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ABSTRACT 

In the 2015 Paris Agreement, 195 countries adopted a global climate agreement to limit the 

global average temperature rise to less than 2°C. Achieving the set targets involves increasing 

energy efficiency and embracing cleaner energy solutions. Although advances in computing 

and Internet of Things (IoT) technologies have been made, there is limited scientific research 

work in this arena that tackles the challenges of implementing low-cost IoT-based Energy 

Management System (EMS) with energy forecast and user engagement for adoption by a 

layman both in off-grid or microgrid tied to a weak grid.  

This study proposes an EMS  approach for short-term forecast and monitoring for hybrid 

microgrids in emerging countries. This is done by addressing typical submodules of EMS 

namely: load forecast, blackout forecast, and energy monitoring module.  A short-term load 

forecast model framework consisting of a hybrid feature selection and prediction model was 

developed. Prediction error performance evaluation of the developed model was done by 

varying input predictors and using the principal subset features to perform supervised training 

of 20 different conventional prediction models and their hybrid variants. The proposed 

principal k-features subset union approach registered low error performance values than 

standard feature selection methods when it was used with the ‘linear Support Vector Machine 

(SVM)’ prediction model for load forecast. The hybrid regression model formed from a fusion 

of the best 2 models (‘linearSVM’ and ‘cubicSVM’) showed improved prediction performance 

than the individual regression models with a reduction in Mean Absolute Error (MAE) by 

5.4%.  

In the case of the EMS blackout prediction aspect, a hybrid Adaptive Similar Day (ASD) and 

Random Forest (RF) model for short-term power outage prediction was proposed that predicted 

accurately almost half of the blackouts (49.16%), thereby performing slightly better than the 

stand-alone RF (32.23%), and ASD (46.57%) models. Additionally, a low-cost EMS smart 

meter was developed to realize the implemented energy forecast and offer user engagement 

through monitoring and control of the microgrid towards the goal of increasing energy 

efficiency. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

The fast-rising world population has become a cause for concern in energy availability and 

resources as electricity utility companies try to keep up the pace and catch up with consumers’ 

energy demand. More than ever before, the demand for more responsible and prudent energy 

use is crucial; especially in light of worsening climate change effects partly linked to heavy 

energy generation through fossil fuels. To this effect, emerging countries stand to benefit from 

the deployment of Energy Management Systems (EMS) and pick up the pace with initiatives 

similar to high-income countries towards Smart Grids. The EMS can go a long way in 

increasing the energy efficiency of microgrids as well as help utilities and consumers save 

money by optimizing operations of the invested energy sources to their full potential and 

lifespan. Continuous, cheap, and reliable electric energy is considered a vital impetus for 

economic development (Soliman & Al-Kandari, 2010).  

Although electricity is a necessity in today’s world, many countries in the developing world 

have limited access to it. This is especially so in Africa. Taking Tanzania as an example: In the 

2012 census, only 17% of households had access to electricity 70% of which were urban 

residences and only 5.3% of rural households had access to electricity (National Bureau of 

Statistics, 2013). The geography, and cost required for the national grid to reach these villages 

deter any fast attempts to remedy the situation. A more promising solution has been to promote 

rural electrification through renewable energy (IEA, 2014). Despite their numerous 

advantages, renewable energy grids are often affected by intermittency. In most cases, these 

can be resolved by installing storage systems (Dinh et al., 2020). 

Energy Management Systems (EMS) is expected to be one way of increasing energy 

availability while minimizing generation costs, and environmental hazards (Balatsky et al., 

2015). The EMS is a system that leverages soft computing to monitor and enhance energy 

generation and utilization (Serna-Suarez et al., 2015). The EMS toolkit usually includes the 

following important organs: A forecasting module that may involve a Load Forecast (LF) and 

Blackout Forecast (BF), a reporting mechanism or energy dashboard, and an energy storage 

management module (Zafar et al., 2020). Microgrids require substantial financial investments 

which stand to benefit from a cost-effective EMS to be long-lasting. However, studies on EMS 

for emerging countries are limited. 
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Considering LF,  an important EMS module; it has remained relevant since the inception of the 

electric grid. Failure to perform LF may cause substantial financial losses to the electric utility 

operators as well as dismay customers. The LF is a problem of determining future electricity 

consumption from current and past time series consumption data taken at a sampling rate of 

either seconds, minutes, hours, days, months, or even years; depending on the forecast horizon 

– whether it's short-term, medium, or long-term. Load demand forecasting is vital for power 

system operations such as unit commitment, maintenance and expansion planning, electricity 

market operations including ancillary services, and spinning (rapid) reserves (Ghiasi et al., 

2018). Accurate LF provide useful information on required resources and materials such as 

fuels required to operate the generating plants as well as other resources ensure uninterrupted 

and profitable generation and distribution (Anwar et al., 2018). In most cases, the target of LF 

is to minimize the total cost of power generation while meeting electricity load demand. Most 

electric grid networks are aging with the lifespan being extended; accurate load forecasts 

become crucial (Hong & Fan, 2016). Due to environmental concerns, policymakers are 

advocating the penetration of more Renewable Energy Sources (RES) into the grid, therefore, 

adding to the need for accurate load forecasts.  

Despite modern power systems being more complex on account of RES and electric vehicles, 

advances in computing and the large-scale rollout of smart meters and sensors in high-income 

countries resulted in the collection of vast amounts of grid-related data required by Artificial 

Intelligence (Ai) and Machine learning forecast algorithms (Abera & Khedkar, 2020; Oprea & 

Bara, 2019a; Zhou & Brown, 2017). Electric power systems in emerging countries, 

specifically, in sub-Saharan Africa (SSA) are lousy and stand to benefit from load forecasts 

since the installed generation capacity is typically small to meet growing demand. Although 

load forecast is critical to grid operations as already mentioned, there are few studies in the 

literature on load forecast and blackout forecast in emerging countries especially African 

countries.  

Most emerging countries in the SSA suffer from frequent blackouts, most times than not these 

blackouts result from load shedding by the utility grid operators. When there is a shortage of 

generation power some customers get disconnected from the grid. Blackouts may also be due 

to natural disasters or failure of some equipment in the grid due to poor maintenance. Blackout 

forecasts help utility companies to take measures in advance of containing an imminent 

blackout. A blackout forecast can act as an early warning to end users to mitigate the effects of 

a power outage including making arrangements for alternative backup power and shifting loads 

(activities) to the time when power is available. A blackout forecast may assist in battery 

management strategies such as ensuring batteries have enough charge prior to the blackout. 
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Therefore, a useful EMS will study consumer energy usage habits/patterns to make future 

predictions (load forecast) whereas the desire to know electric power availability or supplier 

generation patterns results in a blackout forecast. In a way, LF and BF are two sides of the 

same coin addressing power demand and availability. The work by Gou and Wu (2008a), 

addressed prediction of only cascading blackout and the inherent challenges. Kogo et al. 

(2014), Performed a demand-side blackout forecast using only a similar days approach for 

persistently scheduled blackouts in emerging countries. In the study by Nateghi et al. (2014a), 

the authors conducted a blackout forecast focusing only on hurricane-induced blackouts in a 

mature grid. In the same vein, the authors Papic and Ciniglio (2014), conducted a study focused 

on the prediction and prevention of cascading blackouts using a mature grid case study. 

Majority of the works on blackout focus on the analysis of cascading blackout causes, 

aftermath, and prevention (Alkar et al., 2019; Bo et al., 2015; Papic et al., 2018; Rahman et 

al., 2016; Sforna & Delfanti, 2006). 

An indispensable element of EMS is reporting via an energy dashboard or Graphical User 

Interface (GUI) either to the operator or consumer. Smart meters have been instrumental in this 

aspect; they record consumers' power usage at many intervals per day and can be accessed 

remotely, this being a sharp contrast to the classical meters which were read manually say once 

a month. Thanks to IoT, data from smart meters can be displayed to end users thus raising 

awareness and promoting energy efficiency. Modern lifestyle has seen smartphones go from 

luxury goods to life necessities with people becoming inseparable from their internet-connected 

smartphones. Smartphones have also received wide adoption even in emerging countries. This, 

in turn, is creating an opportunity to engage more users in an EMS scheme aimed at increasing 

energy efficiency through raising awareness of energy consumers and promoting responsible 

energy usage. In effect, several researchers have attempted to integrate a combination of IoT 

devices as part of Demand Side Management (DSM) and smart meters for monitoring and 

control applications in EMS. The positive effect of energy usage monitoring and reporting 

should not be undervalued or easily dismissed, as it shapes habits; habit drives consumption. 

Energy savings due to EMS energy dashboards and smart meter compounds. 

As it is also common practice to mix renewable energy and non-renewable energy, which 

requires an EMS to optimize and efficiently manage the amount of energy generated and stored 

(Serna-Suarez et al., 2015). There is always room for improvements in load forecast and 

blackout forecast algorithms. There is a specific direction for potential improvements in the 

spread of errors, interpretability of errors; enhancing the simplicity of the forecasting process 

by reducing the requirement of resources (data, hardware, and labor) this will be attractive from 

the business vantage point (Hong & Dickey, 2015). This research aims at developing an EMS 
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for hybrid microgrid energy systems based on multiple energy sources: renewables and non-

renewable, storage, and user loads. The focus will be on LF, BF, and user engagement aspects 

of the EMS.  

Granted, there may be no single panacea EMS for rural and low-income countries scenarios 

due to the uniqueness of various regions; this dissertation attempts to develop an EMS that 

takes into account that low-income regions may not have required financial resources for large 

renewable systems and that if these renewable power systems are installed, they may be 

connected to unstable grids plagued at times by frequent power outages. So far, there have been 

few works on LF and BF for low-income countries, especially in the SSA region. The research 

presented in this dissertation aims at filling the above. 

1.2 Statement of the Problem 

The majority of people in rural areas lack the technical expertise to handle and care for the 

installed sophisticated and expensive microgrids, thus, prompting EMS inclusion in hybrid 

microgrids for efficient and optimum energy management which also eliminate human error. 

On top of that, if RES systems are opted, they are usually small-sized solar-based with Lead-

acid battery technology (which has less energy density than Lithium battery) due to financial 

limitations. Therefore, an EMS system becomes necessary to maximize the installed system’s 

throughput. Submodules of EMS may include load forecast, blackout forecast, and energy 

monitoring module. There is no perfect short-term load forecaster (Hong & Fan, 2016). 

Research shows that there is room for improvements in the accuracy of forecasting models, 

which are also influenced by the geographical location of microgrids (Martínez-Álvarez et al., 

2015; Su et al., 2017). 

 In recent years, there has been numerous advancement and discovery of new bio-inspired AI-

based forecasting algorithms which have been found to have better performance than 

statistical-based models (Alkhathami, 2015; Shi & Li, 2017). Ensembled or hybrid models are 

the current hotspot of forecasting research since they result in higher accuracy and performance 

(Takiyar & Singh, 2015; Khann et al., 2016). In the open literature, there have been few or no 

works on EMS load forecasting models studies for developing countries with hybrid islanded 

microgrids or microgrids connected to unstable main grids such as is the case in Tanzania 

(Ainah & Folly, 2015; Mir et al., 2020; Williams, 2017).  

