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ABSTRACT 

In Tanzania, various studies have analyzed the impact of climate and land use/cover changes 

on water resources. However, information on the interactions between climate and land 

use/cover change, temporal and spatial variability of hydrological components and water 

quality at the local scale is insufficient. The objective of this study was to evaluate the 

hydrological response to climate and land use/cover changes in Ngorongoro Conservation Area 

(NCA) and surroundings. The study performed climate change analysis using outputs from a 

multi-model ensemble of Regional Climate Models (RCMs) and statistically downscaled 

Global Climate Models (GCMs). The CA–Markov model applied to project Land use/cover 

for the future 2025 and 2035. This study further used the Soil Water Assessment Tool (SWAT) 

modelling approaches to analyse the hydrological responses and HYDRUS 1D to determine 

the change in Groundwater quality due to climate and land use/cover changes. The analysis of 

climate change between historical period (1982-2011) and future period (2021-2050) indicated 

an increase in the mean annual rainfall and temperature, seasonal rainfall except June to 

September (JJAS) season which showed a decreasing trend. Spatially, rainfall and temperatures 

would increase over the entire area. The projected Land use/cover change for the period 2025 

to 2035 compared to the baseline 2016, showed a reduction in bushland, forest, water, and 

woodland, but an intensification in cultivated land, grassland, bare land, and the built-up area. 

The surface runoff, evapotranspiration, lateral flow, and water yield would significantly 

increase in the future, while groundwater would decrease under combined climate and land 

use/cover change. It is predicted that two anions (Cl− and PO4
−3) and two cations (Na+ and K+) 

would exceed the permissible limits for the drinking water set by the World Health organisation 

(WHO) and Tanzania Bureau of Standards (TBS), from 2036 to 2050. Changes in groundwater 

quality due to major cations and anions is significantly correlated to evapotranspiration and 

temperature with Pearson correlation (r) between 0.35 and 0.85.  Furthermore, correlate to the 

changes in all land use/ cover types with Pearson correlation (r) between 0.56 and 0.96. The 

results obtained provide further insight into future water resources management planning and 

adaptation strategies. 
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1 

CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

Water resources are the fundamental requirement for the communities' livelihood and socio-

economic development worldwide (Vörösmarty et al., 2010; Wada et al., 2010). However, 

water resources deprivation caused by factors like climate change, land use/cover changes, and 

unsustainable or improper management of water resources has resulted in freshwater 

unavailability in different parts of the world (Joshi et al., 2020; Kumar, 2017; Singh et al., 

2021). The provision of water resources is closely related to the hydrological processes, which 

are mainly affected by the climate and land use/cover changes (Al-Bakri et al., 2013; Chang  

& Franczyk, 2008). Climate and Land use/cover change influence water resources exploitation 

and depletion of its quantity and quality, particularly in arid and semiarid zones (Abou-Zaki et 

al., 2018; Macdonald et al., 2012; Yadav  & Hassanizadeh, 2011). Impacts of climate and land 

use/cover change on water resource depletion are likely to continue to increase in sub-Saharan 

Africa, particularly in arid and semi-arid regions, which are considered vulnerable (Onyutha et 

al., 2021; Vörösmarty et al., 2010). In Tanzania, water resource reductions have been reported 

in different parts of the country, including protected areas (Deus et al., 2013; Mkiramweni et 

al., 2016; Nyembo et al., 2022). In these areas, climate and land use/cover changes have been 

a concern in recent years as their impacts on water resources are significant for the environment 

and ecosystem (Deus et al., 2013; Mkiramweni et al., 2016).  

Assessing the impacts of land use/cover and climate change on water resources is challenge 

for hydrological research as boundary conditions change from site to site (Ty et al., 2012). 

However, predicting the simultaneous and interactive impacts of climate and land use/cover 

changes on the quantity and quality of water resources is a task that requires models from 

multiple disciplines (Näschen et al., 2019). Hydrological models play a vital role in 

understanding watershed behaviours and responses (Bárdossy  & Singh, 2008). In addition, 

these models provide valuable frameworks for investigating the changes in various 

hydrological pathways that are caused by climate and human activities (Andaryani et al., 2021; 

Fowler et al., 2007; Näschen et al., 2019). The hydrological responses to land use/cover and 

climate changes are often investigated through scenario simulations using the Soil Water 

Assessment Tool (SWAT) model (Näschen et al., 2019). However, for water quality, a public 

domain Windows-based modeling environment for analysis of water flow and solute transport 
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in variably saturated porous media (HYDRUS 1D) has been extensively used to investigate 

solute mass and concentration in the subsurface and groundwater (Šimůnek et al., 2008b). 

In Tanzania, different studies analyzed the impact of climate and Land use/cover change on 

water resources (Näschen et al., 2019; Notter et al., 2013; Twisa et al., 2020). The results of 

the studies differ due to several factors including the type of Land use/cover, the hydrologic 

nature of the area, the study period and chosen model used to simulate climate change. Few 

studies have analysed the impacts of changing climate on hydrologic processes using the 

downscaled data from Regional Climate Models (RCM) as input in the hydrological models 

(Hyandye et al., 2018; Näschen et al., 2019). The RCMs at their finer resolution simulates the 

detailed local climate conditions and provide future prediction, however, RCMs perform 

different from one location to another (Larbi et al., 2021). Other Studies also applied the land 

cover classifications and modelling techniques to assess the hydrologic responses on impact of 

land use/cover change in various parts Tanzania (Hyandye et al., 2018; Näschen et al., 2019; 

Twisa et al., 2020). These studies have shown the individual impact of either climate change, 

or land use/cover change on hydrology. However, the combined effect of climate and Land 

use/cover change on the hydrologic processes and water resources quality are not adequately 

analyzed, especially in the conserved areas. 

The Ngorongoro conservation area (NCA) is internationally recognized for its scenic beauty, 

spectacular wildlife, and natural ecosystem. It is also exceptional for its inventive joint land-

use policy, which integrates wildlife conservation and human activities in the world 

(Deocampo, 2004; Masao et al., 2015).  The NCA is one of the main tourist destinations and 

the most visited conserved area in Tanzania and East Africa (Melita  & Mendlinger, 2013). 

During the dry season, wildlife, Maasai communities, and migratory species from Serengeti 

National Park are highly dependent on available water resources in the NCA (Estes et al., 

2006). However, water availability for human and wildlife consumption in the NCA and the 

surrounding areas have been decreasing since the 2000s due to reduced rainfall and prolonged 

drought conditions (Estes et al., 2006; Leweri et al., 2021; Mkiramweni et al., 2016). The 

reduction of water resource in the NCA and the surroundings has significantly impacted local 

communities, wildlife tourism, and the country’s economy. However, there is inadequate 

information about climate and land use/cover change effects on water resources in the NCA 

and surrounding catchments. Therefore, studies on the climate and land use/cover change 

impacts to water resources around the NCA are highly encouraged (Mkiramweni et al., 2016). 

This study was carried out to describe the response of hydrological processes in the NCA and 
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surrounding catchments to climate change and land use/cover change. Furthermore, due to the 

increased groundwater utilization in the study area, this study also analyzed the impact of 

climate change and land use cove change on groundwater quality.  

This study assessed precipitation and temperature projections and their impact on water 

resources in the NCA and surrounding catchments. In this assessment, the study used an 

ensemble mean of four bias-corrected regional climate models and simulations from the 

Statistical Downscaling System Model (SDSM) (Wilby et al., 2002) and the Long Ashton 

Research Station Weather Generator (LARS-WG) (Semenov & Stratonovitch, 2010). 

Furthermore, the study analyzed the land use/cover change of Ngorongoro Conservation Area 

(NCA) and its surroundings using Remote Sensing and Geographical Information System 

(GIS) integrated with Cellular Automata-Markov model. The output from climate and land 

use/cover models was applied in the SWAT model to perform scenario based analysis to 

determine the hydrologic response of climate and land use/ cover change. Additionally, the 

study applied to the HYDRUD 1D model to determine the movement of major cations and 

anions to the ground water due to climate and land use/cover changes. The information 

generated from this study is important for sustainable water resources management plan and 

for reducing and /or mitigating the threats posed by water scarcity and stress on the ecosystem 

and human welfare. Moreover, the study established the baseline information of groundwater 

quality which is necessary to guide the management of water resources and ecological 

monitoring for the NCA and surroundings. 

1.2 Statement of the Problem 

In Tanzania, changes in water resources have been reported from various parts of the country, 

including protected areas. In these areas, water resources play a critical role in conservation 

practices, human well-being and providing habitats for wildlife, including migratory species, 

during the dry season. Several studies (Estes et al., 2006; Mkiramweni et al., 2016; Nyembo 

et al., 2022) reported a decline in water resources due to prolonged drought conditions and 

increased human activity in the NCA and surrounding areas. This condition results in reduced 

hydrological services, which has a significant impact on local communities, wildlife tourism 

and the economy. Various studies have analyzed the impact of climate and land use/cover 

changes on water resources in different areas of Tanzania (Hyandye et al., 2018; Näschen et 

al., 2019; Notter et al., 2013; Twisa et al., 2020).  These studies have analyzed the effects of 

climate and land use/cover changes using hydrological models ranging from very simple water 
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balance models to complex models, which can simulate a variety of water resource 

components. These studies have improved our understanding of the impact of climate and land 

use/cover change on hydrology and water resources. However, determining how climate and 

land use/cover changes might affect hydrological conditions at the local scale is still a 

challenge. The challenge arises from the uncertain magnitude of climate and land use/cover 

changes at the local scale, particularly in areas with scarce data. In these areas, the performance 

of the hydrological models varied between catchments as well as between sub-catchments 

within a large catchment. The variations in hydrological modeling explained the heterogeneous 

effects of catchment properties, variations in local climate conditions and prevailing 

hydrological regimes. This condition creates a knowledge gap in understanding the interaction 

between climate change and changes in land use/land cover on temporal and spatial variations 

of hydrological variables (e.g., surface and groundwater recharge and runoff, 

evapotranspiration, and so on), as well as groundwater quality at the local scale. Studies 

addressing both climate change, land use/cover change and watershed hydrological processes 

are among the priorities for water management issues and for reducing a gap between current 

knowledge and policy needs. Therefore, this study aimed to carry out a scenario analysis 

approach to evaluate the hydrological response of water resources to climate change and land 

use change; to ensure the sustainability of water resources in wildlife hotspot areas. The 

outcome of this study will provide the essential information to guide the development of a 

water resource management plan for sustainable water resources available for ecosystem 

human well-being, as well as for adaptation and mitigation measures. 

1.3 Rationale of the Study 

The study area covers tourist centers with a unique ecosystem which integrates humans and 

wildlife. It includes the Ngorongoro conservation area (NCA), the most visited conserved area 

in Tanzania and East Africa (Melita  & Mendlinger, 2013). The high number of tourists visiting 

the area generates millions of dollars and supports many jobs. The area is also essential for 

migratory species from Serengeti national park during the dry season (Estes et al., 2006). 

However, water availability for human consumption and wildlife has remarkably decreased 

since the 2000s due to climate change and land use/cover changes (Mkiramweni et al., 2016). 

This condition may lead to reduced hydrological services, significantly impacting local 

communities, wildlife tourism, and the economy. In this regard, appropriate studies are 

necessary to analyze and characterize how hydrological systems respond to the changes to 
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enable policymakers to develop better adaptation strategies. These studies will provide a 

framework to ensure the sustainability of water resources in the wildlife hotspot areas. 

Furthermore, will provide vital information that will guide the development of a water resource 

management plan. This information will enable policymakers to develop better adaptation 

strategies for sustainable water resources available for the human welfare ecosystem and 

climate change impact adaptation and mitigation measures. 

1.4 Research Objectives 

1.4.1 Main Objective 

The main objective of this study is to evaluate the response of hydrological components to 

climate and land use/cover changes for future water resources management and sustainable 

development. This work is supported by four specific objectives, which include:   

1.4.2 Specific Objectives 

(i) To evaluate temporal and spatial changes of climate in the study area for the future 

period, 2021-2050 compared to baseline 1982-2011. 

(ii) To examine the land use/cover change between 1995 and 2016 and model the future 

scenarios for 2025 and 2036 in the study area.  

(iii) To model the response of hydrological processes (runoffs and stream flows) to future 

(2021-2050) climate change compared to baseline (1982-2011), and land use/cover 

change of 2025 and 2035 compared to baseline 2016 in the study area. 

(iv) To characterize the hydrochemical composition of water resources in the study area and 

analyze their movement to groundwater as influenced by climate and land use/cover 

changes in the study area. 

1.5 Research Questions 

(i) How would climate changes in space and time for the future 2021-2050in the study 

area? 

(ii) How did land use/cover change between 1995 and 2016, and what would be the future 

change? 
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(iii) How do hydrological processes in the study area respond to climate and land use/cover 

change? 

(iv) What is the hydrochemical composition of water sources in the study area in the natural 

state, and how does climate change influence their movement to the groundwater? 

1.6 Significance of the Study 

The present study is for the watersheds surrounding the Ngorongoro Conservation Area (NCA) 

in Northern Tanzania. The NCA is one of the major tourist and biodiversity hotspots on the 

African continent and an essential ecosystem for migrating wildlife species from the Serengeti 

national park during the dry season (Estes et al., 2006; Mkiramweni et al., 2016). The area is 

at high risk of climate change impacts due to the increased frequency of drought conditions 

and limited water resources for the local community and wildlife (Mkiramweni et al., 2016). 

Given the area’s high sensitivity to climate extremes and land use/cover changes, an in-depth 

study at the local scale is urgently needed to develop long-term adaptation strategies. As a 

result, this research aimed to conduct a scenario-based analysis of hydrological responses to 

climate and land use/cover change for water resources management plan. Effective water 

management under changing conditions, in particular, necessitates reliable data on flows and 

models that can be used to simulate flow regimes under various land use and climate scenarios. 

1.7 Delineation of the Study 

This research focuses on the Tanzania mainland in the conservation areas of Northern 

Tanzania, mainly the Ngorongoro Conservation Area (NCA) and the surrounding regions. The 

study performed climate downscaling and land use/ cover modelling to determine the 

hydrological response to future climate and land use/cover change in NCA and surrounding 

catchments. The SWAT modelling approach was applied to determine the quantitative impacts. 

In contrast, the HYDRUS 1D model was applied to determine water quality’s hydrochemical 

movement from surface to groundwater. The National Institute of Hydrology (NIH) Laboratory 

at the Indian Institute of Technology Roorkee (IITR), India, analyzed the sample for key 

cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, SO4
2-, NO3

-, PO4
3-). The water samples were 

analyzed using an ion chromatograph instrument (930 Compact IC Flex model). The 

concentration of major cations and anions 
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The major limitation of this study was data scarcity in the study area for climate change analysis 

and hydrological modeling. The most critical but also most limiting was discharge data, which 

was available in a time series from 1975 to 1989 at downstream gauging stations of Mtowambu 

and Hynu. Only eight years (1982-1989) of the existing discharge data were suitable for SWAT 

model setup (model warm-up (1982-1984), calibration (1985 -1987) and validation (1988-

1989), which could minimize the confidence of SWAT model in simulating changes in the 

hydrological components. Furthermore, the observed climate data was unavailable in the study 

area. Therefore, the study used satellite-based climate data with time series from 1982 to 2020 

for historical climate information. The satellite-based data have some constraints in capturing 

daily rainfall events, which limits this study from assessing the possible climate extremes in 

the study area.  The use of satellite-based climate data and downscaling of GCMs and RCMs 

scenarios may lead to uncertainties in the output results, likewise, the unavailability of good 

time series of discharge data for model calibrations and validations. Therefore, the 

interpretation of the results should consider these limitations. However, the results from this 

study provide a valuable framework for water resource management plans, better conservation 

practices around the NCA, and adaptation strategies. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

This Chapter provides a summary of the reviewed literature which enabled this study. This 

study performed the climate downscaling and climate change analysis, land use /cover analysis 

and prediction, and modelled the hydrological responses to climate and land use/cover changes. 

Furthermore, the study analyzed the statistical relationship between climate and land use/cover 

components with hydrochemical transport to the groundwater. Therefore the reviewed 

literature focused on that subject as follows. 

2.2 Climate Change and Climate Downscaling 

Climate change is a change in the average weather patterns during an extended period of time 

(from decades to millions of years) (Haunschild et al., 2016). The United Nations Framework 

Convention on Climate Change (UNFCCC) refers to climate change only to the anthropogenic 

changes over comparable periods. However, the intergovernmental panel on climate change 

(IPCC) regards climate change as both natural variability and human-induced change, even 

though most of the observed increase in global average temperature since the mid-twentieth 

century is likely related to the anthropogenic activity (Scott et al., 2016).   

The IPCC reported the increase in the greenhouse gases such as carbon dioxide (CO2), methane 

(CH4) nitrous oxide (N2O) due to anthropogenic activities (Aggarwal, 2007; Parry et al., 2007). 

This report has indicated that global temperature has risen by 0.74°C from 1906-to 2005 at the 

rate of 0.13°C /10year for the past half-century due to the increase of greenhouses in the 

atmosphere. A further rise in temperature of about 1.1- 6.4°C has also been predicted during 

the next century (Pachauri et al., 2014). Long term changes (1906-2005) in rainfall have also 

been reported in different parts of the globe, with more extended drought over a large area from 

1970 (Pachauri et al., 2014).  

This study consider a climate change for a period of 30 years including 1982-2011 baseline 

period to compare with 2021-2050 future climate under Representative Concentration 

Pathways (RCPs) 4.5 and 8.5). The analysis of climate change mostly relies on the Global 

circulation Models (GCM) and Regional Climate Model (RCM); however, these models are 

reported as less capable of capturing local scale change (Gebrechorkos et al., 2019; Gulacha  
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& Mulungu, 2017; Luhunga et al., 2018; Wilby et al., 2002). These models cannot resolve 

small-scale features like clouds and topography, reducing their capability to capture local 

climate; however, the downscaling approach was established (Gebrechorkos et al., 2019; 

Huang et al., 2011; Li et al., 2019).  

Downscaling approach is of two major types, dynamic downscaling and statistical 

downscaling. Dynamical downscaling is based on using a Regional Climate Model (RCMs), 

which is similar to a GCM in its principles but with much higher resolution. The RCMs take 

the large-scale atmospheric information supplied by GCM output at the lateral boundaries.  It 

incorporate more complex topography in order to generate realistic climate information at a 

spatial resolution of approximately 20 - 50 kilometres (Gebrechorkos et al., 2019; Wilby  & 

Dawson, 2013). Dynamic downscaling depends heavily on the choice of RCMs and physics 

parameterization. Additionally, errors can occur when RCMs consider GCM's biases as 

internal variability or true boundary forcing (Zorita  & Von-Storch, 1999).  

In contrast to dynamical downscaling, statistical downscaling techniques involve establishing 

empirical relationships between large-scale atmospheric predictors and local climate variables. 

Once the relationships are determined and validated, the GSM-predicted future atmospheric 

variables predict future local climate variables (Wilby et al., 2002). The statistical downscaling 

model’s challenge is the need for long-term data for at least  30 years to build a reliable 

statistical relationship between predictors and predictands (Li et al., 2019; Wilby et al., 2002). 

Statistical downscaling is cheap in the computation process and can provide the local scale 

information needed for impact analysis studies.  

However, this approach is based on the key assumption that current large-scale circulation and 

local climate relationships are still valid under a variety of possible forcing conditions in future 

climatic zones (Zorita  &Von-Storch, 1999).  In the dynamical downscaling, the internal 

variability in a Regional Climate Model can become large if the local processes that contribute 

to the climate are changing. This weakness in Dynamical Downscaling has led to the continued 

employment of statistical downscaling or bias correction in order to use dynamic downscaled 

information for application studies (Sieck & Jacob, 2016).  

The statistical downscaling has been applied by different scholars in East Africa at the regional 

or local scale using the GCM output (Gebrechorkos et al., 2019; Gulacha & Mulungu, 2017). 

However, few have performed the statistical downscaling in Tanzania for hydrological impact 
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assessment (Ayugi et al., 2021; Shagega et al., 2019; Tibangayuka et al., 2022; Wambura, 

2014). However, most of these studies were carried out at the regional level, which are less 

relevant for planning and managing water resource infrastructures at the catchment scale 

(Pachauri & Meyer, 2014). Furthermore, each catchment possesses different information 

regarding climate change impacts; therefore, hydro-climatic studies at the watershed level are 

necessary (Mbungu  & Kashaigili, 2017).  

Rainfall and temperature are two main climatological elements that affect the hydrological 

processes. It has been found that the prediction of these elements is complex in tropical areas 

like Tanzania (Gulacha  & Mulungu, 2017; Wambura et al., 2014). Small scale convective 

processes mainly control the rainfall in Tanzania; hence modelling the future changes needs a 

downscaling approach at a local scale (Luhunga et al., 2018).  

The Statistical Downscaling System Model (SDSM) is one of the most applied climate 

downscaling models for regional and local climate impact studies. The SDSM is an open-

access software developed using a stochastic weather generator and transferred statistical 

function method. The SDSM is designed to statistically downscale simulated climate 

information from either coarse-resolution GCM output or large atmospheric variables to high-

resolution forms needed for local impact studies using predictors and predictands 

(Gebrechorkos et al., 2019; Hashmi et al., 2011). The SDSM uses multivariate linear regression 

to simulate future climate scenarios by combining stochastic weather generator and transfer 

function models (Wilby et al., 2002). The stochastic data was included in the SDSM to improve 

the model’s performance in reproducing the observed daily series by inflating the model output 

variance (Wilby et al., 2002).  

Apart from SDSM, other statistical downscaling models exist, for instance, LARS-WG, which 

is a stochastic weather generator designed to simulate the daily climate data at a station scale 

for climate change impact studies (Chen et al., 2013; Chisanga et al., 2020; Hassan et al., 2014; 

Semenov & Barrow, 2002). The LARS-WG is a numerical model which synthesizes daily time 

series of various climate variables, such as precipitation, temperature and solar radiation, with 

certain statistical properties (Racsko et al., 1991; Richardson, 1981; Richardson  & Wright, 

1984), which resembles the daily series at the station level.  

There are various advantages to developing stochastic weather generators and using synthetic 

weather data instead of observed weather data. For instance, the production of long-enough 

weather data time series to be used in risk assessments in hydrological or agricultural 
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applications (Semenov et al., 1998). The usefulness of the SDSM and LARS-WG is linked to 

their ability to capture inter-annual climate variability (Gebrechorkos et al., 2019; Hashmi et 

al., 2011; Hassan et al., 2014). Furthermore, in the absence of ground-based data, high-

resolution satellite-based products and reanalysis products may be used to generate high 

resolution station-based rainfall and temperature weather series (Gebrechorkos et al., 2019; 

Saraf  & Regulwar, 2016).  

Despite the significant progress in climate change impact assessment studies, a comprehensive 

basin-scale study attributable to national level water availability is necessary for Tanzania. 

Also, little is known about climate change impacts on hydrology and water resources in 

Tanzania, particularly at the watershed level. Moreover, there are limited studies carried out 

using statistical downscaling to assess the impacts of climate change at a local scale 

(Gebrechorkos et al., 2019; Gulacha  & Mulungu, 2017).  

Downscaling is a key step in understanding future climate impacts at a watershed level, as the 

underlying processes that determine impact require an understanding of the local climate and 

its drivers, such as topography (Gebrechorkos et al., 2019). The watershed modeler may use 

downscaled GCM products to calculate the best water resources. There are many different 

downscaling methods and techniques available, so it is important to understand which one is 

best for specific study and location (Zorita  & Von-Storch, 1999) as hydrological possesses are 

site-specific.  

This study applied the SDSM and LARS-WG to simulate the rainfall and temperature scenarios 

for future 2021-2050 from GCM to point (station scale). The study used fourteen gridded daily 

rainfall point data from the Climate Hazards Group Infrared Precipitation with Station 

(CHIRPS) with 0.05°spatial resolution (Funk et al., 2015). In addition, the study used 

maximum and minimum Modern-Era Retrospective analysis for Research and Applications, 

version 2 (MERRA-2) temperature data with 0.5°spatial resolution. The MERRA-2 was 

obtained from the National Aeronautics and Space Administration of Worldwide Energy 

Resource (NASA POWER) project (Westberg et al., 2013). The data were extracted the period 

of 30 years (1982-2011) which was considered as a baseline climate condition. 

 Statistical downscaling could be appropriate for this study as it is located in heterogeneous 

areas where point scale information is required. However, this study opted to assess rainfall 

and temperature projections and its impact on the water Resources using a Hybrid of 

dynamically and statistically downscaled data (Adeyeri et al., 2020; Larbi et al., 2021). The 
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study used an ensemble mean of four bias-corrected four CORDEX RCMS and output from 

SDSM and LARS-WG simulations for climate change analysis and hydrological model input. 

2.3 Land use/cover Change  

Land use/cover change is a topic that has inspired a diversity of research efforts and resulted 

in various approaches to identify past change and forecasting future development. The phrases 

Land use and Land cover are not practically similar; this study draws attention to their distinct 

qualities to distinguish them. Scientists have different definitions of land use and land cover; 

for example Ellis  and Pontius (2006) refer to land cover as the physical and biological cover 

over the surface of the land, including water, vegetation, bare soil, and/or artificial structures. 

However, other scientists argued that land use encompasses both the technique in which the 

land's biophysical features are altered and the intent underlying that manipulation, the purpose 

for which the land is utilized (Millette et al., 1995).  

Furthermore, Turner et al. (2007) distinguish between land cover and land use by terming what 

can be seen, such as grass or a building, as a land cover while how land types are actually used, 

such as grassland for cattle grazing or water bodies for irrigation as land use. However, this 

study will often use the word land use/cover throughout to refer to both the land cover and the 

actual land usage. Land use/cover change is recognized as a complex process resulting from 

the mutual relationship between natural environmental and human activities at various 

geographical and temporal dimensions (Rindfuss et al., 2004; Valbuena et al., 2008).  

