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Abstract: Advancements in Machine Learning techniques, availability of more data-sets, and 1

increased computing power have enabled a significant growth in a number research areas. Predicting, 2

detecting and classifying complex events in earth systems which by nature are difficult to model 3

is one of such areas. In this work, we investigate the application of different machine learning 4

techniques for detecting and classifying extreme rainfall events in a sub-catchment within Pangani 5

River Basin, found in Northern Tanzania. Identification and classification of extreme rainfall event 6

is a preliminary crucial task towards success in predicting rainfall-induced river floods. To identify 7

a rain condition in the selected sub-catchment, we use data from five weather stations which have 8

been labeled for the whole sub-catchment. In order to assess which Machine Learning technique 9

suits better for rainfall classification, we apply five different algorithms in a historical dataset for the 10

period of 1979 to 2014. We evaluate the performance of the models in terms of precision and recall, 11

reporting Random Forest and XGBoost as the ones with best overall performance. However, since the 12

class distribution is imbalanced, the generic Multi-layer Perceptron performs best when identifying 13

the heavy rainfall events, which are eventually the main cause of rainfall-induced river floods in the 14

Pangani River Basin. 15

Keywords: Heavy rainfall; River floods; Machine learning ; 16

1. Introduction 17

Rainfall-induced river floods are among Earth’s most common and most catastrophic 18

natural hazards [1]. Worldwide, flash floods account for more than 5000 deaths annually 19

with a mortality rate more than 4 times greater than other types of flooding [2], and 20

subsequently, their social, economic, and environmental impacts are significant. According 21

to the Tanzania Meteorological Agency, in the last decade, the northern part of the country 22

has experienced its heaviest rainfall accompanied by strong winds, causing the most severe 23

floods of the last 50 years [3]. It is without a doubt that, with the changing climate, such 24

events are likely to become more frequent, not only in Tanzania as evidenced in several 25

reports 1, 2, 3, but across the globe. The effects of floods are notably severe in developing 26

or low-income countries like Tanzania because of their vulnerability to the occurrence of 27

these phenomena. The vulnerability is partly due to limited human capacity and limited 28

resources invested in dealing with the problem [4]. 29

1 Burundi and Tanzania – Floods Leave Homes Destroyed, Hundreds Displaced.
https://floodlist.com/africa/burundi-tanzania-floods-late-february-2021

2 Tanzania – Severe Flooding in Mtwara Region After Torrential Rainfall. https://floodlist.com/africa/tanzania-
flood-mtwara-january-2021.

3 Tanzania – 12 Killed in Dar Es Salaam Flash Floods. https://floodlist.com/africa/tanzania-daressalaam-
floods-october-2020.
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Understanding the trends and key patterns in the occurrence of rainfall events, is an 30

important step towards better flood risk management plans that will help in designing 31

more accurate early warning systems. [5]. 32

Machine Learning (ML) presents the ability to identify the hidden patterns and trends 33

in historical climate data [6], and may be used to classify and predict the key rainfall 34

events that are associated with the occurrence of floods. The potential of machine learning 35

techniques to improve the classification and prediction of extreme rainfall events has been 36

demonstrated by several studies in the past. The techniques provide valuable insights into 37

the spatial and temporal patterns of extreme rainfall events and their impacts on flood 38

generation, water resources management, and climate change impact assessment. Authors 39

in a study [7] proposed an event-based flood classification method to study the global river 40

flood generation processes. The approach is based on a combination of unsupervised and 41

supervised machine learning methods that can provide event-based information for better 42

understanding of flood generation processes. Another machine learning-based down- 43

scaling approach is demonstrated in Pham et al. [8] where a combination of random forest 44

and least square support vector regression to improve the accuracy of extreme rainfall 45

predictions at a local scale is demonstrated. The inspiration of the method used here is that 46

it provides valuable insights into the extreme rainfall events and their spatial and temporal 47

characteristics, which are useful for water resource management and flood risk assessment. 48