Weak grids of low-income countries are plagued by more frequent blackouts than mature grids 

of high-income countries, however, there are few works on the matter, in fact, works on 

blackout forecast are fewer than works on load forecast. There is a research gap in demand-



5 

side blackout studies. Microgrid investments initiatives may consist of relatively complex and 

expensive components, and if coupled with load forecast, blackout forecast, and battery 

management the sophistication increases significantly, therefore, it is necessary to put in place 

an EMS energy monitoring and dashboard that gently interacts with a layman despite the 

sophisticated algorithms running behind the scenes, one that can in effect act as a microgrid 

management coach, trainer or digital assistant. In turn, this can contribute to the realization of 

the full potential and lifespan of the installed microgrid apparatus consequently averting the 

grid’s premature collapse. This gap beckon to be bridged. 

1.3 Rationale of the Study 

Electricity is a driver of society's prosperity and livelihood. However, it’s a costly affair to 

operate reliably quality electricity. A good analogy to the electricity business industry is the 

restaurant business, whereby just the right amount of food needs to be produced to satisfy 

incoming customers. Underproduction of food results in loss of revenue, while overproduction 

is problematic, resulting in more investment in refrigeration units.  Likewise, for profitability, 

it’s essential to maintain an equilibrium between electric energy generation and demand. 

Therefore, load forecasts and blackout forecasts have to be made in advance by EMS to 

mitigate losses. Load forecasts are vital for electric power planning, which may also involve: 

managing generation capacity, scheduling, peak reduction, and market evaluation. Electric 

energy forecast is a moving target, due to consumers evolving lifestyles, technological 

advancement, shift towards electric vehicles, population growth, and climate change. All these 

factors continue to influence electric energy forecast while incentives and room for improving 

forecast accuracy exist.  

Some regions in SSA have utilities operating in a black box manner, with limited or no grid 

information available to the end user. Electric energy consumers in emerging countries are 

usually forced to have electricity backup systems since they are affected by frequent power 

outages. The outcome of the blackout forecast could be used in the implementation of a battery 

management system strategy that ensures an adequate state of charge (SoC) when a blackout 

is imminent and allows the battery to fully discharge when a blackout occurrence is unlikely. 

Consequently, money could be saved if batteries are not oversized, and the SoC is optimized 

with respect to blackout forecast output. The blackout forecast in this study could also be useful 

to the utility for load shedding and demand side management applications.   

In the literature, studies on blackouts have not been fully exhausted. There are limited works 

on blackout forecast studies for emerging countries' scenarios. Emerging countries' power grids 
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give an interesting research study focus because they are weak, still evolving, and are typically 

characterized by frequent disturbances as opposed to mature grids of developed countries. 

Moreover, due to scattered settlements in emerging countries like Tanzania, it is not feasible 

yet for the national main power grid to reach all communities, therefore, most emerging 

countries embark on rural electrification programs which employ hybrid microgrids that in time 

get connected to the main power grid. Consequently, microgrids that connect to the main grid 

have to contend with disturbances in the main grid. This work attempts to address and bridge 

this gap with a blackout forecast model using a case study from Arusha-Tanzania. This work 

studies blackout forecast from the customer’s perspective, at the end user’s side (premise) of a 

weak grid. 

There is a Swahili proverb that may be translated as follows: “Assets or resources with no 

accounting, vanish without a trace”. Electric energy is a precious resource that must be 

monitored and utilized wisely and frugally out of environmental concerns.  Some emerging 

countries including Tanzania have launched and promoted rural electrification campaigns, in 

some areas these involve having hybrid microgrids with different sources of energy including 

renewables. This necessitates incorporating energy forecast systems in the microgrid EMS. 

Low-income countries such as Tanzania did not follow the same path in adopting 

telecommunication infrastructure, it leapfrogged into mobile telephones, for the most part 

skipping landlines interconnectivity. Similarly, as microchips and sensors continue to decrease 

in cost, researchers must conduct case studies in low-income countries on low-cost EMS smart-

meter technologies in order to get the ground truth and the right solutions that work in low-

income countries setting. This study strives towards that aim; Thus, this study is not only 

important to the scientific community but also the electric power consumers and distributors in 

the emerging countries’ weak grids as well as stakeholders in mature grids. 

1.4 Research Objectives  

1.4.1 Main Objective  

To develop EMS with electric energy forecasting and energy monitoring, for use in microgrids.  

1.4.2 Specific Objectives 

(i) The identification of machine learning techniques suitable for EMS in hybrid 

microgrids. 

(ii) To develop a short-term load forecast model for use in emerging countries' microgrids. 
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(iii) To develop a short-term blackout forecast model for microgrids connected to weak 

grids. 

(iv) To develop and implement a practical low-cost EMS system with energy monitoring 

and user engagement. 

1.5 Research Questions 

(i) Given a hybrid microgrid with renewable sources, what is the optimal load forecast 

model required to better manage resources if the microgrid is connected to a weak grid? 

(ii) Given a hybrid microgrid with renewable sources, what is the optimal blackout model 

required to better manage resources if the microgrid is connected to a weak grid? 

(iii) How can a short-term blackout forecast model for microgrids be connected to weak 

grids? 

(iv) How can a practical low-cost EMS system with energy monitoring and user 

engagement be developed and implemented? 

1.6  Significance of the Study 

The main contributions of this research are as follows:  

(i) A load forecast model development framework is presented. The load forecast model 

given is based on K-Features mean score, union, and refined exhaustive search feature 

selection approaches. This work proposes the combination of more than one feature 

selection model to increase performance at the prediction stage of the load forecast 

procedure. Thereafter, applying a grid search algorithm on a set of prediction models 

followed by a fusion of two best performing models based on an error metric such as 

MAE, to form a hybrid model with better performance than the two constituting 

individual models. The hybrid prediction model is formed from the elementwise 

maximum (mean or minimum) forecast instances of two regression models. Quality 

load forecasts save costs in microgrid operations. 

(ii) A power outage short-term prediction model is proposed. The proposed blackout model 

is a hybrid based on the random forest (RF) model and adaptive similar day model 

(ASD) that performs prediction from the consumer vantage point instead of the utility 

standpoint. The blackout short-term prediction challenge was solved as a regression 
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problem as well as a classification problem. The applicability of the model was tested 

using a real case study.  

(iii) Development of a low-cost EMS smart meter and energy dashboard for promoting 

energy use awareness as well as user engagement. The prototype is implemented using 

open-source IoT components and technologies to provide energy monitoring and 

control, visualization, and reporting suitable for low-income countries' scenarios. The 

applicability of the prototype was demonstrated in a real case study. 

1.7 Delineation of the Study 

This study aimed at investigating energy forecast and monitoring modules of EMS in emerging 

countries' scenarios. Electric load forecast methods and power blackout forecast methods are 

discussed using two case studies from Arusha. Additionally, an experimental low-cost smart 

meter and energy dashboard are given. The study uses data from Ngarenanyuki secondary 

school Microgrid based in Arusha-Tanzania which is composed of pico hydropower, PV-

battery system with a backup diesel generator to validate the developed EMS model. The 

school is also connected to the national grid (TANESCO) which is unstable. The study also 

uses data taken from a pico-PV-battery grid-tied system at a pilot site in Levolosi ward also in 

Arusha. Therefore, this research develops EMS suitable for both off-grid and grid-tied 

operating conditions of emerging countries scenarios. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Recent years have seen a continued rise in energy crisis driven by industrialization and 

consumerism which in turn have contributed to the worsening global warming and climate 

change. One way to mitigate the energy crisis and protect the environment has been by 

increasing energy efficiency, lowering the use of fossil energy sources, encouraging renewable 

energy sources (RES), and energy management systems (EMS). This chapter highlights 

machine learning approaches for load forecast, blackout forecast, and viable approaches and 

considerations in implementing EMS in emerging countries. 

This chapter presents a review of EMS concepts relevant to the implementation of microgrids 

in low-income countries and leans specifically towards EMS deployed on the demand side of 

the grid rather than the utility’s side.  To this end, first EMS Demand Side Management (DSM) 

is reviewed to introduce various strategies used to manage energy from the consumer’s side. 

Secondly, selected machine learning approaches adopted by researchers for load forecast and 

blackout forecast are given. Lastly, smart meter and user interaction technologies for EMS are 

reviewed.  

2.2 Energy Management Systems Overview 

Energy management systems is computerized energy dashboard used as a portal to monitor, 

manage, and track electrical energy consumption in microgrids. The EMS help grid operators 

lower operation costs, make a more informed decision, detect anomalies, and also aid in 

planning.  The EMS continues to attract the attention of more research in pursuit of increased 

energy efficiency and optimization. The EMS are vital elements in Smart Grids since 

consumers are increasingly becoming active consumers (prosumers). In the traditional electric 

grid, consumers are oblivious to their wasteful energy usage patterns, this issue is even worse 

in emerging countries. However, smart grids through the use of technologies like Internet of 

Things (IoT) can help raise consumers' energy consumption awareness and boost energy 

efficiency. Smart Grids are characterized with two-way power flow as well as two-way signal 

communication infrastructure. It’s difficult to control or optimize that which hasn’t been 

measured or monitored. Therefore, there is a need to study appropriate technologies for use in 

EMS in emerging countries and rural areas. Load and blackout forecasts are among the key 

organs of EMS. Research works on load forecast and blackout forecast are few, especially for 
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weak grids in emerging countries. The EMS is an umbrella term that may incorporate a 

combination of the following specialized functions or variations: Demand Side Management; 

Battery Management System (BMS); Building Energy Management System (BEMS); Smart 

Home Energy Management System (SHEMS).  

The DSM involves controlling the consumer’s energy use habit or quantity by the utility 

company, in other words, all actions taken at the customer’s premise to lower energy use or 

increase energy efficiency. Traditionally utility companies aim to reduce peak hour customer 

loads to save cost and avoid activating fossil fuel-based generation sources to meet peak hour 

demand. To achieve these various DSM schemes are employed such as: (a) Demand Response 

(DR) through financial incentives (Time of use tariffs - ToU) of having cheaper energy tariffs 

during off-peak periods (valley filling), thus using less energy during peak periods (peak 

clipping); (b) encouraging the use of energy-efficient appliances effectively reducing energy 

used to perform the same task; (x) Distributed Energy Resources (DER). The preceding DSM 

approaches are typically facilitated by monitoring energy use through EMS. Figure 1 shows 

the main aspects involved in DSM. 

 

 

Figure 1:  Demand Side Management components 

Electric loads may be grouped into two categories namely deferrable (controllable) loads or 

non-deferrable (non-controllable) loads; depending on the application they can also be 

household (residential) loads or commercial loads (Afzalan & Jazizadeh, 2020; Moradzadeh et 

al., 2021). At times in microgrids, there may not be enough power to sustain all the loads 

forcing some loads to be disconnected – this is called load shedding. Although load shedding 

is practiced by utility companies and results in blackouts, the concept can still be applied in 

smaller microgrids serving households, buildings, or communities by disconnecting loads 

based on a priority rule (Alahmed & Al-Muhaini, 2020). Under this mode of handling power 
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shortage, critical loads are given priority over non-critical loads. Therefore, all the loads are 

assigned priority levels to help manage the loads during instances when power isn’t enough to 

be allocated to all the loads. Fuzzy logic can be used in decision-making regarding which loads 

to be shed with respect to available power level thresholds (Laghari et al., 2018). Fuzzy logic 

follows generalized Boolean logic with ranges of values. It is useful in applications where 

rough estimates are acceptable. Inputs are simply assigned to a neighbourhood of values 

without needing to be precise. For example, under fuzzy logic, the pressure of a system could 

have five levels, namely very low, low, medium, high, and very high. One of the important 

inputs in EMS for buildings, homes, or institutions is occupancy detection, which then aids in 

load control decisions (Yang et al., 2016;  Zhao et al., 2015; Zou et al., 2017).  