Globally variations in land use/cover are the key anthropogenic drivers of ecological change 

on all time-based and spatial scales (Lambin et al., 2003; Näschen et al., 2019; Turner et al., 

2007). These changes are complex and caused by many factors, including physical and human 

factors (Huang et al., 2008). Furthermore, they encompass ecological fears, including; 

biodiversity loss, climate change, and natural resource pollution such as soils, water and air 

(Slingenberg et al., 2009; Twisa et al., 2020). Land use/cover change has developed unique 

concerns in natural resource control and sustainable development on a local and global scale 

(Foley et al., 2005; Fu et al., 2015; Yirsaw et al., 2017). Furthermore, monitoring and 

mitigating the adverse effects of land use/cover while supporting fundamental resource 

production has become a key priority for policymakers and researchers worldwide (Ansari  & 

Golabi, 2019). 
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 Impacts of Land use/cover change on ecological changes are commonly studied in several 

areas using multi-temporal image methods (Basommi et al., 2016). The studies revealed that 

human actions and natural disturbances are the fundamental drivers of Land use/cover changes 

(Lamichhane, 2008; Mishra et al., 2014; Singh et al., 2018). Also, findings acknowledged 

agricultural development and population growth as the major drivers of land use/cover changes 

(Chomitz  & Thomas, 2003; Defries  & Rosenzweig, 2010; Kindu et al., 2015; Mannan et al., 

2018; Pullanikkatil et al., 2016; Serneels et al., 2001; Solomon et al., 2019). Stress on changed 

land uses are rising worldwide, and examining the consequences of Land use/cover change 

patterns on natural resources is necessary for future generations (Munthali et al., 2020).  

Tanzania, like many other countries, experienced land use/cover changes over the past decades, 

while very few studies have been conducted to predict future land use/cover change in the 

country (Näschen et al., 2019; Twisa  & Buchroithner, 2019). Studies that assess Land 

use/cover change patterns to monitor changes with a focus on the conservation of ecosystem 

services are urgently needed. These will benefit the country to monitor natural resources and 

strategies toward sustainable development to ensure ecosystem service wellbeing in future (Lu 

et al., 2022). Therefore, one of the objectives of this study is to analyze the land use/cover 

patterns of the Ngorongoro Conservation Area (NCA) and monitor the land use /cover over the 

area.  

The NCA is the habitat of the world’s predator animals (lions, leopards, cheetahs, and spotted 

hyenas) and major herds, such as wildebeest, gazelles, and zebras which attracts the tourism 

activities (Estes  & Small, 1981; Kabigumila, 1993). However, the NCA’s attraction and 

economic potential due to organized safari tourism come with its challenges, including 

increasing human activities (Charnley, 2005; Nyahongo et al., 2009). Several human activities 

result in increased environmental degradation (Nyahongo et al., 2009) by causing competition 

among different land users. Therefore, the Land use/cover change and future NCA pattern 

study are crucial for successful management strategies of ecosystem services in this World 

Heritage Site. 

Different models have been established to forecast and simulate Land use/cover change, 

including artificial neural networks, statistical analysis, cellular automata, and Markov chain 

(Chen et al., 2021; Koomen et al., 2018; Subedi et al., 2013). Several studies indicate that the 

CA–Markov model, when combined with RS and GIS; the combination creates a suitable 

method for studying the changes of land use/cover change (Aliani et al., 2019; Li & Reynolds, 
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1997; Myint  & Wang, 2006). The  CA–Markov model is a robust method in modelling Land 

use/cover change,  changes since RS can be well incorporated (Kamusoko et al., 2011). The 

CA–Markov model understands the temporal succession and spatial projections of the Markov 

and CA theory, and it can be used to conduct pattern simulation (Sang et al., 2011). The CA–

Markov model similarly reflects the Land use/cover change, changes’ suitability and the 

influence of natural, economic, and societal factors concerning land use/cover changes (Twisa  

& Buchroithner, 2019).  

Numerous studies used CA-Markov, including Geographical Information System (GIS) and 

Remote Sensing (RS) techniques, in land use/cover modeling and simulation (Baja et al., 2014; 

Kityuttachai et al., 2013; Subedi et al., 2013). Based on the previous investigation and the 

current trend toward land use/cover change projection, this study examined the Land use/cover 

change using the CA–Markov model. The CA-Markov approach is suitable for this study as it 

incorporate GIS and RS  to quantitatively estimate the spatial and temporal land use/cover 

dynamic (Arsanjani et al., 2013; Mishra  & Rai, 2016). Application of GIS and remote sensing 

with the CA-Markov model reduce the cost and time needed for analysis (Arsanjani et al., 

2013). The output of this research will contribute to the existing or assist build a new scientific 

knowledge base on the spatial-temporal change of land use/cover change and link to ecosystem 

services of NCA. This will benefit the all stakeholders including natural resource professionals, 

policymakers, researchers as well as community regarding sustainable management and 

monitoring of land use and ecosystem services including water resources availability. 

2.4 Impact of Climate Change and Land use/cover Change and Water Resources 

Climate change is one of the major drivers that affect the energy and mass balance of the water 

resources, including the intensification of the water cycle (Huntington, 2006), which makes the 

hydrological patterns very likely to be different under different climates scenarios (Jarvie et 

al., 2008). Under natural conditions, climate conditions are considered one of the major 

influences of hydrological variations with crucial social and economic implications for water 

resources (Bornschein  & Pohl, 2018; Chang  & Bonnette, 2016). Any water bodies like rivers, 

lakes, reservoirs, springs and swamps are considered a water sources (Chang  & Bonnette, 

2016). Climate change's impact on the water sources may include any changes in river 

discharges, lake levels and wetland due to changes in climate parameters such as precipitation, 

temperature (maximum and minimum), relative humidity and evapotranspiration (Chiew  & 

Mcmahon, 2002).  
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There is considerable evidence underlining the decline in the volumes of water stored in lakes 

and rivers due to the decrease in long-term average precipitation and runoff and increased 

evaporation rates (Sharma et al., 2021). These conditions necessitate the study on water sources 

and their interaction with climate change for development of water resources management 

plans. Better scientific understanding of the link between hydrological processes and climatic 

conditions and changes is thus a key issue for effective water resource management and its 

climate adaptation (Koutsouris et al., 2010; Yira et al., 2016).  However, managing 

hydrological services cannot operate without monitoring or adaptive management.  

Furthermore, land use/cover change is another driver that can have an impact on water 

resources and should be considered in hydrological studies. Changes in land use/cover have 

been shown to have a significant impact on regional hydrology (Näschen et al., 2019). As a 

result, hydrological impact assessment studies may be unrealistic if the influence of land-use 

change is not included (Giertz et al., 2005; Yira et al., 2016). A significant increase in changes 

in several forms of land use/cover (e.g., urbanization, deforestation, and agriculture) has been 

reported as a result of global population growth posing difficulties to water resource 

availability (Abdulkareem et al., 2018). Globally, water resources have been under intense 

stress to meet the requirements of an expanding population. As a result, in many locations, the 

future availability of appropriate quantities of water for agricultural and human purposes has 

become uncertain (Rosegrant et al., 2009; Torbick et al., 2006). Land use/cover change 

seriously affects water resources (Pervez  & Henebry, 2015).  

Land use/cover change is the most direct factor of the interaction between human activities and 

the natural environment that link directly to the hydrological processes (Liu et al., 2014), which 

impact the condition of water resources' availability. Increased land use/cover changes impact 

water resources primarily through plant interception, evapotranspiration, runoff, surface 

infiltration, soil moisture status, and so on, influencing the process of watershed hydrology and 

water resource cycles (Zhu et al., 2018).  

Water resources are impacted by both climate change and land use/cover change regarding 

water quantity and quality. Therefore, research into the effects of climate change and land 

use/cover change on stream flow and water quality within a river basin has become a hot issue 

in hydrology and water resource studies (Liu et al., 2017). Several studies have been done on 

this topic (Defries  & Eshleman, 2004; Ed-Chaves et al., 2020; Twisa et al., 2020; Wang et al., 
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2014; Zhu et al., 2018). Currently, hydrological models are the most widely applied method to 

quantify the hydrological conditions of water sources (Zhao et al., 2010).  

2.5 Hydrological Models 

Hydrological models are among the available tools used to predict water quantity and quality 

for decision makers (Chow et al., 1988). Some of these models could also predict the impact 

of natural and anthropogenic changes on water resources and also quantify the spatial and 

temporal availability of resources. However, the challenges lie in the selection and use of these 

models for a specific basin and management plan (Maliehe & Mulungu, 2017). The 

hydrological models treat the water cycle as a system comprising its various components as 

inputs such as precipitation and outputs such as runoff, using a set of equations linking inputs 

and outputs (Chow et al., 1988).  When classifying models, stochastic and deterministic models 

are often considered to be at the top level of the classification tree, according to the way they 

treat the randomness of hydrological phenomena  (Chow et al., 1988).  

Stochastic models use local hydrometric data to predict flows. These models allow for some 

randomness, leading to different outcomes, and are based on analysis of past events, typically 

rainfall and river discharge (Akhtar et al., 2009; Tesfaye et al., 2006). Deterministic models 

generally produce a single output of runoff for a given rainfall under identical physical 

environments.  Deterministic models can be classified as; lumped models, in which a variable 

or parameter is assumed to have an average value for the entire catchment; and distributed 

models, in which all variables and parameters have different values that account for spatial 

variation in the catchment (Daggupati et al., 2015; Zeng et al., 2018).   

Deterministic models can be further classified into empirical, conceptual, and physically based 

models.  Empirical models, which are usually lumped together, are based on analyzes of 

parallel input-output time series without explicitly considering physical processes (Daniel et 

al., 2011; Faiz et al., 2018). One of the newer methods in this category is an Artificial Neural 

Network (ANN) model that can learn recursively from the data, also known as a data-driven 

model (Antar et al., 2006; Govindaraju, 2000). Conceptual models, which can be aggregated 

or distributed, generally consist of mathematical descriptions of the processes of catchment 

response. These models represent the catchment as integrated conceptual components, but also 

include some aspects of physical processes. Some examples of conceptual models are the Soil 
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and Water Assessment Tool (Arnold et al., 1998) and the HYDRUS 1D model (Šimůnek et 

al., 2008). 

2.6 Soil and Water Assessment Tool  

The Soil and Water Assessment Tool model is a continuation of nearly 30 years of modeling 

efforts conducted by the USDA Agricultural Research Service (ARS). The Soil and Water 

Assessment Tool model (Arnold  & Fohrer, 2005; Arnold et al., 1998) has proven to be an 

effective tool for assessing water resource and non-point pollution issues for a variety of scales 

and environmental conditions around the world proven. The development of SWAT is a 

continuation of USDA Agricultural Research Service modeling experience spanning 

approximately 30 years.  

The early origins of SWAT can be traced back to previously developed USDA-ARS models, 

including the Chemicals, Runoff, and Erosion from Agricultural Management Systems 

(CREAMS) model (Knisel, 1980), the Groundwater Loading Effects on Agricultural 

Management Systems (GLEAMS) model (Leonard et al., 1987) and the Environmental Impact 

Policy Climate (EPIC) model (Izaurralde et al., 2006), originally called the Erosion 

Productivity Impact Calculator (Williams, 1990).  

The current SWAT model is a direct descendant of the Simulator for Water Resources in Rural 

Basins (SWRRB) model (Arnold  & Williams, 1987), which was developed to calculate the 

effects of management on water and sediment movement for ungauged rural basins in to 

simulate the United States.  

The SWRRB development began in the early 1980s with a modification of the CREAMS daily 

precipitation hydrology model. A major improvement was the extension of surface runoff and 

other calculations for up to ten sub-basins, as opposed to a single field, to predict the water 

yield of the basin (Arnold  & Williams, 1987). Other improvements included an improved peak 

runoff rate method, calculation of transmission losses, and the addition of several new 

components: groundwater return flow, reservoir storage, the EPIC crop growth sub-model, a 

weather generator, and sediment transport (Arnold et al., 1993). These modifications enhanced 

the model's ability to cope with a wide variety of water quality management problems in 

catchment areas.  
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Arnold et al. (1995), developed the Routing Outputs to Outlet (ROTO) model in the early 

1990s to aid in evaluating the downstream impacts of water management on Indian reservation 

lands in Arizona and New Mexico; covering several thousand square kilometers, as required 

by the US Bureau of Indian Affairs. The analysis was performed by linking the results of 

multiple SWRRB runs and then routing the flows through channels and reservoirs in ROTO 

via a reach-routing approach (Arnold et al., 1995). This methodology overcame the SWRRB 

restriction of only allowing ten sub-basins; however, inputting and outputting multiple 

SWRRB files was cumbersome and required significant computer memory.  

To overcome the awkwardness of this arrangement, the SWRRB and ROTO were merged into 

a single SWAT model (Arnold et al., 1998). The SWAT retained all of the features that made 

SWRRB such a valuable simulation model, while allowing simulations of very large areas. The 

SWAT has been continuously reviewed and expanded since its inception in the early 1990s 

(Arnold et al., 1998). Important improvements for previous versions of the model (SWAT 94.2, 

96.2, 98.1, 99.2 and 2000) are reported by Arnold  and Fohrer (2005) and Neitsch (2005), 

including the incorporation of instream kinetics routines from the QUAL2E model (Brown  & 

Barnwell, 1987). The latest version is SWAT 2012 and it source code is freely available online 

(https://swat.tamu.edu/). The SWAT model operates on a daily time step and is designed to 

predict the impact of land use and management on water, sediment, and agricultural chemical 

yields in unmeasured watersheds (Arnold et al., 2010; Gassman et al., 2010).  

The SWAT model has been used to project the effects of climate and land use/cover change on 

streamflow in both small watersheds and large river basins (Arnold  & Fohrer, 2005; Dosdogru 

et al., 2020; Gassman et al., 2014).  In addition, SWAT has been used for urban and mixed-

use watershed modeling (Dixon  & Earls, 2012; Eshtawi et al., 2016) and is capable of 

simulating flashy urban storm runoff using sub-hourly time steps (Arnold et al., 2010; Jeong 

et al., 2010).  

Model performance has been comprehensively assessed over the last 30 years (Arnold  & 

Fohrer, 2005; Gassman et al., 2007). Despite having been designed for the U.S condition, 

studies have shown favorable results from many countries with differing site conditions across 

watersheds (Ghaffari et al., 2010; Krysanova  & Srinivasan, 2015). The SWAT supports 

varying applications ranging from simulating Land use/cover change impacts, climate change, 

best management practices for chemicals, irrigation and bacteria management, and sediment 

and nutrient loading on different watersheds (Lamba et al., 2016; Milewski et al., 2014). 
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Model calibration in SWAT involves altering or adjusting model parameters, within the 

recommended ranges, based on observed data to ensure the same response over time (Arnold 

et al., 2012; Gashaw et al., 2018; Vilaysane et al., 2015). However, the validation involves 

checking the representation of the parameters by simulating the observed data with an 

independent data set without adjusting model parameters (Arnold et al., 2010; Vilaysane et al., 

2015). 

2.7 HYDRUS 1D Model  

Over the years, various HYDRUS code software (e.g., SWMS-2D, CHAIN_2D, HYDRUS-

1D, HYDRUS-2D, HYDRUS (2D/3D), UNSATCHEM, HP1, and CW2D) have been 

extensively used for evaluating the flow of water and movement of solute into the soil and 

groundwater (Šimůnek et al., 2016). However, HYDRUS 1D users are significantly larger than 

those of HYDRUS (2D/3D) since HYDRUS-1D remains freely available in the public domain 

and can be downloaded from the HYDRUS website: www.hydrus2d.com (Šimůnek et al., 

2016).  

At the same time, HYDRUS (2D/3D) is distributed commercially for a nominal fee. The 

HYDRUS-1D model may be used to simulate water flow and transport processes (as well as 

heat and carbon dioxide movement) in varying saturated mediums in a vertical, horizontal, or 

generally inclined direction (Šimunek et al., 2012; Šimůnek et al., 2016). For example, 

HYDRUS (2D/3D) simulates water flow and solute/heat transfer on two-dimensional vertical 

or horizontal planes, three-dimensional axisymmetrical domains, or completely three-

dimensional variably saturated domains (Šimůnek et al., 2008b). 

The HYDRUS-1D follows its roots in the early work of SUMATRA and WORM models 

(Šimunek et al., 2012). The HYDRUS 1D model was updated from time to time and came up 

with a different version of HYDRUS 1 D. Versions 1 and 2 of HYDRUS-1D (Šimůnek et al., 

1998a; Šimůnek et al., 2016) was the first version that included both physical-nonequilibrium 

(dual porosity mobile-immobile water) and chemical nonequilibrium (two-site sorption model) 

solute transport. Version 3 of HYDRUS-1D included an option to consider dual-porosity water 

flow and solute transport.  

The major development of HYDRUS 1D in version 4 included dual-permeability water flow 

and solute transport (Šimůnek  & Van-Genuchten, 2008; Šimůnek et al., 2008). Version 4 

significantly improved the model's capabilities over Version 3. The HYDRUS 1 D Version 

http://www.hydrus2d.com/
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4.01 added vapour flow and fully coupled transport of water, vapour, and energy (Saito et al., 

2006). Version 4.01 also evaluates potential evapotranspiration using the FAO, Penman-

Monteith combination equation (Smith et al., 1992) or the Hargreaves equation (Hargreaves, 

1994). The HYDRUS 1D Version 4.01 also generate intraday variations in evaporation and 

transpiration rates from daily values. 

The HYDRUS versions 3 and 4 added modules for more complex biogeochemical processes 

than the baseline, which can consider mutual interaction independently between multiple 

solutes, contrary to versions 1 and 2, which involved a sequential first-order degradation chain 

(Šimunek et al., 2012). Version 3 of HYDRUS 1D incorporates the UNSATCHEM module 

(Šimůnek et al., 2007; Suarez  & Šimůnek, 1997; Vaughan et al., 1996). The UNSATCHEM 

module considers the transport of major cations (Na+, K+, Mg2+, and Ca2+)  and anions (Cl-, 

SO4
2-, PO4

-3 and NO3
-) in combination with most or all significant equilibrium and kinetic 

geochemical events, such as complexation, cation exchange, precipitation, and dissolution 

(e.g., of calcite, gypsum, and dolomite) (Šimůnek et al., 2016).  

Furthermore, Version 4 of HYDRUS-1D now includes the HP1 program (Jacques  & Simunek, 

2005), which resulted from coupling HYDRUS-1D with the biogeochemical program 

PHREEQC (Parkhurst  & Appelo, 1999). The HYDRUS models are not confined to any 

specific geographical or temporal scale, as long as the governing equations are adequately 

written and can be applied at that scale. Many successful applications of HYDRUS-1D have 

been made at scales ranging from small laboratory soil columns to agricultural applications of 

soil profiles from one or several meters deep  (Gärdenäs et al., 2005; Hanson et al., 2006) to 

soil profiles several hundred meters deep (Gärdenäs et al., 2006; Scanlon et al., 2003). The 

HYDRUS-1D model uses numerical methods to solve the Richards equation for variably 

saturated water flow and the convection dispersion equation for hydrochemical transport in the 

liquid phase (Šimůnek et al., 2016). 

2.8 Regression Analysis to Determine the Relationship between Climate Change, 

Land use/cover Changes and Movement of Hydrochemical 

Water hydrochemical concentrations have frequently been linked to specific land use/cover 

characteristics using single and multiple regression analyses (Jones et al., 2004; Mahaffey et 

al., 2013; Noy-Meir, 1974). On the other hand, regression analyses are sensitive to missing 

data and rely on explanatory factors, and so cannot produce statistically significant findings 
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until the sample size surpasses the number of variables (Nash  & Chaloud, 2011). However, 

Partial Least Squares (PLS) analysis has shown several advantages over more standard 

regression methods (De Jong, 1993; Frank et al., 1983). The PLS has been found to generate 

significant results when the number of samples is minimal compared to the number of variables 

in chemo-metrics (Rigdon, 2012; Rönkkö et al., 2016).  Furthermore, PLS has been discovered 

to make accurate predictions and identify correlations between data sets with a high degree of 

collinearity (Chong  & Jun, 2005; Pullanagari et al., 2012).  

In addition, the prediction error in PLS is lower than that in other multivariate approaches 

(Chen et al., 2011; Swierenga et al., 1998; Wang et al., 2011). The benefits of PLS discussed 

above make it an appealing candidate statistical technique for developing landscape ecological 

models (Schulte  & Mladenoff, 2001). Therefore, this study applied the PLS to determine the 

relationship between climate and land use/cover changes to the movement of hydrochemical 

(Cations and anions) to the groundwater as modelled by the HYDRUS 1D. 



 

22 

CHAPTER THREE 

MATERIAL AND METHODS 

3.1 Overview 

This Chapter explains the applied methodologies for data analysis in this study. It includes the 

description of the study area and material and methods used to perform the required analysis 

for this study. 

3.2 Study Area 

The study area comprises the world heritage site of the NCA and surroundings covering about 

33 452 km2 area between latitude 2°0’00” to 5°0’00” S and longitude 34°0’00” and 37°0’00” 

E covering three sub-catchments as shown in Fig. 1. The area is characterized by moist and 

misty conditions, with the lowest temperatures of about 2°C in June/July. However, the highest 

temperature observed is 35°C during February in the semi-arid zones (Niboye, 2010). Rainfall 

in this area is seasonal and highly variable, ranging from 400 to 600 mm/year over the arid 

lowland plains in the west and 1000 to1200 mm/year over the highland forested areas in the 

east (Lawuo et al., 2014).  A bimodal seasonal variability characterizes the area, with two wet 

seasons from October to December and March to May, and two dry seasons from January to 

February (short dry season) and a between June and September (long dry period) (Żaba  & 

Gaidzik, 2011a). 

Ecologically, the area is divided into five zones: (a) the Crater highlands (b) Salei plains, (c) 

Gol Mountains, (d) Serengeti plains, and (e) Kakesio/Eyasi Mountains (Mkiramweni et al., 

2016). The area consists of a complex vegetation structure, ranging from montane forest and 

tussock grassland in the highlands to semi-arid woodlands and short grasslands in the lowlands 

(Niboye, 2010). Regarding land use, the protected area is mainly covered with natural and 

semi-natural vegetation, wildlife and tourism, pastures, and small-scale rainfed agriculture in 

the northern parts, whereas small-scale mechanized in the southern part farming is predominant 

(Ngana et al., 2003). The volcanism and tectonic movements’ active from the north to south of 

the East African Rift Valley system have influenced the area’s geology. The system is 

responsible for forming the northern part and the Lake Manyara landscapes in the southern part 

of the study area (Żaba  & Gaidzik, 2011b). Trachytic to Trachyandestic rock materials 

resulting from the volcano’s pre-collapse occupy the Ngorongoro areas (Mollel  & Swisher Iii, 

2012). Neoproterozoic metamorphic rock forms the Mozambique belt and underlies 
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sedimentary and volcanic rocks at the Lake Manyara catchment (Dawson, 2008). The 

metamorphic rocks, mostly quartzite and gneiss covered by volcanic rocks and basalts, occupy 

the Lake Natron catchment (Schwartz et al., 2012).  

Lithological, the area is dominated by Olduvai beds with a maximum thickness of 140 m. The 

Olduvai beds are subdivided into seven layers above underlying basalts, including layers I-IV 

underneath the Masek, the Ndutu, and the Naisiusiu layers (Curtis  & Hay, 1972; Walter et al., 

1991). Layers I and II are the earliest deposits with a thickness of 62 m (of which 20-30 m are 

covered by layer II), comprised of airfall tuffs, reworked tuffs, olivine, and ignimbrites. Layer 

III (7-9 m thick) and layer IV (2 m thick) are deposited on alluvial plains, which receive 

metamorphic and volcanic sediments, which are mainly consisted of claystone and sandstones 

containing illite and smectite (Hay  & Kyser, 2001). The Maseck layer (12 m thick) overlies 

layers III and IV, followed by the Ndutu layer (18 m thick). The Masek layer comprises wind 

deposited Tephra and detrital sediments, while the Ndutu layers comprise small deposits of 

sands, conglomerates, and tuffs. The Naisusu layer (about 8 m thick) was deposited after the 

erosion of the Ndutu layers. The layer consists of Aeolian tuffs formed from the Olduvai gouge 

and Tephra developed from the Oldonyo Lengai volcanic eruptions. However, in the southern 

part of the study area, there are Manyara beds which consist of the upper and lower members. 

The upper member is covered by a thin (3-5 m) series of brown sandstone with breccia and 

Marls overly the volcanic rocks. Fine-grained greyish green deposits mainly cover this 

superimposed fluvial section. The lower member comprises 15 m of light grey to light 

greenish-grey mudstones, siltstones, diatoms, marls, and tuffs (Ring et al., 2005). Furthermore, 

the lower member's lower 5- 6 m is covered by the deeper lacustrine facies, including 

mudstones (Ring et al., 2005). 

Hydrologically, the NCA is a protected semi-arid catchment bordered by a 600 m caldera wall 

that encloses surface water sources, including lakes, streams, springs, and swamps (Deocampo, 

2004). In Lake Manyara, catchment area water sources include the shallow alkaline, saline lake 

Manyara with a depth of about 1.18 m (Deus et al., 2013); with two main tributaries (Kirurumo 

and Mto wa mbu), and two seasonal rivers (Makuyuni and Simba) (Ngana et al., 2003). Other 

water sources are the underground springs originating from crater highlands above the lake 

Manyara catchment (Schwartz et al., 2012). In Natron, the area is covered by the transboundary 

lake Natron shared with Kenya in the northern part, and the area consists of freshwater springs 

and perennial rivers (Dawson, 2008). Looking at the groundwater, the area’s water table differs 

in different locations based on catchment characteristics and interconnection with other 
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catchments. For instance, the NCA water table ranges between 2 to 39 m, while in Lake 

Manyara water table ranges between 3 m and 80 m, and at Natron, the water table could not be 

measured due to the lack of proper aquifer in the area (Ministry of Water [URT], 2014). 

However, these depths may not cover all aquifers in the NCA and surroundings; therefore, data 

collection and different exploration studies are required. Besides, water resources in these areas 

are subjected to depletion in terms of quantity and quality due to natural hazards such as climate 

change and anthropogenic activities (Deocampo, 2004). The quality deterioration is majorly 

due to volcanic lithology, mineral precipitation, dissolution, and agriculture activities (Ligate 

et al., 2021).  

