(23) 

where LV is the lake volume in m3, LSA is the lake surface area in m2, and h is the lake stage in m. 

3.2.5 Catchment Geophysical Data and Preparation 

The study obtained the geophysical data that influence or describe the aquifer characteristics, 

groundwater infiltration, recharge, and discharge from various sources. These data included 

geology, lineament density, altitude, drainage densities, land use, and land cover (Ghorbani et al., 

2017; Mallick et al., 2019; Pande et al., 2017; Shekhar & Pandey, 2014; Tolche, 2020). 

The geological map was digitised from Quarter degree sheet 85, a geological map for Babati with 

a scale of 1: 125 000, by Mineral Resources Division (1966). The soil map of the area with a scale 

of 1: 1 000 000 was obtained from Dijkshoorn (2003). The slope map in degrees was computed as 
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the maximum rate of change of the neighbouring cells’ value using the slope algorithm in the 

spatial analyst package of ArcGIS 10.5 (Berhanu & Hatiye, 2020). It was based on the 30 m 

resolution Digital Elevation Model (DEM) obtained from the Shuttle Radar Topographic Mission 

(USGS, 2018). The same DEM was used to compute the Height Above the Nearest Drainage 

(HAND), Topographic Wetness Index (TWI), and distance to the streams. The Euclidean distance 

tool in the ArcGIS tool was used to compute the distance to streams after delineating the streams 

from the DEM. The distance to a stream is a perpendicular distance measured from the stream 

centreline. Considering the sensitivity of the stream distance to the initiation point of a stream, the 

stream threshold was set at 5000 cells implying that a stream begins when the area above it has a 

catchment area equivalent to 5000 cells.  

3.2.6 Determination of drought variability and severity 

The study assessed the influence of meteorological drought on the observed lake level variability 

by analyzing drought in the catchment. The determination of the drought indices was aimed to 

assess the aggregate influence of precipitation and evapotranspiration on the lake levels. No 

particular method is, however, recommended for drought analysis, but the choice of methods is 

motivated mainly by the data availability and the ease of application (Byakatonda et al., 2018). 

The Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration 

Index (SPEI) have been used in this study due to their wide applications in drought severity 

analysis and because they apply precipitation and evapotranspiration data which are readily 

available. The SPI and SPEI were compared to assess the influence of evaporation reported by 

Mbanguka et al. (2016) in driving the lake water levels. This study considered drought 

characteristics at short temporal scales of monthly, seasonal, annual, and bi-annual to account for 

the long-term influences of drought on surface water resources. The evolution of magnitude and 

frequency of the drought severity over time was analyzed using SPI and SPEI.  

(i) Determination of the SPI 

SPI, developed by Mckee et al. (1993), is a versatile drought monitoring and analysis tool. It is 

based on standardized precipitation, the difference between precipitation from the mean for a 

specified period divided by the standard deviation. The mean and the standard deviation are 

determined from the records. Mckee et al. (1993) proposed the following steps for computing the 

SPI: 

(a) It requires a monthly precipitation data set prepared for 12 months for a continuous period 

of at least 30 years.  
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(b) The monthly precipitation is then averaged using the moving average method. Although 

arbitrary, the averaging periods of 3, 6, 12, 24, or 48 months are commonly used to 

represent time scales for which precipitation deficits affect the different types of usable 

water sources: soil moisture, groundwater, snowpack, streamflow, and reservoir storage. 

The data set is moving in the sense that a new value is determined each month from the 

previous i months.  

(c) The time average values of the precipitation are then fitted to the Gamma function to define 

the relationship of probability to precipitation.  

(d) From the established relationship of probability to precipitation, the probability of any 

observed precipitation data point is thus calculated and used along with an estimate of the 

inverse normal to calculate the precipitation deviation for a normally distributed probability 

density with a mean of zero and a standard deviation of unity. The calculated precipitation 

value is the SPI for that precipitation data point. 

(ii) Determination of SPEI 

The following steps developed by Vicente - Serrano et al. (2010) and as applied by Yu et al. (2013) 

and Byakatonda et al. (2016) were adopted for the computation of SPEI. 

Determination of Potential Evapotranspiration  

Numerous methods exist for computing evapotranspiration. However, data availability determines 

the choice of method. The FAO Penman-Monteith method is considered standard and widely 

accepted for computing evapotranspiration (Allen et al., 1998; Vicente - Serrano et al., 2010) 

because it is a physically-based method. However, the unavailability of data often limits its 

application (Trajkovic, 2007) as it requires minimum and maximum temperature, solar radiation, 

relative humidity, and wind speeds, most of which are often unavailable or have poor quality in 

sub-Saharan Africa. Although Hargreave's method overestimates evapotranspiration in humid 

conditions(Trajkovic, 2007), it is widely applicable in data-scarce areas because it requires only 

minimum and maximum temperatures, which are always available. The lake evaporation was 

computed using the Penman-Monteith equation to capture the wind and humidity influence which 

have a substantial effect on lakes. 

In contrast, the potential evapotranspiration of the catchment was computed using both the 

Penman-Monteith and Hargreaves equations. The methods are well elaborated in Allen et al. 

(1998) and Trajkovic (2007) and were applied without repeating for brevity. We used both 
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methods because Mavromatis (2007) showed that the method of computing PET has significant 

differences in the Palmer Drought Severity Index (PDSI) results.  

Computation of the Climatic Water Balance 

The climatic water balance was calculated by taking the difference between precipitation and 

potential evapotranspiration, as illustrated in Equation (24). 

𝐷𝑖 = 𝑃𝑖 − 𝐸𝑇𝑂𝑖 
(24) 

 

where 𝐷𝑖 is the climatic water balance, which measures the water surplus or deficit in the month i 

measured in mm or inches, 𝑃𝑖 is the precipitation in the month i (measured in mm or inches) and 𝐸𝑇𝑂𝑖 

is the potential evapotranspiration measured in mm or inches. 

The Aggregation of Climatic Water Balance  

The climatic water balance computed in step 2 is then aggregated for the nth number of months, 

where n is the drought time scale considered. The drought time scale considered is 1, 3, 6, 12, 18, 

and 24 months to account for the monthly, quarterly, seasonal, annual, and biannual drought 

variability.  

Aggregating the calculated Di values at different time scales followed the same procedure as that 

for the SPI. The aggregated/accumulated climatic water balance denoted as 𝐷𝑖,𝑗
𝑘  in a given month 

j and year i depends on the chosen time scale k. For example, the accumulated climatic water 

balance 𝐷𝑖,𝑗
𝑘  for one month in a particular year i with a 12–month time scale is calculated using 

Equation (25). 

𝐷𝑖,𝑗
𝑘 = ∑ 𝐷𝑖−1,𝑗

12

𝑙=13−𝑘+𝑗

+∑𝐷𝑖−1,𝑗

𝑗

𝑙=1

 

(25) 

Equation (25) is applicable when j < k, but for 𝑗 ≥ 𝑘, 𝑋𝑖,𝑗
𝑘  is computed as as in Equation (26). 

𝐷𝑖,𝑗
𝑘 = ∑ 𝐷𝑖,𝑗

𝑗

𝑙=𝑗−𝑘+1

 

(26) 
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Normalization and Standardization of the Aggregated Climatic Water Balance 

The aggregated climatic water balance D𝑖,𝑗
𝑘  is standardized in a log-logistic distribution whose 

probability density function is calculated using Equation (27) expressed below 

𝑓(𝑥) =
𝛽

𝛼
(
𝑥 − 𝛾

𝛼
) [1 + (

𝑥 − 𝛾

𝛼
)]
−2

 

(27) 

where x is the aggregated climatic water balance D𝑖,𝑗
𝑘  series for all the time scales, 𝛼, 𝛽, and 𝛾 

respectively, represent the shape and scale parameters for the climatic water balance values in the 

range (𝛾 > 𝐷 <∝). This implies the probability distribution function of the climatic water balance 

D𝑖,𝑗
𝑘  is calculated as follows: 

𝐹(𝑥) = [1 + (
𝑥 − 𝛾

𝛼
)
𝛽

]

−1

 

(28) 

The SPEI can be obtained as standardized values of F(x) by following the classical approximation 

of Abramowitz & Stegun (1970) as used in Yu et al. (2013) 

𝑆𝑃𝐸𝐼 = 𝑊 −
𝐶0 + 𝐶1𝑊 + 𝐶2𝑊

2

1 + 𝑑1𝑊+ 𝑑2𝑊2 + 𝑑3𝑊3
 

(29) 

where 𝑊 = √−2𝑙𝑛 (𝑃) for 𝑃 ≤ 0.5, and P is the probability of exceeding a determined D𝑖,𝑗
𝑘  value, 

𝑃 = 1 − 𝐹(𝑥). For 𝑃 > 0.5, P is replaced by 1 – P, and the sign of SPEI computed is reversed. 

The constants are: 𝐶0 = 2.515517, 𝐶1 = 0.802853, 𝐶2 = 0.010328, 𝑑1 = 1.432788, 𝑑2 =

0.189269 and 𝑑3 = 0.001308. These SPEI and SPI were computed using the SPEI package 

within the R Programming language. 

The study analyzed the area’s drought using both the SPI and SPEI. The SPEI was based on the 

potential evapotranspiration computed using the Hargreaves and Penman-Monteith methods. In 

addition to the minimum and maximum temperature required by the Hargreaves method, the 

Penman-Monteith uses more parameters to determine potential evapotranspiration. Therefore, in 

most cases, the PET computed using the Penman-Monteith method was more conservative than 

that computed using the Hargreaves method. Whereas Penman-Monteith caters for the influence 

of additional parameters, such as the effect of wind and sunshine hours on evapotranspiration, 

Hargreaves is known to overestimate PET in humid conditions (Trajkovic, 2007). Therefore, the 

PET computed by the Penman-Monteith and Hargreaves methods has been used in the present 

study with caution that the latter predicts the worst-case scenario and the former moderate 

conditions.  
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3.2.7 Assessment of Anthropogenic Activities 

Numerous anthropogenic activities influence hydrological regimes, but the key activities are 

groundwater and surface water exploitation. They increase groundwater discharge, alter the natural 

hydrological regime, runoff harvesting, and natural land cover alterations. Section 3.2.8 

exhaustively covers the effect of the land cover modification. The key anthropogenic activities 

considered in this section are related to the abstraction and use of water resources.  

The catchment of Lake Babati extends within Babati Town Council and Babati Rural, where 

domestic and non-domestic water is abstracted from groundwater sources. The information on 

water use was not readily available. However, this study used population data to project future 

water consumption. The demand of the study areas was scaled from the estimated water demand 

of the Internal Drainage Basin Authority by URT (2014). At the time of this study, the BAWASA 

was already supplying about 50 000 m³ per week to households within their coverage area. 

Communities outside the BAWASA service area used water from shallow wells for domestic and 

agricultural activities. There were no inter-catchment water transfers by any known means except 

the lake, which outpours to the Kiongozi River and drains into Lake Manyara when it floods. 

Therefore, regional groundwater flows, as defined by (Toth, 1963), were considered minimal and 

balanced by the regional groundwater outflows, if any. 

3.2.8 Land Use and Land Cover Classification 

(i) Satellite Image Acquisition and Classification  

Land cover links humans to the physical environment (Foody, 2002). Therefore, the study 

determined land cover changes to assess the degree of interference of the natural environment by 

anthropogenic activities and estimate the possible influence of the changes on the water resources. 

The detection of land use and land cover changes was conducted by analysing the multispectral 

Landsat images from 1991 to 2019 obtained from the Earth Explorer website by the U.S. 

Geological Services (https://earthexplorer.usgs.gov/). A large part of the Lake Babati catchment 

falls within the images from Landsat zone/path 169 and row 063, while a small portion lies on 

images from path 168 and row 063. 

Images from 1991 to 1999 were from Landsat 4 – 5, which had a 30 m resolution, except band 6, 

whose resolution was 120 m but was resampled to 30m to match others. The Landsat 8 images 

were collected from 2013 to 2019. The cloud cover of the images was high for some years, while 

bar errors shaded other images. The images of the study area had, in most cases, the thickest cloud 

cover during the rainfall season. Most cloud-free images were only available for the dry seasons 

month of September, October, December, and February. No cloud-free images were available for 

https://earthexplorer.usgs.gov/
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the rainy season. This hampered the possibility of studying the seasonal variation of land use. In 

addition, the scan liner error, which occurred after the failure of the Scan Line Corrector aboard 

the satellite systems, affected the Landsat 7 images from March 2003. Despite attempts to correct 

the errors, the images were erroneous for such a small study area and were discarded from the 

analysis. 

Given that the available images were only for the dry season, it was challenging to distinguish 

between the urban land cover (or buildings) and bare land. As practiced in this area, agricultural 

land is prepared during the dry season; therefore, agricultural land is highly likely to be converted 

to bare land in the dry season. Consequently, the main index used for classification was the 

Normalized Difference Vegetation Index (NDVI). In addition, indices such as the Normalized 

Difference Built-up Index (NDBI), Normalized Difference Bareness Index (NDBaI),   and Urban 

index (UI) (Meijerink et al., 2007; As-syakur et al., 2012) were used for a better distinction 

between bare land and built-up surfaces and vegetated surfaces during classification. Based on the 

digital values of the image bands, the indices were calculated as illustrated in Equation (30) to 

Equation (34) (Rahman et al., 2004; As-syakur et al., 2012). 

𝑁𝐷𝑉𝐼 =  
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
 

(30) 

𝑁𝐷𝐵𝐼 =  
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 4
 

(31) 

𝑈𝐼 =  
𝐵𝑎𝑛𝑑 7 − 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 7 + 𝐵𝑎𝑛𝑑 4
 

(32) 

𝑁𝐷𝐵𝑎𝐼 =  
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 6

𝐵𝑎𝑛𝑑 5 + 𝐵𝑎𝑛𝑑 6
 

(33) 

𝐸𝐵𝐵𝐼 =  
𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4

10√𝐵𝑎𝑛𝑑 5 − 𝐵𝑎𝑛𝑑 4
 

(34) 

Because no single method is better at distinguishing bare land and urban, a combination of the 

methods with ranges defined in Table 3 was used to distinguish the land cover classes. A location 

identified by more than one method as bare land was accepted. The urban index could not 

distinguish between the bare land and buildings as it categorized both as one unit. Therefore, the 

NDVI values were used with reference values of EBBI, NDBI, and NDBaI to distinguish the bare 

land from built-up portions of the land use and categorize the different land cover types.  

The Google Earth images, old topographic maps from the Tanzania Survey Division (1967), the 

open street map, and the ground truth data about the spatial extent of specific land cover types and 
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categories collected during fieldwork provided instrumental data for determining the spectral 

signatures in supervised classification and validating the land use and land cover classification. 

Further, interviews with the local community about spots of unchanged land use and the historical 

land uses and cover changes were useful for verifying classification results. Finally, using the 

supervised classification method in ArcGIS version 10.5, the land cover and the land use were 

classified into the five main and easily identifiable classes presented in Table 4. 

Table 3:  Land cover classification criteria and classes  

 Index Values range Values interpretation / Land cover class 

No NDVI values range  Interpretation 

1  -1<NDVI<-0.1 Water bodies, cloud cover 

 -0.1<NDVI<0.1 Bare soil surface, including open 

agricultural land, and man-made structures  

 0.1<NDVI<0.2 Roads, bare surfaces with sparse vegetation 

 0.2 < NDVI < 0.4 Shrubs, grassland, and farmland 

 NDVI > 0.4 Dense forests 

2 Enhanced Built-up and 

Bareness Index (EBBI) 

0.10<EBBI< 0.35 Built up area 

EBBI > 0.35 Bare land 

3 Normalized Difference 

Built-up Index (NDBI) 

0.10<NDBI<0.30 Built-up area 

NDBI > 0.30 Bare land 

4 Normalized Difference 

Bareness Index (NDBaI) 

NDBaI < -0.15 Other land cover types 

NDBaI > -0.15 Bare land or clouds 

Rahman et al. (2004) 

Table 4:  The main land cover and land use classes identified in the classification 

Class 

No 
Main Classes Description 

1 Water Open water such as Lake, lagoons, and crater water 

2 
Built-up and bare land Buildings, paved roads and surfaces, Bare soils, 

bare rocks, and unpaved roads 

3 Agricultural land and grassland Agricultural land and grassland 

4 Shrubs and scattered trees Shrubs and scattered trees 

5 Forests Dense forests 

(ii) Accuracy assessment of land-use classification 

Accuracy assessment is an essential process of quantifying and checking the quality/validity of 

classified images (Debnath et al., 2017). At least 150 sample points were randomly picked (to 

incorporate probability sampling) from the classified maps for accuracy assessment following the 

recommendations of Olofsson et al. (2014). The sampling was controlled and stratified to ensure 

that at least 20 points were taken from each land-use class. The study avoided using non-

probability sampling techniques such as sampling points of convenience and sampling from 

homogenous areas.  
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Numerous stratification methods exist, but each has a benefit and a shortcoming. For example, 

proportional allocation produces a smaller standard deviation for estimating producer accuracy 

and overall accuracy than equal allocation, while equal allocation favours the user’s accuracy over 

the overall accuracy (Olofsson et al., 2014). This study compromised and balanced the benefits of 

the two methods by taking the average of two sample allocation criteria, i.e., weighted/proportional 

allocation and equal distribution allocation. This increases the sampling points for the rarer class 

above the proportional limit but to a number less than that of the equal allocation, as recommended 

by Olofsson et al. (2014), thus improving classification accuracy.  

Several accuracy assessment methods exist, but no single method has been standardized. The 

choice of analysis method was motivated by the ability of the method to measure the accuracy 

assessments with the available resources. In the present study, a confusion matrix (error matrix), 

due to its limited computational requirement, was applied to evaluate the accuracy of the classified 

maps. The accuracy assessments determined how well the land use and land cover were classified. 

Higher producer accuracy, user accuracy, overall accuracy, and kappa coefficient imply the 

suitability of classified land use and land cover maps for land use change and impact analysis.  

A confusion matrix compares the generated land use maps against the reference information (in 

this case, from Google Earth images and old topographical maps) regarded as the truth. It 

summarizes the relationship between the classified map and the reference data in an error matrix 

(Olofsson et al., 2014). The confusion matrix table eases the computation of the overall accuracy 

of the classification, the percent correct, the user’s accuracy, the producer’s accuracy, and the 

kappa coefficient. The main diagonal in the error matrix shows the correct classification, while the 

omission and commission areas are presented in the off-diagonal, as Foody (2002) illustrated in 

Fig. 10. 

Figure 10 shows an array of cells with column letters indicating the actual classes (reference class) 

and row letters indicating classes in the predicted (classified map). The letters in the cells, for 

example, nAC mean the number of cells that have been predicted (classified) to be in class A but 

belong to class C in the actual map. Correctly classified cells have the same letter codes in their 

subscript. For example, nDD is the number of cells predicted (or classified) as class D and actually 

belong to class D in the actual class (original map). nA+ is the summation of the number of cells in 

row A (predicted class A), and n+D is the summation of the number of cells in column D (in actual 

class D).  
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 A B C D ∑ 

A nAA nAB nAC nAD nA+ 

B nBA nBB nBC nBD nB+ 

C nCA nCB nCC nCD nC+ 

D nDA nDB nDC nDD nD+ 

∑ n+A n+B n+C n+D n 

Figure 10:  Demonstration of the error matrix of classification adapted from Foody (2002) 

From the illustration in Fig. 10,  Foody (2002) presented the formula for computing the user’s 

accuracy, producer’s accuracy, error of commission, error of omission, overall efficiency, and the 

Kappa coefficient as in Equation (35) to Equation (41). 

𝑃𝑐 =
∑ 𝑛𝑘𝑘
𝑞
𝑘=1

𝑛
× 100 

(35) 

where q is the number of land use classes, 𝑃𝑐 is the percent correct and 𝑛𝑘𝑘 is the number of 

correctly classified cells (the sum of the numbers in the diagonal of Fig. 10). 

The user’s accuracy of class 𝑖 is the proportion of area mapped as class 𝑖 and has reference (actual) 

class i. User accuracy, 𝑈𝑖  is computed by taking the ratio of the cells mapped as of class 𝑖 in the 

classified map against the number of cells in the reference (actual) map with class 𝑖.  

𝑈𝑖 =
𝑛𝑖𝑖
𝑛𝑖+

 
(36) 

The commission error for class i, 𝐶𝑒𝑖 is complementary to the user’s accuracy, and it is measured 

as in Equation (37): 

𝐶𝑒𝑖 = 1 − 𝑈𝑖 = 1 −
𝑛𝑖𝑖
𝑛𝑖+

 
(37) 

Producers accuracy, 𝑃𝑖 measures the ratio of the cells referenced (actual map) as class 𝑖 and 

mapped as class 𝑖 as expressed in Equation (38): 
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𝑃𝑖 =
𝑛𝑖𝑖
𝑛+𝑖

 
(38) 

The error of omission, 𝑂𝑒𝑖 is computed from the producer’s accuracy as in Equation (39): 

𝑂𝑒𝑖 = 1 − 𝑃𝑖 = 1 −
𝑛𝑖𝑖
𝑛+𝑖

 
(39) 

Other complementary methods of assessing accuracy exist; however, the Kappa coefficient is the 

most popular method. Olofsson et al. (2014) propound that correction of chance agreement in the 

Kappa coefficient is unreasonable. Its strong correlation to the user’s accuracy makes using both 

the Kappa coefficient and the user’s accuracy redundant. Kappa coefficient, 𝐾𝐶 (computed by 

Equation (40)) was adopted in the present study to reinforce the user’s accuracy.  

𝐾𝐶 = 𝑛
∑ 𝑛𝑘𝑘 − ∑ 𝑛𝑘+𝑛+𝑘

𝑞
𝑘=1

𝑞
𝑘=1

𝑛2 − ∑ 𝑛𝑘+𝑛+𝑘
𝑞
𝑘=1

 

(40) 

Similarly, the overall accuracy of the classification was computed as follows in Equation (41): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
∑ 𝑛𝑘𝑘
𝑞
𝑘=1

𝑛
× 100 

(41) 

3.3 Hydrological modelling of Lake Babati catchment 

3.3.1 The Hydrologic Engineering Centre – Hydrologic Modelling System 

Hydrological modelling of Lake Babati catchment was undertaken using the Hydrologic 

Engineering Centre – Hydrologic Modelling System (HEC-HMS) computer program version 4.8 

(HEC, 2000, 2021). The HEC-HMS has several models, sometimes called packages, which are 

sets of equations representing the behaviour of hydrological components (HEC, 2000).  

The HEC-HMS was chosen from numerous tools, such as SWAT and GSFLOW, to simulate the 

Babati catchment's continuous response because it can model and be calibrated by the reservoir 

levels. Models such as SWAT and MIKE SHE use outflow data which was unavailable for 

calibration in this case. The HEC-HMS models conceptualize rainfall-runoff response in both 

events and continuous storms. The continuous models can simulate the streamflow over a long 

time because they maintain soil moisture balance (Razmkhah, 2016). In addition, the model 

packages can be fully lumped or distributed to account for the spatial variations of parameters that 

influence hydrological responses.   
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3.3.2 The Modelling Equations 

The Deficit and constant rate method (HEC, 2000, 2021) was chosen to model runoff volume, i.e., 

to model the loss of water to interception, evaporation, and infiltration before the runoff, while the 

Snyder’s Unit Hydrograph method (Chow et al., 1988) was preferred to simulate the direct runoff 

on the ground surface. The study chose the deficit and constant rate loss method because it could 

perform continuous rainfall-runoff modelling with fewer input data and calibrate with the available 

data. Although the Soil Moisture Accounting method (HEC, 2000) is also suitable for continuous 

modelling, it requires numerous input data, including soil parameters that were unavailable. The 

baseflow (groundwater) was routed using the Linear Reservoir model. The channel flow was not 

routed since all the rivers were seasonal, and the channel characteristics were unknown. Instead, 

the sub-basins were assumed to drain directly into the lake since each sub-basin ends in the lake, 

as depicted in Fig. 11. 

The HEC (2000) conceptualizes the deficit and constant loss method clearly with the computation 

proceeding as follows: The precipitation first fills the canopy-interception storage, and only the 

excess precipitation is available for infiltration. If the excess precipitation exceeds the available 

soil storage or the computed potential infiltration cannot deplete the volume, the excess volume 

fills the surface-depression storage. The runoff will only occur when the surface depression storage 

is full. The evaporation is modelled when no precipitation occurs within the interval (HEC, 2000). 

Otherwise, its computation proceeds in the following order: The model first satisfies the potential 

evapotranspiration needs from canopy storage, then surface storage. Water is extracted from the 

upper soil storage profile if the surface storage does not satisfy evapotranspiration (HEC, 2000).  

The Deficit and Constant Loss method is a modification of the Initial and Constant Loss method 

(HEC, 2000), which assumes that the maximum rate of precipitation loss 𝑓𝑐 is constant throughout 

the rainfall event. Therefore, if 𝑃𝑡 is the mean areal precipitation in a time interval ∆𝑡 from 𝑡 to 

𝑡 + ∆𝑡, then HEC (2000) computes the excess precipitation 𝑃𝑒𝑡 in the initial and constant loss 

model as shown in Equation (42).  

𝑃𝑒𝑡 = {
𝑃𝑡 − 𝑓𝑐      𝑖𝑓   𝑃𝑡 > 𝑓𝑐  
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(42) 

When the initial loss to interception and detention storage, 𝐼𝑎 is added to Equation (42), the runoff 

would not occur until the initial losses are exceeded, and Equation (42) becomes Equation (43). 
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𝑃𝑒𝑡 =

{
 
 

 
 0                   𝑖𝑓     ∑𝑃𝑖 < 𝐼𝑎                                  

𝑃𝑡 − 𝑓𝑐         𝑖𝑓      ∑𝑃𝑖 > 𝐼𝑎 𝑎𝑛𝑑 𝑃𝑡 > 𝑓𝑐           

0                 𝑖𝑓     ∑𝑃𝑖 > 𝐼𝑎 𝑎𝑛𝑑 𝑃𝑡 < 𝑓𝑐           

 

(43) 

The deficit and constant loss methods differ from Equation (43) because the initial loss can recover 

after a long drought. The application of the model requires the specification of the initial loss, 

constant loss rate, and recovery rate. The model continuously tracks the moisture deficit, computed 

as the sum of the initial abstraction value and the recovery volume in the precipitation-free period 

and less by the precipitation volume. Therefore, the sum of the evaporation and the percolation 

rates is a reasonable estimate of the recovery rates (HEC, 2000).  

