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Abstract: The problem of low soil fertility and limited research in agricultural data driven tools, may lead to 
low crop productivity which makes it imperative to research in applications of high throughput computational 
algorithms such as of machine learning (ML) for effective soil analysis and fertility status prediction in order 
to assist in optimal soil fertility management decision-making activities. However, difficulties in the choice of 
the key soil properties parameters for use in reliable soil nutrients analysis and fertility prediction. Also, 
individual ML algorithms setbacks and modelling expert implementation procedures subjectivity, may lead to 
exploitation of worst fertility level targets and soil fertility status targets classification models performance 
reported variations. This paper surveys state-of-affair in ML for agricultural soil nutrients analysis and fertility 
status prediction. Prominent soil properties and widely used classical modelling algorithms and procedures 
are identified. Empirically exploited fertility status target classes are scrutinized, and reported soil fertility 
prediction model performances are depicted. The three pass method, with mixed method of qualitative content 
analysis and qualitative simple descriptive statistics were used in this survey. Observably, the frequently used 
soil nutrients and chemical properties were organic carbon, phosphorus, potassium, and potential Hydrogen, 
followed by iron, manganese, copper and zinc. Predominant algorithms included Random Forest, and Naïve 
Bayes, followed by Support Vector Machine. Model performances varied, with highest accuracy 98.93% and 
98.15% achieved by ensemble methods, and the least being 60%. Interdisciplinary ML related researchers may 
consider using ensemble methods to develop high performance soil fertility status prediction models. 

Keywords: artificial intelligence; machine learning; soil nutrients analysis; soil fertility prediction; 
smart soil fertility management; smart farming 

 

1. Introduction 

Machine Learning (ML) is a field of study that shows great promises in the interdisciplinary 
study of agricultural soils analysis through modelling for knowledge discovery such as in soil fertility 
predictions task(s) with performances that approach expertise of soil laboratory technicians, but at 
lowered costs-and wider magnitude of application. ML modelling for soil fertility predictions is vital 
since the soil is the key fundamental factor for crop growth and productivity, other than crop 
diseases, irrigation, weather and climatic conditions management, as it harbors plantations and as a 
function of its fertility it can supply plantations with the necessary nutrients as well as other chemical 
and biological possessions necessary for plant growth and increased crops yields, to eventually 
ensure food security [1,2]. Shown in Figure 1 is a diagram synthesizing from [3], that depicts of the 
study rationale adapted a synthesis for depicting soil and key components with properties necessary 
for plant growth to be proposed for integrated with ML for provision of smart agricultural system. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Figure 1. A depiction of soil and key components with properties necessary for plant growth to be 
proposed for integrated with ML for provision of smart agricultural system. 

As a matter of fact, due to both natural and human causes such as: wind and soil erosion, 
unfavorable climatic conditions, extreme weather conditions, mono-cropping or monoculture, total 
clearance of crop residues, intensive tillage, draught, non-fine-tuned (or non-site specific  fertility 
conditions considered) use of fertilizers, the soil may become highly susceptible to the problem of 
low soil fertility characteristic. In turn, this  may highly results into low crop yields which is clearly 
a threat to food security  [2,4,5]. Thus, if limited efforts in research and developments that are related 
to ML solutions deployments for smart agricultural soil fertility management to deal with the low 
soil fertility characteristic problem, such as the one depicted in Figure 1 will be the fact to prevail, 
then it may become more difficult to have provisions for fine-tuned or site specific soil fertility 
restoration or preservation measures of fertilization, crop rotation, non-tillage farming, mixed 
planting, sowing green manure, mulching, and fallowing, this of which is necessary to increase field 
fertility [5]. Most critically, the infertility problem even cause catastrophic hunger condition(s) by the 
year 2050, when the world’s population growth will reach the estimated 9.6 to 9.73 billion 
people(approximately 10 billion) from the current 7.3 billion [6–9]. Therefore, to achieve smart soil 
fertility management system as part of a sustainable smart global food production and supply system 
which is currently a major demand of the United Nations Food and Agriculture organization (FAO) 
is apparently imperative. Thus, research and development of high throughput ML related models 
applications for agricultural soil analysis to assist in effective soil fertility management decision-
making processes becomes obviously imperative [2,4], especially in the context of highly susceptible 
regions.  

Nevertheless, the choice of deployment or developments of subtle ML models for soil fertility 
nutrients and other chemical properties is quiet challenging as there exists a multitude of agricultural 
soil properties that can be used as features for modelling soil fertility status predictors. This may be 
because of subjectivity arising from the involvement and bases of associated experts context that 
provide necessary prior knowledge for the deemed fertility levels targets for the data required to 
implement these models. Also, a choice of appropriate ML algorithms and implementation 
approaches and procedures that may fit best models in the available data context is one of key 
challenges, whereby these factors may lead to impaired overall model performances, consequently 
hindering these models practical or operational application in real world decision making processes.  

Therefore, this paper aims to survey the most current state of ML studies related to research in 
ML models for soil fertility nutrients and other chemical properties modelling for predicting soil 
fertility status. The paper first provide from an empirical perspective, the key soil nutrients and its 
other chemical properties these of which are directly significant to crop growth and depiction of soil 
fertility[87], as key features for a ML interdisciplinary study of soil fertility status prediction. 
Secondly, it also identifies major ML algorithms for use in modelling these soil features. Then, it 
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depicts the soil fertility target classes these of which are crucial in providing for fine-tuned treatments 
of soil shall the need arise. Finally, the survey summarizes soil fertility prediction models 
performances, this which are necessary to provide farmers and other relevant agricultural 
stakeholders with models that provide optimal analytical information and recommendations for use 
in decision making about sites specific fertilizer dosages[10–12]. This survey is generally useful to 
future researchers and soil assessment entities as amongst others things it helps in the choice of key 
soil properties for soil fertility assessment, this of which have been a primary concern since the 
beginning of soil management assessment frameworks (SMAF) and analysis tools developments 
programmes[4]. 

The rest of this paper is organized as follows: Subsection 1.1 describes soil properties. Subsection 
1.2, selectively briefs on some data source that are related to the Soil properties described in 
subsection 1.1. Subsection 1.3 overviews the machine learning discipline, with a briefing on its 
operational techniques and algorithms, as well as its classification models major performance 
evaluation metrics. Section 2 provides impacts of data-driven ICT with respect to use of machine 
learning in agriculture. Section 3 is about materials and methods used to conduct this survey. Section 
4 provides the empirical results about machine learning for soil nutrients analysis and fertility status 
prediction as observed from previous studies. Section 5 is a summary of the findings attained by this 
survey and discussion of those findings. Finally, section 6 concludes the survey and provides 
recommendation for future studies. 