 
Figure 1:  Map of Africa (top left) indicating Tanzania (bottom left) and the 

Ngorongoro Conservation Area (NCA) and surroundings (right). The red 

dots on the NCA are the individual meteorological stations 
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3.3 Materials 

3.3.1 Data Acquisition, Quality Control, and Validation for the Downscaling and 

Analysis of the Climate Variability and Changes in Time and Space in the Study 

Area 

(i) Observation Data  

Historical daily rainfall, maximum and minimum temperature, and observed station data from 

1982 to 2011 for four climate stations of Arusha, Babati, Enduleni, and Ngorongoro were 

obtained from the Tanzania Meteorological Authority (TMA). Data quality control was 

performed on the four climate stations to select the meteorological station with data gaps not 

exceeding 10% of the study period  (Larbi et al., 2018; Nkiaka et al., 2017). Only the Arusha 

station passed this quality assurance test for rainfall and temperature data. Due to the historical 

data limitations and uneven spatial distribution of climate stations at the catchment, fourteen 

gridded daily rainfall point (Fig. 1) data from CHIRPS and MERRA-2 maximum and minimum 

temperature data for the period of 1982-2011 were extracted. In order to validate the 

applicability of the satellite-based climate products (i.e., CHIRPS precipitation and MERRA-

2 maximum and minimum temperature), a comparison was made between the satellite-based 

data extracted for Arusha and historical daily precipitation and temperature data from the 

Arusha station. Arusha station data was used for validation as Arusha was the only station near 

the study area with less than 10% data gap. The statistical results of the CHIRPS precipitation 

data showed NSE = 0.51, PBIAS = -16.10 and RSR = 0.68 on the daily time scale and NSE = 

0.78, PBIAS = -8.2 and RSR = 0.46 the monthly time scale. Therefore, the CHIRPS 

precipitation data for station Arusha can be compared very well with the observation data on a 

monthly time scale.  

The validation of the MERRA-2 data for the Arusha station also showed good agreement with 

the observation data on daily and monthly timescales for both maximum and minimum 

temperature. The statistics showed that NSE = 0.82, PBIAS = -13.7 and RSR = 0.58 for the 

maximum temperature and NSE = 0.93, PBIAS = -12.7 and RSR = 0.39 for the minimum 

temperature for a daily time scale. For the monthly time scale, the indices showed that NSE = 

0.88, PBIAS = -8.4 and RSR = 0.54 for maximum temperature and NSE = 0.96, PBIAS = -

14.4 and RSR = 0.48 for the minimum temperature. The validation of the CHIRPS precipitation 

and the MERRA-2 maximum and minimum temperature on the point scale compared very well 

to the observation data from the Arusha station. Therefore, this study used CHIRPS 
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precipitation and MERRA-2 maximum and minimum temperature data on a point scale for 14 

gridded points covering the study area (Fig. 1). The study CHIRPS and MERRA-2 data in a 

place and observed data for climate downscaling and climate change analysis (Gebrechorkos 

et al., 2019; Larbi et al., 2018; Molua, 2009; Mwabumba et al., 2022). 

(ii) National Centre for Environmental Prediction and Canadian Earth System Model 

Predictors for Statistical Downscaling  

In the present study, twenty-six predictors (Table 1) obtained from the National Centre for 

Environmental Prediction (NCEP) covering the historical period (1961-2005) were used 

(Gebrechorkos et al., 2019; Gulacha  & Mulungu, 2017). The second-generation Canadian 

Earth System Model (CanESM2) predictors for RCP 4.5 and RCP 8.5 scenarios for the future 

(2006- 2050) with a spatial resolution of 2.81° were used for downscaling of the future rainfall 

and temperature. The selected scenarios have been principally used to run different models for 

the analysis based on medium- and high-range emission scenarios.  

Table 1:  National Centre for Environmental predictors used during the screening 

process 

S/N Predictors S/N Predictors 

1 Mean sea level pressure 14 500 hPa divergence 

2 1000 hPa wind speed 15 850 hPa wind speed 

3 1000 hPa zonal velocity 16 850 hPa zonal velocity 

4 1000 hPa meridional velocity 17 850 hPa meridional velocity 

5 1000 hPa vorticity 18 850 hPa vorticity 

6 1000 hPa wind direction 19 850 hPa geopotential height 

7 1000 hpa divergence  20 850 hPa wind direction 

8 500 hPa wind speed 21 850 hPa divergence  

9 500 hPa zonal velocity 22 Total precipitation 

10 500 hPa meridional velocity 23 500 hPa specific humidity 

11 500 hPa relative vorticity 24 850 hPa specific humidity 

12 500 hPa geopotential height 25 1000 hPa specific humidity 

13 500 hPa wind direction 26 Air temperature at 2 m 

(iii) Regional Climate Models Dataset 

The RCMs datasets (Table 2) at 50 km resolution from the CORDEX-Africa experiment were 

used for this study. The four CORDEX-Africa RCMs (REMO2009, CanESM2-RCA4, 

NorESM1-RCA4 and KNMI-RACMO22T) are downscaled dynamically from GCMs. The 

RCM datasets used in this study at a daily scale consist of rainfall, minimum and maximum 

temperature for the RCM historical (1981–2005) and RCP 4.5 and 8.5 projected (2021–2050) 
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period. These RCMs were chosen because they were found to perform well over the sub-region 

with an acceptable range of biases (Kim et al., 2014; Larbi et al., 2020; López-Moreno et al., 

2011). 

Table 2: Description of the Regional Climate Models used in this study 

S/N Institute Forcing GCM RCMs 

1 Swedish Meteorological and 

Hydrological Institute, 

Rossby Centre (SMHI) 

CCCma-CanESM2 

CNRM-CERFACS- CM5 

NCC-NorESM1-M 

CanESM2-RCA4 

and 

NorESM1-RCA4 
 

2 Max Planck Institute- 

Computational methods in 

systems and control theory 

(MPI-CSC), Germany  

 

ICHEC-ECEARTH 

 

REMO2009  

3 Koninklijk Nederlands 

Meteorologisch Instituut 

(KNMI) 

 

ICHEC-ECEARTH 

 

KNMI-

RACMO22T 

 

3.3.2 Data Acquisition and Quality Control for Analysis of Land use/cover Changes and 

Modeling of the Future Scenarios in the Study Area 

This task involved the application of three Landsat images; Landsat-5 TM 1995, Landsat-5 TM 

(BUMPER) 2005, and Landsat-8 OLI_TIRS 2016 (Table. 3). The 30 m resolution images with 

less than 10% cloud cover were collected from U.S Geological Survey (USGS) Center for 

Earth Resources Observation and Science (EROS). The data were downloaded using Path/Row 

168/62, 168/63, 169/62 and 169/63, which covered the study area by 19.6%, 10.8%, 40.6% and 

29.1%, respectively.  

Table 3: Detailed data on the Landsat images used in this study 

Year Satellite Sensor Path/Row Acquisition Date Cloud Cover (%) 

1995 Landsat 5 TM (SAM) 

168/62 30/01/1995 8 

168/63 27/09/1995 0 

169/62 02/06/1995 2 

169/63 17/10/1994 2 

2005 

 

Landsat 5 

 

TM (BUMPER) 

168/62 11/04/2005 3 

168/63 09/06/2005 2 

169/62 06/04/2005 0 

169/63 25/08/2004 1 

2016 Landsat 8 OLI_TRIS 

168/62 22/10/2016 4.82 

168/63 22/10/2016 1.9 

169/62 13/10/2016 0.16 

169/63 13/10/2016 0.53 



 

28 

3.3.3 Data Acquisition for SWAT Model, to Evaluate the Implications of Hydrological 

Response (Runoffs and Stream Flows) to Climate Change, Land Use/Cover 

Change and the Community in the Study Area 

The input data for the SWAT model (soil, land cover, slope, and weather data) were pre-

processed in ArcMap 10.7 to obtain the data format required for the ArcSWAT12 database. 

The 30 m long Shuttle Radar Topography Mission digital elevation mode (SRTM), Digital 

elevation model (DEM) (Fig. 2) of the study area was downloaded from the United States 

geological Survey (USGS) database at https://earthexplorer.usgs.gov/. The DEM was used to 

delineate the watershed and power grids of the study areas. The slope map was derived from 

the 30 m resolution DEM using the Spatial Analyst tool in ArcMap 10.7. For weather data, 14 

gridded daily precipitation point data were extracted from CHIRPS and MERRA-2 maximum 

and minimum temperature data from NASA POWER for the period 1982-2011. The CHIRPS 

precipitation data is a product of the United States Geological Survey (USGS); and the 

University of California Santa Barbara (UCSB) with a spatial resolution of 0.05 (Funk et al., 

2015). For the maximum and minimum temperatures, MERRA-2 data with a spatial resolution 

of 0.5 were obtained from the NASA POWER project (Westberg et al., 2013). The bias-

corrected rainfall and temperature-simulated CORDEX RCMs, SDSM and LARS-WG 

ensembles was used for future period of 2021-2050 analysis. 

The discharge data for the period of model calibration and validation (1982-1989) for the 

monitoring stations of the Hynu (2K47) and Mtowambu (2H3A) rivers were collected by the 

Office of the Internal Drainage Basin (IDB). However, the data had gaps of between six months 

and one year and mainly in the dry months where zero flow was observed during the site visit. 

The Hynu (2K47) data had a good series with few gaps compared to the Mtowambu (2H3A) 

data set. Therefore, the data from Mtowambu were used to fill gaps in the Hynu gauge station 

for the years 1986 and 1988 using simple interpolation and linear regression methods (Hyandye 

et al., 2018; Koch  & Cherie, 2013). Figure 2 represents the DEM, weather stations used to 

extract climate data and gauging stations for the stream flow data. 
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Figure 2:  Digital Elevation Model for the NCA and surround catchments with 

location of weather station and river gauging stations used for the SWAT 

model data 

Furthermore, the Soil data used in this study was downloaded from the FAO Harmonized 

Global Soils Database at http://www.waterbase.org/download_data.html. The watershed 

boundary was used to extract the soil data from the FAO soil database of the African soil slice. 

The attributes of these soils (Fig. 2 & Table 4) have been updated using Harmonize World Soil 

Database (HWSD) - Viewer software, version 1.21 (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012).  

The study area is dominated by 13 different soil types distribute over the entire study area with 

their soil mapping units as shown in the Fig. 2 and the description of their attributes are shown 

in the Table 4. Soils are essential components to the model because they influence hydrological 

processes such as surface runoff, infiltration, percolation, lateral subsurface flow, and plant 

water availability in the watershed. 

http://www.waterbase.org/download_data.html
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Figure 3:  Soil characteristics of the NCA and surrounding catchments 

For the land use/cover data, the 2016 baseline land use/coverage map (Fig. 4), was generated 

by classifying 30 m resolution Landsat-8 OLI_TIRS 2016 images with less than 10% cloud 

cover. The images were obtained from the U.S. Geological Survey (USGS) Center for Earth 

Resources Observation and Science (EROS) at Path/Row 168/62, 168/63, 169/62 and 169/63 

covering the study area 19.6%, 10.8%, 40.6% and 29.1%, respectively. For the future 

simulation modelled Land use/cover map for 2025 and 2035 (Fig. 5 and 6) was used. CA –

Markov model was used to simulate the future land use/cover maps used in this study 

(Mwabumba et al., 2022). During the simulation, land use has a significant impact on surface 

erosion, runoff, and evapotranspiration processes in a watershed. 

Table 4: Soil characteristics attributes for the NCA and surrounding catchments 

SN Acronym Full Name SN Acronym Full Name 

1 AN Andosol 8 SN Solenetz 

2 PH Phaeozem 9 SC Solonchak 

3 RG Regosol 10 VR Vertisol 

4 CH Chernozem 11 LV Luvisol 

5 LP Leptosol 12 CM Cambisol 

6 FR Ferrasol 13 PL Planosol 

7 NT Nitisol 14 WR Waterbodies 
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Figure 4:  Simulated land use/cover of 2025 for the NCA and surrounding catchments 

 
Figure 5:   Simulated land use/cover of 2025 for the NCA and surrounding catchments 
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Figure 6:  Simulated land use/cover of 2035 for the NCA and surrounding catchments 

3.3.4 Data Acquisition for Characterizations of the Hydrochemical Composition of 

Water Resources in the Study Area and Monitoring of their Movement to the 

Groundwater around the Study Area 

(i) Data for Characterizations of the Hydrochemical Composition of Water 

Resources in the Study Area 

The water samples were collected from existing rivers, springs, and lakes from 30 locations in 

the three different sub-catchments (Lake Manyara, Natron, and Olduvai/NCA). Ten sample 

locations were chosen for each of the three sampling sub-catchments, as shown in red points 

in Table 5 and Fig. 7. Water samples were collected directly from sources using High-density 

polyethylene (HDPE) plastic bottles. A 0.45 μM pore size cellulose acetate was used to filter 

the turbid water samples before collecting them in the bottle. A multi-parameter probe HANNA 

instrument, model HI 9828 performed the on-site measurement of dissolved oxygen (DO), 

salinity, pH, temperature, and electrical conductivity (EC). The instrument calibration was 

performed according to the manufacturer's established procedures prior to making the 

measurements. Collected samples earmarked for the analyses of major cations, sodium (Na+), 

potassium (K+), magnesium (Mg2+) and calcium (Ca2+),  were acidified using ultrapure 
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concentrated nitric acid, HNO3 to a pH less than 2.0. All samples were stored in at 4°C to 

minimize microbial activity and unwanted physical-chemical reactions before laboratory 

analysis for other chemical parameters, including chloride (Cl-), sulfate (SO4
2-), nitrate (NO3), 

phosphate (PO4
3-) and bicarbonate (HCO3

-) (Chacha et al., 2018; Sundaram et al., 2009). 

Table 5:  Location of sampling points for hydrochemical compositions for water 

resources in the study area  

SN 
Name of the water 

body 

Type of 

waterbody 
Eastings Northings Subcatchment 

1 Takano spring Spring 821506 9718646 Natron 

2 Engarisero river River 820116 9708510 Natron 

3 Engong'was Spring 821177 9725571 Natron 

4 Marite pond 819956 9674571 Natron 

5 Marite Spring Spring 817010 9674290 Natron 

6 Ngopironi spring Spring 820187 9675362 Natron 

7 Engaruka river River 833111 9668178 Natron 

8 Lake Natron Lake 821587 9728787 Natron 

9 Empakaai spring 1 Spring 814250 9677555 Natron 

10 Empakaai spring 2 Spring 815066 9679151 Natron 

11 Munge river River 797898 9665281 Olduvai/NCA 

12 Mundus Hippo pool Pool 783428 9650524 Olduvai/NCA 

13 Mti Mmoja Pond 783961 9648334 Olduvai/NCA 

14 Lake Makat Lake 779343 9647173 Olduvai/NCA 

15 Ngoitok tok spring Spring 789067 9644772 Olduvai/NCA 

16 Gorgory swamp Swamp 782025 9642541 Olduvai/NCA 

17 Seneto spring 777710 9648458 Olduvai/NCA 

18 Olmoti Spring Spring 797898 9665281 Olduvai/NCA 

19 Oljoro Nyukie River 793095 9650000 Olduvai/NCA 

20 Mamahaw river River 782660 9636478 Olduvai/NCA 

21 Selela-Kapambe Well 824620 9643735 Lake Manyara 

22 Karuwasa borehole Well 798885 9629754 Lake Manyara 

23 Karatu well(Mbowe) Well 798898 9629773 Lake Manyara 

24 kigongoni river River 806913 95460717 Lake Manyara 

25 Mto wa mbu well Well 818087 9628459 Lake Manyara 

26 Majengo Well 820070 9698027 Lake Manyara 

27 Manyara hot spring Hot spring 804166 9599774 Lake Manyara 

28 Manyara cold spring Cold spring 815101 9626606 Lake Manyara 

29 mto wa mbu (River) River 806913 95460717 Lake Manyara 

30 Lake Manyara Lake 787232 9620984 Lake Manyara 
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Figure 7:  Water sampling locations in the three different sub-catchments (Lake 

Manyara, Natron, and Olduvai/NCA) 

(ii) Data for Monitoring the Movements of Hydrochemical to Groundwater 

Surrounding the Study Area 

The movement of hydrochemical to the ground was assessed by the HYDRUS 1D model. The 

HYDRUS 1D model requires Hydrochemical data, Soil type and soil hydrologic properties, 

climate data and Land Use data to model the movements of hydrochemical to groundwater. 

For the Hydrochemical data, the water sample data collected from different water sources in 

the study area were analysed in the laboratory at the Indian Institute of Technology, Roorkee, 

India.  The output results for the analysed major anions (Chloride, Sulfate, Phosphate, Nitrate, 

and Bicarbonates) and cations (Calcium, Magnesium, Potassium, and Sodium) were used as 

inputs for the HYDRUS 1D Model. Tables 6 and 7 show the textural and hydraulic properties 

of the soil in the area. Soil texture information was obtained from the Harmonized World Soil 

Database (FAO et al., 2012), and the soil hydraulic parameters were calculated using the 

Rosetta model  (Schaap et al., 2001). 
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Table 6:  Soil characteristics for the studied sub-catchments 

sub-catchment Depth (cm) Sand% Silt% Clay% Bulk Density (g/cc) 

Olduvai/NCA 0-30 49.5 35.2 15.3 1.6 

 
30- 4000 45.0 36.0 19.0 1.4 

Lake Manyara 0-30 24.0 46.0 30.0 1.3 

 
30- 4000 37.0 35.0 28.0 1.4 

Natron 0-30 46.0 35.0 19.0 1.4 

 30-4000 32.0 35.0 33.0 1.4 
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Table 7: Soil hydraulic parameter obtained from Hydrus-1D using Rosetta model 

Sub-catchment 
Depth 

(cm) 

 

Residual 

moisture 

content 

θr (-) 

Saturated 

moisture 

content 

θs (-) 

Parameter α in 

the soil water 

retention function 

Αlpha(cm-1) 

Parameter η in 

the soil water 

retention function η 

(-) 

Saturated hydraulic 

conductivity 

Ks(cm/day) 

Olduvai/NCA 0-30 0.0528 0.393 0.0145 1.447 16.69 

 
30-4000 0.0602 0.4003 0.0126 1.4583 10.57 

Lake Manyara 0-30 0.0815 0.4469 0.0084 1.4966 12.32 

 
30-4000 0.0751 0.4227 0.0124 1.4281 6.51 

Natron 0-30 0.0602 0.3994 0.0134 1.4492 11.2 

 
30-4000 0.0817 0.4375 0.0127 1.4015 7.17 
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3.4 Methods 

3.4.1 Downscaling and Analysis of the Climate Variability and Changes in Time and 

Space in the Study Area 

(i) The Climate Hazards Group Infrared Precipitation with Station Rainfall and 

Modern-Era Retrospective analysis for Research and Applications Data 

Validation 

In order to validate the applicability of the satellite-based climate products (i.e. CHIRPS 

rainfall and MERRA-2), a comparison was made between the satellite-based data extracted for 

Arusha with historical daily rainfall and temperature data from the Arusha station. The Arusha 

station data was used for validation because Arusha was the only station in the vicinity of the 

study area with less than a 10% data gap. The validation for the CHIRPS rainfall and MERRA-

2 maximum and minimum temperature was performed for the period 1982 to 2011 on a daily, 

monthly, and seasonal scale. Three standard valuation indices were used, namely: (a) Nash-

Sutcliffe efficiency (NSE);  (b) Percent bias (PBIAS) and (c) the RMSE observations' standard 

deviation ratio (RSR) (Moriasi et al., 2015). 

Nash–Sutcliffe efficiency (NSE) compares the magnitude of the residual variance relative to 

that of the measured data variance using normalized statistics as presented in Equation (1): 

𝑁𝑆𝐸 = 1 − [
∑ (𝑄𝑖

𝑜𝑏𝑠−𝑄𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖−1

∑ (𝑄𝑖
𝑜𝑏𝑠−𝑄𝑚𝑒𝑎𝑛)

2𝑛
𝑖−1

]                   (1) 

Where 𝑄𝑖
𝑜𝑏𝑠 is the ith observed discharge, 𝑄𝑚𝑒𝑎𝑛 is the mean of observed rainfall  data, and 

𝑄𝑖
𝑠𝑖𝑚 is the ith modeled rainfall data.  

The NSE can range from - to 1. A value of 1 indicates a perfect fit between simulated and 

observed data. A value of 0 indicates that the average of the observed data would be a better 

fit than the model output (Nash  & Sutcliffe, 1970). An NSE of 0.5 or higher is accepted as an 

indicator of satisfactory model performance for a monthly time step (Moriasi et al., 2015). 

Percentage bias (PBIAS) quantifies whether the average tendency of the simulated data is 

greater or less than the observed data and is expressed as a percentage, indicating a high or low 

bias in the modeled data. The PBIAS values were calculated using Equation (2). 
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𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑄𝑖

𝑜𝑏𝑠−𝑄𝑖
𝑠𝑖𝑚)∗100𝑜𝑏𝑠

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

]                   (2) 

Positive PBIAS values indicate that the simulated data is lower than the observed data on 

average, but negative values indicate the reverse: Simulated data is higher than the observed 

data on average. The A PBIAS value below 25% is considered satisfactory model performance, 

and a PBIAS value of 0 indicates a perfect simulation for a monthly time step (Moriasi et al., 

2015).  

The RMSE observations' standard deviation ratio (RSR) standardizes the RMSE with regard 

to the observed records. The RSR values are the ratio of root mean square error (RMSE) to the 

standard deviation of observed data and were calculated using Equation (3). 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑎𝑏𝑠
= [

√∑ (𝑄𝑖
𝑜𝑏𝑠−𝑄𝑖

𝑠𝑖𝑚)
2𝑛

𝑖=1

√∑ (𝑄𝑖
𝑜𝑏𝑠−𝑄𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

]                     (3) 

Where the RSR value of 0 indicates a perfect simulation, but values below 0.70 are considered 

satisfactory for model performance at a monthly time step (Moriasi et al., 2015). 

(ii) Regional Climate Models Performance Evaluation  

The performances of the raw CORDEX-Africa RCMs (REMO2009, CanESM2-RCA4, 

NorESM1-RCA4, and KNMI-RACMO22T) in simulating the observed climatology over the 

study area were evaluated monthly and annual scale for the period 1982-2005 using statistics 

such as Nash-Sutcliff Efficiency (NSE) (Equation 1); percentage bias (PBIAS) (Equation 2) 

and  Pearson correlation (r) (Equation 4). The r represents the temporal pattern of the models. 

The PBIAS describes the relative systematic error associated with the CMIP 6 models' data, 

where a positive and negative sign indicates overestimation and underestimation, respectively. 

At the spatial scale, the biases between the models and the observation were also estimated 

using the PBIAS statistical indicator.  

𝑟 =
𝑛(∑𝑋𝑌)−(∑𝑋)(∑𝑌)

√[𝑛 ∑𝑋
2
−(∑𝑋)2] [𝑛 ∑𝑌

2
−(∑𝑌)2]

                    (4) 

Where, X = Observed data, Y = Modeled data, and n = number of events. 
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(iii) Statistical Downscaling of Global Climate Model Outputs using Statistical 

Downscaling System Model 

The SDSM is designed to statistically downscale simulated climate information from either 

coarse-resolution GCM output or large atmospheric variables to high-resolution forms needed 

for local impact studies using predictors and predictands (Gebrechorkos et al., 2019). The 

SDSM uses multivariate linear regression to simulate future climate scenarios by combining 

stochastic weather generator and transfer function models (Wilby et al., 2002). The stochastic 

data was included in the SDSM to improve the model's performance in reproducing the 

observed daily series by inflating the model output variance (Wilby et al., 2002). In the present 

study, the SDSM was applied in the watersheds around the NCA to downscale the CanESM 

daily rainfall and temperature to a point-scale. Two datasets were involved in this process: (1) 

the predictands of interest, i.e., locally observed rainfall and temperature and (2) the 

corresponding large-scale predictors from NCEP and CanESM2 in the study area's grid box 

(Shukla  & Singh, 2021; Shukla et al., 2015). Model calibration and respective downscaling 

were performed through the steps as suggested by Wilby et al. (2002): 

(i) Screening of the 26 large-scale NCEP predictors based on the correlation matrix, partial 

correlation, and p-value indicators between the predictors and local-scale predictands 

as practised in previous studies (Gebrechorkos et al., 2019; Gulacha  & Mulungu, 

2017). Highly correlating predictors at a 95% confidence level (p-value < 0.05) were 

selected. For regression analysis between the selected NCEP predictors and predictands 

during model calibration for each station, a minimum of three large-scale variables was 

recommended for calibration at each station (Gebrechorkos et al., 2019; Huang et al., 

2012). 

(ii) The SDSM model calibration and validation were performed for the periods of 1982-

1996 and 1997-2005, respectively, under 'conditional' for the rainfall and 

'unconditional' for the temperature on a monthly scale. Several studies have applied this 

method of splitting the data into two for SDSM calibration and validation, such as 

(Gebrechorkos et al., 2019; Huang et al., 2012; Osman  & Abdellatif, 2016) with SDSM 

indicating satisfactory results.  

(iii) Generation of daily synthetic data series for rainfall, maximum and minimum 

temperatures for the period of 1982-2005 was performed by the weather generator 
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(WG) using the calibrated SDSM. The WG was applied to produce the weather series 

with similar statistical properties to those of the observed location-based data (Li  & 

Babovic, 2019). 

(iv) The SDSM performance was evaluated using statistical indicators including Nash-

Sutcliffe efficiency (NSE), Percent bias (PBIAS), and RMSE observation's standard 

deviation ratio (RSR), which were also used to evaluate the SDSM performance at a 

daily, monthly, and seasonal timescale.  

The model scenario generator, which follows a similar process as step (iii), was applied to 

downscale the CanESM2 daily rainfall and temperature for the future period of 2006-2050 

under RCP 4.5 and RCP 8.5 scenarios. 

(iv) Statistical Downscaling of Global Climate Model Outputs using Long Ashton 

Research Station Weather Generator 

The LARS-WG is a stochastic weather generator designed to simulate the daily climate data at 

a station scale for climate change impact studies (Chen et al., 2013; Osman et al., 2014).  The 

LARS-WG synthesizes daily series data through three processes: 

(i) The LARS-WG use statistical properties of the station data on a monthly scale to 

generate the probability distribution of the climate parameters for a particular station 

on the ground. 

(ii) The LARS-WG use the generated parameters files to synthesize data with the same 

statistical properties as the station data. Furthermore, observed and simulated average 

monthly weather statistical indices calibrate  LARS-WG using calculated relative 

change factors from the GCMs outputs for each month.  

(iii) Finally, LARS-WG uses the calibrated parameters and relative change factors to project 

daily time-series data (Chen et al., 2013).  

This study applied LARS-WG6 to downscale rainfall and temperature for each station 

individually by incorporating 20 years (1982-2001) to generate model calibration parameters. 

For model validation, a ten-year extended time series (2002-2011) was generated and examined 

using a statistical test at a 5% significance level to determine the significant difference between 

the simulated and observed data. After the calibration and validation process of LARS-WG, 
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the model generated future weather data series by updating model output parameters with 

selected RCMs and RCPs. This study applied LARS-WG to downscale rainfall and 

temperature data series for future 2021-2050 from four GCMs (CanESM2-RCA4, NorESM1-

RCA4, CSIRO-CMS and HadGEM2-ES) under RCP 4.5 and 8.5.  

