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ABSTRACT 

With the advent of machine learning (ML) techniques, various algorithms have been applied in 

previous studies to develop models for predicting soil fertility status. However, these models are 

observed to use varying fertility target classes, and variations have been reported in these models' 

predictive performances. As a result, practical applications of these models for obtaining the most 

accurate predictions may become hindered. While the weighted voting ensemble (WVE) ML 

technique can be used to improve soil fertility status prediction by aggregating individual models 

prediction, guaranteeing finding of an optimal WVE assignment weights is challenging. Whereas 

a brute exhaustive search procedure can be applied for the mentioned task, there is a lack of 

exploration on the exploitation of automated classifiers' precise weights combinations as search 

spaces for successful optimization. This research aims to develop a high-performance soil 

fertility status prediction voting ensemble using brute exhaustive optimization in automated 

1EXP(-)Z+ multi-precision weights of hybrid classifiers. Soil chemical properties and ML 

modeling algorithms for modeling soil fertility status were identified. Base hybrid ML 

classification models for predicting soil fertility status were evaluated using Tanzania as a case 

study. Finally, the base ML hybrids WVE models were optimized using brute exhaustive search 

procedure’s novel developed search spaces generation algorithm for guaranteed optimal solution 

finding. The research was designed using design science research methodology, with the 

application of unsupervised machine learning K-mean algorithm with a knee detection method 

to find the optimal number of soil fertility status target classes, and supervised learning 

algorithms were applied to model classifiers for those optimal classes. Three soil fertility target 

classes were identified by clustering technique. The model achieved on test data a predictive 

accuracy of 98.93%, with respective AUC of 82%, 83%, and 87% for low, medium, and high 

soil fertility targets classes. Whereas these performances are observed higher compared to models 

in previous studies, 92% correct classifications were obtained on validation against external 

unseen laboratory-based tested soil results. Therefore, soil testing laboratories and farmers should 

consider using the model to smartly manage soil fertility which may lead to improved crop 

growth and productivity. The government could set agricultural-related policies that require the 

use of the model by farmers with the provision of agricultural inputs subsidies. Future work could 

be to develop an integrated real-time web and mobile application for providing farmers with soil 

fertility status information. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Background of the Problem 

According to the United Nations Department of Economic and Social Affairs, Population 

Division (2022), as well as Food and Agriculture Organization (FAO, 2018), the world 

population is expected to increase from the current approximatively 7.3 billion to an estimate 

of 9.8 approximately ten (10) billion people by 2050, as shown in Fig. 1. This entails the 

demand for increasing food productivity to ensure food security (FAO, 2018, 2017, 2016; 

Ishengoma & Athuman, 2018; Jayaraman et al., 2016).  

 

Figure 1:   Global population size: estimates, 1950-2022 

As such, efforts for improving crop productivity to facilitate sustainable agricultural 

intensification critically remain a key concern (FAO, 2017, 2018; Masri et al., 2015), whereby 

fundamental key factors for crop production such as soil that harbors nutrients for crop 

consumption and growth to realize outstanding productivity (Kommineni et al., 2018; Manjula 

& Djodiltachoumy, 2017; Rajeswari & Arunesh, 2016; Yusof et al., 2016), is among the major 

focal point in that respect.  

Essentially, that would require an understanding of the agricultural soil nutrients to analyze its 

fertility which can highly be validated by its resident chemical properties. Soil fertility exhibits 

variabilities in characteristics and has interlinked effects on crop productivity in terms of yield 

quantity (Hengl et al., 2017; Ndakidemi & Semoka, 2006). It is important then to conduct soil 
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analysis through various approaches in the overall agricultural soil assessment frameworks in 

attempts to appropriately manage soil fertility for crop growth and improved yields. The 

assessment is advisably one of the critical best practices way before the 1970s, primarily with 

the involvement of the visual inspection method (Bünemann et al., 2018). Figure 2 depicts a 

trend of Soil Assessment Methods through various methodological evolution. 

 

Figure 2:   Soil Assessment Methods Evolution 

While the visual soil fertility analysis was the earliest first approach before 1970, analytical 

methods that used multivariate statistical techniques came into play between 1970 to 2010 

inclusive, and high-performance machine learning methods later proliferated starting 2010 to 

date (Bünemann et al., 2018), studies were conducted from the 1980s involving machine 

learning applications whereby the vast amount of agricultural soil data can be harvested to derive 

valuable information in the form of trends and patterns. These can be harnessed to support 

optimal agricultural decision-making processes such as those geared towards improving crop 

productivity. Traditional human expert methods for gaining understanding from the collected 

data are limited, expensive, may overlook important details, and rarely may be subjective and 

biased (Gholap et al., 2012a; Sirsat et al., 2018).  

Moreover, classical statistical analysis is often ineffective and inefficient with the increase in 

size and complexity of this data. In turn, contemporary machine learning (ML) algorithms, and 

data mining techniques for analysis through extraction and delivery of actionable information 

have been potential in solving various agricultural-related knowledge discovery problems 

ranging from soil analysis and fertility status predictions to compounds and other chemical 

properties (Jayalakshmi & Savitha, 2022), as well as crop diseases prediction, crop monitoring 

and predicting crop yields.   ML modeling for soil fertility predictions is vital since the soil is 

Before 1970 
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the key fundamental factor for crop growth and productivity, other than crop diseases, irrigation, 

weather, and climatic conditions management, as it harbors plantations and as a function of its 

fertility, it can supply plantations with the necessary nutrients as well as other chemical and 

biological possessions necessary for plant growth and increased crops yields, to eventually 

ensure food security (Manjula & Djodiltachoumy, 2017). 

1.2 Statement of the Problem  

Machine Learning (ML) based applications are one of the key solutions for sustainable 

agricultural intensification through the provisions of analytical information that is necessary to 

assist in effective decision-making processes such as for optimal soil fertility management to 

increase crop yields (Li, 2021; Menaga & Vasantha, 2022; Sharma et al., 2020; Walter et al., 

2017). With that respect, strategies for improving decision-making in soil fertility management 

have been proposed in various studies (Gholap, 2012; Manjula & Djodiltachoumy, 2017; 

Massawe et al., 2018; Sirsat et al., 2018), whereby, ML techniques have been observed to 

widely be applied in agricultural soil modeling-related studies, with much exploration in their 

use to develop soil fertility status prediction classifier models by learning from the existent soil 

nutrients and their other key chemical properties.  

However, the existing models for predicting soil fertility status have been observed to make use 

of a varying number of target classes in modeling soil fertility status classifiers and also 

demonstrated a varying range of predictive performances (Janvier et al., 2021). While the use 

of varying target classes could be due to associated agricultural and modeling experts’ 

subjectivity. The varying performances could stem from the involved ML implementation 

design and procedures, and soil qualities. Whereas, optimal target classes could be determined 

through the implementation of thorough ML approach designs. The theoretically and 

empirically widely appreciated weighted voting ensemble (WVE) scheme can be used to 

significantly improve individual soil fertility status prediction models' performance by 

ensembling their predictions into one predictive combination (Escorcia-Gutierrez et al., 2022), 

due to their superior performances amongst other ensemble schemes.   

Nevertheless, the WVE scheme is associated with the challenging task of searching and 

assigning the ensemble’s base model optimal weights. This of which is another key significant 

factor for the WVE's ability to improve the performances through ensemble technique, other 

than heterogeneity or diversity in its constituting base model (Partalas et al., 2008). While 
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currently these challenging tasks of WVE weights assignment can be achieved through 

advanced search procedures like the grid-based greedy search techniques such as greedy, and 

brute exhaustive search, among other variants. As well as, evolutionary optimization techniques 

such as genetic algorithms, differential evolution, evolutionary programming, and genetic 

programming. Contrary to the brute exhaustive search procedure (BESP), both the evolutionary 

and greedy-based search implementations are more efficient than BESP, but both may not 

guarantee to achieve of global optimum solution finding (Angulo et al., 2021; Ast et al., 2021; 

Bhspencer, 2015; Simon, 2015).  

Therefore, the use of BESP which can produce optimal WVE models configuration sets with 

predictive performances similar to those created by evolutionary-based optimization techniques 

(Ariyanti et al., 2019; Kurz et al., 2020), and also can guarantee the finding of an optimal 

solution through a search across systematic search spaces, whereby the precision of the search 

spaces has been stated by Mouret and Clune (2015) to be the fundamental requirement for 

operationalization of search procedure towards finding the required optimal solution, may 

become imperative when the trade-off between the finding of an optimally accurate solution 

model to the time taken, that is efficiency, in finding that solution, becomes the main objective. 

Therefore, this research aims to develop a high-performance soil fertility status prediction voting 

ensemble using brute exhaustive optimization in automated multi-precision of weights hybrid 

classifiers to theoretically guarantee the finding of an optimal weights solution, that is, those 

which provide for the most accurate WVE through a search across all possible candidate 

solutions combinations at a reasonable efficiency tradeoff.  

The study first, identified agricultural soil properties to be attributed to soil analysis, and viable 

machine learning modeling algorithms for fertility status prediction. Then, an evaluation of the 

performances of heterogeneous ensemble models for predicting soil fertility statuses based on 

optimal soil fertility targets as indexed by crop yields was performed. Later on, the study 

developed and evaluated an optimal algorithm for explicitly generating systematic varying 

precisions weight coefficient matrices values as possible solutions search spaces as part of a 

brute exhaustive search procedure to optimize WVE for improving soil fertility status prediction 

performance, with accuracy maximization as the core objective function. Finally, an evaluation 

of the model's effectiveness in a maize field (experimental plantation) was done to evaluate the 

utility of the developed WVE model for predicting agricultural soil fertility status. 
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1.3 Rationale of the Study 

On one hand, the use of varying fertility status target classes such as in Jayalakshmi and Savitha 

(2022) who used only 2 classes ‘Ideal’ and ‘Not Ideal’ as fertility classes to indicate the 

respective fertility statuses ‘low’ and ‘high’ may not capture the intermediary fertility status of 

medium soil fertility characteristics which may lead to the corresponding farm field site 

mistreatment with toxic over dosages if the fields location was considered low while it not, or 

may lower yield in case it was considered high while ws low or medium and left untreated 

appropriately. Rossel et al. (2010) used 3 classes ‘low’, ‘medium’, and ‘high’, while others used 

up to 5 fertility classes. On the other hand, the varying predictive performances amongst studies 

may have varying implications in the effective real-world applications of these models 

concerning the provision of reliable predictions. Thereby, this leaves room for innovation such 

as developing and implementing subtle design(s) for the determination of optimal fertility status 

target classes and approaches for model performances improvements. 

On the other hand, most of the previous studies have not so far utilized solutions for ensuring 

the attainment of utmost optimal performances through the use of optimized WVE for predicting 

soil fertility statuses. Amongst other reasons, this is because while a greedy search is practically 

susceptible to the hill climbing problem which may lead to local extremums, and the 

evolutionary parent chromosome genes being the core of future fitter generations which may 

computationally at one time end up to un-fitter offsprings. Evolutionary procedures are inherent 

with a stochastic nature that may initialize WVE creature’s chromosomes genes that can at an 

instantiation probabilistically fail to can evolve fitter generations within the global context, 

hence theoretically they do not guarantee optimality (Team, 2021). Shown in Fig. 3 is the state 

of art search heuristics theoretical guaranteeing and non-guaranteeing of optimality tapping. As 

represented by the arrows, while, all three optimization techniques, that is, the brute exhaustive 

(which is indicated using the blue arrows), greedy, and evolutionary search techniques can be 

used to artificially optimize ML models, as depicted in Fig. 3, the brute exhaustive procedure 

can search across the entire set of possible combinations, whereby greedy search may not 

associate some of the combinations in the search due to the hill climbing problem which may 

intron return a suboptimal result, and evolutionary optimization implemented procedure’s 

chromosome initialization may provide for weak individuals that may not probabilistically not 

result into stronger selected current population parents whose offsprings may also not be fitter 
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parents to finally select the best solution from, resulting into suboptimal within the global 

evolutionary y search space context. 

 

Figure 3:   State of Art Search Heurists Theoretical Guaranteeing and non-guaranteeing 

of optimality tapping 

As such, as observed by Kurz et al. (2020), the surprising outstanding successes of the 

systematic brute force-based exhaustive search counterpart in producing optimal WVE models 

configuration sets with predictive performances similar to those created by evolutionary-based 

optimization procedures, in conjunction with its theoretical guaranteeing of finding the optimal 

solution through a search of all combinations or possible solution across a systematic search 

space can make it an imperative solution for attention in the tradeoff between high performances 

such as accuracy optimality tapping, and time of search across the spaces that have been clearly 

stated to be a key determinant factor for implementing a successful WVE optimal solution 

(Mouret & Clune, 2015).  

Hence these facts bring the need for exploiting the search spaces to achieve the guarantee of 

optimality tapping. Whereas, in recent years, Hassanat et al. (2019) proposed an innovative 

deterministic approach to dynamically change crossover and mutation rates parameters for 

evolutionary-based GA solution space representations and parameter selection, the key 

cornerstone of their study being to coin the importance and use of solution search spaces 

formulation procedures of the GA’s native operational mutation and crossover parameters 

interlinks and synthesis of their appropriate values ratios necessary for the implementation of 

effective evolutionary based generation population initializations for use in implementing an 

enhanced genetic based metaheuristics optimality search method. Nevertheless, there lacks an 
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exploitative exploration that emphasizes thoroughly on search spaces scrutiny as explicitly 

generated weights values as possible solutions for WVE optimization using computationally 

expensive brute exhaustive search heuristics, the method which has previously been described 

to have the ability to achieve optimization results similar to the evolutionary or greedy based 

search procedures, with the capitalization of guaranteeing optimality.  

While this research aims to develop a high-performance soil fertility status prediction weighted 

voting heterogeneous hybrid classifiers ensemble which is optimized by using a novel 

mathematically represented multi-precision search spaces generation algorithm as part of a 

brute exhaustive search technique. The novel multi-precision search spaces generation 

algorithm as part of brute exhaustive searching will advance the body of artificial intelligence 

optimization or search algorithms knowledge. This of which prior lacked, the development of 

the novel varying precision and scales weights coefficients values matrix formulation algorithm 

as part of brute exhaustive search heuristic implementation procedure theoretically guarantees 

the finding of high-performance WVE models optimality through explorations that focus on 

search spaces inherent sizes or precisions and scales exploitation due to the significance thereof 

in the overall performance of a machine learning WVE model. 

1.4 Research Objectives 

1.4.1 General Objective 

The general objective of this research is to develop a high-performance soil fertility status 

prediction voting ensemble using brute exhaustive optimization in automated multi-precision 

weights of hybrid classifiers. 

1.4.2 Specific Objectives 

The following are specific objectives: 

(i) To identify agricultural soil chemical properties for modeling soil fertility status 

prediction classifier models by using classical ML algorithms. 

(ii) To generate an effective automated multi-precision classifiers weights search spaces 

formulation algorithm for use in brute exhaustive optimization to guarantee optimal 

voting ensembles solution finding. 
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(iii) To develop an optimal soil fertility status target classes prediction hybrid classifiers 

ensemble model through brute exhaustive optimization using the generated effective 

automated multi-precision classifiers weights search spaces. 

(iv) To evaluate the predictive performance of the resultant optimal WVE combination 

model against individual models, and competitive benchmark models.  

(v) To validate the WVE model predictions against soil laboratory base test results, and it’s 

utility in providing accurate soil fertility status predictions that can facilitate for 

application of appropriate remedies and soil fertility management practices, to improve 

maize crop yield as a case study. 

1.5 Research Questions 

The following were the research questions: 

(i) Which agricultural soil chemical properties can be used for modeling soil fertility status 

prediction classifier models by using classical ML algorithms? 

(ii) How can an effective automated multi-precision classifiers weights search spaces 

formulation algorithm to be used for guaranteed optimal voting ensembles solution using 

brute exhaustive optimization be generated? 

(iii) How can an optimal soil fertility status target classes prediction hybrid classifiers 

ensemble model through brute exhaustive optimization using the generated effective 

automated multi-precision classifiers weights search spaces be developed? 

(iv) How does the developed resultant optimal WVE combination model for predicting soil 

fertility status perform against individual models and competitive benchmark models? 

(v) How valid are the resultant WVE model predictions as compared to soil laboratory base 

test results, and does it provide accurate soil fertility status predictions that can facilitate 

for application of appropriate remedies and soil fertility management practices, to 

improve maize crop yield as a case study? 
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1.6 Significance of the Study 

Analyzing soil information is one crucial requirement for the implementation of a successful 

smart soil fertility management system which is one of the key factors for sustainable 

agricultural intensification probably to meet the united nations Food and Agriculture 

Organization's demand for doubly increasing food productivity, in such to ensure the solution 

to food security by meeting the current and future projected population growth food demands. 

Whereas, soil data may provide generalized representations of patterns thereof to deliver useful 

information such as fertility levels, adequacy and accuracy thereof can be achieved through 

developing soil nutrients modeling and analysis using ML computational methods to provide 

a promising solution towards that endeavor.  

The results of this research are crucial for the development of a smart soil fertility management 

system. These were obtained through the implementation of a high predictive performance 

WVE that can reliably predict agricultural fields' soils fertility statuses to provide optimal 

information about its resident fertility characteristics, thereby enriching the concerned 

practitioners with adequate soil and accurate information for future use, this being asserted by 

(Massawe et al., 2018) as a key factor for improving soil fertility managerial decision making 

for improved food productivity.  

Essential outcomes are described as follows:  

(i) To add to the body of existing knowledge an understanding of the state of affairs of 

machine learning techniques for modelling agricultural soils' key chemical properties 

predictive analytical applications. 

(ii) To advance or contribute to the existing ML WVE models optimization scientific 

knowledge body with the novel automatic weighting values generation algorithm 

function that particularly formulates multi-precision search spaces for a systematic 

brute exhaustive search heuristic implementation for optimizing weighted voting 

ensembles such that to guarantee optimality finding in with maximization of prediction 

accuracy performance as an objective function, in turn, improve the prediction 

performance of soil fertility status. 

(iii) Also, to contribute to the existing soil nutrients and other chemical properties hybrid 

modeling design for predicting soil fertility status at high performance using the optimal 
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number of fertility targets, in turn, provides for more site-specific fine-tuned predictive 

information.  

(iv) To provide an evaluation of ML model soil fertility status predictive performance, with 

a proposition of configuration set for the optimal ML WVE model.  

(v) To increase crop yields as a result of the use of the model-based predictions to gain a 

better understanding of the optimal soil fertility status and make better use of site-

specific appropriate soil fertility management practices. This in turn may contribute to 

improved yield ratios, and bridge the agricultural digital divide which is amongst the 

key pillar of a sustainable smart global food supply system. 

1.7 Delineation of the Study 

Naturally, research studies are conducted under certain assumptions, and this study has no 

exception, some assumptions made in this research work are as follows:  

(i) This study is confined to machine learning-based classification of agricultural soils 

based on their features, the main reason for choosing soil over, irrigation, crop diseases, 

and other agricultural factors is the fact that agricultural soils are a key fundamental 

factor that needs addressing in a manner to understand of coexisting variabilities and 

manage them appropriately in order improve agricultural productivity and eventually 

ensure food security in general (Manjula & Djodiltachoumy, 2017). 

(ii) Whereas other soil chemical, biological, physical, and other sub-factors such as 

management practices or parameters that are significant to determine soil fertility such 

as climatic variabilities, are all important (Havlin et al., 2016). In particular, this study 

is limited to soil chemical properties modeling with machine learning to develop an 

effective soil chemical fertility prediction classifier model for reliable predictions of 

future unseen soil samples, at high performance. Figure 4 depicts the study rationale 

with soil nutrients and chemical properties components, and provision of artificially 

intelligent programs for smart agricultural soil fertility management necessary for 

sustainable plant growth, using integration with ML application that is optimized for 

performance using brute exhaustive search. Whereby we are confided and particularly 

focusing on the soil's chemical properties due to other reasons. Firstly being identified 

as key fundamental parameters for the optimal determination and validation of soil 
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chemical fertility characteristic(s) concerning crop growth and eventual productivity, a 

fact that has been asserted also by Azhakarsamy and Sathiaseelan (2018). Secondly, 

machine learning-related research in the same objective has been studied in 

implementing models for similar objectives under a similar context herein in such to 

allow for performance comparisons with our improvement solution. 

 

Figure 4:   Depiction of the study rationale 

This study, therefore focused on the identification and analysis of soil chemical fertility 

modeling features, targets, and corresponding ML algorithms, then optimal fertility class 

targets were engineered through modeling of the soil fertility status index as class targets, then 

an evaluation of performances of several classical ML algorithms was performed on the 

Tanzania nation soil chemical properties dataset. Then, the final high predictive performance 

model was obtained by combining the individual ML model results into one stronger judgment 

using an ensemble approach optimized using our novel proposed coefficients matrix algorithm 

was enhanced in performance. Finally, the best resultant model’s utility was evaluated on a real 

field maize plantation experimentation to determine the model-based treatments' decision 

effects and end maize production results, with comparison against other existing non-model-

based soil fertility treatment and management practice(s).   
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 A Theoretical Literature Review 

2.1.1 Agricultural Soils Properties for Fertility Status Analysis 

Kommineni et al. (2018), Manjula and Djodiltachoumy (2017), Rajeswari and Arunesh (2016), 

and Yusof et al. (2016) asserted that agricultural soils are one of the key fundamental aspects 

of agricultural food productivity as they harbor nutrients for crop consumption and growth. 

Essentially, soil fertility is the ability of the soil to possess and supply necessary nutrients and 

other key soil properties for plant growth. 

In agricultural soils in particular, there are key parameters that are functional to determine their 

fertility status and propose a remedy and management plan that are necessary to sustainably 

realize improved crop productivity (Bünemann et al., 2018; Sirsat et al., 2017). According to 

Bünemann et al. (2018), soil properties which include the soil physical, chemical, and 

biological properties should be selected based on some selection criteria that are bounded by 

conceptuality or operation ability, practicability or availability, sensitivity, and interpretability. 

And these properties are briefed as follows:  

(i) Physical  

Soil's physical properties are those which are associated with its natural morphology, amongst 

they include its structure: texture or type as clay, loamy, sandy, silty, peaty, chalky, or a mixture 

of these, which can now best be determined through the X-Ray capacity tomography 3-D 

images, water storage capacity, porosity, and infiltration (Emmet-Booth et al., 2016).  

(ii) Biological 

These provide the key living component of the soil ecosystem, microorganisms that decompose 

organic matter into topsoil organic carbon responsible for the preservation of soil nutrients and 

formation of soil natural fertility; these can be measured in % to N, number of colonies (Ball 

et al., 2017). Additionally, some other agronomic parameters are not part of the three soil 

properties categories but can be essential indexes for the estimation of soil fertility; they include 

crop type as seen in the work of Ball et al. (2017); and yield amounts (Sirsat et al., 2017). 
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(iii) Chemical 

Soil chemical properties are essentially those that are characterized by nutrients and other 

elements that are for direct consumption by plants. Often these are measured and used for the 

analysis of soil chemical fertility. These measurements of which can be determined through 

field trials for field samples by using several different soil testing methods to determine the 

availability and extent of different soil properties for different soil depths, mostly sub and upper 

(Ball et al., 2017; Kavvadias et al., 2018). 

Most importantly, according to Bünemann et al. (2018) and Sirsat et al. (2017), soil fertility 

can be determined by chemical properties with which are mostly nutrients that can be 

determined by using either wet or dry chemistry through techniques such as Unnamed Arial 

Vehicles (UAVs), near or  mid infrared (NIR/MIR) spectroscopic method and calibrated using 

samples that underwent a wet chemistry method with reagents such as HCLO4, HCL, HF and 

HNO3 (Liu et al., 2016), sodium hydrogen carbonate extraction (ISO 14263; ISO 1994), fulvic 

acids (FA), Humic acids (HA), BaCl2 extraction (ISO 11260; ISO 1994), Dionex-100 Ionic 

Chromatography (DX 1-03, USA) (Emerson et al., 1979; Kavvadias et al., 2018), amongst 

others, as suggested by Bünemann et al. (2018), these soil chemical properties include total 

nitrogen content (N) in the form of nitrous oxide – N20, phosphorus (P) in the form of 

phosphorus pentoxide – P205, potassium (K) in the form of potassium oxide – P20, sulphur (S) 

in sulphate – SO4 form, iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), boron (B), 

magnesium (Mg), calcium in calcium carbonate – CaCO3, cation exchange; organic carbon 

(OC) measured in percentage (%); electrical conductivity (EC) measured in milliSiemens per 

meter (mS/m) or deciSiemens per meter; potential hydrogen (pH) measured by a pH meter as 

acidic (0 to less than 5.5), neutral (5.5 to 7) or alkaline (7 to 14). Also other core soil chemical 

properties are the amount salt dissolved in water or saltiness, the salinity measured in ppm or 

%; and the amount of water contained in the soil, moisture, which is measured in percentage 

(%) of wet to dry soil   (Bünemann et al., 2018; Sirsat et al., 2017).  