Ngarenanyuki microgrid (one of the sites for this study) has already been described in the 

literature: One study was done comparing AC and DC bus configurations, control strategies, 

reliability, and efficiency before the implementation of the architecture in Fig. 6 (Carmeli et 

al., 2014). Another study reported an overview of the typical configuration and economic 

models of batteries in the off-grid system and describes the application of batteries in the 

Ngarenanyuki school grid experimental project (Mandelli et al., 2015). Carmeli et al. (2015) 

performed an analysis of the school’s actual power supply system prior to deployment of the 

architecture in Fig. 6 as well as a simulation of operations and dynamics of the architecture. 

Mandelli et al. (2015) examined the school’s consumption pattern, the simulation of the 

electro-mechanical operation, and the power flow from generators and loads. Nyari et al. 

(2017) studied the consumption of electrical appliances in stand-by and active operation states. 

A Matlab-based stochastic procedure that allows to generate load profiles of microgrids in 

small communities was developed by Mandelli et al. (2017), and validated with Ngarenanyuki 

microgrid data. Mauri et al. (2016), developed a neural-fuzzy EMS for the Ngarenanyuki 

school grid. Ngarenanyuki microgrid started as an off-grid system up until it was connected to 

the main grid in late 2016.  

2.3 Machine Learning Approaches for Load Forecast and Blackout Forecast 

In accordance with Moore’s law, computational power has seen an exponential increase, along 

with-it propelling advancements in Artificial Intelligence (AI) and Machine Learning (ML). 

AI is a much broader term with ML as one of its subsets. The ML is data-driven. More 

researchers continue embarking on the quest of refining accuracy for the elusive load forecast 

and blackout forecast due to their stochastic nature. This is partly because factors such as 

consumers' lifestyle, population growth, economy, weather, and climate don’t remain static. 

Thanks also to smart meters and IoT platforms, it is becoming easier to obtain the vast amount 
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of unprecedented data (big data) needed to train ML algorithms. However, effective 

management of the power grid is a complex and costly affair demanding adequate electricity 

supply, despite the presence of intermittent RES in the generation mix. This calls for quality 

load forecast and blackout forecast models for proper load demand planning and generation 

scheduling. It can be argued that ML is an art involving heuristics. A forecasting model that 

works well in a given dataset, won’t perform well in all types of datasets or scenarios. 

2.3.1 Load forecast 

No gold standard exists for classifying load forecast techniques (Hong & Fan, 2016). However, 

an attempt could be made to classify Load Forecast (LF) techniques into three broad groups, 

namely correlation (engineering method), extrapolation (data-driven), and a combination of 

both (Nti et al., 2020). Correlation techniques involve performing LF with respect to factors 

related to the economy and demography such as population, HVAC, weather, employment, 

business, building permit, and building structure. Whereas, extrapolation techniques involve 

performing LF estimation based on historical data (time-series) trend analysis (Nti et al., 2020). 

It is also common for researchers to group LF methodologies into classical statistical or 

mathematical models, AI/machine learning models, and hybrid models (Hong & Fan, 2016; 

Vivas et al., 2020). If only historical time-series data is used for LF then it is referred to as 

univariate, otherwise, if other exogenous data such as weather data are included in LF then it 

becomes multivariate (Mir et al., 2020; Vivas et al., 2020). Depending on the target application 

LF can be performed in different intervals or horizons. According to forecasting intervals, LF 

is typically grouped into four groups namely, long-term load forecast (LTLF), medium-term 

load forecast (MTLF), short-term load forecast (STLF), and very short-term load forecast 

(VSTLF) (Hong & Fan, 2016; Mamun et al., 2020). The VSTLF spans a few seconds to a few 

minutes and is used for distribution schedule and generation forecasting applications. The 

STLF covers forecasts from a few minutes up to 1 day ahead for spinning reserves allocation 

and maintenance schedule.  Deregulation of electricity distribution and penetration of RES has 

caused an increase in STLF since daily market prices are affected by RES (Gasparin et al., 

2022). The MTLF usually covers a few days to a few months for seasonal LF planning whereas, 

LTLF covers 1 year to a decade for generation capacity investment growth planning. Generally, 

forecasting error is dependent on the horizon; the shorter the horizon the shorter the forecast 

error (Vivas et al., 2020). 
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Figure 2:  Load Forecast algorithms categories 

2.3.2 Load and Blackout Forecast Model Development Process Overview 

Collected data for load forecast and blackout forecast, initially needs to be pre-processed. Pre-

processing ensures that input data is noise-free and in the correct format. This may involve data 

cleaning through the detection and removal of outliers, data exploration, feature selection, and 

data structure transformation. Data exploration involves visualising data distribution to gain 

useful insights into the nature of the prediction problem in question. Input data may have many 

input variables (features), which may not all be needed to develop an ML model. Since not all 

input variables influence the prediction ability of the model while others are redundant in their 

effect on model prediction. Thus, the need for feature selection. A number of techniques have 

been reported in the literature for feature selection (Eseye et al., 2019; Pourdaryaei et al., 2021; 

Subbiah & Chinnappan, 2020).  

The next stage is to split the dataset into a training set (70% of data is used), a validation set 

(15% of the dataset), and a test set (15% of the dataset). The splitting ratio could be different 

depending on the application. However, reserving some of the data for validation is important 

to avoid the overfitting (bias) phenomena and ensure unbiased generalization of the model 

(Srivastava et al., 2014; Ying, 2019). The test set is used to gauge the trained model’s accuracy. 

At this stage inputs from the test, set are fed into the trained ML model to give out predicted 

outputs that are finally compared with actual output data from the same test set used. The 

difference (error index) between the predicted data and actual (observed/expected) test data is 

computed to decide against retraining, accepting, or discarding the trained model. There is a 

number of performance evaluation metrics used by most researchers in the literature for 

assessing the error index of trained regression models. The topmost error index evaluation 

metrics for regression models are mean absolute error (MAE), mean absolute percentage error 
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(MAPE), mean square error (MSE), and root mean square error (RMSE). Error metrics for 

classifiers are confusion matrix, accuracy score, precision score, F1 score, recall, and receiver 

operating characteristic area under the curve (ROC-AUC) (Keszocze et al., 2018; Singla et al., 

2021; Singleton & Grindrod, 2021). 

Machine learning can either be considered supervised learning or unsupervised learning. This 

stems from the way the algorithm works during training. Under supervised learning, a model 

is supplied with both input predictors as well as the corresponding outputs (targets/labels). 

Unsupervised learning algorithms don’t require labels or targets. Clustering algorithms such as 

the K-means algorithm belong to this category. Generally, most electricity load and blackout 

forecast problems in ML can be solved as either a regression problem or a classification 

problem (Oprea & Bara, 2019b; Madrid & Antonio, 2021; Nystrup et al., 2021). Regression 

algorithms use models that extrapolate ordered continuous output vector (sequence data) from 

the input data, whereas classification algorithm map input variables to unordered discrete 

categorical output (response/label). Figure 3 shows a typical machine learning workflow from 

literature (Bildirici & Özaksoy, 2016; Kim et al., 2020; Mamun et al., 2020; Román-Portabales 

et al., 2021). 

 

Figure 3:  Typical machine learning workflow 

2.3.3 Load Forecast Models 

Principles of LF can also be applied to blackout forecasts as well as other utilities such as water, 

and gas (Hong & Fan, 2016). The ML models have gained much attention in the past few 

decades partly due to advancements in computation power and to optimize the aging electricity 

grids. This section will give an overview of only some of the algorithms most relevant to LF, 

there has been an increase in hybrid ML models in the literature. Usually, in ML, the goal is to 

come up with a relation (model/expression/equation) that maps inputs to corresponding outputs 

(targets). According to Mamun et al. (2020), widely used STLF algorithms are namely Expert 

Systems, Time-Series-based forecast, Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), Regression-Based Approach, Similar Day Approach, and Fuzzy logic.  
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Linear regression models employ a linear relation between a set of inputs to corresponding 

outputs. The goal of the algorithm during model development (training) is to compute 

coefficients and intercept the linear expression governing linear regression (Dudek, 2016). 

Some researchers opt to use multiple linear regression because it can handle the many variables 

in LF (Dhaval & Deshpande, 2020). Logistic regression is based on the logistic (sigmoid) 

function whereby the output is a probability bound between 0 and 1. It is suited for binary 

classification challenges (Fuks & Salazar, 2008; Saxena et al., 2019; Wang et al., 2018). 

Classical statistical LF techniques include grey model (GM), Kalman filtering, and exponential 

smoothing (ES). Classical models also include the Box-Jenkins models namely autoregressive 

models (AR), autoregressive moving average (ARMA), autoregressive-integrated moving 

average model (ARIMA), and autoregressive-integrated moving average model with 

exogenous inputs (ARIMAX) (GeP et al., 2008; Hammad et al., 2020). These were the first 

breed of models to be employed during the early days of LF. The main weakness of the 

aforementioned classical LF techniques is that they assume the observed system to be linear. 

ML models such as artificial neural networks (ANN) or simply neural networks (NN), support 

vector machines (SVM), and decision trees have gained much attention because they are more 

suited for non-linear challenges like LF. In Mbuli et al. (2020), authors performed an overview 

of decomposition LF; these methods decompose time series data into 3 components: Trend and 

seasonality, deterministic components, and stochastic irregular components part of time series 

data. Although decomposition methods are less accurate than other ML models, they can 

sometimes be preferred since they are easy to model, understand, and use (Mbuli et al., 2020). 

The ANN is bio-inspired by the way the human brain learns, and attempts to mimic brain 

neuron operations in solving computational problems (Aslam et al., 2021). The ANN is 

typically comprised of three layers: an output layer, a hidden layer, and an input layer. The NN 

layers have activation functions, adjustable biases, and weights (Aslam et al., 2021). Earlier 

versions of NN used in LF were multiple layer perceptron (MLP) which were essentially 

feedforwarding NN. Later recursive neural networks (RNN) which are more sophisticated than 

MLP were adopted for LF (Gasparin et al., 2022). Long short-term memory (LSTM) neural 

networks are derivatives of RNN which have gained more popularity in LF research due to 

their good performance (Elahe et al., 2021). Other types of NN also widely used for LF are the 

convolutional neural networks (CNN).  

Deep learning (DL) is a subfield of ML which uses deep neural network models. The term 

‘deep’ alludes to the fact that they have many layers of non-linear hidden neurons and a very 

large output layer that enables these models to adapt to learning new patterns (Bourdeau et al., 
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2019). The DL models are also gaining the interest of LF researchers (Elahe et al., 2021; 

Gasparin et al., 2022). The DL models require larger datasets and more computational power 

than shallow learning models, NN models with one hidden layer (Aslam et al., 2021).  The 

ANN has been combined with other models to form hybrids for LF, for example, ANN has 

been combined with a genetic algorithm (GA) resulting in ANN-GA. In this case, GA provides 

selection, crossing, and mutation operations which can be used to optimize the ANN 

parameters such as weights and bias (Islam et al., 2014). In Pai and  Hong. (2005), GA was 

used to determine free parameters for the SVM used in LF. 