(v) Climate Change Analysis 

Temporal and spatial changes in rainfall and temperature at an annual and seasonal scale for 

the observed historical period of 1982-2011 and the future periods of 2021-2050 were analyzed 

using the bias-corrected rainfall and temperature-simulated CORDEX RCMs, SDSM and 

LARS-WG ensembles. The percentage changes in rainfall at seasonal and annual scales and 

the projected relative changes in the mean annual temperature were estimated for each station 

and over the entire basin. The significance of the projected changes was assessed at a 95% 

confidence level using the t-test. For the spatial analysis, the Inverse Distance Weighted (IDW) 

interpolation method was used to generate the distribution of seasonal and mean annual 

changes in rainfall and temperature between the future and historical periods. 

3.4.2 Analysis of Land Use/Cover Classification, Change Detection and Modeling of the 

Future Scenarios in the Study Area 

(i) Land use/cover Classification and Change Detection 

Land use/cover maps were produced using three Landsat images; Landsat-5 TM 1995, 

Landsat-5 TM (BUMPER) 2005, and Landsat-8 OLI_TIRS 2016 (Table 3) using Path/Row 

168/62, 168/63, 169/62 and 169/63 which covered study area by 19.6%, 10.8%, 40.6% and 

29.1%, respectively. The 30 m resolution images with less than 10% cloud cover were collected 

from U.S Geological Survey (USGS) Center for Earth Resources Observation and Science 

(EROS). The hybrid classification method (Solomon et al., 2019; Teferi et al., 2010), which 

includes unsupervised and supervised classification methods, was used to classify the images. 

The Iterative, Self-Organizing Data Analysis (ISODATA) clustering algorithm, performed the 

unsupervised classifications  (Boakye et al., 2008; Teferi et al., 2013); while the Maximum 

Likelihood Classification (MLC) algorithm executed the supervised classifications (Gashaw et 

al., 2017; Larbi et al., 2019; Solomon et al., 2019). The Land use/cover classes formed include 

forest, woodland, bushland, grassland, water, wetland, cultivated land, built-up area, and bare 

land (Table.8).  
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For accurate assessment of Land use/cover maps produced from the satellite images, the 

stratified random method for each of the three classified Land use/cover maps was used to 

represent the different Land use/cover classes of the study area. The accuracy was assessed 

using 90 pixels per category and was based on visual interpretation and ground truth data. The 

reference data for ground-truthing was obtained from a high-resolution Google Earth and field 

visit using GPS (Larbi et al., 2019) and previously classified Land use/cover (Masao et al., 

2015). A cross-tabulation was achieved between the class values and the ground truth, and the 

results were as an error matrix. In addition, the non-parametric Kappa test was performed to 

measure the magnitude of the classification accuracy to account for diagonal elements and in 

the confusion matrix (Rosenfield  & Fitzpatrick-Lins, 1986).  

Table 8:  Land use/cover classes descriptions 

Class Descriptions 

Bushland 
Mainly comprised of plants that are multi-stemmed from a single root 

base. 

Woodland 
An assemblage of trees with canopy ranging from 20% to 80% but which 

may, on rare occasions, be closed entirely. 

Wetland 
The low-lying, uncultivated ground where water collects; is a bog or 

marsh. 

Cultivated land Crop fields and fallow lands. 

Built-up area Residential, commercial, industry, transportation, roads, mixed urban. 

Grassland Mainly composed of grass. 

Forest 
The continuous stand of trees, many of which may attain a height of 50 

m, include natural forest, mangroves and plantation forest. 

Water River, open water, lakes, ponds and reservoirs. 

Bare land 
The land area of exposed soil and the barren area is influenced by a 

human. 

(ii) Land use/cover Prediction 

The study applied Cellular Automata-Markov (CA-Markov) model to predict the 2025 and 

2035 Land use/cover status. The CA-Markov is a robust model for predicting the patterns and 

the spatial arrangement of different Land use/cover change categories, which is available in 

IDRISI 17.0 (Arsanjani et al., 2011; Wang et al., 2012). The model operates with reference to 

the historical Land use/cover status image, transition probability matrix, and suitability images 

as a group file (Eastman, 2012). The model is also commonly realistic in several countries 

(Mosammam et al., 2017; Omar et al., 2014; Singh et al., 2018) and comprises two 
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components, the Cellular Automata model and the Markov model. The mathematical 

expression of the Markov model is as presented in Equation 5. 

𝐒(𝐭 + 𝟏) = 𝐏𝐢𝐣 × 𝐒(𝐭)          (5) 

Where, 𝐒(𝐭 + 𝟏) represents the status of land use/cover at a time(𝐭 + 𝟏), 𝐏𝐢𝐣 represent a 

Transitional Matrix: 

Pij =

[
 
 
 
 
P11 P12 P13 … P1n

P21 P22 P23 … P2n

P31 P32 P33 … P3n

… … … … …
Pn1 Pn2 Pn3 … Pnn]

 
 
 
 

 

(𝟎 ≤ 𝐏𝐢𝐣 < 𝟏), and ∑ 𝐏𝐢𝐣
𝐧
𝐣=𝟏 = 𝟏. Where(𝐢, 𝐣 = 𝟏, 𝟐, … , 𝐧). 𝐢 𝐚𝐧𝐝 𝐣, are the land uses and 𝐏𝐢𝐣 

represents the transition probability between any pair of land uses. From the matrix, the rows 

and columns represent historical and current land use/cover classes, respectively. Furthermore, 

the mathematical expression of the cellular automata is as presented in Equation 6. 

𝐒(𝐭, 𝐭 + 𝟏) = 𝐟(𝐒(𝐭), 𝐍)            (6) 

The CA Markov model is a combination between the Markov model and cellular automata, 

which predicts land use/cover; by adding the spatial distribution element and possible land 

use/cover transition and distribution (Myint  & Wang, 2006). The CA-Markov applies a 

standard filter with a 5 × 5 size Kernel pixel and Multi-Objective Land Allocation (MOLA) 

dynamic procedures for land use/cover prediction. The process then accomplishes the cellular 

automata component by reducing the weight of the suitability of pixels that are far from the 

considered land use/cover types. However, the reduced weighted suitability should not exceed 

90% of the original value to ensure the proximate areas’ conditional probability (Roose  & 

Hietala, 2018). In this study, the 2025 and 2035 land use/cover maps were predicted using the 

2016 land use/cover classified map as a base map and a transition potential map. The transition 

potentials were generated based on the main transitions that occurred between the years 2005 

and 2016 among the land use/cover classes. The model validation was performed by comparing 

the simulated 2016 land use/cover map, which was based on the 1995 and 2005 classified 

images, with the classified 2016 land use/cover map. The “Relative Operating Characteristic 
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(ROC)” and “Kappa indexes” were used to compare the agreements between the simulated and 

classified 2016 land use/cover status maps. The kappa indexes used include Kappa for no 

information (Kno), Kappa for location (Klocation), Kappa for location stratum level 

(KlocationStrata), and Kappa for standard (Kstandard) (Eastman, 2012; Mosammam et al., 

2017; Pontius & Schneider, 2001). Change analysis was carried out using the classified (1995, 

2005 and 2016) and the predicted Land use/cover (2025 and 2035) maps to establish the pattern 

of Land use/cover changes. However, to calculate the extent of changes that occurred during 

the subsequent periods, 1995-2005, 2005-2016, 2016-2025 and 2025-2035, the percentage 

change was computed.  

(iii) The SWAT Model, to Evaluate the Implications of Hydrological Response 

(Runoffs And Stream Flows) to Climate Change, Land use/cover Change and The 

Community in the Study Area 

The SWAT model simulates the hydrological division of watersheds using the water balance 

approach. The water balance approach of the SWAT model simulates surface runoff, 

infiltration, seepage, channeling, shallow and deep aquifer flow (Neitsch et al., 2011). The 

SWAT model's hydrologic procedures are built on Equation 7 of the water equilibrium. 

SWt = SW0 + ∑ (Pday − Qsur − Ea − Wseep − Qgw)t
i=1                                                   (7) 

Where, 𝑆𝑊𝑡 is final soil water content;  𝑆𝑊0 is initial soil water content day i (mm); 𝑃𝑑𝑎𝑦 

precipitation amount on a day i (mm); 𝑄𝑠𝑢𝑟 is surface runoff on day i (mm); 𝐸𝑎 is 

Evapotranspiration amount on day i (mm); 𝑊𝑠𝑒𝑒𝑝 is the amount of water entering the vadose 

zone from the soil profile on the day i (mm) and Qgw is the amount of return flow or base flow 

on the day i (mm).  

This study used the ArcSWAT (2012 version) modeling software (Arnold et al., 2012)  to 

simulate baseline and future streamflow dynamics. The SWAT model delineates a watershed 

using a digital elevation model (DEM) and then divides the watershed into subbasins or sub-

watersheds based on the drainage area of the tributaries. Each subwatershed is subdivided into 

hydrologic response units (HRUs), grouped upon land use, soil, and topography combinations. 

The SWAT model simulated the Evapotranspiration (ET) using the Penman-Monteith option 

(Monteith, 1965), surface runoff, lateral flow in the soil profile, groundwater flow, channel 
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routing (Manning’s equation for uniform flow in a channel), and reservoir storage (Arnold et 

al., 2012). 

(iv) The  SWAT Model Set-up and Evaluation 

The SWAT delineated the catchment into 66 sub-watersheds (Fig. 8) within a total watershed 

area of 32 779.8 km. The outlet for this watershed is located at the 2K47 gage on the Hynu 

River and 2H3A on Mtowambu River. The 66 sub-watersheds were further delineated into 919 

HRUs classified based on homogeneous land use types, soil types, and topography. The HRUs 

were defined by using per cent thresholds of land use, soils, and slope of 5, 20, and 10%, 

respectively, within each of the 66 sub-watersheds. The SWAT model was calibrated and 

validated using a split data approach that covered high and low flow periods in each of the two. 

Daily flow data from the 2K47 gage on the Hynu River, were used for model setup using eight 

(8) years (1982-1989) of daily observed flow data. The data was divided into warm-up (1982-

1984), calibration (1985-1987) and validation (1988-1989) periods. The study used this gauge 

locations because they are only gauging stations around the study area with historical records 

that are good for calibration/validation of the model. The Nash Sutcliffe efficiency coefficient 

(NSE), the ratio of root mean square error to the standard deviation (RSR), and percentage bias 

(PBIAS) were calculated and represent measures of model performance.  

 
Figure 8:  The 66 sub basin delineated from SWAT model within total watershed area 

of 32 779.8 km2 
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(v) Model Sensitivity Analysis 

Sensitivity analysis identifies the most important parameters for calibration and validation of 

the SWAT model (Arnold et al., 2012; Moriasi et al., 2007; Tang et al., 2012). However, to 

identify the most important SWAT parameters, 14 flow parameters (Table 9) were selected 

from literature (Assfaw, 2019; Gebremicael et al., 2013; Gyamfi et al., 2016; Tang et al., 2012). 

For this purpose, global sensitivity analysis (Begou et al., 2016; Khalid et al., 2016), which 

allows changing each parameter at a time (Arnold et al., 2012), was employed in SWAT-CUP 

2012 version 5.1.4. Indices such as t-Stat and p-value were used to provide a measure and 

significance of sensitivity, respectively (Begou et al., 2016; Khalid et al., 2016; Narsimlu et 

al., 2015). Hence, a higher t-test in absolute values measures high sensitivity while a p-value 

of 0 is more significant (Abbaspour, 2013; Khalid et al., 2016; Narsimlu et al., 2015). 

(vi) Model Calibration and Validation 

In this study calibration and validation were performed between January 1, 1985, to December 

31, 1987, and from January 1, 1988, to December 31, 1989, respectively. Calibration and 

validation were carried out in SWAT-CUP 2012 version 5.1.4 using the Sequential Uncertainty 

Fitting (SUFI-2) algorithm, based on the SWAT-CUP user manual (Abbaspour, 2013). The 

SUFI-2 is a semi-automated calibration and uncertainty analysis algorithm (Zhou et al., 2014) 

that accounts for all sources of uncertainty, including uncertainty in the driving variables (e.g. 

rainfall), conceptual model, parameters and measured data (Tang et al., 2012; Vilaysane et al., 

2015; Zhou et al., 2014). Table 9 represents flow parameters considered for calibration and 

validation of the SWAT model.  
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Table 9:  Flow parameters for calibration and validation of the SWAT model 

Parameter Parameter Definition 

ALPHA_BF.gw Baseflow alpha factor for bank storage 

CN2.mgt SCS runoff curve number 

ESCO.bsn Soil evaporation compensation factor 

GW_DWLAY.gw Groundwater delay (days) 

GW_REVAP Groundwater “revap” coefficient 

GW_SPYLD (m) Specific yield of the shallow aquifer  

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return 

flow to occur 

HRU_SLP Average slope steepness 

OV_N.hru Manning “n” value for overland flow 

R_EPCO.HRU Plant uptake compensation factor 

RCHRG_DP.gw Deep aquifer percolation fraction 

REVAPMN Threshold depth of water in shallow aquifer for revap to occur 

SLSUBBSN Average slope length 

SURLAG Surface runoff lag coefficient 

(vii) Simulating Land Use snd Climate Scenario 

The SWAT model simulations were performed for two time periods: baseline (1982–2016) and 

future (2021–2050). These time periods bracket the land use descriptions of 2016, projected 

2025 and 2035. However, to simulate the effects of land-use change and climate change, the 

study created three scenarios with the following input datasets: 

(i) Baseline 2016 land use and historical climate data (1982–2011)  

(ii) Land use only scenarios: Historical climate data (1982–2011) with corresponding land 

use 2025 and 2035. 

(iii) Climate only scenarios: Baseline 2016 land cover with corresponding 2021- 2050 

future climate scenarios (RCP 4.5 and RCP 8.5) and 
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(iv) Combined scenarios: Land use 2025 with future climate scenario 2021-2050 (RCP 4.5 

and RCP 8.5) and land use 2035 with future climate scenario 2021-2050 (RCP 4.5 and 

RCP 8.5).  

3.4.3 Characterizations of the Hydrochemical Groundwater around the Study Area 

(i) Characterization of Hydrochemical Composition of Water Resources in the Study 

Area 

In this study, water samples were collected from 30 different locations within the study area 

and analyzed for the laboratory's major cations and anions concentrations. The National 

Institute of Hydrology (NIH) Laboratory at the Indian Institute of Technology Roorkee (IITR), 

India, analyzed the sample for key cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, SO4
2-, NO3

-, 

PO4
3-). The water samples were analyzed using an ion chromatograph instrument (930 

Compact IC Flex model). The concentration of major cations and anions characterize the 

hydrochemical composition of water resources in the study area). Furthermore, the laboratory 

results for the concentration of anions and cations were used as inputs for the HYDRUS 1D 

Model to monitor the movement of hydrochemical to the groundwater around the study area.  

In addition, water quality standards for maximum drinking water limit values for aquatic 

contaminants  (WHO, 2008, 2011) and (Tanzania Bureau of Standards, 2005) were used to 

analyze the water quality in the study area. 

(ii) The HYDRUS 1D Modeling Procedure to Monitor the Movement of 

Hydrochemical to Groundwater around the Study Area 

The flow chart of the methodology adopted to achieve the objectives of this study is shown 

in Fig. 9. The laboratory results of the surface water resource and varying climate conditions 

are used as the top boundary condition for running the Hydrus 1D for the simulating 

movement of hydro-chemicals to the underlying groundwater of the area. The model results 

for hydro-chemicals to the groundwater were analyzed for spatial distribution, temporal 

trends, and correlations, using QGIS 3.18 and Origin Pro 9.0 and R software. A Pearson 

correlations matrix determined a relationship between climate variables and hydro chemicals 

contaminations to the groundwater in this study. The study applied the Guildford’s 

classification techniques to interpret the obtained correlation outputs as 0.0-0.29 

(little/negligible correlation); 0.3-0.49 (low correlation); 0.5-0.69 (marked/moderate 
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correlation); 0.7-0.89 (high correlation); 0.9-1.0 (very high correlation) (Guilford  & Lacey, 

1947). 

 
Figure 9:  The overall methodology for the numerical model used for hydro-chemical 

transport to the groundwater 

The HYDRUS 1D model uses the modified one-dimensional Richards’ equation to simulate 

the movement of water and its dissolved chemicals through a variably saturated zone. The 

equation can be derived by integrating Darcy’s law with mass balance (Mathur  & Yadav, 

2009)   as: 

∂θ

∂t
=

∂

∂z
[K(h)

∂h

∂z
− K(h)] − S                  (8) 

where θ is the volumetric water content (dimensionless), h,  is the soil water pressure head 

[L], t is time [T], z is the vertical coordinate [L], S is the sink term [T-1], and K(h) is the 

unsaturated hydraulic conductivity [LT-1]. The unsaturated hydraulic conductivity, K(h), and 

the water content 𝜃 depend on the soil water pressure head. This makes Richards’ equation a 

highly nonlinear equation that needs to be solved numerically. The HYDRUS-1D is used for 

solving this equation numerically by using five different analytical models to describe the soil 

hydraulic properties (Abbasi et al., 2004; Brooks  & Corey, 1964; Van Genuchten, 1980). 
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The HYDRUS-1D model (Šimůnek et al., 2016) simulates hydrochemical transport in 

variably saturated porous media using the standard advection-dispersion reaction as:  

∂θc

∂t
+ ρ

∂s

∂t
=

∂

∂z
(θD

∂c

∂z
) −

∂qc

∂z
− ϕ                           (9) 

Where c is the solution concentration [ML-3], s is the sorbed concentration [MM-1], D is the 

dispersion coefficient [L2T-1], 𝜌 is the bulk density of the porous medium [ML-3], θ is the 

volumetric water content (dimensionless), q is the volumetric flux density [LT-1], which is 

obtained using the Darcy-Buckingham law, and 𝜙 is a sink-source term accounting for 

various zero- and first-order or other reactions [ML-3T-1]. The governing flow and transport 

equations are solved numerically using Galerkin-type linear finite element schemes (Šimůnek  

& Van Genuchten, 2008). 

(iii) The HYDRUS-1D Model Settings: Initial Condition and Boundary Condition 

The flow and transport are analyzed at 30 locations (marked in Fig. 7) by considering 30 

lithologs. A constant depth of 40 m represents the average level of the groundwater table in 

this area. Two different soil layers, soil 1 (0 to 30 cm) and soil 2 (3 cm to 40 m), are shown 

in Fig. 10 (In the simulation domain, soil materials represent actual lithological conditions at 

the selected sites). The observation points at the water table are also marked in this figure. 

The soil hydraulic properties are described using van Genuchten-Mualem type analytical 

functions. Soil hydraulic parameters obtained from the Rosetta model given in Table 7 are 

used for the simulation. For the water flow simulations, atmospheric boundary conditions 

(rainfall, potential evapotranspiration) with surface water status are taken as the upper 

boundary condition, and a free drainage boundary condition is considered at the lower 

boundary.  The Penman-Monteith equation calculates the potential evapotranspiration using 

the minimum/maximum temperatures,  relative humidity, and wind speed. The model uses a 

concentration flux (Cauchy or third-type) type of the boundary condition at the surface and a 

zero concentration gradient boundary condition at the bottom for hydrochemical transport. 

The hydrochemical concentration analyzed from water samples collected from the various 

surface sources (30 locations) is taken as the concentration flux at the surface. The study 

assumed the same concentration of hydrochemical on the surface for the entire simulation 

period as the source of the pollutants are volcanic lithology, mineral precipitation, dissolution, 

and agriculture activities. The initial pressure heads in all the HYDRUS-1D columns are 
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assumed to be in hydrostatic equilibrium, with the pressure head equal to zero at the water 

table. Therefore, the HYDRUS-1D columns are discretized into a finite element with 

relatively small elements at the surface where large hydraulic gradients are expected, as Fig. 

3 depicts. 

 
Figure 10:  Schematic representation of the simulation domain in HYDRUS-1D 

with hydro-chemical and water flow boundary conditions 

3.4.4 The Analysis of the Impacts of Climate and Land use/cover Change on 

Hydrochemical Movement to the Groundwater as Influenced by Future Climate 

around the Study Area 

The impact of climate and land use/cover change on the movement of hydrochemical,  cations 

(Na+, Ca2+, Mg2+, and K+)  and anions (Cl-, SO4
2-, PO4

3-, NO3
-1, HCO3

-) to the groundwater 

was determined using the pairwise Pearson correlation (Nie et al., 2011; Twisa et al., 2020; 

Woldesenbet et al., 2017). The Pearson correlation analysis was applied to determine the linear 

relationship between land use/cover changes (Independent variable) and movement of 

hydrochemical (Cations and Anions) to groundwater (dependent variables). The significant 

correlation between variables was determined at a 95% confidence interval. Thus, the land use/ 

cover change highly influences the hydrochemical movements to groundwater as the Pearson 

correlation coefficient value approaches 1. Furthermore, the study investigated the 

hydrological response of individual climate parameters and land use/cover type to the 
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movement in relation to the movements of hydrochemical to groundwater, using correlation 

analysis by the Partial Least Squares Regression (PLSR) model (Equation 10).  

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯+ 𝑏𝑖𝑥𝑖                                           (10) 

Where, 𝑦 is the dependent variable, 𝑏0 is the intercept, x is the independent variables from 1 to 

i, and b is the coefficients of the x variables. 

The PLSR is an approach that analyses, integrate, and generalizes characteristics from primary 

element analysis and multiple regression. The PLSR is a robust multivariate regression 

approach that is useful when the predictors are collinear and have many independent variables 

(Song et al., 2013; Wold et al., 2001). The advantage of PLSR is that it can deduce the 

relationships between the dependent and independent variables from a single dependent 

variable's weights (w*) and regression coefficients in the subsequent independent components 

(Ma et al., 2015; Shi et al., 2019; Zhu et al., 2019). The predictors in this study are the climatic 

variables and land-use/cover classes, whereas the response function is the annual 

hydrochemical (cations and anions) concentration. The number of relevant components to 

maintain is generally determined using a criterion that includes cross-validation. Model validity 

and strength are measured using two indices: (a) The goodness of fit (R2), which is the 

proportion of variation in the dependent variable explained by the model, and (b) The  R2 cross 

(cross-validated R2; goodness of prediction), which is the proportion of variation in the 

dependent variable that the model can predict. The  R2 and R2 cross are used to determine the 

number of components in each PLSR model (Yan et al., 2013). The PLSR regression model 

provides significant and good predictions when R2 is > 5 and when R2
cross is > 0.0975 (Trap et 

al., 2013).  

The study applied multiple regression analysis to determine the movements of cations and 

anions composition in groundwater between two climate periods (2021-2035) and (2036-2050) 

due to individual climate variables (rainfall, Tmax, Tmin, RH and wind speed). Furthermore, 

the study used a land-use/cover map of 2016 and projected 2025 and 2035 to determine land 

use/cover change and quantify the effect of individual land use/cover on the movement of 

cations and anions to groundwater at the basin scale. In analysing climate change impacts, 

independent variables were the changes of seven climate parameters (Rainfall, Tmax, Tmin, 

Tmean, RH, Wind speed (WS) and ET). However, land use/cover classes (i.e., natural forest, 

woodland, bushland, grassland, water, wetland, cultivated land and built-up area) were 
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independent variables to determine individual land use/cover change impacts. The PLSR 

models were created to recognize the key Climate parameters and land use/ cover types that 

control the movement of cations and anions to groundwater. The study further applied the 

cross-validation technique to determine the suitable number of components of individual PLSR 

models and obtain an optimum balance between the described variation in the response and the 

projecting ability of the model (goodness of prediction: Q2 ). Also, it reduces the drawback of 

overfitting.  

In PLSR modelling, the variable importance of the projection (VIP) and regression coefficients 

(RCs) was utilized to describe the relative effect of each independent variable. Thus, it is 

feasible to discover which climate parameter or land use/cover types interact the most strongly 

with the hydrochemical. An independent variable with a VIP value greater than 0.8 is important 

and significant for explaining the dependent variable (Wold, 1995). In contrast, a value less 

than 0.5 suggests that the variable does not explain the dependent variable significantly 

(Woldesenbet et al., 2017). The RCs of the PLSR models determine the direction and degree 

of each independent variable's influence in the PLSR model. For example, an independent 

variable may have a low RC but a high VIP, which is relevant and contributes considerably to 

the prediction. Thus, the model must maintain it. If the VIP and RC values are small, the 

variable may be removed from the model. However, to avoid model's over-fitting, the number 

of components in each PLSR model was chosen using cross-validation to establish an ideal 

balance between the explained variance in the response (R2) and the model's predictive 

performance (goodness of prediction: R2
cross).  Further, the study defined the percentage of 

variance and cross-validated goodness of prediction (Q2) for the dependent variables (cations 

and anions composition in groundwater) for each model. The cross-validated RMSE as the 

difference between each pass's predicted and observed values were analyzed. Finally, the PLSR 

models' regression coefficients were applied to represent the direction of the link between 

changes in different climate parameters and land use/cover categories and cations and anions 

composition to groundwater. The statistical analysis of the dataset was carried out using 

XLSTAT (Yan et al., 2013). 

3.4.5 The Analysis of Climate Change Impacts on Water Resources and the 

Communities 

This exercise used the GPS, field survey and focus group discussion with key informants to 

determine the community experience on the impact of climate change and Land Use/ cover 
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change in water resources around the study area. The study used the information from the focus 

group discussion to evaluate the implication of climate and land use/ cover change on the water 

resources in the NCA. The survey included stakeholders residing in the area through a random 

selection of Individuals from populated areas. Respondents were asked to participate in the 

study and provide their knowledge of the water resources, the benefits they receive from the 

existing water sources and how that benefit changed due to an anticipated climate and land 

use/cover changes. They were informed that all responses were anonymous. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 To Evaluate Temporal and Spatial Changes of Climate in the Study Area for the 

Future Period, 2021-2050 Compared to Baseline 1982-2011 

The evaluation of temporal and spatial change in climate, involved the climate downscaling 

process and climate change analysis. The downscaling process involved the evaluation of 

dynamically downscaled RCMs downloaded from CORDEX-Africa, bias correction of the 

RCMS, followed by the statistical downscaling. The CHIRPS and MERRA -2 data were used 

as the predictors for the statistical downscaling process using SDSM and LARS-WG. 

Furthermore, the bias-corrected RCMS was used in the generation of the ensemble mean 

dataset between bias-corrected RCMs, SDSM and LARS-WG for climate change analysis. 