1.1. Soil Properties 

With respect to the agricultural soils, there are key properties which are functional to estimate 
its fertility, propose a cultivation plan and predict crop productivity include its soil physical, chemical 
and biological properties [4,11]. These should be selected based on some criteria such as the soil 
properties selection criteria of conceptuality or operation ability, practicability or availability, 
sensitivity, interpretability [4,13], and they can then be determined through various field trials 
(treatments) of soil sampling from different depth, mostly sub and upper soil, then testing of the 
samples by using several different soil testing methods to determine availability and extent of 
different soil properties [4,13].  

Soil physical properties which amongst others includes its structure: texture or type as clay, 
loamy, sandy, silty, peaty, chalky or mixture of these, water storage capacity, porosity, and 
infiltration [4]. Most importantly, according to [4,11,14], soil fertility can be determined by chemical 
properties with which are mostly nutrients that can be determined by using either wet or dry 
chemistry through techniques such as Unnamed Arial Vehicles (UAVs), near or  mid infrared 
(NIR/MIR) spectroscopic method and calibrated using samples that underwent a wet chemistry 
method with reagents such as HCLO4, HCL, HF and HNO3 [15], sodium hydrogen carbonate 
extraction, fulvic acids (FA), Humic acids (HA), BaCl2 extraction, Dionex-100 Ionic Chromatography 
(DX 1-03, USA) [13,16], amongst others, as suggested by [4], these soil chemical properties include 
total nitrogen content (N) in the form of nitrous oxide – N20, phosphorus (P) in the form of 
phosphorus pentoxide – P205, potassium (K) in the form of potassium oxide – P20, sulphur (S) in 
sulphate – SO4 form, iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), boron (B), magnesium (Mg), 
calcium in calcium carbonate – CaCO3, cation exchange; organic carbon (OC) measured in percentage 
(%); electrical conductivity (EC) measured in milliSiemens per meter (mS/m) or deciSiemens per 
meter; potential hydrogen (pH) measured by a pH meter as acidic (0 to less than 5.5), neutral (5.5 to 
7) or alkaline (7 to 14). Also other core soil chemical properties are the amount salt dissolved in water 
or saltiness, the salinity measured in ppm or %; and the amount of water contained in the soil, 
moisture, which is measured in percentage (%) of wet to dry soil [4,11,14]. Biological properties 
provide the key living component of the soil ecosystem, microorganisms that decompose organic 
matter into top soil organic carbon responsible for the preservation of soil nutrients and formation of 
soil natural fertility measured in percentage (%) of total Nitrogen [4]. Additionally, there are some 
other agronomic parameters which are not part of the three soil properties categories but can be 
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essential indexes for the estimation of soil fertility; they include crop type as seen in the work of [4], 
and yield amounts [4,11,14].  

Therefore, soil being the fundamental key agricultural aspect that harbors nutrients for crop 
consumption and growth [1,17–19], in this advent of big data, including those of agricultural soils, it 
is imperative to research in and apply high throughput analytical techniques [20], such as those of 
machine learning in soil nutrients analysis and fertility status prediction problems, in order to 
intelligently assess and management the soil through accurate and precise determination of farm 
fields site specific nutrients and other temporal and spatial properties variabilities, and support for 
decision advices on the right site specific fertilizer doses, treatments, and required soil management 
practices [14]. 

1.2. Soil Information Data Source 

Studies have widely reported that, accurate analysis and predictions in agriculture can be 
achieved through the application of data-driven tools such as those using machine learning 
algorithms as they have the ability to unlock and reveal patterns of hidden knowledge. [2,21] asserted 
that, the use of machine learning algorithms in this advent of large collected data for example can 
manipulate data and produce knowledge required for making better precision agriculture and 
support decision-making among farmers and other agricultural stakeholders, such as in soil 
assessment and management.  

However, despite that a lot of soil data is being collected worldwide and in Africa through 
various projects like the Sub Saharan’s Africa Soil Information Services (AfSIS) and Ethiopia’s, 
Nigeria’s and Tanzania’s Taking Maize Agronomy to Scale in Africa (TAMASA), and, the Tanzania’s 
specific Tanzania Soil Information Services (TanSIS) [22]; with which this data can be used as input 
to machine learning in the development of models such as those for the national soil quality 
assessment and soil management assessment frameworks (SMAF) [4] or tools in support of advanced 
soil analysis tasks and nutrients mapping [2].  

1.3. Machine Learning 

Machine learning (ML) is a branch of artificial intelligence (AI) which has brought about many 
advancements in application areas such as robotics, natural-language processing, expert systems, and 
ML, it is a subfield of computer science that focuses on the design and development of intelligent 
systems in the form of hardware, software, or both [23,24].  

Whereas Machine engineering and learning is concerned with the design and development, and 
application of algorithms and techniques that learn by automatically organizing input data according 
to their common features to provide computer machine(s) with knowledge and experience in the 
form of mathematical models that infer the future with minimal human intervention thus with least 
errors and make decisions [25–29], whereby ML does not involve consciousness as by humans, rather 
it statistical regularities or other data patterns, thus ML hardly resembles human approaches to 
learning [30]. Consequently ML becomes one of the key aspects of an AI agent it provide for 
knowledge discovery computational structures or model of an AI system, pattern recognition, and 
data mining by  learning from data to discover computational structures these of which can later on 
be used for predictive and descriptive work flows termed as improved performance analytics [31]. 
Thus, the key take away of ML is when performance of the machine improves with even a slight 
change of any aspect of an AI system then the machine is said to have learned.  

Broadly speaking, a machine is said to learn when it changes its structure, program or data, such 
that its performance in that carrying out artificial intelligence related tasks that involves diagnosis, 
prediction, robotic control, planning, recognition, improves with changes for enhancing its system or 
ab initio synthesis of new systems, as portrayed by [32]. With respect to machine learning as a data 
science discipline, its wide applications have been observed in different fields ranging from 
transportation, medical health, education and agriculture, and have been reported to tremendously 
outperform humans as  well as conventional computer programs performances by propelling very 
solid results in all tasks, for example they could achieve 98.98% accuracy, higher than humans at 
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traffic signs [33]. In medical health and education, machine learning have been relatively used for the 
detection of heart and breast cancer [34]; drug design [35], and rational drug discovery [36];  
predicting student performance [37,38], and dropouts [39,40]. 

1.3.1. Machine Learning Modelling Techniques and Algorithms 

In machine learning there are dozens of machine learning algorithms that fall into either of four 
main classical ML modelling techniques known as supervised, unsupervised, reinforcement (semi-
supervised) [41,42]. Furthermore, there came an emergence of Deep ML which have been reported to 
have the capability of achieving the most highest performances than any other learning technique, 
including classical machine learning techniques and its variants [25,43–45]. However, deep learning 
techniques are associated with drawbacks and limitations which are respectively high processing 
times and need for very large image data [25,43,45], while existing soil testing methods provide 
textual dataset contrary to images, therefore deep learning cannot currently be applied for the 
analysis and prediction of soil nutrients and fertility status, otherwise we need to set up project(s) for 
the collection of very large soil properties data in the form of images, with which this involves high 
cost and time. In the context of agriculture on addressing soil nutrients analysis and fertility status 
prediction, based on the nature of agricultural soil data which is mostly textual, the techniques for 
learning can be supervised or unsupervised, with supervised being widely used for soil nutrients 
analysis and fertility prediction as observed from the literature. 