The Snyder Unit Hydrograph (UH), developed by Snyder in 1938 to analyze runoff in the 

ungauged catchments of Appalachians Highlands in the USA (Chow et al., 1988), was used in the 

present study. This method was chosen because the study catchment is ungauged, and parsimony 

was believed to be achievable since the Snyder UH has only two parameters. The parameters are 

the  𝑡𝑝 which is the basin lag between the rainfall peak and the hydrograph peak, and 𝐶𝑝, a peaking 

coefficient that varies from 0.4 to 0.8 (HEC, 2000). More importantly, 𝑡𝑝 can be determined from 

the basin parameters using Equation (44) (Chow et al., 1988). 

𝑡𝑝 = 𝐶𝐶𝑡(𝐿𝐿𝑐)
0.3 

(44) 

where 𝐶𝑡 is the basin coefficient, 𝐿 is the length of the mainstream from the outlet to the catchment 

divide, 𝐿𝑐 is the length along the mainstream from the outlet to a point nearest to the centroid, 

and 𝐶 is the conversion factor which is 0.75 for the SI units and 1 for the foot-pound system. The 

basin coefficient 𝐶𝑡 is not a physically based parameter and is best determined through calibration. 

Bedient et al. (2013) reported that 𝐶𝑡 varies from 1.8 to 2.2 but also noted that it varied from 0.4 

in mountainous areas to 8.0 along the Gulf of Mexico. 

The USACE (1994) provides an alternative method for estimating the basin lag 𝑡𝑝 as shown in 

Equation (45). 

𝑡𝑝 = 𝐶𝐶𝑡 (
𝐿𝐿𝑐

√𝑆
)
𝑁

 

(45) 

Where 𝑆 is the slope of the longest watercourse from the point of concentration to the boundary of 

the drainage basin, and 𝑁 is an exponent commonly considered as 0.33. Both methods (Equations 

(44) and (71)) were applied to determine the probable ranges for the basin lag. Other studies have 

also estimated the basin lag as 50 – 75% of the time of concentration. The linear reservoir volume 
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accounting model modelled the baseflow, which applies a cascade of reservoirs whose outflows 

are linearly proportional to the storage volume. 

3.3.3 The Model Setup 

Based on a 30 m resolution DEM from SRTM (USGS, 2018), six small sub-basins were delineated 

using the GIS package of HEC-HMS (Fig. 11) to represent the different hydrological responses 

better. The catchment characteristics derived from the delineated sub-basins (Table 5) were used 

to estimate realistic ranges of hydrological basin parameters.  

 
Figure 11:  Delineated sub-basins within the Lake Babati catchment and their schematic 

representation in the HEC-HMS model
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Table 5:  Sub-basin properties applied for estimation of the sub-basin hydrological parameters 

Parameters 
Area 

(km2) 

Longest 

flow 

path 

Length 

(km) 

Longest 

Flow 

path 

slope 

Centroidal 

Flow path 

Length 

(km) 

Centroidal 

Flow path 

Slope 

10 - 85 

Flow 

path 

Length 

(km) 

10 - 85 

Flow 

path 

Slope 

Basin 

Slope 

Basin 

Relief 

(m) 

Relief 

Ratio 

Elongation 

Ratio 

Drainage 

Density 

(km/Km2) 

Bab1 58.48 18.26 0.0572 10.60 0.0055 13.70 0.0251 0.1326 1047.0 0.0573 0.4725 0.1563 

Bab2 33.2 12.03 0.0211 5.76 0.0010 9.02 0.0023 0.1164 467.0 0.0388 0.5404 0.0750 

Bab3 62.86 16.70 0.0238 7.34 0.0077 12.52 0.0199 0.1302 409.0 0.0245 0.5357 0.1614 

Bab4 80.55 23.25 0.0139 12.35 0.0034 17.43 0.0092 0.1422 448.0 0.0193 0.4356 0.1835 

Bab5 72.97 20.42 0.0235 15.26 0.0165 15.31 0.0188 0.1430 483.0 0.0237 0.4721 0.1695 

Bab6 81.89 19.68 0.0174 10.51 0.0035 14.76 0.0133 0.1367 458.0 0.0233 0.5188 0.1565 

Bains relief is measured in meters as the high above the lowest elevation 
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3.3.4 Model Calibration  

Calibration is tuning the model parameters to match (improve) the prediction of the outputs with 

the observations or the field-measured data (HEC, 2000). Model calibrations take a trial-and-error 

approach to find the best sets of parameters. First, a trial set of parameter values is chosen, the 

model is run, and the errors are computed. Another set of trial parameter values is chosen when 

the computed errors are unacceptable and the program is simulated iteratively. The iterations 

continue until the model errors are within the acceptable ranges or the stopping number of 

iterations is reached.  

The automatic calibration implements a computerized numerical mathematical solution and can 

quickly produce good model outputs due to the faster iteration rates. However, automatic 

calibration can produce a good model output but with unrealistic sets of parameter values, 

especially from the wide search space of parameter values. Therefore, the modeller must use 

intuition to restrict the parameter space to realistic ranges that describe the observed catchment 

characteristics. Thus, the expertise of the modeller is essential for calibration. On the other hand, 

the hydrological experts, although time-consuming, can achieve good agreement with manual 

calibration. 

The calibration process ends when the model outputs are closest to the observations as measured 

by goodness of fit statistics and graphical representations. In the present study, the automatic 

calibration did not improve the pool level shape since the automatic calibration was restricted to 

measuring only the goodness of fit with the maximum peak pool elevation. Therefore, manual 

calibration was adopted after automatic calibration to preserve the pool-level hydrograph shape 

and optimize the Root Mean Square Error (RMSE) and the Nash Sutcliffe Efficiency (NSE) 

objective functions. Other goodness of fit measures applied includes a scatterplot of the predicted 

lake pool level against the observations, the sum of absolute errors (Equation (46)), the sum of 

squared residuals (Equation (47)), the percent error in peak (Equation (48)), and the peak weighted 

root means squared errors (Equation (49)). The goodness of fit measures in Equations (46) - (49) 

was computed from outside the model using Microsoft Excel because the model was not built to 

compute them.  

The sum of absolute errors: 

𝑍 =∑|𝑞𝑜(𝑖) −

𝑛

𝑖=1

𝑞𝑠(𝑖)| 

(46) 

The sum of Squared residuals as cited in HEC (2000): 
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𝑍 =∑[𝑞𝑜(𝑖) − 𝑞𝑠(𝑖)]
2

𝑛

𝑖=1

 

(47) 

The percent error in peak (HEC, 2000): 

𝑍 = 100 |
𝑞𝑠(𝑝𝑒𝑎𝑘) − 𝑞𝑜(𝑝𝑒𝑎𝑘)

𝑞𝑜(𝑝𝑒𝑎𝑘)
| 

(48) 

The peak weighted root means square objective function by USACE (1998) was applied for 

optimization as in Equation (49). 

𝑍 = {
1

𝑛
[∑[𝑞𝑜(𝑖) − 𝑞𝑠(𝑖)]

2
(
𝑞𝑜(𝑖) − 𝑞𝑜̅̅ ̅

2𝑞𝑜̅̅ ̅
)

𝑛

𝑖=1

]}

1
2

 

(49) 

The NSE was applied to measure the goodness of fit for the calibration and validation phase. It 

varies from negative infinity to 1. When NSE < 0, it implies that the mean of the variation is a 

better predictor than the model, while an NSE = 0 indicates that the mean of the distribution is as 

good a predictor as the model. A model is considered worthy for prediction purposes when its NSE 

> 0.6. Moriasi et al. (2015) considered a daily flow model with 0.5 < NSE < 0.7 as satisfactory 

and a model with 0.7 < NSE < 0.8.5 as a good one. A daily flow model was considered very good 

when NSE > 0.85 (Moriasi et al., 2015).  NSE is calculated using Equation (50) and (71). 

𝑁𝑆𝐸 = 1 −
∑ (𝑞𝑠(𝑖) − 𝑞𝑜(𝑖))

2𝑛
𝑖=1

∑ (𝑞𝑜(𝑖) − 𝑞𝑜̅̅ ̅)
2𝑛

𝑖=1

 

(50) 

where 𝑞𝑜(𝑖) is the observed output at time step i, 𝑞𝑠(𝑖) is the simulated output (discharge or pool 

level) at time step i, 𝑛 is the number of computed hydrograph ordinates, 𝑞𝑠(𝑝𝑒𝑎𝑘) is the peak 

simulated discharge and 𝑞𝑜(𝑝𝑒𝑎𝑘) is the peak observed discharge.  The calibrated parameters of the 

model are presented in Table 6, Table 7, and Table 8. 
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Table 6:  The initial and calibrated parameters for initial abstraction, runoff volume, and catchment runoff routing 

 
Simple Canopy Simple Surface Snyder Transform 

 
Initial Storage (%) Maximum Storage (mm) 

Crop 

Coeffic

ient (-) 

Initial Storage (%) Maximum Storage (mm) Lag Time (HR) Peaking Coefficient 

 

Mini

mum 

Maxi

mum 

Calibra

ted 

Mini

mum 

Maxi

mum 

Calibra

ted 

Mini

mu

m 

Maxi

mum 

Calibra

ted 

Mini

mum 

Maxi

mum 

Calibra

ted 

Mini

mum 

Maxi

mum 

Calibra

ted 

Mini

mum 

Maxi

mum 

Calibra

ted 

Bab4 0 100 0.0267 0 10 1 1 0 100 100 0 100 1 0.1 500 7.3743 0.4 0.8 0.4 

Bab5 0 100 0.0294 0 10 1 1 0 100 100 0 100 1 0.1 500 7.558 0.4 0.8 0.4 

Bab6 0 100 0.0315 0 10 1 1 0 100 100 0 100 1 0.1 500 6.6849 0.4 0.8 0.4 

Bab3 0 100 0.0329 0 10 1 1 0 100 100 0 100 1 0.1 500 5.7119 0.4 0.8 0.4 

Bab2 0 100 0.0336 0 10 1 1 0 100 100 0 100 1 0.1 500 4.8154 0.4 0.8 0.4 

Bab1 0 100 0.0338 0 10 1 1 0 100 100 0 100 1 0.1 500 6.5522 0.4 0.8 0.4 

Table 7:  The initial and calibrated linear Reservoir model parameters for modelling groundwater in the catchment 

 Numb

er of 

Layers 

GW 1 Initial – Discharge 

per unit area (m3/s/km2) 
GW 1  

Fracti

on (-) 

GW 1 Coefficient (HR) 

GW 1 

Steps 

GW 2 Initial Discharge per 

unit area (m3/s/km2) 
GW 2 

Fraction 

(-) 

GW 2 Coefficient (HR) 

GW 2 

Steps  

Minim

um 

Maxi

mum 

Calibr

ated 

Mini

mum 

Maxi

mum 

Calibrat

ed 

Mini

mum 

Maxi

mum 

Calibrat

ed 

Mini

mum 

Maxi

mum 

Calibrat

ed 

Bab4 2 0 0.4 0.0001 0.2 0.1 1000 59.407 1 0 0.15 0.0015 0.15 1 5000 1232 2 

Bab5 2 0 0.4 0.0001 0.2 0.1 1000 57.855 1 0 0.15 0.0015 0.12 1 5000 1204 2 

Bab6 2 0 0.4 0.0001 0.2 0.1 1000 52.671 1 0 0.15 0.0015 0.10 1 5000 1197 2 

Bab3 2 0 0.4 0.0001 0.2 0.1 1000 43.658 1 0 0.15 0.0015 0.10 1 5000 1167 2 

Bab2 2 0 0.4 0.0001 0.2 0.1 1000 37.235 1 0 0.15 0.0015 0.15 1 5000 1120 2 

Bab1 2 0 0.4 0.0001 0.2 0.1 1000 46.156 1 0 0.15 0.0015 0.15 1 5000 1183 2 
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Table 8:  Parameter ranges and calibrated values for the deficit and constant rate methods of accounting infiltration rates 

 Deficit and Constant  

 

Initial 

Deficit 

(mm) 

Initial 

Deficit 

(mm) 

Initial 

Deficit 

(mm) 

Maximum 

Storage 

(mm) 

Maximum 

Storage 

(mm) 

Maximum 

Storage 

(mm) 

Constant 

Rate 

(mm/HR) 

Constant 

Rate 

(mm/HR) 

Constant 

Rate 

(mm/HR) 

Impervious 

(%) 

 Minimum Maximum Calibrated Minimum Maximum Calibrated Minimum Maximum Calibrated  

Bab4 0 5 0.14196 0.001 1000 5 0.001 30 3 0 

Bab5 0 5 0.11462 0.001 1000 5 0.001 30 3 0 

Bab6 0 5 0.087282 0.001 1000 5 0.001 30 3 0 

Bab3 0 5 0.059943 0.001 1000 5 0.001 30 3 0 

Bab2 0 5 0.032604 0.001 1000 5 0.001 30 3 0 

Bab1 0 5 0.005265 0.001 1000 5 0.001 30 3 0 
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3.3.5 Model Validation 

Models are simple representations of the complex system, which may still be inaccurate. 

Calibrations attempt to improve model accuracy. However, the calibrated parameters may only 

correctly represent the scenario/dataset used for calibrations because models are simplified 

representations of a complex system. Therefore, hydrological model validation attempts to test the 

accuracy of the model calibration efforts by measuring how best the calibrated model predicts the 

known observed hydrological output with a set of stress conditions different from the calibration 

datasets. This study used rainfall and evapotranspiration data from August 2020 to March 2021 as 

validation datasets, and the lake’s level measured at a 30-minute interval using an automatic 

pressure transducer (diver) installed in the Lake. 

A model is deemed unreliable when the validation test fails; thus, it is not recommended for use. 

Therefore, the model was iteratively recalibrated until it satisfactorily met the objective functions 

in both calibration and validation. The satisfaction of the objective functions was measured using 

the goodness of fit statistics presented in Table 19 and the graphical comparison of the simulation 

in the calibration and validation phase with the observed lake level. 

3.4 Sensitivity Analysis and Attribution of Water Level Drivers 

3.4.1 Grey Relational Analysis 

Grey Relational Analysis (GRA) and multi-stepwise regression were applied to analyse the 

sensitivity of the net basin supply parameters. The GRA determines the most sensitive parameters 

without showing the direction of effect (Wong et al., 2006), while multi-stepwise regression 

analysis attempts to quantify the direction of changes and trends.  

Wong et al. (2006) developed the GRA to measure the degree of influence of one sequence over 

a reference sequence. The GRA determines geometrical proximity between different discrete 

sequences and at least one comparison sequence in a system (Li et al., 2014). The proximity, a 

measure of similarities between discrete data arranged in sequential order, is expressed in grey 

relational grade. A higher grey relational grade implies a higher similarity between the sequential 

parameters (Li et al., 2014; Wong et al., 2006).  

The GRA and grey system theory has been widely used to analyze uncertainties in systems with 

imprecise information, including finance and hydrology (Wong et al., 2006; Kung & Wen, 2007; 

Li et al., 2014), optimization of the manufacturing process and quality (Tzeng et al., 2009). This 

technique was adopted to analyze the sensitivity of natural and anthropogenic factors that drive 

the water level variability of Lake Babati. Li et al. (2014) similarly applied GRA techniques to 
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identify significant factors that influenced groundwater change in North China Plains. Li et al. 

(2014) simplified the steps of using GRA proposed by Wong et al. (2006)  as follows: 

(i) Determination of the Reference and Comparison Series 

The reference time series denoted as X0’ represents the system’s characteristics, while the 

comparison time series denoted by Xi’ is a series of factors that influence the system 

characteristics. The series is represented by Equation (51) and Equation (71). 

𝑋0
′ = {𝑥0

′(𝑘)|𝑘 = 1,2,…𝑛} 
(51) 

𝑋𝑖
′ = {𝑥𝑖

′(𝑘)|𝑘 = 1,2,…𝑛; 𝑖 = 1,2,… ,𝑚} 
(52) 

The k represents the period; thus, n is the number of periods while i represents the evaluating 

factors, with m as the total number of influencing factors evaluated.  

(ii) Data Processing  

Data preprocessing is necessary to ensure that all evaluated factors are of the same units or that 

the original series are transformed into comparable sequences. Kung & Wen (2007) and Li et al. 

(2014) proposed these three linear normalization methods (Equations (53), (54), and (71)) to avoid 

distortion of data in preprocessing.  

𝑋𝑖
′(𝑘) =

𝑋𝑖(𝑘)

𝑋𝑖̅̅ ̅
 (𝑖 = 0,1,…𝑚;𝑘 = 12…𝑛) 

(53) 

𝑋𝑖
′(𝑘) =

𝑋𝑖(𝑘)

𝑋𝑖(1)
 (𝑖 = 0,1,…𝑚;𝑘 = 12…𝑛) 

(54) 

If a larger value is expected, like in benefits, Equation (55) can be used to determine 𝑋𝑖
′(𝑘). 

𝑋𝑖
′(𝑘) =

𝑥𝑖
(0)(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

(0)(𝑘)

𝑚𝑎𝑥 𝑥𝑖
(0)(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

(0)(𝑘)
 

(55) 

Equation (56) is applicable for determining 𝑋𝑖
′(𝑘) when a lower value like in costs is anticipated.  

𝑋𝑖
′(𝑘) =

𝑚𝑎𝑥 𝑥𝑖
(0)(𝑘) − 𝑥𝑖

(0)(𝑘)

𝑚𝑎𝑥 𝑥𝑖
(0)(𝑘) − 𝑚𝑖𝑛 𝑥𝑖

(0)(𝑘)
 

(56) 

When the expected distribution is normally distributed, like for age, Equation (57) is used. 

𝑋𝑖
′(𝑘) = 1 −

|𝑥𝑖
(0)(𝑘) − 𝑂𝐵|

𝑚𝑎𝑥. {𝑀𝑎𝑥.[𝑥𝑖
(0)(𝑘)] − 𝑂𝐵,𝑂𝐵 −𝑀𝑖𝑛.[𝑥𝑖

(0)(𝑘)]}
 

(57) 
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where 𝑋𝑖
′(𝑘) is the value of the grey relation, max 𝑥𝑖

(0)(𝑘) is the maximum value of the 𝑥𝑖
(0)(𝑘) 

and min𝑥𝑖
(0)(𝑘) is the minimum value of 𝑥𝑖

(0)(𝑘). OB is the objective value. 

(iii) Determination of the Deviation Sequences 

The deviation sequences ∆0𝑖(𝑘) between the corresponding values in the reference and comparison 

series are determined by Equation (58): 

∆0𝑖(𝑘) = |𝑥0(𝑘) − 𝑥𝑖(𝑘)| 
(58) 

From these deviation sequences, the maximum 𝑚𝑎𝑥∆0𝑖(𝑘) and minimum 𝑚𝑖𝑛∆0𝑖(𝑘) values are 

determined.  

(iv) Calculation of the Grey Relational Coefficient ξi(k)  

For each series, the grey relational coefficient is calculated using Equation (59):  

𝜉𝑖(𝑘) =
𝑚𝑖𝑛∆0𝑖(𝑘) + 𝜌𝑚𝑎𝑥∆0𝑖(𝑘)

∆0𝑖(𝑘) + 𝜌𝑚𝑎𝑥∆0𝑖(𝑘)
 

(59) 

Where 𝜌 is the distinguishing coefficient whose value is 0 ≤ 𝜌 ≤ 1, and differentiates the degree 

of proximity of X0 and Xi, such that 𝜉𝑖(𝑘) is between 0 and 1. ∈[0,1]. 𝜌 can be adjusted based on 

the actual system requirements but is generally taken to be 0.5. 

(v) The Grey Relational Grade γi 

The grey relational grade 𝛾𝑖 is calculated as in Equation (60). 

𝛾𝑖 =
1

𝑛
∑ 𝜉

𝑖
(𝑘)

𝑛

𝑘=1

 

(60) 

3.4.2 Stepwise Regression Analysis 

The methods of stepwise regression analysis of multiple variables described in Draper and  Smith 

(1998) and Rawlings and Dickey (1998) were followed to determine the partial regression 

coefficients for each independent variable responsible for lake water level variations. The multiple 

regression analysis was performed on daily precipitation, lake evaporation, inflow to the lake, and 

lake outflow to determine the most influencing factors. The inflow was obtained from the HEC-

HMS model from August 2019 to March 2021 to ensure all the data had the same length. 

The forward selection, backward elimination, and stepwise selection of model variables developed 

the stepwise regression models relating lake levels to the different variables. First, a simple model 
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with no predictors was selected. Then, the model variables or predictors were iteratively added 

using forward selection until an optimized fit of the model variables was reached. At the optimized 

stage, adding more variables produced no statistically significant improvement. In the backward 

elimination method, the regression was started with a complex model which included all model 

parameters. The model variables were eliminated at each backward step until an optimized model 

fit where all the variables were statistically significant. Forward and backward methods ensured 

the results were triangulated, consistent, and reliable. Irrespective of the chosen stepwise method, 

the model converged to the same optimal solution.  

The Akaike Information Criterion (AIC) (Akaike, 1973) was applied to measure the quality of the 

resulting model relative to other models after adding or eliminating parameters. The parameter sets 

that gave a model with the lowest AIC was deemed the optimal sets of sensitive parameters. 

Therefore a smaller AIC was used as a stopping criterion in the stepwise model regression. Based 

on the AIC, the best model was chosen, and the goodness of fit tests was done. F- tests on each 

partial regression coefficient were conducted to determine the most significant variable that could 

be retained or eliminated to simplify the model.  

3.5 Sampling and Analysis of Hydrogeochemical and Isotopic Data 

3.5.1 Water Sample Collection 

(i) Preparation for Water Sampling Campaign 

While preparing for the water sampling campaign, the study followed Brassington (2007) and the 

American Public Health Association (2017) protocols for sampling, handling, storing, and 

transporting water samples. For example, the study prepared beforehand a sampling equipment 

checklist, a list of sample sites, the type of sample to be taken at each location, a list of parameters 

to be determined at each site, and a route map to the sample locations before the sampling 

campaigns. The additional items mobilized were pretreatment equipment, including cold boxes to 

suppress evaporation, the first-aid box, personal protective equipment, appropriate sample bottles 

with spares packed in cold boxes with ice packs, and suitable packing material. Other equipment 

included beakers for on-site measurement and a HANNA multiparameter set (model HI 9829) of 

complete probes to measure temperature, the potential of Hydrogen ion (pH), the electrical 

conductivity (EC), and dissolved oxygen. We also carried blank and standard solutions for 

multiparameter calibration, de-ionized water, and tissue for cleaning instruments. After each 

sampling or at the end of each working day, the samplers (a bailer, buckets, and beakers) were 

washed in a cleaning solution, and the samplers rinsed well in de-ionized water to avoid sample 

adulteration.  
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(ii) Water Sampling 

Water samples were collected on the 22nd and the 23rd of May 2019 (towards the end of the major 

rainy season). The samples were taken from different points and depths in Lake Babati, shallow 

and deep wells, and the rivers within and outside of Lake Babati's catchments, as shown in             

Fig. 12. Coordinates of sampling points were determined using a handheld Global Positioning 

System (GPS) handset (Garmin etrex 30 model), and the sampling depth was measured using a 

dipping tape. 

The lake water was sampled using a bailer from 1m below the surface and 2/3rd of the lake depth 

using a lake water sampler. Further, the study sampled water from two points on Lake Manyara 

(one from about the lake middle and another from its northernmost boundary near a river input) 

for comparison purposes with Lake Babati.  

Water was collected from shallow open wells using a bucket which was cleaned and rinsed several 

times with the well water. Deep and shallow wells installed with pumps were sampled from the 

pump outlet after pumping out for 5 – 10 minutes to avoid sampling standing water. The main 

interests were to collect representative groundwater samples from the exact productive aquifer. In 

addition, we sampled river water from where the river was flowing to avoid sampling standing 

water. After sampling, the study followed the standard methods for preserving and examining 

water and wastewater chemistry prescribed by the America Public Health Association (2017).  

The temperature, pH, Total Dissolved Solids (TDS), and EC were measured onsite immediately 

after sampling using a HANNA multi-parameter test kit (model HI 9829). The multi-parameter kit 

was calibrated for EC and pH by taking readings from standard solutions of both. The kit was reset 

and recalibrated whenever necessary according to the manufacturer’s specifications.  

The water samples were filled into cleaned dry bottles, decontaminated in Nitric Acid, and rinsed 

with deionized water a day before the field excursion. Immediately after sampling, the samples 

were placed into cooler boxes packed with ice cubes to keep the samples cold. The water samples 

were placed in different but appropriate bottles and treated differently depending on the parameters 

to be tested. The samples for isotopes were filled and capped airtight underwater into 100 ml high-

density polyethylene bottles to avoid the introduction of air bubbles. No further treatments were 

performed on the samples, but they were stored in a low-temperature room to avoid evaporation. 

Water samples for cation and anion analysis were kept in polyethylene bottles and maintained at 

4˚C without further treatment.   
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3.5.2 Water Chemistry Analysis 

Immediately after fieldwork, the carbonate, bicarbonate, and total alkalinity of the samples were 

determined by titrating with sulphuric acid with methyl orange and phenolphthalein as endpoint 

indicators following titration method 2320B (America Public Health Association, 2017). 

The major cations and anions were analyzed using Ion Chromatography (ICS – 5000) at the 

National Institute of Hydrology Laboratory Roorkee, Uttarakhand State, India. The samples were 

filtered using a 0.45µm pore diameter membrane filter and diluted with distilled water to ensure 

EC < 10 µS/cm before analysis. The ionic balance of the major cations and anions in the samples 

was a criterion for assessing the accuracy of the hydro-geochemical analysis. Sample analysis was 

repeated where the ionic balance errors of major cations and anions were >10%. Finally, 86% of 

the 29 samples had ionic balance errors of < 5%, while one sample still had an ionic balance error 

of >10% after repeated analysis. These results were accepted as most had a minor ionic balance 

error of less than the acceptable 5%. 