2.1.2 Machine Learning Overview 

Machine learning (ML) is a branch of artificial intelligence (AI) that has brought about many 

advancements in application areas such as robotics, natural language processing, and expert 

systems, and ML, is a subfield of computer science that focuses on the design and development 

of intelligent systems in the form of hardware, software, or both (Alpaydin, 2020; Baştanlar & 
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Özuysal, 2014). Whereas Machine engineering and learning is concerned with the design and 

development, and application of algorithms and techniques that learn by automatically 

organizing input data according to their common features to provide computer machine(s) with 

knowledge and experience in the form of mathematical models that infer the future with 

minimal human intervention thus with least errors and make decisions (Hurwitz & Kirsch, 

2018; McQueen et al., 1995; Mishra et al., 2016; Mitchell, 1997), whereby ML does not 

involve consciousness as by humans, rather it statistical regularities or other data patterns, thus 

ML hardly resembles human approaches to learning (Ayodele, 2010).  

Consequently, ML becomes one of the key aspects of an AI agent it provides for knowledge 

discovery of computational structures or models of an AI system, pattern recognition, and data 

mining by learning from data to discover computational structures of which can later on be 

used for predictive and descriptive work flows termed as improved performance analytics 

(Anifowose, 2020). Thus, the key takeaway of ML is when the performance of the machine 

improves with even a slight change in any aspect of an AI system then the machine is said to 

have learned.  

Broadly speaking, a machine is said to learn when it changes its structure, program, or data, 

such that its performance in that carrying out artificial intelligence-related tasks that involve 

diagnosis, prediction, robotic control, planning, and recognition, improves with changes for 

enhancing its system or ab initio synthesis of new systems, as portrayed by Nilsson (1999), 

shown Fig. 5 is in the typical AI Agent System Architecture, with four (4) basic components 

of perception, model, action computation, and planning and reasoning.  

 

Figure 5:   The AI Agent System Architecture 
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The agent perceives its environment, models it, and computes its action based on anticipated 

effects. Whereas, changes made to any of the components of the AI agent are considered 

learning, and the involved learning algorithm will depend on which component has been 

changed. While the key source of knowledge of an AI system is modeled data, the AI system 

would appropriately learn the required computational structures if the involved data or common 

sense is large. In addition, ML draws ideas from various including statistics, brain models, 

adaptive control systems, physiological models, artificial intelligence itself, and evolutionary 

models (Jh, 1975; Koza, 1994),  also from the computational learning theory that provides for 

ML performance and computational analysis metrics, data mining, data analysis, data science, 

information systems, and computer science, among others (Han et al., 2011; Tan, 2007; Witten 

et al., 2016).  

(i) Neuropsychological Learning Perspective 

Based on the neuropsychological learning formulation called the Hebbian Learning theory, the 

prevalence of initial emergence in the field of machine learning was proposed in 1949 by Hebb 

(1949), the Hebbian Learning theory argument states that: “Let us assume that the persistence 

or repetition of a reverberatory activity (or "trace") tends to induce lasting cellular changes 

that add to its stability. When an axon of cell A is near enough to excite cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolic change takes place in 

one or both cells such that cell A's efficiency, as one of the cells firing cell B, is increased”.  

Machine learning for data science has been widely applied in various fields ranging from 

transportation, medical health, education, and agriculture, and has been reported to 

tremendously outperform humans as well as conventional computer programs performances 

by propelling very solid results in all tasks, for example, they could achieve approximately 

99% accuracy, higher than humans at traffic signs (Golge, 2016). In medical health and 

education, machine learning has been relatively used for the detection of heart and breast cancer 

(Chaurasia & Pal, 2017); drug design (Burbidge et al., 2001), and rational drug discovery 

(Zhang et al., 2017);  predicting student performance (Adhatrao et al., 2013; Durairaj & Vijitha, 

2014), and dropouts (Ameri et al., 2016). Except for the four articles: a) “The Organization of 

Behavior New York” by Hebb (1949) which highlighted the initial emergence of core 

Hebbedian learning theory,  b) “Learning representations by back-propagating errors” by 

Rumelhart et al. (1988) which enlighten about the popular back propagation neural network 

(BPNN) machine learning method in existence long before the 1990’s, c) “Induction of 
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decision trees” by Quinlan (1986) which proposed a remarkable discovery of the ID3 algorithm 

as a transparent and interpretable algorithms that can explain the underlying rules which are 

black-boxed in former algorithms and theories, and d) Learning by being told and learning 

from examples: an experimental comparison of the two methods of knowledge acquisition in 

the context of development an expert system for soybean disease diagnosis by Michalski (1980) 

which highlighted on the earliest quotation in the application of machine learning in agriculture. 

(ii) Machine Learning Algorithms 

Machine learning has attained significant advances over the past three decades, starting early 

90s with its algorithmic learning methods becoming the primary choice for practical predictive 

analytics software application development, among other they include automatic image 

classification or computer vision, natural language processing, sentiment analysis, spam 

detection, robot control, pattern detection, malware attack detection, diseases predictions, and 

automatic sequence processing for example in music or speech recognition, and other 

applications (Jordan & Mitchell, 2015).  

The AI research has from its genesis been concerned with machine learning which can be 

achieved through the use of various algorithms or techniques that can make changes to the AI 

system model to learn through more experiences using these model learning algorithms that 

historically simply aim to learn some sort of computational structure, these include Functions, 

Logic programs and rule sets, Finite-state machines, Grammars, Problem solving systems, 

depending on the type of dozens of machine learning technique in existence and being used. 

For instance, learning input-output functions or simply learning functions computational 

structures were used as part of AI research, in 1959 by Samuel to develop a prominent early 

program that learned the parameters of a function for evaluating checkers game board positions 

(Samuel, 1959).  

There are thousands of machine learning algorithms and hundreds more are being published 

each year (Brownlee, 2016; Castle, 2017; Domingos, 2012). In a broader view, these 

algorithms are categorized as shown in Fig. 6 of the non-exhaustive (Non-Exh.) taxonomy of 

ML algorithms, the learning computational structures or machine learning algorithms can be 

categorized into either supervised or unsupervised learning algorithm depending on the type of 

learning being conducted (Brownlee, 2016; Castle, 2017).  
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Figure 6:   Non-Exhaustive Taxonomy of the different main ML algorithms 

With focus to state of the art supervised learning algorithms, we base the description herein 

based on the profound Naïve Bayes (NB), Decision Trees (DTs), K-nearest Neighbors (KNN), 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), Bagging trees mainly  

Random Forests (RF), Boosting algorithms which we involve Adaptive Boosting (AdaBoost), 

and Gradient boosting (GB) (Ali et al., 2015; Azhakarsamy & Sathiaseelan, 2018; 

Bhattacharya & Solomatine, 2006; Devi et al., 2016; Kommineni et al., 2011; Sirsat et al., 

2017). Most of the ML methods used today follow this workflow. Examples of such methods 

are artificial neural networks (ANN), decision trees, and support vector machines (SVM). 

Knowing what goes into the algorithms is essential to understanding how they work. The more 

we understand how they work, the more transparent they look, and the more we reduce the 

“black box” phenomenon that has been wrapped around them. 

(iii) Supervised Machine Learning Algorithms 

Supervised machine learning is characterized by a teacher or supervisor with the task to provide 

an agent, model, or function with a precise measure of its errors, whereby beliefs and common 

sense are presented in the form of a training data set made up of inputs and expected outputs 

or class labels are provided, and the function shall be used to infer for future unseen samples, 

thus the function will map a vector into a specific class from the several by looking at the 

functions input-output sets of examples (Ayodele, 2010; Osisanwo et al., 2017). Generally, the 

traditional supervised learning algorithms use a training set D with variables constituting 

predictors X and target Y to train a model. The training process seeks to identify through an 

iterative procedure a set of model parameters that maximize the relationship between the 
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predictor (input features) and the target variables. The trained model receives new input data 

for the predictor variables and uses the recognized pattern to estimate the target variable. Figure 

7 shows a simplified schematic of the traditional supervised ML workflow that has been in use 

for over 4 decades now. 

 

Figure 7:   Traditional ML Workflow 

For the case of a learning function computational structure, an ML algorithm will learn the 

input-output learning function f by using data D with n labeled examples having attributes {X1, 

X2, X3, X4, Xn}that are to be used during training and testing on a set of unlabeled examples to 

determine the model's performance (Learned-Miller, 2014). Figure 8 illustrates the input-

output learning function f, it is assumed that if a hypothesis h can be found, such that h closely 

agrees with f for the members of D, then this hypothesis will be a good guess for f especially 

if D is large like it was previously highlighted. 

 

Figure 8:   Input-output learning ML function 
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If the datasets used contains continuous values and created function produces continuous 

valued outcomes, the task is referred to as regression, otherwise, if they are based on a discrete 

number of possible outcomes, then it is a classification problem (Bonaccorso, 2017). Also, 

when the algorithm used to create the function is flexible enough and data is coherent, the 

overall accuracy increase, and the predicted to expected values difference close nearly to zero, 

the goal is to reduce the number of misclassifications and increase robustness to noise.  

Through the application of various ML algorithms, supervised learning has been reported to be 

efficient in finding solutions to several linear and non-linear problems such as predictive 

analysis based on regression or categorical classification, robotics, sentiment analysis, 

automatic sequence processing such as speech or music, pattern detection, natural Language 

processing, plant control, spam detection (Sathya & Abraham, 2013), amongst others. Some of 

these profound ML-supervised learning algorithms are described as follows: 

Naïve Bayes 

A Naive Bayes classifier is one of the simple machine learning probabilistic classification 

techniques, which operates under the strong naive features independence assumptions, 

whereby it assumes inputs are independent of one another (Bhuyar, 2014). Figure 9 shows the 

Naive Bayes classifier represented as a directed non-acyclic graph network with each attribute 

being independent of each other (Nasteski, 2017).  

 

Figure 9:   Graphical Network Graph Model Naive Bayes’ classifier assuming 

independent input attributes 

The Naive Bayes’ graphical representation depicts how the possible de-naive Bayes’ classifier 

dependencies namely, correlations, among the inputs are ignored to reduce or represent a multi-

variate problem to a group of univariate problems. As a member of the Bayes family NB uses 

the theorem. 
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Whereby, for n predictor variable x1 to xn, it will be represented by the equation: 

P(c|X)= 
p(x1|c) * p(x2|c) *………….p(xn|c) * p(c)

p(x1|c) * p(x2|c) *………….p(xn|c)
 

To learn the appropriate computational structure underlying the data. From the shown Bayes 

theorem, the posterior class probability P(c|x) is calculated as the ratio between the product of 

classes’ C prior probabilities P(c) and likelihood of occurrences of n predictor variables p(x1) 

to p(xn) given the condition that the class is c, that is [p(x1|c) to p(xn|c)] multiply by p(c), to the 

predictors’ prior probability p(x) alone. Whereby, with the Naïve Bayes algorithm only a small 

amount of training data will be required to estimate a classifier through probabilities of a given 

dataset instance,  these of which are termed as class membership probabilities predictions, such 

as the probability that a certain tuple goes to a particular class (Jiang et al., 2012; Kohavi, 1996; 

Kotsiantis et al., 2007). Using each category prior probability given no information about an 

item, that is unseen data, naïve Bayes produces a posterior probability distribution over the 

possible categories described as an item. 

K-Nearest Neighbors 

Nearest-Neighbor (NN) is a memory-based ML method that can highly be related to statistical 

ones (Moore et al., 1995). The algorithm works as follows: given a training set D with m labeled 

patterns, a nearest-neighbor procedure decides that some new pattern X which belongs to the 

same category as its closest neighbors in D.  

More precisely, a k-nearest-neighbor method assigns a new pattern, X, to that category to which 

the plurality of its k closest neighbors belong. Using relatively large values of k decreases the 

chance that the decision will be unduly influenced by a noisy training pattern close to X. But 

large values of k also reduce the acuity of the method. The k-nearest-neighbor method can be 

thought of as estimating the values of the probabilities of the classes given X, and the denser 

the points around X, and the larger the value of k, the better the estimate. The distance metric 
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used in nearest-neighbor methods for numerical at-tributes can simply be the Euclidean 

distance described as the distance between two patterns (x11, x12, . . . , x1n) and (x21, x22, . . 

. , x2n), is √∑n j=1(x1j − x2j )2, where nj is the scale factor for dimension j (Friedman et al., 

1977). This distance measure can be modified by scaling the features to assume an almost 

similar spread of attribute values along each dimension. In addition, the distance calculations 

required to find nearest neighbors can often be efficiently computed by kd-tree methods 

(Friedman et al., 1977).  

An example of an 8 nearest-neighbors decision problem is shown in Fig. 10. In the figure the 

class of a training pattern is signposted by the number next to it, and a large number of training 

patterns must be stored to achieve its good generalization, the nearest-neighbor methods 

becomes highly memory intensive. Meanwhile, memory cost is now reasonably low, such that 

the method and its derivatives have seen several practical applications as seen in Moore (1991) 

and Moore et al. (1992).  

 

Figure 10:  An 8-nearest neighbors decision problem 

Decision Tree 

Another remarkable discovery in machine learning was in 1986, when the ID3 DTs algorithm 

was proposed by Quinlan as an algorithm with the potential to provide transparent and 

interpretable explanations in the underlying rules, clearly stating reasoning behind reaching 

certain conclusions (Golge, 2016; Quinlan, 1986; Zhang et al., 2017), who later on developed 
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further improvement of the ID3, the C4.5 and its Java version, J48 (Gholap, 2012; Melville & 

Mooney, 2003; Melville et al., 2004).  

Nilsson (1999) defined a decision tree as a tree whose internal nodes are tests on input patterns 

and whose leaf nodes are categories of the patterns. Shown in Fig. 11 is an example of a 

decision tree for assigning an input pattern to a class number or expected output by filtering 

the pattern down through the tests in the tree. Each test has mutually exclusive and exhaustive 

outcomes. For example, test T2 in Fig. 11 of the decision tree has three outcomes, whereby the 

left-most one assigns the input pattern to class 3, the middle one sends the input pattern down 

to test T4 for assigning to class 1 or 2, and the right-most one assigns the pattern to class 1. We 

follow the usual convention of depicting the leaf nodes by class number 1. Note that in 

discussing decision trees we are not limited to implementing Boolean functions they are 

generally useful for categorically valued functions.  

 

Figure 11:  A decision tree 

While as an advantage thereof, DTs are characterized by simplicity and comprehensibility in 

the determination and explanation of both small and large data structures, or attributes that 

provide the most information that can solve the classification problem and predict the required 

value (Ayodele, 2010; Jadhav & Channe, 2016; Mitchell, 1997). There are several dimensions 

along which decision trees might differ. One of the researchers who has done a lot of work on 

learning decision trees is Ross Quinlan. Quinlan distinguishes between classes and categories. 

He calls the subsets of patterns that filter down to each tip category and subsets of patterns 

having the same label classes. In Quinlan’s terminology, our example tree has nine categories 
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and three classes. We will not make this distinction, however, but will use the words “category” 

and “class” interchangeably to refer to what Quinlan calls “class”.  

Support Vector Machines 

Subsequently, another great breakthrough in machine learning was the introduction of SVMs 

in 1995 (Cortes & Vapnik, 1995; Vapnik et al., 1997; Zhang et al., 2017), with its kernel 

version being released near 2000 making competition with the ANN community a bit more 

subtle, the SVMs could exploit knowledge of convex optimization, generalization margin 

theory and kernels against ANN, with stronger theoretical standings and empirical results 

(Cortes & Vapnik, 1995; Golge, 2016).   

Depicted by Fig. 12 is an SVM discriminant function maximum margin which relies on 

maximizing the margin of error to select the best hyper-plane. The margin is determined by a 

set of hyper-planes parallel to the decision boundary on the positive and negative sides of the 

discriminant function each at the same distance to the boundary. When the margin is 

maximized, the training data points that are closest to the decision boundary are on the margin 

hyper-planes. These training data points are called the “support vectors.” Since the margins 

and the decision boundary are only determined by the support vectors, the SVM classification 

rule can be written as a function of these points. In practice, it is usually not possible to 

completely separate all training samples by a hyper-plane and some training samples can end 

up on the wrong side of the decision boundary or within the margin. 

 

Figure 12:  Support Vector Machine Maximum Margin 
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As a drawback of it, the learning algorithm of SVM often may select very few support vectors 

if the number of features encountered in the training data is usually small. In that case, SVMs 

are well suited to deal with learning tasks where the number of features is large concerning the 

number of training instances (Kotsiantis et al., 2007). The SVM uses a complexity parameter 

denoted by C to control how much support points are penalized. A higher penalty means a more 

complex model with potentially more support vectors. The value of this parameter should be 

set using a validation dataset. SVM is capable of handling data sets having high dimensionality, 

through the mapping of points in space to create separate categories by maximizing the margin 

between different classes of points in linear problems (Poorinmohammad et al., 2015; Zhang 

et al., 2017), as it uses kernel mapping to transform nonlinear data sets into a high-dimension 

feature space that can be used in linear classification functions (Zhang et al., 2017).   

Artificial Neural Network 

Long before the 90s, theories of conventional statistics existed along with core machine 

learning artificial neural networks (ANNs) and decision trees (DTs) basing techniques, and 

widely have been applied in different domains including agriculture and medicine as a means 

to supplement human expertise in the form of expert systems, as well as for educational 

purposes (Markoff, 1990; McQueen et al., 1995; Zhang et al., 2017).  

Artificial Neural Networks (ANNs) which were largely created based on the 

neuropsychological learning formulation to mimic brain functioning an attractive and powerful 

model that was initially highly used in drug discovery research as of 1995; the ANNs 

topological structures could mainly be classified into four main approaches, namely, feed-

forward neural networks (FFNNs), backward propagation neural networks (BPNNs), random 

neural networks (RNNs) and self-organizing neural networks (SONNs) (Zhang et al., 2017), 

with the most popular BPNNs being suggested by Rumelhart et al. (1988), as a forward neural 

network with the multilayered perception that uses the gradient-descendent method with the in 

the training set to minimizes the mean-square errors of the difference between the experimental 

data and the network outputs.  

Generally, as shown in Fig. 13, an ANNs work by adjusting the weights of the network layer 

until the out of a function f that we try to find is the closest approximation of the networks 

output Y based on some input features X = x1, xj, xk-1, xk. Whereby the weights are 

incrementally increased slowly from the networks perceptron, neurons, or adilines of the TLU, 
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by using sigmoid units as initialization function to allow for continuous differentiability, 

whereby a value of 0 or 1 is to be assumed without the use of the regular TLUs which are 

linearly non-differentiable in such a function such as sigmoid was introduced (Anastassiou, 

2022).   

 

Figure 13:  Artificial neural network layers with sigmoid function 

The sigmoid function is superimposed in the traditional neuron networks threshold function to 

provide for differentiability and allow for carrying out of the network's equation partial 

derivative of f concerning its input so as convert the weights into a linearly differentiable 

function. The ANN portrayed in Fig. 13 above consists of one hidden layer, the more layers 

are added to that ANN, we would form a deep neural network (DNN) that will facilitate the 

purpose of deep learning through the data to fetch even more complex patterns otherwise not 

possible to obtain with unlike learning methods, 

Deep Learning 

Deep ML family of techniques has been reported to have the capability of achieving the highest 

performances than any other learning technique, including classical machine learning 

techniques and their variants (Kamilaris & Prenafeta-Boldú, 2018; LeCun et al., 2015; Masri 

et al., 2015). However, deep learning techniques are associated with drawbacks and limitations 

which are respectively high processing times and the need for very large image data (Masri et 

al., 2015), while existing soil testing methods provide textual datasets contrary to images, 
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therefore deep learning cannot currently be applied for the analysis and prediction of soil 

nutrients and fertility status, otherwise we need to set up a project(s) for the collection of very 

large soil properties data in the form of images, with which this involves high cost and time 

also the tools are unavailable, except for the X-Ray capacity tomography which can only collect 

soil structural image.  

In the context of agriculture on addressing soil nutrients analysis and fertility status prediction, 

based on the nature of agricultural soil data which is mostly textual, the techniques for learning 

can be supervised or unsupervised, with supervised being widely used for soil nutrients analysis 

and fertility prediction as observed from the literature. Whereas, ANNs determine and 

minimize errors through network adjustments (Ayodele, 2010; Pastur-Romay et al., 2016; 

Siegelmann & Sontag, 1995; Yedjour & Benyettou, 2018),  this gives ANNs an ability and 

edge advantages to detect all possible interactions between predictors variables without having 

doubts even in cases of the complex nonlinear relationship between independent and dependent 

variables.  

In generally, achievements in discoveries of these new algorithms such as the support vector 

machines (SVMs) (Cortes & Vapnik, 1995; Marr, 2016); induction decision tree (ID3), a 

variant of native DTs (Golge, 2016); and random DTs forest which is  commonly known as 

random forest (RF) algorithms (Breiman, 2001); is discussed in the way they could address the 

drawbacks observed in ANNs with forward and back propagations, mainly being due to the 

requirement of large amounts of computational times, especially if a lot of middle hidden layers 

are involved in the learning process the vanishing gradient otherwise termed as gradient loss 

or descent problem, that provides redundant learning hops after a certain period of time in such 

they are inclined to over-fitting in short number of hops (Hochreiter, 1991a); also due to ANNs 

limitations such as requirement of very large training dataset and black-box nature, that is, the 

inability to provide explanation of the underlying facts for reaching conclusions, sparked need 

for explorations by the machine learning research and development community (Siegelmann 

& Sontag, 1995), as a result these remarkable machine learning algorithms were discovered, 

including the said SVMs, ID3, and RF to encounter, among others, the mentioned problems of 

gradient loss, over-fitting, outlier susceptibility, black-box characteristics.   
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(iv) Unsupervised learning 

Unsupervised learning algorithms are used to identify hidden patterns in unlabeled input data; 

they refer to provide the ability to learn and organize information without an error signal and 

be able to evaluate the potential solution, this type of learning simply models a set of inputs 

with no labeled examples (Ayodele, 2010; Bonaccorso, 2017). The lack of direction for the 

learning algorithm in unsupervised learning can sometimes be advantageous since it lets the 

algorithm look back for patterns that have not been previously considered (Sathya & Abraham, 

2013). In unsupervised learning, training is conducted using dataset D without function and we 

aim to partition the training set D into subsets, D1, . . . , DR, in an appropriate manner. Whereby 

the value of the function is the name of the subset to which an input vector belongs. 

In some cases when unsupervised results are to be used as inputs into a supervised process, 

problem domain expert(s) intervention becomes valuable for additional verification of the 

unsupervised learning intermediate results for enhanced performance and reliability, such as in 

the verification of different an unsupervised environment created clusters or otherwise termed 

as class labels to be used in supervised learning (Bhattacharya & Solomatine, 2006). 

K-means 

According to Taneja et al. (2012), k-means is one of the simplest unsupervised learning 

algorithms used to solve clustering problems by understanding and structuring data by 

grouping similar observations. However, the number of clusters must be specified in advance. 