The k-nearest neighbour (k-NN) is a commonly used technique for clustering and 

classification. It can be used to group similar patterns in electricity load time series data 

(Bourdeau et al., 2019). Ensemble models are formed by weighing the accuracy of two or more 

models and combining them to form a model that gives optimal performance. Lopez-Martin et 

al. (2021), compared a number of ensemble and deep learning models in STLF using data 

spanning 3 years from the Spanish utility. Decision trees are a class of ML algorithms that use 

tree-like structures to split features in a dataset through a cost function from the root to the 

leaves. At each node of the tree, a condition is checked between binary or categorical values 

until arriving at the end decision leaf nodes which represent the target output (Breiman et al., 

2017). Random forest (RF) is a supervised ML algorithm made by growing several decision 

trees on the samples and taking their majority vote or average for the case of classification and 

regression, respectively (Breiman, 2001). Support vector machines (SVM) are commonly used 

for solving nonlinear problems, they were first introduced by Cortes and Vapnik (1995). They 

can give good performance even for relatively small datasets (Bourdeau et al., 2019). An SVM 

specific for regression problems is the support vector regression (SVR) method (Ribeiro et al., 

2022).  

Zhang et al. (2021), performed a review of ML in building load prediction while considering 

different algorithms, their applications, and data. They also suggested a standardized 

framework for building load prediction. Mir et al. (2020), gave a review of LF focusing on 

select low- and middle-income countries over mostly work employing LTLF, followed STLF, 

and fewer works on MTLF. The role of LF input data such as GDP, population, weather, and 

load data over different horizons was highlighted. Román-Portabales et al. (2021), carried out 

a review of ANN-based ML for LF whereby the LSTM model was found to offer good 

performance in most STLF papers considered.  

The work by Mamun et al. (2020), gives an extensive overview of the mechanisms, merit, and 

disadvantages of mainstream (ANN and SVM) LF techniques. Contemporary hybrid LF 
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algorithms were described including SVM and GA, SVM and firefly algorithm (SVM-FA), 

SVM and fruit fly optimization algorithm (SVM-FOA), SVM and particle swarm optimization 

(PSO), SVM and harmony search (SVM-HS), SVM and artificial bee colony (SVM-ABC), 

SVM and simulated annealing (SVM-SA); ANN-FOA, ANN-GA, ANN-FA, ANN, and 

clustering technique (ANN-CT), ANN and neural fuzzy inference system (ANN-NFIS), ANN 

and artificial immune system (ANN-AIS), ANN and wavelet transform (ANN-WT). Future 

research trend appears to be headed for hybrids of 3 or more algorithms (Mamun et al., 2020).  

In the work by Nti et al. (2020), the authors performed a review of LF models by load type – 

commercial, residential, and combined; the forecast model – conventional, AI, and hybrids; 

evaluation metrics; and forecast horizon. The authors found that 90% of the studies they 

reviewed used AI methods; 10% were statistical methods; there were few studies on LF in 

African countries; residential LF had received little attention.  

Table 1 shows a comparison of widely used load forecast models. The  ARIMA models can be 

useful for load forecasting when the data exhibits certain stationary patterns, but they may 

struggle with nonlinear relationships and complex seasonal patterns. The ANNs are widely 

used for load forecasting due to their ability to capture complex nonlinear relationships — 

capturing intricate patterns in load data but may require more computational resources and data 

pre-processing compared to SVM. The RF can handle nonlinear relationships, variable 

interactions, and seasonal patterns in the data. The RF are known for their robustness and can 

handle large amounts of data. The LSTM can effectively model sequential data, making them 

suitable for time series forecasting tasks. The LSTMs can capture long-term dependencies and 

handle varying sequence lengths, which can be beneficial for load forecasting. They often 

outperform traditional methods like SVM and ARIMA in scenarios where temporal dynamics 

and historical patterns play a significant role. Given a dataset, a systematic search for a suitable 

algorithm needs to be conducted. A proposed approach for identifying a suitable algorithm for 

STLF is discussed later in Chapter 3.  
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Table 1:  Comparison of selected key energy forecasting algorithms from the literature 

Algorithm Characteristics 
Suitability for energy 

forecasting 
Dataset type and size Selected references 

AR (Autoregressive) Uses past values of the 

variable to forecast future 

values. 

Suitable for capturing short-

term dependencies and trends 

in energy data. 

Time-series data, and small 

datasets 

Baharudin and Kamel (2008) 

Moving Average (MA) Uses the average of past values 

to forecast future values. 

Suitable for smoothing out 

short-term fluctuations in 

energy data. 

Time-series data, and small 

datasets 

(Ogunjuyigbe et al. (2021), 

Yin et al. (2022) 

Autoregressive Integrated 

Moving Average (ARIMA) 

Combines autoregressive and 

moving average components to 

handle trends and seasonality. 

Suitable for capturing both 

short-term and long-term 

dependencies and seasonal 

patterns in energy data. 

Time-series data, and mall to 

large datasets 

Kapoor and Sharma (2018) 

 Autoregressive Moving 

Average with Exogenous 

Variables (ARMAX) 

Extends ARIMA by 

incorporating exogenous 

variables in the model. 

Suitable for incorporating 

external factors, such as 

weather or economic 

indicators, into energy 

forecasting. 

Time-series data with 

exogenous variables, and small 

to large datasets. 

Li et al. (2014) 

 Autoregressive Integrated 

Moving Average with 

Exogenous Variables 

(ARIMAX) 

Similar to ARMAX but 

includes an integration 

component for non-stationary 

data. 

Suitable for handling non-

stationary energy data while 

considering exogenous 

variables. 

Time-series data with 

exogenous variables, and small 

to large datasets. 

 Sheng and  Jia (2020) 
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Algorithm Characteristics 
Suitability for energy 

forecasting 
Dataset type and size Selected references 

Grey Model Uses a small number of data 

points for forecasting and 

relies on data transformation. 

Suitable for medium-term and 

long-term energy forecasting 

with limited historical data 

available. 

Time-series data, and small 

datasets 

 Zhang and Wu  (2021), Zhao 

et al. (2022) 

Kalman Filtering Algorithm Recursive estimation algorithm 

that updates predictions based 

on new data. 

Suitable for real-time energy 

forecasting and tracking 

dynamic changes in energy 

data. 

Time-series data, and small to 

large datasets. 

Sharma et al. (2020) Takeda et 

al. (2016),  Zhang et al. (2021) 

Exponential Smoothing Gives more weight to recent 

observations and smooths out 

fluctuations. 

Suitable for short-term energy 

forecasting, particularly when 

the data has no clear trend or 

seasonality. 

Time-series data, and small 

datasets 

Ji et al. (2012) 

Random Forest Ensemble learning method that 

combines multiple decision 

trees. 

Suitable for capturing complex 

relationships and interactions 

among variables in energy 

forecasting. 

Time-series data with 

exogenous variables, and small 

to large datasets. 

Dudek (2022),  Subbiah and 

Chinnappan (2022) 

Expert Systems Rule-based approach, 

incorporates domain 

knowledge. 

Suitable for incorporating 

expert knowledge and rules 

specific to energy forecasting. 

Any type of relevant data, 

small to large datasets 

Lahouar and Ben Hadj Slama 

(2015) 

Similar Day Approach Compares the current day with 

historical days having similar 

patterns. 

Suitable for short-term energy 

forecasting based on similar 

historical patterns. 

Time-series data, and small 

datasets 

Dudek (2015a,  2015b), Huang 

et al. (2019) 
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Algorithm Characteristics 
Suitability for energy 

forecasting 
Dataset type and size Selected references 

Neural Network Utilizes complex mathematical 

models and learns patterns 

from training data. 

Suitable for capturing 

nonlinear relationships and 

complex dependencies in 

energy data. 

Any type of relevant data, and 

small to large datasets 

Agana et al. (2018),   

Akhil-Srinivas et al. (2021) 

 Extreme Learning Machine 

(ELM) 

Randomly assigns input 

weights and solves a linear 

system to obtain output 

weights. 

Suitable for fast training and 

accurate forecasting in energy 

data. 

Any type of relevant data, and 

small to large datasets 

Cheng et al. (2013), Bin et al. 

(2012), Kunqiao and Jiandong 

(2021) 

Support Vector Machine 

(SVM)  

Uses statistical algorithms to 

find optimal decision 

boundaries. 

Suitable for both short-term 

and long-term energy 

forecasting with good 

generalization capabilities. 

Any type of relevant data, and 

Small to large datasets 

Amin and Hoque, (2019), 

Khan et al. (2018) 

Fuzzy Logic Deals with uncertainty and 

imprecision in data through 

linguistic variables and rules. 

Suitable for handling vague or 

incomplete data and 

incorporating expert 

knowledge. 

Any type of relevant data, and 

small to large datasets. 

Anoop and  Kanchana (2018), 

Mukhopadhyay et al. (2018) 

Genetic Algorithms Evolutionary optimization 

algorithm inspired by natural 

selection and genetics. 

Suitable for optimizing model 

parameters or feature selection 

in energy forecasting. 

Any type of relevant data, and 

small to large datasets. 

Chaturvedi  (2008) 
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2.3.4 Blackout forecast 

Access to electricity remains an issue yet to be resolved in sub-Saharan Africa (SSA), where 

600 million people don’t have access to electricity, this being nearly half of the population 

(IEA, 2014; International Energy Agency, 2019). Reliable and quality access to electricity 

boost livelihood and drives forward the economy (Falentina & Resosudarmo, 2019). According 

to a 2019 survey conducted by the Tanzanian rural energy agency (REA), it revealed that only 

37.7% percent of people on the mainland had a connection to electricity (REA & NBS, 2020). 

This is in part due to expensive connection costs along with low use of electricity and poverty 

among countryside communities (Abdullah & Markandya, 2012). Taking Tanzania as an 

example, even areas with access to electricity at times experience power outages, brownouts, 

and voltage surges. Many times, electricity demand exceeds supply in the SSA region, 

therefore load shedding or rolling blackouts – power rationing, becomes essential to prevent 

the electric grid from failing. However, end-users prefer power cut notifications in advance so 

that they can plan to mitigate power outage effects (Nkosi & Dikgang, 2018). These 

notifications usually reach a very small percentage of users, especially if the outage will cover 

a relatively small neighbourhood. Rolling blackouts hit most, residential sector or poorer 

neighbourhoods than the industrial sector due to both economic and political factors (Aidoo & 

Briggs, 2019; Pollet et al., 2015).    

Studies investigating blackouts are not new. Blackouts are caused by multifaceted interactions 

of many factors such as serious line components failure, negligence in handling vegetation 

along transmission and distribution lines, wildlife, extreme weather, man-made error, and other 

natural calamities (Gou & Wu, 2008b). The problem of blackout prediction can be attempted 

either by short-term (real-time) prediction or long-term prediction. Nateghi et al. (2014a, 

2014b), developed a hurricane-induced blackout prediction algorithm based on a random forest 

algorithm. Hurricane-induced power outage prediction models are complex and involve large 

expensive datasets. The dataset may comprise the following input variables: electric grid data, 

data on the pre-storm situation of soil moisture, drought, land use data, geographical measures, 

wind data, and so forth. Gou and Wu (2008), classified blackout causes as either deterministic 

or probabilistic. The study also investigated control strategies with an emphasis on islanding 

control strategies. The study by Alkar et al. (2019), reported that frequent power outages were 

found to be due to the inefficiency of the power plant to match loads, malfunction of protection 

equipment in the transmission lines, poor ability of Supervisory Control and Data Acquisition 

(SCADA), division of the main power grid to microgrids which are more prone to oscillations, 

delayed equipment maintenance and population increase.  The study by Rahman et al. (2016), 

used data of large-scale power outages globally to explore blackout causes, perform a risk 
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analysis, and fault analysis. In Bo et al. (2015), worldwide blackout incidents were analysed, 

and their causes, mitigation, and restoration measures were investigated. Blackout causes, 

protection issues, blackout prevention, and blackout restoration have been investigated by some 

studies (Makarov et al., 2005; Sforna & Delfanti, 2006). In the work of Mei et al. (2009), two 

indices for quantitative blackout risk evaluation were developed.  