4.1.1 Climate Downscaling in Time and Space in the Study Area 

(i) Performance Evaluation Statistics of Regional Climate Models over the 

Catchment 

The statistical tests for comparing the observed (CHIRPS) data and the RCMs (REMO2009, 

CanESM2-RCA4, NorESM1-RCA4, and KNMI-RACMO22T) simulating the rainfall and 

temperature for the period 1982 to 2005 are presented in Table 10. A high correlation (r) greater 

than 0.9 was found for all the RCMs for rainfall and Temperature. Three RCMs (REMO2009, 

KNMI-RACMO22T and CanESM2-RCA4) overestimated rainfall in the area in the range of 

13% to 16.7%, while NorESM1-RCA4 shows an underestimation of rainfall with PBIAS of -

2.5%. A similar rainfall result of a higher correlation between the RCMs and the observed 

(MERRA-2) was found for temperature. Unlike rainfall, all the RCMs show overestimation in 

the case of temperature with biases in the range of 0.2 to 1.4oC. In addition, Fig. 11 and 12 (a, 

b, c & d), respectively indicate the spatial biases between observed (CHIPRS) data and RCMs 

for rainfall and temperatures. The spatial PBIAS was found to range between +20.3% and -

28.9% for rainfall. In the case of temperature, all the RCMs show overestimation with biases 

in the range of 0.01 to 1.98oC. The biases across the basin found in NorESM1-RCA4, and 

KNMI-RACMO22T models were relatively low compared to REMO2009 and CanESM2-

RCA4. Therefore, the evaluation results of CORDEX RCMs (REMO2009, CanESM2- RCA4, 
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NorESM1-RCA4, and KNMI-RACMO22T) indicate good performance of the RCMs in 

simulating monthly rainfall and temperatures, as shown in Table 10. 

Table 10:  Statistical analysis between the raw RCMs and Observed 

(CHIRPS/MERRA-2) for the mean monthly rainfall and temperature of 

the catchment for the period 1981-2005 

Models 

Rainfall Temperature 

r PBIAS NSE r BIAS NSE 

REMO2009 0.96 13.0 0.86 0.97 1.4 0.88 

CanESM2-RCA4 0.92 16.0 0.71 0.94 0.8 0.75 

NorESM1-RCA4 0.9 -2.5 0.95 0.92 0.2 0.91 

KNMI-RACMO22T 0.94 16.7 0.84 0.95 0.9 0.81 
Note: r indicates correlation; NSE indicates Nash-Sutcliffe Efficiency 

 

Figure 11:  Spatial biases for rainfall data between observed (CHIRPS) and CORDEX 

RCMs: (a) REMO2009, (b) CanESM2-RCA4, (c) NorESM1-RCA4 and (d) 

KNMI-RACMO22T 
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Figure 12:  Spatial biases (oC) for temperature data between observed (MERRA-2) 

and CORDEX RCMs: (a) REMO2009, (b) CanESM2-RCA4, (c) 

NorESM1-RCA4, and (d) KNMI-RACMO22T) 

(ii) Screening of the Predictors for Statistical Downscaling using the Statistical 

Downscaling System Model 

The screening of suitable predictor variables is an important process in statistical downscaling. 

The power of each predictor is distinguishable in space and time, making the choice of 

predictors differ according to the geographical location and the relationship between predictors 

and predictands to be downscaled. With reference to the coefficient of correlation (r) and partial 

correlation (partial-r), among the individual best performed NCEP predictors in the SDSM, the 

selected suitable predictors for downscaling of rainfall and temperatures are listed in Table 11. 
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Table 11:  Selected predictor variables from National Centre for Environmental 

Prediction 

Parameter Predictors r p-value Partial-r 

 Mean sea level pressure 0.38 0.0047 0.247 

Rainfall(mm) 850 hPa geopotential height 0.36 0.0047 0.144 

 1000 hPa specific humidity 0.39 0.0081 0.281 

 Mean sea level pressure 0.42 0.0000 0.180 

Tmax. (⁰C) 1000 hPa meridional velocity 0.40 0.0000 0.381 

 850 hPa geopotential height 0.40 0.0000 0.325 

  Air temperature at 2 m 0.50 0.0000 0.380 

  Mean se level pressure -0.60 0.0000 -0.137 

 1000 hPa meridional velocity -0.50 0.0008 -0.239 

Tmin. (⁰C) 850 hPa geopotential height 0.60 0.0000 0.503 

 1000 hPa specific humidity 0.60 0.0000 0.469 

 Air temperature at 2 m 0.40 0.0000 0.297 

(iii) Performance Evaluation of the Statistical Downscaling System Model and Long 

Ashton Research Station Weather Generator Outputs 

The SDSM validation results for the simulated rainfall and maximum and minimum 

temperatures for all stations are shown in Tables 12, 13 and 14. The SDSM indicated poor 

performance in simulating the daily rainfall with Nash-Sutcliffe efficiency (NSE), Percent bias 

(PBIAS), and RMSE observation's standard deviation ratio (RSR) ranging from 0.12 to 0.25, -

56.30 to -26.10, and 0.63 to 0.87, respectively (Table 12). However, the model performed 

relatively well in reproducing maximum and minimum temperatures at the daily timescale 

(Tables 13 and 14). The model had NSE, PBIAS, and RSR ranging from 0.70 to 0.89, -17.8 to 

11.8 and 0.39 to 0.58, for the maximum temperature; 0.67 to 0.97, -17.8 to 7.8, and 0.35 to 

0.59, for minimum temperature, respectively.  

At monthly and seasonal timescales, the model performed well in simulating both rainfall and 

maximum and minimum temperatures. For rainfall at a monthly timescale, the model had NSE, 

PBIAS, and RSR that ranged from 0.76 to 0.98, -13.8 to 1.70, and 0.04 to 0.58, respectively. 

For the maximum and minimum temperatures at a monthly timescale, the model performance 

showed NSE, PBIAS and RSR ranging from 0.78 to 0.96, -14.60 to 11.30, and 0.42 to 0.64; 

and 0.78 to 0.96, -15.10 to 9.60, and 0.48 to 0.56, respectively. Besides, the model performed 

well in simulating rainfall and maximum and minimum temperatures on a seasonal scale. The 

model performance showed NSE, PBIAS, and RSR ranging from 0.62 to 0.99, -13.20 to 1.90, 

and 0.33 to 0.61; 0.78 to 0.92, -16.20 to 9.60, and 0.41 to 0.59; and 0.78 to 0.92, -13.90 to 8.70 

and, 0.42 to 0.58, respectively, for the rainfall, maximum temperature, and minimum 
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temperature. Therefore, for monthly and seasonal timescales, the SDSM could be used as a 

tool to simulate rainfall data. Moreover, the model simulated temperature data with good 

precision for daily, monthly and seasonal timescales.  

Table 12:  Model performance for the rainfall (mm) simulation for daily, monthly, 

and seasonal timescales during the validation period from 1997to 2005 

S/N Station NSE 
Daily 

RSR NSE 
Monthly 

RSR NSE 
Seasonal 

RSR 
PBIAS PBIAS PBIAS 

1 Arusha 0.24 -26.10 0.68 0.98 -4.40 0.10 0.78 -6.40 0.54 

2 Babati 0.18 -28.30 0.87 0.88 -13.80 0.57 0.97 -11.80 0.48 

3 Enduleni 0.22 -34.60 0.73 0.95 -1.60 0.05 0.95 -9.60 0.42 

4 Engaruka 0.25 -27.20 0.68 0.94 -0.70 0.06 0.79 -10.70 0.58 

5 Idulu  0.16 -29.50 0.72 0.97 -0.90 0.04 0.99 -5.90 0.34 

6 Kakesio 0.23 -32.70 0.86 0.76 0.80 0.04 0.91 1.80 0.51 

7 Manyara 0.18 -56.30 0.74 0.88 -12.30 0.45 0.94 -13.20 0.33 

8 Mbulu 0.21 -27.20 0.63 0.90 -13.30 0.96 0.64 -12.30 0.52 

9 Mtowambu 0.24 -35.60 0.67 0.83 1.70 0.06 0.91 1.90 0.57 

10 Nainokanoka 0.15 -44.20 0.72 0.76 -1.20 0.05 0.83 -4.20 0.39 

11 Ndutu 0.24 -32.40 0.77 0.86 -1.20 0.05 0.62 -7.20 0.51 

12 Ngorongoro 0.22 -47.30 0.81 0.91 -12.10 0.16 0.81 -11.10 0.56 

13 Olala 0.12 -28.20 0.70 0.86 -9.30 0.08 0.77 -8.30 0.44 

14 Olduvai 0.20 -31.60 0.68 0.82 -3.20 0.58 0.83 -2.70 0.36 

Table 13:  Model performance for the maximum temperature (⁰C) simulation for 

daily, monthly, and seasonal timescales during the validation period of 

1997- 2005 

SN Station NSE 
Daily  

RSR NSE 
Monthly 

RSR NSE 
Seasonal 

RSR 
PBIAS  PBIAS PBIAS 

1 Arusha 0.82 -13.70  0.58 0.88 -8.40 0.54 0.81 -11.05 0.52 

2 Babati 0.87 -17.80  0.48 0.78 -14.60 0.53 0.83 -14.20 0.58 

3 Enduleni 0.75 -12.60  0.52 0.85 -11.60 0.49 0.84 -12.10 0.59 

4 Engaruka 0.89 -14.70  0.57 0.95 -6.70 0.52 0.86 -10.70 0.47 

5 Idulu  0.79 -15.90  0.44 0.93 -10.90 0.64 0.79 -13.40 0.58 

6 Kakesio 0.81 11.80  0.51 0.86 6.80 0.48 0.83 9.30 0.54 

7 Manyara 0.84 -14.20  0.39 0.78 -14.30 0.42 0.81 -14.25 0.56 

8 Mbulu 0.74 -10.30  0.55 0.82 -11.60 0.62 0.78 -10.95 0.50 

9 Mtowambu 0.81 7.90  0.47 0.81 11.30 0.57 0.79 9.60 0.51 

10 Nainokanoka 0.87 -6.20  0.49 0.78 -13.20 0.47 0.85 -9.70 0.54 

11 Ndutu 0.72 -5.20  0.56 0.96 -9.20 0.51 0.82 -7.20 0.54 

12 Ngorongoro 0.77 -12.10  0.51 0.94 -12.70 0.44 0.80 -12.40 0.49 

13 Olala 0.70 -6.30  0.54 0.88 -10.30 0.61 0.92 -8.30 0.41 

14 Olduvai 0.73 -12.70  0.47 0.84 -13.40 0.57 0.86 -13.05 0.58 
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Table 14:  Model performance for the minimum temperature (⁰C) simulation on the 

daily, monthly, and seasonal timescale during the validation period from 

1997 to 2005                

(iv) Performance of Long Ashton Research Station Weather Generator in Statistical 

Downscaling of Global Climate Models 

The LARS-WG performance is shown in Fig. 13 (calibration) and Table 15 (validation).         

Figure 13 a and c indicate the monthly mean rainfall and standard deviations of the synthesized 

LARS-WG data compared to the observed data during the calibration period (1982-2001).  

However, Fig. 13 b and d indicates the comparison between observed and synthesized monthly 

mean maximum and minimum temperature. Four GCMs (i.e. CanESM2-RCA4, NorESM1-

RCA4, CSIRO-CMS and HadGEM2-ES) were used to generate daily rainfall and temperature 

data for RCP 4.5 and 8.5 using the LARS-WG model.  Furthermore, the statistical test to 

validate the LARS-WG output was performed and indicated in Table 15  

SN Station NSE 
Daily 

RSR NSE 
Monthly 

RSR NSE 
Seasonal 

RSR 
PBIAS PBIAS PBIAS 

1 Arusha 0.93 -12.70 0.39 0.96 -14.40 0.48 0.81 -13.55 0.44 

2 Babati 0.97 -15.80 0.57 0.94 -9.60 0.56 0.83 -12.70 0.56 

3 Enduleni 0.86 -11.60 0.45 0.88 -10.80 0.51 0.84 -11.20 0.48 

4 Engaruka 0.82 -12.70 0.59 0.84 -15.10 0.53 0.86 -13.90 0.56 

5 Idulu  0.89 -10.90 0.47 0.82 -8.90 0.56 0.79 -9.90 0.52 

6 Kakesio 0.91 7.80 0.43 0.81 9.60 0.48 0.83 8.70 0.46 

7 Manyara 0.88 -11.20 0.49 0.78 -9.70 0.49 0.81 -10.45 0.49 

8 Mbulu 0.76 -14.30 0.35 0.96 -7.20 0.49 0.78 -10.75 0.42 

9 Mtowambu 0.71 5.90 0.48 0.94 -12.40 0.52 0.79 -3.25 0.50 

10 Nainokanoka 0.77 -13.30 0.59 0.84 -10.70 0.53 0.85 -12.00 0.56 

11 Ndutu 0.82 -7.20 0.46 0.86 -13.40 0.50 0.82 -10.30 0.48 

12 Ngorongoro 0.67 -13.10 0.52 0.79 -12.30 0.48 0.80 -12.70 0.50 

13 Olala 0.90 -12.30 0.44 0.83 -11.25 0.49 0.92 -11.78 0.46 

14 Olduvai 0.78 -11.70 0.39 0.81 -10.40 0.51 0.86 -11.05 0.45 



 

61 

 
Figure 13:  Calibration of Long Ashton Research Station Weather Generator for 

mean monthly rainfall (mm) and temperatures for Manyara (a and b), 

and Ngorongoro (c and d), respectively 

Table 15:  Model performance for the rainfall (mm), Maximum temperature (⁰C) and 

minimum temperature (⁰C) at a daily and monthly timescale during the 

validation period of 2002 -2011 for the entire basin 

Scale Parameter NSE RSR RMSE PBIAS R2 

 Rainfall -0.80 1.34 7.94 -1.10 0.00 

Daily Tmax -0.70 1.30 10.05 14.90 0.52 

 Tmin 0.89 1.38 8.05 26.20 0.47 

 Rainfall 0.78 0.81 14.58 -8.50 0.53 

Monthly Tmax -0.80 1.29 9.15 15.10 0.64 

 Tmin -1.15 1.41 7.43 26.5 0.91 

The results show good performance in synthesizing data series daily and monthly time scales 

for the entire basin during validation. The LARS-WG performed well in reproducing the 

rainfall and temperature data on daily and monthly scales. These results are consistent with 

other studies (Bessah et al., 2021; Chen et al., 2013) which indicated a good performance of 

LARS-WG in generating daily and monthly rainfall and temperature data. Therefore, the output 
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from LARW-WG could be used for the climate change analysis and climate change impact 

studies in and around the NCA.  However, to minimize model uncertainties, the study applied 

the bias-corrected rainfall and temperature-simulated CORDEX RCMs, SDSM and LARS-

WG ensembles to analyze the change in climate around the NCA by comparing the future 

projection for 2021-2050 with historical data from the period 1982-2011. 

4.1.2 Analysis of Climate Variability and Changes in Time and Space in the Study Area 

under Representative Concentration Pathways 4.5 and Representative 

Concentration Pathways 8.5 Scenarios 

(i) Spatial-Temporal Change in Climate Variables 

Table 16 represents the annual statistical summary for the average rainfall and temperature 

for the baseline period (1982-2011), which was used as a reference to determine the future 

(2021-2050) changes in climate over the study area. 

Table 16: Annual statistics for the baseline (1982 – 2011) climate variables 

    Rain(mm) Tmax (°C) Tmin(°C) Tmean(°C) 

Mean   812.28 26.87 14.26 20.56 

Std. Deviation 178.90 0.59 0.32 0.40 

Minimum  486.42 25.64 13.61 19.69 

Maximum   1230.29 28.02 14.85 21.32 

Percentiles      

25  718.59 26.49 14.08 20.34 

50  790.65 26.84 14.37 20.55 

75  906.62 27.22 14.45 20.85 

Generally, the annual change in climatic variables for 2021-2050 compared to the mean climate 

variable at the baseline (1982-2011) is presented in Fig. 14. The results include percentage 

change in annual mean rainfall (mm) and maximum and minimum temperature anomalies. In 

addition, the study analysed the percentage changes in the mean seasonal (JF, MAM, JJAS, 

and OND) and annual rainfall for the future (2021-2050) period by considering RCP 4.5 and 

RCP 8.5 scenarios compared to the historical (1982-2011) period. The results of the temporal 

analysis are presented in Fig. 15. 
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Figure 14:  The percentage change in annual mean rainfall (mm), maximum and 

minimum temperature anomalies for 2021-2050 compared to the baseline 

(1982-2011) 

 

 
Figure 15:  Percentage change in seasonal and annual mean rainfall for the future 

period (2021-2050) under RCP 4.5 and RCP 8.5, compared to the simulated 

historical period (1982-2011) 

The results for the future period 2021-2050 indicated an increasing trend of annual mean 

rainfall and maximum/minimum temperatures. However, between 2021 and 2035, the results 
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show a decreasing rainfall trend, with the highest decrease of 13.8% in 2024. A more 

significant increase is observed between 2036 and 2050, with a maximum rise of 15.4% in 

2038 (Fig. 14). Seasonally, the rainfall data shows an increase in all seasons except the JJAS 

season, which decreases 13 and 16% under RCP 4.5 and RCP 8.5, respectively. The annual 

rainfall indicates an increase with an average of 4% under RCP 4.5 and 5% under RCP 8.5. 

The comparison between future projections and the historical data showed increasing rainfall 

for all seasons except JJAS, which showed a decreasing trend for both RCPs. However, the 

annual rainfall showed a significantly increasing pattern for the periods of 2021-2050 for both 

RCPs. Similarly, for maximum and minimum temperatures, the annual temperature rise would 

occur in future periods, with a higher rise expected under RCP 8.5. Other research findings in 

Tanzania (Cooper et al., 2008; Luhunga et al., 2018; Mtongori et al., 2016) also anticipated an 

increase in rainfall across Tanzania's northeastern highlands. The studies correspondingly 

showed an increase in maximum and minimum temperature for all future periods and RCPs 

but with the highest rise under RCP 8.5. 

The spatial distribution of the changes in annual rainfall for 2021-2050 under RCP 4.5 and 

RCP 8.5 are depicted in Fig. 16 a and b. Spatially, the rainfall would increase over the entire 

study area during the period of 2021-2050 under both RCPs, with the highest increase over the 

Eastern, Southern parts and some areas in the West. The study area's central, western, and 

northern parts would experience a low percentage increase in rainfall with the lowest 

percentage of 2 % under both RCPs. Both RCPs indicate similar patterns over the area for the 

future 2021-2050; however, RCP 4.5 outputs show higher increases compared to the RCP 8.5. 

   
Figure 16:  Spatial distribution of changes in the mean annual rainfall under RCP 4.5 

(a) and RCP 8.5 (b) for the period of 2021-2050 compared to the historical 

period of 1982-2011 
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(ii) Projected Changes in Temperature  

Results also indicate maximum and minimum temperature anomalies rise between 2036 and 

2050, with the highest rise of 1.7°C and 1.5°C) in 2042 and 2050, respectively (Fig. 14). 

However, for the annual mean maximum, minimum and mean temperature change under RCPs 

4.5 and 8.5 as presented in Table 18. The results indicate an increase in maximum, minimum, 

and mean temperatures. The maximum, minimum, and mean temperature have increased 

respectively by 0.4°C, 0.5°C, and 0.5°C under RCP 4.5 and 0.6°C, 0.6°C, 0.6°C under RCP 

8.5 during the future 2021-2050. 

Table 17:  Temperature (°C) projections and change signal for the (2021-2050) future 

under RCP 4.5 and RCP 8.5 scenarios relative to the historical (1982-2011) 

period, the ensemble mean 

Temperature Historical (1982-2011) RCP4.5 scenario RCP8.5 scenario 

Maximum 26.9 27.3 (+0.4) * 27.5 (+0.6) * 

Minimum 14.3 14.8 (+0.5) * 14.9 (+0.6) * 

Mean 20.6 21.1 (+0.5) * 21.1 (+0.6) * 
Values in brackets indicate the projected changes. *Indicates the significance of the projected changes 

at a 95% confidence level 

(iii) Spatial Distribution of Temperature Change 

Spatial distribution for the maximum and minimum temperature change for the future periods 

of 2021-2050 under RCP 4.5 and RCP 8.5 emission scenarios as captured by the SDSM and 

RCMs ensembles are presented in Fig. 17 a and b and Fig. 18 a and b, respectively. The results 

for the maximum temperature change indicate warming over the study area with spatial 

variations. The maximum temperature increase during the period of 2021-2050 is expected to 

be in the range of 0.1 to 0.8°C under RCP 4.5.  The highest increase is in the central and 

southern parts, and the lowest increase is over the western and northwestern areas and a few 

parts in the east of the study area. The maximum temperature rises for the same period, under 

RCP 8.5, would be between 0.1°C and 0.9°C, with the highest value in the central and the 

southern parts; most of the areas would be warmer by a range of 0.2°C to 0.8°C during the 

2021-2050 period under both RCPs as captured in (Fig. 17 a-b). 
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Figure 17:   Spatial distribution for the annual maximum temperature anomalies (°C) 

under RCP 4.5 (a) and RCP 8.5 (c) for the period of 2021-2050 compared 

to the historical period of 1982-2011 

The results for the minimum temperature change (Fig. 18 a & b) also show a warming regime 

over the study area with variations in spatial distribution. The minimum temperature rises 

during 2021-2050 are expected to range from 0.1°C to 1.0°C under RCP 4.5. The highest 

increases are in the central and south of the study area, while northwestern areas and part of 

the central area would experience the lowest rise as captured by the ensemble mean of LARS-

WG, SDSM and RCMs. The minimum temperature rises for the same period, under RCP 8.5, 

would be between 0.1 and 0.9°C, with the highest value covering a large part of the central and 

south of the study area and the lowest found in the northwestern areas and parts of central areas. 

Generally, most of the areas would be anomalously warmer by 0.2°C to 0.8°C under both 

RCPs, as shown in Fig. 18 a and b. 
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Figure 18:   Spatial distribution for the annual minimum temperature anomalies (°C) 

under RCP 4.5 (a) and RCP 8.5 (c) for the period of 2021-2050 compared 

to the historical period of 1982-2011 

The projected rise in rainfall and temperature can affect water resources, their services, and the 

prevalent social-economic activities in the study area (Obuobie et al., 2012). The Government 

of Tanzania has reported climate change impacts in several places, including in the protected 

areas of conservation importance (United Republic of Tanzania [URT], 2008). The 

Government has shown concerns about the increase in drought and flood events in its protected 

areas. As the findings of this study projected an increase in rainfall and temperature in NCA 

and its surroundings, severe climatic events are expected. The severity of climatic events may 

lead to encroachment problems in local communities where communities are increasingly 

forced to expand their activities into conserved areas. The projected increase in rainfall in the 

present study agrees with the findings of Donat et al. (2016) who projected that the world’s dry 

places like the tropics would experience more extreme precipitation. However, the projected 

increase in rainfall will have the advantage of a constant water supply to the biodiversity and 

ensure food security for the expanding human population in the Ngorongoro Conservation Area 

and its surroundings. Due to the possibility of human activities expansion and encroachment 

to the conserved areas, the study also analysed the Land use/ cover changes and modelled the 
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future land use/cover scenarios in the study area to determine the impact of climate and land 

use/ cover change to water resources. 

4.2 To Examine the Land use/cover Change between 1995 and 2016 and Model the 

Future Scenarios for 2025 and 2036 in the Study Area 

4.2.1 Accuracy Assessment 

Table 18 shows the accuracy assessment for the classified maps for 1995, 2005, and 2016. The 

accuracy assessments founded on error matrices presented an overall accuracy of 98.01%, 

99.71%, and 99.98% for 1995, 2005, and 2016. The Kappa coefficients of those periods were 

0.98, 0.99, and 0.99, respectively. This assessment, shows the high model capacity to classify 

the 1995, 2005 and 2016 prevailing land use over the study area. 

Table 18:  Accuracy assessment of the land use/cover classification at Ngorongoro 

Conservation Area and surrounding 

Land use/cover  
1995 

 
2005 

 
2016 

PA UA PA UA PA UA 

Forest 98.76 98.18 98.10 98.10 99.94 99.17 

Woodland 98.91 99.06 97.91 97.93 100 99.20 

Bushland 99.39 99.42 98.08 98.07 100 99.17 

Grassland 99.91 99.93 99.98 98.10 99.98 99.18 

Water 100 100 99.00 98.10 99.00 100 

Wetland 99.98 100 98.10 98.10 99.80 99.20 

Cultivated land 96.81 99.75 100 98.10 99.41 100 

Built-up area 100 100 96.20 96.20 100 99.20 

Bare land 100 100 100.00 98.10 100 99.20 

Overall  98.01      99.71      99.98 

Kappa  0.98       0.99       0.99 

Note: PA-Producer’s Accuracy, UA—User’s Accuracy. 

4.2.2 Land use/cover Change Pattern 

The study considered Land use/cover changes analysis for 21 years to monitor the land 

use/cover changes over the study area. The study generated Land use/cover maps for 1995, 

2005, and 2016 using remote sensing data and ground-truthed information collected from the 

study area. A difference in the pattern of the altered land use/cover types was observed. The 

land areas under different Land use/cover types and their percentage are given in Table 19.  

The spatial Land use/cover distribution for 1995, 2005, and 2016 are presented in Fig. 19. Land 
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use/cover of the year 1995 indicated that the area 43.975% was covered by bushland, 34.914% 

by grassland, 9.038% by woodland, 4.275% by forest, 3.103% by cultivated land, 3.088% by 

water, 1.528% by wetland, 0.071% by bare land and 0.008% by built-up area. While land 

use/cover of the year 2005, the area was covered by 42.387% by bushland, 39.467% by 

grassland, 7.631% by cultivated land, 3.322% by forest, 3.261% by water, 2.474% by 

woodland, 0.818% by wetland, 0.631% by bare land and 0.01% by built-up area. The 

distribution of Land use/cover in the year 2016 shows that about 44.452% was covered by 

bushland, 37.599% by grassland, 9.657% by cultivated land, 2.851% by water, 2.751% by 

forest, 1.891% by bare land, 0.661% by woodland, 0.118% by wetland and 0.021% by built-

up area. 