Similarly, [9] developed a machine learning-based classification method to categorize 49

extreme precipitation events over Northern Italy. The study employed the k-means clus- 50

tering technique to identify distinct clusters of extreme rainfall events and used decision 51

trees to develop a classification scheme. Despite the fact that most of these studies were 52

conducted in developed counties where there is advancement in both technology and 53

human resource, the results show a big potential to be used as models for similar studies in 54

other developing regions as Tanzania where the impacts of climate change are expected to 55

be more severe [10]. 56

Furthermore, [11] presented a study that used three different machine learning algo- 57

rithms (XGBoost, LightGBM, and CatBoost) to forecast daily stream-flow in a mountainous 58

catchment. The study compared the performance of the three algorithms and showed that 59

machine learning can provide accurate stream-flow forecasts, which are valuable for water 60

management and flood prediction. An analysis of physical causes of extreme precipitation 61

[12] can also be used to identify key climatic variables that drive extreme precipitation 62

events and machine learning based approaches can be applied to predict the occurrence of 63

extreme precipitation. 64

We apply five machine learning techniques namely Random Forest, eXtreme Gradient 65

Boost, Support Vector Machine, k-Nearest Neighbors and Multilayer Perceptron to identify 66

and classify rainfall events in the Karanga-Weruweru-Kikafu sub-catchment, located within 67

the Pangani River Basin, Tanzania. Random Forest is preferred for its robustness to large 68

and noisy data sets [13] and its ability to handle imbalanced data sets [14,15]. XGBoost 69

is computationally efficient [16] and it can also perform better on imbalanced data sets 70

[17]. SVM is suitable for high dimensional input space and modeling complex, non- 71

linear relationships between inputs and outputs [18,19]. k-Nearest neighbors although 72

considered one of the simplest machine learning algorithms, has been successful in a 73

number of applications, from recognition of handwritten texts [20] to satellite image scenes 74

[21] and mostly success in classification problems with irregular decision boundary. MLP as 75

a feed forward neural network has also shown success in classification problems, including 76

extreme natural events like droughts [22]. 77

We compare these techniques and discuss the suitability of each in successfully clas- 78

sifying rainfall events. To train these models, a historical labeled data-set from Pangani 79

Water Board (PWB) and Tanzania Meteorological Agency (TMA) collected from five sta- 80

tions located across the Karanga-Weruweru-Kikafu sub-catchment was used. The nature 81

of the dataset gives us an imbalanced multi-class classification problem. There are three 82

categories in the target class (Heavy, Light and No-rain). Of these, heavy rainfall is the 83
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smallest making up just 0.32% of the whole data set. The distribution is highly skewed 84

towards the majority class, in this case, light rain, which make up 83.22% of the whole data 85

set leaving 16.46% to no-rain class. This simply means for every single example of heavy 86

rainfall event, there are 51 examples of no-rain and 260 examples of light rain. 87

2. Materials and Methods 88

The study area under consideration is situated in the Northern part of Tanzania in 89

the south of Kilimanjaro region. The Karanga-Weruweru-Kikafu (KWK) sub-catchment 90

(Figure 1) and the villages along the Kikuletwa river are intensely affected by flash river 91

floods from heavy rainfall. The aim of this work was to classify rainfall intensity (heavy, 92

light, none) based on 6 weather parameters namely temperature (Minimum and Maximum), 93

relative humidity, precipitation, solar, and wind speed. Data records for the study covering 94

from 1979 to 2014 was provided by Tanzania Meteorological Agency 4, and the Pangani 95

Basin Water Board(PBWB) 5. The data contains daily weather data for 35 years, with 7 96

parameters namely Maximum and Minimum temperatures in centigrade(C), precipitation 97

in millilitres(mm), wind speed in meter per second(m/s), relative humidity expressed as 98

percentage, and solar irradiance in mega-joules per square metre(MJ/m2) and rain category. 99