3.5.3 Laboratory Analysis of Isotopes in Water 

Water samples for isotope analysis were analyzed for deuterium (2H) and oxygen – 18 (18O) 

isotopes at the Nuclear Laboratory of the National Institute of Hydrology, Roorkee, Uttarakhand, 

India, using a Dual Inlet Isotope Mass Ratio Spectrometer. The unit of measurement was per mil 

deviations from Vienna Standard Mean Ocean Water (denoted as 𝛿 of V-SMOW). About 3 mL of 

the sample was first equilibrated with hydrogen gas in the presence of a platinum catalyst for 3 

hours before determining deuterium. Before determining the oxygen - 18 isotope fractionation, the 

samples were equilibrated for about 7 hours in carbon dioxide. The isotope composition 𝛿 (delta 

values) of deuterium and oxygen – 18, defined as isotopic ratios reflecting deviation in per mil 

(‰) from Vienna - Standard Mean Ocean Water (Vienna - SMOW), were calculated from 

Equation (61) (Kendall & Doctor, 2003)  

𝛿𝑆𝑎𝑚𝑝𝑙𝑒 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000 

(61) 

where 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 is the concentration ratio of the heavy isotope to the more abundant light isotope 

of the same atom, for example, the ratios of 18O/16O or 2H/1H. The 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 and 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 were 

derived from beam currents integrated over time for a sample gas against a reference gas. A 

positive 𝛿𝑆𝑎𝑚𝑝𝑙𝑒 means the isotopic ratio is higher than the standards and vice versa. 

Isotopes in precipitation data are important for drawing the local meteoric water lines upon which 

the interpretation of isotopic compositions in different water sources can be based. The study area 

did not have isotopes in precipitation observed over time. However, the Global Network of Isotope 
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in Precipitation (IAEA, 2019) had 117 monthly isotopic datasets (of deuterium and oxygen – 18) 

in precipitation in Tanzania collected from Dar es Salaam between March 1961 to October 1973 

and another 18 monthly measurements from Dodoma collected between January 2014 and April 

2016. The Dodoma station is at an altitude of 1150 m, 213 km south of the study area, while Dar 

es Salaam is at 55 m altitude and 480 km southeast. These isotopes in precipitation data were 

collected in all the months with rainfall and were thus representative of the seasonal variations of 

isotopes in precipitation for Tanzania. In assessing the possible interaction among different water 

sources, the composition of isotopes in water was compared with the Local Meteoric Water Lines 

(LMWL) based isotopic composition in precipitation. 

3.5.4 Statistical and Graphical Analysis 

We applied descriptive statistics using the Excel analysis tools and the R – Packages (Version 

3.6.1) to analyze hydrogeochemical parameters and isotopic compositions. Each parameter’s box 

and whisker plots were applied to compare the relative variations of the parameter among different 

water sources. Pearson’s correlation was used to determine the relationships between different 

chemical parameters in the water samples. At the same time, the Principal Component Analysis 

(PCA), performed using R-packages (prcomp package), was employed to identify 

multicollinearity issues. In the PCA, the missing values were omitted, and variables were scaled 

since they had different units of measurement. The spatial autocorrelation of the hydro-

geochemical parameter was checked using the Moran autocorrelation coefficient. We followed the 

procedures of computing Moran I statistics described by Ijumulana et al. (2020) and Quino-lima 

et al. (2020) without repeating them here for brevity. Based on the relative abundance of major 

cations and anions, we used the Piper Diagram (Piper, 1944) to identify the dominant hydro-

geochemical facies and their evolution in the water.  

To understand the relationship in isotopic variations, a scatter plot of the 𝛿𝐷 and 𝛿18O values were 

made while the 𝛿18O values were spatially interpolated using the Kriging method to appreciate its 

evolution in the lake surface and bottom. Further, the deuterium excess (𝑑∗) expressed in Equation 

(62), a second-order isotope parameter sensitive to the conditions during the evaporation of water 

from the source (Liliane & Jouzel, 1979; Pfahl & Sodemann, 2014) has been applied to understand 

moisture sources (Jabal et al., 2018). Deuterium excess, 𝑑∗ was plotted against 𝛿180 to explore the 

water sources. 

𝑑∗ =  𝛿𝐷 − 8𝛿18𝑂 
(62) 

With 𝛿𝐷 and 𝛿180 as the measured deuterium and oxygen – 18 relative abundance to V-SMOW 



62 

 
Figure 12:  The elevation in Meters Above Sea Level (MASL) with sampling locations of 

the Lake Babati catchment 

3.6 Mapping Groundwater Potential 

3.6.1 The General Method and Workflow 

While cognizant of the data limitation, this section explored alternative methods to map and 

classify the GWP while incorporating the spatial variability of the input parameters to support the 

sustainable development and management of groundwater resources. It applied remote sensing and 

GIS techniques to explore the nonlinear interactions of topography, geology, land cover, and other 

catchment properties (connected to recharge), which primarily control the groundwater 

configurations (Condon & Maxwell, 2015) to map GWP. The study adopted and adapted methods 

from Andualem and Demeke (2019) and Das et al. (2019) to map and zone GWP according to the 

workflow summarized in Fig. 13. 
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Validation of Groundwater zones with wells data
Comparison of Groundwater potential zones by 

HAND and TWI based methods  
Figure 13:  Schematic workflow adopted and adapted from Andualem and  Demeke 

(2019) and Das et al. (2019) to map the groundwater potential zones 

3.6.2 Lineament Extraction 

Lineaments are expressions of geomorphological structures such as cliffs, faults, fractures, joints, 

terraces, structural ridges, and valley segments that result in vegetation variations, soil moisture 

content, rocks, or soils (Salui, 2018). The detection of geomorphological features is often based 

on aerial photographs, satellite images, and shaded relief images created from digital elevation 

models (Abdullah et al., 2010; Prasad et al., 2013; Salui, 2018). Various scholars (Abdullah et al., 

2010; Salui, 2018; Fajri et al., 2019) have used digital elevation models for tectonic 

geomorphological studies and lineaments.  

In all cases, lineament extraction is based on edge detection techniques, which enhance image 

pixels to detect abnormalities on the Earth’s surface. Manual detection using expert opinions has 

been used, but of late, automatic algorithms are available (Salui, 2018; Berhanu & Hatiye, 2020) 

to speed up and eliminate the subjectivity involved in manual lineaments extraction. Based on the 

shaded relief map built on the Shuttle Radar Topographic Mission’s 30 m resolution DEM (USGS, 

2018), lineaments were extracted using the Line algorithm in PCI Geomatica (PCI, 2019).  

Lineament identification from the DEM was initiated by generating eight shaded terrain maps 

using the Hillshade tool in ArcGIS version 10.5. The first shaded relief map had a solar azimuth 

set at 0° and an altitude angle of 45° for the sun (light source). From the second to the eighth 

shaded relief maps, the solar azimuth was set at 45°, 90°, 135°, 180°, 225°, 270°, and 315°, 

respectively, but the same altitude set for the angle of 45° for the light source was maintained for 

all as Abdullah et al. (2010) applied. Then, as Abdullah et al. (2010) executed, two overlay relief 
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maps were created by combining the relief maps. The first combined shaded relief map (referred 

to hereafter as the combined shaded relief map 1) had the shaded relief maps with the solar azimuth 

of 0°, 45°, 90°, and 135° combined using a weighted sum overlay operation. Each map was given 

equal weight while overlaying (equivalent to merely adding the relief maps). Similarly, the shaded 

relief maps with solar azimuths of 180°, 225°, 270°, and 315° were combined (summed with each 

map allocated equal weight) to form the combined relief map 2.  

The parameters of the line algorithm elaborated by Salui (2018) were iteratively varied until the 

derived lineaments from the combined relief maps matched and agreed in direction with some of 

the faults indicated in the geological map by the Mineral Resources Division (1966). The following 

optimal parameters were used: Filter Radius (RADI), a specification of the edge detection filter, 

was set at 10 pixels, while the edge gradient (GTHR), a threshold for the minimum gradient level 

for an edge pixel, was set at 100 pixels. LTHR (set to 30 pixels) is the minimum wavelength 

considered a lineament or for further analysis. Three pixels were considered FTHR, the maximum 

error allowed in pixels when fitting the polyline. The ATHR, the parameter which specifies the 

maximum angle in degrees, was set to 30 degrees. When the angle exceeds the ATHR, the 

algorithm divides the polyline into two or three vectors. The DTHR is the minimum distance 

measured in pixels between the endpoints of two vectors for them to be connected. The DTHR 

was set at 20 pixels.  

Two lineament maps were generated based on the parameter sets described above. The lineaments 

from combined shaded relief maps 1 and 2 were compared, and the most representative of the 

observed lineament directions on the geological map by the Mineral Resources Division (1966) 

was chosen. Rose diagrams of the lineaments were drawn using the Rockworks software showed 

with ease the general lineaments directions.  

A comparison of rose diagrams of lineaments from the combination of shaded relief maps 

illuminated from different angles is presented in Fig. 14.  Most lineaments were oriented in the 

northwest and southeast directions, with some in the north-south orientation, which agrees with 

the lineaments identified in the geological map of Babati by the Mineral Resources Division 

(1966). However, since the rose diagrams are not significantly different, the lineaments derived 

from shaded relief maps combination illuminated in the 0°, 45°, 90°, and 135° directions were 

selected for further analysis because they represented the observable lineaments well and had far 

more lineaments. The lineament density was calculated with the line density algorithm in ArcGIS 

10.5 based on the selected shaded relief maps combination.  
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(a) 

 

(b) 

 

Figure 14:  Rose diagram of lineaments derived from the combination of shaded relief 

maps (a) derived from the combination of shaded relief maps illuminated from 

0°, 45°, 90°, and 135°, while (b) is for lineaments derived from shaded relief 

maps illuminated from 180°, 225°, 270°, and 315° 

3.6.3 TWI and HAND Computation 

(i) TWI 

The TWI was computed based on a 30 m by 30 m resolution DEM obtained from Shuttle Radar 

Topographic Mission (USGS, 2018). The DEM was first filled to create a depression-less and 

hydrologically correct DEM using Pit – Removed tools of TauDEM by Tarboron (1997) in the 

ArcGIS Spatial Analyst tools environment. Based on the filled DEM, the D-infinity flow directions 

algorithm by Tarboron (1997) for multiple flow directions was applied to determine the grid’s 

possible flow directions and the slope, S. The slope S is a tangent of the slope angle equal to 𝑡𝑎𝑛𝛽 

in Equation (63). Using the same D – Infinity algorithm, flow accumulation raster (sca) was 

generated from the flow direction map created earlier. The sca is the specific catchment area in 

length units (the area of upstream cells that drain into a cell per unit cell width) and equals to the 

𝛼 of Equation (63). The slope S (𝑡𝑎𝑛𝛽) cells with 0 (zero) values were replaced with a small value 

(0.002) to avoid infinity complications that occur when a number is divided by zero. Finally, using 

the Raster Calculator, Equation (63)was applied to compute TWI based on the contributing area 

and the surface slope: 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝛼

𝑡𝑎𝑛𝛽
) 

(63) 
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where ln is the natural logarithm, 𝛼 is the upslope contributing area per unit length of a contour in 

meters, and 𝑡𝑎𝑛𝛽 is the computed local slope, S.  

(ii) HAND 

The HAND computation was based on the same DEM as the TWI with depressions filled and 

hydrologically correct DEM. The D – Infinity algorithm by Tarboron (1997) was used to create 

the flow direction grid, the slope, and the flow accumulation grid. The HAND was determined as 

the vertical distance in the D – Infinity Distance Down operations using the Taudem ArcGIS 

toolbox (Tarboron, 1997). Conscious of the sensitivity of HAND to the stream initiation threshold 

(Gharari et al., 2011), the threshold upslope contributing area for calculating the stream network 

using the D8 algorithm was fixed at 5000 cells (equivalent to 4.5 km2). Finally, the distance to 

streams (drainage) was computed from the same stream network using the Euclidean distance tool 

in ArcGIS. 

3.6.4 Parameter Weighting and Multicriteria Analysis 

(i) Parameter Identification  

The input parameters considered were the HAND /TWI, geology, land cover and land use, 

lineaments density, distance to streams, slope, and soil. Although precipitation is a primary source 

of groundwater recharge, it was assumed to be uniformly distributed in intensity and amount over 

the catchment due to its small size of only 390 km2. Therefore, its spatial variation within the 

catchment was assumed to have no significant differences in GWP. 

The numerically based input maps were classified into five groups based on the natural breaks 

algorithm developed by Jenk (1967), which identifies logical breaks in data and creates groups 

(classes) by minimizing differences within the same class while maximizing the differences 

between classes.  

The study considered HAND and TWI to represent the same groundwater properties because either 

parameter was believed to produce the same GWP map. Therefore, the TWI and HAND were 

weighted equally for a meaningful comparison. Since HAND and TWI are secondary parameters 

derived from functions related to river networks, the river density was deemed a repetition, but the 

distance to drainage was used instead. 

The present study adopted the multi-influencing criteria which Magesh et al. (2012) used to 

minimize the weighting bias imposed by the researcher’s subjectivity. This method assigns 

verifiable weightings based on the number and perceived strength of influences of the parameters. 

The interrelationship among the identified multi-parameters influencing the GWP was identified 
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and classified as a major or minor effect, as presented in Fig. 15. The major effect was weighed as 

one, whereas a minor effect was weighted as 0.5. Finally, the weights of each parameter were 

summed and provided as representative weights in Table 9. From this comparison, geology 

emerged as the most important with a representative weight of 3.5, followed by HAND / TWI with 

a representative weight of 3. According to the weighting, the least important parameter was the 

lineament density, and land use and land cover, each with a representative weight of 1.5.  

Geology

Height Above Nearest 

Drainage (HAND) / 

Topographic Wetness 

Index (TWI)

SoilDistance to Streams

Minor EffectMajor Effect

Slope

Land Cover and Land 

use
Lineament Density

 
Figure 15:  Interrelationship among different parameters identified to influence 

groundwater potential 

(ii) Parameter Weighting 

Several multi-criteria decision-making methods, including Fuzzy Logic, Artificial Neural 

Network, and the Analytical Hierarchy Process (AHP) developed by Saaty (1987), are available 

to analyze complex issues. Each method has its strengths and weaknesses, which Ishizaka (2014) 

elaborates very well. The AHP is commended for its prowess in consistently capturing both the 

subjective and objective parts of the complex decision-making process to allow process evaluation 

and feedback. However, the AHP is criticized for harbouring imprecise and subjective assessment 

of parameters resulting from vague linguistic assessments (Ishizaka, 2014; Reig-Mullor et al., 

2020). The Fuzzy – Analytical Hierarchy Process (FAHP), which combines the benefits of the 

Fuzzy logic method and AHP (Ishizaka, 2014), is viewed as an improvement of the AHP. 

However, Mallick et al. (2019) noted that integrating the flexibility of the fuzzy membership 

achieved using FAHP does not improve the accuracy of the resultant GWP maps. Therefore, 

despite the limitation, the AHP method, motivated by its popularity in natural resources 

management, suitability analysis, and site selection, where multiple parameters influence a 
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decision (Malczewski, 2006; Das et al., 2019; Mallick et al., 2019; Saranya & Saravanan, 2020) 

was applied for parameter weighting to reduce biases. 

The parameters were arranged in rows and columns (as in Table 9). Then, the pairwise matrix was 

developed by dividing the weight of each row parameter against the weight of the column 

parameter to determine the relative weight of each parameter influencing GWP. The diagonal gives 

the relative importance of 1 (Table 9), meaning equal importance because the parameter is 

compared against itself. Similarly, each of the five parameter classes (for numerical parameters 

such as HAND and TWI) and parameter types such as geology were ranked based on the relative 

importance of the Saaty (1987) scale. For example, the most important parameter for groundwater 

availability received a scale of 9, while the least important parameter was given a scale of 1. The 

final decision on the input parameters’ weighting was informed by the researchers’ opinions and 

literature, including Arulbalaji et al. (2019) and Mallick et al. (2019).  

The normalized parameter weight was obtained by dividing its geometric mean by the sum of the 

parameters’ geometric means. The pairwise matrix of relative importance was accepted if it had a 

consistency ratio of less than 0.1. Otherwise, another matrix was developed, and normalized 

weights were recomputed after eliminating errors or using different weights altogether. Finally, 

the consistency index was used to check the matrix for errors or subjectivity in assigning relative 

weights and was calculated using Equations (64) and (71) (Shekhar & Pandey, 2014).  

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛
 

(64) 

𝐶𝑅 =
𝐶𝐼

𝑅𝐶𝐼
 

(65) 

where RCI is the random consistency index by Saaty (1987) and depends on the number of 

parameters, 𝜆𝑚𝑎𝑥 is the maximum eigen value of the pairwise matrix and n is the number of 

parameters considered.  
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Table 9:  Pairwise comparison matrix of parameter weights and computation of 

normalized parameter weight  
Represe

ntative 

weight 

HAND 

/TWI 
Geology LULC 

Lineam

ent 

Density 

Drainage 

Density 
Slope Soil 

Geome

tric 

mean 

Normal

ized 

weight 

HAND/TWI 3 1.00 0.86 2.00 2.00 1.50 1.20 1.50 1.37 0.19 

Geology 3.5 1.17 1.00 2.33 2.33 1.75 1.40 1.75 1.60 0.22 

LULC 1.5 0.50 0.43 1.00 1.00 0.75 0.60 0.75 0.69 0.09 

Lineament 

Density 
1.5 0.50 0.43 1.00 1.00 0.75 0.60 0.75 0.69 0.09 

Distance to 

stream 
2 0.67 0.57 1.33 1.33 1.00 0.80 1.00 0.92 0.13 

Slope 2.5 0.83 0.71 1.67 1.67 1.25 1.00 1.25 1.14 0.15 

Soil 2 0.67 0.57 1.33 1.33 1.00 0.80 1.00 0.92 0.13 

LULC = Land use and land cover. The table presents the representative weights (sum of major and minor effects) 

based on the multi influencing criteria applied by Magesh et al. (2012), the AHP pairwise weighting of the relative 

weights, geometric mean, and the normalized weights of each parameter class and types. 

(iii) Multicriteria Analysis and Map Overlay 

We opted for the normalized and weighted sum overlay analysis of the input layers (thematic 

maps) among the different multi-criteria analysis techniques because it is popular (Andualem & 

Demeke, 2019; Hamdani & Baali, 2019; Tolche, 2020). First, the thematic maps were reclassified 

by assigning each class with a score of influencing parameters, as presented in Appendix A to 

Appendix H. Then, using the Raster Calculator in ArcGIS 10.5, the groundwater potential index 

(GWPI) map was computed using the weighted sum overlay concept expressed in Equation (66)  

adopted from Tolche (2020). The resultant GWP map was categorized into five classes: Very 

Good, Good, Moderate, Poor, and Very Poor classes of GWP zones based on Jenk’s natural break 

algorithm (Jenk, 1967). 

𝐺𝑤𝑃𝐼 =∑∑𝑊𝑗𝑋𝑖

𝑛

𝑖=1

𝑚

𝑗=1

 

(66) 

where 𝑊𝑗 is the normalized weight of the parameter given in Table 9 and 𝑋𝑖 the thematic map i 

reclassified according to the weights of the parameter classes. 𝐺𝑤𝑃𝐼 is the Groundwater Potential 

Index [-], the subscript j is the count of parameters, m is the total number of parameters, subscript 

i is the count of classes within each parameter, and n is the total number of parameter classes.  

3.6.5 Sensitivity Analysis of Parameters 

The sensitivity of the input parameters was tested using a method adopted from Mallick et al. 

(2019), which compares the theoretical weight assigned and the parameter’s effective weight (EW) 

as expressed in Equation (67). 
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𝐸𝑊 =
𝑊𝑗 × 𝑋𝑗

𝐺𝑤𝑃𝐼
× 100 

(67) 

where 𝑊𝑗 is the normalized weight of the parameter j, and 𝑋𝑗 the thematic map of the parameter j 

is classified by class weight, and 𝐺𝑤𝑃𝐼 is the GWP indices computed by Equation (66). 

3.6.6 Validation of the Groundwater Potential Zones 

The study used a correlation analysis of the depths to the water levels and the wells’ depths with 

GWP to validate the GWP classification. Test pumping results would be a good alternative for 

validating GWP classification; however, no test pumping was carried out on the available shallow 

wells. Test pumping is so expensive and was outside the budget of this study. 

3.6.7 Comparison of Groundwater Potential Maps 

In the absence of an agreed-upon method for comparing raster maps (Grabs et al., 2009), the 

present study used Cohen’s kappa coefficient, producers’ accuracy, and users’ accuracy to 

determine the degree of agreement between the GWP zones developed based on the two methods. 

The maps’ agreement was compared on a cell-by-cell basis. The Kappa coefficient provides an 

overall assessment of the agreement. A negative Kappa coefficient implies a lower comparison 

than a random predictor, while a Kappa coefficient of 1 means a perfect agreement (Grabs et al., 

2009). In addition, the producer’s and user’s errors have been determined to gain insights into 

agreements between different classes. The methods of determining these measures of agreement 

and comparisons have been elaborated on earlier in Section 3.2.8. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Drivers of Lake Babati level 

4.1.1 The Lake Babati Water Level History and Variability 

Since gauging Lake Babati in 1964, the water levels have fluctuated. Before 1970, the records 

showed that the lake level varied between 1 - 14 m deep, while after 1975, the lake depth varied 

within a narrower range of 3 – 9 m. A Pettit test for homogeneity for the water level after 1975 

was significant (p-value < 0.01) as the mean water level shifted from 5.461 m between 1976 and 

1991 to 4.829 m between 1991 and 2020, as shown in Fig. 17. The Pettit test revealed July 14, 

1991, as the date of shift (Fig. 17). The shift followed a 1990 flooding of Lake Babati that caused 

severe damage. After the 1990 flood, 13 large culverts with an estimated flow rate of 4 m3/s were 

installed lower than the previous outflow levels to help relieve the lake of excess water (Sandstrom, 

1995). Mbanguka et al. (2016) studied the variability in the lake levels from 1978 to 2012 and 

noted the records as disjointed into two periods. The first period from 1978 – 1984 was reported 

with an average level of 5.27 m, while 2008 – 2012 had an increase in average levels to 5.75 m. 

Their analysis deviated from this study because they did not utilize or access the lake level records 

between 1984 and 2008.  

Based on the homogenous lake level records from September 26, 1976, to December 31, 2020, the 

Mann-Kendall analysis revealed that Lake Babati level is undergoing a significant (p < 0.05) 

decline (Fig. 18). Furthermore, Sen’s slope (Table 11), a non-parametric method that accounts for 

the effects of the outliers and gross errors on the trend, indicated an overall lake level decline of 

0.025 m yearly. Apparently, this is the first quantification of the lake level decline, as previous 

studies were concerned with lake flooding (Sandstrom, 1995; Sjoin, 2010) and the general lake 

level variability (Mbanguka et al., 2016). Subsequent analysis of the lake levels aggregated at 

monthly and seasonal time steps showed significant lake level declines (p-value < 0.05) in all the 

months and seasons, as summarized in  Table 11. The lake’s level decline in other months was 

insignificant (p-value > 0.05). Contrary to expectations, both rainy and dry seasons experienced a 

decline. The minor rainy season (from October to January), characterized by higher temperatures, 

experienced a lake level decline of 0.021 m, comparable to the major rainy season lake level 

decline of 0.022 m given by the Sen’s slope (Table 11). The subsequent sections analyzed the 

exact driver of the lake level decline in both rainy and dry seasons. Whereas lakes in the region, 

such as Lake Manyara, further downstream of Lake Babati, have shown variability in levels, 

reflecting the high and low rainfall seasons (Deus et al., 2013), none has consistently declined in 

lake levels, even in rainy seasons. The decline observed was unique to Lake Babati. 
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Figure 16:  Homogeneity test of the water level records of Lake Babati. The mu1 is the 

mean lake level before July 8, 1991, while mu2 is the mean lake level from 

April 1992 to 2020 

 
Figure 17:  Trend of average annual lake levels 

4.1.2 Spatial Rainfall Variability 

The Spearman rank correlation analysis of rainfall records from nearby Mbulu and Dongobesh 

Secondary School climatic stations (shown in Table 10) revealed that Babati rainfall was positively 

correlated with the neighbouring stations at p-value < 0.01 significance levels. The computed 

Spearman rank correlation is higher than the critical r - values of 0.195 and 0.254 for 95% and 

99% confidence intervals. The positive correlation indicated that higher precipitation in either of 
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the stations implied higher precipitation at Babati and vice versa. Figure 18 compares the average 

monthly rainfall of Babati and the neighbouring climatic stations. 

Whereas rainfall at Babati station showed a positive correlation with the neighbouring stations, the 

correlation was weak at daily time steps. For example, rainfall records at Mbulu station, the most 

strongly correlated to Babati at daily time step (r = 0.4716), could explain only 22.24% (r² =0.2224) 

of the rainfall observed in Babati. In comparison, only 16.77% (r² = 0.1677) of rainfall measured 

at Dongobesh station matched the observations at Babati. Similarly, MERRA – 2 (NASA) 

precipitation records explained only 19.76% (r²=0.1976) of the rainfall variations observed in 

Babati. Babati rainfall did not strongly correlate with the neighbouring Mbulu rainfall stations at 

a daily time step. Instead, the records showed very distinctive statistics at daily time steps (Table 

10),  implying they were unsuitable for filling in the missing daily rainfall data at Babati. These 

findings agreed with Mbanguka et al. (2016), who also observed a poor correlation of rainfall at 

Babati meteorological station with its neighbouring stations like Haubi Mission, Galappo Mission, 

and Mbulu. Mbanguka et al. (2016) suggested that different processes and terrain could be 

responsible for the rainfall variations observed in the area.  