The procedure follows a simple and easy way to classify a given data set through a certain 

number of clusters (assume k clusters) fixed a priori. The k-Means algorithm is employed when 

labeled data is not available (Badillo et al., 2020). The general method of converting rough 

rules of thumb into highly accurate prediction rules. Given a weak learning algorithm that can 

consistently find classifiers, as a rule of thumb, at least slightly better than random, with 

sufficient data. Figure 14 portrays the classical k-means clustering outcome with the value of 

k = 2. Every point is assigned to one cluster depending on the closest center point(s) marked 

by X.  
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Figure 14:  K-Mean clustering 

No Free lunch theorem 

Due to the no free lunch theorem and one does not fit all (Anifowose, 2020; Ho & Pepyne, 

2002), these algorithms cannot apply and perform equally with similar performances in all 

problem domains areas, having different data with varying complexities, thereby they should 

be evaluated for performance and appropriate improvement methods including hybrid machine 

learning (HML), and ensembles, among others methods including improvement of the 

individual models' algorithm underlying computer structures and correspond mathematical 

theories and expression themselves, be developed to finally be able to create high-performance 

models. Table 1 presents a summary of ML algorithms' strengths and weaknesses.  
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Table 1:     Summary of ML algorithms strengths and weaknesses 

Algorithm Concept behind Strengths Weaknesses 

Naïve Bayes Separate features based on 

probabilities  

Simple and requires a small amount of 

training data 

naive features independence assumptions 

KNN Distance (such as Euclidian) 

between the K closest 

neighbors 

Simple structured Memory intensive 

SVM Uses hyperplane and kernel 

trick on linear data 

capable of handling data sets having high-

dimensionality 

suits learning tasks involving a large 

number of features concerning training 

instances 

Decision Tree Statistical  Simplicity and comprehensibility in the 

determination and explanation of both 

small and large data structures 

Prone to over-fitting 

ANN Learns by adjusting network 

layers  
- detect all possible interactions between 

predictors variables 

- Deals with non-linear data 

- inability to explain the underlying facts to 

reach conclusions 

- requires of the very large training dataset 

- inclined to over-fitting in a short number 

of hops 

RF  - robustness towards over-fitting and 

outliers 

- large amounts of data 

- No pruning, each tree is grown to the 

largest extent possible 
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2.1.3 Hybrid Machine Learning 

Hybrid ML (HML) is an advancement of the traditional ML workflow that seamlessly 

combines different algorithms, processes, or procedures from similar or different domains of 

knowledge or areas of application to complement each other. As no single cap fits all heads, 

no single ML method applies to all problems. Some methods are good at handling noisy data 

but may not be capable of handling high-dimensional input space. Some others may scale pretty 

well on high-dimensional input space but may not be capable of handling sparse data. These 

conditions are a good premise for applying HML to complement the candidate methods and 

use one to overcome the weakness or strengths of the others (Anifowose, 2020).  

The HML algorithms are tailored towards the combination of two or more existing ML methods 

or combined methods from other fields such as the statistical domain, and HML methods have 

become common in recent applications. The HML algorithms are based on an ML architecture 

that is slightly different from the conventional workflow (Anifowose, 2020). We seem to have 

taken the ML algorithms for granted as we simply use them off the shelf, usually without 

considering the details of how things fit together. Whereas the possibilities for the hybridization 

of traditional ML methods are endless, new hybrid models can be built in different ways. 

Herein, we describe three basic types of HML namely architectural integration, model 

parameters optimization, and data manipulation which or along with any other relevant 

methods, can be used by ML fanatics to build hybrid models. 

(i) The HML based on architectural integration 

Architectural integration HML seamlessly wholly or partly combines the architecture of two 

or more traditional ML algorithms, in a complementary manner to evolve a more robust 

standalone algorithm. The most commonly used example is the adaptive neuro-fuzzy inference 

system (ANFIS) which is a combination of fuzzy logic and ANN principles (Anifowose et al., 

2013). Another example of an architectural integration HML method is the naïve Bayes tree 

which combines the architectures of naïve Bayes and decision tree algorithms. Whereby, the 

decision tree nodes would contain regular decision tree univariate splits, and the leaves contain 

naïve Bayes classification (Anifowose, 2020; Kohavi, 1996). Although decision trees can 

easily scale up to higher dimensional data, they are prone to overfitting. Whereas studies have 

shown the performance of the naïve Bayes algorithm to be excellent, naïve Bayes alone does 
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not nicely scale up under similar conditions. Therefore, a naïve Bayes decision tree hybrid 

method is necessary to leverage the complementary qualities of the two separate methods. 

(ii) The HML based on model parameters optimization 

Usually, to determine its optimal tuning parameters, a traditional ML method will use a search 

or optimization algorithm such as grid search or built-in gradient descent. Hybrid learning that 

is based on model parameters optimization seeks to complement or replace the built-in 

parameter optimization method by using advanced evolutionary algorithmic methods. For 

example, if the particle swam optimization (PSO) algorithm is used to optimize the training 

parameters of an ANN model, then it can be referred to as a PSO-ANN hybrid method. In 

addition, a genetic algorithmic (GA) method that is used to optimize the ANFIS method 

training parameters would be termed a GANFIS hybrid model. The same goes with other 

evolutionary optimization algorithms such as Bee, Ant, Bat, and Fish Colony when in 

combination with traditional ML (TML) methods to form respective BeeTML, AntTML, 

BatTML, and FishColonyTML hybrid models. 

(iii) The HML based on data manipulation  

The HML which is based on data manipulation is probably the most implemented hybrid 

model(s). This type of hybrid learning seamlessly combines data manipulation processes or 

procedures with traditional ML methods to complement the latter with the output of the former. 

Whereby the simplest example is explained by the application of data transformation methods 

such as simple linear correlation analysis or principal component analysis (PCA) on our data 

before passing the data to the ML method, hence forming a hybrid computational structure.  

Some practitioners use evolutionary algorithms to automate the optimization of the parameters 

of existing ML methods. The following examples are valid possibilities for this type of hybrid 

learning method, If a fuzzy ranking (FR) algorithm is used to rank and preselect optimal 

features before applying the support vector machine (SVM) algorithm on the data, this can be 

called an FR-SVM hybrid model. If a PCA module is used to extract a submatrix of data that 

is sufficient to explain the original data before applying a neural network to the data, we can 

call it a PCA-ANN hybrid model. If a singular value decomposition (SVD) algorithm is used 

to reduce the dimensionality of a data set before applying an extreme learning machine (ELM) 

model, then we can call it an SVD-ELM hybrid model.  
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The fuzzy logic method can be seen as a hybrid method if the fuzzification and defuzzification 

processes that come before and after the inference engine are respectively seen as kinds of 

preprocessing and post-processing tasks that are seamlessly integrated with the inference 

engine. Figure 15 shows a conceptual framework of the data manipulation HML workflow. 

These types of hybrid methods are often implemented in tasks that are based on feature 

selection, a type of data manipulation process that seeks to complement the built-in model 

selection process of traditional ML methods, which have become common. From studies by 

Anifowose et al. (2014), and Sasikala (2016) it was suggested the carrying out of this procedure 

using an external algorithm as a preprocessing step helps to complement the internal process 

by reducing the computational complexity, thereby increasing the accuracy of traditional ML 

algorithms. 

 

Figure 15:  The Conceptual framework of a data manipulation HML workflow 

2.1.4 Ensemble Learning 

In ML, ensemble learning is a method used to combine results of various ML homogeneous or 

heterogeneous hypotheses or base experts’ predictions that answer the same question to have 

more predictive accuracy (He et al., 2017; Okey et al., 2022; Zhou, 2009). Strategies for 

improving Machine learning (ML) model performance for optimal management decision-

making have been proposed in various studies such as (Brownlee, 2016, 2018, 2020, 2021). 

Whereby, ensemble model construction has been implemented in several real-world applications 

due to their prospective superiority in performance as compared to single ML models, for that 

reason schemes thereof have widely been applied in several studies related to high-performance. 
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Machine Learning model implementations using ensemble learning strategies. One good 

example of ensemble learning superiority in performance over individual models was 

demonstrated by Dolzhikova et al. (2021), who implemented an ensemble model selection to 

integrate capabilities of CNN architectures and ensemble learning for decoding EEG signals 

collected in motor imagery experiments with achievement of over up to 7% as compared to 

individual models. For instance, in Ennouni et al. (2021) an ensemble learning scheme that used 

a weighted voting mechanism was implemented to combine VGG16, AlexNet, CNN, 

Inceptionv3, and mobileNet deep learning architectures for plant disease identification, whereby 

the weighting was performed using a genetic algorithm optimization based hybrid through G.A 

that along with initialization of weights, it may require extensive tuning as well to attain 

optimality. In machine learning, ensemble learning refers to the methods that use multiple 

learning algorithms to obtain better predictive performance than could be obtained from any of 

the single learning algorithms alone (Deng et al., 2021; Zhang & Ma, 2012). 

2.1.5 Bagging  

The basic principle is that a group of “weak learners” can come together to form a “strong 

learner”. Random Forests are a wonderful tool for making predictions considering they do not 

over-fit because of the law of large numbers. Random forest (RF) is a bagging ensemble learning 

algorithm, ML algorithmic discovery was initiated in 2001. The key characteristic of RF as an 

ensemble model is to combine individual decision tree models and provide for an improved 

model performance (Golge, 2016). As shown in Fig. 16 of the RF algorithm it uses random 

features selection and bagging concept to construct an ensemble of multiple DTs as base learners 

and train them using randomly sampled subsets of the original dataset, a consensus score is 

calculated as a weighted average or estimate of the individual DTs output to provide the final 

result” (Breiman, 2001; Zhang et al., 2017). 
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Figure 16:  Random forest classifier 

The key advantage of a random forest is its provision for more accurate and stable prediction 

through the construction and combination of several decision trees. Whereas it considers the most 

essential parameter while splitting nodes, by searching for the best features among random 

features subsets (Breiman, 2001; Kumar et al., 2019). The training algorithm for random forests 

applies the general technique of bootstrap aggregating, or bagging, to tree learners. Assuming a 

training set with predictor variable X and targets Y where, X = {x1, ... xn} with response classes 

Y = {y1, ..., yn}. Then continuously for a definite number of times, bagging can be performed 

through selection from the training set, a random sample with replacement, and fitting a few 

hundred to several thousand trees depending on the size and nature of the training set of trees to 

the selected samples. Whereby, if the trees do not have any relation, the average of these trees is 

not so sensitive towards noise, unlike a single tree which is extremely subtle to noise inherent in 

the training set (Arooj et al., 2018). The predictions uncertainty estimates can be made by 

evaluating class Y predictions standard deviations from samples X. whereas, strongly correlated 

trees can be created by training many trees on a single dataset. Bootstrap sampling is the use of 

different training sets for each of these correlated trees to de-correlate them. Random forest 

algorithm is capable of classifying large amounts of data with high accuracy without over-fitting, 

which makes it a wonderful tool for making predictions. Random forest trees are grown by 

random sampling with the replacement of N cases for a given training set. Whereby, the best split 

of the node is determined by the best split on m variables are selected at random out of the M 

which denotes the number of input variables. While the value of m is held constant during 

growing the forest, the tree grows to the largest extent possible without pruning (Breiman, 2001; 

Keerthan et al., 2019). 
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2.1.6 Boosting 

Boosting is generally a machine learning procedure to convert weak learners into a stronger 

model, two common types that exist among other includes adaptive boosting and gradient 

boosting. AdaBoost recognizes the weak learners’ shortcomings through the use of weighted data 

points. The gradient boosting (GB) framework constructs additive regression models by 

sequentially fitting a weak classifier to current residuals (Friedman, 2001, 2002). As shown in 

Fig. 17 the architecture of gradient boosting previous weak classifiers’ misjudgments are 

corrected to adaptively improve the overall prediction performance with high efficiency (Si et 

al., 2017). The final model aggregates the results from all weak classifiers to achieve a “strong” 

classifier as an ensemble.  In addition, Fig. 18 shows GB’s gradient descent with a loss function 

to detect the residuals, such as mean squared error for regression or logarithmic loss for 

classification, eventually to improve its performance by minimizing the loss of weak learners to 

descend more towards a stronger ML model with minimal error as possible. 

 

Figure 17:  The Architecture of Gradient Boosting 
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Figure 18:  Gradient boosting’s descent explanatory 

2.1.7 Weighted Voting Ensemble Scheme for Model Performance Improvement 

While several alternative implementations of ML ensembles could exist, model predictions or 

voting are the two common ways to combine single base model predictions to improve model 

performances, whereby variance and error reductions are capitalized (Pedregosa et al., 2011). 

Voting selects the class that has mostly been predicted by individual models.  

Generally, ML ensembles improve the predictive performances of individual learners by 

combining their predictions, through an ensemble function of all base members, and the ensemble 

error becomes a decomposition of average individual members' errors essentially to compensate 

for the lower average accuracy of individual members by the higher disagreement weight the 

ensemble as long as it is correct (Gomes et al., 2017; Löfström, 2015; Pinellas & Livieris, 2020). 

Weighted Voting Ensembles (WVE) WVE models have extensively been appreciated due to their 

theoretical and empirical abilities to significantly improve individual learners' performance by 

treating each one of them as unequal and weighing them, contrary to its former variant, that is 

simple voting, which assumes all models to be equal (Dolzhikova et al., 2021; Escorcia-Gutierrez 

et al., 2022; Nuankaew et al., 2022; Partalas et al., 2008). Thus, as an improvement to simple 

voting, WVE whose final output is y(x) can calculate as shown in equation (1) 

   y(x) = argmax∑ 𝑤𝑖, 𝑗𝑋𝐴(𝐶𝑗(𝑥) = 𝑗)𝑁
𝑖=1          (1) 

“where y of all the unknown instances χ in the test sets are evaluated as the argmax function of 

the respective index with the largest value from array A = {1, 2, . . . , M} denotes the set of 

exclusive class labels and χA indicates the characteristics function that considered the 

predictions j ∈ A of a classifiers Ci on instances and create vectors where the j coordinates take 
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values of one and the remaining takes the value of zero (Dolzhikova et al., 2021; Escorcia-

Gutierrez et al., 2022).”.  

WVE was fundamentally introduced with this key understanding that different individual models 

to form an ensemble cannot in most practical cases have the same influence, thus treating them 

unequally and weighing their class probabilities prediction with unequal weights whereby the 

total sum of all models weights is equal to one (1) as represented in equation (2) (Brownlee, 

2021; Dolzhikova et al., 2021; Escorcia-Gutierrez et al., 2022; Shahhosseini et al., 2019; 

Zouggar & Adla, 2018).  

                                           ∑ wi = 1,      wi > 0, ∀i = 1,… . k,𝑘
𝑖=1                                     (2) 

Where wi is the weight of model Ck, whose total for all models 1 to k is equal to 1. Figure 19 

depicts a WVE consisting of Logistic Regression, Random Forest, and Naive Bayes learners 

combined to achieve a more accurate ensemble learner for classification. From Fig. 19 of the 

schematic overview of the weighting algorithm for weighting algorithm, whereby the numbers 

are just pseudo, we see that a final prediction is obtained from combining Logistic Regression, 

Random Forest, and Naive Bayes learners to achieve a more accurate ensemble classification 

learner.  

 

Figure 19:  Schematic overview of the weighting algorithm 
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In particular, the weighted voting ensemble’s output y(x) can be expressed as in equation (1). 

Using a similar approach, much WVE development work has been done in numerous studies to 

combine ML models to improve their overall model predictive performance objective for a 

diverse of ML problem tasks. These include works by Wang et al. (2022) whereby a weighted 

voting ensemble method was used to obtain the improved output of prediction probability based 

on classifiers that predict the success rate of side-channel attacks according to the characteristics 

of side-channel analysis, whereby they applied the reciprocal of base classifiers success rate as a 

source for WVE assigned weights. In Escorcia-Gutierrez et al. (2022) an intelligent soil nutrient 

and pH levels classification and determination weighted voting ensemble deep learning system 

was proposed, whereby a wide range of simulations had to be carried out on a benchmark dataset 

to observe the performance of the WVE as it was being modeled.  

In addition, an ensemble learning scheme that uses a weighted voting mechanism was 

implemented to combine VGG16, AlexNet, CNN, Inceptionv3, and mobileNet deep learning 

architectures for plant disease identification (Ennouni et al., 2021), whereby the weighting was 

performed using a genetic algorithm optimization based hybrid through G.A that along with 

initialization of weights, it may require extensive tuning as well to attain optimality. Whereas 

Wu et al. (2021) and Ekbal and Saha (2011) used the genetic algorithm method to determine 

appropriate weights, the former developed a weight adaptation strategy to adjust base learners' 

weights based on their previous performances, and the later used GA chromosomes to encode 

weights of each of classifiers output classes. Ennouni et al. (2021). Also, Li et al. (2016) 

implemented a genetic algorithm-based search heuristic to find optimal weights of a WVE that 

was developed to effectively integrate twenty-five discriminative forecasted for piRNA 

prediction. Likewise, Zheng and Gu (2021) developed an ensemble model for classifying 

household solid waste via waste images based on CNNs architecture by using an unequal 

precision measurement weighting Strategy (UPMWS), that during model training, it capitalizes 

on the variations amongst the models' f1-score predictions performance to calculate the weights 

coefficients of their ensemble combination.  

Last, but not least, Kurz et al. (2020) experimented with ensemble models for weighting scheme 

implementations based on the brute exhaustive, greedy, and genetic-based searching procedures, 

brute exhaustive was observed to produce an optimal model as effective as the counterparts at a 

high computational time of 23 hours. 
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2.1.8 Brute Exhaustive Search Algorithm 

Nearly all science and engineering fields use search algorithms, which automatically explore a 

search space to find high-performing solutions (Mouret & Clune, 2015). The brute or exhaustive 

search algorithm is a set of instructions used to find the optimal solution by examining all possible 

solution combinations. This search process is not that new at all, it has been applied in several 

optimization problems including (Angulo et al., 2021; Ast et al., 2021; Dauzhenka et al., 2018; 

Kaderzhanov et al., 2021) to search for the most deemed optimal solution. Concerning WVE, the 

brute-force or exhaustive search algorithm has been used in various studies, like in Kurz et al. 

(2020).   

Previous studies' results of brute exhaustive search depicting superiority in receiver operating 

characteristic (ROC) performance just like GA and Greedy Search, whereby as compared to 

linear model at significance with P less or equal to 5%, on a tested pima India diabetes correlated 

dataset. Figure 20 shows the performances of brute exhaustive search procedure in comparison 

to greedy search, and genetic linear search methods, to optimize individual learners' 

performances by weighting through them for the modeling of the Pima Indians Diabetes data set 

is another well-known data set that predicts diabetes mellitus in a high-risk population using 

diabetes dataset, where the brute force approach was slightly superior over the rest.  

 

Figure 20:  Previous studies' results of brute exhausted search exhibiting superiority just 

like genetics and greed 

Table 2 indicates the computational times of the implementations, as reported by Kurz et al. 

(2020). It could be seen that the computational cost involved with a brute exhaustive search 

procedure is incomparably very high as compared to genetic and greedy search procedures.  
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Table 2:     Genetic, greedy and brute experimental computational times 

 SMR correlation Computational time 

Expert 0.578 NA 

Brute Force 0.616 23 ha 

Greedy 0.615 < 1s 

Genetic 0.614 < 1s 

QP 0.449 < 1s 

 

In addition to that work, a brute exhaustive search was also implemented by Junk et al. (2015), 

and static and dynamic predictor weighting strategies were implemented and tested to improve 

the analog ensemble performance for wind power forecasting at on and offshore wind farms by 

using a brute force search procedure with error minimization over all possible predictor 

combinations. Furthermore, Abibullaev et al. (2020), did experiments on brute force based 

Electroencephalographic (EEG) signals as an architectural model for Brain-Computer Interface 

(BCI) research to enable individuals to interact with their environment by translating their mental 

imagery selection for convolution neural networks (CNN) to find for the parameters and provided 

results that are believed to suffice the verification of the efficacy for conducting a brute-force 

CNN model selection within a limited hyperparameter space, they examined whether a brute-

force search with a limited space of hyper parameters for standard convolutional neural networks 

(CNNs) would possibly lead to a comparable classification accuracy as the state-of-the-art deep 

learning architectures for classification of motor imagery tasks we refer to any specific CNN that 

is constructed as part of the systematic model selection process as convolution network. Usually, 

the general basic algorithm that follows an exhaustive or brute force search requires two main 

stages: namely, Listing all the possible candidate solutions systematically, and checking for the 

optimal solution and reporting it (Angulo et al., 2021).  

While the main disadvantage of the brute exhaustive technique being its requirement for massive 

computational resources to find solutions in very large search spaces and which may sometimes 

make it slow and infeasible (Ariyanti et al., 2019; Pedamkar, 2019), a drawback that can be 

addressed by using the search space reduction and algorithm parallelization strategies such as 

using parallel CPU–GPU computing structure, or computations and execution in a quantum 

environment. Its key advantage is the theoretical simplicity in implementation and ability to 
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always identify global optimal solution given computational resources are available (Okey et al., 

2022), which may make this algorithm be deemed a good choice especially when it will not 

require days, months, or years to locate the required solution in a real-life optimization problem.  

Algorithm 1 next portrays a description of the basic exhaustive search steps as described in 

(Ariyanti et al., 2019).  Whereas, Algorithm 2 shows the brute force search procedure with 

strategies to speed up the algorithm evaluation as presented in Angulo et al., (2021), where P is 

a valid problem’s solution space, A is a null space, and c represents the candidate solution which 

is not null.  

Algorithm1. Basic Exhaustive Search Steps 

 1. Make a systematic enumeration of all possible solutions. 

 2. Evaluate each possible solution one by one, and save the best solution time. 

3. Report the best solution. 

4. Taking care of large computational resource requirements. 
 

 

Algorithm 2. Exhaustive Search Algorithm with accelerator procedures. 

     1. Search Space Reduction 

     2. Perform Algorithm parallelization 

     3.          c <-first(P) 

     4.          while c is not equal to A do 

     5.             if valid(P,c) then 

     6.                Output(P,c) 

     7.            C < - next (P,c) 

     8.          end while 
 

2.2 Empirical Literature Review 

2.2.1 Application of Machine Learning Techniques in Modelling Agricultural Soil 

Nutrients and Other Chemical Properties for Fertility Status Prediction 

Whereas, the earliest quoted example of the applications of machine learning in agriculture was 

in the use of similarity-based learning to identify rules for the diagnosis of soybean disease 
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(Michalski, 1980). Other studies of the machine learning field in agricultural problems include 

weather forecasting, yield prediction (Bagheri et al., 2018; Devi et al., 2016; Negied, 2014), 

fertilizers usage, fruit grading, plant diseases diagnosis and prediction (Michalski, 1980), pest 

management (Saini et al., 2002), weed detection, soil nutrients analysis and fertility prediction 

for soil management and assessment (Azhakarsamy & Sathiaseelan, 2018; Kamilaris & 

Prenafeta-Boldú, 2018; Kommineni et al., 2018), amongst others.  

Studies related to soil analysis and fertility status prediction have widely reported that accurate 

soil fertility estimation and prediction models in agriculture can be achieved through the 

application of data-driven tools such as those using machine learning algorithms, as these can 

unlock such potentials. Sharma et al. (2015) asserted that the use of machine learning algorithms 

in this advent of large collected data for example can manipulate data and produce knowledge 

required for making better precision agriculture and support decision-making among farmers 

and other agricultural stakeholders, such as in soil assessment and management. 

The genesis of ML methods in pedology traces back to the 1980s, when it was first applied in 

pedometrics whereby ML data-driven methods could be applied in the modeling and prediction 

of soil fertility. Presented here is a briefing on a few previous of these works from 2010 to date 

(2022). These works addressed a range of ML tasks from classifying soil properties of very 

low, low, moderate, high, and very high fertility status, to predicting unknown values. Whereas 

it is best practice to use as many possible algorithms, with all possible available principle 

parameters to perform an exhaustive evaluation to attain good analytical results and final 

model(s), Azhakarsamy and Sathiaseelan (2018) compared the performance of J48, KNN, 

JRip, NB, SVM, ANN classification algorithms by using PH, EC, N, P, K, OC, S, Fe, Mn,  and 

Zn input variables of soil dataset to predict soil fertility as ‘fertile’ or ‘not fertile’, whereby 

JRIP scored maximum accuracy of 97%. In another study by Jayalakshmi R and Savitha Devi 

M (2022), data from Vellore soil testing laboratory with soil attributes PH, EC, Fe, Zn, Mn, 

Cu, OC, P, K, and fertility index (FI) as ‘ideal’ or ‘not ideal’ were utilized to perform 

experiments of training various bagging, boosting, and stacking ensemble classifiers, were they 

pre-processed the data, extracted relevant features as a means to achieve better performance, 

and attained an accuracy of 98.15% by boosting the decision tree like C5.0 algorithm.  