It is worthy noting that, the data was consolidated from two main sources, the ground 100

gauges and the satellite estimates. The basis of the consolidation and to compliment the 101

ground gauge data by the satellite estimates was based on several previous studies that were 102

done to check the validity of the satellite estimates over the region. Three studies, [23], [24], 103

and [25], investigated the spatio-temporal characteristics and accuracy of satellite-derived 104

rainfall estimates in Tanzania, in comparison to ground-based measurements. The studies 105

revealed a positive correlation between the two data sources, indicating the potential of 106

satellite-based rainfall estimates as a useful complement to ground-based measurements, 107

especially in areas with complex topography and limited ground-based measurement 108

stations. Nevertheless, the satellite estimates exhibited a tendency to overestimate the 109

ground-based measurements, and their accuracy varied in different locations. The findings 110

suggest that the use of satellite-based rainfall estimates can enhance rainfall monitoring and 111

prediction in regions where traditional measurement methods are sparse or challenging 112

to implement, albeit with the need for continual improvements in their accuracy and 113

uncertainty estimation. 114

4 https://www.meteo.go.tz/
5 https://www.panganibasin.go.tz/
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Figure 1. Karanga-Weruweru-Kikafu(KWK) sub-catchment.

2.1. Data preparation 115

The data from each station were checked for missing values before being merged into 116

a single data set. Simple line plots were used to check whether all stations had similar 117

patterns in the features and to identify any outliers. Simple statistical analysis was done on 118

the numerical features and summarized in Table 1 119

Data was split into train and test set in the ratio of 80% to 20%, in order to even out 120

the distribution as there is an imbalance in the target class distribution. In total there 121

were 6 features and 1 target class. The features are maximum temperature, minimum 122
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temperature, precipitation, wind, relative humidity and solar radiance, while the target is 123

rainfall category. Further feature engineering was done, where all the object type columns 124

were encoded to numeric type. Pivoting was also done to put the data in a format that is 125

convenient for model training. Training data was normalized using MinMaxScaler from 126

sklearn library. 127

Table 1. Descriptive statistics of weather variables used in training.

Variable Count Mean Std. Dev. Min 25th Percentile 75th Percentile

Max Temperature 10,389 22.71 3.08 13.26 20.53 24.93
Min Temperature 10,389 12.90 1.96 5.71 11.61 14.41

Precipitation 10,389 3.17 6.34 0.00 0.15 3.66
Wind 10,389 2.49 0.55 0.65 2.14 2.87

Relative Humidity 10,389 0.76 0.10 0.32 0.69 0.84
Solar 10,389 16.92 7.23 0.00 11.18 22.19

2.2. Model Building 128

Two main things were considered during this stage before jumping into the models. 129

First the target class distribution and second the multi-class classification. Our target class 130

was somehow severely imbalanced, with the distribution being highly skewed towards the 131

majority class, light rain(83.22%), followed by no-rain (16.46%),and heavy rainfall, which is 132

our class of interest, is the minority (0.32%). This simply means for every single example of 133

heavy rainfall, we have 51 examples of no-rain and 260 examples of light rain. 134

Consideration on the part of multi-class classification was to use a multi-class strategy 135

from scikit-learn 6 library known as One-vs-the-rest(OvR). OvR is a heuristic technique 136

of dealing with multi-class problems by fitting one classifier per class. For each classifier, 137

the class is fitted against all the other classes. One of the implementation of OvR is from 138

the sklearn library, which provides a separate OneVsRestClassifier class that allows the 139

one-vs-rest strategy to be used with any classifier. A classifier that is inherently for binary 140

classification is just provided to the OneVsRestClassifier as an argument. 141

Each model was then trained, tested and evaluated. Since our problem fall under multi- 142

class imbalanced classification, selecting a metric for evaluation was the most important step 143

in the project. A wrong metric would mean choosing the wrong algorithm, consequently 144

solving a different problem from the one you wan to solve. 145

2.3. Model Evaluation 146

Since we are dealing with a highly skewed data-set we chose Precision and Recall as
our performance evaluation metric. Precision(Equation 1) is a ratio of the number of true
positives divided by the sum of the true positives and false negatives. In other words, it
inform about how good a model is at predicting the positive class.

Precision =
TruePositives

TruePositives + FalsePositives
(1)

Recall (Equation 2) on the other hand is the ratio of the number of true positives divided by
the sum of the true positives and the false negatives.