 
Figure 18:  Comparison of monthly rainfall received in the area based on rainfall records 

of Babati and NASA from 1980 - 2020 (The limit of the whisker is plus one 

standard deviation) (MERRA 2 and TMA)
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Table 10:  Spearman’s rank relationship between Babati station with other neighbouring stations 

Stations compared 

Daily time step  Monthly time step  Annual time step 

Spearman rank 

correlation 

coefficient, rs 

Coefficient of 

correlation rs² 

 Spearman rank 

correlation 

coefficient, rs 

Coefficient of 

correlation rs² 

 Spearman rank 

correlation 

coefficient, rs 

Coefficient of 

correlation rs² 

NASA and Babati 0.4445 0.1976  0.8591 0.7381  0.4649 0.2161 

Babati and Mbulu 0.4716 0.2224  0.8807 0.7757  0.5071 0.2572 

Babati and Dongobesh 0.4095 0.1677  0.8616 0.7423  0.6500 0.4225 
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However, correlations of rainfall between neighboring stations improved at the monthly time steps 

and became significant (p-value < 0.01). The Spearman’s rank correlation coefficient of Mbulu 

and Babati improved to 0.8807, implying that Mbulu rainfall records explained 77.57% (r² = 

0.7757) (Table 10) of the observed rainfall variations at Babati. Correlation with other rainfall 

stations equally improved. The monthly rainfall at Dongobesh and NASA explained 74.23% and 

73.81%, respectively, of the monthly rainfall variations in Babati.  

The correlation between Babati and Mbulu, Dongobesh, and NASA dropped to 25.72%, 42.25%, 

and 21.61%, respectively, when the precipitation data were aggregated into annual time steps. 

Furthermore, the best Spearman Correlation coefficient rs was only 0.65 for Babati and Dongobesh 

stations. At the same time, the correlation between Babati and Mbulu dropped to 0.5071 at the 

annual time step compared to 0.8807 at the monthly time step. This means data from different 

stations were relevant for gap-filling the Babati rainfall records at a monthly time scale.  

The stronger correlation in monthly rainfall between different stations may suggest that the 

influence of regional factors wanes with higher time steps. The variations in correlation at daily 

and monthly time steps suggested that regional factors such as the Inter-Tropical Convergence 

Zones could be driving the monthly and seasonal rainfall. The daily rainfall distribution may also 

be modified by location-specific factors such as topography due to mountains and rift valley 

escarpments. For example, all the stations experienced the positive IOD of 1997 and 2006, which 

brought extreme rainfall recorded by all the stations. The influence of IOD was also reported by 

Awange et al. (2016), who observed a strong correlation between the hydrological droughts in the 

Great Horn of Africa and IOD. Therefore, daily precipitation records from NASA, Mbulu, and 

Dongobesh stations were unsuitable for gap-filling Babati precipitation records. Instead, the 

monthly rainfall recorded at Dongobesh and Mbulu stations was used for gap-filling where 

necessary. Where monthly records for Dongobesh and Mbulu stations were insufficient, NASA 

precipitations were used. 

4.1.3 Rainfall Trend and Influence on Lake Level Variability 

The lake level increases in the rainy season and recedes in the dry season (Fig.  20), suggesting 

that rainfall is responsible for some variations. However, the relationship between lake level and 

rainfall was neither direct nor linear, probably because of the time delay between rainfall and 

runoff peaks. Whereas the peak lake level corresponded to periods of high rainfall, the peak did 

not occur precisely on the day of rainfall but was offset (or delayed). This suggests that peak lake 

levels may be due to runoff, which is often delayed from the rainfall due to catchment processes. 

A deeper assessment of the rainfall variability using the Mann-Kendall statistics and Sen’s slope 

(shown in Table 11) indicated no significant decline or increase in rainfall. However, some 
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insignificant decline was observed in April, May, and November. Similarly, Sen’s statistics 

indicated an insignificant decline (p-value >0.05) in the rainy season (October through May). 

Generally, no significant trends were observed in rainfall either seasonally or annually. As 

Sandstrom (1995) reported earlier, no significant trends could be discerned in the catchment 

rainfall. This implied that the trends of lake level declines could not be due to rainfall as rainfall 

showed no significant trends before and after 1995. 

 
Figure 19:  Comparison of water level against daily rainfall from 1980 - 2020 

The precipitation was averaged over varying periods using the moving average method and 

correlation with the lake level measured. The precipitation showed a weak and insignificant 

positive correlation (p-value > 0.05) with the lake level at the monthly time step. The best 

correlation occurred when the rainfall was averaged over nine months (Fig. 21). At 18 months 

moving average period again, the correlation was as good as at nine months; thus, the sequence 

was doubled. This suggested that the residual influence of the rainfall has a nine months delay or 

period in driving the lake levels.   



77 

Table 11:  Summary of the Mann-Kendall trend test statistics of the monthly and 

seasonal Lake Babati levels and rainfall observed at Babati 

Series\Test 

Lake Babati Level (m)  Babati Rainfall (mm) 

Kendall's 

tau 

p-

value 

Sen’s 

slope 
 Kendall's tau p-value Sen’s slope 

Jan -0.310 0.015 -0.026  0.103 0.442 1.574 

Feb -0.290 0.023 -0.023  0.109 0.390 0.980 

Mar -0.300 0.026 -0.020  0.067 0.610 0.577 

Apr -0.310 0.006 -0.021  -0.117 0.404 -1.460 

May -0.359 0.000 -0.030  -0.145 0.269 -0.548 

Jun -0.308 0.016 -0.020  -0.040 0.804 0.000 

Jul -0.359 0.004 -0.023  -0.193 0.225 0.000 

Aug -0.333 0.001 -0.022  -0.109 0.491 0.000 

Sep -0.335 0.001 -0.021  0.080 0.644 0.000 

Oct -0.382 0.007 -0.021  0.003 1.000 0.000 

Nov -0.384 0.004 -0.021  -0.013 0.944 -0.081 

Dec -0.360 0.007 -0.026  0.080 0.591 1.663 

Annual -0.468 0.000 -0.025  -0.046 0.758 -2.233 

Minor Rainy (ONDJ) -0.394 0.001 -0.021  0.072 0.637 2.068 

Major Rainy (FMAM) -0.324 0.005 -0.022  -0.094 0.505 -1.858 

Rainy (ONDJFMAM) -0.387 0.000 -0.020  -0.093 0.528 -4.337 

Dry (JJAS) -0.363 0.02 -0.020  -0.100 0.509 0.000 

ONDJ is the Minor wet season from October to January, FMAM means February, March, April and May, ONDJFMAM is wet 

season from October to May and JJAS are dry months of June, July, August and September 

 
Figure 20:  Variation of correlation coefficient r with rainfall at different aggregation 

levels with the mean monthly lake level 

4.1.4 Trend Analysis of the Temperature and other Climatic Parameters 

(i) The Maximum Temperature 

During the 1980 – 2020 period, the daily maximum temperature showed no significant change 

except in August, September, and October, when the temperatures rose significantly (Fig. 22). 

Annually, no significant rise was observed; however, in the dry season between June to September, 

a significant rise (p-value <0.05) in maximum temperature was observed. 
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Figure 21:  Variation of maximum temperature for months that show the significant 

change (°C):  (a) is for August, (b) for September, (c) for October, and (d) for 

the dry season, which runs from June to September 

(ii) The Minimum Temperature 

The daily minimum temperature from 1980 – 2020 showed significant changes for most of the 

year, with February, June, July, August, September, October, November, and December showing 

a significant increase (p-value < 0.05). Most of the increments occurred after 2000, as captured in 

Fig. 23. Consequently, in all the rainy and dry seasons, the increase in the minimum temperature 

has a high potential to increase the evaporative power of the atmosphere and the drought severity 

in the study area. 



79 

 
Figure 22:  Plots of months through years with significant increases in the minimum 

temperature. Figure (a) is a plot of temperature in February, (b)in June, (c)in 

July, (d) in August, (e) in September, and (f) for the rainy season from October 

to May of the following year 

(iii) The Wind Speeds 

For most of the year, the wind speed significantly reduced (p-value < 0.05) in January, March, 

April, May, July, October, November, and December. Thus, the wind speed showed an annual 

reduction, as depicted in Fig. 24. 
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Figure 23:  Plot showing the variation of the wind during January in (a) and the annual 

average in (b) over the years 

(iv) Trends of Potential Evapotranspiration 

The trends of evapotranspiration computed by Penman and Hargreaves were analyzed. Both 

methods agreed that March experienced a significant decline in potential evapotranspiration. 

Evapotranspiration declined in January, February, April, June, August, November, and December 

but was insignificant (p-value > 0.05). Only May, July, and October showed an insignificant 

increase in potential evapotranspiration computed using Penman-Monteith. From the Hargreaves 

method, January, February, November, and December indicated an insignificant reduction. 

Evapotranspiration significantly declined (p-value < 0.05) in July, while May, June, August, 

September, and October experienced an insignificant increase (p-value > 0.05). The time series 

generally showed no significant change in trend. 

Generally, in the Mann-Kendall trend analysis of the wind, the minimum and maximum 

temperatures showed no significant trend in the maximum temperature. In addition, the relative 

humidity over the years remained constant except in March, when it significantly increased. The 

significant decline in evapotranspiration in March might be related to the high relative humidity 

reported in March. The insignificant trends in evapotranspiration in other months appear realistic 

since temperature, relative humidity, and wind speed, as drivers of evapotranspiration, showed no 

significant trends.  

(v) Lake Evaporation 

Since the lake evaporation was not monitored, it was computed using the Penman-Monteith 

formula. The lake evaporation varies from a minimum of 158.4 mm per month in June 1990 (dry 

and cold season) to a maximum of 286.3 mm per month in October 1987 (dry and hot season), 
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while the monthly mean and median were 216.6 mm and 218.0 mm, respectively. The slight 

difference between the mean and median implies stable lake evaporation with few outliers.  

Seasonal and interannual trend analysis using Mann-Kendall showed an insignificant decline in 

lake evaporation. An insignificant increase was observed in the dry season months of February, 

May, June, July, August, September, and October, while January, March, April, November, and 

December (rainy season) showed an insignificant decline in lake evaporation. In addition, the 

minor and major rainy seasons experienced an insignificant decline in evaporation, while dry 

seasons experienced an insignificant increase in lake evaporation. Generally, no significant change 

has been observed in lake evaporation since 1981. 

4.1.5 Drought and Lake Level Variations 

(i) Comparison of Drought Indices 

The evapotranspiration computed by both methods was strongly correlated (r = 0.8879) (Fig.  25), 

translating to r² of 0.7884. This meant that the potential evapotranspiration from the Hargreaves 

method explained 78.84% of the variations in the potential evapotranspiration by the Penman-

Monteith method. Indirectly, this implied that the climatic parameters of wind speed and sunshine 

hours account for about 21.16% of evapotranspiration. This considerable influence suggested that 

these parameters are important in estimating the evaporative power of the atmosphere in the study 

area.  

 
Figure 24:  Correlation between evapotranspiration computed using the Penman-

Monteith method and the Hargreaves method  
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(ii) Drought Temporal Variations 

The temporal drought variation was assessed at different aggregation levels. As a result, the 

drought severity by SPEI and SPI varied considerably, as presented in Table 12. The differences 

in extremities were probably because of how the two methods computed the drought and wet 

extremities. However, SPEI and SPI agreed that January 2017 was the wettest month, probably 

because of the extremely wet conditions driven by excess rainfall but minimal evapotranspiration 

influence. 

This study compared the regression of water level and the SPEI based on evapotranspiration 

computed using Penman-Monteith and Hargreaves. The slope of the regression was insignificantly 

different (p-value of 0.8795). Therefore, using evapotranspiration computed by either Penman-

Monteith or Hargreaves method to calculate the SPEI did not result in statistically different drought 

severity and wetness extremities. The wind speed was generally low in the area, with the sunshine 

hours averaging five hours per day. This probably made the Penman-Monteith method yield no 

better results than the Hargreaves method, which computes evapotranspiration using only the 

minimum and maximum temperature. In addition, the reported reduction in the wind speed was 

perhaps countering the influence of increased minimum and maximum temperature (discussed in 

Section 4.1.4) to increase potential evapotranspiration. Nonetheless, the Penman–Monteith 

method offered a more comprehensive approach to compute drought. It considers the additional 

influence of winds, humidity, and aerodynamic resistance of vegetation on evapotranspiration, 

which the Hargreaves method omits.
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Table 12:  Extreme drought and wet periods determined by the different methods: SPEI_Hargreaves is the SPEI based on 

Hargreaves, and SPEI_Penman is based on the Penman-Monteith method 

Methods 
Driest condition  Wettest condition  Driest condition  Wettest condition 

1  Month When  1 Month When  3 Month When  3  Month When 

SPI       -5.56 May-2011  2.66 Jan-2017 

SPEI_Hargreaves 
-3.50 Jun-2002  2.42 Jan-2017  -2.24 May-2011  2.27 Jan-2017 

SPEI_Penman -2.47 Aug-1983  2.37 Jan-2017  -2.33 Sep-1983  2.25 Jan-2017 
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The Mann-Kendall trend tests (Table 13) on the SPEI and SPI indicated no significant change in 

the drought severity at a 5% significance level. This agrees with Keijzer ( 2020), who observed no 

clear trend in the drought severity time series of Lake Manyara but noted an increase in drought 

frequency in the last century. However, this study noted an exception with the SPEI based on the 

Penman-Monteith computed evapotranspiration, which indicated a significant increase in drought 

when SPEI was aggregated at a time scale longer than 6 months. 

Table 13:  Mann - Kendall trends of the drought indices aggregated at different time 

scales 

Sample Z n S Var(S) 
Kendall’s 

tau 

p-

value 

SPEI_Penman_1mon 0.3161 433 952.00 9 051 428 0.0102 0.7519 

SPEI_Harg_1mon -1.8989 433 -5714.00 9 051 428 -0.0611 0.0576 

SPEI_Penman_3mon 0.5767 431 1724.00 8 926 727 0.0186 0.5642 

SPEI_Harg_3mon -1.7086 431 -5106.00 8 926 727 -0.0551 0.0875 

SPEI_Penman_6mon 1.1063 428 3272.00 8 741 827 0.0358 0.2686 

SPEI_Harg_6mon -0.4488 428 -1328.00 8 741 827 -0.0145 0.6536 

SPI_6mon -0.2976 428 -881.00 8 741 824 -0.0096 0.766 

SPEI_Penman_9mon 1.9770 425 5785.00 8 559 499 0.0642 0.0480 

SPEI_Harg_9mon 0.1870 425 548.00 8 559 498 0.0061 0.8517 

SPI_9mon 0.0519 425 153.00 8 559 491 0.0017 0.9586 

SPEI_Penman_12mon 2.8869 422 8358.00 8 379 721 0.0941 0.0039 

SPEI_Harg_12mon 0.6702 422 1941.00 8 379 722 0.0218 0.5027 

SPI_12mon 0.2028 422 588.00 8 379 715 0.0218 0.8393 

SPEI_Penman_24mon 3.0043 410 8330.00 7 685 791 0.0994 0.0026 

SPEI_Harg_24mon 0.3629 410 1007.00 7 685 790 0.0120 0.7167 

SPI_24mon -0.2947 410 -818.00 7 685 769 -0.0097 0.7682 
1mon means one – month, Three – months denoted as 3 mon, Six – months as 6 mon, Nine – months as 9 mon,12 – 

months as 12 mon and 24 – months as 24 mon and SPEI_Harg means SPEI based on Hargreaves and SPEI_Penman 

is SPEI based on Penman – Monteith computed potential evapotranspiration 

(iii) Influence of Drought on the Lake Level Variability 

Generally, the lake levels were more tied to extreme rainfall conditions, as shown in Fig. 20. When 

SPI indicated severely wet conditions, such as in November 1982 and August 1998, or during the 

prolonged highly wet conditions of December 2006 through February 2007 (Fig.  27 to Fig. 31), 

the lake levels increased significantly. Similarly, the lake levels declined during a negative SPEI, 

indicating drought conditions (Fig. 26 to Fig. 31). The lake levels increased when SPEI showed 

humid conditions, such as prolonged normal conditions from December 2009 to April 2010. Lower 

lake levels occurred during prolonged moderate or severe drought conditions, such as from May 

2010 to March 2011. Such trends are realistic, and Keijzer (2020) reported a similar response by 

Lake Manyara, whose volume and lake surface area increased with wetness and reduced in seasons 

of prolonged drought severity.   
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Figure 25:  Variation of lake level with drought severity computed at 1-month aggregation 

level 

 
Figure 26:  Comparison of lake-level variations in comparison to the drought severity at 

three months aggregation 

 
Figure 27:  Variation of Lake level against Severity index aggregated at six months period 
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Figure 28:  Variation of Lake level against drought severity at nine months aggregation 

 
Figure 29:  Variation of Lake level against drought severity at 12 months aggregation 

 
Figure 30:  Variation of Lake level against drought severity at 24 months aggregation 
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Some extremely wet conditions did not increase the lake levels, especially when they preceded 

extreme or severe drought conditions, such as in August 1999. This was probably due to the 

influence of antecedent conditions and the large regional scale climatic phenomenon, such as the 

positive IOD in raising the lake levels. At the seasonal aggregation level (3 months period), SPEI 

and SPI reported severe or extreme wet conditions in August and September. However, that was 

not true because the months usually have little rainfall. The errors resulted from the SPEI and SPI 

computation where low rainfall average values (aggregated from the dry months of June and July) 

are divided by the low rainfall, giving high SPEI and SPI values interpreted as severely wet 

conditions.  

A comparison between the monthly average lake levels and the SPEI computed at the monthly 

aggregation level indicated no correlation with the Spearman Rank correlation rho of only 0.01. 

However, the Spearman Rank correlation rho improved with increased aggregation levels. At nine 

months aggregation level, the correlation coefficient increased to 0.28 (Table 14). In all cases 

where the aggregation level was < 6 months, the SPEI and SPI explained minimal variations, all 

of which were insignificant (p-value > 0.05). As the aggregation level was increased, the 

correlation of both SPEI and SPI with the lake level improved in a similar pattern. At aggregation 

levels of three, six, and nine months, the correlation coefficients were slightly lower than for SPEI, 

but they improved to become better than SPEI with aggregation levels at 12 and 24 months. This 

improved correlation from increased aggregation levels suggested a response delay in the lake 

level during adverse climatic conditions. Byakatonda et al. (2018) argued that the aggregation 

level when correlation becomes significant is when the meteorological drought becomes a 

hydrological drought. This corresponds to when the residual antecedent conditions influence the 

lake variability significantly.  

Table 14:  Summary of Spearman Rank’s correlation of the lake level with drought 

indices at different aggregation scales 

Scales 

SPEI_Penman & 

Lake Level 
 

SPEI_Hargreaves & 

Lake Level 
 SPI & Lake Level 

Spearman 

coefficient, r 

p-

value 
 

Spearman 

coefficient, r 

p-

value 
 

Spearman 

coefficient, r 

p-

value 

1 - month -0.0130 0.8390  0.0100 0.5000    

3 - month 0.0855 0.3050  0.0840 0.1600  0.0488 0.466 

6 - month 0.1878 0.0180  0.1797 0.0140  0.1680 0.029 

9 - month 0.2869 0.0009  0.2857 0.0005  0.2684 0.0005 

12 - month 0.2766 0.0013  0.2899 0.0004  0.2954 0.0002 

24 - month 0.3698 0.0022  0.3826 0.0008  0.3846 0.0001 

The regression equations of the 6 months aggregated SPEI and SPI, which significantly correlated 

with the lake level, were compared to measure the influence of evapotranspiration in driving the 

lake levels. No significant difference (p-value = 0.08869) was observed when using either the SPEI 
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or SPI to predict the lake level. This further confirms that the influence of evapotranspiration is 

not significant in driving the lake level. Therefore, Lake Babati catchment experiences a 6 – 9 

months lag between meteorological and hydrological drought. A similar lag was observed in the 

onset of hydrological drought after the meteorological drought in the Okavango River systems in 

Botswana. The meteorological drought lagged the hydrological drought by 6 months in the 

Okavango river systems, while the lag was 7 months in the River Limpopo catchment 

(Byakatonda, 2018).  

Conclusively, drought analysis by SPEI and SPI showed that the area was neither becoming drier 

nor wetter. No correlation was observed between the lake level and the drought indices in the 

shorter time scales. The drought indices only became positively and significantly correlated with 

the lake levels when aggregated at time scales longer than six months. The observed phenomenon 

implied that the meteorological drought did not immediately affect the Lake Babati level 

variability but was lagged by about 6 - 9 months after the onset of the meteorological drought. 

Thus, it could be concluded that drought did not drive the observed seasonal decline of the lake 

level, although it had a long-term influence on the lake level. 

4.1.6 Land-use and Land Cover Changes And Patterns 

(i) Accuracy Assessment of Land Cover Classification  

The supervised classification method in ArcGIS was used to classify Landsat images, and the 

Google Earth images and the open street map data were applied to validate the classification. The 

forests and the water were the most accurately produced maps (Table 15), while the built-up class 

had the least producer and user accuracies. In addition, the agricultural land and forests were 

simpler to distinguish than the bare land from the urban areas because they were distinct in the dry 

season. Nonetheless, the accuracy assessments were acceptable, with the least overall accuracy of 

69.4% and the least Kappa coefficient of 0.6 for images of the year 2000.  
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Table 15:  Accuracy assessments of land cover and land use classification 

Class Name Producer’s accuracy (%)  User’s accuracy (%) 

1991 2000 2003 2013 2015 2019 1991 2000 2003 2013 2015 2019 

Water 100.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0 100.0 100.0 100.0 100.0 

Built-up and Bare land 56.0 30.0 66.7 55.6 67.9 61.2  66.7 35.3 61.5 90.9 90.5 93.8 

Agricultural land and grassland 71.1 84.2 82.6 86.9 90.9 94.2  64.3 53.3 73.1 75.7 86.2 66.2 

Shrubs and scattered trees 71.8 42.9 68.0 61.8 73.5 61.9  80.0 88.2 73.9 42.0 71.4 72.2 

Forests 96.2 96.6 80.0 68.9 81.0 91.5  83.3 100.0 100.0 75.6 70.8 89.6  
Overall accuracy (%)  Kappa Coefficient (k)  

76.39 69.40 78.26 71.50 82.24 79.31  0.70 0.60 0.72 0.63 0.76 0.73 
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(ii) Classification Results 

Between 1991 and 2003, forests saw the most significant conversion into shrubs and sparse 

vegetation and finally into agricultural land, as shown in Fig. 32 to Fig. 37. As a result, the forests 

were reduced from 110 km2 in 1991 to 33 km2 in 2019 (70.16% reduction). As shown in Table 16, 

the agricultural land and grassland, built-up and bare land, have consistently increased while the 

forests have reduced through the years. 

Table 16:  The variation of land cover (absolute) sizes through the years 

Class 

no 
Class Name /Year 

Area (km2) 

1991 2000 2003 2013 2015 2019 

1 Water 11.98 14.01 13.87 11.73 11.07 12.64 

2 Built-up and bare land 21.74 22.54 33.84 21.15 25.84 26.56 

3 Agricultural land and grassland 73.79 75.56 111.84 142.44 159.21 169.80 

4 Shrubs and sparse vegetation 171.93 231.66 123.16 141.29 165.11 148.12 

5 Forests 110.72 46.40 107.45 73.56 28.93 33.04 

As a transitional land cover between forests and agriculture, the shrubs and sparse vegetation 

gained in 2000 from 171.93 km2, reaching 231.66 km2, before falling to 148.12 km2 between 2000 

and 2019. The noticeable pathway of land cover change was a gradual conversion of forests into 

shrubs and sparse vegetation before the arable parts became agricultural land and grassland. This 

was probably because of the consistent forest degradation by local communities searching for 

firewood or deforestation for agriculture, except in the established forest reserves under legal 

protections. Therefore, the conversion from “shrubs and sparse vegetation” to agriculture and vice 

versa was primarily noticeable. The conversion of sisal estates into agricultural land and 

settlements provided evidence of this trend of change in the study area.  

The agricultural land cover gained consistently from 73.79 km2 in 1991 to 169.8 km2 (130.12% 

gain over the years). The highest gains were after 2000 when the government implemented the 

first phase of the Agricultural sector development programme that expanded the land under 

cultivation (URT, 2017). Similarly, built-up and bare land gained by 22% consistently in the 28 

years under consideration, increasing from 21.74 km2 in 1991 to 26.56 km2 in 2019. However, the 

fluctuation in the water area has not been consistent. At first, it increased to 14.01 km2 in 2000 but 

reduced to 11.07 km2 in 2015 before increasing to 12.64 km2 in September 2019. As a result, the 

average surface area of Lake Babati (free water surface) from the classified map was 12.55 km2 

compared to the 17 km2 marked as the lake by the 1960’s topographic map (Mineral Resources 

Division, 1966). The 1960s topographic map extended to the lake floodplains of Lake Babati, 
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which are presently classified as forests or shrubs and sparse vegetation depending on the type and 

density of the trees covering the lake shores. 

(iii) Land Cover Change Pattern 

Water and agricultural land were the most stable land cover between 1991 and 2015. Water 

maintained 89.6 % (10.7 km2) of the 1991 water surface in 2015; in 2015, agricultural land 

maintained 81.1% (59.1 km2) of its 1991 cover. The forest was the most unstable land cover type; 

by 2015, it had only 21.1% (23.2 km2 out of 109.8 km2) of the 1991 forest land available. The 

stable forests were in the forest reserves with legal protections. The built-up and bare land 

maintained only 21.7% of the 1991 cover by 2015, while the shrubs retained 42.3% (73.4 km2) of 

the 1991 shrubs in 2015. Figure 37 captures succinctly where the changes happened. The diagonal 

columns in the confusion matrix in Table 17 show the total area of land use types, which did not 

change between 1991 and 2015.  