A versatile method for rapid and accurate determination of soil fertility for sugarcane 

production was developed by Viscarra Rossel et al. (2010), whereby the soil fertility index was 

established and modeled independently using boosted decision trees with the use of soil 
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attributes PH, OM (OC), Ca,  and Mg, Aluminium used in place of B  due to their study finding 

a high correlation between the two, whereby they achieved AUC scores of 0.76, 0.67 and 0.65 

for the respective fertility classes ‘highly fertile’, ’fertile’, or ‘least fertile’ prediction. In 

another work, the Random Forest was used to develop a model that was used as part of the 

work to predict soil’s OC, N, P, K, Ca, Mg, Na, Fe, Mn, Cu, Al nutrients fertilities and use the 

information to understand the edaphic drivers of soil constraints to very extreme high or near 

zero yields and heterogeneity across Africa, to guide in nutrients-specific interventions, they 

could find that soil factors could explain 72% of the variations in yields (Jin et al., 2019).  

Manjula and Djodiltachoumy (2017) developed a hybrid classification model by using a 

Decision Tree Classifier to isolate the soil’s PH, EC, OC, N, P, K, S, Zn, Fe, Cu, Mn, and B 

dependent features and used Naïve Bayes classification on the independent features to predict 

the fertilities for the primary properties (PH, EC, OC, N) with individual naïve Bayes, and 

decision tree respective performances of 69.9%, 90.43%, and 99.93% for the DT-NB 

independent featured hybrid. While the macro P, K, S, and Zn, nutrients were respectively 

predicted at 38%, 88%, and 97% accuracies, the micro Fe, Cu, Mn, and B nutrients levels were 

predicted at 42%, 83%, 99.93% accuracies, respectively.  

Kumar et al. (2019) examined soil micro and macro nutrients EC, K, pH, Mn, Zn, S, P, B, and 

OC using machine learning to grade soil nutrients, and they applied various classification 

algorithms and found that random forest had the highest accuracy score as compared to support 

vector machine and Gaussian naïve Bayes in predicting the soil classes for suitable crop 

plantation. Likely, Chaudhari et al. (2020) used PH, EC, OC, P, K, Fe, Zn, Mn, and Cu to 

implement machine learning models for predicting soil fertility as low, high, or medium using 

Support Vector Machine, nearest neighbor, Naïve Bayes, and Decision Tree that scored 60%. 

Also, Sirsat et al. (2018) implemented machine learning models for automatically predicting 

the Indian state of Maharashtra village-wise fertility indices of organic carbon (OC), 

phosphorus pentoxide (P2O5), iron (Fe), manganese (Mn), and zinc (Zn) by using 76 methods 

belonging to 20 families including neural networks, deep learning, support vector regression, 

random forests, partial least squares, bagging and boosting, quantile regression and generalized 

additive models, among many others.  

Altogether, as per the Government of India's standard fertility levels, the prediction of nutrients 

fertility indices as low, medium, or high achieved the utmost best performance through the 

ensemble of extremely randomized trees (extraTrees), the results of which corresponded to 
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accuracy (Acc) and Cohen kappa values of (Acc= 86.45% Kappa= 69.60%), (Acc= 79.03% 

Kappa= 56.19%), (Acc= 79.46% Kappa= 52.51%), (Acc= 86.13% Kappa= 71.08%), (Acc= 

97.63% Kappa= 81.03%) for OC, Fe, P2O5, Mn, and Zn, respectively, which is considerably 

fairly accurate. Other best-performing models were those generated through regularized 

random forests, random forests, and random forests with feature selection, last but not least 

good performances were obtained from gradient boosting of regression trees (bstTree) and 

generalized boosting regression (gbm); quantile random forest, M5 rule-based model with 

corrections based on nearest neighbors (cubist) and support vector regression (SVR). In another 

study, Escorcia-Gutierrez et al. (2022) designed an intelligent soil PH, OC, EC, P, K, B nutrient 

and pH classification using the weighted voting ensemble deep learning (ISNpHC-WVE) 

technique. Such classifications were employed in generating village-wise fertility indices 

analyses, and they are applied for making fertilizer recommendations using the decision 

support systems. In addition, three deep learning (DL) models namely gated recurrent unit 

(GRU), deep belief network (DBN), and bidirectional long short-term memory (BiLSTM) were 

used for the predictive analysis. Moreover, a weighted voting ensemble model was employed 

which allows a weight vector on every DL model of the ensemble depending upon the attained 

accuracy on every class.  

Furthermore, Bhuyar (2014) used different classification algorithms to predict fertility rate 

based on soil’s PH, EC, Fe, Cu, Zn, OC, P, K. Whereby, J48 classifier performed better in 

predicting fertility index for 6 classes very low, low, medium, medium-high, high, very high 

with 98.17% accuracy, while naïve bayes and random forest had respective performances of 

77.18%, and 97.92%, their observation generally showed fertility rate for Aurangabad district 

to be medium.  

In another study, Gholap et al. (2012) projected a comparative analysis of Naïve Bayes, JRip, 

and J48 ML algorithms by using soils data with attributes PH, EC, OC, P, K, Fe, Zn, Mn, Cu, 

it was observed that JRip classification algorithm gave better results compared to the other two 

algorithms, whereby it achieved an accuracy of 91.9% and therefore it was recommended to 

predict 6 soil classes very high, high, moderately high, moderate, low, and very low. Last but 

not least, a study by Massawe et al. (2018) was also useful in providing information on soil 

features, and algorithms of interest whereby PH, EC, N, OC, P, Ca, Mg, Na, K, Fe, Mn, Cu, 

and Zn could be observed key features these of which were modelled using naïve Bayes and 
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random forest trees as part of a task to numerically classify a portion of Kilombero Valley soil 

clusters in Tanzania. 

2.2.2 Summary of the Empirical Review 

Table 3 provides a summary of the reviewed studies related to the application of machine 

learning in soil chemical properties modeling. 

Table 3:     Summary of the State-of-the-art ML-based approaches and Soil chemical 

properties used in modeling nutrients and fertility status prediction 

Author 

Chemical 

Properties 

(features) 

Dataset 

 Size 

Technique 

(ML 

algorithms) 

Restraint(s) 

Number 

of 

fertilities 

target 

classes 

Max Accuracy/ROC 

Performance (%) 

Azhakarsamy 

and 

Sathiaseelan 

(2018) 

PH, EC, N, 

P, K, OC, 

S, Fe, Mn, 

Zn 

127 J48, KNN, 

JRip, NB, 

SVM, ANN 

with 10FCV 

and % split  

2 (fertile 

and not 

fertile) 

97 

Massawe et al. 

(2018) 

 

PH, EC, N, 

OC. P. Ca. 

Mg. Na, K, 

Fe, Mn, Cu, 

Zn 

 NB and RF Not 

applicable 

Not applicable 

Jayalakshmi  

and Savitha 

(2022) 

PH, EC, Fe, 

Zn, Mn, 

Cu, OC, P, 

K 

1430 TreeBag and 

RF ensemble 

bagging, 

C5.0 and 

Gbm 

boosting, 

KNN, 

CART, 

SVM, LR 

via GLM 

stacking 

ensemble 

2 (ideal 

and not 

ideal) 

98.15 

Gholap et al. 

(2012) 

PH, EC, 

OC, P, K, 

Fe, Zn, Mn, 

Cu 

1988 NB, JRIP, 

J48 

6 (Very 

High, 

High, 

Moderately 

High, 

Moderate, 

Low, and 

Very Low) 

91.9 
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Jin et al. (2019) OC, N, P, 

K, Ca, Mg, 

Na, Fe, Mn, 

Cu, Al 

 RF Very 

extremely 

high or 

near zero 

yields 

Not applicable 

Author 

Chemical 

Properties 

(features) 

Dataset 

 Size 

Technique 

(ML 

algorithms) 

Restraint(s) 

Number 

of 

fertilities 

target 

classes 

Max 

Accuracy/ROC 

Performance (%) 

Rossel et al. 

(2010) 

PH, OM 

(OC), Ca,  

and Mg, 

Aluminium 

were used 

in place of 

B  due to 

their study 

finding a 

high 

correlation 

between the 

two 

184 Boosted 

Decision 

trees 

Class 1, 

the highly 

fertile 

soils; Class 

2, the 

fertile 

soils; and 

Class 3, 

the least 

fertile soils 

Class 1 in 75% of 

cases, Class 2 in 

61%, and Class 3 in 

65% 

Chaudhari et al. 

(2020) 

PH, EC, 

OC, P, K, 

Fe, Zn, Mn, 

Cu 

Unidentified SVM, KNN, 

Decision 

Tree, Naïve 

Bayes 

3 (High, 

medium, 

low) 

60% 

Escorcia-

Gutierrez et al. 

(2022) 

PH, OC, 

EC, P, K, B 

144 gated 

recurrent 

unit (GRU), 

deep belief 

network 

(DBN), and 

bidirectional 

long short-

term 

memory 

(BiLSTM), 

and  WVE 

low, 

medium, 

and high. 

for each 

class, the 

pH level is 

divided 

into four 

classes 

strongly 

acidic, 

highly 

acidic, 

moderately 

acidic, and 

slightly 

acidic. 

0.9281%, 0.9497% 

for PH 

Manjula and 

Djodiltachoumy 

(2017) 

PH, EC, 

OC, N, P, 

K, S, Zn, 

Fe, Cu, 

Mn, B 

2948 Naïve Bayes, 

Decision 

Tree and 

Hybrid 

classification 

algorithm 

5 (Very 

High, 

High, 

Medium, 

Low, and 

Very Low) 

- (PH, EC, OC, N) : 

69.9%, 90.43%, and 

99.93% 

- (P, K, S, Zn) : 38%, 

88%, 97% 

- (Fe, Cu, Mn, B): 

42%, 83%, 99.93% 
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Bhuyar (2014) PH, EC, Fe, 

Cu, Zn, 

Mn, OC, P, 

K 

1639 J48, Naïve 

Bayes, 

Random 

Forest 

6 (Very 

low, Low, 

Medium, 

Medium 

high, high, 

very high)  

98.17, 77.18,97.92 

Author 

Chemical 

Properties 

(features) 

Dataset 

 Size 

Technique 

(ML 

algorithms) 

Restraint(s) 

Number 

of 

fertilities 

target 

classes 

Max 

Accuracy/ROC 

Performance (%) 

Kumar et al. 

(2019) 

EC, K, pH, 

Mn, Zn, S, 

P, B, OC 

Unspecified Random 

Forest 

Classifier, 

Support 

Vector 

Machine, 

and Gaussian 

NB 

3 (Low, 

medium, 

and high) 

72.74%, 63.33%, 

50.78% 

Sirsat et al. 

(2018) 

EC, OC, 

N2 O, P2 

O5, Fe, 

Mn, Zn, 

and B 

930 NN, DL, 

SVR, RF, 

PLS, 

bagging and 

boosting, QR 

and 

extraTrees 

ensemble, 

Boruta, 

bstTree, and 

gbm; QRF, 

cubist, and 

svr. 

 

3 (Low, 

medium, 

and high) 

per 

element or 

compounds 

- OC (Acc= 86.45% 

Kappa= 69.60%) 

- Fe (Acc= 79.03% 

Kappa= 56.19%) 

- P2O5 (Acc= 

79.46% Kappa= 

52.51%) 

- Mn (Acc= 86.13% 

Kappa= 71.08%) 

- Zn (Acc= 97.63% 

Kappa= 81.03%) 

From the empirical review based on previous ML-related soil nutrients modeling and fertility 

estimation research works. Some state-of-the-art ML Algorithms and Soil Properties could be 

identified. As shown in Fig. 21 of the Soil Parameters Use Frequency, it could be observed that 

the most used chemical properties include pH, as well as primary nutrients such as nitrogen, 

phosphorus, and potassium were mostly used. Also, electrical conductivity, organic carbon, 

and micronutrients such as iron, manganese, copper, zinc, and boron, were frequently used. 
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Figure 21:  Soil parameters use frequency 

As shown in Figure 22 the ML algorithms use frequency, and various algorithms used in 

previous studies could be identified. These are such as J48 (Java version of C4.5), Naïve Bayes 

(NB), JRIP, support vector machine SVM, artificial neural network (ANN), decision tree (DT), 

random forest (RF), and K-nearest neighbors (KNN). RF and NB are used most frequently 

followed by SVM, KNN, and J48.  

 

Figure 22:  Algorithms use frequency 

2.2.3 Research Gap 

From the literature review, it could be observed that some of the studies used only two target 

classes low and high in classifying soil properties, and others used up to five target classes such 
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as very low, low, moderate, high, and very high fertility.  Concerning ML algorithms employed 

in some studies, it could be seen that most used single ML algorithm model implementations. 

However, while the use of combination technique(s) such as the ensemble ML is one best 

method in improving ML predictive performance, there was a limited application of the 

technique in modeling soil fertility status high-performance prediction model(s).  

On the other hand, given the challenges of implementing a deemed superior ensemble scheme, 

the WVE, the existent state-of-the-art procedures for searching optimal WVE solutions from 

the many exiting in the solution search spaces are susceptible to various characteristics, with 

the greedy based being non-immune to the hill climbing problem, and evolutionary-based ones 

facing probabilities of non-optimality tapping due to the possibilities of not finding the fitter 

solution at the end of the search due to weak initialized parents that may never form the optimal 

solution during evolutions. Bearing in mind that search space sizes have been declared to be 

critical to the determination of significant search results and resultant high-performance WVE 

models, still, there is nowhere to be found a study that emphasizes exploitative scrutiny of 

search spaces on the resultant WVE model optimization by using the optimality guaranteeing 

brute exhaustive procedure. Even the existent limited ensemble technique application such as 

in the study by Jayalakshmi and Devi (2022) used homogenous ensemble committee members, 

let alone it did not apply the WVE scheme at all. As such all the predictive results from the 

models published in the literature generally portrayed varying predictive performances, 

Therefore, there lack of a solution that incorporates heterogeneous prediction model 

considerations to reliably predict soil fertility status at high performance based on an optimal 

number of target classes, and. Eventually, this may respectively lead increase in incorrect 

predictions and imprecise application of fine-tuned fertilizer dosages according to predicted 

fertility status in the corresponding agricultural field’s sites.  

As such it may become imperative to develop reliable machine learning algorithms models to 

reliably predict soil fertility status at high performances. Mainly, this could be achieved by 

using the WVE method that is optimized by using a search procedure such as a brute exhaustive 

search technique that guarantees an optimal high-performance predictive model solution 

finding with emphasis on the search space exploitation to tap into the optimal weighting values 

sets for high accuracy resultant models realization.  
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CHAPTER THREE 

 MATERIALS AND METHODS  

3.1 Introduction 

A research design is a key primary blueprint for conducting a scientific study in a tractable 

manner (Burns & Grove, 2010). In Design Science Research (DSR), as a meta-heuristic, the 

overall research approach or processes design is drawn by fitting together methods including 

strategies with data sources, case studies, data collection tools, and techniques, as well as an 

analysis to guide the researcher in conducting the study to derive answers from the research 

questions as explained by Suresh (2018).  

Whereas, this study used a scientific approach, in both scientific and interpretivism research 

approaches, making an intervention that can affect organizational context (Giddens, 1986). The 

scientific approach assumes that phenomena can be observed objectively and rigorously well 

(Checkland, 1981), whereby originality and creative thoughts are required, and the research is 

sensitive to the scientist's psychological state (Wilson, 1990). Unlike Interpretive studies, were 

the understanding of phenomena is through meanings that are assigned by people (Orlikowski 

& Baroudi, 1991), with high involvement of subjectivity which is backed by qualitative 

arguments contrary to scientific bases of numerical exactness termed to statistical judgments 

as highlighted by Garcia and Quek (1997). This research used positivism research philosophy 

which involves objectivity and is backed by quantitative arguments. 

3.2 Design Science Research 

The DSR is a meta-heuristic method well suited for information system-related research studies 

(Hevner & Chatterjee, 2010a; Venable, 2006), as it provides a blueprint of a flexible way to 

scrutinize an organizational situational analysis for its political, economic, social, technical, 

legal, environmental (P.E.S.T.L.E) strengths, weaknesses, opportunities, and threats situational 

analysis. The DSR methodology constitutes three (3) iterative cycles or phases that form the 

heart of this provides Meta heuristic method. As shown in Fig. 23, these involve the relevance, 

design, and rigor cycles whereby the organizational application domain requirements 

concerning any one or a combination of the P.E.S.T.L.E perspective can raise a call for a DSR 

artifact development. 
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Figure 23:  The DSR methodology cycles 

This methodology is recently been highly appreciated as a blueprint for information technology 

and communication-related research design and development. Among the major potential of 

its use is its appropriateness in solving organizational research activities with explicit emphasis 

to base on rigorous grounding scientific theories and methods, experience and expertise, design 

products, and design processes. And these are highly expected to coexist in the existing DSR 

knowledge base, otherwise, new knowledge would require to be developed.  

The DSR mainly is geared towards finding suggestions for the identified organizational 

problem(s), to developing the relevant solution as artifacts that can be benefited from their 

utility as part of a DSR solution that should finally be communicated back to the scientific body 

of knowledge (Baskerville et al., 2009, 2018; Gregor & Hevner, 2013; Järvinen, 2007; 

Vaishnavi & Kuechler, 2015; Vaishnavi & Kuechler, 2004, 2016, 2017). These artifacts can 

be such as constructed symbols and vocabularies, model representations and abstractions, 

algorithmic methods, implementations, or system prototypes, as well as theories (Hevner & 

Chatterjee, 2010b; March & Smith, 1995; Venable, 2006). 

Hevner et al. (2004) placed forward two fundamental questions of DSR: (a) "What utility does 

the new artifact provide?" and (b) "What demonstrates that utility?". Hevner et al. (2004) 

stressed that evidence must be presented to address the two questions and that contribution 

arises from utility as a result of the inventiveness in discovering the solution to the recognized 

problem. Peffers et al. (2007) recommended that the development of the artifact should be a 

search process that draws from existing theories and knowledge to create a solution for a 
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defined problem. The solution of which should be evaluated and validated as an artifact by 

using both existing and new theories.  

In this research, the general methodology for design science research was adopted to develop 

a novel machine learning modeling design for implementing a reliable soil fertility status 

prediction performance improved model, as a contribution artifact, to the body of brute 

exhaustive search and machine learning WVE optimization knowledge, new 1EXP (-) Z+ based 

brute exhaustive search algorithm for improving performance of base models through an 

optimal WVE combination, was developed by drawing from the DSR knowledge based on 

existing knowledge/theories. The DSR deemed fit to set the research design which can provide 

developers an implementation roadmap for building the utmost comprehensive computational 

or rather ICT-related solutions in general. Explained by the DSR’s 6 activities that were studied 

and synthesized by Peffers et al. (2006), namely: (a) problem identification and motivation, (b) 

objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) 

communication, these of which were aligned with the specific research objectives and 

corresponding implementation methods as follows:  

3.2.1 Problem Identification and Motivation  

In this step, the study focused on reviewing literature from various existing research work. The 

purpose of reviewing the literature was to create a clear understanding of the research problem, 

build a theoretical knowledge base related to specific research questions to be answered by this 

study, and determine the scope of the study. 

3.2.2 Define the Objectives of a Solution  

To define the objective of the problem solution that was generally identified in the first activity, 

a more focused literature review was conducted to set the research objectives, and the direction 

forward. As shown in Fig. 24, research works related to ML application in soil fertility, VWE 

optimization, GA, and greedy-based brute exhaustive search were reviewed. 
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Figure 24:  The ML and optimization-related reviewed papers publications 

3.2.3 Design and Development  

During this step, the focus was on the implementation of the hybrid classifiers, as well as 

designing and developing the brute-exhaustive search procedure for optimizing the WVEs of 

the hybrid classifiers. Machine Learning Modelling Algorithms were rigorously applied as they 

are key methodological implementations for the problem stated herein.  

The study used brute exhaustive optimization to develop the search procedure for finding the 

proposed optimal ML WVE technique-based model. The search procedure was mathematically 

implemented by using linear algebra vectors and matrices of probability predictions, vs multi-

precision weights values which were automatically generated by a novel arithmetic sequences-

based search space generation exponential function.  

3.2.4 Demonstration  

Demonstration of the performance of the developed solutions is a key ingredient of DSR, 

whereby the DSR artifacts are tested for performance. This study performs laboratory 

simulations of the model to gain an understanding of the developed model's artifacts' 

performance using relevant evaluation ML model metrics. In addition, the evaluation of the 

utility of the developed artifact was conducted through real-world model-based 

recommendations for decision-making on any required soil fertility deficiencies before 

plantation, in a maize field’s plantation experimentation. While the effectiveness of the 

algorithm in the significance of search spaces in optimization was further demonstrated by 

using differences in represented model accuracies. 
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3.2.5 Evaluation  

To evaluate our proposed artifacts, the rigor ML models evaluation metrics derived and present 

in the literature were used, these of which were obtained from the DSR ML models 

performances evaluation metrics knowledge base, while the effectiveness of the algorithm in 

the significance of search spaces in optimization was further evaluated by using the accuracies 

plotting curves differences profiles. Finally, maize yields per acre were used to measure the 

effect of model-based soil fertility prediction recommendations to guide the decision-making 

of where and how much to treat the soil. 

3.2.6 Communication  

The results and findings of this study were effectively communicated to technical and 

managerial audiences through journal publications, conferences, workshops, seminars, and 

poster presentations. 

3.3 Materials and Methods 

3.3.1 Study Area 

Tanzania's southern highlands, Uyole in the Mbeya region was used as an experimentation site, 

as Mbeya is one of the major staple crops production regions in Tanzania, similar reasons apply 

to the choice of maize crop for experimentation (Rurinda et al., 2020). Figure 25 shows the 

Mbeya study site in Tanzania where the studies developed model was validated for utility in 

Tanzania. 

 

Figure 25:  Study experimentation location 
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3.3.2 Modeling Dataset 

The dataset used to develop the models and associated analysis was secondary data which were 

obtained from the Tanzania Agriculture Research Institute (TARI), under the African Soil 

Information Services (AFSIS). Maize yield data was gathered from and Tanzania Ministry of 

Agriculture Statistical Division. Table 4 shows a description of the agricultural soil properties 

and maize yield dataset features. 

Table 4:     Description of the agricultural soil properties and maize yields dataset features 

Attribute Description SI Unit 

OC Organic Carbon Percentage 

pH Potential Hydrogen Neutral, Acidity/Basicity degree 

EC Electrical Conductivity deciSiemens per meter 

TN Total Nitrogen Percentage) 

P Phosphorus Milligrams per kilogram 

Ca Calcium Centimoles per kilogram 

K Potassium Centimoles per kilogram 

Mg Magnesium Centimoles per kilogram 

Na Sodium Centimoles per kilogram 

S Sulphur Milligrams per kilogram 

Mn Manganese Milligrams per kilogram 

Al Aluminium Milligrams per kilogram 

Zn Zinc Milligrams per kilogram 

Fe Iron Milligrams per kilogram 

B Boron Milligrams per kilogram 

M_Yld  Maize yields Tons per Hectare numeric 

As can be seen, the dataset contained 16 features, 15 of which are the key soil chemical 

properties necessary for the determination of fertility level as defined in Bünemann et al. 

(2018), and that has been utilized by studies mentioned in Section 2, the dataset as well 

contained the corresponding maize yields in harvested tons estimates mapping as index to soil 
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fertility status. Acquis ion of data required for ML modeling is a key step towards the overall 

development procedure. Therefore, two (2) different sets of agricultural soils dataset match the 

previously described modeling data. The first was 6260 instances of Tanzania soil data which 

was used for training and testing the model, and this came from TARI. 