Recall =
TruePositives

TruePositives + Falsenegatives
(2)

One important aspect of precision and recall to take note is that, the calculations do not
consider the use of the truenegatives. The focus is on the correct prediction of the minority
class. Precision-recall curve is a plot of the precision on the y-axis and the recall on the

6 https://scikit-learn.org/stable/modules/generated/sklearn.multiclass OneVsRestClassifier.html

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2023                   doi:10.20944/preprints202301.0558.v2

https://doi.org/10.20944/preprints202301.0558.v2


Version February 18, 2023 submitted to Journal Not Specified 6 of 12

x-axis for different thresholds. They give a more informative picture of an algorithm in
skewed data-sets as it has also been evident in a number of studies [26], [27]. In that
sense we identified our positive class to be H for heavy rainfall and other collectively
as negative classes(No rain and Light rain). Nevertheless, precision and recall, are in a
trade-off relationship, at some point you may need to optimize one at the expense of the
other [28]. Contextually, at some point you would want classifier that is good at minimizing
both the false positives and false negatives, meaning, it would make more sense to have a
model that is equally good at identifying cases were a false alarm of a heavy rainfall event
goes off and when an alarm is not going-off while there is an event coming. In the view of
that, we applied another metric called F1_score. F1score is the harmonic mean (Equation 3)
of precision and recall and ranges from 0 to 1.

F1_score =
2 ∗ (precision ∗ recall)

precision + recall
(3)

3. Results 147

In our experiments, five different machine learning algorithms were used to identify 148

and classify extreme rainfall events among three rainfall categories. As stated in the 149

introduction, the ability to identify extreme rainfall events is crucial for predicting rainfall- 150

induced river floods. Results from evaluation show that, overall Random Forest and 151

XGBoost performed better than the rest as we can see from the F-scores summarized in 152

Table 2. 153

Table 2. Summary of F1_score measures for the models.

Random Forest XGBoost Support Vector
Machine KNN Multi-layer

Perceptron

0.998 0.998 0.878 0.898 0.950

Ideally, the scores from F1_score means both XGBoost and Random forest have perfect 154

precision and recall when you give equal importance to both false negatives and false 155

positives. However, that is not the case in our problem. In classifying the heavy rains, 156

which in our case is the minority class, false negatives were the most important. Intuitively, 157

in our context, it is not helpful if we are successful in predicting all data points as negative, 158

that is no heavy rainfall event, instead, we focused on identifying the positive cases, the 159

occurrence of a heavy rainfall event. Coming back to the metrics language this simply 160

means we maximized the recall, the ability of our model to find all the relevant cases within 161

a given data-set. This notion is supported by a number of past studies [29], [30], [31], [32]. 162

In the view of that, F-score is not the determinant for the appropriate model to use in this 163

scenario, as we said it being the harmonic mean, it takes into account both the precision and 164

recall. Our main goal is favor the minimization of the false negatives and not to cast equal 165

importance to both the false negatives and false positives. We focused on having a model 166

with high recall which is able to identify most of the heavy rainfall events(true positives), 167

that way saving lives and properties from the consequences that come along with such 168

events. On the other hand of course, that is at the expense of issuing false alarms of heavy 169

rainfall events as though they will happen (false positive) but they won’t. Potentially, the 170

associated costs of false positives will be the unnecessary anxiety to the people and at the 171

worst, the costs associated with taking unnecessary precautions. In most cases, the false 172

positives will not be fatal. Therefore, since false negatives will results into fatalities and 173

destruction, we want to have our classification threshold to favor the optimization of recall 174

over precision. This is the point where we turn our attention to the precision-recall curves 175

for more insight. Despite the fact that Random Forest and XGBoost were the general best 176

performers when we put equal weight on both the false negatives and the false positive, it 177

was the generic Multilayer Perceptron that came on top when we focused on the minority 178
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positive class. Multilayer Perceptron (MLP) was 98% in identifying our class of interest as 179

can be seen in the precision-recall curves of Figure 2(d). 180
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(a) (b)

(c) (d)