Table 17:  A confusion matrix showing absolute land use and land cover changes to 

different forms between 1991 and 2015 

  2015 land cover 

1
9

9
1

 L
an

d
 c

o
v

er
 

 
Agricult

ural 

land 

(km2) 

Built up & 

bare land 

(km2) 

Forests 

(km2) 

Shrubs 

(km2) 

Water 

(km2) 

1991 

Total 

(km2) 

Agricultural land 59.1 3.8 0.5 9.4 0.0 72.8 

Built up & bare land 6.2 4.3 0.3 9.0 0.0 19.9 

Forests 10.9 2.7 23.2 72.8 0.3 109.8 

Shrubs 83.4 14.2 2.6 73.4 0.0 173.6 

Water 0.1 0.0 0.3 0.9 10.7 12.0 

2015 Total 159.6 25.0 26.9 165.5 11.1 388.1 

Agricultural land gained the most, increasing from 72.8 km2 in 1991 to 159.6 km2 (119.2% 

increase) over the 24 years of consideration, while forests lost 75.5% of their coverage within the 

same period (falling from 109.8 km2 to 26.9 km2). The shrubs lost 4.7% of their land cover, 

shrinking from 173.6 km2 in 1991 to 165.5 km2 in 2015. The built-up and bare land expanded from 

19.9 km2 to 25.0 Km2 in 2015 (25.9% gain), while the water cover shrank by 7.4% from 12.0 km2 

to 11.1 km2 in 2015. The disappearance of a small crater lake that occupied the northeastern part 

of the catchment was the most noticeable change in the water coverage type. The area of the crater 

lake has since become shrubs and agricultural land.  
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Figure 31:   Babati catchment land cover in September 1991 

 

Figure 32:   Babati catchment land cover in September 2000 
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Figure 33:   Babati catchment land cover in September 2003  

Figure 34:   Babati catchment land cover in September 2013 
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Figure 35:   Babati catchment land cover in September 2015 

 
Figure 36:   Babati catchment land cover in September 2019 
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Figure 37:  Patterns of land use and land cover changes from 1991 through 2015. The 

legend shows the 1991 land use and land cover first, and after the comma is 

the 2015 land use and land cover 

The gradual conversion of forest land into agricultural land alters the topsoil configuration and 

reduces vegetation cover, resulting in increased surface runoff and reduced infiltration. Land cover 

changes from forests to agriculture and urban settlements were reported to have contributed to 

increased streamflow of the Ganga catchment of North India (Anand et al.  2018). In a review of 

Kenyan and Tanzania catchment studies, Guzha et al. (2018) revealed that the reduction in forest 

cover did not significantly increase streamflow. However, they noted a reduction in the dry season 

flow when forests shrank and the agricultural land expanded. As Lin et al. (2015) argued,  the 

responses, however, depend on how the agricultural practices disturb the vegetation and modify 

the soil structure. Within the catchment, a reduced forest cover with a rapid expansion in the 
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agricultural land was anticipated to result in no increase in stream flow amounts over the years. 

However, the loss of forests which attenuates stream flows over a long period was thought to 

amplify the temporal variability of stream flow. The likely effect of reduced forest covers on 

baseflow, and the general catchment response to the observed land use and land cover changes are 

subjects for future investigations.  

4.1.7 Population Growth and Water Abstraction 

The records of water abstraction were not available. However, the catchment covered 11 wards, 

including Babati town council, Nangara, Singe, Bonga, Bagara, Sigino, Arii, Riroda, Duru, 

Ayasanda, and a small part of Gidas and Boay wards. The population in these areas increased from 

54 864 in 2002 to 137 357 people by 2012 (NBS, 2013). Despite a moderate population growth 

rate of 3.2% reported for the Manyara region between 2002 and 2012, the population in study areas 

rapidly grew at an average of 15.04% (NBS, 2013). The rapid population growth was attributed to 

the rapid urbanization around Babati town council, the regional capital for the Manyara region.  

URT (2014) estimated the water demand for the entire Lake Manyara sub-basin to be 95.6 million 

cubic metres (MCM) per annum in 2010. The estimate included irrigation and domestic water 

demand, which was approximately 47.4 and 31.88 MCM, respectively. The water requirements 

for industries, mining, and wildlife conservation were the least in the basin (URT, 2014), while 

livestock water demand was 11.82 MCM. The consumptive water demand for the Lake Manyara 

sub-basin was estimated to increase to 440.86 MCM by 2035. The projected 2035 demand would 

be driven by irrigation water demand which was 356.6 MCM, implying a considerable increase in 

water demand to support irrigated agriculture.  

Lake Babati catchment, an elevated upstream catchment within the Lake Manyara sub-basin is 

small, with a catchment area of 390 km2 against 18 740 km2 for Manyara (Deus & Gloaguen, 

2013). Despite its small areal size, Lake Babati catchment was home to 137 357 people in 2012 at 

the time when 1 425 131 people were living in the Manyara region (National Bureau of Statistics, 

2013). In terms of the catchment area, Lake Babati is only 2.08% of Lake Manyara catchment but 

hosted 9.6% of the people in the Manyara region. Therefore, scaling the water demand by URT 

(2014) based on the population ratio in Lake Babati catchment and Manyara region, this study 

estimated water demand within Lake Babati catchment as presented in Table 18. The study did not 

consider environmental and hydropower water needs but concentrated on consumptive water uses, 

which have the potential to deplete water resources.   
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Table 18:  Estimated water demand in Lake Babati and Lake Manyara catchments 

through the years measured in a million cubic meters (MCM) per annum  

Sub 

Basin 

Irrigat

ion 

Domes

tic 

Livest

ock 

Mining & 

Industry 

Wildl

ife 

Tourism & 

Recreation 

Aquacult

ure 

Tota

l 

Lake Manyara catchment 

2010 
47.4 31.88 11.82 3.19 1.26 0.06 0.021 

95.6

3 

2015 
144.8 40.29 12.53 6.04 1.26 0.11 0.041 

205.

07 

2025 
350.5 48.61 15.54 7.29 1.26 0.19 0.06 

423.

45 

2035 
356.5 56 18.34 8.4 1.26 0.28 0.08 

440.

86 

Lake Babati catchment 

2010 4.55 3.06 1.13 0.31 0.12 0.01 0.00 9.18 

2015 
13.90 3.87 1.20 0.58 0.12 0.01 0.00 

19.6

8 

2025 
33.65 4.67 1.49 0.70 0.12 0.02 0.01 

40.6

5 

2035 
34.22 5.38 1.76 0.81 0.12 0.03 0.01 

42.3

2 

URT (2014) 

The estimates indicated that water demand would increase, and by 2025, the total water demand 

of Lake Babat catchment would be 40.65 MCM, with irrigation water demand accounting for 

82.7% of the total (33.65 MCM). Satisfying that demand would need a supply of 111 369 m3 of 

water per day. Currently, some crops are grown under irrigation, but very scanty information was 

available on the scale of irrigated land or the amount of water used explicitly for irrigation. 

Extensive irrigation was not observed within the Lake Babati catchment, so the irrigation water 

requirement could have been overestimated.  

The estimate of the domestic water appeared close to reality. For example, by 2025, the estimated 

domestic water demand was 4.67 MCM, translating to 12 794 m3/day. At the time of the study in 

2019, Babati Water Supply Authority (BAWASA) was supplying 50 000 m3/week, which 

translated to 7142 m3/day, but it was still inadequate. The BAWASA was actively expanding its 

water supply capacity and coverage beyond the urban areas to the rural communities, which were 

dependent on shallow wells for domestic water. Groundwater sources constituted 78% of the water 

supplied, while a spring from Girala Mountain contributed the remaining 22%. Generally, water 

abstractions indicated a tremendous increase to accommodate the rapidly growing urban 

population and economic activities.  

4.1.8 Lake Water Balance Simulation 

Using the available lake levels, the lake bathymetric data, the rainfall, and the lake evaporation, an 

HEC-HMS model was built, calibrated, and its performance validated. The graphical evaluation 
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of the calibrated model and the statistical measure of the performance are shown in Fig. 39 and 

Table 19, respectively. 

 
Figure 38:  Graphical comparison of the observed lake level and the simulated lake level 

during the calibration and validation phases   

Table 19:  Goodness of fit measurements of the model at the calibration and validation 

phases 

The goodness of fit statistics Calibration phase Validation phase 

Sum of Absolute errors (m) -29.22 -256.05 

Sum of Squared Residuals (m2) 212.04 50.40 

Simulated Peak Level 5.45 4.936 

Observed Peak Level 5.56 4.93 

The Percent error in peak level (%) -2.01 0.12 

Mean Observed Level (m) 4.757 4.701 

Nash Sutcliffe Efficiency 0.95 0.71 

The statistical goodness of fit in Table 19 and Fig. 39  indicated that the model was excellent for 

prediction. The model had an NSE of 0.95, which indicated its excellent performance for predictive 

purposes (Moriasi et al., 2015). Figure 38 suggests that the model is more accurate in predicting 

the low lake levels, but its performance during peak seasons harbours some errors. Generally, the 

model underestimated the lake level during the rainy season and offset the peak level in time 

compared to the observed lake level. Although the offset in the peak lake level could result from 

model inefficiency, the available cumulative daily rainfall depths do not capture the exact time for 

peak rainfall. Since each sub-basins have a time of concentration of less than 12 hours, the exact 

peak time of the rainfall is essential for predicting the lake levels. The synthetic unit hydrograph 

with an arbitrary frequency duration curve may cause a mismatch in the modelled and observed 
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lake level peaks. Improvement of the model calibration for flood studies requires rainfall captured 

at time steps shorter than the time of concentration of the sub-basin with the shortest time of 

concentration. 

The model matched the low flow conditions well, making it most suitable for low flow studies and 

relevant for water supply and drought studies. However, it slightly underestimated the peak flows, 

as shown in Fig. 39 and Table 19. Therefore, the model may not accurately capture the peak flows, 

and thus, users may need to apply it with caution for flood studies. In addition, the model may 

require rainfall data collected at a 30 minutes timestep for a finer calibration. The calibrated model 

parameters are summarized in Table 7. Nonetheless, the model is handy for studies in a data-scarce 

catchment and can be improved further when more data for long-term calibration and validation is 

available.  

4.1.9 Grey Relational Order Ranking 

The factors driving the lake level or storage variability were assessed and ranked by GRA. The 

most important driver of the lake level variability was the inflow to the lake (runoff and baseflow), 

followed by direct rainfall. Lake evaporation came in third, while lake outflow was the least 

important. When GRA was performed with the lake storage as the reference series, the lake inflow 

and rainfall maintained their first and second order of importance; however, the lake evaporation 

and lake outflow tied in the third position. The grey relational coefficient (Table 20) of lake 

evaporation and lake outflow were insignificantly different (p = 0.97), thus implying both have 

equal magnitude/influence in the control of Lake Babati level variability when based on the lake 

storage. 

Table 20:  Comparison of Grey relational grades based on the lake level and lake storage 

Reference series 
Inflow 

(m3/s) 

Lake 

Evaporation 

(mm) 

Direct Rainfall 

(mm) 

Computed Outflow 

(m3/s) 

Lake Level (m) 0.8591 0.6320 0.8652 0.6120 

Lake Storage (m3) 0.8590 0.6152 0.8658 0.6155 

Evaporation was expected to have a higher weight than direct rainfall because direct rainfall over 

the lake surface is smaller (with a lower depth) than lake evaporation. However, the high 

correlation of the direct rainfall to the lake inflow seems to have biased the analysis. The lake 

outflow had more control over the lake level variability during the rainy year (2019 -20 

hydrological year) when more water was removed from the lake during peak seasons than 

evaporation. On the other hand, the hydrological year 2020 – 21 had low rainfall; therefore, the 

lake experienced more lake evaporation than lake outflow. Therefore, in the 2020 – 21 year, the 

study agreed with Kumambala and Ervine (2013), who suggested that lake evaporation is often 
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the most significant outflow component since the evaporation rates are unlimited because the water 

is always available. Further, it partly agreed with Mbanguka et al. (2016), who reported that lake 

evaporation and runoff control the hydrological balance of Lake Babati. Mbanguka et al. (2016) 

did not recognize the influence of large outflows during high rainfall seasons. 

4.1.10 Stepwise regression analysis 

We performed a stepwise regression analysis of precipitation over the lake area, lake inflow, lake 

outflow, and lake evaporation to determine the most influential drivers of the lake water level. The 

analysis indicated that the lake inflow, evaporation, and outflow were the most significant 

parameters for predicting daily lake levels, while direct rainfall was the least important parameter. 

The stepwise regression removed the direct rainfall in backward elimination. It did not substitute 

it in the forward elimination, implying that an optimal model prediction could be achieved without 

the direct rainfall. 

(i) Fitting the Parameters using the Lake Level  

The daily lake level in meters (𝐿𝑑𝑎𝑖𝑙𝑦) can be predicted using the daily precipitation (𝑃 in mm), 

inflow to the lake (𝑅𝑖𝑛 in m3/s), lake outflow (𝑅𝑜𝑢𝑡 in m3/s)  and lake evaporation (𝐸𝐿 in mm/day) 

using a regression formula expressed in Equation (68). All the added parameters improved the 

model. The coefficients of the parameters were not zero (p-value < 0.01) and had the F – statistics 

of 273.8 on 4 and 608 degrees of freedom and the multiple R2 = 0.6443. 

𝐿𝑑𝑎𝑖𝑙𝑦 = 5.6403  + 0.0017𝑃 + 0.0081𝑅𝑖𝑛 + 0.1761𝑅𝑜𝑢𝑡 − 0.1537𝐸𝐿 
(68) 

The stepwise elimination improved the model by removing the less sensitive or adding the most 

sensitive parameters. At the daily time step, the regression showed that the lake level was not very 

sensitive to direct rainfall over the lake, and it was eliminated, giving Equation (69) as the final 

optimized equation. Thus, the final model improved with the multiple R2 = 0.6437, F – statistics 

of 363.8 on 3 and 604 degrees of freedom, and a p-value < 0.01.  

𝐿𝑑𝑎𝑖𝑙𝑦 = 5.6478  + 0.0041𝑅𝑖𝑛 + 0.1786𝑅𝑜𝑢𝑡 − 0.1547𝐸𝐿 
(69) 

(ii) Fitting the Parameters using the Lake Storage 

The prediction of the daily lake storage using the same parameters had the following goodness of 

fit statistics: A multiple R2 = 0.7415, the F – statistics of 432.4 on 4 and 603 degrees of freedom, 

and a p-value < 0.01. Equation (70) gives the regression of the lake storage with input parameters. 

As indicated by the R2, the prediction of the lake storage was more accurate than the lake level. 
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𝐿𝑆𝑑𝑎𝑖𝑙𝑦 = 67127331 − 34253𝑃 + 66873𝑅𝑖𝑛 + 3105860𝑅𝑜𝑢𝑡 − 2583060𝐸𝐿 
(70) 

where 𝐿𝑆𝑑𝑎𝑖𝑙𝑦 is lake storage in m3, P is precipitation in mm, 𝑅𝑖𝑛 is inflow to the lake in m3/s and 

𝑅𝑜𝑢𝑡 is the outflow from the lake in m3/s and lake evaporation (𝐸𝐿 in mm/day). 

Direct rainfall was removed from Equation (70) on a stepwise analysis optimization to give an 

optimized and parsimonious model with no significant loss in the model’s predictive power, as 

shown in Equation (71). The goodness of fit statistics was; a multiple R2 = 0.7407, F – statistics of 

575 on 3 and 604 degrees of freedom, and a p-value < 0.01. 

𝐿𝑆𝑑𝑎𝑖𝑙𝑦 = 67276591 − 13723𝑅𝑖𝑛 + 3155399𝑅𝑜𝑢𝑡 − 2601460𝐸𝐿 
(71) 

The catchment inflow (including runoff and baseflow) was the most significant parameter in 

driving lake level variability. The effect of direct rainfall was minimal due to the small lake surface 

area compared to the large catchment area. With the catchment–lake surface area ratio of 26:1, 1 

mm of catchment runoff would translate into a 26 mm depth of inflow over the lake surface, 

masking the effect of direct rainfall. The evaporation amount was equally substantial compared to 

the direct rainfall. At an average depth of 6 mm per day, the lake evaporation outstripped direct 

rainfall, reaching about 2000 mm per year compared to the annual rainfall. Although evaporation 

is the main depleting factor for closed lakes (Kumambala & Ervine, 2013), the insignificant change 

(no trend) in evaporation in Lake Babati suggested that additional factors could have influenced 

the consistent declines observed in the lake levels. In years of heavy rainfall, the lake outflow 

during peak lake level seasons withdrew more water from the lake than evaporation. The most 

significant effect of evaporation occurred in the dry season (December – February) when 

temperatures were elevated. Whereas both the lake outflow and evaporation played essential roles 

in controlling lake storage/level, the usually large volume of water spilt during peak levels 

appeared to drive the continuous depletion of the lake water. 

As observed, the most important variables in predicting the lake level or storage were the inflow, 

evaporation, and outflow. The GRA corroborated these findings by ranking the lake’s inflow as 

the most sensitive parameter, followed by the evaporation and outflow at the same magnitude as 

the second most sensitive parameter. Although GRA ranked direct rainfall as the most sensitive 

parameter, the stepwise analysis showed that direct rainfall over the lake area played a minimal 

role in driving the lake level because of the relatively smaller lake surface to the catchment area. 

The strong correlation of direct rainfall with the lake inflow could have influenced the GRA to 

rank it as the second most sensitive parameter.  

Generally, the lake level control depended on the largest outflow component. For example, in the 

2019 – 20 hydrological year, the lake outflow had more control over the lake level variability as 



102 

the outflow removed more water from the lake during peak seasons than evaporation. Evaporation 

regained control of the lake level in the hydrological year 2020 – 21, which had low rainfall; 

subsequently, the lake outflow was less than lake evaporation. The effect of water abstractions was 

perceived as small on the lake level. If the 2025 water demand of 111 369 m3 were abstracted 

directly from the lake, water abstractions would exceed all the daily outflow and evaporations 

currently controlling the lake level. The result would be a more rapid decline in the lake levels. 

The current scenario is still tenable because the irrigation water demand is still less than estimated, 

and there are no direct abstractions from the lake. However, it is worth noting that the future shifts 

in the lake level could be driven by unregulated water abstractions for irrigation. Without pressure 

from abstractions, the observed rate of lake level decline of 25 mm per year would reduce, 

especially when the lake levels are below the outflow level (spillway level). This is so because 

evaporation would be the only remaining depletion factor whose depletion effect could still be 

restored by lake inflow. 

Whereas outflow terms controlled the observed declining lake level scenarios, it was worth noting 

that factors that affect the lake’s inflow (runoff and baseflow) could also significantly influence 

the lake level variability. One such factor is the recent land-use change dominated by the 

conversion of forest-dominated catchments into agriculture-dominated ones. The transition to 

built-up and bare land was still low, although expected to expand rapidly because of the economic 

boom in Babati town, the capital of the Manyara region. These transitions were anticipated to 

increase the catchment runoff but reduce baseflow in the future. However, the impact of these 

changes could be short-lived if farmers adopt agricultural practices that increase infield storage of 

runoffs, thus potentially reducing runoff inflows. These changes and their impact on lake inflow 

and sedimentation could be the subject of future investigations. 

Lake Babati catchment faces deforestation due to pressure from farming and pastoralism. 

Unfortunately, the activities expose the soil surfaces or loosen the soil structures, thus exacerbating 

soil erosions. Soil erosion drives the siltation of reservoirs as the detached and suspended materials 

are deposited in reservoirs. Siltation does not only reduce reservoir volumes but causes high 

turbidity, which interferes with the diversity of aquatic life (Lévêque, 2001; Lwenya & Yongo, 

2010). This is an emerging threat that future studies should assess its scale and possible influence 

on the lake volume and level variability.  

In summary, this section has shown that Lake Babati level is declining due to increased outflow 

occasioned by the expansion of spillways. Lake evaporation remained an outflow term with the 

potential to deplete lake levels; however, its influence was stronger in dry seasons and years. Water 

abstraction was still smaller than lake evaporation and thus with the least influence on lake level 

variability. Given the probable implications of lake level declines, the subsequent section reports 
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on evidence of hydraulic connections and interactions between surface water and groundwater 

systems to assess if the variability of one system could influence the other. 

4.2 Hydro Geochemical Variations 

4.2.1 The Abundance of Major Cations and Anions 

Sodium ions (Na+) and Magnesium ions (Mg2+) were the main cations that altogether made 80% 

of the cation concentration, while bicarbonate ion (HCO3
-) alone made 66%, followed by Chloride 

(Cl-) at 17% of the anions. The carbonates (CO3
2-) formed a tiny portion of the anions and were 

mostly zero for many samples except in two lake samples (LS3 and LS4). The trend of cation 

abundance was Na+>Mg2+>Ca2+(Calcium ions)>K+, while for anions, the abundance was in the 

order of HCO3
->Cl->CO3

2->SO4
2-(Sulphate ions). These seemed to be the order of abundance of 

ions for lakes within the East African rift valley, as the reviews by Lameck et al. (2023) showed 

similar orders of abundance, except that K+ was higher than reported here. 

Appendix J provides details of all the measured variables and compares each sample against the 

World Health Organization guideline for drinking water (WHO, 2011) wherever the guideline 

values are defined. Most of the measured parameters were within the drinking water standards 

except for fluoride in samples LS4 and RV3 and nitrate in samples DW3 and SW3. Flouride 

concentrations from this study were within the range of 0.18 – 2.27 mg/L reported by Pantaleo et 

al. (2018). Comparatively, fluoride concentrations are low and thus placing the area in a fluoride 

cool spot, as Ijumulana et al. (2020) observed. 

Despite the semi-arid nature of the study area, where excessive evaporation was expected to 

influence the concentration of salts (Ahmed et al., 2019), the Cl- concentration was relatively low, 

possibly due to the diluting effect of rainfall and runoffs into the lake which offset the evaporation 

effect on Cl- concentration. However, the lake and deep wells exhibited higher Cl- concentrations 

than other water sources. 

4.2.2 Distribution of the Hydrogeochemical Parameters 

The lake had a high concentration of all the ions, contrasting with the rainfall-driven sources like 

the crater, rivers, and springs (Fig. 40 (a) – (l)). The springs, represented by their EC, had the 

second least concentration of ions. The Ca2+ was highest in the deep wells with a mean of 29.16 

mg/L, followed by the lake at 22.06 mg/L and the shallow wells at 20.12 mg/L. However, the lake 

had the highest concentration of Mg2+, followed by the deep wells. The deep wells may have 

acquired more Ca2+ and Mg2+ salts because their waters had longer rock dissolution time than 

spring and river waters. The intermediate composition of the lake chemistry suggested that the 
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lake contains a mixture of ions from different sources. Ahmed et al. (2019) reported similar results 

in the eastern desert of Egypt, where groundwater at the downstream points (in the low altitude) 

had relatively higher ion concentrations and TDS than at the upstream point in the high altitude. 

The EC varied among the different groups. The EC of water samples from the bottom of Lake 

Babati varied from 542 to 677 μS/cm with a mean of 631 μS/cm. In contrast, water samples from 

the lake surface had an EC range of 475 to 670 μS/cm and an average of 575 μS/cm. The EC of 

deep wells varied broadly from 415 to 683 μS/cm with a mean of 550 μS/cm, lower than for the 

lake water. The EC for the shallow wells, rivers, springs, and crater was below 500 μS/cm (Fig. 

40 (c)), implying that Lake Babati catchment water is freshwater. However, it varied distinctly 

from Lake Manyara with an average EC of >2000 μS/cm despite simultaneously sampling Lake 

Babati and Manyara. Lake Manyara was sampled from two locations (one near the middle and 

another near the fluvial inputs at the northern part of the lake). 

In contrast, the lake water and deep wells were in the category of marginal waters, with EC ranging 

between 500 – 1500 μS/cm (Davis & Dewiest, 1966). As always expected, the TDS followed the 

same trend as EC. The deep wells had intermediate values of TDS and EC (Fig. 40 (b)), falling 

between the lake and the rivers and springs (which are freshwater of meteoric origin). This 

suggested that the deep wells were a mixture of lake water, recently recharged rainwater, and water 

with dissolved rocks. Although Lake Babati is shallow and semi-closed with excessive 

evaporation, it maintained a low level of salination. The high influx of runoff seemed to have 

diluted the lake and retarded the salinization effect of evaporation. 
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Figure 39: Variation of physical and chemical properties (a) pH, (b)TDS, (c)  EC, (d) Salinity, (e) Cl-, (f) F-, (g) SO42-, (h) 

HCO3, (i) Na+, (j) K+, (k)  Ca2+ and (l)  Mg2+ 
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The results revealed that the springs, rivers, and shallow wells have lower nitrate (NO3
-) 

concentrations than the bottom of the lake, suggesting they were less contaminated. Water plants 

on the lake surface near the bank and underwater observed during the bathymetric survey reinforce 

the notion that the lake has a considerable amount of nitrate pollutants. The higher NO3
- 

concentrations at the bottom of the lake may have resulted from contamination by animal manure, 

fertilizers, or sewerage effluents from nearby communities. Elisante and  Muzuka (2017) opined 

that animal manure might be the primary source of the high nitrate reported within the Internal 

Drainage Basin because the areas practice pastoralism and crop farming but with limited 

application of commercial fertilizers. 

Although a reduction of NO3
- concentration was expected with depth due to the presence of 

reducing conditions at deeper depths (Nazzal et al., 2014), deep wells had the most extensive 

variations of NO3
- concentration from 5.6 to 66.4 mg/L. The wide NO3

- concentration variation in 

deep wells may suggest that the deep aquifer waters mixed with NO3
- polluted surface waters since 

the natural occurrence of NO3
- in water is rare. The concentration of NO3

- in deep wells was an 

intermediate value between the concentration at the bottom of the lake and the shallow wells. This 

suggested that perhaps the waters were mixing. Mixing of the shallow well, lake, and deep well 

waters could only be possible if a hydraulic connection existed. The deep wells within the 

catchment have well screens installed to abstract water from both the confined and unconfined 

aquifers, attesting to the abstraction of mixed water. Therefore, the unconfined aquifers are likely 

in hydraulic connection with the lake through alluvial deposits, a mixture of fine to medium sand 

with silty clay on top that forms an aquifer surrounding the lake. 