Table 5 presents a portion of the TARI and Tanzania Ministry of Agriculture’s respective 

Agricultural Soils Raw Data with corresponding maize grain yields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

57 

 

Table 5:     Tanzania Agricultural Research Institute and Tanzania Ministry of Agriculture’s respective Agricultural Soils Raw Data 

with corresponding maize grain yields  

SSN OC pH EC TN P Ca K Mg Na S Mn Al Zn Fe B Yields 

2015 TanSIS_TOP-

0a8Q4cYG 
0.68 5.87 0.001 0.02 14.58 0.054 0.016 0.034 0.788 28.102 6.04 48.06 0.828 74.55 0.010 1.21 

2015 TanSIS_TOP-

0BSeWh1w 
1.28 6.09 0.001 0.04 3.600 0.058 0.018 0.006 0.054 28.808 5.49 55.63 0.437 18.88 0.020 1.11 

2015 TanSIS_TOP-1Q94pxhk 1.31 5.66 0.001 0.04 1.270 0.070 0.034 0.009 0.008 46.138 4.36 48.76 0.371 31.77 0.010 1.32 

2015 TanSIS_TOP-2DcxSAJv 0.44 5.18 0.001 0.03 9.200 0.012 0.014 0.021 0.093 18.678 4.15 63.93 0.704 65.39 0.004 1.22 

2015 TanSIS_TOP-

2HEqMyTV 
1.06 5.64 0.001 0.03 2.660 0.202 0.018 0.002 0.159 22.126 3.52 47.53 0.329 41.02 0.007 1.02 

2015 TanSIS_TOP-

3b8rVtmM 
1.00 5.42 0.001 0.05 4.170 0.132 0.018 0.006 0.078 41.489 3.77 35.37 0.363 45.49 0.006 1.21 

2015 TanSIS_TOP-

3QZHqAOW 
0.73 6.06 0.001 0.03 8.190 0.349 0.009 0.019 0.015 18.942 8.26 39.55 0.537 43.49 0.008 1.01 

2015 TanSIS_TOP-3UtP80EJ 0.78 5.79 0.001 0.03 8.830 0.178 0.015 0.025 0.059 32.620 3.43 47.31 0.549 66.33 0.007 1.31 

2015 TanSIS_TOP-

4K3REmI6 
1.32 5.64 0.001 0.04 3.990 0.049 0.011 0.002 0.067 39.636 4.52 53.83 0.403 50.23 0.110 1.42 

2015 TanSIS_TOP-4W7JcoCa 0.77 5.93 0.001 0.03 6.420 0.437 0.019 0.019 0.097 38.240 6.10 33.36 0.574 56.98 0.010 1.33 

2015 TanSIS_TOP-5LfrjyVD 0.75 5.53 0.001 0.03 10.09 0.019 0.015 0.003 0.937 35.868 3.66 40.16 0.779 65.55 0.005 1.32 

2015 TanSIS_TOP-

5ueT7Wyv 
1.03 5.31 0.001 0.03 

10.64

1 
0.188 0.015 0.008 0.038 48.269 2.02 52.89 0.407 82.67 0.006 1.13 

2015 TanSIS_TOP-69R5a2km 1.10 5.68 0.001 0.03 3.846 0.091 0.018 0.005 0.086 24.070 3.34 50.83 0.395 37.87 0.008 1.31 
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SSN OC pH EC TN P Ca K Mg Na S Mn Al Zn Fe B Yields 

2015 TanSIS_TOP-6fSnteuo 0.92 5.92 0.001 0.04 6.680 0.395 0.025 0.030 0.182 35.272 6.55 45.87 0.486 53.74 0.007 1.21 

2015 TanSIS_TOP-6PmIkGS7 1.17 5.47 0.001 0.03 12.14 0.442 0.016 0.013 0.039 23.823 3.70 52.91 0.578 49.49 0.015 1.01 

 2015 TanSIS_TOP-

6ZYLwXVA 
1.28 6.12 0.001 0.04 2.630 0.364 0.022 0.009 0.015 36.568 6.30 53.86 0.354 24.59 0.013 1.34 

2015 TanSIS_TOP-

7mHb8oLd 
0.83 5.96 0.001 0.03 6.350 0.374 0.008 0.030 0.139 25.604 6.42 36.62 0.533 51.53 0.008 1.11 

2015 TanSIS_TOP-7otmf2eR 0.91 5.77 0.001 0.04 5.980 0.195 0.024 0.018 0.025 47.467 3.58 27.00 0.415 63.57 0.006 1.11 

2015 TanSIS_TOP-

7rY0dTMC 
0.97 5.91 0.001 0.02 6.480 0.045 0.014 0.020 0.031 44.260 2.33 42.14 0.521 52.54 0.007 1.32 
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The second was the 62 instances of Njombe randomly selected soil samples which were used 

to validate the model and this came from the Soil Care Depart of the Live Support Systems (T) 

LTD (LSSL) Soil Services Company. Figures 26, 27, and 28 show the respective laboratory-

based off-the-shelf soil fertility Test results for the low, Adequate, and high fertility statuses, 

with the adequate level addressed as moderate soil fertility status. 

 

Figure 26:  Laboratory-based off-the-shelf soil fertility test results – low 
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Figure 27:  Laboratory-based off-the-shelf soil fertility test results – adequate 
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Figure 28:  Laboratory-based off-the-shelf soil fertility test results – high 

While a part of the Soil Care Laboratory-based Validation dataset is shown in Table 6. In 

addition, a triangulated experiment for evaluating the models' utility was done in Mbeya Uyole. 

Shown in Table 7 is the Model utility evaluation field experimentation soil properties collected 

data, whereby 64 soil samples were randomly selected with experimental field block-wise 

stratification in trials to ensure a fair representation of all model-based targeted field sections. 
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Table 6:     Soil care laboratory-based validation dataset 

Sample No OC pH EC P Ca K Na S Mn Al Zn Fe B Status 

EAEON722A23 2.13 6.2 0.924 17 0.1 0.058 0.067 30 9.62 0.87 0.29 43.3 0.1 0 

EAEON723A23 2.04 6 1.766 15 38.1 0.067 0.047 20 9.75 0.849 0.58 46.9 0.1 1 

EAEON724A23 1.94 5.9 1.028 15 37.1 0.067 0.047 20 9.75 0.849 0.58 46.9 0.08 1 

EAEON725A23 2.64 5.6 1.348 16 0.1 0.058 0.06 20 7.67 0.8 0.55 14.5 0.07 1 

EAEON727A23 2.1 5.7 1.815 17 0.1 0.058 0.057 30 9.62 0.87 0.29 43.3 0.1 1 

EAEON726A23 4.14 5.3 0.917 16 0.1 0.058 0.069 20 7.67 0.8 0.55 41 0.07 1 

EAEON729A23 2.1 5.6 1.566 17 0.1 0.058 0.057 30 9.62 0.87 0.28 43.3 0.1 0 

EAEON728A23 2.2 5 1.267 16 0.1 0.058 0.067 20 7.67 0.88 0.58 41 0.07 1 

EAEON730A23 3.08 5 1.178 16 0.1 0.058 0.067 20 7.67 0.88 0.58 41 0.07 1 

EAEON731A23 2.4 5.6 1.109 16 0.1 0.052 0.06 20 7.52 0.86 0.58 41 0.05 2 

EAEON732A23 3.14 5.4 1.208 16 0.1 0.058 0.06 20 7.67 0.8 0.55 41 0.07 1 

EAEON733A23 2.9 6.2 1.682 16 0.1 0.052 0.06 20 7.67 0.88 0.58 41 0.07 1 

EAEON734A23 2.9 6.1 1.024 16 0.1 0.052 0.06 20 7.62 0.86 0.58 41 0.08 1 

EAEON735A23 2.2 5.6 1.843 16 0.1 0.056 0.069 20 7.67 0.8 0.55 41 0.07 1 

EAEON736A23 3.04 5.1 0.883 16 0.1 0.058 0.073 20 7.67 0.808 0.55 41 0.09 1 
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Table 7:     Model utility evaluation field experimentation soil properties collected data 

Sample No OC pH EC P Ca K Na S Mn Al Zn Fe B 

S1 1.001 5.817 1.562 10.115 0.156 0.017 0.013 47.31 3.793 0.642 0.52 40.073 0.009 

S2 2.217 5.038 1.295 4.571 2.565 0.05 0.084 51.66 6.732 0.502 0.717 34.624 0.009 

S3 2.424 6 1.807 8.357 3.86 0.08 0.452 64.513 5.234 0.896 0.801 47.657 0.021 

S4 1.073 5.906 0.548 7.22 0.283 0.018 0.161 30.109 4.571 0.453 0.477 60.513 0.015 

S5 0.772 6.139 0.932 14.314 0.263 0.047 0.013 44.251 9.558 0.375 0.998 44.12 0.017 

S6 1.217 6.216 1.134 11.276 0.398 0.015 0.021 57.007 10.734 0.376 0.831 46.988 0.024 

S7 0.455 6.174 1.629 15.157 0.515 0.015 0.048 43.607 12.908 0.328 1.156 58.361 0.029 

S8 1.065 6.083 1.014 11.024 0.174 0.02 0.183 29.281 6.255 0.303 0.873 41.417 0.018 

S9 1.02 6.019 1.656 15.426 0.212 0.025 0.093 38.863 3.652 0.419 0.518 39.496 0.013 

S9 1.338 6.199 1.406 8.975 0.302 0.018 0.016 76.509 7.647 0.347 0.871 38.957 0.013 

S10 1.055 5.545 0.697 7.526 0.218 0.019 0.021 30.07 4.422 0.547 0.482 46.96 0.016 

S11 1.296 5.891 1.177 7.945 0.183 0.017 0.22 45.947 10.693 0.352 0.497 33.353 0.019 

S12 1.019 6.386 1.123 7.524 0.776 0.017 0.19 58.548 5.749 0.432 0.583 45.547 0.014 

S13 0.978 6.248 1.924 14.611 0.455 0.017 0.182 57.452 9.762 0.275 0.85 35.326 0.017 



  

64 

 

3.3.3 Heterogeneous Hybrid’s Weighted Voting Ensemble Experiment Setups 

A hybrid of both Unsupervised and Supervised machine learning algorithms was used to 

implement the required 2-Staged heterogeneous hybrid ensemble committee (2S-HHEC) 

machine for improving soil fertility status predictive performance experiments, as shown in Fig. 

29 of the 2S-HHEC experimental setup which created the hybrid classifiers following 

implementation of unsupervised learning on the soil data, evaluation of individual ML 

algorithms classifiers to the development of optimized WVE for reliably predicting soil fertility 

status prediction at improved performance through the execution of the proposed “1EXP(-)Z+ 

initial term based arithmetic sequences multi-precision search spaces algorithm function for 

systematic brute exhaustive optimization of intelligent small WVE (1EXP (-) Z+
IT-ASMPSS-

BEO-ISWVE)”.  
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Figure 29:  The 2S-HHEC Experimental setup
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(i) Data preprocessing 

The collected data was pre-processed by separating the top (0-20 cm) instances from those of 

the subsoil (20-50 cm), and duplicates were removed. Soil properties and maize yield data were 

aggregated to form the set before the required machine learning problem modeling dataset. 

(ii) Dataset quality testing 

The quality of data is one important aspect for data scientists and statisticians, whereby they 

would aim to understand the distribution(s) present in the data to be able to apply appropriate 

measures and procedures for better interpretation of the results (Varshney, 2020). Whereas, the 

Shapiro Wilk normality test is one of the data normality test techniques (Malato, 2022; 

Royston, 1983; Royston, 1992; Yazici & Yolacan, 2007), herein we employed the quantile-

quantile (QQ) or simply quantile plots which aid in the visualization of the distributions 

available in the random variables by plotting these random variables on the y-axis, and the 

normal distribution on the x-axis, such that the plot between would a visualization of the present 

data distribution such that if the quantile points lies across the straight line y=x then it is a 

normal distribution, otherwise if the right side is above the y-x line and the left side is around 

the line, then it is right-skewed, likewise if the right side is around the line and the left is below 

then it is a left-skewed (Chan, 2022; Larasati et al., 2019; Varshney, 2020). This determination 

of which will aid in the requirement for the application of data normalization procedure before 

the effective application of consequent analytical and modeling techniques which work best at 

Gaussian distributions, and resultant models calibration, otherwise remedies such as data 

stratified sampling techniques could only aid if the issue was an imbalance type of concern.  

Therefore to address the quality of our data, the Sci-kit learns scipy module’s skew method 

was run on boxplots to create the Q-Q plots to visualize data abnormality before final 

normalization into more ML tractable modeling data (Chan, 2022; PyShark, 2021; Turing, 

2023), whereby some variables exhibited outliers and extreme values which were later on 

removed, by using the Interquartile Range statistical measure method for noise filtering and 

reduction, before normalization of the random variables which could that were transformable 

to reduce randomness were possible. 
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(iii) Fertility Index Derivation and features selection  

The soil data used in this research initially contained no distinct class labels. In the first stage of 

the 2-stage hybrid implementation, an additional feature, i.e. the fertility class label necessary 

for use with the features in the second ML algorithm-based classification stage of the 2-stage 

hybrid was created. This was accomplished by applying an unsupervised machine learning K-

means algorithm that is readily available in the sci-kit learn library which is contributed by 

Pedregosa et al. (2011) and the automatic knee detection method (K-Elbow) to model for the 

optimal number of fertility classes as characterized in the data, analysis of variance (ANOVA) 

test was performed on the formed groups to test for groups similarities otherwise differences, 

with a null hypothesis that “the groups are different”, this was accomplished by Tukey honest 

significant difference (HSD) test. Such clustering method is common for such a cluster grouping 

task and has been used in many studies in various other domains, whereby a review of the use 

of the approach to characterize data into common groups could be found (Nyambo et al., 2019), 

whereby the use of the approach to describe smallholder farmers into groups with similar 

characteristics were highlighted. It is necessary to avoid model performance impairment due to 

complexities that may be caused in many cases by extensive multicollinearity in data (Alin, 

2010). Thus removal of highly correlated dataset feature(s) is crucial to eradicating unnecessary 

multicollinearities in data. For that purpose, we performed feature selection by identifying and 

removing features with a correlation above 70%, as a standard correlation threshold in most 

studies. Automated derivation of the class label feature is not a new practice, given the 

challenges of processing large amounts of data to obtain such information using expert 

knowledge alone, it made automatic derivation becomes imperative to effectively derive target 

classes. 

(iv) Model Selection  

In this research a total of seven  ML classifiers were evaluated by using the Sci-kit learn 

powerfully ML libray by developed Pedregosa et al., (2011), These are support vector machine 

(SVM), DecisionTreeClassifier(DT), GaussianNB (NB), K-Nearest Neighbors (KNN), 

AdaBoost (AdaBoost), Gradient Boosting (GB), and Random Forest  (RF), of which were used 

with Stratified KFold Cross Validation (N=10) on the soil dataset to robustly select best models 

across a wide range of their associated tuning parameters. 
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While the clustering algorithm that was used to model the new fertility index feature could 

have been implemented with an integrated custom distance-based prediction module, In this 

research an evaluation of the stated already existing very advanced and powerful classical 

machine learning classification algorithms were opted due to:  

(i) The key aim of the algorithms' existence is specifically to implement models for the 

problem task in hand, that is, the development of classifiers for predicting soil fertility 

status. 

(ii) Profound potentials have already been theoretically and empirically demonstrated 

performances in various ML classification problems. 

(iii) The abilities of the algorithms to handle complex data, and to scale into different 

domain-specific classification tasks, as observed from the literature whereby these have 

been applied to solve various problems, including health and medical applications, 

banking and finance, network securities, transportation, and agriculture. 

Their ability to increase in understanding during training as the associated learning data 

increases makes them the first option in research and development endeavors that involves 

large amounts of data as their key requirement for successfully data-driven predictive solutions 

to be probably developed.  

3.3.4 Base Models Performance Improvement Through WVE 

After creating and evaluating the performances of individual base models, the performance 

improvement procedure was implemented through the development of various WVE base 

models class probabilities prediction combinations by applying the soft voting method and 

selection of best ensemble weights coefficients values. These which was achieved by using brute 

exhaustive search procedures that incorporate the proposed novel 1EXP (-) Z+
 search space 

initialization function for the provision of the possible weighting values necessary to implement 

an optimization process in search of the required optimal configuration sets of base models and 

corresponding weights, specifically at variable search space precision values to attempt the 

optimization even at much bigger precisions.  
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3.3.5 Development of the High Performance put Brute Exhaustive WVE 1EXP (-) Z+ 

Optimization Algorithm 

Lemma 1 

From Equation (1) in Subsection 2.1.7. of the weighted voting ensemble scheme for model 

performance improvement, If the WVE combination equation (1) that is described by Escorcia-

Gutierrez et al. (2022), when expressed as in equation (3) of its matrix form Y, that expresses 

a mathematical system of linear equation’s that can be operated through matrix operations to 

compute the overall prediction outcomes for each WVE’s combinations as a summation of the 

product of weights coefficients Wi and j base experts class probability predictions C1 to Cj on 

dataset D  having d unseen targets instances values, where i > 1, and j > 1. 

𝑌 =  

[
 
 
 
 
W1C1 W1C2 W1C3 WiCj
W1C1 W2C2 W2C3 WiCj
W2C1 W3C2 W3C3 W2Cj

. . . .
WiC1 WiC2 WiC3 WiCj ]

 
 
 
 

,                             (3) 

Thereby, Y can be compared against true classes to score the prediction accuracy of the WVE, 

which for all other possibly available WVE combinations, the optimal set is chosen based on 

the one which satisfies an established criterion such as error minimization, accuracy, or other 

performance measure maximization as an objective function.  

Proof 

The above Lemma has been noted in Escorcia-Gutierrez et al. (2022). Whereby the values of 

the weights coefficients were referenced as a function of the individual WVE base learners' 

f1_score performances for evaluating the efficiency of individual learners in the ensemble 

during training. 

Whereby using equation (1) of the weighted voting ensemble scheme, in subsection 2.1.7., the 

WVE can be represented as a system of linear equations (Pospíšil, 2020; Wedderburn, 1915), 

 

Y1 = W1C1 + W1C2 + W1C3 + …………….. + WiCj 

Y2 = W1C1 + W2C2 + W2C3 + …………….. + WiCj 
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Y3 = W2C1 + W3C2 + W3C3 + …………….. + W2Cj 

. 

. 

. 

Yk = WiC1 + WiC2 + WiC3 + …………….. + WiCj 

These of which can be in matrix form as shown in equation (4) 

𝑌[𝑘] =  

[
 
 
 
 
W1 W1 W1 Wi
W1 W2 W2 Wi
W2 W3 W3 W2
. . . .

Wi Wi Wi Wi ]
 
 
 
 

 *  

[
 
 
 
 
C1
C2 
C3
.
Cj ]

 
 
 
 

 ,                             (4) 

(i) The Multi Precision Search Spaces Formulation Function 

In general, the generation of a WVE of ML classifiers may consider mostly two phases that 

are: a) Using various candidate ML algorithms to generate potential base members’ classifiers 

that are to be used to form the WVE combinations, and b) selection of base models' optimal 

weights based on the WVE combination grounded by an accuracy performance criteria. 

Proposition 1 

If instead an ordered weights coefficients matrix W[k][n] can be automatically generated from 

the permutation of an explicit vector W[n] that is referred to as the search spaces Sp and Spz+ 

herein,  of weight values that satisfy the WVE weights coefficients domain constraints in 

equation (2), with a variable matrix  C[j][d] of j base expert’s class probability predictions on 

dataset D containing d total instances. Such that the resultant WVE combination k constant 

predictions matrix Y[k][d] or Y_pred, can be obtained from the product of the ordered weights 

coefficients matrix W[k][n] and variable matrix  C[j][d] as shown in (5), which is augmented 

from equation (4) with the appending of the dimension of the dataset instances Id, for practical 

optimization purposes. 

𝑌[𝑘][𝑑] = [
𝐾1𝑊1 ⋯ 𝐾1𝑊𝑛

⋮ ⋱ ⋮
𝐾𝑘𝑊𝑛 ⋯ 𝐾𝑘𝑊1

] ∗  [
𝐶1𝑰1 ⋯ 𝐶1𝑰𝑑

⋮ ⋱ ⋮
𝐶𝑗𝑰1 ⋯ 𝐶𝑗𝑰𝑑

],                 (5) 
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At that juncture, assuming that the variable matrix C[j][d] of m classifiers class probability 

predictions on instances I of dataset D with length d are provided, and an initialization function 

for explicit formulation of values for generating the weight coefficients matrix W[k][n] which 

satisfy WVE weights constraints in equation (2) can be derived and developed as part of an 

automatic weighting values generation algorithm, then a Brute-exhaustive optimization 

procedure can be applied to search one optimal combination set from the automatically created 

WVE combinations predictions matrix in equation (5). This whose general form is that in 

equation (3). Whereas, equation (4) serves to compute the general form in equation (3) as a 

product the of the weight coefficients W[k][n] and variable matrices C[j][d] of j individual 

classifiers probability predictions on supplied dataset d as represented in equation (5). But 

rather this time, the weight coefficients are automatically generated, hence the complete WVE 

general form in equation (3) will be automatically generated. It is to be proved that the general 

WVE combination matrix form representation in equation (3) can be automatically generated. 

As such, specifically for practical optimization purposes, the brute exhaustive search can be 

automatically applied as long as dataset D with instances exists. 

Proof 

First, the variable K which represents the combinations counts is introduced into equation (3 

to obtain a new representation form as in (6),  

𝑌[𝑘] = [
𝐾1𝑊1𝐶11 ⋯ 𝐾1𝑊𝑛𝐶𝑗

⋮ ⋱ ⋮
𝐾𝑘𝑊𝑛𝐶1 ⋯ 𝐾𝑘𝑊1𝐶𝑗

],                                   (6) 

Whereby K keeps track of the formulated WVE combination prediction. Then a function is 

derived to initialize the weights variable values, and incorporated in an algorithm that applies 

the arithmetic sequences to formulate the other values. Further derivation and complete weight 

values generation algorithm are explained starting with the operationalization architecture of 

the algorithm function shown in Fig. 30 of the architectural operationalization of the proposed 

algorithm core function for the formulation of respective first terms an arithmetic sequence and 

generation of the prospective sequence values. Whereby the complete operationalization 

illuminates as follows, a search space referenced by a positive integer denoted as Z+, is 

initialized to 1 representing search space 1, and then is used to computationally generate the 

corresponding sequence’s first term from which all other elements a0 to an of the sequence can 

be computed to formulate a particular sequence these which will define the actual weights 
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values w1 to wn specifying our WVE domain, of which the algorithm later process these values 

by permutation with WVE base models to generate various WVE subsets combinations 

referred as search space which are used as part of the algorithm brute exhaustive based 

procedure implementation proposed in proposition 1. 

 

Figure 30:  The proposed multi-precision weights formulation operational architecture 

(ii) The 1EXP (-) Z+ initial term based Weight Coefficients Values Formulation 

Function  

To derive the required function, its closed-loop equation was formulated. First, we derive the 

function for formulating the stated multi-precision arithmetic sequences as input arguments to 

the search space generation procedure. Whereas, the Taylors series can often be used for the 

derivation of an algorithmic system’s closed-loop equation that expresses a particular problem 

domain. Through lemma 1 and proposition 1, herein we used the arithmetic sequence to 

substantiate the proposed 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE algorithm, whereby the 

sequence’s first-term a0 serves as a principle for generating the other respective a1 to an term 
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of values of the arithmetic sequence A in equation (7) by using the arithmetic sequence’s 

closed-loop equation (8), 

  A=∑ ( 𝑎o +  𝑎o ∗ 𝑛
(1/ao)
𝑛=1 ),                                 (7) 

an = ao + d*n,                                       (8) 

whereby ao is the first term of the sequence, which is initialized by the proposed 1EXP (-) Z+ 

initial term-based initialization function F(Z+) in Equation (9) as floating point numbers (FPN) 

due to apprehending the constraints in Equation (2), whose computational notation is shown in 

Equation (10), to form a 1EXP (-) Z+ initial term based FPN weight value n arithmetic sequence 

AZ+ whose first term is initialized in Equation (9), and these are substituted in Equation (7) to 

reflect the proposed arithmetic sequence AZ+
+ formation expression in (11), this which forms 

the basis of the weights coefficients matrix values.  

F(Z+) = 1EXP (-) Z+ , for Z+ > = 1,                                   (9) 

    F(Z+) = 1e^-Z+, or simply 1/(1eZ+)              (10)      

       AZ+=∑ ( 1e − Z +  1e − Z ∗  n
(1/ 1e−Z+)
𝑧+=1 ),                            (11) 

where Z+ denotes all positive integers greater than zero and less or equal to the reciprocal of 

one exponent negative Z+, that is, 1/(1EXP (-) Z+). 

(iii) The 1EXP (-) Z+ based Weights Coefficients Matrix and Search Spaces Matrix 

Computation  

The search space matrix SPZ+ of K combinations can then be generated as a permutation of 

sequences Az+ and base expert’s list vector C[ j ], as represented in equation (12). 