Supervised machine learning is characterized by teacher or supervisor with the task to provide 
an agent, model or function with a precise measure of its own errors, whereby beliefs and common 
sense presented in the form of training data set made up of inputs and expected outputs or class 
labels are provided, and the function shall be used to infer for future unseen samples, thus the 
function will map a vector into a specific class from the several by looking at the functions input-
output sets of examples [25,30]. Through the application of various ML algorithms, supervised 
learning has been reported to be efficient in finding solutions to several linear and non-linear 
problems such as predictive analysis based on regression or categorical classification. Generally, the 
traditional supervised learning algorithms uses a training set D with variables constituting of 
predictors X and target Y to train a model. The training process seeks to identify through an iterative 
procedure a set of model parameters that maximizes the relationship between the predictor (input 
features) and the target variables. The trained model receives new input data for the predictor 
variables and uses the recognized pattern to estimate the target variable. If the datasets used contains 
continuous values and created function produces  continuous valued outcomes, the task is refers to 
as regression, otherwise if they are based on discrete number of possible outcomes, then it is a 
classification problem [25,30]. Also, when the algorithm used to create the function is flexible enough 
and data is coherent, the overall accuracy increase and predicted to expected values difference closes 
nearly to zero, the goal is to reduce the number of misclassifications and increase robustness to noise.  

Unlike supervised, Unsupervised learning algorithms are used to identify hidden patterns in 
unlabeled input data; they refers to provide ability to learn and organize information without an 
error signal and be able to evaluate the potential solution, this type of learning simply models a set 
of inputs with no labeled examples [25,30]. The lack of direction for the learning algorithm in 
unsupervised learning can sometime be advantageous, since it lets the algorithm to look back for 
patterns that have not been previously considered [25,46]. In unsupervised learning, training is 
conducted using dataset D without function and we aim to partition the training set D into subsets, 
D1, . . . , DR, in an appropriate manner. Whereby the value of the function is the name of the subset 
to which an input vector belongs. In some cases when unsupervised results are to be used as inputs 
into a supervised process, problem domain expert(s) intervention becomes valuable for additional 
verification of the unsupervised learning intermediate results for enhanced performance and 
reliability, such as in the verification of different an unsupervised environment created clusters or 
otherwise termed as class labels to be used in supervised learning [47].In some cases when 
unsupervised results are to be used as inputs into a supervised process, problem domain expert(s) 
intervention becomes valuable for additional verification of the unsupervised learning intermediate 
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results for enhanced performance and reliability, such as in the verification of different unsupervised 
environment created clusters or otherwise termed as class labels to be used in supervised learning 
[47]. 

Literally, both supervised and unsupervised learning are associated with a wide range of 
algorithms for use in modelling either of the related respective ML tasks. [48] asserted that, thousands 
of machine learning algorithms exist and hundreds more are being published each year. Long before 
the 90’s, theories of conventional statistics have been existing along with core machine learning 
artificial neural networks (ANNs) and decision trees (DTs) based techniques, these of which have 
been widely applied in field of medical research for effective drug discovery problem tasks. In a 
broader view, one remarkable discovery in machine learning algorithms was in 1986, when the 
induction decision tree (ID3), a variant of the native DT algorithm which models data in tree like 
structures as its name suggests[29,30,49]. ID3 was proposed by Quinlan as an algorithm with the 
potential to provide transparent and interpretable explanations in the underlying rules of the tree 
structure, clearly stating reasoning behind reaching certain conclusions [33,36,50]. That of which is 
one of the key advantages of these algorithms, that is their simplicity and comprehensibility to 
determine small or large data structures, or attributes that provide information to solve classification 
and regression predictive problems. Quinlan later on further developed an improvement of the ID3 
to form the C4.5 whose Java version is known as J48 [51–53]. 

One of the biggest booms that sparked machine learning was based on the neuropsychological 
learning formulation that mimic human brain functioning to create of artificial neural network(ANN) 
algorithm. ANN is an attractive and powerful algorithm initially highly used to model drug 
discovery researches as at 1995. The algorithms operates by determining  and minimizing errors 
through the network adjustments 30,54–56] by using network structures that can mainly be classified 
into four main topological approaches, namely, feed forward neural networks (FFNNs), backward 
propagation neural networks (BPNNs), random neural networks (RNNs) and self-organizing neural 
networks (SONNs) [36]. As asserted by [57], BPNNs is the most popular ANN topology, and the 
forward neural network contains multilayered perception and uses the gradient-descendent method 
to minimize the mean-square errors of the difference between the experimental or training data set 
and the network outputs. The key advantage of ANN algorithms is its ability to detect all possible 
interactions between predictors variables without having doubts even in cases of complex nonlinear 
relationship between independent and dependent variables, this of which is one of their key 
advantages 30,54–56]. While, its drawbacks that arises from the forward and back propagations 
requirements of large computational times, especially if a lot of middle hidden layers are involved in 
the learning process leading to the vanishing gradient otherwise termed as gradient loss or descent 
problem. This of which leads to redundant learning hops after a certain period of time in such they 
are inclined to over-fitting in shot number of hops [58,59]. Also another drawback of ANN is 
requirement of very large amounts of training dataset, and its black-box nature, that is, the inability 
to provide explanation of the underlying facts for reaching conclusions[33,55]. This of which sparked 
the need for more explorations by the machine learning research and development community. As a 
result some remarkable machine learning algorithms were discovered, including the support vector 
machine (SVM), and later on the random forest (RF) to encounter, among others, the mentioned 
problems of gradient loss, over-fitting, outlier susceptibility, and black-box characteristics. 

Another great breakthrough in machine learning was the introduction of SVM in 1995 
[33,36,60,61], with its kernel version being released near the year 2000 making competition with the 
ANN community a bit more subtle. The SVM could exploit knowledge of convex optimization, 
generalization margin theory and kernels, with stronger theoretical standings and empirical results 
[33,60]. SVM are capable of handling small data sets having high-dimensional variables. These 
algorithms maps points in space to create separates categories by maximizing the margin between 
different classes of points in linear problems [36,62], while they use kernel mapping to transform 
nonlinear data sets into a high-dimension feature space that can be used in linear classification 
functions [36]. 
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Subsequently in the year 2001, came the discovery of the random decision trees forest which is 
commonly known as random forest (RF) algorithm that. The RF had improved performances and 
robustness towards over-fitting and outliers as compared to not only the individual decisions trees, 
but also the adaptive boosting algorithms [33,36,63–65]. These algorithms works  by using a random 
selection of features and ‘bagging idea’, that is, constructing an ensemble of multiple decisions trees 
as base learners and training them using random sampled subsets of original dataset, a consensus 
score is calculate as a weighted average or estimate of the individual decisions trees output to provide 
the final result [33,36,63–65]. As adapted from 66], Figure 2 shows a non-exhaustive (Non-Exh.) 
taxonomy of some classical ML algorithms, which also depicts the non-prescribed herein clustering 
techniques with the respective highlighted K-means, density, hierarchical based algorithm, as well 
as the dimensionality which includes PCA, UMAP, and  tSNE algorithms of the unsupervised ML 
techniques. 