Table: 19:    Land use/cover classification results for 1995, 2005 and 2016   

  Land use/cover 

Year 
 

1995 
 

2005 
 

2016 

Unit Ha % Ha % Ha % 

Forest 143204 4.275 111277 3.322 92152 2.751 

Woodland 302766 9.038 82860 2.474 22151 0.661 

Bushland 1473057 43.975 1419863 42.387 1489040 44.452 

Grassland 1169535 34.914 1322070 39.467 1259488 37.599 

Water 103441 3.088 109233 3.261 95489 2.851 

Wetland 51185 1.528 27411 0.818 3962 0.118 

Cultivated land 103960 3.103 255619 7.631 323484 9.657 

Built-up area 265 0.008 322 0.010 698 0.021 

Bare area 2385 0.071 21143 0.631 63332 1.891 

Total 3349797 100 3349797 100 3349797 100 
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Figure 19:  Land use/cover maps for 1995, 2005, and 2016 at Ngorongoro Conservation 

Area and surrounding 

The changes in land use/cover for the study period (1995-2005, 2005-2016, and 1995-2016) 

are given in Table 20. During the study period 1995 - 2005, woodland decreased by 6.564%, 

bushland by 1.588%, forest by 0.953%, and wetland by 0.71%. The grassland experienced an 

increase of 4.553%, cultivated land by 4.528%, bare land by 0.56%, and water by 0.173%. 

While during 2005 to 2016, a decrease was observed in the grassland by 1.868%, woodland by 

1.813%, wetland by 0.7%, forest by 0.571%, and water by 0.41%. The result showed an 

increase of bushland by 2.065%, cultivated land by 2.026%, bare land by 1.26%, and built-up 

land by 0.011% in the period 2005 - 2016. The results revealed that the highest net gain during 

the study period 2000 - 2016 was in cultivated land (6.554%), followed by grassland (2.685%), 

bare land (1.82%), bushland (0.477%), and built-up land (0.013%), while net loss was in 

woodland (8.377%), forest (1.524%), wetland (1.41%), and water (0.237%) (Table 20).  
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Table 20:  Changes in land use/cover for the period between 1995 and 2016 

variables 
 Land use/cover changes 

             1995-2005        2005-2016           1995-2016 

Unit 
             

Ha 
      %          Ha     %            Ha      % 

Forest -31927 -0.953 -19125 -0.571 -51052 -1.524 

Woodland -219906 -6.564 -60709 -1.813 -280615 -8.377 

Bushland -53194 -1.588 69177 2.065 15983 0.477 

Grassland 152535 4.553 -62582 -1.868 89953 2.685 

Water 5792 0.173 -13744 -0.41 -7952 -0.237 

Wetland -23774 -0.71 -23449 -0.7 -47223 -1.41 

Cultivated land 151659 4.528 67865 2.026 219524 6.554 

Built-up area 57 0.002 376 0.011 433 0.013 

Bare area 18758 0.56 42189 1.26 60947 1.82 

The results for the study period (1995-2016) on different classes of Land use/cover indicate that 

maximum gains and losses occurred in cultivated land and woodland, respectively. In addition, 

bushland and grassland gain many shares from other Land use/cover, and the change matrix 

(Tables 21 to 23) supported the study's findings. 

4.2.3 Land use/cover Change Pattern (Transition) Matrix 

Table 21, Table 22, and Table 23 show the change matrix cross-tabulation for the areas and 

percentages changed from one Land use/cover class to another compared to each Land 

use/cover class's overall area for the period 1995-2005 2005-2016 and 1995 - 2016. During the 

study period 1995 - 2016 (Table 6), 61.09% of water remained unchanged, followed by 

bushland land (51%), grassland (50.46%), built-up land (48.14%), forest (36.67%), bare land 

(29.88%), cultivated land (22.29%), woodland (1.55%) and wetland (0.49%). Although 

bushland and grassland maintain 50% of unchanged Land use/cover, the largest share was 

gained from other Land use/cover. Furthermore, wetland faced the maximum change, with 

99.51% of its area converted to bushland (34.47%), water (30.73%), grassland (20.08%), bare 

land (12.71%), cultivated land (1.25%), forest (0.23%) and woodland (0.03%). 

The cross-tabulation matrix for the study period between 1995 and 2005 showed that 68.48% 

of water remained unchanged, followed by built-up land (58.75%), grassland (57.84%), forest 

(50.75%), bushland land (50.24%), cultivated land (39.03%), bare land (25.84%), wetland 
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(16.81%) and woodland (9.25%). This suggests that woodland experiences the maximum 

alteration, with 90.25% of its total area converted to bushland (57.86%), grassland (23.32%), 

cultivated land (4.9%), forest (4.16%), wetland (0.27%), water (0.19%), bare land (0.05%) and 

built-up land (0.01%).  Furthermore, for the period between 2005 and 2016, 66.69% of built-

up land persisted changes, followed by bushland land (58.42%), water (55.55%), bare land 

(51.86%), forest (51.98%), grassland (51.33%), cultivated land (24.85%), woodland by 

(5.04%) and wetland (0.85%). This means that woodland and wetland faced the maximum 

change, with 94.96% and 99.15% of their total area respectively converted to other Land 

use/cover.  

Table 21:  Transition matrix showing Land use/cover change at Ngorongoro 

Conservation Area between 1995 and 2016 

 

Area (Ha) 

2016 

FR WL BUL GL WT WET CL BLT BL 

 

 

 

 

1995 

FR 52519 9944 70609 7279 297 213 1737 5 602 

WL 12016 4681 172065 93098 1347 252 18410 74 825 

BUL 22941 6357 751212 498744 7642 1557 157387 172 27047 

GL 4049 915 424070 590163 6964 968 121164 246 20994 

WT 311 19 19072 13903 63188 465 792 11 5679 

WET 120 15 17641 10278 15728 253 641 2 6506 

CL 163 219 33994 44906 229 249 23174 59 967 

BLT 15 1 85 28 1 0 8 128 0 

BL 18 1 291 1090 94 6 172 0 712 

Percentage 

(%) 
FR WL BUL GL WT WET CL BLT BL 

 

 

 

 

1995 

FR 36.67 6.94 49.31 5.08 0.21 0.15 1.21 0.00 0.42 

WL 3.97 1.55 56.83 30.75 0.44 0.08 6.08 0.02 0.27 

BUL 1.56 0.43 51.00 33.86 0.52 0.11 10.68 0.01 1.84 

GL 0.35 0.08 36.26 50.46 0.60 0.08 10.36 0.02 1.80 

WT 0.30 0.02 18.44 13.44 61.09 0.45 0.77 0.01 5.49 

WET 0.23 0.03 34.47 20.08 30.73 0.49 1.25 0.00 12.71 

CL 0.16 0.21 32.70 43.20 0.22 0.24 22.29 0.06 0.93 

BLT 5.64 0.47 31.90 10.49 0.24 0.00 3.12 48.14 0.00 

BL 0.76 0.03 12.22 45.71 3.94 0.24 7.20 0.02 29.88 

FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—

Cultivated land, BLT-Built-up land, BL- Bare land 
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Table 22:  Transition matrix showing land use/cover change at Ngorongoro 

Conservation Area between 1995 and 2005 

 

Area (Ha) 

2005 

FR WL BUL GL WT WET CL BLT BL 

 

 

 

 

1995 

FR 72669 8789 53060 5186 169 57 3271 0 1 

WL 12604 28002 175175 70594 573 805 14849 18 147 

BUL 24079 30931 740088 530138 10381 2040 122479 55 12866 

GL 1518 14504 386390 676457 9683 1670 73876 62 5375 

WT 339 59 12879 3891 70841 14188 343 0 902 

WET 45 61 21201 3010 17262 8606 148 2 851 

CL 17 500 30448 31659 310 37 40575 28 385 

BLT 0 0 76 11 0 0 21 156 0 

BL 5 14 545 1124 13 9 58 0 616 

Percentage 

(%) 
FR WL BUL GL WT WET CL BLT   BL 

 

 

 

 

1995 

FR 50.75 6.14 37.05 3.62 0.12 0.04 2.28 0.00 0.00 

WL 4.16 9.25 57.86 23.32 0.19 0.27 4.90 0.01 0.05 

BUL 1.63 2.10 50.24 35.99 0.70 0.14 8.31 0.00 0.87 

GL 0.13 1.24 33.04 57.84 0.83 0.14 6.32 0.01 0.46 

WT 0.33 0.06 12.45 3.76 68.48 13.72 0.33 0.00 0.87 

WET 0.09 0.12 41.42 5.88 33.73 16.81 0.29 0.00 1.66 

CL 0.02 0.48 29.29 30.45 0.30 0.04 39.03 0.03 0.37 

BLT 0.03 0.17 28.63 4.31 0.00 0.10 8.01 58.75 0.00 

BL 0.23 0.57 22.87 47.14 0.56 0.37 2.42 0.01 25.84 

FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—

Cultivated land, BLT-Built-up land, BL- Bare land 
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Table 23:  Transition matrix showing land use/cover change at Ngorongoro 

Conservation Area    between 2005 and 2016 

 

Area (Ha) 

2016 

FR WL BUL GL WT WET CL BLT BL 

 

 

 

 

2005 

FR 57845 11805 37699 2598 277 200 192 18 642 

WL 3672 4175 46663 25564 65 82 2439 10 191 

BUL 23842 4869 829494 423103 12668 1195 101785 237 22671 

GL 5933 1085 459236 678586 6599 1012 152399 186 17033 

WT 233 8 21799 16406 60683 977 873 11 8242 

WET 60 2 4739 6265 13768 233 171 0 2175 

CL 511 203 88632 100292 777 243 63526 22 1415 

BLT 33 0 56 15 1 0 3 215 0 

BL 25 3 723 6661 651 20 2097 0 10964 

Percentage 

(%) 
FR WL BUL GL WT WET CL BLT BL 

 

 

 

 

2005 

FR 51.98 10.61 33.88 2.33 0.25 0.18 0.17 0.02 0.58 

WL 4.43 5.04 56.32 30.85 0.08 0.10 2.94 0.01 0.23 

BUL 1.68 0.34 58.42 29.80 0.89 0.08 7.17 0.02 1.60 

GL 0.45 0.08 34.74 51.33 0.50 0.08 11.53 0.01 1.29 

WT 0.21 0.01 19.96 15.02 55.55 0.89 0.80 0.01 7.55 

WET 0.22 0.01 17.29 22.85 50.23 0.85 0.62 0.00 7.93 

CL 0.20 0.08 34.67 39.23 0.30 0.09 24.85 0.01 0.55 

BLT 10.11 0.11 17.49 4.53 0.28 0.00 0.78 66.69 0.00 

BL 0.12 0.01 3.42 31.50 3.08 0.10 9.92 0.00 51.86 

FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—Cultivated 

land, BLT-Built-up land, BL- Bare land 

4.2.4 Predicted Land use/ cover Patterns 

The CA-Markov model was applied to forecast Land use/cover changes based on Land 

use/cover change trends between 1995 and 2016. The CA–Markov validation was succeeded, 

with 87.5% of ROC value. These results provided a basis for the following analysis of Land 

use/cover changes. The values for Kappa statistics such as Kno (85.95%), Klocation (86.57%), 

KlocationStrata (86.57%), and Kstandard (82.05%) were also above 80%, which shows the 

high model capacity to simulate the 2025 and 2035 land use. The study assumed the persistence 

of the current management (i.e., business as usual scenario) for the predicted Land use/cover 

maps for 2025 and 2035 using CA-Markov. Table 24 and 25 shows the extent of projected 

Land use/cover types from 2016 to 2025 and 2035. Also, Fig. 20 shows the predicted Land 
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use/cover maps for the years 2016, 2025 and 2035. Land use/cover of the projected the year 

2025 indicated that the area 39.36% will be covered by bushland, 37.65% by grassland, 12.85% 

by cultivated land, 4.88% by bare land, 2.29% by forest, 1.99% by water, 0.37% by woodland, 

0.32% by built-up land and 0.30% by the wetland. Moreover, the projected Land use/cover for 

the year 2035 shows that; grassland will cover 39.47% of the area, followed by 34.48% by 

bushland, 15.58% by cultivated land, 6.67% by bare land, 1.47% by forest, 1.23% by water, 

0.45% by built-up area, 0.31% by woodland and 0.27% by the wetland. Net loss between 2025 

and 2035 is expected in the forest, woodland, bushland, water, and wetland, while the net gain 

is anticipated in grassland, cultivated land, built-up area, and bare land. The bushland is 

expected to decrease by 4.88%, followed by forest by 0.82%, water by 0.77%, woodland by 

0.07%, and wetland by 0.02%. Further, the cultivated land is expected to increase by 2.73%, 

followed by grassland by 1.91%, bare land by 1.79%, and built-up land by 0.14%.  

Table 24:  Areas of individual land use/cover change in the projected years 2025 and 

2035 

Variables 
 Land Use/Cover 

 2016 (Modelled) 2025 2035 

Unit Ha % Ha % Ha % 

Forest 103949 3.10 
76753 2.29 49152 1.47 

Woodland 14092 0.42 
12548 0.37 10218 0.31 

Bushland 1494416 44.61 
1317775 39.36 1154386 34.48 

Grassland 1200979 35.85 
1262030 37.65 1325857 39.55 

Water 92361 2.76 
66679 1.99 41049 1.23 

Wetland 10577 0.32 
9989 0.3 9207 0.27 

Cultivated land 324823 9.70 
430211 12.85 521632 15.58 

Built-up area 6072 0.18 
10563 0.32 15100 0.45 

Bare area 102528 3.06 
163249 4.88 223196 6.67 

Total 3349797 100 3349797 100 3349797 100 
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Table 25:  Changes in Land use/cover between 2016 and 2035 

Year 

 Land Use/Cover Changes 

 
2016 (Modelled) - 

2025 
2025-2035 2016-2035 

Unit Ha % Ha % Ha % 

Forest 27196 0.81 -27601 -0.82 -43000 -1.28 

Woodland 1544 0.05 -2330 -0.06 -11933 -0.35 

Bushland 176641 5.25 -163389 -4.88 -334654 -9.97 

Grassland -61051 -1.80 63827 1.9 66369 1.95 

Water 25682 0.77 -25630 -0.76 -54440 -1.62 

Wetland 588 0.02 -782 -0.03 5245 0.15 

Cultivated land -105388 -3.15 91421 2.73 198148 5.92 

Built-up land -4491 -0.14 4537 0.13 14402 0.43 

Bare area -60721 -1.82 59947 1.79 159864 4.78 

 

 
Figure 20:  Map showing projected Land use/cover for the years 2016, 2025 and 2035 

The results revealed that from 2016 to the future 2035, bushland, forest, water bodies, and 

woodland would decrease while cultivated land, grassland, bare land and built-up land would 

increase. These results are supported by the transitional matrix (Table 26) and transitional 

probability matrix and maps (Fig. 21) that express each pixel's probability of belonging to the 

designated class in the year 2035 from 2016. Thus, these maps are a cartographical presentation 
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of the transition probability matrix. During the period 2016 and projected 2035, 52% of built-

up land and water will remain unchanged, followed by bushland (49%), bare land (46%), 

grassland (45%), forest (39%), cultivated land (26%), wetland (6%) and woodland (1%). This 

suggests that woodland will face the biggest change, with the probability of 63% being 

converted to bushland (34%), followed by grassland (25%), forest (6%), and cultivated land 

(5%). The projection results revealed that water and built-up land would maintain above 50% 

of unchanged Land use/cover, while the largest share will be gained from bushland and 

grassland. Furthermore, the expectation for one land use/cover class's enormous contribution 

to another is 53% of forest to bushland, 42% of cultivated land to grassland, and 38% of 

grassland to bushland. Also, 38% of bare land was converted to grassland, 37% of wetland to 

bushland, 36% of bushland to grassland, 25% of woodland to grassland, 25% of water to 

bushland and 23% of built-up land to grassland. 

Table 26:  Transitional probability matrix of individual land use/cover change for the 

period 2016 and projected 2035 

    Percentage 
2035 

FR WL BUL GL WT WET CL BLT BL 

 

 

 

 

2016 

FR 39 03 53 3 0 0 2 0 0 

WL 6 1 63 25 0 0 5 0 0 

BUL 2 0 49 36 0 0 9 0 4 

GL 0 0 38 45 0 0 13 0 4 

WT 0 0 25 10 52 6 0 0 7 

WET 0 0 37 15 28 6 0 0 14 

CL 0 0 30 42 0 0 26 0 2 

BLT 0 1 18 23 0 0 6 52 0 

BL 0 0 9 38 01 0 6 0 46 

FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—

Cultivated land, BLT-Built-up land, BL- Bare land 
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Figure 21:  Markovian transitional Probability of individual land use/cover  

Generally, these land use/cover trends in NCA may increase human-wildlife conflict, declines 

in habitat productivity, illegal resource extraction, and natural resource degradation including 

water (Defries et al., 2007). The change reflects and identifies the interaction between 

biodiversity conservation and economic development. Managing ecosystem services cannot 

rely on short term restoration plans assumed without coordination across the entire watershed. 

When conducted in isolation, these plans are less likely to result in watershed-scale benefits 

than logical harmonized targets that are likely to restore the most ecosystem function. 

Managing ecosystem services cannot operate without monitoring or adaptive management. If 

the NCA communities want sustainable ecosystem services, they must manage land use and, 

for this, diverse sectors of the scientific community and the society must work together. 

Moreover, managing resources cannot succeed if the people living within the NCA watershed 

do not value the ecosystem services that may not meet their ideals of natural attraction but may 

nevertheless be entirely functional.  
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The suitable equilibrium between Land use/cover change to improve human welfare and secure 

areas to sustain other ecosystem services is eventually a societal decision in the argument 

between development and conservation (Defries et al., 2007; Rescia et al., 2010). A good 

starting point would be to effectively change the mindset toward ecosystem services and 

resource use by considering using it wisely regardless of priority rights. Such a change can 

only occur if there is more widespread recognition that natural resources, including land, are 

endangered. If the communities want the watershed to provide ecosystem services, they must 

move beyond narrowly focused management that reflects sectorial interlinkage. This shift in 

approach is intellectually tricky because it requires a more integrated and complex 

understanding than relying on a set of frameworks that describe ecosystem service only. As a 

result, the tradeoffs between human practices and longtime management of ecosystem 

amenities become difficult. These require adaptive management of ecosystems and natural 

resources (Singh et al., 2018) , which lays a foundation to bring various stakeholders together 

to help accommodate diverse opinions and interests. These changes need to be monitored and 

managed at the catchment scales to manage tradeoffs between various ecosystem services and 

balance losses and gains of land cover. Simultaneously, multiple goals and strategies should 

aim to structure and promote synergies or reduce tradeoffs (Tesfaw et al., 2018). To attain that, 

quantifying the potential impacts of land use/cover on the ecosystem is inevitable to ensure 

better management. Moreover, the quantification will help plan a better management system. 

Therefore, this study used a modelling approach to analyze the hydrological response of NCA 

and surrounding catchments to climate and land use/cover change. 

4.3 To Model the Response of Hydrological Processes (Runoffs and Stream Flows) to 

Future (2021-2050) Climate Change Compared to Baseline (1982-2011), and Land 

use/cover Change of 2025 And 2035 Compared to Baseline 2016 in the Study Area 

This study used the Soil Water Assessment Tool (SWAT) to analyze the hydrological response 

of the water resources to the change in climate and land use/cover changes. The outcome of 

this is crucial for effective management of the NCA and surroundings and a thorough 

understanding of the hydrological processes occurring in the water resources. This section 

discusses SWAT modelling results for management planning of water resources around the 

NCA.  
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4.3.1 Calibration and Validation of the SWAT Model 

The calibration results demonstrated a high level of agreement between discharge observations 

and SWAT modeling results. The graphical comparison of observed and simulated flow for 

the calibration (1985–1987) and validation (1988–1989) periods are shown in Fig. 22 to 25. 

The simulation has captured the observed flow reasonably. Statistical performance indices are 

also shown in Table 27. The obtained R2 (0.89 for calibration and 0.74 for validation) values 

show very good consistency between the observed and simulated data and indicate less error 

variance between the two data (Chaibou-Begou et al., 2016; Gashaw et al., 2018). The 

parameter values for NSE, RSR, PBIAS, and R2 were, respectively, estimated as 0.88, 0.34, 

4.4, and 0.89 in calibration, and 0.83, 0.41, 2.6, and 0.74 in the validation. The simulation 

reproduced the observed flow rationally, indicating the good performance of the model in 

simulating the hydrological impacts of climate and land use/cover changes. 

Table 27:  Model performance statistics for the calibration and validation periods 

Period 

Average Monthly 

Flow(m3/s) 

 

 
Evaluated Statistics 

Observed Simulated  NSE RSR PBIAS R2 

Jan 1985–Dec 

1987 
Calibration 8.03 8.40  0.88 0.34 4.4 0.89 

Jan 1988–Dec 

1989 
Validation 8.76 8.48  0.83 0.41 2.6 0.74 

 
Figure 22:  Observed and simulated monthly discharge data for the calibration period 
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Figure 23:  Observed and simulated monthly discharge data for the validation period 

     
Figure 24:  Scatter plot of the observed and simulated monthly average flow in the 

calibration period 
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Figure 25:  Scatter plot of the observed and simulated monthly average flow in the 

validation period 

4.3.2 The SWAT Model Sensitive Parameters 

Sensitivity analysis, which was carried out using 14 flow parameters presented in Table 9, 

identified the ten (10) most sensitive parameters controlling the output variable, as shown in 

Table 28. 

Table 28:  Sensitive flow parameters and their rank 

SN Parameter Definition Range Fitted value 

1 ALPHA_BF.gw Baseflow alpha factor for bank storage 0.0-1.0 0.048 

2 CN2.mgt SCS runoff curve number 35-90 66.38 

3 ESCO.bsn Soil evaporation compensation factor 0.01-1 0.85 

4 GW_DELAY, gw Groundwater delay (days) 0- 500 31 

5 GW_SPYLD(m3) 
Specific yield of the shallow aquifer 

(m3/m3) 
0.0-0.4 0.003 

6 HRU_SLP Average slope steepness (m/m) 0.0-1.0 0.026630926 

7 O VN Maning "n" value for overland flow 0.04 -0.3 0.15 

8 RCHRG_DP.gw deep aquifer percolation fraction 0.0-1.0 0.05 

9 SLSUBBSN Average slope length(m) 10-150 91.46341463 

10 SURLAG surface runoff lag coefficient 0.0-24 2 
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4.3.3 Impacts of Land use and Climate Changes in Hydrological Components 

Four simulation experiments were formulated based on the land use data and climate data. In 

the baseline scenario, the hydrological components were simulated with the land use data of 

2016 and the climatic data from 1982 to 2011 (baseline climate). Then three scenarios were 

designed based on land use and climate change (Table 29 - 31). In the first scenario, the 

hydrological components were simulated using the baseline climate data from 1982 to 2011 

with corresponding projected land use of 2025 and 2035 , respectively. In the second scenario, 

the hydrological components were simulated with the land use data in 2016 with corresponding 

2021- 2050 future climate scenarios (RCP 4.5 and RCP 8.5). In the third scenario the 

hydrological components were simulated with the land use data in 2025 with corresponding 

2021- 2050 future climate scenarios (RCP 4.5 and RCP 8.5); and land use data in 2035 with 

corresponding 2021- 2050 future climate scenarios (RCP 4.5 and RCP 8.5).  

(i) Temporal Variations in Hydrological Components 

The simulation result for hydrological components at a baseline was as follows: surface runoff, 

64.52 mm/year; groundwater flow, 34.39 mm/year; evapotranspiration, 556.21 mm/year; 

lateral flow, 8.02 mm/year and water yield, 168.38 mm/year. For the first Scenario, the 

dominant land use types of the catchment were bushland, grassland, forest, bare land and 

cultivated land. Therefore, to evaluate the impacts of land-use change on hydrological 

components, the calibrated SWAT model was simulated in historical land use (2016) and two 

future land use scenarios in 2025 and 2035 under the assumption that the weather did not 

change. The results (Table 29), showed that with projected land use in 2025, the hydrological 

components were as follows: surface runoff, 66.00 mm/year; groundwater flow, 9.43 mm/year; 

evapotranspiration, 563.22 mm/year; lateral flow, 33.87 mm/year and water yield, 171.63 

mm/year. Additionally, with projected land use in 2035, surface runoff, groundwater flow, 

evapotranspiration, lateral flow and water yield were 86.42 mm/year, 8.08 mm/year, 553.34 

mm, 30.74 mm/year and 172.77 mm/year, respectively. The results show that runoff and lateral 

flow may increase in the future under the change in land use in 2025 and 2035, respectively, 

compared with land use in 2016. Moreover, groundwater and water yield will decrease under 

the change in land use in 2025 and 2035, while evapotranspiration will increase under the 

change in land use in 2025 and will decrease under the change in land use in 2035 when 

compared with land use in 2016. During the study period (2016-2035), an increasing trend was 

observed in surface runoff (21.90 mm/year) and lateral flow (22.72 mm/year), while a 
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decreasing trend was observed in groundwater flow (26.32 mm/year), evapotranspiration (2.87 

mm/year) and water yield (43.14 mm/year). 

Table 29:  Hydrological component change due to land use/cover 

Hydrological component Baseline  2025 2035 
 2016      

- 2025 

 2025  

- 2035 

 2016  

- 2035 

Surface runoff (mm/year) 64.52 66.00 86.42 1.48 20.42 21.90 

Groundwater flow (mm/year) 34.39 9.43 8.08 -24.97 -1.35 -26.32 

Evapotranspiration 

(mm/year) 
556.21 563.22 553.34 7.01 -9.88 

-2.87 

Lateral flow (mm/year) 8.02 33.87 30.74 25.85 -3.13 22.72 

Water yield (mm/year) 168.38 109.30 125.24 -59.08 15.94 -43.14 

Furthermore, in the second scenario to analyse the impact of climate change on hydrological 

components, the calibrated SWAT model was simulated using the RCP 4.5 and RCP 8.5 future 

precipitation and temperature data scenarios, respectively. The study compared the simulated 

hydrological components for future periods under scenarios RCP 4.5 and RCP 8.5 to the 

corresponding values in the baseline period (1982–2011) with the assumption that land 

use/cover of 2016, did not change. Table 30 shows the changes in hydrological components 

under the climate scenarios for the 2021–2050 period. The simulation result for hydrological 

components for RCP 4.5 was as follows: Surface runoff, 263.15 mm/year; groundwater flow, 

15.10 mm; evapotranspiration, 593.30 mm/year; lateral flow, 290.27 mm/year and water yield, 

568.53 mm/year. Furthermore, the results showed that with RCP 8.5, the hydrological 

components were as follow: surface runoff, 302.46 mm/year; groundwater flow, 15.93 

mm/year; evapotranspiration, 598.61 mm/year; lateral flow, 310.25 mm/year and water yield, 

628.64 mm/year. In general, RCP 8.5 simulation results are higher than RCP 4.5 in all 

hydrological components.  