SPZ+= permutation (AZ+, C[j]),       (12) 

Based on the 1e-Z+ initialized values sequences AZ+ in equation (11) substitution in (12), we 

obtain equation (13), representing the  1e-Z+ based spaces Spz+ required for the coefficient and 

variable matrices distillation. 

    𝑆𝑝𝑧+ = 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛((∑ (1e − Z + 1e − Z ∗  n
(𝐿)
𝑛=0 )), 𝐶[ 𝐽]),            (13) 
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Where L is the reciprocal of the initialized fractional value based on 1eZ+, and Z+ is greater or 

equal to 0. A re-arrangement of the generated permutation spaces Spz+, from equation (13) in 

order of the dimensions of the variable matrix representing available classifiers class 

probability predictions would represent weighted output predictions for K combinations as 

expressed in equation (14). 

           [
𝑌1𝐾1

⋮
𝑌𝑘𝐾𝑘

] = [
𝐾11exp − zC1 ⋯ 𝐾11exp − z + 1e − Z ∗  n Cj

⋮ ⋱ ⋮
𝐾k1exp − z + 1e − Z ∗  nC1 ⋯ 𝐾k1exp − zC(𝑛^𝐽)

],      (14) 

By decomposing the matrix in equation (14) into its constant, coefficients, and variable 

matrices as explained in (Bellman, 1997; Kittappa, 1993), we obtain equation (15), which 

computes the constant matrix as an output prediction as a product of the coefficients, variable 

matrices of the general WVE matrix form in equation (14). 

         [
𝑌1𝐾1

⋮
𝑌𝑘𝐾𝑘

] = [
𝐾11exp − z ⋯ 𝐾11exp − z + 1e − Z ∗  n

⋮ ⋱ ⋮
𝐾𝑘1exp − z + 1e − Z ∗  n ⋯ 𝐾𝑘𝐾11exp − z

] ∗ [
𝐶1
⋮
𝐶𝑗

],    (15) 

This which when subjected to class probability predictions on the dataset with d instances, 

could also be represented as             

     

                     [
𝑌1𝐾1

⋮
𝑌𝑘𝐾𝑘

] = [
𝐾11exp − z ⋯ 𝐾11exp − z + 1e − Z ∗  n

⋮ ⋱ ⋮
𝐾𝑘1exp − z + 1e − Z ∗  n ⋯ 𝐾𝑘𝐾11exp − z

] [
𝐶1𝑰1 ⋯ 𝐶1𝑰𝑑

⋮ ⋱ ⋮
𝐶𝑗𝑰1 ⋯ 𝐶𝑗𝑰𝑑

],         

Finally, the vector Y or Y[k][d] of equation (15) will be calculated as the argument max of the 

product of weights coefficient matrix and classifiers class probability predictions, which is then 

scored for accuracy against the true targets as observed in the data set D with I instances, for each 

k combination the accuracy is compared with the previous maximum score to pick it as a new 

maxim if the previous is small otherwise the algorithm proceeds to the next combination iteration 

k. Until terminations conditions, the kth combination with maximum accuracy is returned as the 

optimal WVE combination configuration set. 

Whereas the final automatically generated search combinations in equation (15) are similar to 

the general WVE matrix equation (4) which was decomposed from matrix (3) in Lemma 1. 

Equation (14) and its decomposed form in Equation (14) are also similar to the WVE matrix 
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forms in Equations (5) and (6) in the initial proposition 1. As the automatically generated 

combinations represent a system of linear equations through the presented matrices, these of 

which have been proven to suffice for WVE predictions computations in equation (1). It entails 

that the automatically derived matrix form based on our proposed arithmetic sequences weights 

coefficients formulation function can well serve for representation of K possible WVE 

combinations in equation (1). Hence it has been proved that the general WVE combination 

matrix form representation in equation (3) can be automatically generated. These which can 

then serve as automatic synthetic search space for brute exhaustive search could be 

implemented. 

(iv) The Complete 1EXP (-) Z+IT-ASMPSS-BEO-ISWVE Algorithm 

As a modification of the straightforward implementation brute exhaustive search algorithm 3. As 

shown in Fig. 31 of the proposed algorithm’s flowchart, the corresponding pseudo-code shown 

in algorithm 3 of the proposed 1EXP (-) Z+
 initial term-based sequences formulation and weights 

coefficients matrix generation algorithm was formulated to present its computational procedures 

before actual machine implementation for brute exhaustively optimizing WVE(s).  
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Figure 31:  The full 1EXP (-) Z+IT-ASMPSSA_BES_ISWVEO flowchart 
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Algorithm 3. 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE Algorithm Pseudocode 

Input: Base experts' Probability predictions, true targets 

1. Start 

2. initialize search space precision (Z) = 1 

3. REPEAT 

4.     Compute the first term of the sequence as ao = 1e – Z 

5.     Initialize Search_space reference N = 1 

6.     REPEAT 

7.        Compute nth term an, an = (1e - Z) + ((1e - Z) * N) 

8.        Sequence = ∪. Sequence +  an 

9.        Increment N = N + 1 

10.    UNTIL N < = 1eZ 

11.    SPZ+ = permutations(Sequence, E[ j]) 

12.    Brute_Exhaustive_ optimization(SPZ+, C[j][d]) 

13.    Increment Z = Z + 1 

14. UNTIL Z reaches computational lim. or combination k 

15. Display optimization results 

16. End 

Output: high-performance WVE subsets weight estimates 

The proposed algorithm generates the weights coefficient values through their formulations from 

arithmetic sequences-based function procedure, where it later invokes the brute exhaustive 

searching procedure with a procedural call as part of an integrative implementation thereof. 

Mainly the algorithm initializes the sequence reference as shown in step 3 after the start of its 

execution. Then until step 11 the search spaces SPZ+ are generated, with an additional built-in 

procedure to re-ensure the formed SPZ still satisfies the condition∑ 𝑊𝑖 = 1𝑛
𝑖=1 , as such it should 

be considered as a potential solutions pool. In step 12 the brute exhaustive procedure is called to 

search the formed search space SPZ+ and return an optimal weights configuration set from the 

corresponding SPZ+ based on class probability predictions C[j][d]. In step 13, the next sequence 

is initialized. In step 14, the algorithm checks if objective criteria and computational capacity are 

still not limited the process repeats until either one or both of the termination conditions are 

satisfied. Finally, it provides the optimization results in step 15 before ending the execution in 

step 16. 
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(v) The 1EXP(-)Z+ initial-term based WVE brute exhaustive optimization package 

experimental setup 

Finally, the complete package of 1EXP (-) Z+ initial-term based arithmetic sequences multi-

precision search spaces for brute exhaustive optimization of intelligent small WVE algorithm 

procedures codes were implemented by using Python using the Scikit-learn machine learning 

library functions (Pedregosa et al., 2011). Contrary to using the traditional single instruction 

single data (SISD) computational operations implementation, vectorization array programming 

for single instruction multiple data (SIMD) operations which provide fast computations 

(Raskulinec & Fiksman, 2015) was necessary given the nature of the custom integrated much 

finer weights values formulation module for automatic multi-precision which may require 

many computations. Hence they are suitable for computations that involve extensive iterations, 

for that reason, SIMD was used to run the search on automatically unveiled search grids. Fig. 

32 shows the higher abstraction of the proposed algorithm package for searching appropriate 

WVE’s base models weights configuration set.  

Figure 32:  The 1EXP (-) Z+IT -ASMPSS-BEO-ISWVE package diagram 

This was executed using an experimentation setup shown in Fig. 33, to evaluate its efficiency in 

formulating search spaces as well as its effectiveness in estimating optimal WVE across the 

various formulated systematic weights combination search spaces. Whereby the base experts’ 

class probabilities predictions BP_Predictions resulting from an evaluation of dataset Instance’s 

features are scored against true targets for accuracy by using Python’s sci-kit-learn scoring library 

function to determine the accuracy of the combination as an objective criterion. Eventually, the 

selection of the WVE combinations output predictions with maximum accuracy could be 

determined from the run across the entire system of K combinations. 
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Figure 33:  The 1EXP (-) Z+IT-ASMPSS-BEO-ISWVE experimental setup 

3.3.6 Development Environment 

This research model and the proposed optimization algorithm procedures code developments 

were done using Python programming language because this language provides vast support 

of libraries functions for machine learning modeling (Pedregosa et al., 2011)  The 

implementations were executed on Intel(R) Core(TM) i7-855OU CPU @ 1.99 GHz with 16 

GB RAM, as well as in the Core i8 hardware with 64 GB RAM, 64-bit operating system, which 

produced a result set constituting of similar results from Core i7, with more additional results 

due the Core i8 hardware capacity which permitted for more computations. 

3.3.7 Mathematical Co-processor Computational Limitations 

However, whereas on one hand, the establishment of systematic search spaces formulation 

computations for brute exhaustive search procedure implementation is an effort of utility to 

WVE optimization on computer hardware, according to the no free lunch theorem, the 

formulated values which are floating point numbers (FPN) would likely face the FPN math co-

processor computational or memory allocation in support of the defined by the corresponding 

floating-point arithmetic (FPA) adder, subtract, multiplier, and divider operations 

computational hardware architecture’s memory allocation for the sign, exponent, and fraction 

also termed as mantissa memory allocation limitations as defined by the IEEE 754 standard for 

FPN arithmetic operations permissible operations and exceptions specification in Committee 

(2019). Particularly in our case that may prevail in the case of computing very high-scaled 

precision fractional FPN weighting values, entailing the prevalence of possibilities for 

increased combinations to the limitation of the available hardware memory capacity.  
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Shown in Fig. 34 is a microprocessor FPU memory allocation, whereas the FPN sign bit of the 

algorithm’s formulated weight values adhere to the constraints in equation (2), which makes 

them always positively signed, the apprehension stems much in the exponent and fraction part 

of the FPN value, as the exponents part of a very large FPN value may shift into the mantissa 

segment of the memory registers locations hence processed as part of the fraction also known 

as mantissa, in turn leading to nonsensical in the best case, while an overflow is an expectedly 

worst case scenario. 

 

Figure 34:  Micro-processor FPU 

The stated computational memory limitation requires proper handling otherwise it may result 

in nonsensical or in worst-case scenarios overflows of the memory buffer if underlying 

hardware capacity is not supportive for search operations on the large unveiling search spaces 

of candidate solutions combinations. Unlike, the classical bit representation with only two 

states 0 and 1 in the FPNs word sizes memory architecture that may raise FPN memory 

limitations. On the contrary, the quantum qubit variant may become among the key 

considerations as it provides for much more storage states other than just 0 and 1, which are 

represented by an arrow pointing to a qubit spherical formation. 

Figure 35 illustrates the classical bit qubit representation for quantum computations. 

Technically, qubit mechanics are based on a probabilistic measure to store and extract 

information that was previously stored in the qubit states, where the arrow will point where the 

information should be extracted, north if the state is 1, south if it is 0, otherwise to superimpose 

it as a 0 or 1 based on the other locations of the quantum spherical formation, in turn, it encodes 
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an infinite sequence of digital information which must later be extracted by a measurement that 

will result into an ordinary bit information of 0 or 1. Whereby quantum qubit combinations 

would possibly allow for the formulation of very big qubit information structures for storage 

and retrieval of enormous computational variable values to be processed in a quantum machine, 

hence overcoming the pre-stated memory allocation limitation of the classical bit system, but 

that would mean to shift the entire algorithm computational package into the quantum format. 

This will also lead to a reduction in energy costs as quantum computers run within minutes a 

task that these other non-quantum computational environments can take even up to a month. 

As such it is a green computing potential candidate concerning environmental preservation 

(Jaschke & Montangero, 2023). 

 

Figure 35:  Quantum’s qubit continuum state vs classical bit information representation 

3.3.8 Performance Evaluation  

(i) Performance Evaluation Metrics for Base and WVE Models 

Measuring the discrimination ability of a model is one of the important aspects of assessing its 

performance (Pearce & Ferrier, 2000). The metrics we used to evaluate the performance of our 

models are accuracy, precision, recall, f1-measure, Cohen kappa, receiver operating 

characteristics (ROC) analysis, with its associated area under the curve (AUC) (Brownlee, 
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2020b, 2020b; Hanley, 1989; Obuchowski & Bullen, 2018; Soleymani et al., 2020). The basic 

performance metric Accuracy, to address the multi-classification problem precision, recall, and 

f-measure is the most widely used metrics for evaluating the performance of machine learning 

classifiers. Although past performance may not be indicative of future results, the mentioned 

metrics formed the common ground for determining how well the developed classifiers might 

perform in the future. These metrics were computed by using the powerful Scikit-learn 

(Sklearn) library for ML applications in python (Pedregosa et al., 2011), which consists of a 

wide range of ML classification metrics. 

Contrary to supervised regression learning which utilizes the Root Mean Square Error (RMSE), 

as a measure of model performance, classification learning uses accuracy, precision, recall, f-

measure, kappa statistic, and Area under the ROC curve (AUC) which are derived from the 

basic confusion matrix metrics shown in Table 8, Where, True +ve, False +ve, True –ve, and 

False –ve are the respective numbers of true positive (TP), false positive (FP), true negative 

(TN), and false negative (FN). 

Table 8:     The four basic confusion matrix metrics 

Classes Test result +ve Test result –ve 

Actual +ve True +ve(TP) False -ve (FN) 

Actual –ve False +ve (FP) True -ve (TN) 

One of the keys behind modeling with ML algorithms is to have a relevant featured dataset to 

use in running experiments that aim to achieve improved performances by optimally tuning the 

training parameters as calculated from the confusion matrix (Hall et al., 2015; Osisanwo et al., 

2017; Witten et al., 2016). Table 9 summarizes all the metrics used to evaluate the individual 

ML base models and the resultant WVE performances.  

 

 

 



  

83 

 

Table 9:     Some supervised learning performance metrics 

Metric Description Calculation 

Classification 

Accuracy(CA) 

Percentage of correct predictions where the top 

class (the one having the highest probability), as 

indicated by the model, is the same as the target 

label as annotated beforehand by the authors. For 

multi-class classification problems, CA is 

averaged among all the classes. CA is mentioned 

as a Rank-1 identification rate (Hall et al., 2015). 

CA

=
(TP +  TN)

(TP + TN + FP + FN)
 

 

Equation (16) 

Precision (P) Fraction of TP from the total amount of relevant 

results, i.e. the sum of TP and FP. For multi-class 

classification problems, P is averaged among the 

classes. 

P=TP/(TP+FP) 

 

Equation (17) 

Recall (R) Fraction of TP from the total amount of TP and 

FN. For multi-class classification problems, R 

gets averaged among all the classes. 

R=TP/(TP+FN) 

 

Equation (18) 

F1 Score or F-

Measure (F1) 

Harmonic means of precision and recall. For 

multi-class classification problems, F1 gets 

averaged among all the classes. It is mentioned as 

F-measure (Minh et al., 2017). 

F1 = 2 * (TP * FP) 

/(TP+FP) 

 

Equation (19) 

(ii) Performance of the proposed 1EXP (-) Z+IT-ASMPSS-BEO-ISWVE 

To evaluate the performance of the proposed 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE, an 

asymptotic analysis of its 1EXP (-) Z+ initial term-based search space sequence formulation 

function was performed to determine its computational complexity as a means to understand 

the algorithm efficiency. Also, the hardware clock cycles based on execution times, and size 

complexity were obtained during the proposed algorithm execution by profiling its search 

space function, to evaluate its performance.  

The proposed algorithm's effectiveness in producing effectual search spaces was evaluated by 

computing accuracies. Whereas, area under the receiver operating characteristic (AUC–ROC) 

curve analysis implementation result was used as the main measure of effectiveness by 

observing the scores of the various WVE that are estimated from the formulated previously 

deemed effectual search spaces that resulted from the proposed 1Exp (-) Z+ initial-term based 

arithmetic sequences search spaces with accuracy maximization as an objective function. 

Whereas the accuracy of a classifier is the most spontaneous measure for performance, we used 
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it herein as baseline performance only, for both the base models and the resultant 2S-HHEC, 

as an intuitive measure of model performances and optimization criteria, and it was not used 

as the key leading model performance measure. Instead, the area under the receiver operating 

characteristic curve (AUC–ROC curve) shown in equation (20), for a multiclass problem was 

used to select the final VWE models based on the quality of their predictions. 

𝐴𝑈𝐶 =
1

𝑐(𝑐−1)
∑ ∑ (AUC(𝑗|𝑘) + AUC(𝑘|𝑗))𝑐

𝑘>𝑗
𝑐
𝑗=1    (20) 

As asserted by Pintelas and Livieris (2020), “c denotes the total number of classes, AUC (j | k) 

represent AUC having positive class j and negative class k” (Yang et al., 2019), was adapted 

using the one vs rest (OVR) and one vs one (OVO) with ’multiclass’ arguments, where the 

one-vs.-one, and one-vs.-rest average ROC–AUC scores for class labels were calculated. The 

final ROC analysis results were plotted as ROC-AUC curves by using the false positive rate 

(1-specificity) against the true positive rate (sensitivity) (Carter et al., 2016; McClish, 1989; 

Obuchowski & Bullen, 2018; Okey et al., 2022; Yang et al., 2019). 

Therefore, for detailed investigation of the predictive quality of the resultant 2S-HHEC,  the 

receiver operating characteristics (ROC) analysis was used whereby the measure of its ability 

to increasingly provide correct predictions could be determined through a 2 dimensional (x,y) 

plane ROC curves visualizations of its true positive rates (sensitivity) vs false positive rates (1 

– specificity), in such this helped us determine how correctly each of the ‘low’, ‘medium’, and 

‘high’ soil fertility classes may correctly be predicted in future unseen data or new observation. 

While ROC curves are useful for quick visualization of the classifier’s quality, the area under 

the curve (AUC) of the ROC (AUC-ROC) was obtained to determine the actual value of the 

area under the ROC curve. Achievements of accuracy close to 100% are desirable, although in 

imbalanced multi-classification tasks F1-measure under precision and recall are the most 

suitable measures of classifiers' discrimination ability.  Cohen kappa was used to measure the 

inter-rater agreement, Kappa’s value closing to one shows great agreement between data 

collectors, to zero shows no agreement, it was used here to determine how reliable is it that the 

model was trained with the right data geometry, i.e. the level of agreement between the variable 

used to train the model and the data it was supplied with.  
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3.3.9 Validation and Utility of the Model 

The metric used to validate the resultant WVE model performances was the percentage correct 

classifications, while maize grain yields were used to measure the utility of the model in terms 

of agricultural productivity as highlighted in subheading i) and ii) sections. 

(i) Percentage Correct Classifications 

The percentage correct classifications were used to validate the developed WVE model by 

using the soil laboratory-based test results. 

(ii) Maize Plantation Fields Experimentations Grain Yields 

DSR requires that the utility of the research contribution should be validated, for instance with 

the corresponding problem environment(s) through various methods such as field 

experimentation. For that purpose, we performed field experimentations to validate the utility 

of the proposed 2S-HHEC model as DSR artifacts through maize plantation experimentation 

with the incorporation of the model-based experimentation filed soil fertility status prediction 

information to examine its utility. Maize plantation field experimentation to obtain maize 

harvests amounts based on the model, and basic recommendations, as well as Adhoc soil 

fertility management practice. Table 5 presents the plantation experiment planning details on 

an acre of farmland, whereby that was divided into three subsections labeled “M” to denote the 

model-based predictions information farmland fertility management plantation section, the 

next labeled as “B” for the basic and blanket recommendations applied uniformly across the 

plantation section. The last is “A” for ad-hoc controlled plantation, where no measurements, 

treatments, or any major management practice was applied other than cultivating that land, 

seedling, weeding, and harvesting, while for the model-based we measured the chemical 

nutrients values and treating those areas were fertility was predicted low or medium before 

plantation, and blanket recommendations were applied for the other remaining respective 

section. Each of these sub-plantation sections was contained in blocks stratified across each of 

the four quarters of the acre. Each of these sections, i.e. model-based predictions based controls 

(M), basic and blanket recommendations (B), and ad-hoc control (A), occupied 33.33% of the 

1-acre plantation area. Each quarter was cut into 16 line sections for each management label 

making a total of 48 lines in each quarter, and 196 lines for the entire farm (see Table 10). As 

such each control there could be obtained from 64 samples, these of which were measured for 

only those sections to be considered for model-based predictions of fertilization and 
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management, and the other 128 samples were left as is with 64 of them managed with the basic 

blanket recommendations, and the other 64 samples section were untreated. To assume a 

constant availability of water supply to eradicate its variability effects in our study results, we 

had in place a furrow irrigation facility. 

Table 10:   Experimental plantation plan 

Lines sections 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr 

16 M B B M 

16 A M P B 

16 B A M P 

Total 48 48 48 48 

Finally, as a measure of the proposed models' predictive information utility on maize field 

plantation experimentation, we calculated the profiles of the number of maize harvests in tons 

per acre following the maize for the model-based predictions based controls (M), basic and 

blanket recommendations (B), and ad-hoc control (A). 
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CHAPTER FOUR  

RESULTS AND DISCUSSION 

This section presents the results obtained from the experimentation of the developments in this 

research. These include results from preprocessing of the dataset used in the experiments, 

evaluating the implemented ML individual base models, the developed novel brute exhaustive 

search procedure optimization algorithm, the resultant WVE, and its validation as well as 

evaluation of the model's utility by using its sample fertility status predictions information on 

a maize field’s experimentations.  

4.1 Data Pre-processing Results 

4.1.1 Descriptive Statistics of Used Dataset 

The section presents the data results obtained from the proposed research development of a 

machine learning ensemble model for high-performance soil fertility status prediction. Table 

11 shows the statistical description of the data used in the experiment showing count, mean, 

standard deviation (std), min, 25%, 50%, and 75% percentiles, and max for each attribute in 

the dataset. 
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Table 11:   Statistical description of the used agricultural soils and yield data 

 OC pH                   EC TN P Ca K Mg Na S Mn Al Zn Fe B M_Yld 

Count 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 6260 

Mean 1.875 5.912 1.412 0.080 5.003 1.487 0.147 0.180 4.184 56.738 8.391 10.131 0.814 45.689 0.013 1.658 

Std 0.804 0.516 2.493 0.043 2.854 1.732 2.450 0.484 22.17 27.196 5.325 29.678 2.314 32.956 0.019 0.679 

Min 0.256 4.257 0.001 0.008 0.062 0.005 0.002 0.001 0 0.365 0.006 0.01 0.009 0.401 0.002 0.63 

25% 1.211 5.547 1.071 0.044 3.135 0.388 0.02 0.050 0.081 37.616 5.427 0.439 0.476 35.382 0.008 1.22 

50% 1.667 5.904 1.368 0.064 4.571 0.960 0.031 0.105 0.207 53.687 7.335 0.566 0.584 41.988 0.011 1.62 

75% 2.543 6.274 1.716 0.116 6.27 1.985 0.047 0.200 0.610 73.754 10.312 0.821 0.744 48.895 0.014 2.11 

Max 4.211 7.457 139.46 0.206 37.721 27.021 82.313 17.842 803.93 310.55 103.99 554.2 51.441 1068.5 1.003 4.39 
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As can be observed from Fig. 36 of the comparison of observations to features ratio of the used 

dataset in similar ML implementations, 6260 observations which were collected for the 15 

features, represented a good observation to features ratios for training and testing the ML 

model(s), as compared to other studies.  

 

Figure 36:  Comparison of observations to features ratio of the used dataset in similar 

ML implementations 

4.1.2 Quality of Dataset 

The QQ plots for the soil chemical properties data were plotted to visualize and determine if 

they are either randomly or normally distributed to perform informed data treatment 

accordingly. It could be found that the pH variable followed a normal distribution with points 

lying across the y=x axis of the QQ plots (Chan, 2022; Varshney, 2020). Sulphur and 

phosphorus were right-skewed, while Organic carbon exhibited high kurtosis as it crossed the 

y=x axis in the middle (see Figs 37 to 40). Therefore, outliers and extreme values were 

identified by using the IQR method and removed before some of the data’s normalizable 

random variables were transformed before the application of any ML algorithm for modeling 

our stated problem scenario solution(s).  
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Figure 37:  pH QQ Plot 

 

Figure 38:  S QQ plot 

 

 



  

91 

 

 

Figure 39:  OC QQ plot 

 

Figure 40:  P QQ plot 

4.2 Modeling and Optimization Results 

4.2.1 Soil Fertility Index derivation 

Results of modeling the soil fertility characteristic index in the data-preprocessing phase are 

shown in Figs. 41 to 49. Three optimum groups were obtained, which resulted in three distinct 

soil fertility status indices. While these results conform to those in studies that used a similar 
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number of class targets, that is three, they differ from the majority of other studies that made 

use of only two (2), four, or five soil fertility status target classes. 