 

Figure 2. Non-Exhaustive Taxonomy of some classical ML algorithms. 

Whereby PCA, tSNE, and UMAP are respective short forms for principle component analysis, t-
distributed stochastic neighbor embedding, and uniform manifold approximation and projection. 

However, following the era of prescribed classical machine learning techniques encountered the 
deep machine learning approaches, whereby classical ANN community decided not to remain 
behind its SVM, and RF rivals, and utilized the advents of big data and computational powers with 
to generate ANNs topological structures in hierarchical representation that allows larger learning 
capabilities to obtain highest performances and precision through deep machine learning algorithms 
such as deep neural networks (DNN), recurrent neural networks (RNN), deep belief networks (DBN) 
and convolutional neural networks (CNN) [36,43,44,67,68]. 

Now, based on machine learning algorithms performances, corresponding data-driven tools can 
be developed to effectively and efficiently unlock the potential for accurate and precise predictions 
and analysis of soil through estimation of key soil parameters and provide for decision support 
[1,2,4], in such to provide high agricultural yields and release laboratory soil scientists and farmers 
off their agricultural activities, so to say scientists and farmers can eventually obtain more time to 
concentrate on other agricultural economic activities like diversification of agricultural products [14]. 

1.3.2. Performance Evaluation 

Measuring of the discrimination ability of a model is one of the  important aspect in assessing 
its performance [69]. This remains to be true following the “no free lunch theorem”, whereby one 
cannot fit all. Therefore, the ML algorithms described in subsection 1.3.1 cannot apply and perform 
equally with similar performances in all problem domains areas and tasks, due to the fact that they 
will be subjected to different data complexities, let alone the individual algorithms drawbacks such 
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as need for large dataset or under lacking in their operational structures. Therefore, an evaluation of 
each algorithm model should be conducted to measure its performance as observed using metrics 
values. Based on the particular ML modelling task, either predictive supervised learning or 
descriptive unsupervised learning the appropriate performance metric will be selected. Thus because 
the main focus herein was on prediction of soil fertility status which is clearly a classification problem. 
With that respect, in this survey some major supervised learning algorithms models metrics are 
mostly described. These includes but are not limited to: the classifications accuracy, precision, recall, 
F1-measure also known as F1-score. Also receiver operating characteristics (ROC) analysis area under 
the curve (AUC) {ROC-AUC}, and Cohen kappa [70–72,72,73]. These of which are computed by using 
entries of a confusion matrix which mainly provides the number of true positive (TP), true negatives 
(TN), false positive (FP), and false negatives (FN) classifications by the ML classifiers models as 
shown in Table 1. 

Table 1. The four basic confusion matrix metrics. 

Classes Test result positive (+ve) Test result negative(–ve) 
Actual +ve True +ve(TP) False -ve (FN) 
Actual –ve False +ve (FP) True -ve (TN) 

Classification Accuracy, is the percentage of correct predictions where the top class (the one 
having the highest probability), as indicated by the model, is the same as the target label. For multi-
class classification problems, accuracy is averaged among all the classes. Accuracy is mentioned as 
Rank-1 identification rate [74]. This metric, accuracy, is the most intuitive performance metric for ML 
classification problem [75,76]. Mathematically, accuracy represents the ratio between some of the true 
positives to sum of true positives and false positive, that means the total observation, see equation 
(1) 

Accuracy = (TP+TN)/(TP+FN + FP+TN), (1)

However it is mostly used to only provide the initial baseline performances and cannot be highly 
relied on. In such as derived from the confusion matrix more comprehensive metrics that are 
precision, recall, and f-measure are the mostly for evaluating the performance of machine learning 
classifiers [77].  

Precision is the fraction of TP from the total amount of relevant results, that is, the sum of TP 
and FP, and it is mathematically presented by equation (2). For multi-class classification problems, 
precision is averaged among the classes[77]. 

Precision=TP/(TP+FP), (2)

Next is recall, defined as faction of TP from the total amount of TP and FN, and mathematically 
presented by equation (3). For multi-class classification problems, R gets averaged among all the 
classes[77].  

Recall=TP/(TP+FN), (3)

Again, there is F1 Score or F-Measure, these are the harmonic means of precision and recall, 
which is mathematically presented by equation (4). For multi-class classification problems, F1 gets 
averaged among all the classes. It is mentioned as F-measure [77,78].  

F1 = 2 * (TP * FP) / (TP+FP), (4)

Whereas, the ROC-AUC and Cohen kappa winds up the basic major metrics for classification 
problems which is the main focus of the problem task in this survey, that is to predict soil fertility 
status. ROC-AUC is widely used to determine these models discrimination ability [71], and Cohen 
kappa applies in measuring the closeness at which machine learning classified instances matches 
ground truth data labeled, also termed as agreement between two raters [79,80]. For, regression 
problems, Root Mean Square Error (RMSE) and Mean Square Error (MSE) which is the errors between 
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predicted and observed continuous outcomes from a regression model, are the widely used metrics, 
amongst others.  

Contrary to supervised learning, unsupervised learning such as clustering problems uses 
metrics such as distance measure, the within group similarities and distances between segments or 
clusters or otherwise termed as groups [47]. And, the convergence or time taken to by the algorithm 
to bring out a model remains a vital metric for any machine learning related task[43,75,76]. Although 
past performance may not be indicative of future results, the mentioned metrics forms the common 
ground for determining how well the developed models might perform in the future. These metrics 
can mostly all be computed by using the powerful Scikit-learn (Sklearn) libray for ML applications 
in python [81], that consists of a wide range of ML classification metrics, and other machine learning 
modelling task other supervised learning, like the regression metrics highlighted herein this survey 
paper. 

2. Data-Driven ICT and Impact of Machine learning in Agriculture 

One of the earliest quoted example of the applications of machine learning in agriculture was in 
the use of similarity based learning to identify rules for the diagnosis of soy bean disease [82]. Other 
studies of the machine learning field in agricultural problems includes weather forecasting, yield 
prediction [83–85], fertilizers usage , fruit grading, plant diseases diagnosis and prediction [82], pest 
management [86], weed detection , soil nutrients analysis and fertility prediction for soil management 
and assessment [17,87], amongst others. Studies related to soil analysis and fertility status prediction 
have widely reported that accurate soil fertility estimation and predictions models in agriculture can 
be achieved through the application of data-driven tools such as those using machine learning 
algorithms, as these have the ability to unlock the such potentials.[2,21] asserted that, the use of 
machine learning algorithms in this advent of large collected data for example can manipulate data 
and produce knowledge required for making better precision agriculture and support decision 
making among farmers and other agricultural stakeholders, such as in soil assessment and 
management. Whereas much agricultural ML research and application have been conducted by 
developed regions, developing countries have limited research in the similar[2]. Consequently that 
hampers agricultural populations in these agricultural ML research under lacking regions from 
gaining better understanding of their farm fields conditions, such as determination of site-specific 
nutrients deficiencies for appropriate remedies to take place including application of the right 
fertilizer dosage [19,88–90].  