Table 30:  Hydrological component change due to climate change 

Hydrological component Baseline 2021-2050/RCP 4.5 2021-2050/RCP 8.5 

Surface runoff (mm/year) 64.52 263.15 302.46 

Groundwater flow (mm/year) 34.39 15.1 15.93 

Evapotranspiration (mm/year) 556.21 593.3 598.61 

Lateral flow (mm/year) 8.02 290.27 310.25 

Water yield (mm/year) 168.38 568.53 628.64 

In the third scenario, the study further simulated the combined impacts of future land use/cover 

and climate change on hydrological components in the study area with the calibrated SWAT 

model. The study compared the simulated hydrological components for future periods of land 



 

85 

use 2025 with future climate scenarios 2021-2050 (RCP 4.5 and RCP 8.5) and land use 2035 

with future climate scenarios 2021-2050 (RCP 4.5 and RCP 8.5)  with the baseline scenario. 

Table 31 represent the results for the third scenario. Initially, the simulation result for 

hydrological components for 2021- 2050 future climate scenarios RCP 4.5 and PCP 8.5 with 

the land use data in 2025 was as follows: surface runoff, 268.33 mm/year; groundwater flow, 

15.51 mm/year; evapotranspiration, 606.59 mm/year; lateral flow, 227.62 mm/year and water 

yield, 511.48 mm/year, and surface runoff, 322.55 mm/year; groundwater flow, 16.36 

mm/year; evapotranspiration, 612.95 mm/year; lateral flow, 252.94 mm/year and water yield, 

591.86 mm/year, respectevely. Further, the simulation result for hydrological components for 

2021- 2050 future climate scenarios RCP 4.5 and PCP 8.5 with the land use data in 2035 was 

as follows: surface runoff, 309.79 mm/year; groundwater flow, 15.20 mm/year; 

evapotranspiration, 578.43 mm/year; lateral flow, 207.29 mm/year and water yield, 532.27 

mm/year; and surface runoff, 365.96 mm/year; groundwater flow, 16.02 mm/year; 

evapotranspiration, 600.04 mm/year; lateral flow, 230.81 mm/year and water yield, 612.79 

mm/year, respectevely. Generally, RCP 8.5 simulation results are higher compared to RCP 4.5 

in all hydrological components for both land use data in 2025 and 2035. Further, the results 

showed that surface runoff, evapotranspiration, lateral flow, and water yield would 

significantly increase in all four scenarios compared to the baseline scenario, while 

groundwater would decrease. 

Table 31:  Hydrological component change due to land use and climate change 

Hydrological component Baseline 
Land 2025 

(RCP 4.5) 

Land 

2025 

(RCP 8.5) 

Land 

2035 

(RCP 4.5) 

Land 2035 

(RCP 8.5) 

Surface runoff (mm/year) 64.52 268.33 322.55 309.79 365.96 

Groundwater flow (mm/year) 34.39 15.51 16.36 15.2 16.02 

Evapotranspiration 

(mm/year) 556.21 606.59 612.95 578.43 600.04 

Lateral flow (mm/year) 8.02 227.62 252.94 207.29 230.81 

Water yield (mm/year) 168.38 511.48 591.86 532.27 612.79 

 

(ii) Spatial Variations in Water Yield Component 

Water yield is an important hydrological component that influences human well-being because 

many agricultural, industrial, and domestic activities rely on it (Fan  & Shibata, 2014; 

Muthuwatta et al., 2018). Furthermore, the total amount of water produced influences or limits 
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how people use water resources (Maliehe  & Mulungu, 2017). The spatiotemporal variation of 

water yield is significant, which frequently creates a challenge in allocating water resources 

between seasons and between upstream and downstream areas (Muthuwatta et al., 2018; Zhang 

et al., 2020). Therefore, this study performed a spatial analysis for water yield among other 

simulated components by SWAT model to provide critical spatial information for water 

resource management plans in and around the NCA. 

The spatial distribution for the first scenario shows the total water yield in the study area as an 

impact of future land use/cover scenarios compared to a baseline scenario (Fig. 26 a). The 

pattern of total water yield is similar for future land use/cover change in 2025 and 2035 are as 

shown in Fig. 26 b and c, respectevely, which indicates the decreasing amount of water yield. 

However, a slight increasing amount to maximum of 303.21 mm/year would occur in the 

eastern and central subbasins in 2035 future scenario compared to a maximu of 292.39 at a 

baseline scenario. Looking at the land use/cover maps for future 2025 and 2035 (Fig. 20) the 

eastern areas would have expansion of cultivation land, therefore decrease in water yield in 

2025 could impact the acgiculture and human activities over the area. However, during 2035 

the water yield would increas  and agriculture activities at this area would benefit the 

availability of water resources which will maximise the agriculture production. 

 
Figure 26: Spatial distribution of water yield (mm/year) at a baseline scenario (a) and 

future land use cover change scenarios of 2025 (b) and 2035 (c) 



 

87 

For the second scenario,the spatial distribution of the total water yield in the study area as an 

impact by 2021- 2050 future climate scenarios (RCP 4.5 and RCP 8.5) are shown in Fig.  27. 

The distribution shows an increasing pattern of total water yield in the 2021-2050 climate 

scenarios under RCP 4.5 and RCP 8.5, as shown in Fig.  27 b and c, respectively. A higher 

increase in water yield would occur in the northern, southern and some parts of the centre and 

west compared to the baseline scenario. However under RCP 8.5, the water yield would be 

much higher than under RCP 4.5. This increase in water yield in the future climate scenarios 

could be associated with the predicted increase in rainfall over the areas (mwabumba et al., 

2022). The highest water yield would occur in the western parts with amount of 1014.58 

mm/year and 1218.18 mm/year for RCP 4.5 and RCP 8.5, respectively. The increase in water 

yield could support the conservation in the NCA and expected rise of socio-economic activities 

in the surrounding areas. 

 

Figure 27: Spatial distribution of water yield (mm/year) at a baseline scenario (a) and 

future climate 2021-2050) scenarios under RCP4.5 (b) and RCP8.5 (c) 

In the third scenario, the distribution shows an increasing pattern of total water yield in all 

settings: (a) Land use 2025 with climate 2021-2050 under RCP 4.5 (Fig. 28 b); (b) Land use 

2025 with climate 2021-2050 under RCP 8.5 (Fig. 28 c); (c) 2035 land use with 2021-2050 

climate under RCP 4.5 (Fig.  28 d) and (d) 2035 land use with 2021-2050 climate under         

RCP 8.5 (Fig. 28 e) compared to the baseline scenario (Fig. 28 a). A maximum increase in 
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water yield would occur at some parts in the west followed by central towards south and 

northestern parts in all scenarios. The increase in water yield in these areas coincides with the 

second scenario, in which land use remained unchanged with changes in climate (Fig. 27 c & 

d); also with the projected spatial precipitation distribution over the area as shown in Fig.16 a 

and b. In contrast to the spatial distribution in the baseline scenario and in the first scenario, 

which indicated the maximum water yield in the eastern and central parts.  

 

Figure 28:  Spatial distribution of water yield (mm/year) at a baseline scenario (a), 

future climate 2021- 2050/RCP 4.5/land use/cover 2025 (b), future climate 

2021- 2050/RCP 8.5/land use/cover 2025 (c), future climate 2021- 2050/RCP 

4.5/land use/cover 2035 (d) and future climate 2021- 2050/RCP 8.5/land 

use/cover 2035 (e) 

Generally, the findings of this study shows that the temporal and spatial changes of 

hydrological components were more affected by climate change than land-use change. This 

result indicates that the predicted increase in precipitation and temperature will cause more 
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significant impacts on the hydrological components than the expected land-use changes. It is 

evident that the impact of climate change on water resources and their services is increasing, 

particularly in the developing world (Obuobie et al., 2012; Pachauri et al., 2014). Furthermore, 

Burke et al. (2009) have emphasized that this impact will be substantial in Africa owing to 

poverty and political instability, amongst others in the region. The findings of this study 

projecting an increase in rainfall and temperature raise concern for the Ngorongoro 

Conservation Area and its surrounding ecosystems. The projected increase in rainfall has the 

advantage of a constant water supply to the biodiversity and ensuring food security for the 

expanding human population in the Ngorongoro Conservation Area and its surroundings 

(Galvin et al., 2008). The conducted survey and focus group discussion by both local 

community and Park Managers in the NCA confirmed that about 80 - 90% of newly born 

livestock were lost in 2007/2008 due to diseases associated with intense drought. Therefore, 

projected increase in water availabity will be vital for the economy and livelihood of the 

communities around the NCA. 

Mkiramweni et al. (2016) have recounted that the Ngorongoro Conservation Area (NCA) is 

one of the very important protected areas for ecotourism in Tanzania and fosters harmonious 

relationships between wildlife, people, and livestock. The results showed the potential 

influence of land use/cover and climate change to the hydrological components and  water 

resources in and around the NCA. The resulting changes to the hydrological compoments and 

water resources availability will impact ecotourism resources such as wildlife, archaeological 

sites, beautiful landscapes and lifestyles/cultures of the local community (Galvin et al., 2008) 

on which the NCA is based. Therefore, authorities and communities should plan for the 

adaptation measures which will involve all stakeholders around the NCA. In this way, we can 

find rational solutions to share with ecologic limits, and we have to be careful in setting new 

goals to bring attention to the reality, to the science and to protect water resources in NCA. 

Water is the primary medium through which land use/cover and climate change influence the 

ecosystem  and well-being. A traditional, fragmented approach to water resource use is not 

going to yield sustainable benefits in the long run.  

Water resources and how they are managed impact almost all aspects of the functioning of 

ecosystems. Thus, adapting to the new challenge of land use/cover and climate change requires 

an integrated water resource use and management approach. Adaptation to water resource 

management is mainly about better land use, while integrated solutions are needed at the 
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appropriate levels for adaptation and mitigation. Appropriate adaptation measures should be 

built upon the existing water resource use practices to foster resilience to land use/cover and 

climate change, thereby enhancing water security. Land use/cover and climate change impact  

in hydrological processes and may affect the water quality. Therefore, this study further 

analyses the hydrochemical composition of the water resources. Furthermore, it determines the 

hydrochemical movements to groundwater as influenced by the clmate and land use/cover  

changes. 

4.4 Characterizations of the Hydrochemical Composition of Water Resources in the 

Study Area and Monitoring of their Movement to Groundwater around the Study 

Area 

This section explains the hydrochemical compositions of water sources  (i.e. Rivers, springs, 

lakes, wells) around the study area and their movement to the groundwater as influenced by 

the changes in climate and Landuse/ land cover changes around the study area. The study uses 

the HYDRUS 1D model to analyse the movement of cations (Na+, Ca2+, Mg2+, and K+) and 

anions (Cl-, SO4
2-, PO4

3-, NO3
-, HCO3

-) to groundwater. Before modelling the movement of 

hydrochemical to groundwater, the study characterises the hydrochemical composition of 

surface water resources in the water sources surrounding the NCA.  The water sources around 

the study area are assumed to have cations and anions contamination due to weathering of the 

rock materials. Therefore, water samples from different water sources were collected and 

analyzed in the laboratory to determine their hydrochemical contaminations. The laboratory 

results for the hydrochemical (cations and anions) were used as an input (initial conditions) in 

HYDRUS 1 D model to determine their movements to the groundwater. 

4.4.1 Characteristics of the Hydrochemical Composition of Water Resources in the 

Study Area 

The characterization of hydrochemical composition was performed through laboratory analysis 

for cations (Na+, Ca2+, Mg2+, and K+) and anions (Cl-, SO4
2-, PO4

3-, NO3
-, HCO3

-) on water 30 

water points from different water sources (rivers, lakes, springs, pools, wells and boreholes). 

The results for the concentration of cations and anions on the different water sources are 

presented in Table 32 and Table 33, respectively. 
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Table 32:  Cation composition (mg/L) for water sources around the study area 

SN Name Na+ K+ Mg2+ Ca2+ 

1 Takano spring 139 13.5 22.5 8.8 

2 Engarisero river 212 50.3 9.3 16.3 

3 Engong'was 154 15.4 14.8 9.5 

4 Marite 48.3 23.9 70.5 13.8 

5 Marite Spring 48.3 27.4 32.5 25.5 

6 Ngopironi spring 48.6 16.5 5.8 41.8 

7 Engaruka river 31 9.5 36 10.0 

8 Lake Natron 305 27.9 5.8 5.5 

9 Empakaai spring 1 50.4 19.5 17 41.3 

10 Empakaai spring 2 53.5 21.1 16.3 12.5 

11 Munge river 16.2 1.6 10.1 8.8 

12 Mundus Hippo pool 65.6 17.5 38 23.3 

13 Mti Mmoja 171 139 10 7.3 

14 Lake Makat 199 123 10.8 14.5 

15 Ngoitok tok spring 63.2 16.9 22.3 12.5 

16 Gorgory swamp 226 112 27.5 20 

17 Seneto 72 10.4 7.5 5.8 

18 Olmoti Spring 38.2 12.2 14.5 40.3 

19 Oljoro Nyukie 22.6 3.8 29.8 15.8 

20 Mamahaw river 14.5 2.8 17.5 9.0 

21 Selela-Kapambe 25.9 6.1 21.8 34.8 

22 Karuwasa borehole 29.2 7.6 26.3 22.3 

23 Karatu well(Mbowe) 69.8 30.2 6.3 1.6 

24 kigongoni river 9.7 2 8.7 18.4 

25 Mto wa mbu well 138.7 10 31.5 43.7 

26 Majengo 277 18.9 26.1 18.0 

27 Manyara hot spring 611 11.5 5.3 34.0 

28 Manyara cold spring 24.4 4.3 18.2 20.7 

29 mto wa mbu (River) 247.9 4.8 0 29.9 

30 Lake Manyara 533.2 7.7 12.1 25.6 
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Table 33:  Anion composition (mg/L) for water sources around the study area 

SN Name NO3
- Cl- SO4

2- PO4
3- HCO3

- 

1 Takano spring 0.9 74.7 72.0 0.9 380.0 

2 Engarisero river 1.2 123.1 240.0 3.0 400.0 

3 Engong'was 0.7 118.9 76.0 0.4 400.0 

4 Marite 0.9 10.5 29.0 0.3 300.0 

5 Marite Spring 1.0 46.3 1.0 0.8 280.0 

6 Ngopironi spring 4.9 20.9 29.6 0.1 220.0 

7 Engaruka river 0.7 4.2 8.0 0.2 220.0 

8 Lake Natron 1.2 685.1 45.0 0.0 0.0 

9 Empakaai spring 1 33.0 7.4 98.0 0.5 220.0 

10 Empakaai spring 2 0.5 9.5 15.0 0.5 300.0 

11 Munge river 2.9 21.3 1.8 0.2 220.0 

12 Mundus Hippo pool 0.3 14.7 12.0 1.6 95.0 

13 Mti Mmoja 32.8 125.2 3.1 0.8 540.0 

14 Lake Makat 4.7 152.6 141.0 0.6 480.0 

15 Ngoitok tok spring 0.7 21.1 15.0 0.3 320.0 

16 Gorgory swamp 7.2 126.3 88.0 4.0 1200.0 

17 Seneto 0.6 16.8 9.0 0.3 200.0 

18 Olmoti Spring 0.4 4.5 8.9 0.2 180.0 

19 Oljoro Nyukie 2.6 5.3 23.0 0.3 140.0 

20 Mamahaw river 0.7 11.6 9.0 0.2 80.0 

21 Selela-Kapambe 0.4 9.5 1.0 0.0 180.0 

22 Karuwasa borehole 0.6 11.6 0.0 0.5 260.0 

23 Karatu well(Mbowe) 21.0 9.7 8.1 0.1 219.7 

24 kigongoni river 0.5 3.0 7.6 0.0 315.3 

25 Mto wa mbu well 7.6 32.4 54.3 0.0 128.0 

26 Majengo 18.4 30.9 150.3 0.0 173.1 

27 Manyara hot spring n.a. 255.9 198.3 0.0 208.1 

28 Manyara cold spring 11.1 9.5 9.0 0.0 162.7 

29 mto wa mbu (River) 1.3 12.6 35.6 0.0 280.1 

30 Lake Manyara 46.8 468.2 76.5 0.0 190.0 

The composition of Na+, K+, Mg2+, and Ca2+ cations on the studied water sources ranges 

between 9.7 and 611 mg/L;  1.6 and 139 mg/L; 0 and 70.5 mg/L; 5.5 and 43.7 mg/L, 

respectively as shown in Table 32. For the Na+, the allowable concentration for drinking water 

is 200 mg/L based on the WHO and TBS standards for drinking water. Therefore, the 

concentration is within permissible limits for most of the studied water sources except for the 
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Engarisero river and Lake natron at the Lake natron sub-catchment, with 212 mg/L and 305 

mg/L. Also, the higher concentration is at Mtowambu river, Majengo well, Lake Manyara and 

Manyara hot spring in lake Manyara sub-catchment, with concentrations of  247.9 mg/L, 277 

mg/L, 533.2 mg/L and 611 mg/L, respectively. Therefore water from the mentioned sources 

above was not suitable for consumption as it may lead to adverse health effects.  

Similar conditions are observed for the K+ concentration in which most of the studied water 

sources are composed of a concentration lower than the permissible limit of 50 mg/L set by the 

TBS standard. However, the K+ concentration at Lake Makat, Gregory swamp and Mti mmoja 

spring were above the allowable limit with a concentration of  123 mg/L, 226 mg/L, and 139 

mg/L, respectively. For the Mg2+, all water sources have a concentration within the permissible 

limit set by WHO (50 mg/L) and TBS (100 mg/L). However, Marite spring at lake Natron sub-

catchment has a concentration of 70.5 mg/L, exceeding the WHO limit but within the TBS 

limit. Therefore, the Mg2+ water resources in the study area are suitable for consumption. 

Furthermore, considering the  Ca2+, the concentrations at all studied water bodies were below 

the permissible concentration of 75 mg/L (WHO) and 150 mg/L (TBS). Therefore, the water 

quality in respect of  Ca2+ for all studied water sources was suitable for consumption. 

Besides the anions, NO3
-, Cl-, SO4

2-, PO4
3-, and HCO3

-  the composition ranges between 0.3 

and 46.8 mg/L; 3 and 685.1 mg/L; 0 and 240 mg/L;0 and 4 mg/L; and 0 and 1200 mg/L, 

respectively as shown in Table 33. Looking at the individual anions, the NO3
- is within the 

permissible limit of the TBS (45 mg/L) and WHO (30 mg/L)  for the most studied water 

sources, except for Lake Manyara with 46.8 mg/L, which exceeds both TBS and WHO limits; 

while Embakai and Mti mmoja springs exceed WHO limits only with a concentration of 33 

mg/L and 32.8 mg/L, respectively. For the Cl- the concentration that exceeded the limits of 250 

mg/L (WHO and TBS) were at Lake Natron (685.1 mg/L), Manyara hotspring (250.9 mg/L) 

and Lake Manyara (468.2 mg/L).  The SO4
2- concentrations are within the permissible limit by 

WHO and TBS of 250 mg/L and 400 mg/L, respectively, for all studied water sources. For the 

PO4
3- all studied water sources have a concentration within the allowable limit except 

Engarisero spring in lake Natron and  Gorgory swamp in NCA with 3.0  mg/L and 4.0 mg/L, 

respectfully that exceed the 2.2 mg/L allowable limits by WHO and TBS. Likewise, for the 

HCO3
-, all studied water sources are within the permissible limit of 500 mg/L set by WHO and 

TBS for total hardness, except Mtimmoja spring and Gorgory swamp, with higher 

concentrations of 540 and 1200 mg/L, respectively.  
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4.4.2 Monitoring of the Hydrochemical Movement to Groundwater around the Study 

Area 

This section explains the results from the HYDRUS 1D model to monitor the movement of 

cations and anions to groundwater as influenced by climate change and land use/cover change. 

The groundwater concentrations of cations (Na+, Ca2+, Mg2+, and K+) and anions (Cl-, SO4
2-, 

PO4
3-, HCO3

-) were simulated numerically based on the future climate conditions. 

Concentrations of these ions computed in groundwater at 30 locations are used to analyze the 

spatial distribution of the ions in the area.  

(i) Analysis of Cations (Na+, Ca2+, Mg2+, and K+) and Anions (Cl-, SO4
2-, PO4

3-, 

HCO3
1-) Movement to the Groundwater as Influenced by Climate and Land use 

/cover Changes around the Study Area 

Temporal Analysis for the Cations and Anions in the Groundwater 

In general, temporal analysis shows an increase in the concentration of cations and anions in 

the groundwater. However, the rate of increase over the period is dependent on the changes in 

climate parameters and land use/cover types for the period between 2021-2050. Therefore, the 

groundwater concentration trends for cations (Na+, Ca2+, Mg2+, and K+) are presented in Fig. 

29, while Fig. 30 is for anions (Cl1-, SO4
2-, PO43

1-, HCO3
1-) and Fig. 32 is for NO3

- from 2021 

to 2050. 

Figure 29 Trends for cations (Na+, Ca2+, Mg2+, and K+) concentrations are expected 

in the study area from 2021 to 2050 
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The increase in cation is more between 2036 and 2050 when most climate parameters are also 

increasing. However, the results show more increase in Na+ compared to other cations, as 

shown in Fig. 29. Comparing the studied sub-catchments for the cations and anions (Fig. 29, 

30 & 31), a higher increase of Na+ and Ca2+ will be observed at Lake Manyara and lower at 

Ngorongoro. For the K+, the higher increase would be at Ngorongoro, the lower at Lake 

Manyara, while the Mg2+ higher increase would be observed at lake Natron and lower at 

Ngorongoro. The high rise of Na+ and Ca2+ around Lake Manyara could be associated with 

the increased agriculture activities and fertilizers.  Similar trends are observed for anions, 

where the concentration of all anions increases with time. However, more rise in their 

concentration is expected between 2036 and 2050, with a higher concentration of HCO3
- than 

other anions, as depicted in Fig. 30.  Furthermore, the NO3
-1 indicate the increasing trends 

from 2029, with the highest increase in 2050. 

   

Figure 30:  Trends for anions (Cl-, SO4
2-, PO43

-, HCO3
-) concentrations that are 

expected in the study area from 2021 to 2050 
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Figure 31: Trends for NO3

-1 anion concentrations that are expected in the study area 

from 2021 to 2050 

For anions, the higher increase concentration of Cl- was at Lake Natron and Lake Manyara, 

while for SO4
2-, the high increase in concentration would be at Lake Manyara and the lowest 

at Ngorongoro. For the PO4
3- and HCO3

-, the higher rise would be in Ngorongoro and Lake 

Natron.  However, for the NO3
- (Fig. 31), the higher increase in concentration would be 

observed at Natron and the least at Ngorongoro. The variations in the increased concentration 

of cation and anions in these sub-catchments are related to the variations in mineral deposits 

and anthropogenic activities. At Lake Manyara and Natron sub-catchments, the increase in 

agriculture activities is likely to occur as these catchments are outside the conservation area. 

These could be a major source of pollution to the groundwater due to the application of 

fertilizers and other human activities. The trend analysis for cations and anions indicates the 

increase in concentration between 2036 and 2050 in all sub-catchments. On average, the 

concentrations are within the allowable limits by WHO and TBS; however, spatially, the 

distribution is not equal. As a result, some areas would have higher concentrations than the 

permitted limits. 

Spatial Distribution for Cations and Anions in the Groundwater  

Spatially, the cations and anions distribution in the study area were analyzed by comparing 

their distribution during the monitoring period (2018-2020) with the spatial distribution of the 

simulated concentration from 2021 to 2050. In addition, the future period was separately 



 

97 

analyzed in intervals from 2021-2035 and 2036-2050 and found that the distribution of ions 

varied over the study area.  The spatial distribution of the annual concentration of cations (Na+, 

K+, Ca2+, and Mg2+) and anions (Cl-, SO4
2-, PO4

3- and HCO3
-) are presented in Fig. 32 and 33, 

respectively. However, the spatial distribution for NO3
- is presented in Fig. 34. 

              

Figure 32: Spatial distribution maps of Na+, K+, Ca2+, and Mg2+ Cations at the end of 

baseline (2018-2020) and future periods (2021-2035 and 2036- 2050) 

 

Figure 33: Spatial distribution maps of Cl-, SO4
-2, PO4

-3 and HCO3
- Anions (mg/L) at 

the end of baseline (2018-2020) and future periods (2021-2035 and 2036- 

2050) 
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Figure 34: Spatial distribution of the concentration of the NO3

-1 anion in the 

groundwater 

• Spatial Distribution of The Concentration of the Cation (Na+, K+, Ca2+, and Mg2+) 

in the Groundwater 

For Na+, the spatial distribution is lower than the allowable concentration of 200mg/l by the 

WHO and TBS at the baseline (2018-2020), as shown in Fig. 32. The concentration will 

increase but remains within the permissible limit between 2021 and 2035, with a high amount 

over the central and western of Lake Manyara. However, the concentration of Na+ will be above 

the permissible limit over the central and southern parts of Lake Manyara and the western parts 

of Lake Natron from 2036 to 2050. Though, the entire study area has shown an increase in Na+ 

concentration but within the permissible limit. Excess Na+ in water resources that exceed 200 

mg/L may lead to bad water tests and adverse health effects on the community. However, there 

is no information on the minimum allowable Na+ daily intake in water (WHO, 2008). The 

findings from different studies reported that the high Na+ intake might raise cardiovascular 

diseases and raise the mortality rate (Arega, 2020). Mineral deposits and saline intrusion can 

be the primary sources that significantly contribute to high Na+ in groundwater. In addition, 

some agricultural activities that can be found around lake Manyara can also be the source of 

Na+ in water resources.  
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Similar conditions were observed for the K+ (Fig. 32) in which, at the baseline, the 

concentration was lower than the permissible limit of 50 mg/L set by the TBS standard for 

Tanzania’s drinking water. However, the concentration will increase spatially to the entire 

study area, with a higher amount exceeding the permissible limit over the western part of the 

Ngorongoro crater highlands between 2036 and 2050. Thus, for the future period of 2021 - 

2035, the entire study area will have increased K+ but within the allowable limit, as Fig. 32 

depicts. The K+ concentration of more than 50 mg/L is not a major component in water 

supplies. However, Potassium’s high concentration could threaten human health conditions, 

including Kidney diseases and other conditions such as hypertension, heart diseases, coronary 

artery diseases, and Adrian insufficiency (Arega, 2020; WHO, 2008). Infants could be more 

vulnerable because of immature kidney function and limited renal reserve in their bodies.  