Like NO3
-, phosphate (PO4

3-) naturally has a low concentration in water or soil since phosphate is 

biologically active and a limiting nutrient. Therefore, the observed higher than the naturally 

occurring PO4
3- concentration in Lake Babati suggested that perhaps the PO4

3- originated from 

artificial sources such as sewerage deposition or leakage from farms using Nitrogen, Phosphorus, 

and Potassium (NPK) fertilizers which are the primary sources of PO4
3- and NO3

-. Further, the 

presence of both NO3
- and PO4

3- in the crater water with a comparatively higher concentration of 

Potassium (K+) than Na+ attested to the possibility of pollution of the water sources by NPK 

fertilizers, probably from neighbouring farms. As Timperley (1983) observed in the volcanic 

regions of Taupo in New Zealand, acid dissolution of some rocks may also result in elevated 

phosphorus concentrations. However, PO4
3- concentration would be widespread in such a case, 

and a very high concentration would be expected in deep wells due to the prolonged contact with 

rocks and dissolution time. The selective PO4
3- distribution in surface water sources in the Lake 

Babati catchment implied that PO4
3- may be derived from point sources. Further, this scenario may 
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also suggest that the processes supplying phosphorus are higher than the biological processes 

depleting it, which is more likely when surface water loading of the pollutant occurs. 

Although pollution from sewerage, industries, and agriculture also contribute to sulphate (SO4
2-) 

in water (Nazzal et al., 2014), the low levels of industrialization and the limited use of fertilizers 

in agriculture in the Lake Babati catchment area were anticipated to have minimal impact. 

Generally, the deep boreholes had higher alkalinity, EC, and dissolved salts with more elevated 

Ca2+, Mg2+, and K+ concentrations than the shallow wells. The possible dissolution of calcium–

magnesium silicate or limestone rocks could have yielded Ca2+, Mg2+, and CO3
2- (Ahmed et al., 

2019). Kenoyer and Bowser (1992) observed that the alkalinity and concentration of some cations 

increase when water passes through longer subsurface flow paths. Similar results were observed 

in the deep wells, probably due to the long residence time resulting in rock mineral dissolution. In 

contrast, the shallow wells, perhaps because they are recharged from recent water, had far less 

dissolved solids attributed to the short interaction time with the mineral contents of the aquifer. 

4.2.3 Correlation Matrix Of Parameters 

Appendix K presents Pearson’s correlation matrix of the physicochemical parameters of the 

studied waters. Variables with correlation coefficients > 0.75 were considered strong, while those 

with correlation coefficients between 0.5 and 0.75 were considered moderate. Total Hardness (TH) 

was positively correlated with many ions as follows: Fluoride ion (F-) (r = 0.90, p < 0.01), Cl- (r 

=0.84, p < 0.01), CO3
2- (r = 0.71, p < 0.01), SO4

2- (r =0.88, p < 0.01), Ca2+ (r = 0.73), Mg2+ (r = 

0.97), Na+ (r = 0.91) and K+ (r = 0.88) as shown in Appendix K.  Magnesium showed strong 

positive correlations with Cl- (r=0.80), SO4
2- (r = 0.79) and CO3

2- (r = 0.75). Similarly, Ca2+ had a 

strong positive correlation with F-, Cl-, SO4
2-, and NO3

-. These strong correlations may suggest that 

the parameters co-exist or that the same processes drive their concentrations. 

As always expected, samples with high TDS have high EC, as indicated by the strong Pearson’s 

correlation (r = 0.88, p < 0.01). The pH generally showed a weak correlation with other parameters. 

Its strongest correlation was with TDS (r = 0.43, p < 0.05), but a correlation with CO3
2- was 

moderate and insignificant (r = 0.36, p > 0.05). These are consistent with Ligate et al. (2022), who 

observed a similarly weak correlation between pH and other ions in groundwater from Geita and 

Mara districts in Tanzania. The weak correlation of the pH with other parameters might suggest 

that salts and rock dissolution were not related to acidic conditions (Amiri et al., 2016). Similarly, 

a strong correlation between Mg2+ and CO3
2- (r= 0.75, p < 0.01) might suggest that both ions 

coexisted and were vital parameters responsible for high pH in the water samples. 
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A deeper analysis of the principal components showed (Fig. 41) that EC, TDS, salinity, F-, Cl-, 

CO3
2-, SO4

2-, Ca2+, Mg2+, Na+, and K+ are negatively but strongly correlated with Principal 

Component One (PC1). The TDS showed a very significant correlation (p < 0.01) with CO3
2-, 

SO4
2-, Ca2+, Mg2+, and Na+, which the loading plots of PC1 against Principal Component Two 

(PC2) (Fig. 41) indicated were due to multicollinearity, thus increasing or decreasing together. A 

further investigation also showed significant spatial clustering among some parameters, as shown 

in Fig. 24. 

Table 21:  Measure of global spatial autocorrelation using the Moran Index of the 

different water quality parameters from the study area 

  Moran Index Expected Index Standard Deviation p-value Z - score 

pH -0.0701 -0.0357 0.0365 0.3466 -0.9415 

EC 0.1015 -0.0357 0.0384 0.0004 3.5729 

TDS 0.0591 -0.0357 0.0380 0.0127 2.4913 

Salinity 0.0537 -0.0357 0.0380 0.0186 2.3524 

F- -0.0412 -0.0357 0.0133 0.6801 -0.4134 

Cl- -0.0678 -0.0357 0.0281 0.2533 -1.1429 

HCO3
- 0.0617 -0.0357 0.0380 0.0103 2.5660 

CO3
2- 0.0348 -0.0357 0.0293 0.0160 2.4081 

SO4
2- -0.0393 -0.0357 0.0257 0.8897 -0.1392 

NO3
- -0.0628 -0.0357 0.0351 0.4412 -0.7706 

Ca2+ -0.0338 -0.0357 0.0345 0.9549 0.0562 

Mg2+ -0.0111 -0.0357 0.0267 0.3564 0.9217 

Na+ -0.0306 -0.0357 0.0175 0.7723 0.2885 

K+ -0.0146 -0.0357 0.0229 0.3562 0.9219 

The EC, TDS, Salinity, HCO3
- and CO3

2- were clustered (p-value < 0.05), especially among 

samples from the lake and its neighbourhood, forming a hotspot near the lake, which alluded that 

the lake interacts with samples in its northern boundary. It was clear that areas outside the Lake 

Babati catchment had very distinctive patterns from the clustered samples, which suggested the 

sample sites were probably not interacting with the lake. These clusterings could have influenced 

some descriptive statistics presented here since clustering reduces the effective sample sizes.  

Although all water samples were fresh with TDS < 1000 mg/L (Freeze & Cherry, 1979), the lake 

and deep wells exhibited higher TDS than the rivers, shallow wells, and springs, attesting to higher 

salt concentration. Similar patterns of TDS being higher in deep wells (boreholes) than in shallow 

wells, streams, and springs were reported by Ligate et al. (2022) around Lake Victoria gold fields 

in northern Tanzania. Thus, the high ion concentration in the deep wells and the lake are probably 

due to water that has had prolonged contact (dissolution) time with geological formation (rocks) 

from which most of the salts originate (Freeze & Cherry, 1979; Sakakibara et al., 2016).  
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A significant positive correlation (r = 0.91, p < 0.01) of Na+ and K+ with Cl- (Appendix K) 

suggested the dissolution of halite in the lake water. Similarly, the positive correlation of SO4
2- 

with Ca2+ (r = 0.87, p < 0.01) and Mg2+ (r = 0.79, p < 0.01) suggested the dissolution of dolomite 

and gypsum rocks, especially in the waters of the deep wells and some shallow wells. This agreed 

with Bennett et al. (2021), who reported and attributed similar ion associations on Mount Merua's 

slopes to rock–water interactions. The F-, Cl-, CO3
2- and SO4

2- showed significant positive 

correlations with Mg2+, Na+ and K+, suggesting that SO4
2-, Cl-, and CO3

2- salts have a common 

origin. The HCO3
- were the most dominant anions in the water samples, and their strong positive 

correlation (r = 0.90, p < 0.01) with EC, TDS, and salinity indicate their importance in driving the 

respective physical properties of freshwater characteristics. The increase in PC2 with a reduction 

in HCO3
-, EC, TDS, and salinity hinted that the HCO3

- concentration varied with the EC, TDS, 

and salinity. Therefore, the PC2 was possibly a measure of the control of the water softness since 

it increases with the concentration of F-, Cl-, CO3
2-, Mg2+, Na+, and K+, which determines water 

softness.  

The overlap in Fig. 41 (b) in the principal components of shallow wells with deep wells and rivers 

implied that the shallow wells were a mixture of deep wells and river water (recently recharged 

water). Although the data points for the crater and springs were few for ellipsoidal representation 

of their spread, their locations within the cluster for rivers and shallow wells (Fig. 41 (b)) indicated 

their similarities. The similarity of water from the crater and springs with the rivers and shallow 

wells suggests that the waters originate from similar water sources (meteoric water). The deep 

wells had a wide range of concentrations that completely engulfed the lake bottom waters and 

overlapped with the water from the lake surface, shallow wells, and river waters, implying 

appreciable mixing levels. The striking similarity of the lake bottom water with deep wells in 

principal components 1 and 2, shown in Fig. 41 (b), suggests a common origin of both waters and 

the mixing of the two. 

 
Figure 40  (a): The loading plot of PC1 against PC2 for all the parameters considered 

across different water types sampled in the study, while Figure 40(b) is the 

cluster of eigenvalues, and principal components 1 and 2 were based on four 

deep wells, 6 Lake bottom, six lake top, four rivers, six shallow wells, two 

springs, and one craterdata 

The ellipse could not be drawn around the samples from the crater and springs because they had so few datasets  
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4.2.4 Piper Trilinear Diagram 

From the Piper diagram classification (Fig. 42), the alkaline earth metals (Mg + Ca) exceeded the 

alkalis (Na + K), and the weak acids (CO3 + HCO3) dominated the strong acids (SO4 + Cl) in most 

samples. The water samples fell into three main facies types, as summarized in Table 22.  However, 

most samples belonged to the Ca – Mg – HCO3 facies indicating temporary hardness due to ion-

exchange reaction. Carbonate hardness exceeded 50% in most samples, suggesting a substantial 

dissolution of possibly dolomitic rocks into the water. 

 
Figure 41:  Distribution of the main cations and anions in the Piper diagram 

Three water types occur in Lake Babati, i.e., the mixed Ca-Na – HCO3, Na – Cl, and Ca – HCO3, 

suggesting water from different sources is mixing. Moreover, four out of six locations sampled in 

the lake had different water types at the surface and bottom, meaning the lake is not well mixed. 

Location L6 in the lake was homogenous with Ca – Na – HCO3 water type both at the surface 

(L6S) and bottom (L6B), while location L4 had a Na – Cl water type both at the surface (L4S) and 

bottom (L4B). The deep wells, springs, and some shallow wells had Mg – Ca – HCO3 water type, 
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indicating the influence of rock water dissolution. In contrast, the shallow wells (SW1 and SW2) 

had purely Ca – HCO3 water type. 

Table 22:  Classification of the dominant water types based on the Piper Diagram (Piper, 

1944) 

Type Composition Sample IDs 

Non-carbonate 

alkali exceeds 

50% 

Na – Cl (Sodium – 

Chloride) L4S, L4B 

Carbonate 

hardness exceeds 

50% 

Ca – HCO3 (alkaline 

earth exceeds alkalis – 

Calcium – Carbonate) 

L1S, L2B, L3S, L5S, SW1, SW2, 

SW3, SW4, SW6, SW5, DW1, 

DW2, DW3, DW4, SP1, SP2, 

RV1, RV2, RV3, RV4 

None of the cation 

or anion pairs 

exceeds 50% 

Mixed – Ca – Na – 

HCO3 (Calcium (Ca) – 

Sodium (Na) – 

Carbonate (HCO3) 

CR1, L1B, L2S, L3B, L5B, L6S, L6B 

4.2.5 Gibbs Diagram 

The Gibbs diagram of water samples from Lake Babati (Fig. 43)  indicated that rock weathering 

and rainfall control water chemistry from most sources but the rock–water interactions dominated 

the cations composition of most sources (Fig. 43 (a)).  The rock weathering and rainfall processes 

influenced the cations sources of the crater (CR), shallow well (SW4), and rivers such as RV1, 

RV3, and RV4. Similarly, both the rock and rainfall dominated the cations sources of spring SP2, 

although with a significant contribution from rainfall. Except for LB2, all the lake sources fell in 

the middle of the Gibbs diagram, reflecting the influence of evaporation, rock interaction, and 

rainfall in driving the cation composition of the lake water sources. As Dun et al. (2022) observed 

in the Pearl River Estuary in China, rock–water interactions often characterize flow delayed in 

porous aquifers. As such, the samples within the Babati catchment with higher ion concentrations 

must have had the opportunity for rock–water dissolution.  

However, all the anions came from rock–water interaction dominated processes except for LS4 

and LB3, where the sources were a mixture of rainfall, evaporation, and rock sources. In general, 

the rock–water interactions dominated the water chemistry of the different sources in Babati, 

except for the ephemeral rivers and some shallow wells where rainfall dominated. The rock–water 

interaction processes dominated the chemistry of deep wells. The strong influence of the rock 

weathering with a low evaporation influence and the dilution effect of the rainfall was probably 

responsible for maintaining the low salinity levels in the semi-closed Lake Babati. In most closed 

lakes, high evaporation leads to high salinity as it concentrates chloride ions (Akker et al., 2011).  
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Figure 42:  Distribution of sources of cations (a) and anions (b) in the water samples from 

Babati catchment according to Gibbs diagram 

4.3 Isotopic Compositions and Variations 

4.3.1 Oxygen – 18 and Deuterium Variation 

The Local Meteoric Water Lines (LMWL based on the isotopic composition of precipitation from 

Dar es Salaam (IAEA, 2019), a coastal area that is only 10 MASL (Indian Ocean), and Dodoma, 

an inland town that is 1100 m higher in altitude than Dar es Salaam, were not significantly different 

(p-value = 0.22). However, the proximity of the Dodoma station to the study area and the fact that 

Dodoma LMWL is closer to the GMWL (Dansgard, 1964) motivated its choice to represent the 

isotopic composition in precipitation at Babati. Similar to the GMWL, which is a crucial reference 

line for understanding processes driving air masses circulation under different climatic conditions 

around the globe (Dansgard, 1964; Kendall & Doctor, 2003), the LMWL is useful for analysing 

the effect of evaporation on precipitation and the prevailing conditions during groundwater 

recharge. 

Dodoma sampling site for the isotope in precipitation recorded the most depleted δ18O value of -

10.15‰ and the most enriched δ18O value of 3.36‰ in April 2016 and January 2016, respectively. 

These δ18O and δD values contrast with isotope in precipitation at the Dar es Salaam sampling 
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station, which ranged from -8.95 to 2.6‰ and 2.1‰ to 126.9‰, respectively. The δ18O and δD 

values reduced in a similar pattern (not shown) with an increase in the rainfall amount, highlighting 

the effects of rainfall amount on the isotopic compositions (Kendall & Doctor, 2003; Scholl et al., 

2014). The precipitation volume-weighted isotopic composition at the Dar es Salaam station was 

-2.92‰ for δ18O and -13.11‰ for δD. The volume-weighted composition for the Dodoma site 

could not be computed since the precipitation volume at the sampling time was not available. The 

average isotopic composition in precipitation at Dar es Salaam (a coastal site, based on 11 

observations) in May, the month of water sampling in the study, was -2.22‰ for δ18O and 0.69‰ 

for δD while the δ18O at Dodoma (based on a single observation) was more depleted at -3.48‰ 

and δD was -17.4‰. Dodoma, the inland site, perhaps had the ocean-inland distance influencing 

its fractionation (Pfahl & Sodemann, 2014). This agrees with Gibson et al. (2016) and González-

Trinidad et al. (2017), who reported that isotopic enrichment declines with altitude and distance 

from the ocean.  

Generally, the isotopic compositions showed relative depletion in the peak rainy season, perhaps 

due to the amounts’ effects, while relative enrichment was observed in the dry season. The 

historical data showed the relative depletion in the rainy season and enrichment as long-term 

seasonal patterns. Therefore, the seasonal variations of the isotopic compositions implied that rain-

fed water sources such as shallow wells and springs would have similar seasonal variations in their 

isotopic compositions.  

The variations in δD and δ18O have been applied to establish aquifer replenishment sources and 

determine water origins, groundwater flow dynamics, and the interconnections with different 

sources (Jabal et al., 2018; Krishan et al., 2019; Maurya et al., 2019). Specifically, the relative 

enrichment of δ18O and δD in samples indicates the extent of water evaporation since lighter 

isotopes evaporate faster than heavy isotopes, leaving the remaining water enriched with heavy 

isotopes (Akker et al., 2011; Kendall & Doctor, 2003). Therefore, the spread and clustering of the 

isotopic composition of the collected water samples shown in Fig. 44 indicated the evaporation 

extent of the original water source. As shown in Fig. 44 , the lake water was distinctly different 

from the river, springs, and shallow well waters. Specifically, DW1 and DW3 fell between the 

lake and springs, suggesting that those deep boreholes abstract a mixture of lake and recently-

recharged meteoric water. The two other deep wells (DW2 and DW4), distant from the lake (at 

least 2 km away from the lakeshore), had isotopic compositions close to the precipitation, 

signifying that they are mainly recharged from the precipitation, which did not undergo significant 

evaporation. This suggested that the aquifers of these deep wells are in hydraulic connection with 

the local groundwater flow system where water has a short residence time or travel route. 
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Figure 43:  The comparison of variation of Deuterium with Oxygen – 18 from the study 

area clustered according to the water source against the Dodoma LMWL 

Dodoma based on 18 monthly isotopic values in precipitation 

The closeness of the isotopic composition of the spring, rivers, and shallow wells to the LMWL 

suggests their meteoric origin. For example, the water sample from the Mrara River (RV3) was 

significantly depleted in heavy isotopes like precipitation and plotted near the meteoric line. It was, 

therefore, conclusive that the springs, shallow wells, and rivers were driven mainly by rainfall and 

less by the baseflow. Chacha et al. (2018) likewise reported similar isotopic compositions for 

springs in Arusha, Tanzania, and observed that the source of the flowing springs was linked to 

precipitation and its seasonal variations. The transient characteristics of the rivers and springs in 

the area further support this observation.  

In contrast, River Kiongozi (RV2) had an isotopically enriched signature falling between the 

LMWL and Lake Babati isotopic signatures. This observation supported the notion that River 

Kiongozi receives isotopically rich water from Lake Babati and runoff water. Furthermore, the 

groundwater head contour map (Fig. 6) drawn from water levels of shallow wells substantiated 

that groundwater flow from Lake Babati is northeast in the flow direction of River Kiongozi. 

Lake Babati water was enriched in both δ18O and δD. It plotted below the LMWL with a negative 

intercept of -0.48 and a regression line slope of 4.89 compared to the LMWL’s slope of 7.56 (Fig. 

44). This deviation was most likely due to the high temperature and excess evaporation that 

removed the lighter isotopes and concentrated the heavier ones in the lake (Akker et al., 2011). 
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However, Lake Manyara, (about 60 km north and downstream of Lake Babati) diverged from this 

with a distinctive isotopic signature and hydro-geochemistry, although it was sampled 

simultaneously with this study. The average EC of Lake Manyara (based on two samples, one in 

the Lake middle and another at the northernmost part close to a river mouth) was > 2000 µS/cm 

against Lake Babati’s 527 µS/cm. The former had spatially varying water chemistry and isotopic 

signature (not shown) with more depleted water (δ18O deviation of -2.1‰) near the river input, 

probably due to its large size and low chances of mixing. Casanova and Hillaire - Marcel (1992) 

similarly reported high spatial variability in Lake Manyara’s hydro-geochemistry and isotopic 

composition depending on the distance from the fluvial inputs. The higher concentration of ions 

in Lake Manyara than in Lake Babati agrees with Ala-aho et al. (2013), who observed that closed 

lakes in higher altitudes at the Finnish Rokua Esker aquifer had lower solute/tracer concentrations 

than flowing lakes in the lower altitudes. The low salt concentration in Lake Babati was consistent 

with the notion that runoff and recently-recharged groundwater seep into the lake. The low solute 

concentration in recently-recharged water was probably due to the short contact time with rocks 

or the short flow path of the local groundwater flow systems, which characterize elevated 

catchments such as Lake Babati catchment (Toth, 1963).  

4.3.2 Deuterium:  Excess Variation against Delta Oxygen – 18 (δ18O) 

A plot of d – excess against δ18O indicated a spread, implying the variation in the water sources 

(Fig. 45). The lake water clustered in a zone with enriched δ18O but very low d – excess  (Fig. 45), 

which indicated that it experienced significant evaporation (Pfahl & Sodemann, 2014; Chacha et 

al., 2018). In contrast, the clustering of shallow wells, springs, rivers, and two deep wells (DW2 

and DW4) in a zone with high d – excess but a depleted δ18O, just like precipitation, implied that 

the shallow wells, springs, rivers, and the two deep wells away from the lake receive precipitation 

water before evaporation. 
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Figure 44:  Distribution of the Deuterium excess against oxygen - 18 fractionization 

Two deep wells (DW1 and DW3) had a d – excess intermediate to those of the lake water and 

precipitation, suggesting that they are in a hydraulic connection with the lake and are possibly 

abstracting a mixture of recently-recharged groundwater (from precipitation) and lake water 

enriched by evaporation. Similarly, River Kiongozi (sample RV2) recorded a d – excess of 6.9‰ 

and δ18O of -2.5‰ (Fig. 44), closer to the d - excess of Lake Babati (-9.6‰) than any other river. 

This implied that a portion of the river’s baseflow could be sourced from Lake Babati.  

4.3.3 Lake Water Mixing 

Lake Babati, although small, shallow with occasional outflow, and without the ability to turn, 

exhibited variations in the isotopic composition both spatially and with depth (Fig. 46). Although 

the isotopic variations in depth were insignificant (p-value = 0.35 for δD and p-value = 0.41 for 

δ18O), the difference indicated that the lake was not well–mixed. The spatial variation of the 

isotopic composition in Fig. 46 further showed a small fractionation gradient within the lake, both 

at the surface and bottom. The depletion at the southernmost lake boundary (upstream), closer to 

the inflowing streams, could be attributed to the dilution of the lake water by runoffs. On the other 

hand, the increase in enrichment downstream and northwards in the flow direction was probably 

due to the concentration of heavy isotopes by evaporation as water moved downstream with a 

reduction in dilution since the lake only has small seasonal streams draining into those sections. 

The enrichment at the lake centre might be related to a higher evaporation intensity, the 

concentration of enriched waters at the lake centre during seasons of low lake level, and the 
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reduced dilution effect from the inflowing water. The evidence of evaporation influencing the 

hydro-geochemistry at the lake centre near locations of samples L4S and L3S further corroborated 

the uniqueness of the lake at this point. Furthermore, it confirmed that the lake was not well mixed. 

  
Figure 45:  The spatial variation of δ^18 O within Lake Babati at the lake surface and 

bottom: The Lake bottom was based on water sampled at 1/3rd of the lake 

depth 

4.3.4 Conceptual Surface Water:  Groundwater Interactions 

The recharge-discharge dynamics often reflect surface water–groundwater interactions as water 

fluxes move from one reservoir to another. Physiographic factors such as topography and geology 

control surface water–groundwater interactions, while climatic factors influence recharge (Khan 

& Khan, 2019). The recharge–discharge dynamics depend on the groundwater flow systems, 



118 

which Toth (1963) classified into local, intermediate, and regional groundwater flow systems. The 

recharge of regional flow systems occurs across regional surface water divides, and discharge 

occurs into streams of a higher order through deep, steady slow processes with highly mineralized 

water. In contrast, recharge and discharge of a local flow system happen at local water divides and 

at lower-order local streams at a relatively shallower, faster with an unsteady flux of less 

mineralization (Khan & Khan, 2019). 

As observed in this study, the groundwater systems on the eastern bank of Lake Babati seem to 

discharge into the lake due to its steep groundwater level gradient. Whereas the groundwater 

gradient in the western banks is also inclined to the lake, groundwater influx into Lake Babati is 

anticipated to be lower than influx from the eastern side. The southern parts of the catchment have 

steep gradients with ephemeral rivers which discharge into the lake. Although the rivers are 

seasonal, their beds usually remain wet, attracting farmers to grow paddy rice in waterlogged areas. 

Whereas areas can become waterlogged for various reasons, these indicate that some groundwater 

from the area is discharged into the lake. The close association of River Kiongozi to Lake Babati 

in hydrogeochemistry and isotopic composition indicates a northward discharge of lake water into 

the groundwater systems. These observations suggest that Lake Babati interacts with the 

groundwater systems.  

As Khan and Khan (2019) observed, when the water table is higher than the surface water level, 

the surface water will receive groundwater inflow. Whereas the general assumption is that surface 

water receives groundwater if the water table is higher than the elevation of the surface water bed, 

Khan and Khan (2019) noted that the deeper portions of the surface water body may still discharge 

into the groundwater system even when water table stands at a higher position. This is a likely 

scenario in Lake Babati, especially in its deep sections where similar hydrogeochemistry and 

isotopic composition were observed between samples of the lake and some deep wells. 

4.3.5 Mapping Groundwater Potential using Topography: Based Methods 

Conscious of the popularity of groundwater sources in the region where data paucity has limited 

the understanding of groundwater availability, this study undertook an innovative approach to 

study the GWP. It applied topography, readily available data at a reasonable quality, to predict 

distributions of groundwater and suitable locations for groundwater development.  
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4.3.6 Groundwater Potential Determinants 

(i) Distribution of HAND and Topographic Wetness Index 

The HAND provides hydrologically helpful information about soil water conditions and dynamics 

that have been applied to measure the relative potential gravitational energy (Nobre et al., 2011). 

Therefore, the areas of high HAND captured in  Fig. 47 (a) are thought to have a high drainage 

potential, while the low HAND areas are likely waterlogged or have low drainage potential. The 

areas closer to the lake and drainage lines showed low HAND, implying a high likelihood of GWP. 

Such areas can be groundwater discharge or recharge points depending on the groundwater level 

in the neighbourhood. 