In addition to the developed countries being pioneers of early developments and improvements 
of the profound agricultural and soil assessment trends, methods, tools and frameworks. For many 
years they have been researching in the development and applications of ICT data-driven tools such 
as of machine learning to implement and use precision or smart agriculture in various agricultural 
activities. In turn, this is a key supplement for automated business intelligence system for 
management decision making processes such as those that are geared towards improvement of soil 
fertility through soil nutrients advanced ML modelling and analysis, to realize automation in farming 
activities leading to increased yields while preserving the environment for sustainable agricultural 
through the optimal use of agricultural resources [91].  

By using the agricultural gross domestic products (AGDP) and labor force (AGLF) by population 
data that is reported by [92,93], the respective ratios could be calculated as shown in Figure 3 of the 
Agricultural gross domestic products (AGDP) to labor force (AGLF) ratios. It can be deduced that 
limited machine learning (ML) related research and development could highly be among the reasons 
that leads to smaller ratios of agricultural gross domestic product to agricultural labor force in 
developing countries as compared to developed countries.  
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Figure 3. Ratios of ALFbP to AGDP. 

Among other reason leading to the lowered AGDP to AGLF ratios in the developing countries 
being due to limited research in ML related application for smart agricultural systems 
implementations. Thus, for most of regions with low digital agriculture adoption, it may become 
imperative to research in development and application of machine learning (ML) techniques and 
models [20], for the development of agricultural data-driven tools for effective soil analysis. As part 
of a smart fertility management practices, this would be necessary for relevant applications such as 
for soil fertility status prediction, these of which can intelligently analyze soil nutrients and other 
chemical properties which have a direct interlink to crop productivity. In such, site specific farm 
field’s accurate predictions of soil fertility status can be obtained to provide a reliable understanding 
of nutrients and other temporal and spatial soil variabilities or deficiencies that would require 
appropriate remedies. This of which can mainly be possible through the use of agricultural soil data-
driven assisted approach for assisting in optimal soil related decision making processes during 
preparations phase before plantation, through ML model based recommendation or advices for 
appropriate site specific treatments including the required fertilizer dosages, and management 
practices [14]. 

3. Materials and Methods 

This work followed a semi-systematic approach and was accomplished by the help of a paper 
review matrix with an extensive three pass method after collecting, organizing, and reviewing of 
pertinent materials as suggested by [94,95]. Moreover, the six W6H framework’s interrogative 
questions of what, why, when, who, where and How, were used to effectively yield extra and 
necessary information to assist in the engineering of concepts and creation of a holistic architectural 
enterprise of machine learning, and application in agricultural soil analysis, as part of this survey 
[96–98]. 

Except for the four articles i) “The organization of behavior New York” by [99] which 
highlighted on the initial emergence of core Hebbedian learning theory,  ii) “Learning 
representations by back-propagating errors” by [57] which enlighten about the popular back 
propagation neural network (BPNN) machine learning method in existence long before the 1990’s, 
iii) “Induction of decision trees” by [33,36,50] which proposed a remarkable discovery of the ID3 
algorithm as a transparent and interpretable algorithms that can explain the underlying rules which 
are black-boxed in former algorithms and theories, and iv) “Learning by being told and learning from 
examples: an experimental comparison of the two methods of knowledge acquisition in the context 
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of development an expert system for soybean disease diagnosis” by [82] which highlighted on the 
earliest quotation in the application of machine learning in agriculture; The total formulation of this 
survey was accomplished through a review of high scoring pertinent online materials that were 
mostly published during the period of the past three decades starting from inclusively 1990 to 2019. 
The choice of publications starting from the year 1990 is based on the fact that during the early 90’s, 
the classical machine learning family gained popularity, made a lot of achievements and discoveries, 
were commercialized on personal computer and shifted work from knowledge to data driven 
approach, and scientists began creating computer programs that analyzed large amounts of data and 
draw conclusions (learn from results) [65,100]. In addition, for the main focus area of this survey, that 
is respects to machine learning field in the analysis and fertility prediction of agricultural soils, in 
order to have the most recent state of affair, the survey utilized research works conducted from the 
year 2000, with the majority of this work starting inclusively from 2010, with 2015 marking the 
beginning for some research work on improved performances rather than just applications and 
performances tuning of machine learning models. 

The collected materials from the specified periods of time were, scrutinize, filtered, organized 
and analyzed after an online search based on the keywords agricultural soil fertility, soil quality, soil 
health, soil quality assessment, soil fertility analysis, machine learning, deep learning, soil fertility 
prediction using machine learning techniques, predicting soil fertility using machine learning 
techniques, agricultural soil data mining, data mining in soil analysis, data science in agricultural 
soils, agricultural soil analysis in developing countries; from Google Scholar, ResearchGate, Science 
Direct, IEEE Xplore, Springer Link, Academia.edu, Elsevier, Association for Computing Machinery 
(ACM), and DBLP databases, as well as from other web-based knowledge sources including 
machinelarningmastery.com. The materials included conference papers, journal, magazines, 
newspapers, and encyclopedia articles, books and book chapters, case studies, thesis, patents, reports 
and documents, manuscripts, dictionary entries, email alerts, instant messages, forum and blog posts, 
presentations, as well as web pages. Some additional offline materials or hand books of the same 
were also obtained from libraries and book stores including the Nelson Mandela African Institution 
of Science and Technology Library; and reviewed. After the three pass method’s first phases of 
quickly scanning and examining the references list to identify relevant research or journal title, the 
second phase of reading of the potential articles with greater care followed; and the third phase 
finalized the virtual re-implementation of the articles and aggregation of this survey. Detailed 
analysis of relevant materials was performed using mixed method of qualitative content in-depth 
analysis of machine learning applications in agricultural soil nutrients analysis and fertility status 
prediction and simple quantitative descriptive statistics of the machine learning algorithms and soil 
parameters use frequency analysis by different researchers, by using Microsoft Excel. 