Cheng et al. (2017), combined other outage factors such as real-time electric grid system 

operation data, weather forecast, and geographical data to predict blackout components in the 

current electric grid system operation condition. They also developed a load behaviour forecast 

model under power outage circumstances using an expert fuzzy system. Kogo et al. (2014), 

proposed 3 heuristics to forecast the start time of the next 24 hrs irregular scheduled power cuts 

namely: Start time of power-cut based prediction (SBP), frequency-based prediction (FBP), 

and a hybrid of SBP and FBP.  Papic and Ciniglio (2014), proposed a framework for supporting 

planners and operators in evaluating multiple outages that lead to cascading outages. Papic et 

al. (2018), identified two indices for power outage reliability namely: average frequency and 

average duration of sustained automatic outages. The indices could be employed in forecast-

based planning, maintenance, and operation activities. According to the study, the foremost 

causes of outages were found to be: Weather (rain, snow, ice storms, wind, dust, etc), 

equipment failure, and wildfire.  

The 26th UN climate change conference of the parties (COP26) attests to the fact that climate 

change is a burning issue globally. Extreme weather events are on the rise, unfortunately, they 

also affect electricity generation and supply infrastructure reliability, sometimes resulting in 

curtailments and in some cases rolling blackouts (Chandramowli & Felder, 2014; Chen et al., 

2021; Zachariadis & Hadjinicolaou, 2014). Thus, blackouts should continue to be studied. In 

the literature, studies on blackouts have not been fully exhausted. There have been few or no 

works on blackout forecast studies for emerging countries' scenarios. Emerging countries' 

power grids give an interesting research study focus because they are weaker, still evolving, 

and are typically characterised by frequent disturbances as opposed to mature grids of 

developed countries. Moreover, due to scattered settlements in emerging countries like 

Tanzania, it is not feasible for the national main power grid to reach all communities, therefore, 

most emerging countries embark on rural electrification programs which employ hybrid 

microgrids that in time get connected to the main power grid. Consequently, microgrids that 

connect to the main grid have to contend with disturbances in the main grid.  
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2.4 Smart meter, data logging, and user engagement considerations for EMS in 

emerging countries 

The primary source of data in smart grids is the advanced metering infrastructure (AMI). The 

AMI involves the deployment of a number of smart meters on the consumer side of the grid. 

The goal is to save costs and increase energy efficiency. Smart meters usually are characterised 

by the following features: the ability to measure energy consumption at least in 15 minutes 

intervals; provide ToU information to users; ability to disconnect/reconnect consumers 

remotely; control some appliances over Home Area Network (HAN); provide a web portal or 

dashboard for historical consumption data; provide on-demand energy readings. This is in 

sharp contrast to the past analogue electric meters which were read manually once a month. In 

the case of Tanzania, the national electric utility company TANESCO currently provides 

consumers with prepaid electric meters, although this is likely to change in the future since the 

trend globally is moving towards rolling smart meters and upgrading to Smart Grid. Evidently, 

smart meters are important to realize DSM operations in a microgrid. Inevitably, EMS tasks 

such as load forecasting rely on historical data collected by smart meters into a database.  

Some low-cost IoT electronic devices and technologies which could be suitable for hybrid 

microgrids in emerging countries scenarios include the following: Arduino MCU modules 

(Uno, Mega, etc), NodeMCU; ESP32; Raspberry pi (2 / 3 / 4);  Xbee; Zigbee; LoRA; GSM 

modules; SD card modules; power measurement modules. Table 2 highlights the preceding 

common IoT devices. Since one of the objectives of this study was to develop a low-cost EMS 

smart meter and based on literature survey comparison made in Table 2, Arduino Mega 

microcontroller was chosen for use in this study because it is relatively cheaper than other 

options like Raspberry pi by a factor of 10. It also had the needed features such as sufficient 

GPIO pins, PWM pins, enough ADC pins for interfacing sensors, and serial communication 

capability. However, it lacked internet connectivity, hence, NodeMCU microcontroller being 

cheaper than ESP32, it was also included in this study in order to add IoT functionality to the 

developed low-cost smart meter while facilitating remote monitoring operations. The PV-

battery systems are usually one of the sought-after options for power backup systems or off-

grid systems in emerging countries as the price for such systems is becoming affordable 

(Nguyen et al., 2018). The most common battery technology adopted for these systems is lead-

acid batteries, although Lithium-ion batteries are increasingly becoming attractive as they 

possess twice more energy density and lifespan (Dufo-López et al., 2021; Podder & Khan, 

2016). Smart meters can also incorporate a pulse-width-modulation (PWM) based battery 

management system (BMS) to monitor and control battery state-of-charge (SOC) via 

charging/discharging cycles (Chang, 2014; Qin & Du, 1994). 
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In the work by Karthick et al. (2021), they designed and implemented a low-cost smart meter 

that: monitored electric energy consumption via the PZEM-004T module; monitored power 

quality issues (voltage swag, swell, and transient) using the SVM algorithm running on 

Raspberry pi device; DSM load scheduling of primary and secondary loads via NodeMCU-

based smart plugs; Blynk mobile app was used for user engagement (Blynk IoT Platform: For 

Businesses and Developers, n.d.). In the work by Iqbal and Manzoor (2020), the authors 

developed supervisory control and data acquisition (SCADA) system that included: A PZEM-

004T module for energy measurements; ACS712 hall effect current sensor to measure grid-

tied PV-battery current; a voltage divider circuit to convey PV voltage to ESP32 analog to 

digital converter (ADC); loads controllable by relay interfaced to ESP32 module; Ubidots 

platform as an EMS dashboard (IoT Platform | Internet of Things | Ubidots, n.d.). 
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Table 2:  Comparison of selected low-cost smart meter implementation from literature 

Technology / 

Device 
EMS Role Merit Limitation(s) 

Selected applications 

EMS related references 

Arduino uno / nano / 

mega 

Direct load control, BMS via 

PWM. 

Low cost, low energy 

footprint. 

Low-cost Arduino boards 

(e.g uno, mega) lack 

wireless connectivity, 

storage for datalogging, 

computation power for 

ML. 

Batista et al. (2013), 

Kondaveeti et al. (2021), 

Pawar and Vittal (2019) 

NodeMCU Direct load control, BMS via 

PWM, remote monitoring 

and control of loads, interface 

with analog sensors. 

Low cost, low energy 

footprint, wireless and 

internet accessible. 

Single analog input pin, 

lack computation power 

for ML. 

Karthick et al. (2021) 

ESP32 Direct load control, BMS via 

PWM, remote monitoring 

and control of loads, interface 

with analog sensors, 

occupancy detection. 

Low cost, low energy 

footprint, wireless and 

internet accessible. 

lack computation power 

for ML. 

Hijawi et al. (2020) 

Raspberry pi Direct load control, BMS via 

PWM, remote monitoring 

and control of loads, interface 

with analog sensors, and 

onboard Machine learning.  

Have computation power 

for ML 

Lack onboard analog 

input pins, need external 

ADC converter, higher 

energy consumption than 

Arduino boards, 

nodemcu, and esp32 

boards. 

Arumuga et al. (2017), 

Benyezza et al. (2021) 

Ferdoush and  Li (2014) 
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Technology / device EMS Role Merit Limitation(s) 
Selected applications 

EMS related references 

 Wireless connectivity of 

electric loads and sensors 

   

Zigbee® / Xbee® Wireless connectivity of 
electric loads and sensors. 

Low power consumption 
and medium coverage ( not 

more than 300 m) 

Lacks PWM support 
which is important in 

controlling some loads. 

Karami et al. (2018), Kyi 
and Taparugssanagorn 

(2020), Sisavath and Yu 

(2021) 

LoRA Wireless connectivity of 

electric loads and sensors. 

Low power consumption 

and wide coverage (about 5 

km to 15 km). 

Not suitable for real-time 

data applications since 

packets can be sent every 

few minutes 

(approximately 5 

minutes). Supports only 

low data rates of up to 27 

Kbps. 

Kanakaraja et al. (2021) 

GSM modules Wireless RF connectivity of 

electric loads and sensors 

Ability to send and receive 

SMS, ability to make calls 

Rely on mobile networks 

which may have poor 

signal or network 

problems. Data charges 

for sending SMS and calls 

Sibiya et al.  (2021) 

Building occupancy 

sensors (PIR 

modules, reed switch 

etc) 

Appliance and lighting 

control  

Ability to detect the 

presence of an occupant in 

the building 

As a tripwire, it may 

remain activated even 

when the user forgot the 

window or door open. It 

may not detect when a 

person has left the 

building or room.  

Demir et al. (2017), 

Pocero et al. (2017) 
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(i) Energy dashboard options 

The  IoT platform is a cloud computing software that provides an interface between IoT sensors 

and applications. These platforms offer a combination of the following services: Application 

development, visualization, data management, device control, and monitoring (Ray, 2016). The 

IoT platforms can simplify the deployment of low-cost human-machine interface (HMI) or 

EMS that could be used in emerging countries' scenarios because of the growing smartphone 

penetration and increasing internet access (Mbanaso et al., 2015). The IoT sensors typically 

have low power consumption and low data bandwidth, hence are suitable for low-cost 

microgrid EMS applications in emerging countries. Developing countries have the lowest 

electric energy consumption per capita (International Energy Agency, 2019, 2014). Rolling out 

more low-cost EMS will go a long way in increasing energy efficiency and raising awareness. 

Studies show energy efficiency increase when users get feedback on their energy consumption 

(Chen et al., 2014). 

Chatbots  

A chatbot is a software program that simulates human-like conversations with users via text 

messages. With the advancement in AI, technology chatbots are gaining more users and are 

being used to add value to various platforms and fields such as healthcare, finance, and energy 

sector (Adamopoulou & Moussiades, 2020; Kern et al., 2022; Mogaji et al., 2021). Since 

smartphones have high penetration globally including in developing countries. Therefore, 

chatbots could be leveraged to engage with electricity consumers and aid in energy monitoring 

and control applications. Chatbots could be created on top of already established instant 

messaging applications such as Facebook Messenger, WhatsApp, and Telegram (Suresan et 

al., 2021).  

Google Firebase 

Has also attracted the attention of IoT developers. It offers cloud storage, server-side functions, 

and ML services. In a work by Hashmi et al. (2021), an EMS employing Firebase and Node-

RED for DSM was proposed. Their work lacked an ML forecaster module. Node-RED was 

used to provide a Graphical User Interface (GUI) to the end user and as a Message Queuing 

Telemetry Transport (MQTT) broker. The MQTT is a lightweight IoT standard messaging 

protocol ideal for devices with limited network bandwidth. The   MQTT protocol is made up 

of an MQTT message broker which acts as a server and a number of MQTT clients. In their 

work, EMS data from voltage and current sensors were sent in Javascript Object Notation 

(JSON) format. The MQQT broker relayed received data to an energy dashboard web portal 
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via HTTPS protocol. Although MQTT is the preferred protocol for data transfer due to its 

smaller data packet size, a developer may opt for HTTPS because it allows the transmission of 

lengthy headers and messages for human readability (Wukkadada et al., 2018).  