Topographic Wetness Index assigns high indices for the areas along the streams and low indices 

for hilly areas away from the water sources. Similar patterns were observed in Fig. 47 (b), 

affirming the influence of topography on the groundwater processes within the Lake Babati 

catchment. Furthermore, groundwater depth becomes shallower as TWI increases (higher wetness 

index), demonstrating that TWI measures topography control of groundwater depth (Rinderer et 

al., 2014). This was also corroborated by Nejad et al. (2017), who showed that GWP increases 

with TWI because a local slope is a proxy of the hydraulic gradient, and the upslope area 

contributes to groundwater flow. 

(ii) Land Use and Land Cover 

Although the land cover strongly correlates with HAND (Renno et al., 2008), its constantly 

evolving nature driven by anthropogenic activities influences GWP. It is observed that the 

reduction of forested cover results in reduced infiltration, whereas the increase of the built-up 

environments amplifies runoffs and the reduction of groundwater infiltration (Calder et al., 1995). 

Furthermore, agricultural land generally encourages infiltration, although the magnitude of the 

influence varies depending on the actual water conservation practices employed (Singh et al., 

2017; Anand et al., 2018). Therefore, Lake Babati catchment, predominantly shrubs and sparse 

vegetation (42.6% cover), followed by agriculture at 41.1% (159.6 km2), a higher infiltration was 

anticipated as both large land cover types encourage infiltration. The built-up and the bare and 

barren land that encourage runoff make up 4 and 19.2%, respectively, while the open water covers 

3.1%. The effect of bare soils is an intermediate between agriculture and built-up areas because 

bare soils have sparse vegetation. Figure 46 (c) presents the spatial and overall effect of the land 

cover types considered an indicative measure of groundwater recharge. A higher GWP was 

expected in the water cover, forested areas, and paddy fields (classified as agriculture). This is so 

because the standing water would infiltrate and percolate more through the enormous deposits of 
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the chromic – luvi Phaeozams soil type, where a low gradient restricts lateral flows. However, 

areas with high groundwater recharge may not have high GWP unless favoured by factors that 

restrict water movement. 

(iii) Soils 

The catchment has mainly three soil types distributed, as shown in Fig. 47 (d). Humi-rhodic 

luvisols primarily occupy the gently sloping areas of the southern portion of the catchment. 

Luvisols are moderately weathered soils that overlay unconsolidated alluvial deposits, forming the 

catchment’s principal aquifer. The profiles of luvisols have less clay at the top than in the 

subsurface (Driessen et al., 2001). Eutric leptosols were expected to have a higher GWP because 

they sometimes have shallow groundwater depths and low water retention capacity, which result 

from well-drained soils due to the high gravel content. However, the shallow depth to the bedrock 

of leptosols was anticipated to limit the GWP in some areas due to the high erosion rates on the 

steep slopes (Driessen et al., 2001). 

The chromic – luvi phaeozams, due to their attributes of being porous, well-aerated, organic 

matter-rich soils in the flat or gently undulating landform was ranked higher in GWP. These soils 

often cover the unconsolidated parent material of either aeolian or alluvial origin (Driessen et al., 

2001), which provides a higher chance of infiltration. Soils with a higher infiltration rate received 

the highest weights for groundwater recharge due to their perceived capacity to infiltrate and 

percolate more water into the groundwater aquifers. 
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Figure 46:  Input maps for mapping the groundwater potential; (a) Height Above Nearest 

Drainage (HAND), (b) Topographic Wetness Index (TWI), (c) Land use and 

land cover, (d) Soils 
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Figure 47:  Additional input for mapping the groundwater potential; (e) Distance to the 

streams, (f) is the lineament density, and (g) is the slope in percent 

(iv) Slopes 

The slope is vital for understanding hydrology as it influences recharge, runoff, surface water 

occurrence, and movement (Shekhar & Pandey, 2014; Ghorbani Nejad et al., 2017). Steep slope 

areas will likely have low GWP due to higher runoff potential and low infiltration (Hamdani & 

Baali, 2019). On the other hand, gently sloping areas favour water retention and facilitate more 
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infiltration and groundwater recharge (Tolche, 2020), indicating a higher potential for groundwater 

(Shekhar & Pandey, 2014). The gently sloping areas (slope < 3.75°) around the lake and streams 

(Fig. 48 (g)) were expected to have high GWP because of reduced horizontal water movement. 

They can be recharge or discharge points depending on the groundwater level in the 

neighbourhood. The steeply sloping (slope > 8.25°) areas around the mountain faces and hills are 

likely to have low infiltration rates and GWP unless influenced by lineaments and forests that 

favour infiltration. 

(v) Geology 

Geology controls the infiltration rate and porosity (water storage capacity). The Precambrian 

metasediments of quartzo – feldspathic gneiss, micaceous quartzite, and amphibolite (all 

metamorphic rocks) rocks which abound the southern border (Fig. 2), act as aquiclude with low 

water yield. The southern part of the catchment (Fig. 2) has a high likelihood of GWP because it 

has Bubu cataclastic, a Precambrian rock characterized by faults and micropores that permit 

groundwater flow. 

The patches of volcanic agglomerate, volcanic tuffs, and fragments interspersing the superficial 

deposits that dominate the catchment’s northern parts also have a potential for groundwater. The 

superficial deposits in the northern and central catchment form the principal aquifer of the 

catchment as it is covered by alluvium materials, red and brown soils, mbuga soils, and water (Fig. 

2). The zone received the highest ranking for GWP, and it was thus not surprising that most wells 

(deep and shallow wells) were located within the formation of superficial deposits. 

(vi) Distance to the Streams 

Areas closer to the rivers are likely to have a higher GWP because surface water infiltration is the 

primary step in groundwater recharge (Arulbalaji et al., 2019; Benjmel et al., 2020). However, the 

slope and direction of groundwater flow can redirect water and affect the GWP. Nonetheless, the 

areas closer to the river (Fig. 48 (e))  are generally likely to receive water from or drain into the 

rivers. Therefore, those areas were weighted higher for GWP.  

(vii) Lineaments Density 

In Babati, the lineaments are located on the hilltops (Fig. 48 (f)), with very few wells sited to 

benefit from the high GWP. This is probably because the hills are conservation areas (forests) with 

very sparse or no settlements. The sparse settlements ensured the catchment recharge areas were 

free from anthropogenic-related pollution. Lineaments often become paths for groundwater flow 

and express the underlying geological structure (Kim et al., 2004; Salui, 2018). Therefore, 
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information on lineaments is often exploited to establish mineral distribution, groundwater, and 

runoff potential zones because areas of high lineament zones denote good groundwater recharge 

and flow points through secondary porosity (Corgne et al., 2010; Shekhar & Pandey, 2014; 

Andualem & Demeke, 2019). 

Although lineament information alone is inadequate for drilling success, it was used to zone 

potential groundwater areas (Das et al., 2019; Hamdani & Baali, 2019). For example, in the 

Soudano – Sahelian region, a semi-arid region of Niger, Corgne et al. (2010) found that 85% of 

lineaments were within 500 m from producing wells, and 40 – 50% of these wells were located 

within 200 m from lineaments. 

4.3.7 Groundwater Potential Zones 

Using the AHP with seven input parameters, this study delineated and classified the GWP zones 

into five groups based on GWP indices as follows: Very Poor (0.07 – 0.14), Poor (0.14 – 0.17), 

Moderate (0.17 – 0.21), Good (0.21 – 0.25), and Very Good (0.25 – 0.32) GWP zones. The “Very 

Good” GWP zones lay mainly in Lake Babati valleys and stream banks (Fig. 49), characterized by 

low HAND values, high TWI, and low slopes. This agrees with Nobre et al. (2011) on categorizing 

low HAND or high TWI areas as wetlands. In addition, it indicated the influence of both HAND 

and TWI in defining the GWP zones. The “Very Poor” and “Poor” zones of GWP were usually 

located in regions with steep slopes away from drainage lines. The findings agreed with Condon 

and Maxwell (2015), who also showed that the water table is deep in areas of steep topography 

and vice versa. 
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Figure 48:  Comparison of Groundwater Potential (GWP) zone with shallow and deep 

wells classes. (a) is GWP computed based on Height Above Nearest Drainage, 

and (b) is GWP computed based on the Topographic Wetness Index 

Both methods showed a spatial similarity of GWP zones. The variation of areas in each class was 

compared, as shown in Table 23. The “Very Good” potential zones generally had fewer wells than 

the “Good” potential zone. The “Good” GWP zone had the highest number of wells (61.31%) in 

the HAND–based zone compared to only 35.71% (total of 120 wells) of wells in TWI-based maps. 

This was despite the “Good” GWP zone occupying only 15.15% of the area in the HAND-based 

GWP classification and 18.27% of the total catchment in the TWI-based GWP zones. In contrast, 

the TWI-based GWP classification had the highest number of wells (183 wells which translated to 

54.46% of the total wells) in the “Moderate” GWP zone. The HAND-based GWP zone had five 

wells in the “Poor” zone, which occupied 121.16 km2 (31.16% of the catchment), and none in its 

55.88 km2 (14.37%) classified as zones of “Very Poor” GWP. However, the TWI-based GWP had 

as many as 16 wells (4.76% of wells) in its 110.55 km2 (28.43%) areas classified as the “Poor” 

GWP zone and one well in the “Very Poor” GWP zone, which occupied 46.52 km2.   
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Table 23:  Distribution of wells within the groundwater potential zones based on the 

HAND and TWI classification methods 

N

o 

HAND based GWP zone  TWI based GWP zone 

GWP 

Class 

Area 

(km2) 

Area 

(%) 

Wells distribution 

(Shallow & deep) 
 

Area 

(km2) 

Area 

(%) 

Wells distribution 

(Shallow & deep) 

    Number %    Number % 

1 
Very 

Good 
51.87 13.34 28 8.33  43.72 11.24 16 4.76 

2 Good 58.91 15.15 206 61.31  71.04 18.27 120 35.71 

3 
Moder

ate 
100.99 25.97 97 28.87  116.95 30.08 183 54.46 

4 Poor 121.16 31.16 5 1.49  110.55 28.43 16 4.76 

5 
Very 

Poor 
55.88 14.37 0 0.00  46.52 11.97 1 0.30 

Shallow wells (depth < 30 m) are generally located in areas with a higher success of getting water 

and close to users (Pantaleo et al., 2018). However, successful drilling depends on groundwater 

exploration efforts, methods applied, and perhaps the team’s expertise. Therefore, the restriction 

of locating a shallow well in the owners’ property seems to have dictated or limited the exploitation 

of GWP in some cases. These restrictions could explain why few wells were located within the 

“Very Good” GWP. In addition, physical restrictions such as the lake and ephemeral rivers could 

have further limited the number of wells in some parts of the “Very Good” GWP area.  

Nevertheless, the prospect of locating shallow wells in “Very Poor” GWP areas was expected to 

be minimal. The inconsistent distribution of wells among all the TWI-based GWP classes, 

including in the “Very Poor” GWP zone where none or very few wells were expected, suggests 

that the TWI – based methods harbour some randomness in wells’ allocation. The HAND-based 

classification appeared free from such random classification, implying it is more robust and 

definite than TWI-based methods in predicting the potential groundwater zones. A linear 

correlation between the number of wells within a GWP zone and the zone area was positive for 

the TWI-based classification with a coefficient of determination (r2) = 0.3224. 

In contrast, the HAND-based classification showed no correlation with the zone area, and the 

coefficient of determination (r2) was just 0.0387. If the wells’ allocation were random, the number 

of wells in each GWP zone would positively correlate to the proportion of each zone’s area in the 

catchment. On the other hand, the TWI-based classification had a positive correlation implying a 

limited degree of randomness in its classification of the GWP zones. Further, the weak correlation 

between TWI and groundwater reported by Rinderer et al. (2014) in gently sloping topography 

probably explains the random distribution of wells by the TWI-based GWP classification method. 

This meant that the upstream contributing areas had less influence on the groundwater flow in the 

area but rather the height above the nearest drainage, which measures the gravitational potential 

(Nobre et al., 2011). 
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4.3.8 Parameter Sensitivity  

The soil was the most influential and sensitive parameter with the highest effective parameter 

weights than the assigned theoretical weights (Table 24). It had an average effective weight of 

22.11% for HAND–based GWP zonation and 21.94% for the TWI – based method. The average 

effective weights were greater than the theoretical weight in both cases. The second most sensitive 

parameter was the slope (measured in degrees) at 19.88% and 19.77% in the HAND-based and 

TWI-based classification methods of GWP, respectively. The distance to streams came third as the 

most influential and sensitive parameter, with an average effective weight of 16.58% for both 

methods. These sensitivities implied that any misidentification of the soils, slopes, and distance to 

streams could influence GWP mapping efforts. Therefore, the arbitrary definition of the stream 

initiation threshold area (the minimum area before a stream develops) could strongly influence the 

distance to the streams. However, the same distance to the stream map and weight were maintained 

in both methods. 

The effective weight of TWI was significantly higher than the effective weight of HAND (t – 

statistics = 37, p-value < 0.001). The TWI had an average effective weight of 11.32 %, with a 

standard deviation of 6.31% in the GWP zonation compared to the 10.74 % average and a 7.29% 

standard deviation attained by HAND. The TWI showed more sensitivity than HAND in the 

zonation of GWP in the area. The sensitivity analysis further revealed that the soil and the distance 

to streams had a more substantial influence than assumed theoretically (Table 24). The sensitivity 

of lineament density, land use and land cover were closer to their assumed theoretical values. At 

the same time, the effective magnitude of geology was lower than its assumed theoretical 

magnitude. 
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Table 24:  Sensitivity analysis of input parameters for groundwater potential indices using HAND and TWI 

GWP means Groundwater Potential, HAND is the Height Above Nearest Drainage, TWI is Topographihc Wetness Index , LULC is Land Use and Land Cover, 

Min is Minimum and Max is Maximum 

Theme 
Normalized theme 

weight 

 
Effective weight in HAND based GWP 

 

Effective weight in TWI based 

GWP 

 
Min Max Mean 

Standard 

Deviation 
Min Max Mean 

Standard 

Deviation 

HAND/ TWI 0.1875  3.08 33.57 10.74 7.29  2.95 37.95 11.32 6.31 

Geology 0.2188  3.59 29.67 9.88 4.25  3.59 29.67 9.92 4.48 

LULC 0.0938  2..43 27.87 10.35 3.5  2.49 27.87 10.2 3.24 

Lineament Density 0.0938  2.32 28.76 10.29 5.88  2.32 28.76 10.03 5.54 

Distance to streams 0.1250  2.79 35.41 16.58 5.33  2.16 35.42 16.65 5.7 

Slope (Degree) 0.1563  4.88 42.2 19.88 4.85  4.88 42.2 19.77 4.77 

Soil 0.1250  6.78 45.38 22.11 7.37  6.87 45.38 21.94 7.09 
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Weighting values assigned to parameters were subjective and varied with different studies and 

environments. For example, Andualem and Demeke (2019) ranked thematic maps with high GWP 

in the order of geology > slope gradient > geomorphology > lineament density > drainage density 

> land cover > soil type. However, Pande et al. (2017) accorded geology a smaller weight and 

ranked the thematic maps in the order of hydro-geomorphic = depth to groundwater > land cover 

> geomorphology = elevation.  Magesh et al. (2012) ranked the thematic maps in the order of 

importance to GWP as follows: lithology > land use > slope gradient > lineament density > rainfall 

=drainage density > soil. 

4.3.9 Validation of GWP with Wells Data 

The effectiveness of GWP zonation was validated using water levels and depths of 323 shallow 

wells (depth < 30 m) collected in June 2017 by Pantaleo et al. (2018). The wells’ depths varied 

from 3 m to 30 m, while the depths to the water level varied from the ground surface (0 metres 

below ground surface (mbgs)) to a maximum of 24.62 mbgs. The shallow wells were clustered 

near the lake, implying that their depths were guided by other reasons besides water availability. 

The detailed statistics of the wells per GWP classes captured in the box and whisker plots were 

presented in Fig. 50. 

Some wells had water levels on the ground surface in the HAND classification. The shallow wells 

within the “Very Good” GWP zones had an average depth of 9.40 mbgs, while the average depth 

of shallow wells in the “Good” GWP zone was 8.44 mbgs. The average well depth increased to 

14.61 mbgs in the “Moderate” GWP zone and 20.16 mbgs in the “Poor” zone (Fig. 50 (b)). These 

variations in the well depths and depths to water levels were realistic as areas with high GWP tend 

to have a shallow water level and would, therefore, have shallow wells. Wells tend to be deeper in 

low GWP areas. However, well depths alone are not a good indicator of GWP because wells are 

often excavated/drilled further after water strikes to abstract more water or as a precaution against 

seasonal fluctuations in groundwater levels. Thus, without well yields for defining GWP, the 

complementary use of well depths and water levels becomes very informative. However, the 

validations with well depths and water levels would be misleading, especially in the perched water 

table or low-yielding wells, as the water levels would inaccurately reflect the GWP. 

The TWI-based classification of the GWP showed similar patterns as the HAND-based 

classification. The depth to water levels of shallow wells in the “Very Good” GWP zones was an 

average of 4.51 mbgs and 7.37 mbgs for the “Good” zone but increased to 12.68 mbgs in the 

“Poor” GWP zone (Fig. 50 (c)). Similarly, the mean well depth increased from 8.64 mbgs in the 

“Very Good” GWP zone to 16.64 mbgs in the “Poor” potential zone, as shown in Fig. 50 (d). 

Despite the observed differences between the average water level in the HAND–based and TWI-
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based GWP classification, no significant differences were observed in the depths to water levels 

and well depths of a similar class between the two methods.  

 

Figure 49:  Comparison of depths to water level and wells depths in different groundwater 

potential classes by the HAND-based and TWI-based method 

(a) is depths to water level classified by the HAND-based method, while (c) is depths to water levels for shallow wells classified by TWI-based 

groundwater potential zonation. (b) is the depths of the wells classified by HAND, and (d) is the depths of wells classified based on TWI 

groundwater potential classes 

For the HAND-based classification, the average depth to water levels was significantly different 

from one class to another, except for the close classes such as “Very Good” and “Good” (p-value 

= 0.31), and “Moderate” and “Poor” classes where p-value = 0.37, higher than the 0.05 alpha value 

of significance. The water levels showed a similar pattern with the well depths in the groundwater 

class of “Very Good” and “Good” being insignificantly different (p-value = 0.6), just as 

“Moderate” and “Poor” with insignificant depth differences with p-value = 0.13. Wells in the 

“Very Good” and “Moderate” areas were significantly different at a p-value < 0.05 for the two 

methods. Similarly, wells in the “Poor” and “Good” zones showed significant differences in depths 

to water level (for the TWI-based method, p-value < 0.001) and p-value = 0.09 for the HAND-

based method).  

The depths of wells in all the other zones were significantly different (p-value < 0.05) except for 

wells between the “Very Good” and “Good” zones, with a p-value = 0.61 for the HAND and p-

value = 0.78 for the TWI-based method. Similarly, the depth of wells in the “Very Good” was 

insignificantly different from wells in the “Moderate” zones (p-value = 0.43 for the HAND-based 

method and p-value = 0.51 for the TWI-based method). The insignificant differences in the water 

levels and well depth among the wells could indicate the inadequacy of the groundwater zone 
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classification methods. However, some groundwater potential classes had very few wells which 

influenced the statistical analysis and resulted in an unreasonably high standard deviation. For 

example, in the HAND-based method, out of 13 wells in the “Very Good” category, only 11 had 

wells depth compared to 158 wells with well depths in the “Moderate” zones. Nonetheless, it was 

logical that wells should be deeper (Fig. 50)  in areas of low groundwater potential.  

As shown in Fig. 50 (a), (b), (c), and (d), both methods indicated that the average depths to water 

level and well depths were shallow in “Very Good” GWP zones but deepened in areas of 

lower/poor GWP. The concentration of wells in the “Good” zone indicated that the HAND method 

classified wells better than the TWI method. None of the allocated a shallow well in the “Very 

Poor” zone. The TWI-based method had one well in the “Very Poor” zone but as many as 16 wells 

in the “Poor” zone, yet HAND had only five wells in the “Poor” zone. Since shallow wells 

primarily derive water from shallow aquifers, it was inconsistent for “Poor” and “Very Poor” GWP 

areas to have many shallow wells. Moreover, the distribution of shallow wells in the different 

classes of the TWI classification correlated positively, though insignificantly, with the area of 

GWP classes. This suggested that the TWI-based method was slightly random in predicting the 

GWP zones. The distribution of the 13 deep wells (> 30 m) in the various classes presented inTable 

25 corroborated the randomness of the TWI-based method. 

Due to professional drillers’ rigorous and extensive groundwater prospecting efforts before 

developing deep wells, GWP validation using the deep wells was given more weight than the 

shallow wells. The deep wells also indicated that the wells’ depths increased as the GWP reduced 

except for wells in the “Good” GWP, which were few. Test pumping results could have validated 

the groundwater zones better, but the data was unavailable.  

Both methods accurately delineated the “Very Poor” GWP zones, and none of the deep wells was 

located within the zone. Technically, the location of four deep wells in the ‘Very Good” zone by 

HAND compared to three deep wells by the TWI-based method might have indicated the 

superiority of the HAND–based method in defining the GWP classes over the TWI. However, we 

were also cautious because non-technical criteria such as land ownership and availability can 

dictate the siting of wells.  
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Table 25:  The distribution of the deep wells (depth > 30 m) among the different 

groundwater potential classes 

Classes 

HAND based classification  TWI based classification 

No of deep 

wells 

Average of well 

depth (m) 

 No of deep 

wells 

Average of well 

depth (m) 

Very 

Good 
4 57.89 

 
3 41.84 

Good 3 56  2 90.73 

Moderate 5 87.15  7 73.19 

Poor 1 150  1 150 

Generally, the location of very few shallow wells in the “Poor” and “Very Poor” zones indicated 

that the local shallow well excavators had implemented an adequate groundwater prospecting 

method that has proven successful and effective in identifying the “Poor” GWP areas. 

Conclusively, using either of these methods to predict the GWP map can help drillers/excavators 

improve well-drilling success while minimizing prospecting costs. The maps can narrow the extent 

of geophysical surveys and other groundwater prospecting efforts. In addition, the GWP map 

provided valuable information for further research and detailed modelling of groundwater-lake 

interactions, as areas of high GWP can be identified.  

4.3.10 Comparison between HAND and TWI Groundwater Potential Areas 

In the comparison, the GWP map based on HAND was referenced against the GWP map based on 

TWI. The TWI’s percentage correct or agreement was measured against the GWP produced by 

HAND. Table 26 provides the basis for calculating the percentage of the agreement as it compares, 

cell by cell, the classification of the GWP by the two methods.  

The class agreement percentage between the two GWP zoning methods are shown in the diagonal 

values. The best agreement was obtained in the “Very Good” zone, with 90.70% of the zones 

defined by TWI as the “Very Good” GWP zones defined similarly as so by HAND. Again, the 

two methods reached 83.66% agreement in defining the “Very Poor” GWP area. However, the 

TWI method had only 51.03% agreement with the HAND classification to define the “Poor” GWP. 

The misclassified zones were placed in either the next higher or lower class. For example, 25.47% 

of the areas TWI classified as “Moderate” belonged to the “Good” zone, while HAND classified 

another 13.41% of the moderate zone as “Poor”. Although these could have resulted from 

differences in the two methods, the arbitrary class definition of the input parameters by Jenk’s 

natural breaks (Benjmel et al., 2020) was another source of errors in GWP zonation. The TWI 

further had a 77.64% agreement in classifying the “Good” GWP. However, 11.96% of what TWI 

classified as “Good” fell in the “Very Good” zone by the HAND-based method.  
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Table 26:  Confusion matrix comparing the cell-by-cell classification of groundwater 

potential by TWI against the groundwater potential map based on HAND 
Percent correct (%) 

 

TWI – based Groundwater Potential Classes 

Class No Class Name Very Good Good Moderate Poor Very Poor  
HAND – based 

Groundwater potential 

classes 

1 2 3 4 5 

1 Very Good  90.70 11.96 0.39 0.00 0.00 

2 Good  9.28 77.64 25.47 1.71 0.00 

3 Moderate  0.02 10.05 60.52 26.10 1.26 

4 Poor  0.00 0.34 13.41 51.03 15.08 

5 Very Poor  0.00 0.00 0.22 21.17 83.66 

The producer’s accuracy (Table 27) showed that it was more accurate to reproduce the extreme 

zones, i.e., the “Very Good” and the “Very Poor” of the HAND-based groundwater zones using 

the TWI-based method with better user accuracy of the same classes at 75.53% and 70.52% 

respectively. Similarly, the “Good” and the “Moderate” GWP zone had a fair user accuracy at 

70.85% and 70.09%, respectively (Table 27). The results showed that the two methods have a 

better agreement in defining extreme classes of GWP zones. Generally, the local communities use 

topographical and vegetation indicators (e.g., the presence of fig trees) as aids for groundwater 

prospecting. Future studies could explore opportunities provided by these topographic based 

methods and their relationships with the groundwater prospecting approaches adopted by the local 

community. 

The overall accuracy of prediction of HAND-based GWP using the TWI-based GWP was 69.87%, 

with a Kappa coefficient of 0.61. This implied that significant relationships existed between the 

two methods regarding GWP identification. While the two methods do not ideally give the same 

results, they help define the potential of groundwater. Therefore, either method is suitable for 

preliminary groundwater exploration with considerable potential to minimize groundwater 

prospecting efforts and costs. Overall, the study finds that groundwater potential varies with the 

spatial variability of the catchment parameters. 