4. Machine Learning for Soil Nutrients Analysis and Fertility Status Prediction 

The genesis of ML methods in pedology traces back to 1980’s, when it was first applied in 
pedometrics whereby ML data-driven methods could be applied in the modelling and prediction of 
soil fertility. Presented here is a briefing on a few previous of these works from 2010 to date (2022). 
These works addressed a range of ML tasks from classifying soil properties into classes of very low, 
low, moderate, high and very high fertility, to predicting unknown values. Whereas it is best practice 
to use as many possible algorithms, with all possible available principle parameters in order to 
perform an exhaustive evaluation so as to attain good analytical results and final model(s). [87] 
compared the performance of J48, KNN, JRip, NB, SVM, ANN classification algorithms by using PH, 
EC, N, P, K, OC, S, Fe, Mn,  and Zn input variables of soil dataset to predict soil fertility as ‘fertile’ 
or ‘not fertile’, whereby JRIP scored maximum accuracy of 97%. In another study by [101], data from 
Vellore soil testing laboratory with soil attributes PH, EC, Fe, Zn, Mn, Cu, OC, P, K, and fertility index 
(FI) as ‘ideal’ or ‘not ideal’ were utilized to perform experiments of training various bagging, 
boosting, and stacking ensemble classifiers, were they pre-processed the data, extracted relevant 
features as a means to achieve better performance, and attained an accuracy of 98.15% by boosting 
the decision tree like C5.0 algorithm. A versatile method for rapid and accurate determination of soil 
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fertility for sugarcane production was developed in [102], whereby the soil fertility index was 
established and modelled independently using boosted decision trees with the use of soil attributes 
PH, OM (OC), Ca,  and Mg, Aluminium used in place of B  due to their study finding high 
correlation between the two, whereby they achieved AUC scores of 0.76, 0.67 and 0.65 for the 
respective fertility classes ‘highly fertile’, ’fertile’, or ‘least fertile’ prediction. In another work, the 
Random Forest was used to develop a model that was used as part of the work to predict soil’s OC, 
N, P, K, Ca, Mg, Na, Fe, Mn, Cu, Al nutrients fertilities and use the information to understand the 
edaphic drivers of soil constraints to very extreme high or near zero yields and heterogeneity across 
Africa, to guide in nutrients-specific interventions, they could find that soil factors could explain 72% 
of the variations in yields [103]. [104] developed a hybrid classification model by using a Decision 
Tree Classifier to isolate the soil’s PH, EC, OC, N, P, K, S, Zn, Fe, Cu, Mn, and B dependent features 
and used Naïve Bayes classification on the independent features to predict the fertilities for the 
primary properties (PH, EC, OC, N) with individual naïve Bayes, and decision tree respective 
performances of 69.9%, 90.43%, and 99.93% for the DT-NB independent featured hybrid. While they 
macro P, K, S, Zn, nutrients were respectively predicted at 38%, 88%, 97% accuracies, the micro Fe, 
Cu, Mn, B nutrients levels were predicted at 42%, 83%, 99.93% accuracies, respectively. [105] 
examined soil micro and macro nutrients EC, K, pH, Mn, Zn, S, P, B, OC using machine learning to 
grade soil nutrients, and they applied various classification algorithms and found that random forest 
had the highest accuracy score as compared to support vector machine and Gaussian naïve Bayes in 
predicting the soil classes for suitable crop plantation. Likely, [106] used PH, EC, OC, P, K, Fe, Zn, 
Mn, Cu to implement machine learning models for predicting soil fertility as low, high or medium 
using Support Vector Machine, nearest neighbor, Naïve Bayes, and Decision Tree that scored 60%. 
Also, [107] implemented machine learning models for automatically predicting the Indian state of 
Maharashtra village-wise fertility indices of organic carbon (OC), phosphorus pentoxide (P2O5), iron 
(Fe), manganese (Mn), and zinc (Zn) by using 76 methods belonging to 20 families including neural 
networks, deep learning, support vector regression, random forests, partial least squares, bagging 
and boosting, quantile regression and generalized additive models, among many others. Altogether, 
as per the Government of India standard fertility levels, the prediction of nutrients fertility indices as 
low, medium or high achieved the utmost best performance through the ensemble of extremely 
randomized trees (extraTrees), the results of which corresponded to accuracy (Acc) and Cohen kappa 
values of (Acc= 86.45% Kappa= 69.60%), (Acc= 79.03% Kappa= 56.19%), (Acc= 79.46% Kappa= 
52.51%), (Acc= 86.13% Kappa= 71.08%), (Acc= 97.63% Kappa= 81.03%) for OC, Fe, P2O5, Mn, and Zn, 
respectively, which is considerably fairly accurate. Other best performing models were those 
generated through regularized random forest, random forests, and random forest with feature 
selection, last but not least good performances were obtained from gradient boosting of regression 
trees (bstTree) and generalized boosting regression (gbm); quantile random forest, M5 rule-based 
model with corrections based on nearest neighbors (cubist) and support vector regression (svr). In 
another study, [108] designed an intelligent soil PH, OC, EC, P, K, B nutrient and pH classification 
using weighted voting ensemble deep learning (ISNpHC-WVE) technique. Such classifications were 
employed in generating village-wise fertility indices analyses, and they are applied for making 
fertilizer recommendations using the decision support systems.. In addition, three deep learning (DL) 
models namely gated recurrent unit (GRU), deep belief network (DBN), and bidirectional long short 
term memory (BiLSTM) were used for the predictive analysis. Moreover, a weighted voting ensemble 
model was employed which allows a weight vector on every DL model of the ensemble depending 
upon the attained accuracy on every class. Furthermore, [109] used different classification algorithms 
to predict fertility rate based on soil’s PH, EC, Fe, Cu, Zn, OC, P, K. Whereby, J48 classifier performed 
better in predicting fertility index for six (6) classes very low, low, medium, medium high, high, very 
high with 98.17% accuracy, while naïve bayes and random forest had respective performances of 
77.18% ,and 97.92%, their observation generally showed fertility rate for Aurangabad district to be 
medium. In another study, [110] projected a comparative analysis of Naïve Bayes, JRip and J48 ML 
algorithms by using soils data with attributes PH, EC, OC, P, K, Fe, Zn, Mn, Cu, it was observed that 
JRip classification algorithm gave better results compared to the other two algorithms, whereby it 
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achieved an accuracy of 91.9% and therefore it was recommended to predict six(6) soil classes very 
high, high, moderately high, moderate, low, and very low. Last but not least, a study by [2] was also 
useful in providing information on soil features, and algorithms of interest whereby PH, EC, N, OC, 
P, Ca, Mg, Na, K, Fe, Mn, Cu, and Zn could be observed key features these of which were modelled 
using naïve Bayes and random forest trees as part of a task to numerically classify a portion of 
Kilombero Valley soil clusters in Tanzania. Last, but not list, in [111] a novel 2-Stage Hybrid Ensemble 
Based Heterogeneous Committee Machine for Improving Soil Fertility Status Prediction Performance 
was developed. Specifically, agricultural soil properties to be attributed as features for soil analysis 
and fertility prediction by using machine learning algorithms were identified and modelled 
following a feature selection as OC, pH, EC, TN, P, Ca, K, Mg, Na, S, Mn, Al, Zn, Fe, B. Then machine 
learning K-Mean clustering algorithm with K-elbow was used to categorize available distinct soil 
fertility status target classes based crop yields as an index to fertility. Finally heterogeneous hybrid 
classifiers were evaluated to build a weighted voting ensemble (WVE) with improved prediction 
performance, by combining the judgments of class probability predictions from the individual hybrid 
classifiers through optimization in a novel brute based 1EXP(-)Z+ multi precision search spaces for 
guaranteeing optimality finding. Whereby the K-mean hybrid based WVE combination of GB, RF, 
SV, KN, DT was the best alternative with accuracy of 98.93% and Cohen Kappa 93.98% on test data, 
Furthermore, the solution in [111] achieved through ROC analysis AUC score of 0.87, 0.83 and 0.82 
for the respective low, medium and high fertility target classes. These results which showed 
improvement as compared to models in other studies as shown in Table 2 that provides a summary 
of the reviewed studies related to application of machine learning in soil chemical properties 
modelling. 