Google Sheets  

Can also be employed as part of the EMS dashboard for data logging and visualization. Google 

Application Script is a cloud-based javascript platform that can integrate with other Google 

ecosystem Apps, and can therefore be a useful tool in developing a low-cost EMS (Moise et 

al., 2020).  Niculescu et al. (2021), integrated NodeMCU with BLYNK APP and Google 

Spreadsheet for indoor air quality monitoring. Their application only performed monitoring 

without any control or ML-based operations. Other tools that may be used in developing a cost-

effective EMS that could be suitable for developing countries include the following: Heroku 

for ML; Git and Github for code version control and maintenance; IFTTT; and many more.  

2.5 Main Takeaways and Potential Gaps 

Load forecast is still a scientific research hotspot because of its economic implication – since 

it’s vital in minimizing energy wastage for grid operators. The trend in load forecast studies 

appears to gravitate towards ANN with aggregation of ML models. A large body of hybrid 

models that have been developed mostly comprises two models blended. What will happen if 

more than two models are combined/stacked? Does performance degrade as more models are 

stacked? There is a need of compiling a set of microgrid dataset benchmarks upon which new 

works may be weighed against. Most forecast models developed were tailor-made for the 

specific grid. New insights may be found from testing already established models against 

different microgrid datasets including small, medium, and large datasets, datasets from weak 

grids, and mature grids datasets. Power outage works examined mostly conduct a study on the 

causes and prevention of blackout, however, works on blackout forecast are relatively few. 

This is still uncharted territory, more so, with respect to utility operator’s-side forecasts as well 

as demand-side blackout forecasts.  

Most smart meter studies examined failed to incorporate AI-based energy forecast modules. 

Furthermore, there is still room for research works on the role of social media platforms on 

users’ energy behavioural change using IoT by conducting case studies in communities and 

households. Research on energy management through hybrid IoT wireless mesh networks is 

still open for more advancements. It is necessary to incorporate IoT technologies for LF and 

BF so as to effectively relay forecast information to the end user and enable proactive DSM 

and BMS actions. The main limitation in implementing IoT in low-cost EMS, is that, access to 
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internet is a requirement. The quality or signal strength of internet connection may aid or impair 

performance of the low-cost EMS smart meter. If access to internet is an issue, then use of 

GSM modules in the low-cost EMS smart meter may be a viable alternative. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Case Study Area 

This study was conducted based on data from two locations: Ngarenanyuki village and 

Levolosi ward both in Arusha Tanzania. There are a number of microgrids already deployed in 

different parts of Tanzania and elsewhere, this study was conducted at Ngarenanyuki secondary 

school as part of the Energy4Growing (E4G) project which had a vision of seeing 

Ngarenanyuki school as a microgrid research laboratory. Later when the installed E4G 

switchboards went out of service in 2018 due to technical faults, a smaller implementation of 

a microgrid was deployed in an office building in Levolosi ward to continue with the study. It 

was more convenient to carry out data collection from the Levolosi microgrid as it was easily 

accessible, in the vicinity of Arusha Technical College, and closer to NMAIST; Ngarenanyuki 

village is remote.  The E4G project was carried out by a research team of the Department of 

Energy of Politecnico di Milano which aimed to develop and implement a hybrid micro-grid 

in Ngarenanyuki school to improve the local power supply service of the school. The author 

was part of the E4G team after receiving a PhD scholarship as part of the fruits of the E4G 

project. The author was involved in the testing phase of the innovative converter and control 

switchboards at MCM PoliMi spin-off laboratory (in Milan, Italy) and was later also involved 

in the installation and monitoring of the switchboards that ensued (at Ngarenanyuki school in 

Arusha, Tanzania). 
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Figure 4:  Energy sources at Ngarenanyuki school before deployment of E4G project: 

(a). a 3.2 kW run-off-river micro-hydropower (MHP) plant, Banki type, (b) 

Inverter-based PV DC backup systems of 940 W coupled with 1400 Ah/12V 

battery bank, (c) 5 kW diesel generator, (d) non-operational wind turbine, 

(e) Inverter 

Before the deployment of the E4G converter and control switchboards, the school had a mix 

of distributed generation sources (Fig. 4). The main power source of the school was a 3.2 kW 

run-off-river micro-hydropower (MHP) plant, Banki type. Excess hydropower was wasted as 

heat in the energy dampers of the hydro turbine generator instead of being stored in the battery 

bank. The water stream for the turbine was shared and managed by the local farmers causing 

intermittency in the hydropower output. As farmers would divert water away from the MHP to 

their farms; this was years later resolved with a configuration that allowed farmers to divert 

water after it had gone through the MHP plant thus not interfering with MHP plant output. 

Variations in the MHP output then remained due to rainy seasons. 

Before the deployment of the E4G converter and control switchboards, the school was also 

equipped with different additional backup systems: (a) Inverter-based PV DC backup systems 

of 940 W coupled with a 1400 Ah/12V battery bank, (b) A manually operated 5 kW diesel 

generator was used only when hydropower or PV-inverter-battery power was insufficient to 

run the school’s printer, photocopy machine, or during special celebrations/events, etc. The 
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generator was for emergency use only to cut down costs from buying fuel for the generator 

(Mandelli et al., 2015). 

Before designing the E4G switchboards, the E4G research team conducted an assessment of 

the energy consumption of the school by installing an energy meter to measure and record the 

load power flows of the school from June to September 2014. The resulting consumption 

pattern is shown by the Box plot in Fig. 5. Median consumption is represented by the line 

halfway on each box, whereas, the whiskers represent outliers (rare load extremes). The load 

curve varied greatly from one day to the next (Carmeli et al., 2014; Carmeli et al., 2015). 

 
Figure 5:  Box plot of daily load before upgrading Ngarenanyuki school microgrid 

Under the E4G project, the Politecnico di Milano Department of Energy collaborated with 

EKOENERGY (Home - EKOenergy, n.d.) and SunEdison to implement at Ngarenanyuki 

Secondary School an innovative converter and control switchboards. These were designed to 

manage the school’s 10 kW hybrid micro-grid comprising: a run-of-river hydropower system 

(3 kW), backup generator (5 kW), PV-inverter, and battery storage (Carmeli et al., 2015). Apart 

from installing the switchboards, the project involved upgrading the school’s PV by 3 kW, and 

battery bank by 30x202 Ah/12V maintenance free sealed lead-acid batteries. At this point the 

old 1400 Ah/12V flooded lead-acid battery bank was already near the end of its lifespan 

therefore it was phased-out and replaced with the new maintenance free sealed lead-acid 

batteries.  
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Figure 6:  The study area, Ngarenanyuki microgrid architecture 

The deployed architecture (Fig.  6) of the microgrid supports four power sources. The  PV-

Inverter, Diesel Generator, and hydro turbine are now connected to the system, while spare 

input power is reserved for future use. The architecture integrates mixed power sources 

available in the school allowing to compensate for the limits of each one (Carmeli et al., 2014; 

Mandelli et al., 2015). Moreover, in contrast to the previous single bus bar architecture, the 

new architecture relies on a double bus bar, inspired by the classical configuration adopted for 

big power plants, to allow greater flexibility in the energy management of the school. This 

configuration also allows connecting the E4G micro-grid in parallel with other systems (i.e., in 

the future, the national grid) and was expected to support maximum peak power loads up to  

20 kW in the future.  

The system could operate in Manual/Automatic modes. Manual mode allows the operator to 

connect or disconnect loads as well as energy sources. Automatic mode automatically 

connects/disconnects sources and loads based on their priority index using the Programmable 

Logic Controller (PLC). When operated in automatic mode, the system uses excess energy 

from the hydro turbine to charge the batteries and reduce wastage of energy as heat on the 

dump loads connected to the hydro turbine to aid in energy balance, thus, the batteries are 

charged by both the PV panels and the excess energy from the hydro turbine. The PLC also 

serves as a data logger set to a 1-second sampling rate. In Fig. 6, Q1 represents the inverter 
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control (IC) board while Q2 denotes the PLC switchboard (Carmeli et al., 2014; Mandelli et 

al., 2015). A detailed description of the microgrid, from the design phase to the deployment 

and operation is available on the Energy4Growing research team's Facebook page 

(https://web.facebook.com/energy4growing2014/). All the data and important milestones of 

the project implementation can be freely accessed on the Facebook page. The Facebook page 

also facilitated easy sharing of the project approach to people from scientific and non-scientific 

backgrounds. 

The connection of Ngarenanyuki to the main grid availed the opportunity for more energy-

intensive activities using the main grid whereas low-power activities such as lighting and 

running computers were reserved for renewable sources. For example, after being connected 

to the main grid, the school started a brick-making project. Unfortunately, in the first quarter 

of 2018, the implemented E4G smart switchboards suffered a fatal fault that caused the 

switchboards to stop working. Due to logistical reasons, it was not repaired. The school grid 

resorted to manual management of the power sources. In order to continue with this study, it 

became necessary to implement a smaller, easily accessible microgrid in Arusha township; a 

suitable office building at Levolosi ward with a pre-existing solar system installed was 

identified and selected for the remaining objectives of this study. The dataset used for Load 

forecast did not have a blackout indicator variable because at the time Ngarenanyuki microgrid 

was entirely off-grid, and not connected to the main grid (TANESCO). Therefore, it wasn’t 

possible to measure blackout incidences. When it came time to investigate blackout forecasts, 

a microgrid site in Arusha township (Levolosi ward) was selected as a case study area due to 

logistical reasons. 

3.1.1 Levolosi Blackout Pilot System Overview 

Another pilot test site for this work was an office building located in the Levolosi ward of 

Arusha municipality in Tanzania. The energy management system as shown in Fig. 7, 

comprises 200 W PV, 100 Ah lead-acid battery, and a 2.5 kW inverter. Such pico-size systems 

are typical in SSA where PV systems are undersized due to financial constraints (Abubakar 

Mas’Ud et al., 2016; Muchunku et al., 2018). The experimental test site already had the PV-

battery-inverter system in place before this study was conducted. Therefore, the PV-battery-

inverter sizing and setup were not part of our study, rather the goal was to investigate blackout 

forecast from the customer’s vantage point. The PV-inverter and battery bank at the site are 

essentially used as backup power for merely small loads and applications such as lighting, 

laptop, phone charging, and a surveillance camera; the backup system additionally was used to 
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power the datalogger used in this study during blackouts. Other relatively bigger loads at the 

site like photocopy machine, electric fan, microwave, and electric kettle are only used when 

utility power is available. 

 

 

The battery bank at the site can be charged either by PV or by utility power through an inverter 

charger. The main electricity supply to the pilot site comes from the national electricity supply 

company - TANESCO. This consists of single phase supply line of 230 ± 5% V at 50 Hz ± 

2.5% as per the Tanzania national grid standards. Power from both the utility and the inverter 

is managed by the local smart controller (smart meter). The low-cost implemented smart meter 

comprises a PZEM-004T module used to measure AC voltage, current, and frequency. The PV 

voltage and battery voltage were measured with a voltage divider circuit interfaced to Arduino 

Mega microcontroller ADC (Analog-to-digital converter) pins whereas, PV current was 

measured by ACS712 hall effect current sensor module also interfaced to the ADC port of 

Arduino Mega board. The PV-battery DC voltage and current sensor measurements facilitated 

PWM charging of the battery using P-channel MOSFET high side switching controlled by 

Arduino Mega board. All the measured sensor data were uploaded to the cloud via WiFi module 
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Figure 7:  Proposed Levolosi test site energy management system architecture scheme 
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ESP8266 (NodeMCU). Received data from the site were stored in a MySQL database on a 

Linux-based server also used to perform blackout forecasts. A web page on the server was used 

as an energy dashboard for monitoring and remote-control operations. Figure 8, shows the main 

components of the implemented low-cost EMS smart meter. More details of the smart meter 

are provided later in Section 3.7. 