Table 27:  The accuracy of using the TWI-based groundwater potential to predict the 

HAND-based groundwater potential classification 

S/NO 
Groundwater 

class 

Producer’s Accuracy  User’s Accuracy (%) 

Correct 

Pixels 

Total no. 

of 

reference 

pixels 

Producer’s 

accuracy 

(%) 

 
Correct 

Pixels 

Total no. 

of pixels in 

the class 

User’s 

accuracy 

(%) 

1 Very Good 42450 46802 90.70  42450 56205 75.53 

2 Good 86344 111208 77.64  86344 121871 70.85 

3 Moderate 71198 117651 60.52  71198 101587 70.09 

4 Poor 36467 71461 51.03  36467 59261 61.54 

5 Very Poor 36793 43978 83.66  36793 52176 70.52 

Producer’s accuracy is a percent of the correctly classified number of pixels for a given class divided by the total number of reference pixels for 

that class, while the users’ accuracy is the accuracy of using the TWI based groundwater potential zones to predict the HAND based groundwater 

potential zones calculated as a percentage of correct pixels divided by the total number of pixels in the class
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This study investigated surface water – groundwater interaction within a semi-closed lake 

catchment. To achieve the study’s objectives while relating it locally, Lake Babati, a semi-closed 

rift valley lake, was chosen as a case study. It was observed that Lake Babati responds to different 

hydrological parameters. Lake Babati’s level is significantly declining (p-value < 0.01) at about 

25 mm per annum. Contrary to the expectations, the lake levels declined significantly (p-value < 

0.05) in all months and seasons. Although the lake level has varied, often reflecting the cycles of 

the rainy and dry seasons, and with the lake level peaks corresponding to the rainfall peaks, no 

significant correlation was observed between the lake level and rainfall at daily and monthly 

timesteps. 

Interestingly, the lake level declines occurred when the lake evaporation remained constant, and 

the rainfall did not show any significant change either seasonally or annually. Drought analysis by 

SPEI and SPI also showed that the area was neither becoming drier nor wetter. Therefore, the 

direct attribution of the decline in the lake levels to the rainfall variability was not supported. Given 

that the rainfall (the driver of runoff) did not change significantly, and the evaporation remained 

constant, the logical explanation for the declining lake levels would be the increased outflow that 

resulted after expanding and lowering the spillway level. Therefore, the interventions to control 

Lake Babati's flooding have reduced lake volume. 

On the other hand, the hydro-geochemistry and isotope data showed that the lake water and 

groundwater interact. The similarity of the isotopic and hydro-geochemical compositions of the 

deep wells and the lake suggested that the lake water recharges the deep wells in its neighbourhood 

while the shallow wells drain into the lake. Further, the nitrate in deep wells attested that deeper 

aquifers receive both the lake water and the recently-recharged water polluted with nitrate, 

implying a hydraulic connection between the wells and the lake. Other water sources also showed 

such clustering. For example, shallow wells’ hydro-geochemical and isotopic composition were 

strikingly similar to those of the springs and crater water. Their isotopic signatures were more 

depleted in Oxygen – 18 and Deuterium, suggesting that the shallow wells, springs, and crater 

water came from similar sources of meteoric (rainfall and runoff) origin. On the other hand, the 

deep wells were characterized by carbonate and sulphate salts of calcium and magnesium, 

probably from rocks that dissolved as water travelled. The high salt concentration in the deep wells 

indicated they were extracting a portion of water with a long residence time mixed with the recently 

recharged water from the local groundwater flow systems.  
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Further, the similarity of the isotopic signature of water from the Kiongozi River with the deep 

boreholes in the lake neighbourhood and the groundwater suggested its hydraulic connection to 

the groundwater flow systems of Lake Babati. This connection will likely impact surface water 

especailly when  groundwater abstraction is at unsustainable rates or either water source is 

contaminated. If unchecked, this is a likely future scenario given that Babati town, a regional 

capital for the Manyara region, is bursting with economic activities and rapid population growth. 

This is a genuine concern given that most abstractions are currently groundwater-based but are not 

well monitored.  

The study further sought to appreciate the influence of catchment heterogeneity on groundwater 

distribution. It used HAND-based and TWI-based methods to map GWP as a proxy for 

groundwater distributions and compared the suitability of the two methods in identifying areas of 

GWP. Subsequent validation of GWP maps from both methods with shallow and deep wells 

emphasized the importance of HAND and TWI in understanding groundwater spatial variability. 

Both methods showed similarities in the GWP classifications, with an overall Kappa coefficient 

of 0.61 and an overall efficiency of 69.87%. Therefore, using either method for preliminary 

prospecting can yield promising results and minimize groundwater prospecting efforts and 

associated costs. 

Nevertheless, the HAND-based method demonstrated superiority to the TWI-based method in the 

present study based on the distribution of the shallow wells. The HAND-based GWP had a more 

realistic classification of shallow wells in the identified GWP classes. In contrast, the TWI-based 

method appeared to incorporate randomness in allocating shallow wells among the different GWP 

classes. The groundwater potential maps developed are proxy indicators of surface water – 

groundwater interactions as the good groundwater potential areas indicated are likely locations of 

groundwater discharge. The hilly areas with very poor groundwater potential are groundwater 

recharge points. Thus, these locations need protection to avoid contamination. 

5.2 Recommendations 

Lake Babati Level is declining, yet it is hydraulically connected to the groundwater system. The 

linkage between lake catchment and groundwater system makes them vulnerable as 

overexploitation of one would influence the other. Therefore, a holistic assessment of surface and 

groundwater systems is required for sustainable water resources development and integrated 

management in the catchment.  

As the population in the catchment rapidly grows, it might be accompanied by urban sprawl. These 

often lead to increased water abstractions, and land use and land cover may change in 

commensurate rates. Therefore, the subsequent changes in the lake levels could be driven by water 
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abstractions or changes in stream inflow occasioned by land use and land cover changes. Thus, 

future studies should investigate the evolution of these changes and their possible impact on lake 

level variability. The abstractions from the groundwater systems must be limited to the safe yields 

of the aquifer determined through test pumping.  

A variable control gate is recommended at the outlet of Lake Babati for dynamic and optimized 

control of the lake level.  This will give Lake Babati a dual purpose of being a water reservoir with 

controlled outflow and a reservoir for controlling floods. Further, mandatory and continuous 

monitoring of the water resources (groundwater levels, river flows, and lake levels) is 

recommended for timely remediation efforts. Additionally, a detailed 3 Dimensional modelling of 

integrated surface water–groundwater system may quantify the fluxes exchanged and offer more 

insight into the interdependence of the surface water and groundwater systems.  

Siltation is an emerging threat to lakes and reservoirs, which irresponsible land use practices can 

exacerbate. It would be interesting for future investigations to analyse the evolution of siltation 

under the current trends of land cover and land use change and its possible effect on lake volume 

and levels variability. 

The topography-based methods applied for mapping groundwater suitability predicted the GWP 

areas. However, a similar study is recommended in other catchments to validate HAND’s 

superiority over TWI in defining the GWP. Furthermore, the water balance model developed 

should be calibrated and validated with longer records for instrumental observations taken at 

timesteps shorter than daily. 
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APPENDICES 

Appendix 1:  AHP pairwise weighting of the HAND classes with respect to their 

groundwater potential 

Class 

No 
HAND (m) 

HAND 

Class 

Weight 

<1 1.1-5 
5.1-

15 

15.1-

50 

50.1-

803.7 

Geometric 

mean 

Normalized 

weight 

1 <1 9 1.00 1.29 1.80 3.00 9.00 2.29 0.36 

2 1.1-5 7 0.78 1.00 1.40 2.33 7.00 1.78 0.28 

3 5.1-15 5 0.56 0.71 1.00 1.67 5.00 1.27 0.20 

4 15.1-50 3 0.33 0.43 0.60 1.00 3.00 0.76 0.12 

5 50.1-1118 1 0.11 0.14 0.20 0.33 1.00 0.25 0.04 
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Appendix 2:  AHP pairwise weighting of the TWI classes with respect to their groundwater potential 

Class No TWI (-) 

TWI 

Class 

Weight 

>11.94 11.94 - 9.25 9.25 - 7.61 
7.61- 

6.37 

2.58 

- 

6.37 

Geo metric mean Norma lized weight 

1 >15.19 9 1.00 1.29 1.80 3.00 9.00 2.29 0.36 

2 15.19-11.27 7 0.78 1.00 1.40 2.33 7.00 1.78 0.28 

3 11.27-8.69 5 0.56 0.71 1.00 1.67 5.00 1.27 0.20 

4 8.69-6.73 3 0.33 0.43 0.60 1.00 3.00 0.76 0.12 

5 2.58 - 6.73 1 0.11 0.14 0.20 0.33 1.00 0.25 0.04 
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Appendix 3:  AHP pairwise weighting of the land use and land cover types with respect to their groundwater potential 

Class 
Class 

weight 
Water Urban / Settlements Agricultural land 

Bare soil 

& barren 

land 

Forests Geo metric mean Normalized weight 

Water 9 1.00 4.50 1.80 2.25 1.50 1.94 0.35 

Urban / Settlements 
2 

 
0.22 1.00 0.40 0.50 0.33 0.43 0.08 

Agricultural land 5 0.56 2.50 1.00 1.25 0.83 1.08 0.19 

Bare soil and barren land 4 0.44 2.00 0.80 1.00 0.67 0.86 0.15 

Forests 6 0.67 3.00 1.20 1.50 1.00 1.29 0.23 
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Appendix 4:      AHP pairwise weighting of the lineament density classes with respect to their groundwater potential 

Class No Lineament density (km/km2) 
Class 

weight 
<0.29 0.3 - 0.71 0.72 - 1.13 

1.14 

- 

1.54 

1.55 

- 2.6 
Geo metric mean Norma lized weight 

1 <0.29 2 1.00 0.67 0.40 0.29 0.22 0.44 0.08 

2 0.3 - 0.71 3 1.50 1.00 0.60 0.43 0.33 0.66 0.12 

3 0.72 - 1.13 5 2.50 1.67 1.00 0.71 0.56 1.11 0.19 

4 1.14 - 1.54 7 3.50 2.33 1.40 1.00 0.78 1.55 0.27 

5 1.55 - 2.6 9 4.50 3.00 1.80 1.29 1.00 1.99 0.35 
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Appendix 5:  AHP pairwise weighting of the drainage distance classes with respect to their groundwater potential 

Class No Drainage distance (m) 
Class 

weight 
<278 278 - 582 582 - 913 

913 - 

1304 

1304 - 

2217 
Geo metric mean Normalized weight 

1 <503 9 1.00 1.29 2.25 3.00 9.00 2.39 0.38 

2 503 - 1061 7 0.78 1.00 1.75 2.33 7.00 1.86 0.29 

3 1061 - 1673 4 0.44 0.57 1.00 1.33 4.00 1.06 0.17 

4 1673 - 2518 3 0.33 0.43 0.75 1.00 3.00 0.80 0.13 

5 2518 - 4586 1 0.11 0.14 0.25 0.33 1.00 0.27 0.04 

 

 

 

 

 

 

 

 

 

 



160 

Appendix 6:  AHP pairwise weighting of the slope classes in respect to their groundwater potential 

Class No Slope (Degree) 
Class 

weight 
<3.75 3.73 - 8.24 8.25 - 13.49 13.5 - 20.98 20.99 - 63.69 Geometric mean Normalized weight 

1 <3.75 9 1.00 1.29 2.25 3.00 9.00 2.39 0.38 

2 3.73 - 8.24 7 0.78 1.00 1.75 2.33 7.00 1.86 0.29 

3 8.25 - 13.49 4 0.44 0.57 1.00 1.33 4.00 1.06 0.17 

4 13.5 - 20.98 3 0.33 0.43 0.75 1.00 3.00 0.80 0.13 

5 20.99 - 63.69 1 0.11 0.14 0.25 0.33 1.00 0.27 0.04 
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Appendix 7:   AHP pairwise weighting of the soil types with respect to their groundwater potential 

Class No Soil type 
Soil 

weight 

Eutric 

Leptosols 

Humi-

Rhodic 

Luvisols 

Chromi-Luvic 

Phaeozems 

Geometric 

mean 

Normalized 

weight 

1 Eutric Leptosols 3 1.00 0.38 0.33 0.50 0.15 

2 
Humi-Rhodic 

Luvisols 
8 2.67 1.00 0.89 1.33 0.40 

3 
Chromi-Luvic 

Phaeozems 
9 3.00 1.13 1.00 1.50 0.45 
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Appendix 8:   AHP pairwise weighting of the lithology types in respect to their groundwater potential 

Potentials 

AH

P 

Ra

nk 

Wat

er 

Mbuga 

soils 

Allu 

vium 

Red 

and 

bro

wn 

soils 

Volcan

ic 

crystal 

tuff & 

fragme

nts 

Volcanic 

agglome rate 

Meta 

sedi 

ments 

Bubu cata 

clastics 

Geo 

met

ric 

mea

n 

Norma lized 

weight 

Superficial deposits, Water 9 1.00 1.29 1.13 1.80 1.50 3.00 4.50 3.00 1.88 0.21 

Superficial deposits, Mbuga 

soils 
7 0.78 1.00 0.88 1.40 1.17 2.33 3.50 2.33 1.46 0.16 

Superficial deposits, Alluvium 8 0.89 1.14 1.00 1.60 1.33 2.67 4.00 2.67 1.67 0.19 

Superficial deposits, Red and 

brown soils 
5 0.56 0.71 0.63 1.00 0.83 1.67 2.50 1.67 1.05 0.12 

Volcanic crystal tuff & 

fragments 
6 0.67 0.86 0.75 1.20 1.00 2.00 3.00 2.00 1.26 0.14 

Volcanic agglomerate 3 0.33 0.43 0.38 0.60 0.50 1.00 1.50 1.00 0.63 0.07 

Meta sediments 2 0.22 0.29 0.25 0.40 0.33 0.67 1.00 0.67 0.42 0.05 

Bubu cataclastics 3 0.33 0.43 0.38 0.60 0.50 1.00 1.50 1.00 0.63 0.07 
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Appendix 9:   Prospective locations for well drilling / /excavation 
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Appendix 10:  Hydrogeochemical and isotopic parameters of the water samples 

No 
Sample 

ID 
Source 

pH (-

) 

EC 

(µS/cm) 

TDS 

(mg/L) 

Salinity 

(%) 

F- 

(mg/L) 

Cl- 

(mg/L) 

HCO3-  

(mg/L) 

CO32-  

(mg/L) 

SO42-  

(mg/L) 

NO3- 

(mg/L) 

Ca2+ 

(mg/L) 

Mg2+ 

(mg/L) 

Na+ 

(mg/L) 

K+ 

(mg/L) 

𝜹𝟏𝟖𝑶 

𝒐
𝒐𝒐⁄  

𝜹𝟐𝑯 

𝒐
𝒐𝒐⁄  

1 CR Crater 7.5 133 57 0.2 0 1.1 77.5 0 3.5 8.2 5.1 4.8 6 22.1 -0.7 -5.6 

2 DW1 Deep Well 8.2 683 326 1.1 0.4 41.7 340 0 47.1 5.6 38.3 42.8 42.8 8.1 0.4 3.5 

3 DW2 Deep Well 8.1 415 207 0.8 0 22.9 260 0 29.4 17 51.8 21.4 24.5 0.9 -3.9 -20.1 

4 DW3 Deep Well 8.3 582 235 0.9 0.6 44.9 200 0 21.3 66.4 37.6 29.9 30.9 7.2 -1.4 -7.0 

5 DW4 Deep Well 8.7 521 261 0.9 0.2 9.7 140 0 6 10 11.5 18 12.6 3.7 -3.8 -21.7 

6 LS1 Lake Surface 8.6 670 231 0.8 0 48.2 400 0 0.2 0.4 0 90 38.3 8.5 3.2 15.7 

7 LB1 Lake Bottom 8.2 672 263 0.9 2 65.2 340 0 6.2 5.1 17.6 27.5 107.8 7.8 3.3 15.4 

8 LS2 Lake Surface 8.5 669 282 0.9 1.2 97.6 460 0 26.1 0 24.2 27 191.7 6.6 3.2 15.7 

9 LB2 Lake Bottom 8.8 567 283 1.1 0.7 11 130 0 13.1 0.1 17.6 9.2 27.6 1.7 3.3 17.4 

10 LS3 Lake Surface 8.9 474 243 0.9 0.6 27.6 20 239.9 0.2 0.1 9.7 85.9 48.8 11.6 3.1 14.3 

11 LB3 Lake Bottom 8.6 542 287 1.1 0.7 32.1 240 0 17.9 13.5 17.5 16.5 63.5 3.3 3.2 14.5 

12 LS4 Lake Surface 8.7 582 344 1.3 19.4 374 60 199.9 134.7 47.4 72.5 237 922.8 59.2 3.2 15.4 

13 LB4 Lake Bottom 8.4 677 181 0.7 1.2 219.3 280 0 26.9 31.7 25.1 28.6 125.3 6.4 3.1 15.3 

14 LS5 Lake Surface 8.5 565 282 1.1 0.7 5.8 97 0 4.8 2.9 14.9 4.2 14.5 0.9 2.2 10.1 

15 LB5 Lake Bottom 8.5 663 279 1 1 42.8 380 0 27.6 13.9 24 26.7 104.7 5.6 2.4 10.2 

16 LS6 Lake Surface 8.2 494 253 0.9 1.4 35.7 280 0 22.4 6.6 23.4 20.6 81.9 4.5 2.5 11.6 

17 LB6 Lake Bottom 8.3 667 283 0.9 1.1 34.5 340 0 21.6 21.1 18.3 24.3 102.4 6.4 2.6 11.3 

18 RV1 River 8.5 173.8 172 0.6 0.2 21.3 70 0 1.8 2.9 8.8 10.1 16.2 1.6 -4.0 -20.1 

19 RV2 River 9.0 518 259 0.9 0.8 5 67 0 6.9 0.8 15.5 3.7 8.2 1.8 -2.5 -13.1 

20 RV3 River 8.5 140.5 86 0.2 1.9 4.4 82.5 0 7.5 0.6 16.6 2.2 11 4.3 -5.1 -24.3 

21 RV4 River 8.6 109.9 44 0.1 0.1 5.5 60 0 3.3 2.7 7.7 5.1 10.7 1.3 -3.8 -20.4 

22 SP1 Spring 8.4 228 172 0.6 0 31.6 85 0 4.4 7.3 22.9 6.6 19.1 2 -4.3 -24.3 

23 SP2 Spring 7.8 86.4 67 0.2 0.5 16 140 0 0.1 0.3 0 36.2 16.2 4.1 -4.0 -20.9 

24 SW1 Shallow well 8.6 254.7 127 0.4 0.3 1.4 50 0 4 0.2 13.5 1.7 2.6 0.6 -4.9 -28.3 
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No 
Sample 

ID 
Source 

pH (-

) 

EC 

(µS/cm) 

TDS 

(mg/L) 

Salinity 

(%) 

F- 

(mg/L) 

Cl- 

(mg/L) 

HCO3-  

(mg/L) 

CO32-  

(mg/L) 

SO42-  

(mg/L) 

NO3- 

(mg/L) 

Ca2+ 

(mg/L) 

Mg2+ 

(mg/L) 

Na+ 

(mg/L) 

K+ 

(mg/L) 

𝜹𝟏𝟖𝑶 

𝒐
𝒐𝒐⁄  

𝜹𝟐𝑯 

𝒐
𝒐𝒐⁄  

25 SW2 Shallow well 8.5 172.3 86.1 0.2 0.2 11.5 35 0 0.5 0 7.9 2.0 9.0 1.4 -3.7 -17.1 

26 SW3 Shallow well 8.4 235 172 0.6 0.2 26.5 60 0 2.3 57.3 21.7 11 8.9 1.6 -3.8 -18.7 

27 SW4 Shallow well 8.1 145.6 73 0.2 0.2 19.9 67 0 1.1 4 12.2 5.5 13.2 1.3 -4.1 -24.1 

28 SW5 Shallow well 8.12 415 207 0.8 0.2 11.5 35 0 0.5 0 7.9 2 9 1.4 -3.8 -19.4 

29 SW6 Shallow well 8.6 304 152 0.5 0.8 20.3 120 0 0.1 0.3 10.8 52.6 23.5 2.8 -3.7 -20.5 

30 MLK 
Lake 

Manyara 
7.16 21.67             -2.1 -10.4 

 WHO Guideline Value -  -  1.5 -   - 50   - -   
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Appendix 11:  Matrix of Pearson rank correlation coefficient (r) amongst physicochemical parameters across samples 

from all water types reported. NB: ** p<0.01 and * p <0.05: Abbreviations pH = Potential of Hydrogen [-

], EC = Electrical Conductivity [µS/cm], TDS = Total Dissolved Solids [mg/L], F- = Fluoride ion [mg/L], Cl- 

= Chloride ion [mg/L], HCO3
- = Bicarbonate ion [mg/L], CO3

- = Carbonate ion [mg/L], SO4
2- = Sulphate ion [mg/L], NO3

- 

= Nitrate ion [mg/L], Ca2+ = Calcium ion [mg/L], Mg2+ = Magnesium ion [mg/L], Na+ = Sodium ion [mg/L], K+ = Potassium ion 

[mg/L], TH = Total Hardness [mg/L] 

 PH EC TDS Salinity F- Cl- HCO3
- CO3

2- SO4
2- NO3

- Ca2+ Mg2+ Na+ K+ TH 
Total 

Alkalinity 

PH 1.00                

EC 0.26 1.00               

TDS 0.43* 0.88** 1.00              

Salinity 0.42* 0.86** 0.99** 1.00             

F- 0.19 0.20 0.35 0.36 1.00            

Cl- 0.12 0.38* 0.37 0.39* 0.86** 1.00           

HCO3
- -0.19 0.72** 0.48** 0.41* -0.11 0.14 1.00          

CO3
2- 0.36 0.13 0.27 0.30 0.62** 0.51** -0.30 1.00         

SO4
2- 0.10 0.41* 0.52** 0.53** 0.90** 0.85** 0.16 0.49** 1.00        

NO3
- -0.08 0.21 0.20 0.25 0.38* 0.48** 0.01 0.16 0.46* 1.00       

Ca2+ 0.06 0.39* 0.51** 0.53** 0.68** 0.68** 0.16 0.34 0.87** 0.59** 1.00      

Mg2+ 0.22 0.32 0.40* 0.41* 0.86** 0.80** 0.03 0.75** 0.79** 0.32 0.55* 1.00     

Na+ 0.17 0.31 0.42* 0.43* 0.98** 0.91** 0.04 0.61** 0.92** 0.39* 0.70** 0.87** 1.00    

K+ -0.01 0.20 0.28 0.30 0.91** 0.80** -0.07 0.67** 0.83** 0.38* 0.58** 0.87** 0.91** 1.00   

TH 0.19 0.37 0.46* 0.48* 0.90** 0.84** 0.07 0.71** 0.88** 0.42* 0.73* 0.97** 0.91** 0.88** 1.00  

Total 

Alkalinity 
-0.03 0.80** 0.62** 0.57** 0.17 0.38 0.90** 0.15 0.38 0.08 0.32 0.38* 0.32 0.24 0.43* 1.00 
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Appendix 12:  Summary of Mann - Kendall trend test of the Lake Babati levels and rainfall received in Babati 

 Lake Babati Level Rainfall in Babati Minimum temperature Maximum Temperature 
Lake Babati 

Evaporation 

Series\Test 
Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Jan -0.06 0.61 -0.01 0.10 0.44 1.57 0.25 0.019 0.02 -0.118 0.289 -0.03 -0.13 0.23 -0.25 

Feb -0.10 0.46 -0.01 0.11 0.39 0.98 0.32 0.003 0.02 -0.054 0.633 
-

0.015 
0.0025 0.99 0.01 

Mar -0.26 0.07 -0.04 0.07 0.61 0.58 0.26 0.018 0.017 -0.21 0.057 -0.06 -0.283 0.01 -0.47 

Apr -0.30 0.02 -0.03 -0.12 0.40 -1.46 0.27 0.013 0.015 0.018 0.87 0.003 -0.03 0.73 -0.07 

May -0.38 0.00 -0.03 -0.15 0.27 -0.55 0.15 0.16 0.009 0.095 0.395 0.015 0.003 0.98 0.005 

Jun -0.15 0.27 -0.01 -0.04 0.80 0.00 0.338 0.002 0.035 0.137 0.217 0.021 0.070 0.53 0.071 

Jul -0.20 0.14 -0.02 -0.19 0.23 0.00 0.331 0.002 0.031 0.264 0.017 0.031 0.065 0.56 0.041 

Aug -0.12 0.34 -0.01 -0.11 0.41 0.00 0.42 0.0001 0.036 0.264 0.026 0.024 0.079 0.47 0.049 

Sep 0.00 1.00 0.00 0.08 0.64 0.00 0.49 0.0000 0.032 0.279 0.011 0.021 0.074 0.50 0.038 

Oct -0.29 0.05 -0.02 0.00 1.00 0.00 0.443 0.0000 0.029 0.218 0.048 0.024 -0.028 0.80 -0.01 

Nov -0.265 0.07 -0.01 -0.01 0.94 -0.08 0.502 0.0000 0.032 -0.074 0.506 
-

0.009 
-0.20 0.06 -0.22 

Dec -0.35 0.02 -0.03 0.08 0.59 1.66 0.456 0.0000 0.021 -0.087 0.435 
-

0.013 
-0.209 0.059 -033 

Annual -0.35 0.02 -0.03 -0.05 0.76 -2.23 0.58 0.0000 0.025 0.064 0.574 0.005 -0.148 0.18 -0.97 

Minor rainy 

season (ONDJ) 
-0.38 0.01 -0.03 0.07 0.64 2.07 0.591 0.0000 0.025 -0.058 0.607 

-

0.005 
-0.261 0.018 -0.90 

Major rainy 

season (FMAM) 
-0.26 0.03 -0.03 -0.09 0.51 -1.86 0.388 0.0006 0.017 -0.0544 0.632 

-

0.007 
-0.12 0.278 -0.43 

Rainy season 

(ONDJFMAM) 
-0.36 0.00 -0.03 -0.09 0.53 -4.34 0.595 0.0000 0.022 -0.062 0.583 

-

0.005 
-0.249 0.024 -1.41 
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 Lake Babati Level Rainfall in Babati Minimum temperature Maximum Temperature 
Lake Babati 

Evaporation 

Series\Test 
Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Kendall’s 

tau 

p-

value 

Sen’s 

slope 

Dry season 

(JJAS) 
-0.12 0.31 -0.01 -0.10 0.51 0.00 0.505 0.0000 0.036 0.253 0.023 0.025 0.084 0.45 0.18 
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