Table 2. Summary of the State-of-the-art ML-based approaches and Soil chemical properties used in 
modelling nutrients and fertility status prediction. 

Author 
Chemical 
Properties 
(features) 

Dataset Size Technique (ML 
algorithms) 

Number of 
fertilities target 

classes 

Max Accuracy/ROC 
Performance (%) 

[111] 

OC, pH, 
EC, TN, P, 
Ca, K, Mg, 
Na, S, Mn, 
Al, Zn, Fe, 

B  

6260 
GB, RF, SVM, KNN, 

DT 
3 (low, medium, and 

high) 

98.93%, AUC 0.87, 
0.83. 0.82 for 

respective high, 
medium, and low 

fertility classes 

[101] 
PH, EC, Fe, 
Zn, Mn,Cu, 

OC, P, K 
1430 

TreeBag and RF 
ensemble bagging, 
boosting C5.0 and 

boosting Gbm, 
KNN, CART, SVM, 

LR via GLM 
stacking ensemble 

2 (ideal and not 
ideal) 

98.15 

[102] 
PH, OC, 

Ca, Mg, Al 
- 

Boosted decision 
trees 

3 (highly fertile, 
fertile, and least 

fertile) 

0.76, 0.67, 0.65 for 
respective high, 

medium, and low 
fertility classes 

[87] 
PH, EC, N, 
P, K, OC, S, 
Fe, Mn, Zn 

127 

J48, KNN, JRip, NB, 
SVM, ANN with 
10Fold CV and % 

split 

2 (fertile and not 
fertile) 

97 

[108] 
PH, OC,EC, 

P, K, B 
144 

gated recurrent unit 
(GRU), deep belief 

network (DBN), and 

low, medium, and 
high for target 

classes, pH level 

0.9281% for fertility 
status, and 0.9497% 

for PH 
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bidirectional long 
short term memory 

(BiLSTM), and  
WVE 

divided into four 
classes strongly 

acidic, highly acidic, 
moderately acidic, 
and slightly acidic. 

[105] 
EC, K, pH, 
Mn, Zn, S, 
P, B, OC 

Unspecified 

Random Forest 
Classifier, Support 

Vector Machine, and 
Gaussian NB 

3 (Low, medium, 
and high) 

72.74%, 63.33%, 
50.78% 

[107] 

EC, OC, N2 
O, P2 O5, 

Fe, Mn, Zn, 
and B 

930 

NN, DL, SVR, RF, 
PLS, bagging and 
boosting, QR and 

extraTrees ensemble, 
Boruta, bstTree and 

gbm; QRF, cubist 
and svr. 

 

3 (Low, medium, 
and high) per 

element or 
compounds 

- OC (Acc= 86.45% 
Kappa= 69.60%) 

- Fe (Acc= 79.03% 
Kappa= 56.19%) 

- P2O5 (Acc= 79.46% 
Kappa= 52.51%) 

- Mn (Acc= 86.13% 
Kappa= 71.08%) 

- Zn (Acc= 97.63% 
Kappa= 81.03%) 

[109] 
PH, EC, Fe, 
Cu, Zn,Mn, 

OC, P, K 
1639 

J48, Naïve Bayes, 
Random Forest 

6 (Very low, Low, 
Medium, Medium 

high, high, very 
high) 

98.17, 77.18,97.92 

[106] 
PH, EC,OC, 
P, K, Fe,Zn, 

Mn, Cu 
Unidentified 

SVM, KNN, 
Decision Tree, Naïve 

Bayes 

3 (High, medium , 
low) 

60% 

5. Findings and Discussion 

In this Section, findings of this survey are presented and discussed. 

5.1. Identification of Soil Properties for modelling soil fertility status Prediction 

Based on previous research work of machine learning algorithms applications in soil analysis 
and predictions, a range of algorithms and soil parameters or variables that are used for analysis and 
prediction could be determined. It could be observed that, with respect to soil parameters the most 
used includes the chemical properties pH, primary nutrients of nitrogen, phosphorus, and 
potassium; electrical conductivity, organic carbon, and micro nutrients such as iron, manganese, 
copper, zinc and boron, soil texture is the mostly used physical properties, while biological properties 
are often less used, as shown in Figure 4 of the Soil Parameters Use Frequency. And Figure 5 presents 
the most frequently used ML algorithms in modelling for soil fertility status predictions. 
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Figure 4. Most Frequently used Soil Parameters for modelling for soil fertility status predictions. 

5.2. Identification of Applied Machine Learning Algorithms in Modelling soil fertility status Prediction 

With respect to the machine learning algorithms that were used to model soil nutrients and other 
chemical properties, as shown in Figure 5, it could be seen that the random forest and Naïve Bayes 
(NB) were equally predominantly most frequently used. That could be due to the strengths of the RF 
in merging together a number of individual DTs as described in sub section 1.3.1, and NB probably 
due to its ability to model even small datasets. 

 

Figure 5. Most Frequently used ML Algorithms in modelling for soil fertility status predictions. 

SVM, J48 the java version C.5 decision tree, and K-nearest neighbor followed. Next were the 
decision tree, JRIP, and the gaining popularity gradient boosting algorithms. Unfortunately, the 
artificial neural network seem to not have been most applied. The main reason could have been the 
fact that as shown in Table 2 the empirical results, from section 4, most of the dataset used in the 
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studies seemed not be too large enough to allow for the ANN to converge on smaller datasets which 
is one of ANN drawbacks highlighted in subsection 1.3.1. 

5.3. Exploited Features, Target Classes, and Reported Model Performances 

5.3.1. Exploited Features and Target Classes 

From the empirical literature review, as shown in Table 3, it could be observed that while in 
classifying soil properties, some studies used only two target classes low and high [87,101]; others 
used three [102,105,106,108,111], whereas up to six target classes which includes very low, low, 
medium, medium high, high, very high [109]. This of which could have positively or negatively 
impact site specific fine-tuned or optimal fertility restorations or preservation dosages. Whereby the 
actual fact of that impact could be determined only if field plantation experimentation would be 
conducted for validating the predictions provided thereof. Such experiments which are so far not 
disclosed by the involved researchers. Whereby three fertility class targets which were derived by 
using the K-means clustering algorithms with Knee detection method to determine the optimal 
number of clusters by [111] in another field maize plantation experimentation observe the impact of 
classification models predictions delivered and used as a guide to recommend for soil treatment 
using three number of optimal clusters as a representation of soil fertility class targets. 