(e)
Figure 2. Precision-Recall Curves for the models.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2023                   doi:10.20944/preprints202301.0558.v2

https://doi.org/10.20944/preprints202301.0558.v2


Version February 18, 2023 submitted to Journal Not Specified 9 of 12

4. Discussion 181

To get deeper into the results highlighted above, we see that we based the evaluation 182

on two sets of metrics, the precision-recall (PR) curve and the F1 score, to assess the models’ 183

ability to classify the minority class in a data set. The evaluation of algorithms in classifying 184

the minority class in imbalanced data sets is a topic of ongoing research in the field of 185

machine learning. For example, in a study by Batista et al. [33], the authors found that 186

precision-recall curves were more reliable for evaluating imbalanced datasets than other 187

metrics such as ROC curves. 188

4.1. Precision-Recall curve results analysis 189

The precision-recall curve is a valuable metric for evaluating algorithms in imbalanced 190

data sets, particularly when the positive class is rare. The PR curve provides a graphical 191

representation of the trade-off between precision and recall, where precision measures 192

the proportion of correct positive predictions among all positive predictions, and recall 193

measures the proportion of correct positive predictions among all actual positive samples. 194

The micro-average PR curve of each model (Figure 2) summarizes the overall perfor- 195

mance of the model in all classes. The micro-average PR curve is computed by treating 196

all the classes as a single binary classification problem. The micro-average PR curve A.P 197

(average precision) score for the Support Vector Machine (SVM), Random Forest, XGBoost, 198

Multi-layer Perceptron (MLP), and K-Nearest Neighbors (KNN) models were 0.96, 1, 1, 199

0.99, and 0.94, respectively. 200

Looking at the individual class PR curves, the models achieved high precision-recall 201

performance for classes 1 and 2, indicating a high ability to predict the absence of heavy 202

rain (class 2) and light rain (class 1). However, the models showed lower performance 203

in predicting the occurrence of heavy rain (class 0), which is the minority class in the 204

imbalanced data set. 205

Among the models, SVM achieved the lowest A.P score of 0.96, and its PR curve for 206

class 0 had the lowest A.P score of 0.87, indicating that the SVM model has the lowest 207

ability to predict the minority class. On the other hand, the Random Forest, XGBoost, and 208

MLP models showed high performance in predicting the minority class, with A.P scores of 209

1, 1, and 0.99, respectively. The PR curve for class 0 for these models also achieved high 210

A.P scores of 0.97, 0.91, and 0.98, respectively. KNN achieved a moderate A.P score of 0.94, 211

and its PR curve for class 0 had an A.P score of 0.77. 212

4.2. F1 Score results analysis 213

The F1 score is a single number that summarizes the harmonic mean of precision and 214

recall. It is another useful metric for evaluating model performance in imbalanced data 215

sets. The F1 scores of the models (Table 2) were as follows: Random Forest (0.998), XGBoost 216

(0.998), SVM (0.878), KNN (0.898), and MLP (0.95). 217

Comparing the results of the two sets of metrics, the Random Forest and XGBoost 218

models achieved the highest F1 scores of 0.998, indicating their superior overall perfor- 219

mance in predicting the occurrence of heavy rain. These models also showed high PR curve 220

performance, particularly for class 0. The MLP model achieved the second-highest F1 score 221

of 0.95, indicating high performance in predicting the minority class. The SVM model had 222

the lowest F1 score of 0.878, consistent with its lower PR curve performance, particularly 223

for class 0. 224

Overall, the Random Forest and XGBoost models showed the highest performance 225

in predicting heavy rain events, while the SVM model had the lowest performance. The 226

MLP model also showed good performance in predicting the minority class. It is important 227

to note that the imbalanced nature of the data set presented a challenge to all models in 228

predicting the minority class, and thus, the models’ performance in this aspect should be 229

carefully considered. 230

The PR curve analysis revealed that the Random Forest, XGBoost, and MLP models 231

had high precision and recall performance, particularly for the minority class, while the 232
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SVM and KNN models had lower precision and recall performance, especially for the 233

minority class. These results suggest that the Random Forest, XGBoost, and MLP models 234

are more suitable for the prediction of heavy rain events in an imbalanced data set. 235

On the other hand, the F1 score results revealed that the Random Forest and XGBoost 236

models had the highest F1 scores, indicating their superior overall performance in predict- 237

ing heavy rain events. The MLP model also showed high F1 score, but the SVM and KNN 238

models had lower F1 scores. These results suggest that the Random Forest, XGBoost, and 239