 

Figure 41:  Knee elbow = 3 

Figure 42 shows test results for the analysis of variance (ANOVA) between the different 

formed fertility groups in the data with the null hypothesis “the clusters groups are not similar” 

tested true meaning the clusters are different.  

 

Figure 42:   Test Results for the Analysis of Variance between different fertility groups 

Figure 43 is the plot of the ANOVA results, which were found using the Tukey HSD Test. 
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Figure 43:  The ANOVA (Tukey Test) results 

The groups were visualized in plots as shown in Figs. 44, 45, 46, and 47 of the pH and Organic 

carbon, vs fertility index dimension. Followed by respective visualizations of organic carbon, 

calcium vs fertility index clusters visualization, Organic carbon, Phosphorus vs Fertility index 

clusters visualization, and finally but not least, of organic carbon, electrical conductivity vs 

fertility index clusters are depicted.  

 

Figure 44:  Organic carbon, pH vs Fertility index clusters visualization 
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Figure 45:  Organic carbon, Calcium vs Fertility index Clusters visualization 

 

Figure 46:  Organic carbon, Phosphorus vs Fertility index Clusters visualization 
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Figure 47:  Organic carbon, electrical conductivity vs fertility index clusters visualization 

Figure 48 shows the distribution of the fertility classes. It could be seen that majorly parts are 

lowly characterized by soil fertility. 

 

Figure 48:  Soil Fertility classes (label) distribution 

Figure 49 displays the correlation heatmap showing the percentage correlation of the features 

in the data as well as the formed target classes low represented as 0, medium as 1, and high as 

2. The final dataset for evaluating different ML algorithms classifiers was obtained by 

removing Magnesium as it highly correlated with potassium at 70% correlation and Total 

nitrogen had an 89% correlation with organic carbon.  
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 Figure 49:  Correlation heatmap of the soil chemical properties 

4.2.2 Base Models: Performance Evaluation 

After developing the various heterogeneous hybrid base classifiers models (HHCM) for 

predicting soil fertility statuses, whereby the performances of K-Nearest Neighbor hybrid 

(KNN-H), Support Vector Machine Hybrid (SVM-H), Decision Tree Hybrid (DT-H), Random 

Forest Hybrid (RF-H),  Adaptive Boosting Hybrid (AdaB-H), Naïve Bayes Hybrid (NB-H), 

and Gradient Boosting Hybrid (GB-H) were evaluated by using test data to determine Table 12 

displays the results obtained from the evaluation.  
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Table 12:   The HHCM performance 

  Precision Recall F1Score 

HHCM Accuracy Low Mid High Weighted Low Mid High Weighted Low Mid High F1_Score 

KNN-H 0.90* 0.82 0.97 0.62 0.91 0.93 0.88 1 0.9 0.87 0.92 0.76 0.90** 

SVM-H 0.91* 0.85 0.93 0.86 0.91 0.86 0.92 0.98 0.91 0.86 0.93 0.91 0.91** 

DT-H 0.87* 0.79 0.94 0.56 0.88 0.87 0.87 0.9 0.87 0.83 0.9 0.69   0.87*** 

RF-H 0.91* 0.89 0.94 0.66 0.92 0.87 0.93 0.97 0.91 0.88 0.94 0.78 0.92** 

AdaB-H 0.52* 0.43 0.75 0.1 0.63 0.48 0.53 0.6 0.52 0.45 0.62 0.17    0.55 

NB-H     0.11 0.3 0.81 0.04 0.62 0.13 0.06 0.9 0.11 0.18 0.11 0.07    0.13 

GB-H 0.93* 0.89 0.95 0.82 0.93 0.89 0.94 0.97 0.93 0.89 0.95 0.89    0.93* 
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From the results, it could be seen that most of the individual classification hybrid models 

demonstrated good prediction performance on test data, with gradient boosting hybrid classifier 

scoring the highest accuracy of 93%, as compared to RF-H, SVM-H, and KNN-H models that 

achieved respective predictive accuracies of 92%, 91%, and 90% for (see Table 10). Comparing 

these results with similar objective model accuracy results of authors Chaudhari et al. (2020) 

who implemented a Decision Tree classifier for predicting soil fertility with an accuracy of 

60%, our results were 30% better. 

4.2.3 Computational Complexity: Efficiencies  

An Asymptotic Analysis was performed for both the 1EXP (-) Z+ initialization function and its 

brute exhaustive search-based optimization algorithm. 

(i) The 1EXP (-) Z+ Initialization Function Asymptotic Analysis 

An asymptotic analysis of the proposed algorithm’s overall sequences generation function 

expression in equation (10) could further be evaluated to determine the mathematical validity of 

the 1EXP (-) Z+ based WVE computation in equation (14). As shown in Fig. 50 of the derived 

1EXP (-) Z+ initial term-based arithmetic sequences formulation function expressions 3-D 

graphical display of its valid computational space, portrayed asymptotic optimality to the WVE 

constrained boundaries in equation (2). 

 

Figure 50:  The 1EXP (-) Z+ based Sequence Initial term function asymptotic optimality 

to WVE weights constraints 
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Whereas it can be observed the sequences initial term values represented by the y-axis are 

asymptotic to zero in such the 1EXP (-) Z+ based initialized values may get smaller as much as 

but never equal to 0, hence the weights greater than 0 constraints is always maintained through 

that presented asymptotic characteristic, in turn, the size of the sequence may grow larger to as 

much as the reciprocal of the 1EXP (-) Z+ as read from the x-axis based on the initialized 

sequence’s first term on the y-axis. Based on those facts, the proposed function is considered 

mathematical valid for an optimal algorithmic system computational implementation. At that 

juncture a function for explicitly formulating values as weight coefficients W[k][n] which 

satisfy WVE weights constraints in equation (2) could be derived based on the proposed 1EXP 

(-) Z+ initial term arithmetic sequences,  then a brute-exhaustive optimization could be applied 

to search one optimal combination set, hence that function provides for an algorithmic 

computational implementation. The proposed sequences formulation function is asymptotic 

optimal to the WVE constraints in equation (2) and as it is integrated into the proposed weights 

coefficients values formulation algorithm’s matrix function with expressions in equation (10), 

it can then be deduced that this function can be mathematically valid for computational 

implementation to generate WVE combinations weighting values for use as the result of a 

system of linear equations represented as Y[k][d] as combinations predictions. 

(ii) The 1EXP (-) Z+ASMPSS Complete Algorithm 

The 1EXP (-) Z+
IT-ASMPSSA_BES_ISWVEO computational complexity was then 

asymptotically analyzed by calculating the proposed algorithms instructions lines asymptotic 

execution time as follows: delineating the complexity times from the above-proposed algorithm 

pseudo code to calculate the asymptotic total complexity time, we obtain the total complexity 

to be as Total Complexity (TC) = F(Z) = {1}+{1}+{1}+{1e-Z+}+{1}+{1}+{((1eZ+) + ((1e-

Z+)*(N-1))} +{1}+{1} +{1eZ }+{1}+{1}+{1}+{1}+{1}+{1} 

 

                    𝑇𝐶 = {11} + {1𝑒−𝑁} + {((𝑒−𝑁) + ((𝑒−𝑁) ∗ [(𝑁 − 1)])} + {1𝑒𝑁}  (15) 

 

Deducing from the highest order term of the algorithm’s derived total complexity TC in 

equation (15), it can be seen that {1𝑒𝑁} is the highest-order term worst-case scenario (Big O), 

this will represent the upper bound of the algorithm running time. Therefore the algorithm has 
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a worst-case scenario exponential complexity of O (1𝑒𝑁). When this type of computational 

time complexity might be undesired in cases where search space precision grows so large, the 

upper bound running time could even fast be reached when the search spaces are integrated 

into the brute exhaustive-based search heuristics algorithm execution that would mainly arise 

from the size of ensemble base expert predictions to be weight estimated during optimization. 

Whereby, algorithm execution acceleration procedures namely, the constraining of search 

spaces with weights points, coupled with the vectorization of data structures thereof, and 

computation on reasonable computational hardware resources were used to facilitate for rapid 

execution of the algorithm computations in attempts to provide the algorithm execution run 

time minimization.  

Thus, in this study, it could be concluded that the proposed 1EXP (-) Z+
IT-ASMPSS-BEO-

ISWVE algorithm exhibited an exponential time complexity running time. While, this type of 

computational time complexity might be undesired in cases when the search space precision 

processing requirements grow large, whereby the search spaces constraining procedure, 

coupled with the weight search spaces data structures vectorization, and use of core i8 with 

64GB RAM computation hardware facilitated for accelerated processing of the algorithm 

computations as key means to minimize its running time. 

4.2.4 EXP (-) Z+
IT-ASMPSS-BEO-ISWVE Optimization Results 

Following executions of the proposed 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE algorithm, its 

efficiency and effectiveness performances were observed, logged, and presented here in this 

research. Results of the algorithm efficiency are presented in Table 13 which shows hardware 

cycle-based execution times in formulating relevant search spaces for references Z+ = 1, 2, and 

3 corresponding to 1EXP (-) Z+ based respective arithmetic sequences precision’s factors 

Precision 0.1 with 10 possible points or sequence length, 0.01 having 100, and 0.001 producing 

1000 sequence terms to be considered as weights. Execution times were increasing not only in: 

a) the formulation of the sequences from 0.000120 seconds in search space 1 to 1262.4213 

seconds in 3, as well in constraining the valid search spaces C_Feasible_S, and in the overall 

total optimization execution time Opt._T of 90.3207 seconds to perform the search in search 

space 1, whereas 2701.32 seconds were taken to search space 2 with deeper precision 3 for 

factor 0.01 before to reach hardware limitation after 4834.00 seconds in search space reference 

3. But, b) also in with an increase in the search space precision referenced by Z+, but most 

critically with an increase in the consequent procedures of C_Feasible_S, and time Opt._T of 
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90.3207 seconds in search space 1, 2701.32 seconds in 2. However, whereas in search spaces 

with precision 0.1 and 0.01, the proposed algorithm showed stable execution to convergence 

in the generation of potential systematic solutions for searching optimality, on the contrary, in 

search space reference Z+ = 3 with precision 0.001 the execution was halted after approximately 

8450 seconds. 

Table 13:   Search space precisions, formulation, and containment and optimization times 

   Time in seconds(S) 

Space ref (Z+) Precision Points Formulation C_Feasible_S Opt._T 

1 0.1 10 0.000120 0.0536000 90.3207 

2 0.01 100 1.750000 170.07232 2701.32 (45 min) 

3 0.001 1000 321.0000 1262.4213 8234*H/W Lim 

Concerning the hardware execution times, as could be seen from the execution times results in 

Figures 51 and 52 of the respective Hardware clock time in search space precision 1 and 2, and 

Hardware clock time in search space 3 execution before reaching processor limitation. It could 

be observed that the algorithm took 2700.32 seconds (45 minutes) total optimization time 

optimize from the combinations in search referenced by Z+ = 2 with precision scale 0.01 thus 

100 different weighting values, unlike in space reference Z+ = 1 with precision factor 0.1 

having fewer points, or possible weight values, specifically 10 points or terms, were it took 

approximately 90.3207 seconds (1 minutes and 30 seconds) only, this of which could be 

explained by the increase in number of weight points to 100 in Z+ = 2 hence explaining the 

significantly large difference in between these times. Also, in Z+ = 3, actual misbehavior 

started to exhibit with a premature optimization execution halted before completion of 

formulation of search spaces, only to be able to save a few which were later on executed in 

isolation mode as they could not complete processing under normal hardware capacity, 

whereby 8234 seconds, which is approximately 2 hours and around 17 minutes were taken, 

independent of the briefed 1EXP (-) Z+
IT -ASMPSS-BEO-ISWVE package to return an optimal 

WVE configuration set with 5 base models across that much deeper 0.001 precision search 

space.  
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Figure 51:  Hardware clock time in search space precision 1 and 2 

 

 

 

Figure 52:  Hardware clock time limitation in search space 3  

Figure 53 displays the results of the proposed 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE sequences 

formulations and optimization Algorithm Efficiency in the most stable search space reference 

in terms of total hardware execution time profile in stable search space reference Z+ = 2, and 

memory consumption by the algorithm which could be observed to be approximately 85 MiBs, 
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this which was expended in less than 2 seconds to formulate the sequences in for search space 

with reference Z+=2 having precision factor 0.01, in Core i8 64 GB RAM, which maybe 

reasonable in WVE optimization procedure.  

 

Figure 53:  1EXP (-) Z+IT-ASMPSS-BEO-ISWVE sequences formulations and 

optimization Algorithm Efficiency in the most stable search space 

reference Z+ = 2 

It could be observed that the total optimization time taken to search for solutions varied across 

searches spaces and these increased as the search space's precision increased from search space 

1 through 3 as shown in Fig. 54. This is explained by the increase in iterations taken to execute 

the implemented search procedures due to increase in the number of search points in search 

space 1, 2, and 3.  

 

Figure 54:  Total optimization time in search spaces 
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4.2.5 The 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE Effectiveness 

The proposed 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE was highly effective in formulating multi-

precision 1EXP(-)Z+ based sequences that were processed to generate search spaces with 

varying combinations sizes in both search spaces 1 and 2, of which executions across 

referenced to these spaces were observably converging following the execution of the proposed 

implementation a countless number of times. With 10 different sequence values in search space 

one (1), 100 in two (2), and 1000  in search space three (3) where the experimental core i8 64 

GB hardware capacity limitation was reached to invoke the termination criteria, as a result 

forming an incomplete search space which was stored in log files. Among other reasons, that 

could be explained by IEEE 754 standard for FPN system’s FPA requirements specifying 

hardware’s math co-processor world bit size memory limitations for FPA (Committee, 2019). 

As annotated by the search space domain 2 filtered combinations plot in Fig. 55. It can be seen 

that, unlike in search space 1, where five thousand and forty (5040) combinations were initially 

generated and filtered expressively by using the WVE weights boundary constraints in equation 

(2) as a reduction strategy that lead into only twenty (20) candidate solutions, whereas these 

may be tractable by trial and error heuristic procedure, it would be a tedious task to do the same 

in search space 2, were the total number of generated combinations grew exponentially to one 

hundred and thirty-three thousand nine hundred and ninety-two (133 192) further filtered 

combinations of candidate solutions subsets which is a reduction from the initial formed ninety-

four million (94 000 000) combinations due the maximum weight coefficients value being 

constrained to max of 1. Such amount of combinations would instead be challenging to 

formulate without a computational algorithmic implementation, such as the one we proposed 

herein to effectively find optimal weights configuration sets based on prediction accuracy 

performance maximization as objective criteria through brute exhaustive searching by 

considering the available hardware capacity. 
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Figure 55:  The WVE initial and filtered potential search combinations in the stable 

domain search space 1 and 2 

To scrutinize the search space precision effect on the optimality based on accuracies of the 

various best WVE subsets, the proposed 1EXP (-) Z+
IT-ASMPSS-BEO-ISWVE was executed 

in search spaces 1 and 2 with respective precision factors 0.1 and 0.01. And its partial logged 

combinations were processed independently of the package where it could not complete 

execution search space reference Z+ = 3, with a precision factor of 0.001. 

Table 14 shows the accuracies denoted as Acc., macro, and micro ROC_AUC best scores that 

were achieved by the different WVE. After the various WVE subset combinations were 

generated and explorations by the proposed algorithm, based on search spaces precisions Z+ 1 

to 3, as well as the number of the different individual base models entailing to its heterogeneity. 

Results showed that the proposed algorithm had an outstanding performance in obtaining 

WVEs that had similar accuracies in the range of and even more as compared to results in some 

publications of similar objective models. As can be seen from Table 11, gradient boosting 

(GB), random forest (RF), support vector machine (SVM) and Knearest neighbor (KNN) WVE 

combination with respective weights 0.26, 0.01, 0.43, and 0.30 predict the status of soil fertility 

at an accuracy of 94% could be found in the stable optimization space 2, while the partial search 

space 3 combinations independent search execution could obtain a combination of gradient 

boosting (GB) with weight 0.187, random forest (RF) with 0.210, 0.175 for support vector 

machine (SVM), Knearest neighbor (KNN) at 0.321 with an additional heterogeneity by 

decision tree (DT) hypothesis weighted with 0.107, at an accuracy of 98.93 %. Whereas, those 

results were outstanding as the results in like in Jayalakshmi and Savitha (2022), unlikely the 

maximum accuracy observed in space 1 was 93% for both the combinations, at precision 2 with 
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scale 1, which could have accounted for the low accuracy therein unlike in the higher precision 

search spaces 1 and 2. 

Table 14:   Results of the effectiveness of the proposed search heuristic procedure  

Spaces (Z+) 1 2 3 

Ens. ID predictors weights Acc. (%) Weights Acc. (%) weights Acc. (%) 

1 
DT 0.9 

90.89 
0.94 

92.80 

U
n
-g

en
er

a
te

d
 s

u
b
se

ts
 

KNN 0.1 0.06 

2 
RF 0.9 

90.89 
0.81 

92.80 
KNN 0.1 0.19 

3 
RF 0.9 

90.89 
0.81 

92.80 
SVM 0.1 0.19 

4 
SVM 0.9 

90.89 
0.94 

92.80 
KNN 0.1 0.06 

5 
GB 0.9 

90.89 
0.84 

92.80 
SVM 0.1 0.16 

6 
GB 0.9 

90.91 
0.94 

92.80 
RF 0.1 0.06 

7 

RF 0.1 

92.67 

0.15 

93.98 SVM 0.6 0.57 

KNN 0.3 0.28 

8 

GB 0.1 

92.67 

0.21 

93.98 RF 0.6 0.55 

KNN 0.3 0.24 

9 

GB 0.1 

92.67 

0.31 

93.98 RF 0.6 0.27 

SVM 0.3 0.42 
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Spaces (Z+) 1 2 3 

Ens. ID predictors weights Acc. (%) Weights Acc. (%) weights Acc. (%) 

*10 

GB 0.1 

93.27 

0.26 

93.98 
RF 0.2 0.01 

SVM 0.3 0.43 

KNN 0.4 0.30 

11 

GB 0.5 

93.17 

0.36 

95.02 

0.187 

98.93 

DT 0.1 0.12 0.107 

RF 0.1 0.13 0.210 

SVM 0.2 0.21 0.175 

KNN 0.1 0.18 0.321 

As shown in Fig. 56 of the Search spaces precision effect on the WVEs combinations 

accuracies, It could be seen that the ensemble optimality was seen to be affected by not only 

its diversity, but also the size, which is a function of diversity in the sense addition of the later 

widens the ensemble heterogeneity which entails increased in its size, but most critically 

concerning the previous objective of our study it is affected by the search space as represented 

by weighting values precisions and scale. 



  

108 

 

 

 

 

Figure 56:  Search spaces precision effect on WVEs accuracies 

This could be explained by the fact that better-refined solution values could be achieved in 

more refined also termed granular search spaces, were it was observed that lower search space 

precision led to lower WVE combinations accuracies, unlike higher precisions which have 

shown to weight WVE at higher prediction accuracies (see Fig. 61). This fact would represent 

a good indication on the effectiveness of the proposed 1EXP(- )Z+ IT-ASMPSS-BEO-ISWVE 

in generating search spaces as one of the key requirement for the successful execution of the 

consequent search procedure, as stated by Mouret and Clune (2015), that search spaces are a 

determinant factor as they have a significant effect in the overall optimization algorithm 

procedures implementation such as in finding WVE optimal subset, other than its diversity and 

constituting individual base model accuracies. 
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Figure 57:  Best WVE accuracies in Space Z+ 1 and Z+ 2 

Finally but not least, as an additional measure to enhance the optimal subset performance 

evaluation, the ROC curves were plotted with their corresponding AUC scores for some of the 

observed best accuracy combinations, as shown in Figs. 58, 59, 60, and 61 of the ROC plots 

and AUC results. Unlike the ROC plots and AUC scores results of algorithm execution in 

spaces 2 and 3, results based on using only two base classifiers combinations were highly 

unconducive in space 1. As it could be observed, amongst the best, the two classifiers-based 

WVE combinations involving DT and KNN class probability predictions respectively weighted 

at 0.9 and 0.1,  whose ROC plots and AUC scores are shown in Fig. 58 highly exhibited random 

guessing of the ‘high’ fertility class correct predictions with an AUC score of 58%, although 

these results are worse than those in other studies like in Rossel et al. (2010), outstanding 

optimization results could start to better be observed in space 2 with involvement of three base 

classifiers combinations as portrayed in Fig. 59 of the ROC plots and AUC scores of the three 

classifiers based RF, SV and KNN WVE combination with respective optimal weights 0.15, 

0.57, and 0.28, whereby the combination could exhibit an increasingly ability in predicting all 

the fertility classes high, medium, and low correctly at respective AUC scores of 62%,70%, and 

71%, as well as average macro and micro respective 68%, and 86% AUC scores. Eventually, 

as previously explained the best optimization results could start to be observed with four 

classifiers in space 2 when the proposed algorithm used the weights coefficient matrix scaled 
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at 0.01 as a function of the 1EXP (-) Z+ search space reference Z+ =2, to observer the WVE 

combination scoring AUCs above 80% for all classes, with 83% AUC score for the macro 

average and 92% micro AUC score, which is 6% higher than the previous RF, SV, and KNN 

combinations micro AUC score of 86%. 

 

Figure 58:  The DT and KNN combination ROC plots and AUC scores 

 

Figure 59:  The RF, SV, and KNN combination ROC plots and AUC scores 
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The ROC plots for the best WVE combinations involving four and five classifiers probability 

predictions were obtained in spaces 2 and 3 based on the WVE's accuracy performances. 

Whereby, the GB, DT, RF, SVM, and KNN (Fig. 60), as well as GB, RF, SVM, and KNN 

WVE (Fig. 61) combinations were observed to exhibit an increasing ability towards the 

prediction of correct outcomes with respective micro and macro averages AUC scores above 

90% and 80%, having above 80% AUC score in increasingly predicting correctly all the low, 

medium, and high fertility classes, with these AUC scores being better than those in Viscarra 

Rossel et al. (2010). 

 

Figure 60:  The GB, RF, SVM, and KNN combination ROC plots and AUC scores 

 

Figure 61:  The GB, DT, RF, SVM, and KNN combination ROC plots and AUC scores 
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4.2.6 Comparative Analysis: The WVE vs Individual Models Results 

Figure 62 shows the results of the Overall Optimal 2S-HHEC (that is the developed WVE) and 

individual models results. As compared to individual models, it could be observed that the 

WVE model could predict soil fertility status at performance higher than individual models, 

these results are as excepted as it is the main goal of an ensemble to improve performance over 

its members. 

 

 

Figure 62:  The 2S-HHEC’s (WVE) and learners' performances 

Table 15 provides a comparative analysis between the results of the new WVE model and 

benchmark model accuracy (in percentage) performance comparisons. It could be observed 

that GB, RF, SV, KN, and DT hybrid ensemble committee could achieve an accuracy of 

98.93%, a score higher by approximately 1% than the result of authors in Jayalakshmi and  

Savitha (2022). However, it could be observed that, both the new model and benchmark had a 

Kappa score close to one, indicating that both models had a good interrater reliability indicating 

high agreement, although the benchmark has 1%  higher as much agreement than the new 

model. 
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     New Model(s) Benchmark(s)  

       Weighted voting Bagging Boosting  Stacking   

 GB,RF,SV,KN,DT GB,RF,SV,KN TreeBag RF C5.0 Gbm LR KNN CRT SVM  

Accuracy 98.93 93.98 94.4 96.3 98.15 92.95 73.82 78.43 73.25 92.22  

Kappa 93.9 87.2 88.06 92.24 94.9 76.98 48.01 30.58 19.5 79.36  

AUC (Micro) 92 92 - - - - - - - -  

AUC (Macro) 83 83 - - - - - -  -  
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Visual display of the model performances as compared to benchmark1 by Jayalakshmi and 

Savitha (2022) is shown in Fig. 63. 