Table 3. Exploited features with varied target classes. 

Author Number of Features Number of Target Classes 
[111] 15 3 
[101] 9 2 
[102] 5 3 
[87] 10 2 

[108] 6 3 
[105] 9 3 
[109] 9 6 
[106] 9 3 

5.3.2. Reported Model Performances 

As shown in Table 4, the models AUC-ROC performances in continuously providing for positive 
predictions of either of the soil fertility class targets using three fertility status levels low, medium 
and high seemed to be affected and vary with the number of features used, with the corresponding 
Plot of AUC-ROC Performances based on number of features portrayed in Figure 6 (a). This could 
deduced from observing studies by [111] and [102], which used similar number of class targets but 
reported different performance. Although, the context of the data being from two far different 
geographical location (South America in 102, and Africa in [111]) with different climatic and weather 
conditions might have accounted for such model performance variation, other than the number of 
features being different. This survey however, may overrule that assertion due the fact that the 
researcher or modeler in [111] use of the weighted voting ensemble (WVE) of heterogeneous 
classifiers technique for performance improvement could have been the reason behind such an 
improved performance with AUC-ROC of 0.82, 0.83, and 0.87 as compared to [102], which was 
observed to only use homogeneous boosted decision trees to achieve AUC-ROC of 0.65, 0.67, and 
0.76 for respective fertility class targets low, medium, and high. 

Whereas, the predictive performance was seen to be affected by not only the number of features 
used to model the fertility prediction classifiers, but also as shown in Figure 6 (a) and (b) by: The 
predictive accuracies were seen to be highly impacted by the modelling technique, whereby ensemble 
techniques showed better performance over the individual algorithm based models. And also,  the 
ensemble diversity which was observantly significant in influencing the model performance, 
whereby more heterogeneous  model members based ensemble in [111] that consisted of the GB, RF, 
SV, KNN, and DT WVE combination as shown in Table 2 in Section 4, slightly presented better 
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performances than the homogenous counterparts in [101] created by boosting individual C5.0 
models. 

Table 4. AUC-ROC Performances based on number of features. 

Author 
Number of 

Features 
ROC-Low ROC-Medium ROC-High 

[111] 15 0.82 0.83 0.87 
[102] 5 0.65 0.67 0.76 

 

  
(a) (b) 

Figure 6. (a) Plot of AUC-ROC Performances based on number of features; (b) Variations in reported 
soil fertility prediction model performances. 

6. Conclusions and Recommendations 

In this paper a survey of machine learning modelling for soil nutrients and other chemical 
properties analysis and soil fertility status prediction was presented. Empirical results showed that 
while the chemical properties potential Hydrogen (pH) is frequently used, the organic carbon, 
phosphorus, potassium, followed by iron, manganese, copper and zinc are the most frequently used 
soil nutrients for soil fertility prediction. With respect to machine learning modelling algorithms used 
to model these features, the Random Forest and Naïve Bayes were predominant as they showed high 
frequency in use, Followed by Support Vector Machine, K-Nearest Neighbors and J48, while Decision 
Trees, JRIP, and the Gradient Boosting which is now gaining popularity due to its proven abilities to 
fit data and model high performance models, were next in frequency of use. The survey could draw 
from various studies the use of a range of soil fertility target classes starting from two, three, up to 
six classes used targets for fertility status, with a study by [111] heuristically suggesting for three 
target classes as optimal for representation of fertility status. Finally, a varying range of model 
performances were observed from previous studies, with the highest reported accuracy being 98.93%, 
followed by 98.15%, and the model with the least performance had achieved only 60% prediction 
performance. While, the use of an ensemble of heterogeneous classifiers models for improving model 
predictive performance became slightly superior over homogenous ensemble,  it maintains the 
theoretical fact that ensemble with diverse members is favorable in the significant improvement of 
model performance. This fact which is cemented by the empirical findings ascertained in Figure 6 (b) 
of the reported soil fertility prediction model performances, whereby, it could be seen that although 
the homogenous ensemble in study in [101] attained a very good predictive accuracy of 98.15%, but 
was observably to be slightly outperformed by the heterogeneous ensemble in [111] that scored 
98.93%. 

While, the findings in this survey shows good promises to provide farmers and other relevant 
agricultural stakeholders with models that provide optimal analytical information and 

15

0.82 0.83 0.87

5

0.65 0.67 0.76

0
2
4
6
8

10
12
14
16

fe
at

ue
s 

co
un

ts
\A

U
C

[111]

[102]

98.93 98.15
92.81

60.00 

0

20

40

60

80

100

120

[111] [101] [108] [106]
A

cc
ur

ac
y 

(p
er

ce
na

tg
e)

Authors

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 August 2023                   doi:10.20944/preprints202308.1395.v1

https://doi.org/10.20944/preprints202308.1395.v1


 18 

 

recommendations for use in decision making through fine-tuned site specific treatments and 
management. As recommendations for further research and developments related to machine 
learning modelling for agricultural soil properties analysis and fertility status Predictions and use of 
machine learning in general: as there lacks studies focusing on implementation of ensemble methods 
for predicting soil fertility status by using soil nutrients and chemical properties data. Giving more 
considerations in their implementation could beneficial in delivering models with high performance 
as it could be seen from the results of the few reported studies. Also, inclusion of climatic and weather 
conditions data along with soil nutrients and chemical properties soil fertility could be considered in 
order to provide for a more feature exhaustive model which may addresses more characteristics that 
are necessary modelling a more comprehensive soil fertility ecosystem. Furthermore, researchers or 
machine learning engineers of the classical machine learning dependent on a prior exhaustive 
evaluation as with candidate algorithm model optimization through parameters tuning may also 
highly consider on improving predictive performances through ensembles such as WVE schemes of 
diverse models, which these in turn are subjected to optimization, in order to effectively improve 
model prediction performance, such as these for soil nutrients analysis and fertility status so as to 
manage agricultural soil fertility more precisely. Last but not least, machine learning related research 
and developments such applications in the more digitally artificial intelligent smart agricultural soil 
fertility under lacking systems regions may help in bridging the agricultural productivity gap and 
raise the agricultural efforts to corresponding gross domestic products ratios. In turn, this may speed 
up the making of a global food productivity and supply system become a reality, through smart 
fertility management systems which are one of the key fundamental factors necessary to improve 
crop growth and productivity. This which may lead to sustainability in in the insurance of food 
security for the rapid world’s population growth based on the observed Food and Agriculture 
Organization (FAO) population growth estimates that may come into sight. And most critically if 
carefully implemented in the most food under lacking regions it may deal with the current food 
shortages in those regions. 
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