 

Figure 8:  Low-cost electronics components used in the implemented EMS smart-

meter, (a) Arduino Mega; (b) NodeMCU; (c) PZEM-004T energy meter; 

(d) ACS712 current sensor; (e) PIR motion sensor; (f) Reed switch; (g) 

DHT22 temperature and Humidity sensor; (h) SD card module 

3.2 Data Collection 

3.2.1 Ngarenanyuki Microgrid Data Collection  

With reference to Fig.  6 and Fig.  9, the PLC had the capacity to store the school’s grid electric 

data equivalent to 2 months, still, due to a PLC software bug, it saved 5 files (equivalent to 5 

days of data), and thereafter the PLC overwrote the files. Initially one of the school staff 

volunteered to manually download the data, but inconsistency led to missing some data. An 

internet satellite dish equipment was installed in the school, which among many benefits, it 

facilitated remote access to the installed switchboards and PLC. The daily PLC data download 

process was then fully automated thanks to a combination of a computer batch script, Cloud 

computing services (Google Drive), and Microsoft Windows task scheduler. In this 

configuration, a computer with internet access was tethered to the Switchboards PLC and 

linked via FTP (File Transfer Protocol) in order to daily automatically fetch data logged CSV 

files into a designated Google drive folder. 
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Figure 9:  Ngarenanyuki microgrid data collection set-up 

3.2.2 Levolosi Microgrid Data Collection  

With reference to Fig. 7, data from different sensors in the grid was mainly processed by the 

Arduino Mega microcontroller and transferred to the NodeMCU microcontroller which would 

finally upload all the data to a web server  MySQL database for storage. Internet connectivity 

hotspot was provided by a smartphone which was also meant to act as a user interface for 

wireless remote control operations, Machine learning operations on collected data, and an 

energy dashboard. An SD card module was also included as an option for local data storage. A 

script was set up to run on the webserver to sense when data was not uploading or other 

anomalies such as power outage and low battery SoC. 

3.3 Datasets used in Model Development  

3.3.1 Ngarenanyuki Secondary School Microgrid  

Ngarenanyuki microgrid dataset used in this work was from 15 May 2015 to 7 March 2018. 

The data sampling was one second, but during pre-processing, it was converted to hourly 

aggregated observations. The microgrid dataset contains a total of 12 912 samples. The training 

and cross-validation dataset used was from May 2015 to January 2018, while the test data used 

was from 1 February 2018 to March 2018. Data used are available for research purposes thanks 

to the Energy4Growing project (E4G, 2018). 

The dataset shown in Table 2 comprises a total of 23 features from the previous day as 

predictors and the next day (24 hours) load profile as the target or response. Prediction of the 

entire next day is performed at midnight (00 hrs) which is the start  of the next day. For each 

hour h of the next day, the forecast is based on the values of the 23 predictors at the hour h of 

the day before. Weather data from a nearby airport was used as part of the 23 features 

(Raspisaniye Pogodi Ltd, n.d.). The weather parameters incorporated in the dataset were 

outdoor relative humidity, air temperature, wind speed, atmospheric pressure, and dew point 

temperature.  
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Table 3:  Ngarenanyuki microgrid's dataset features description 

# Feature / predictor Feature Description Evaluation 

time 

1 Month Month number of the year day D 

2 Day Day of the month day D 

3 WeekDay Day of the week day D 

4 Hour Hour of the day day D hour h 

5 Weekend Weekend and holiday indicator day D 

6 temp Ambient temperature (control room 

temperature) 

day D hour h 

7 P_DG Back-up diesel generator power day D hour h 

8 P_HYD Micro hydro power day D hour h 

9 P_inv Power from inverter day D hour h 

10 Vdc_bus PV-inverter DC bus system voltage day D hour h 

11 PPV PV array output power day D hour h 

12 SOC Battery bank state of charge day D hour h 

13 AirTemp Outdoor air temperature from nearby airport day D hour h 

14 atmPressure Atmospheric pressure day D hour h 

15 RHumidity Relative humidity day D hour h 

16 WindSpeed Wind speed day D hour h 

17 DewpointTemp Dew point temperature day D hour h 

18 T2_temp Ambient temperature 2 days before day D-2 hour h 

19 T2_Load Load 2 days before day D-2 hour h 

20 T1_temp Previous day control room ambient 

temperature 

day D-1 hour h 

21 Year Data log Year day D 

22 T1_Load Previous day load day D-1 hour h 

23 Load Current day load  day D hour h 

3.3.2 Levolosi Experimental Blackout System  

The blackout dataset used in this work covers the period of January 2021 to December 2021, 

amounting to a total of 8016 hourly aggregated samples or 30 144 15-minute interval samples. 

The subset of the dataset used comprised 10 relevant input variables from the previous 14 days 

as predictors. These 10 predictors were selected after performing a correlation test with the 

blackout indicator variable. The 10 input features used in this work are shown in Table 3. 
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Weather data for the area could not be obtained, thus, was not used. Figure 10 shows the 

correlation of the input variables to the blackout variable. The ‘ac_voltage’ and ‘frequency’ 

variables exhibited negative correlation values because they are inversely related to blackout, 

in that, the presence of blackout (electric power = 0) implies zero AC line volts and zero 

frequency on the test site power line.  

Table 4:  Levolosi microgrid dataset input features details 

# Input variable  Input  variable detail Evaluation 

time 

1 Day Day of the month day D-1  

2 WeekDay Day of the week day D-1  

3 Hour Hour of the day day D-1  

4 AC_voltage Average AC supply line voltage from electric 

supply company 

day D-1  

5 Frequency Average AC supply line frequency day D-1  

6 B14 Average Blackout profile 14 days before day D-14  

7 B7 Average Blackout profile 7 days before day D-7  

8 B3 Average Blackout profile 3 days before day D-3  

9 B2 Average Blackout profile 2 days before day D-2  

10 B1 Average Previous day blackout profile day D-1  

 

 
Figure 10:  Input variables correlation to blackout variable. A value close to ‘1’ 

signifies a high correlation, whereas a value close to zero shows a low 

correlation to the blackout variable. Negative values show a negative 

correlation 
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Three different strategies were performed for the short-term blackout profile prediction target 

or response, namely: (a) blackout prediction for the next 15 minutes, which is a single scalar 

value; (b) blackout prediction for the next hour, which is also a single scalar value; (c) lastly, 

blackout prediction for the entire next day (24 hours), which is a vector of 24 blackout index 

values corresponding to hours of the following day. Blackout prediction of the next 15 minutes 

is performed 15 minutes prior, whereas prediction of the next hour is performed an hour in 

advance. Blackout prediction of the entire next day is performed at midnight (00 hrs) which is 

the start of the next day. For example, for each hour h of the next day, the forecast is based on 

the values of the 10 predictors at the hour h of the days before. Similarly, 15 minutes-ahead 

prediction and 1-hour-ahead prediction are performed in the same manner based on the 

corresponding time step in the past records. During the calibration phase, measurements for 

important parameters such as voltage, current, and frequency were taken at intervals with a 

commercial multimeter and corroborated with measurements of the test site smart meter 

datalogger. 

3.4 Design and Research Approach 

In order to achieve the objectives of this study, the framework in Fig. 11 was adopted.  The 

fishbone diagram shows the four main components contributing to the EMS considered in this 

study namely: load forecast, blackout forecast, user engagement, and battery management. 

Figure 12 flowchart highlights the generalized load and blackout forecast procedure employed 

in this study, where the objective function is forecast optimization. The typical approach 

involves data source, data pre-processing, model training and testing, error evaluation, and 

model deployment. Section 3.3 describes the data pre-processing approach followed in this 

study; which is an important step before performing load forecast or blackout forecast. 
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Figure 11:  The conceptual framework of the main components addressed in this study 

 

 
Figure 12:     Load/blackout forecasting flow chart 
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3.5 Data Preprocessing 

3.5.1 Ngarenanyuki Dataset Preprocessing 

The first step in this work was to explore the dataset in order to check for integrity, spot missing 

values, and examine the relationship between load and the other features in the dataset. As an 

example, Fig. 13 shows the unstable nature of load consumption of the microgrid for October 

2017. The data cleaning stage involved the detection and correction of missing values and 

outlier anomalies. Days in the dataset found with missing values were filled with mean values 

of adjacent neighbouring records. Days with no logged entries were ignored. For smoothing, 

the dataset was transformed by retiming from 1-second observation entries into mean hourly 

observations and further smoothed to remove outliers. Sgolay (Savitzky-Golay filter) 

algorithm-based data smoothing method was opted out of seven other data smoothing methods 

which are movmean, movmedian, lowess, rlowess, loess, rloess, and Gaussian smoothing 

method available in MATLAB software. Sgolay was used because it is effective in preserving 

higher moment peaks in a signal (de Oliveira et al., 2018; Kaneko et al., 2016). Data smoothing 

has the effect of removing noise from data hence improving the performance of the prediction 

model. 

 
Figure 13: Ngarenanyuki microgrid unstable load profile nature 
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Figure 14:  (a) Week Day average load, (b) Box plots of load values for each month 

Figure 14 (a) is the average hourly load profile line plot for every single day of the week. Power 

consumption peak hours are observed to be around 05:00 and 18:00 - 21:00 hours. Figure 14 

(b) shows the hourly load consumption distribution for each month. The central line mark on 

each box plot is the median value, and the dotted line whiskers are the extreme data points 

while outliers are plotted using the ‘+’ symbols. The consumption pattern of the box plot in 

Fig. 14 (b) is linked to the academic calendar of the school. It had a population of about 500 

students and staff in the period covered by the dataset. Resident students are of four classes. 

Long School holiday breaks were in June whereby 2 classes of students break for four weeks 

while the other classes break for one week. All students break for two weeks in April and 

September. They all break for four weeks in December.  

 
Figure 15:  (a) Hourly Load Profile of Ngarenanyuki microgrid, (b) Histogram plot 

showing the distribution of load consumption 

Figure 15 (a) gives insight into the hourly energy usage trend of the microgrid, it can be seen 

there is an increase in power consumption during morning hours around 5 and 6 am; another 

increase in consumption is later in the evening from 18 pm till 22 pm. This is explained by the 

daily schedule of Ngarenanyuki boarding students when they have to rise early in the morning 

when it is still dark outside, therefore, needing to turn on the lights, and again in the evening 
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when student study in their classrooms before they retire to sleep. During the day lights are off, 

with only a few office appliances being turned on at the teachers’ offices. Figure 15 (b) gives 

an insight into the dataset’s load distribution; Most of the load consumption is around 200 W 

to 1000 W, and power consumption hardly exceeds 3500 W. Evidently this consumption is 

small for a community of about 500 people; during the time covered by the dataset, electric 

power was mostly used for lighting and operating a few office appliances, later the school 

consumption grew. The first bin in the histogram also reveals incidents of blackout in the 

school grid. Figure 16a shows the typical daily load pattern of the microgrid whereby hourly 

consumption peaks in the morning and evening, but on average power doesn’t exceed 2400 W. 

On the other hand, Fig. 16b, shows incidents where more power was consumed on some 

mornings and evenings, and the pattern changes from day to day randomly. 