MLP models are more suitable for predicting heavy rain events in an imbalanced data set 240

based on the F1 score. 241

It is important to consider that the models’ performance might be affected by the 242

choice of evaluation metrics, and it is recommended to use multiple evaluation metrics to 243

assess model performance. In this study, the PR curve and F1 score were used to provide a 244

comprehensive evaluation of the models’ performance. 245

In this view, the Random Forest and XGBoost models showed high performance in 246

predicting heavy rain events in an imbalanced data set, as indicated by both the PR curve 247

and F1 score results. The MLP model also showed good performance in predicting the 248

minority class. The SVM and KNN models had lower performance in predicting heavy 249

rain events, especially for the minority class. These results suggest that the Random 250

Forest, XGBoost, and MLP models are more suitable for predicting heavy rain events in an 251

imbalanced data set. 252

On the other hand, it’s important to note that these results were obtained using default 253

hyper-parameters, and there may be additional improvements that can be made by fine- 254

tuning the models. However, these results still provide valuable insights into the relative 255

performance of different algorithms for predicting rainfall classes in imbalanced data sets. 256

Future studies could also investigate the impact of hyper-parameter tuning on the models’ 257

performance in identifying extreme rainfall events. 258

5. Conclusion 259

The objective of this study was to evaluate different machine learning techniques for 260

detecting and distinguishing heavy rainfall events in a sub-region of the Pangani River 261

Basin in Northern Tanzania. The study employed five different algorithms to identify 262

heavy rainfall occurrences between 1979 and 2014. The models’ performance was assessed 263

using precision-recall metrics and F-score to determine the most suitable method for the 264

task. Based on the evaluation results, Random Forest and XGBoost demonstrated superior 265

overall performance. However, it was observed that the Multi-layer Perceptron (MLP) 266

performed better in identifying heavy rainfall events, which are the leading cause of floods 267

in the Pangani River Basin. 268

The study’s results suggest that MLP, despite being outperformed by other algorithms 269

in overall performance, was the most effective technique for identifying heavy rainfall 270

events, highlighting the significance of precision and recall in detecting the minority class 271

in imbalanced classification. The highly imbalanced class distribution in the dataset makes 272

it challenging to identify heavy rainfall events, making the use of MLP a vital approach in 273

the process. 274

The findings of this study align with previous research that has emphasized the im- 275

portance of selecting appropriate performance metrics to evaluate algorithms’ effectiveness 276

in detecting rare events. Moreover, the study contributes to the literature by demonstrating 277

that the MLP approach is well-suited for recognizing heavy rainfall events in the Pangani 278

River Basin. The research provides valuable insights into the potential of machine learning 279

algorithms in identifying heavy rainfall events, enabling policymakers to take proactive 280

measures in flood management and control. To the government of Tanzania, the study 281

recommends that the ministry responsible for monitoring flood and water levels in rivers 282

and other water bodies should collect water level data with respect to weather parameters. 283

This will enable the replication of the developed model in other rivers and assist in future 284

studies in similar areas. 285
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Overall, these models have potential applications in various fields that require accurate 286

predictions of rare events, such as climate prediction, disaster management, and risk 287

assessment. However, further research is needed to explore the models’ performance in 288

different settings and under different conditions, such as changes in climate patterns and 289

data sources. 290

Future research could also focus on developing more robust models that can handle 291

highly imbalanced data sets and improving feature engineering techniques to enhance 292

model performance. Additionally, ensemble techniques and meta-learning approaches 293

could be explored to improve the models’ generalization and transfer learning abilities. 294

Overall, the study provides insights into the potential of machine learning algorithms in 295

predicting rare events and highlights the need for further research to develop more accurate 296

and robust models. 297
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The following abbreviations are used in this manuscript: 317

318

XGBoost eXtreme Gradient Boost
KNN k-Nearest Neighbors
ML Machine Learning
SVM Support Vector Machine
MLP Multi-Layer Perceptron
PBWB Pangani Basin Water Board
TMA Tanzania Meteorological Agency
KWK Karanga-Weruweru-Kikavu
OvR One-vs-the-Rest
ROC Receiver Operating Characteristic
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