For the Ca2+, initially, the concentrations are below the permissible concentration of 75 mg/L 

(WHO) and 150 mg/L (TBS). In 2021-2035, the concentration increases spatially but remains 

within the permissible limit. A further increase is observed in the future 2036- 2050 over most 

areas; however, the concentration is observed to be within the allowable limit. Although the 

concentrations are within the acceptable limit, the increase in Ca2+ concentration between 2036 

and 2050 is alarming in the entire study area. The groundwater quality in the areas with an 

excess concentration of Ca2+ from acceptable amounts is considered poor and may cause health 

problems to humans and animals (wildlife and domestic). Likewise, for the Mg2+ (Fig. 32), low 

concentrations are observed during the baseline period, increasing over the entire study area in 

the future between 2021 and 2035. However, the distribution is within WHO’s permissible 

limit (50 mg/L) and TBS (100 mg/L). Between 2036 and 2050, the distribution of Mg2+ 

concentrations in the groundwater will increase but within the WHO and TBS limits except for 

a few areas of Lake Natron where the concentrations will exceed the WHO limit. 

• Spatial Distribution of the Concentration of the Anions (Cl-, SO4
2-, PO4

3-, NO3
- 

And HCO3
-) in the Groundwater 

The spatial distribution of Cl- concentration was lower at a baseline period (2018-2020) 

compared to the allowable concentration of 250 mg/L by the WHO and TBS, as shown in      

Fig. 26. However, the concentration will increase during the future period 2021-2035 all over 

the study area but will remain well within the permissible limits. Therefore, Cl-1 concentration 

will spatially increase above the allowable limit over the central to the southern parts of Lake 

Manyara from 2036 to 2050. Chloride is a widely distributed anion in many rocks type. In 
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Natural water, Chloride may occur due to agricultural activities and chloride-rich rock 

materials (Selvakumar et al., 2017). Its concentration in groundwater varies with temperature 

and rainfall amounts. Therefore, a high concentration of chloride is expected when the 

temperature is high and rainfall is less. Higher chloride consumption causes hypertension and 

the risk of stroke, renal stones, and asthma to the human being (Mccarty, 2004). Likewise, for 

the SO4
2-, the baseline concentration was lower than the permissible limit of 250 mg/L (WHO) 

and 400 mg/L (TBS). However, the concentration will increase spatially to the entire study 

area between 2021 and 2035; but within the permissible limit. Similarly, for the future period 

of 2036 - 2050, the whole study area will have an increased SO4
2- concentration but not cross 

the allowable limits (Fig. 33). This increase could be related to the development of 

anthropogenic activities through the use of sulphate fertilizers and future climate trends. In 

addition, the SO4
2- is an important anion present in natural water that can impact human health 

by causing dehydration and gastrointestinal irritation when consumed in excess (Sarala  & 

Ravi, 2012).  

The spatial distribution of PO4
3- (Fig.  26) showed a lower concentration at the baseline period 

(2018-2020) than TBS's allowable concentration of 2.2 mg/L. However, the concentrations 

will increase beyond the permissible limits around Ngorongoro crater highlands from 2021 to 

2035. The concentration of PO4
3- will further increase above the allowable limit around 

Ngorongoro crater highlands, northwestern lake, Manyara, and most areas of lake Natron 

except northern and southern parts during 2036 - 2050. A high intake of PO4
-3 in the body is 

detrimental. Hence, future monitoring of the PO4
-3 concentration in the groundwater is vital for 

the mentioned areas considering the possibility of exceeding the permissible limits. The 

primary source of PO4
-3 is point sources, including natural decomposition of rocks and 

minerals, erosions, rainfall runoffs, agricultural runoffs, direct inputs from animals/wildlife, 

and atmospheric deposition. Other non-point sources include wastewater treatment plants and 

industrial discharge. However, many parts of the area are conserved; therefore, the main source 

remains non-points. 

The spatial distribution of the HCO3
- (Fig. 33) shows at the baseline period from 2018 to 2020; 

the concentration was lower than the permissible limit of 600 mg/L set by the TBS for alkalinity 

in natural water sources. The concentration will increase spatially to the entire study area 

between 2021 and 2035. However, the concentration will still be within the permissible limit. 

Similarly, for the future period of 2036 - 2050, model results indicate there will be an increase 

in HCO3
- concentration over the entire study area but within permissible limits. The study 
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area’s primary carbonate source is the active carbonatite volcano found around the Oldoinyo 

Lengai, located in the Gregory rift valley. However, high concentrations were observed in the 

southwestern parts of Lake Natron and the southern Ngorongoro crater (Fig. 33). The HCO3
-, 

when in large amounts, affects the taste and corrosiveness of water. 

Likewise, for the Nitrate (NO3
-) (Fig. 34), spatial distribution indicated a lower concentration 

at a baseline (2018-2020) with a concentration less than 0.01 mg/L. However, the distribution 

showed an increase in NO3
- to 8.67 mg/L for the future 2021-2035 in the central part of the 

Lake Manyara sub-catchment. At this period, the concentration of NO3
- would be within the 

allowable limit of 10 mg/L for the natural concentration in groundwater under aerobic 

conditions (Sadler et al., 2016). Further, the results showed an increase of NO3
- to the 

concentration above the allowable limits between 2036 and 2050 at the central and eastern 

parts of Lake Manyara sub-catchment, western parts of lake Natron and around Lake Makat in 

the Olduvai sub-catchment. Therefore, more concentrations would be in the Natron and Lake 

Manyara sub-catchments. This increase could be mainly to human activities, especially 

Agriculture expansions, which are expected to increase over those areas outside the conserved 

area. The NO3
- is toxic when consumed as it can be converted to nitrite ion (NO2

-) in the 

stomach and may result in severe illness and sometimes death in infants of less than six months. 

In addition, NO2
- combines with haemoglobin, giving complete methaemoglobin that deprives 

the tissue of oxygen supply. The blueness of the skin is the main symptom of the acute illness 

associated with the consumption of NO3
-. 

(ii) Impacts of Climate and Land use/cover Changes on Cations and Anions 

Transport to the Groundwater 

The pairwise relationships between the climate parameters and annual concentration (mg/L) 

for cations and anions transported to the groundwater are listed in Table 34 and 35. The 

correlation was performed at 0.01 and 0.05 levels of significance. Based on Table 34, all cations 

(Na+, K+, Mg2+, and Ca2+) showed a significant correlation to the Tmax, Tmin, Tmean, and ET 

with low to moderate Pearson correlation coefficient (r), ranging from 0.35 - 0.67. Likewise, 

for the anions (Cl-, SO4
2-, PO4

-3, NO3
- and HCO3

-), as Table 35 shows, the results significantly 

correlated with Tmax, Tmin, Tmean, and ET with low to moderate person correlation 

(r) between 0.35 and 0.85. However, Tmin shows the highest correlation among all climate 

variables to both cations and anions.  
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Furthermore, the study determined a pairwise relationship between the land use/cover types 

and annual concentration (mg/L) for the cations and anions. The results are as presented in 

Table 36 and 37, respectively. The correlation was performed at a 0.05 level of significance. 

Based on the results in Table 36, all cations (Na+, K+, Mg2+, and Ca2+) significantly correlate 

to the changes in all land use/ cover types. Pearson correlation coefficient (r), ranging from 

0.56 to 0.99. Likewise, for the anions (Cl-, SO4
2-, PO4

-3, NO3
- and HCO3

-), as Table 37 shows, 

the results significantly correlated with all land use /cover types with Pearson correlation 

(r) between 0.56 and 0.96. However, forest, bushland, woodland, and wetland negatively 

correlated with all cations and anions. On the other hand, cultivated land, grassland, built-up 

area, and water positively correlated with all cations and anions. Therefore, besides other 

factors such as volcanic activities and accelerated human interventions that could affect water 

quality, climate change can be considered the main driver for hydrochemical movements to the 

groundwater around the study area. 
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Table 34:  Correlation Matrix between annual variation in climatic parameters and cation concentration (mg/L) changes to the 

groundwater 

  Rain Tmax Tmin Tmean RH WS  ET Na+ K+ Mg2+ Ca2+ 

Rain 1           

Tmax -0.76** 1          

Tmin -0.51** 0.88** 1         

Tmean -0.68** 0.98** 0.96** 1        

RH 0.84** -0.88** -0.63** -0.79** 1       

WS -0.79** 0.70** 0.57** 0.66** -0.70** 1      

ET -0.84** 0.93** 0.73** 0.87** -0.95** 0.83** 1     

Na+ -0.23 0.48** 0.67** 0.56** -0.21 0.32* 0.36* 1    

K+ -0.24 0.49** 0.64** 0.57** -0.22 0.34 0.35* 0.99** 1   

Mg2+ -0.23 0.48** 0.63** 0.56** -0.21 0.31 0.37* 0.99** 0.99** 1  

Ca2+ -0.23 0.48** 0.63** 0.56** -0.21 0.32 0.36* 0.99** 0.99** 0.99** 1 

**Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level.  
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Table 35: Correlation Matrix between annual variation in climatic parameters and anions concentration (mg/L) changes to the 

groundwater 

**Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level 

  

 Variable Rain Tmax Tmin Tmean RH WS ET Cl- SO4
2- NO3

- PO4
3- HCO3

- 

Rain 1            

Tmax -0.76** 1           

Tmin -0.51** 0.88** 1          

Tmean -0.68** 0.98** 0.96** 1         

RH 0.84** -0.88** -0.63** -0.79** 1        

WS -0.79** 0.70** 0.57** 0.66** -0.70** 1       

ET -0.84** 0.93** 0.73** 0.87** -0.95** 0.83** 1      

Cl- -0.23 0.48** 0.66** 0.54** -0.21  0.32 0.36* 1     

SO4
2- -0.25 0.48** 0.62** 0.59** -0.22  0.34 0.35* 0.99** 1    

NO3
- -0.09 -0.28 0.65**  0.03  0.46* -0.85** -0.58* 0.99** 0.99** 1   

PO4
3- -0.24 0.49** 0.64** 0.57** -0.22  0.32 0.35* 0.99** 0.99** 0.99** 1  

HCO3
- -0.23 0.49** 0.64** 0.57** -0.21  0.32 0.38* 0.99** 0.99** 0.99** 0.99** 1 
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Table 36:  Correlation Matrix between changes in land use/cover types and Cations concentration (mg/L) changes to the groundwater 

Variables FR WL BUL GL WT WET CL BLT BL Na+ K+ Mg2+ Ca2+ 

FR 1             
WL 0.85 1            
BUL 0.99 0.91 1           
GL -0.98 -0.73 -0.95 1          
WT 0.99 0.92 1.00 -0.94 1         
WT -0.49 -0.88 -0.60 0.32 -0.62 1        
CL -0.99 -0.92 -1.00 0.94 -1.00 0.61 1       
BLT  -0.94 -0.98 -0.98 0.86 -0.98 0.75 0.98 1      
BL -0.97 -0.96 -0.99 0.90 -0.99 0.70 0.99 1.00 1     
Na+ -0.71 -0.98 -0.79 0.56 -0.81 0.96 0.81 0.91 0.87 1    
K+ -0.77 -0.99 -0.84 0.63 -0.86 0.94 0.85 0.94 0.91 0.99 1   
Mg2+ -0.73 -0.98 -0.81 0.58 -0.82 0.96 0.82 0.91 0.88 0.99 0.99 1  
Ca2+ -0.72 -0.98 -0.80 0.57 -0.82 0.96 0.81 0.91 0.87 0.99 0.99 0.99 1 

Correlation is significant at the 0.05 level. FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—Cultivated land, 

BLT-Built-up land, BL- Bare land 
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Table 37:  Correlation Matrix between changes in land use/cover types and anions concentration (mg/L) changes to the groundwater 

Correlation is significant at the 0.05 level. FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—Cultivated land, 

BLT-Built-up land, BL- Bare land 

Variables FR WL BUL GL WT WET CL BLT BL Cl- SO4
-2 NO3

- PO4
-3 HCO3

- 

FR 1              
WL 0.85 1             
BUL 0.99 0.91 1            
GL -0.98 -0.73 -0.95 1           
WT 0.99 0.92 1.00 -0.94 1          
WET -0.49 -0.88 -0.60 0.32 -0.62 1         
CL -0.99 -0.92 -1.00 0.94 -1.00 0.61 1        
BLT -0.94 -0.98 -0.98 0.86 -0.98 0.75 0.98 1       
BL -0.97 -0.96 -0.99 0.90 -0.99 0.70 0.99 1.00 1      
Cl - -0.71 -0.97 -0.79 0.56 -0.81 0.96 0.80 0.90 0.87 1     
SO4 

2- -0.71 -0.98 -0.80 0.57 -0.81 0.96 0.81 0.91 0.87 1.00 1    
NO3

- -0.72 -0.98 -0.80 0.57 -0.82 0.96 0.81 0.91 0.87 1.00 1.00 1   
PO4 

-3 -0.76 -0.99 -0.84 0.63 -0.85 0.94 0.85 0.94 0.90 1.00 1.00 1.00 1  
HCO3

- -0.75 -0.99 -0.83 0.61 -0.84 0.94 0.84 0.93 0.89 1.00 1.00 1.00 1.00 1 
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(iii) Different Responses of Cations and Anions Movements to the Groundwater as 

Influenced by the Climate and Land use/cover Changes 

The PLSR models were constructed separately for the cations and anions with independent 

parameters of climate and land use/cover change. For the cations and anions components 

models, the prediction error decreased with an increasing number of components, while an 

additional increase in the number of components generated a higher prediction error. Thus 

model is suggesting that the other components were not strongly correlated with the residuals 

of the predicted variable (Onderka et al., 2012).  

Four PLSR models were developed for different response variables, namely the PLSR1 

component (cations & climate change), PLSR2 component (anions and climate change), and 

PLSR3 (cations and land-use/cover change) and PLSR4 component (anions and land-use/cover 

change). The cross-validation for response variables in PLSR1, PLSR2, PLSR3 and PLSR4 

selected three significant components, each using an auto-fit approach. The PLSR model 

constructed for cation and anions components against climate change and land-use/cover 

change was strong (R2 > 0.50), as shown in Table 38 and 39; hence both were considered to 

have predictive power. 

Contribution of Climate Changes on Cations and Anions Components 

The first component in PLSR1 explained 70.3% of the Na2+, K+, Mg2+, and Ca2+ variability. 

The addition of the second component led to the models cumulatively explaining 74.6% of the 

total variance. The first component in PLSR2 explained 80.6% of the variability in the Cl-, 

SO4
2-, PO4

-3, NO3
- and HCO3

-. The addition of the second component led to the models 

cumulatively explaining 84.7% of the total variance. Adding more components to the PLSR1 

and PLSR2 models did not substantially improve the variance explained (Table 38). 
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Table 38:  List of regression coefficients for the hydrochemical components of the 

PLSR models with respect to climate changes in the NCA and surroundings 

Response 

Variable Y 
R2 R2

cross Component 

% of 

explained 

variability 

in Y 

Cumulative 

explained 

variability in Y 

(%) 

R2 cum 

Cations 

Component 

(Na+, K+, 

Mg2+, Ca2+) 

0.801 0.404 1 70.3 70.3 0.420 

2 4.3 74.6 0.492 

3 1.3 71.56 0.437 

4 1.3 72.86 0.431 

Anions 

Components 

(Cl-, SO4
-2, 

NO3
-, PO4 

-3& 

HCO3
-) 

0.996 0.968 1 80.6 80.6 0.998 

2 4.1 84.7 0.994 

3 0.2 84.9 0.950 

4 0.2 85.1 0.977 

The first component for PLSR1 (Table 38) for cations was dominated by rainfall, Tmin, and 

relative humidity on the positive side and wind speed on the negative side. Tmax, Tmin and 

Tmean dominated the second component on the positive side, and rainfall and relative humidity 

on the negative side. The last component was dominated by rainfall, Tmin and relative 

humidity on the positive side and wind speed on the negative side. The results of the relative 

importance of predictors of the model showed that Tmin and wind speed (VIP < 1) are 

significance affecting cations while Tmax and Tmean were relatively less important in 

affecting cations compared to other climate factors. The first component for PLSR2 (Table 39) 

for anions was dominated by all climate factors, where the positive side included Tmax, Tmin, 

and Tmean, while the negative side included rainfall and relative humidity. The second 

component was dominated by wind speed on the positive side and Tmin and Tmean on the 

negative side. The last component was dominated by Tmax, Tmin, Tmean and wind speed on 

the positive side and rainfall and relative humidity on the negative side. The results of the 

relative importance of predictors of the model showed that rainfall, Tmax and relative humidity 

(VIP < 1) are significance affecting anions, while all climate factors were relatively important 

in affecting anions. 
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Table 39:  Variable importance for the projection (VIP) values and PLSR weights of 

cations and anions in the NCA and surroundings with respect to climate 

parameters 

PLSR 

parameters 

Cations (Na+, K+, Mg2+, Ca2+) 
Anions (Cl-, SO4

-2, NO3
-, PO4 

-3 

and  HCO3
-) 

VIP W*1 W*2 W*3 VIP W*1 W*2 W*3 

Rainfall 0.765 0.312 -0.362 0.312 1.017 -0.415 -0.271 -0.415 

Tmax 0.337 -0.137 0.432 -0.137 1.012 0.413 -0.116 0.413 

Tmin 1.764 0.720 0.472 0.720 0.967 0.395 -0.583 0.395 

Tmean 0.393 0.161 0.508 0.161 0.995 0.406 -0.349 0.406 

RH 0.808 0.330 -0.354 0.330 1.018 -0.416 -0.093 -0.416 

Wind Speed 1.175 -0.480 0.275 -0.480 0.990 0.404 0.665 0.404 

Contribution of Land use on Cations and Anions Components 

The first component in PLSR3 explained 56.1% of the Na2+, K+, Mg2+, and Ca2+ variability. 

The addition of the second component led to the models cumulatively explaining 60.4% of the 

total variance. The first component in PLSR4 explained 58.7% of the variability in the Cl-, 

SO4
-2, NO3

-, PO4 
-3 and HCO3

-. The addition of the second component led to the models 

cumulatively explaining 65.3% of the total variance. Adding more components to the PLSR3 

and PLSR4 models did not substantially improve the variance explained (Table 40). 

Table 40:  List of regression coefficients for the hydrochemical components of the 

PLSR models with respect to Land use/cover changes in the NCA and 

surroundings 

Response 

Variable Y 
R2 R2

cross Component 

% of 

explained 

variability 

in Y 

Cumulative 

explained 

variability in Y 

(%) 

R2 
cum

 

Cations 

Component 

(Na+, K+, 

Mg2+, Ca2+) 

0.897 0.617 1 56.1 56.1 0.458 

2 4.3 60.4 0.385 

3 0.1 60.5 0.442 

4 0.1 60.6.4 0.448 

Anions 

Components 

(Cl-1, SO4
-2, 

NO3
-1, PO4 

-3 

& HCO3
-1) 

0.812 0.897 1 58.7 58.7 0.462 

2 6.6 65.3 0.455 

3 1.2 66.5 0.450 

4 0.1 66.6 0.388 
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The first component for PLSR 3 (Table 40) was dominated by wetland, cultivated land, built-

up land and bare land on the positive side, and woodland, bushland and water on the negative 

side. The second component was dominated by forest and wetland on the positive side and 

grassland on the negative side. The last component was dominated by wetland, cultivated land, 

Built-up area and bare land on the positive side and woodland, bushland and water on the 

negative side. The results of the relative importance of predictors of the model showed that 

woodland, wetland, Built-up area and bare land (VIP < 1) are significant affecting cations, 

while forest and grassland were relatively less important in affecting cations compared to other 

land use. The first component of PLSR 4 (Table 41) was dominated by wetland, cultivated 

land, Built-up area and bare land on the positive side, and woodland, bushland and water on 

the negative side. The second component was dominated by forest and wetland on the positive 

side and grassland on the negative side. The last component was dominated by wetland, 

cultivated land, Built-up area and bare land on the positive side and woodland, bushland and 

water on the negative side. The results of the relative importance of predictors of the model 

showed that woodland, wetland, built-up land and bare land (VIP < 1) are significance affecting 

anions, while forest and grassland were relatively less important in affecting anions compared 

to other land use. 

Table 41:  Variable importance for the projection (VIP) values and PLSR weights of 

cations and anions in the NCA and surroundings with respect to Land use 

types 

FR-Forest, WL—Woodland, BUL—Bushland, GL—Grassland, WT—Water, WET-Wetland, CL—

Cultivated land, BLT-Built-up land, BL- Bare land 

PLSR 

parameters 

Cations  (Na+, K+, Mg2+, Ca2+)  
Anions (Cl-, SO4

-2, NO3
-, PO4 

-3 & 

HCO3
-) 

VIP W*1 W*2 W*3  VIP W*1 W*2 W*3 

FR 0.869 -0.290 0.309 -

0.290 

0.869 -0.290 0.309 -0.290 

WL 1.164 -0.388 -0.259 -

0.388 

1.164 -0.388 -

0.259 

-0.388 

BL 0.963 -0.321 0.183 -

0.321 

0.963 -0.321 0.183 -0.321 

GL 0.697 0.232 -0.494 0.232 0.698 0.233 -

0.494 

0.233 

WT 0.981 -0.327 0.155 -

0.327 

0.982 -0.327 0.155 -0.327 

WET 1.132 0.377 0.711 0.377 1.131 0.377 0.711 0.377 

CL 0.975 0.325 -0.164 0.325 0.976 0.325 -

0.164 

0.325 

BLT 1.088 0.363 0.038 0.363 1.088 0.363 0.038 0.363 

BL 1.047 0.349 -0.045 0.349 1.047 0.349 -

0.045 

0.349 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Annual and seasonal rainfall would increase in 2021-2050 compared to the baseline 1982-

2011, with increases in rainfall for all seasons except the June to September (JJAS) season, 

which indicates a decreasing trend for RCP 4.5 and RCP 8.5. Likewise, for the maximum and 

minimum temperatures, the annual increase in temperature would occur in the future for both 

RCPs, with a higher rise predicted under RCP 8.5. Spatially, the highest increase in rainfall 

would generally occur from the central to the southern parts of the study area for all future 

periods under both RCP 4.5 and RCP 8.5. For the maximum and minimum temperature, the 

highest rise would occur over the central and southern parts of the study area for all future 

periods and RCPs. The projected increase in rainfall and temperature, both maximum and 

minimum, over the study area call for the development of adaptation measures and a strategic 

plan for the ecosystem management of the NCA and surrounding areas.  

Between 1995 and 2016, the analyzed change in land use/cover showed the greatest decrease 

in woodland and the greatest increase in cultivated land. The predicted future (2016–2035) 

Changes in land use/cove reveal a reduction in forest, woodland, bushland, and water, but an 

increase in grassland, wetland, cultivated built-up area, and bare land. Change analysis using 

time-series maps revealed the overall Land use/cover change, including the comprehensive 

discovery of an area's diverse forms of variation. Natural forests with high environmental 

values are continuously declining as a result of the current trend in land management, resulting 

in the loss of the NCA's ecological importance. Therefore, for sustainable management, the 

authorities must conciliate between the existing Land use/cover change and ecosystem services 

monitoring.  

The hydrological response to climate and land use/cover changes varied between scenarios. In 

the first scenario shows that future runoff and lateral flow would increase with land use change 

in 2025 and 2035, respectively, compared to land use in 2016. Furthermore, groundwater and 

water yields will decrease with land use change in 2025 and 2035, while evapotranspiration 

will increase in 2025 and decrease in 2035. For the second scenarios, surface runoff, 

evapotranspiration, lateral flow, and water yield would increase significantly, while 

groundwater would decrease with future (2021-2050) climate changes for both RCP 4.5 and 
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RCP 8.5. Similarly for the third combined land use/cover change scenario of 2025 and 2035 

with future (2021-2050) climate change under RCP 4.5 and 8.5. In general, the results of this 

study indicate that climate change has a greater impact on temporal and spatial changes in 

hydrological components than land use/cover changes. 

The groundwater quality of the NCA and surrounding catchments is currently suitable for 

drinking and domestic use. However, due to the predicted changes in climate and land 

use/cover in the study area, a deterioration in quality is to be expected in the future. In general, 

significant concentrations of Na+ and K+ in groundwater are expected between 2036 and 2050, 

exceeding the WHO and TBS limits of 200 and 50 mg/L, respectively. Similarly, Cl and PO4
-

3 anions in groundwater exceed the WHO and TBS maximum allowable concentrations of 250 

and 2.2 mg/L, respectively. The remaining cations and anions would also rise, but not 

exceeding the allowable maximum limits by the WHO and TBS standards for drinking water. 

Changes in groundwater quality for both cations and anions are statistically significant 

correlated with evapotranspiration and temperature (maximum, minimum, and mean), with 

Pearson's coefficient of determination, r, ranging between 0.35 and 0.85. Likewise to the land 

use/ cover types, it was found that changes in all land use/cover types significantly correlate 

with the movement of cations and anions to the groundwater, with Pearson's coefficient of 

determination, r, between 0.56 and 0.99.  

Individually minimum temperature (Tmin) and wind speed are significantly affecting cations. 

Besides rainfall, Maximum temperature (Tmax) and relative humidity significantly affect 

anions. Looking at the impact of individual land use/cover types, the model showed that 

woodland, wetland, Built-up area and bare land significantly affecting cations. Besides, 

woodland, wetland, built-up land and bare land would significantly influence the anions 

movement to the groundwater. Therefore, apart from other factors such as volcanic activities 

and accelerated human interventions that could affect water quality, climate change and land 

use cover changes can be considered the main driver for hydrochemical movements to the 

groundwater around the study area. 

5.2 Recommendations 

(i) Installation of weather stations and river flow gauging stations in the conservation areas 

are highly recommended to monitor environmental changes that could occur in these 

sensitive area. Monitoring of environmental changes is necessary for planning better 

conservation management practices and better adaptation strategies. 
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(ii) Adapting to the new challenge of land use/cover and climate change requires an 

integrated approach to water resource use and management. The adaptation should 

focus on better land use, with integrated solutions at the appropriate levels for climate 

change adaptation and mitigation.  

(iii) Appropriate adaptation measures should be implemented to strengthen resilience to 

land use/cover change and climate change, thereby improving water security. 

(iv) The adaptation measures should consider a trade-off between Land use, climate change 

adaptation, water resource need, society need and livelihood. 

(v) Further studies to quantify the ecological, economic and social significance of the 

climate and land use/cover changes impacts to water resources in the NCA and 

surroundings are highly encouraged.  
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