 

Figure 63:  Visual display of the model performances as compared to benchmark 1 

The ROC AUC of the new model in comparison with benchmark2 work by Rossel et al. (2010) 

are in displayed in Fig. 64. From that ROC analysis plot, it could be observed that the new 

model is above reasonably performing well with an increasing ability to provide correct 

predictions for the respective target soil fertility classes low, medium, and high classes, all 

showing to be above 0.5 cut point as shown in Fig. 64 which indicates that the model is 

extremely far from randomly guessing of predictions and performs reasonably well in correctly 

predicting each of those classes with actual AUC values of 0.87, 0.83 and 0.82. 
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Figure 64:  The ROC curves for the proposed model as compared to benchmark 2 

These results had an improvement compared to the authors in  Rossel et al. (2010). Additional 

results of the fertility target class predictions comparisons with benchmark results are shown 

in Figs. 65, 66, and 67 which displays the developed WVE model’s ROC curves 0.87, 0.83, 

0.82 for high, medium, and low fertility statuses or classes, the performance of which is better 

as compared to the benchmark2 model in  Rossel et al. (2010) study which achieved ROC’s 

curves of  0.76, 0.67, 0.65 for high, medium, and low fertility statuses or classes, respectively 

as shown in Figs. 66, 65, and 66. It could be observed the WVE model in this study had ROC 

very close to 1 as compared to results in the bencmakr2 model. Successes in achieving such 

outstanding performance improvement was largely an effort of the automated weighting multi-

precision values generation function which provides weighting values to be exhaustively 

searched for finding the optimal set.  
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Figure 65:  High fertility class prediction ROC curves for the proposed model as 

compared to benchmark 2 

 

Figure 66:  Medium Fertility Class Prediction ROC curves for the proposed model as 

compared to benchmark 2 
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Figure 67:  Low Fertility Class Prediction ROC curves for the proposed model as 

compared to benchmark 2 

4.3 The WVE Model Validation and Utility Evaluation 

The model was run with different unseen soil testing laboratory dataset of 62 samples to predict 

the samples' fertility status and validate the model against the laboratory-based fertility status 

test results as ground truth. Also, the model was run with another different 64 unseen samples 

that were collected from a maize plantation field to obtain predictions to use for 

recommendations of site-specific treatment wherever applicable. This was done before maize 

plantation experimentation to evaluate the utility and validity of the model predictions upon 

adherents to its corresponding or relevant recommendations in helping farmers increase crop 

yields, maize being the case study. These datasets were loaded in the model as batch files by 

using a Streamlit deployment-based interface that was developed in this research for the user-

friendly accessibility of the model. Shown in Fig. 68 is the Streamlit-based interface for batch 

uploading soil properties data files into the model for prediction. The blue and yellow spheres 

depict the respective batch loading menu and input mode, and the obtained results are presented 

in sections 4.3.1. and 4.3.2.  
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Figure 68:  Streamlit-based interface for batch uploading soil properties data file into the 

model for prediction 

4.3.1 Model Validation Results 

Shown in Fig. 69 is a plot displaying the prediction result of just the WVE model (WVE_Preds) 

per sample, indicated in black dots, as well as those of laboratory results (LabTest) alone for 

the same sample, these are indicated by orange white-holed dots. Scenarios of correct 

predictions are indicated by the orange black-holed dots or donuts. Presented in the y-axis 

values of 0, 1, and 2 represent the respective low, medium, and high fertility statuses. It could 

be observed for sample number 1, both the model prediction that the sample had low soil 

fertility, as well as laboratory results read the same, leading to a correct classification, followed 

by samples 2 to 4 being classified correctly as medium. However, sample number 5 was 

classified as low by the VWE model while laboratory results read medium, leading to an 

incorrect classification. Samples number 6 to 16 were again correctly classified by the model, 

while sample 17 tested high in the laboratory, the model classified it as medium leading to an 

incorrect classification.  
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Figure 69:  Plot of the WVE predictions vs Actual Soil Laboratory Test results 
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Eventually, out of the obtained 62 samples, 57 were correctly classified, and 5 were incorrectly 

classified by the WVE model, resulting in 92% correct classification, which is a fairly valid 

percentage with less than 10% of incorrect classification. In general, an overall characteristic 

of medium soil fertility status with dominance of 68% for Njombe, the soil had 24% 

characteristic of low fertility status, while it was inherent with high fertility status by just 8% 

(Figs. 70 and 71 of the respective percentage dominance in numeric and plotted).  

 

Figure 70:  Summary of the soil fertility statuses WVE model predictions on Soil 

laboratory validation by numerical percentages 

 

Figure 71:  Plot of the Summary of soil fertility statuses predictions by WVE model using 

Soil laboratory validation dataset 

 

  



  

121 

 

4.3.2 Model Utility: WVE Model Predictions for Maize Plantations Field Grain Yields 

Experimentation Results 

This section presents the results of field experimentation to validate the utility of the developed 

WVE in providing accurate predictions that are significant to support consequent soil fertility 

treatments and corresponding management practices as pre-plantation preparation. Whereby, 

fertility statuses for the 64 samples that were collected for the model-based section described 

were obtained following the proposed model prediction of the target fertility class group of 

measurement input values of constituting sample chemical composition. Figure 72 shows a plot 

of fertility status prediction results in percentage for the 64 batch samples of the model-based 

study section, where each prediction target of the sample was obtained for the 64 samples. As 

could be seen from Fig. 76 of the percentage-wise proportions of the predicted samples in the 

model-based study section, the samples were predicted approximately 47% lowly fertile and 

42% medium fertile, and 11% high, the lowly fertility samples were highly treated using NPK 

fertilizer, and urea, and managed intensively throughout the experimentation process, those 

predicted medium fertility were moderately treated and managed, while those with high where 

not treated but only managed through appropriate monitoring until the harvest in each study 

section were obtained and weighted in tons for each of the section’s 64 blocks. 

 

Figure 72:  Percentage of soil fertility status constituents in the 64 model-based 

predictions section samples 
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As shown in Fig. 73 displays the harvest in tons for the 64 blocks for each study section. It 

could be seen that the model-based harvests were unnoticeably slightly higher as compared to 

a basic blanket, while as expected it was extremely higher than adhoc control based plantation 

harvests.  

 

Figure 73:  Plot of the percentages of predicted samples 

Table 16 presents the total harvest tons amounts of maize per quarter by the study section, 

whereby, a total of 3.276 tons of maize were harvested in the 1-acre experimentation farmland. 

As compared to 4 tons per acre average harvest amounts for standard maize plantation 

experimentation, it could be noted that the total harvest of 3.276 tons is approximately 1 ton 

less and that could be explained by the fact that some of the deficit could have been due to the 

involvement of the Adhoc based soil fertility management results of 1.740 tons which must 

have significantly lowered the total yields in the conducted maize plantation experiment. 
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Table 15:    Total harvest tons amounts of maize per quarter by study section 

 1st Qtr 2nd Qtr 3rd Qtr 4th Qtr Total E.1A 

Modal based 0.394 0.381 0.379 0.373 1.527 4.581 

Adhoc control 0.143 0.150 0.145 0.142 0.580 1.740 

Basic + blanket 0.271 0.297 0.290 0.311 1.169 3.507 

Total 3.276   

As it can be seen from Fig. 74 of the percentage-wise proportions of the total harvest in each 

study section, harvest results of the model-based predictions information application were 

worthy, with a total of 1.527 tons harvested in the four-quarters of one-third of an acre, an 

amount which is 46% of the total amount harvested in that acre with the other remaining 54% 

being a constituent of the other non-model based section, 0.580 tons (18%) from adhoc 

controlled, and 1.169 tons (36%) from basic recommendations based.  

 

Figure 74:  Percentage-wise proportions of the total harvest in each study section 

Figure 75 displays the harvest in each study section, the total, and extrapolated to the 1-acre 

standard harvest amount in tons, i.e. for each one-third study section multiplied by 3 to form 

the extrapolated 1-acre harvest value (E.1A). Experimentations total maize grain yields or 

harvest results in tons per acre. As such, given everything remains constant and assuming the 

model-based procedures application across the remaining two-thirds of the farm to cover the 
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entire 1-acre farmland, we could assume to extrapolate the model-based harvest results in the 

one-third experimented onto an acre productivity estimate of 4.5 tons harvest (4.5 tons per acre) 

which is above the standard benchmark of average harvest amounts in similar maize plantation 

experimentation studies, and also it is above the average global maize production capacity of 

4 tons per acre (Kipkulei et al., 2022). 

 

Figure 75:  Harvest in each study section, totals, and extrapolation on an acre 

4.4 Discussion 

This research aimed at developing a high-performance soil fertility status prediction voting 

machine learning ensemble model using brute exhaustive optimization in automated 1EXP(-

)Z+ multi-precision weights of hybrid classifiers for reliable prediction of agricultural soil 

fertility status using the optimal number of class targets. The ensemble was developed using a 

WVE scheme that combined individual base model class probability predictions using optimal 

weighting values that were found with brute optimization in novel 1EXP(-)Z+ based search 

spaces presented as weights coefficients matrices. In the beginning, while varying fertility 

statuses have been presented in previous studies, in this research an optimum number of three 

fertility targets low, medium, and high which are termed as classes were detected from soil 

chemical data by the automatic knee detection method. Positive test results were obtained 

following an analysis of variations (ANOVA) using the Tukey HSD test on the formed target 

clusters, which means the formed fertility clusters as targets are stably different. These of which 

were modeled by the K-means algorithm to obtain a labeled dataset which was consequently 

used as part of the overall heuristic to implement hybrid classifiers that were further combined 
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through an ensemble voting mechanism following weighted class probabilities prediction 

thereof. These results conform with the target classes used in previous studies by Chaudhari et 

al. (2020), Escorcia-Gutierrez et al. (2022), Kumar et al. (2019), and Rossel et al. (2010) who 

also used the same number of targets, that is three (3) classes to model classifiers for predicting 

soil fertility status. On the other hand, these results were different from Azhakarsamy and 

Sathiaseelan (2018), and Jayalakshmi and Savitha (2022) who used only 2 classes low and 

high. Also, the results were different from Bhuyar(2014) and Gholap et al. (2012) who used 

six (6) classes very low, low, medium/moderate, moderately high, high, and very high. Last 

but not least, these results also deviated from those by Manjula and Djodiltachoumy (2017) 

who used five (5) target classes very high, high, medium, low, and very low. 

In addition, the brute exhaustive search-based WVE optimization procedure developed in this 

research finally came out with one robust ensemble model that could significantly improve the 

overall predictors’ performance of the resultant solution model as a result of weighted voting 

the individual base learners’ class probability predictions using appropriate weight coefficients 

for each base leaner, to form the final weighted voting ensemble of heterogeneous hybrid data 

manipulation based hybrid predictors. In this study, the proposed resultant WVE model 

solution improved the soil fertility status predictive performance of the individual base model 

as expected. It could be observed that the obtained WVE model achieved a predictive accuracy 

of 98.93% which outperformed all of its base models whereby the maximum accuracy of its 

members was by gradient boosting hybrid with 93% accuracy. Also, as observed from the 

comparative results in Section 4, the proposed WVE model outperformed published benchmark 

model performances from previous studies. This is affirmed by comparing with one of the best 

soil fertility status predictive model performance results in the study by Jayalakshmi and 

Savitha (2022) which could achieve an accuracy of 98.15% which is approximately 1% less 

than the model in this study. Furthermore, the low, medium, and high ROC-AUC results of the 

WVE model developed in the study outperformed those in previous studies in predicting the 

different fertility class targets. For instance, the ROC-AUC model results in a study by Viscarra 

Rossel et al. (2010), attained areas under the curve of 65%, 67%, and 76%, for respective low, 

medium, and high target classes, which are less than those of the WVE results in this study that 

are 82%, 83%, and 87%, respectively. As such, this shows that the model solution presented in 

this study can reliably be used to predict soil fertility status at high performance for practical 

application with appreciable model operating characteristics. Last but not least The 

development herein, technical ascertaining as observed by the experimental results of the 
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model solution developed in this study suggested results that showed criticality of searching to 

find that optimal WVE with not only minding of the weights to be assigned to individual base 

experts but also in their diversities, such that the solutions subsets must comprehensively 

account for all possible ensemble diversities as it is being gradually expanded to involve 

additional expert(s) that may be of more significance in improving the VWE performance. 

On the contrary, the resultant ensemble experts if selected subjectively without a fair elective 

search procedure that is designed to account for all other possibilities at hand, may end up with 

wrong results such as those observed with the VWE constituting of KNN and DT with 

respective weighs. Whereby we could see the resultant WVE ROC were sharply just around 

the 0.5 cut point, which signified that the ensemble was highly guessing as previously stated, 

and it is a wrong or bad model with probably a local optimal WVE configuration set to use 

with those particular prescribed base models with the prescribed weights. Unlike Jayalakshmi 

and Savitha (2022) who used homogenous ensembles, the use of a diverse ensemble base 

models was also suggested by Löfström (2015), Melville and Mooney (2003), and Rame and 

Cord (2021), where it was asserted that the use of heterogeneous classifiers to form an ensemble 

could be a best practice in attempts to capitalize on their strengths which may have significant 

effects in having better overall predictions as some base models could be weak in predicting 

particular classes while could be very strong in predicting other targets classes. 

Furthermore, concerning the optimization technique, in this research, the results of the 

developed novel 1EXP (-) Z+ based arithmetic sequences multi-precision weights coefficients 

values matrix formulation algorithm were noticeably promising, the algorithm did manage to 

execute at a reasonable hardware computational complexity whereby it utilizes a fair discharge 

of memory and computational time, in turn, to provide arithmetic sequences based values using 

a WVE weights domain constraint asymptotic arithmetic series closed loop function, such an 

exploration which is previously nowhere to be seen. The brute exhaustive search finally used 

the proposed algorithm’s function-generated values in the form of weights coefficients as 

search spaces to execute the brute search procedure to find the optimal WVE that was the most 

favorable soil fertility status prediction model with high accuracy performance.  

The proposed VWE model provided an outstanding percentage correct classification of 92% 

on soil laboratory-based dataset of known sample's fertility status test results from the Njombe 

region. A general inherent medium soil fertility status was observed from the soil samples, with 

68% dominance, 24% characteristic of low fertility status, and just 8% high fertility status 



  

127 

 

characterized. This does not conform to the majority of the fertility characteristic landscape 

previously observed in this research for the general modeled Tanzania soil data herein this 

study, whereby results indicated to be lowly fertility characterized. Therefore, these different 

Njombe results entail some of the regions do not have low soil fertility status, as it could also 

be seen from Mbeya’s results, most of the landscape is highly fertility characterized.  Finally, 

but not least, the proposed WVE model predictions were found to be useful for providing soil 

fertility status predictions which could assist in decision-making on site-specific appropriate 

remedies and management practices to apply in different farm field blocks as it could accurately 

predict soil fertility status, this predictive information of which could later on be valuable in 

the determination of locations with low and medium fertilities statuses suggesting that high 

treatment and subtle management practices need be applied in the former while moderately 

they should be applied in the later with medium fertility statuses. Such practices were similarly 

suggested by Gholap et al. (2012) and Manjula and Djodiltachoumy (2017). Eventually, this 

could highly make it possible to obtain improved maize grain yields productivity as shown in 

Fig. 76 for the comparison of the extrapolated 1-acre maize harvest value with the Tanzania 

2019-2020 Agricultural year in tons per acre, in Tanzania Mainland. 

 

Figure 76:  Comparison of the extrapolated 1-acre maize harvest value with the Tanzania 

2019-2020 Agricultural year in tons per acre, in Tanzania Mainland 
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Generally, the improved maize grain yield results obtained from the study’s field 

experimentation suggest that the model could highly be used to improve food productivity to 

ensure food security. Whereby more cohesion could be achieved through the proposed model 

implementation as part of the global’s smart food production system. 
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CHAPTER FIVE  

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this research, a high-performance soil fertility status prediction was developed and evaluated 

by using an optimal number of class targets through a weighted voting ensemble model that 

was developed through brute optimization in a novel weights domain constrained optimal 

1EX(-)Z+ initial term-based arithmetic sequences initialization function for generating multi-

precision weights coefficient matrices as search spaces. The proposed novel 1EXP(-)Z+ initial 

term-based arithmetic sequences multi-precision search spaces generation algorithm exhibited 

a mathematical validity to the WVE weights domain constraints algorithm as it portrayed an 

infinity with affinity asymptotic optimality within its boundaries. The search spaces 

formulation algorithm could effectively formulate multi-precision search spaces which could 

be used as part of a brute exhaustive search procedure to find appropriate weights 

configurations sets for soil fertility status prediction WVE. Whereby, ninety-four million (94 

000 000) possible values were formulated in the stable search space 2 whose sequence initial 

term value is 0.01, with 100 values as search space weights points. Later, by using four (4) base 

models and the WVE weights domain constraints, these could be reduced to one hundred thirty-

three thousand nine hundred and ninety-two (133 192) candidate base members vs weights 

combinations where the GB, RF, SVM, and KNN optimal WVE solution could be found at 

94% prediction accuracy, 83% macro AUC average score, and 92% micro AUC average which 

was 6% higher than a previously obtained RF, SV and KN WVE combination at micro AUC 

score of 86%. Nevertheless, due to massive computational requirements that prematurely halt 

execution in search space 3 using Core i8 hardware with 64 GB RAM, with independent 

processing of the partially logged combinations to find a combination of weighted voting GB, 

DT, RF, SVM, and KNN classifiers ensemble with an accuracy score of 98.93% and Cohen 

Kappa 93.9% on test data was found to be the best alternative. This model could reliably predict 

each target class at respective 87%, 83%, and 82% for high, medium, and low fertility classes 

ROC-AUC scores.    

In addition, field experimentation results showed that the model-based application could results 

in high maize yields with 1.5 tons in one-third of an acre, with a probable estimate of 4.5 tons 

in an acre, which is a harvest amount above the global maize production per acre, such that we 
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term it that our proposed model solution achieved both laboratory-based test simulation results 

as well as in the significance of its model predictions towards providing useful accurate optimal 

information about soil fertility status of various agricultural field block, in such the right 

interventions related to the provision of required remedy dosages were it applies could be made 

before plantation, and the observable results of the maize grain yields as a case study were 

noticeably good as previously demonstrated. 

The research findings are summarized as follows:  

(i) The optimum number of soil fertility target classes, which were observed to have a high 

distribution of low soil fertility characteristics (s), these being a fact also previously 

coined in several studies about the situation of soil fertility across agricultural lands in 

Africa being at stake, such that this suggests that soil treatment before plantation and 

appropriate management needs be performed per a definite distanced farm fields 

proximity sites following a thorough analysis such as the one we presented in our 

solution. 

(ii) A design for modeling soil nutrients modeling through heterogamous hybrid WVE for 

the reliable prediction of soil fertility at high accuracy and ROC performances, as 

described in Section 4, is crucial in the implementation of a reliable soil fertility status 

ML model. The implementation of this design of which presented very outstanding 

results of performances higher than key benchmark published results of the same ML 

tasks. 

(iii) It was also found that the 1EXP (-)   Z+ function is asymptotic to the WVE weights 

domain constraints. As such it can well be used to effectively implement an automated 

algorithmic procedure for WVE optimization with attainable computational complexity 

with both asymptotic analysis and H/W clock cycles by using algebra arithmetic 

sequences and matrices to represent the search spaces as variable weights coefficients 

values. 

(iv) The study also found that search spaces that are to be comprehensively searched 

through to find optimal configurations set are indeed very significant to the overall 

optimization of the weighted voting ensemble model using brute exhaustive search 

technique, let alone the diversities of the involved members.  As such the fact stays that 

these spaces as well as heterogeneity are amongst the factors that highly may lead to 



  

131 

 

high-performing ensemble models through WVE implementation. As it could be seen 

a homogenous set of C.50 model was underscored by our proposed heterogeneous 

WVE model that was optimized in well-thought-of search spaces. 

(v) Likely, as the research implemented a generalized WVE model, it could be observed 

how at certain individual configurations thresholds could drop the performances upon 

analyzing the candidates' ROC we could observe a highly guessing and WRONG 

model. This might suggest versioning to a more non-generalized WVE implementation 

which accounts for both the members’ hyperparameters and the WVE weights 

themselves. 

5.2 Recommendations 

As a recommendation to the government and corresponding agricultural entities, to make better 

use of the proposed model solution and results in this research to achieve smart soil fertility 

management. The government can also develop policies for the use of the model as part of the 

agricultural inputs subsidization. In turn, all this may facilitate sustainable agricultural 

intensification through precision agricultural provision system model(s) for the determination 

of site-specific soil fertility status deficiencies. Especially in these regions of Africa where it 

was since long been declared by Smaling et al. (1997) to be highly at stake. Additionally, this 

will suffice as a good response to the united nations' demand for developing technological 

solutions for a smart global food production system to improve food productivity and ensure 

food security through sustainable and digital agriculture (Jin et al., 2019; United Nations, 

2023). While, the challenges encountered in the implementation of machine learning and data 

science initiatives include language and cultural impediments, insufficient financial resources, 

suboptimal internet connectivity, and restricted availability of reliable and all-encompassing 

data. To address these challenges, the government must allocate resources towards data 

collection, network enhancements, computing infrastructure, and the promotion of education 

and training to cultivate local experience. Furthermore, the presented weighted voting 

ensembles model could be deployed for use by soil testing laboratories and farmers for them 

to gain a better understanding of farm fertility conditions. This will be achieved through cost-

effective and timely accessibility to accurate soil fertility status predictions, this which may 

lead to the application of both site-specific and fine-tuned fertilizer dosages, as well as the 

appropriate management interventions necessary to ensure sustainability in soil fertility 

management as a key to sustainable agricultural intensification for ensuring food security for 
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the world population growth, which is estimated to reach 8 billion people by 2030, and 10 

billion by 2050 (FAO, 2018). Finally but not least, Data scientists and ML engineers that aim 

to apply the WVE ML models performance improvement technique can use the 1EX (-) Z+ 

initial term-based arithmetic sequences initialization function-based brute search algorithm that 

is developed in this research, for generating multi-precision weights coefficient matrices as a 

benchmark to effectively optimize ML WVE prediction models from various other domain 

such as medicine, just with slight adjustments of the resultant models ROC analysis cut point 

implementations to address the sensitivity of the particular domain. Nevertheless, while the 

developed algorithm can be used to significantly improve models performance by guaranteeing 

optimal solution finding, it cannot be applied to optimize very large WVEs, instead it should 

only be used in the context of smaller sized ensembles optimization. And, in order to reduce 

computational times, the created combination can be logged into caches for re-use, while also 

considerations for their implementation in ML WVE models optimization for tasks such as 

prediction of crop diseases or even medical related drugs discovery can be a useful 

consideration. 

Future work may be to:  

(i) To develop a soil fertility status prediction model that incorporates available weather 

and climatic parameters benchmark data to learn more uncertainties that may have 

inherent featured effects of soil fertility.  

(ii) And also to deploy the developed model through a cloud-based environment with 

support for the user’s front-end graphical interface, such as streamlit application-based 

deployment, for use in real-time soil fertility status prediction and fertilizer 

recommendation applications by farmers and relevant government and agricultural 

agencies. 

(iii) To conduct experiments for improving the efficiency of the proposed algorithm. 

Possibly exploring the implementation of the algorithm in a quantum computation 

implementation to capitalize on the rich qubit structure magic qubit combination as a 

key to represent the massive information from the developed 1EXP (-) Z+ based brute 

exhaustive search technique, of which might also set provisions for accommodating 

more base experts to have much larger WVEs. And also to apply the developed 1EXP 

(-) Z+ based brute exhaustive search technique to optimize weighted voting ensemble 
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models for improving the performances of different ML classification tasks for other 

domain-specific problems such as medicine and finance.  
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Appendix 2:     Python code for Fertility Index Derivation 
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Appendix 3:     Python code for Base Models Evaluation 
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Appendix 4:     Python code for 1EXP (-) Z+ Initial-Term Based Arithmetic Sequences 

formulation and weights coefficients generation function algorithm 
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Appendix 5:     Python code for the complete WVE brute exhaustive Optimization module 

 

 
  



  

160 

 

Appendix 6:      Python code for ROC Analysis 
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Appendix 7:     Python code for the WVE optimization data loading and Main Module 
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