 
Figure 16:  Load consumption heat map, (a) Week Day versus hour of the day (b) Day 

of the month versus hour of the day 

3.5.2 Levolosi Dataset Preprocessing 

Levolosi dataset was transformed from minute resolution observation entries into 15 minutes 

average observations as well as mean hourly observations. Dataset retimed to 15 minutes 

resolution was used for 15 minutes very short-term blackout prediction, whereas, the dataset 

retimed to hourly resolution was used for hour-ahead and day-ahead blackout short-term 

prediction. Evidently, there could be a risk of misrepresenting the duration of the blackout say 

if it occurred on the 55th minute of the hour in question. In order to overcome this challenge, 

the blackout variable represents normalized blackout in an hour using values ranging from ‘0’ 

to ‘1’ (60 minutes of blackout). For example, in the case of a blackout that occurred in the 55th 

minute of the hour and lasted for 5 minutes this is represented by the blackout variable as ‘0.08’ 

whereas a blackout that occurred at the 45th minute of the hour and lasted for 15 minutes would 

be represented by the blackout variable as ‘0.25’, and so on. This logic was used to solve 

blackout prediction as a regression machine learning problem. On the other hand, the short-

term blackout prediction was also formulated as a classification machine learning problem.  
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Obviously, the shorter the data sampling period the more meaningful and truthful it captures 

occurred blackout events. In this regard, 15 minutes interval data is better than hourly and so 

forth. Furthermore, input data was smoothed to remove outliers/noise to optimize the prediction 

skill of the model.  

Power supplied at the pilot test site from the local utility company has been observed to be at 

times unstable, and suffering from irregular power outages may be experienced on the client 

side. In the period between January to December 2021, aggregated blackouts measured at the 

pilot site amounted to an equivalent of about 16 days. As shown in Fig. 17, the months of 

March, April, November, and December were the worst hit by power outages. Power outages 

are irregular and the pattern differs from month to month, for instance from Fig. 18 the month 

of May suffered fewer power interruptions than April. From the heatmap, ‘1’ indicates 

complete blackout for an entire hour, whereas ‘0.5’ signifies blackout for 30 minutes during 

the respective hour being considered. In some extreme cases blackout may last more than 

24hrs, as was the case on April 18th and 19th. 

 
Figure 17:  Monthly aggregate blackout history 

Power outage notifications are typically sent out in advance through media if the scheduled 

power interruption affects or covers a large area such as an entire city or district. However, few 

or no power interruption notifications were received in advance at the pilot’s site street office 

buildings, because only a small neighbourhood was affected. These kinds of localized 

blackouts are usually due to distribution line faults or maintenance work. Therefore, this work 

endeavours to predict power outages merely by using little information regarding electric 

power parameters as observed from the point of coupling at the customer side and without 

having prior information of scheduled power outages. The energy management system 

installed at the test site is tasked to predict blackout, without access to information about the 

grid status from TANESCO’s substation control centre, or without knowledge of any fault or 

protection relay that may have tripped upstream. 
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Figure 18:  Power outage heatmap across different months 
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3.6 Load Forecast Model Development 

Figure 19 shows the proposed model framework adopted in this work. The model was 

implemented in the MATLAB© 2018 version environment. The main toolbox that was used 

were: statistics and machine learning toolbox, and curve fitting toolbox. Specifications of 

computer used where: Intel(R) Core (TM) i7-4790 CPU @ 3.60 GHz 3.60 GHz 64-bit 

Processor, and 12GB DDR3 RAM. Data exploration, cleaning, and transformation stages were 

implemented so as to enhance input data and the model’s behaviour.  

 
Figure 19:  Proposed day-ahead load forecasting model framework 

The feature selection stage aims at minimizing the number of predictors in order to reduce 

computation complexity without compromising prediction performance. As it will also be 

shown later, feature selection models differ in their mechanism, thus they yield different 

results. It is therefore, proposed to combine more than one FS model in order to increase 

performance at the prediction stage of the load forecast procedure. With respect to the proposed 

model in Fig. 19, input data is fed to each of the FS models. In this work, 5 FS models were 

used. Each of the 5 feature selection models ranked the same features with different weight 

scores. In general, it was observed that features that were voted to be the most important 

according to one FS model, were also given high importance in the other FS models. To 

overcome the dilemma of feature selection, three approaches are proposed in the selection of a 

subset of k principal features from a superset of n features through (a) mean score; (b) subset 

union; (c) refined exhaustive search based on k-combination, they are described later. For 

computational time reasons, either the mean score or subset union or both approaches can be 
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used and compared to select features for training and prediction.  The refined exhaustive search 

method should be opted as the last resort since it is computationally much more intensive than 

the mean score and subset union approaches.  

The identified k principal features can be trained by 20 different regression models, thereafter, 

performance efficacy is assessed by the mean absolute error (MAE) and root mean square error 

(RMSE) of each regression model compared. All the possible combinations of 2 regression 

models out of the 20 models can be fused to form a hybrid model based on the mean or min or 

max values of the best 2 models. The resulting hybrid regression model show improved 

prediction performance. Ultimately, the choice of which path to follow in the proposed 

framework depends on the computational resources available as well as the degree of prediction 

performance desired.  

3.6.1 Feature Analysis 

Feature selection is a dimensionality reduction technique that ranks and selects an influential 

subset of the possible predictors or features with the best predictive power of a prediction 

model. Feature selection is application-oriented (Jovic et al., 2015). Studies show that the right 

combination of features is important as the individual features are included in the prediction 

model (Li et al., 2017). The 5 feature selection methods used in this work are Random Forest; 

Relieff; Ensemble regression tree; Compact regression tree; Neighborhood component analysis 

(NCA). 

Random Forest (RF) algorithm is a conventional approach to embedded feature selection. In 

this paper, a random forest of 200 bagged ensemble regression trees was grown and used to 

estimate unbiased feature importance. Relieff algorithm works by favouring features that give 

different values to neighbours of dissimilar response weights while punishing features that give 

dissimilar weights to neighbours of the same response values (The MathWorks, n.d.). Matlab 

ReliefF function used in this work was configured to 10 nearest neighbours and regression 

method for computing weights. The predictor Importance Matlab function was used with 

ensemble regression tree and compact regression tree to compute estimates of feature 

importance. The larger the estimated value the more important the feature. Neighborhood 

component analysis (NCA) is an embedded feature selection method. The fsrnca Matlab 

function was used as NCA in this work. 

Each of the 5 feature selection models ranked the same features with different importance and 

weight scores. In order to increase prediction performance, 3 global ranking approaches 

derived from the 5 FS models are proposed in the selection of a subset of k principal features 
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from a superset of N features through:  (a) mean score; (b) subset union; (c) refined exhaustive 

search based on k-combination. A description of the 3 approaches is given in subsequent 

subsections. 

3.6.2 Principal K-Features Mean Score  

One approach was to find an arbitrary k number of principal features by finding the overall 

final ranking of the individual features taken as an average score from all the FS methods used. 

If the total number of features is N, then the weight rank will be N, N-1, N-2, …1. Then, the 

mean score for each feature was evaluated using Equation 1:  

 
𝑊𝑓 =

1

𝑛
∑ 𝑊𝑓𝑖

𝑛

𝑖=1
 

(1) 

 

Whereby,  𝑛 is the total number of FS models used, 𝑊𝑓𝑖  is the feature weight score. 

In this work, for each FS method, the most important feature was assigned a weighted score of 

N=23 while the least important feature was assigned a weighted score of 1. For example, the 

hour of the day had an estimated importance weight score values of 4.36, 0.02, 9.6, 29.4, 2.3, 

and 0.27 computed in random forest, relieff, ensemble regression tree, compact regression tree, 

fsrnca , and robust NCA features selection respectively. Corresponding values assigned are 21, 

20, 15, 20, 7, 19. Resulting in a mean weight score of 17, thus making the hour of the day the 

fourth most important feature. The final weight score of the hour of the day becomes 20 out of 

23. Thus, the final rank of a feature is a mean of the individual weighted votes a feature scores 

from each of the 6 FS algorithms. The overall top 5 most important features from the principal 

k-features mean score approach were found to be ‘Load’, ‘T1_Load’, ‘T2_Load’, ‘Hour’, and 

‘Day’. ‘Load’ is the first in importance and ‘Day’ is the fifth in importance.  

3.6.3 Principal K-Features Union 

A second approach proposed in this work is to create a features subset comprised of the set 

union between top k-features from each FS model without redundancy. In this work, principal 

features were obtained from a union of the top 5 most important features from each FS model 

without redundancy in the features selected. The resulting subset had 9 out of the 23 superset 

features, as follows: 'Load', 'T1_Load', 'Hour', 'T2_Load', 'Day', 'P_DG', 'Month', 

'Vdc_bus', 'P_inv'.  
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3.6.4 Refined K-Features Exhaustive Search 

Features recommended by the principal k-features mean score and union can further be 

minimized to find the best k-features by performing a mathematical k-combination of features 

given in Equation 2. This brute-force approach was refined in this work by only selecting 

without repetition 5 combinations of features that included the ‘Load’ feature which prior to 

this step was voted to be the most important feature by principal k-features mean score and 

union approaches. Computing all the 5 features subset from the 23 features set, resulted in 33 

649 combinations, then afterward choosing only combinations with ‘Load’ feature inclusive 

reduced the number of combinations down to 7315. Taking only combinations that include 

both ‘Load’ and ‘T1_Load’ (previous day load) gives 1330 combinations. This refined number 

of combinations can reasonably be run through the 20 conventional load forecasting models 

used in this work in order to find a good enough regression model. 

 𝑛𝐶𝑘 =
𝑛!

𝑘!(𝑛−𝑘)!
  (2) 

 

3.6.5 Load Forecasting Model Selection 

Principal k-features from the features selection stage of the proposed framework are used to 

train and validate 20 different regression models. The regression models used are classified 

into 5 categories namely: Regression tree; Neural network; Gaussian process regression (GPR); 

Support Vector Machine (SVM); and linear regression. An overview of the forecast models is 

given as follows. 

Linear regression is a linear approach to prediction modelling. The Matlab implementation 

used in this work used least-squares, robust, and stepwise fitting methods. Matlab 

implementation used in this work for SVM analysis is the linear epsilon-insensitive SVM ( -

SVM) regression.  

For GPR this work used the fitrgp Matlab function to train the dataset. The kernel function 

options used in this work were: 'exponential' for the exponential kernel, abbreviated eGPR; 

'squaredexponential' for squared exponential kernel, abbreviated seGPR; 'matern52' for Matern 

kernel with parameter 5/2, abbreviated MaternGPR; and 'rationalquadratic' for rational 

quadratic kernel, abbreviated rqGPR. This work used a two-layer feed-forward neural network 

consisting of 10 hidden layers and linear output neurons for regression. The network was 

trained with the Levenberg-Marquardt backpropagation algorithm (trainlm).  
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Regression trees in this work were implemented with the fitrtree Matlab function. Variations 

of the regression trees used were ‘FineTree’ with ‘MinLeafSize’ of 4; ‘MediumTree’ with 

‘MinLeafSize’ of 12; ‘CoarseTree’ with ‘MinLeafSize’ of 36. This work used fitrensemble 

Matlab function with the input method ‘bag’ for bootstrap aggregation (bagging) forming a 

deep ‘BaggedTree’ prediction model. A shallow ‘BoostedTree’ was formed by employing the 

method ‘LSBoost’ (Least-Squares Boosting) on the fitrensemble. ‘BoostedTree’ model fits to 

minimize mean-squared error.  

3.7 Power Outage Forecast Model Development 

This section explains the 3 blackout models investigated in this work namely: Random Forest 

(RF) algorithm, Adaptive Similar Days (ASD) model, and a hybrid RF-ASD model. Their 

performance and efficacy are given later in the result section. RF algorithm already exists in 

literature; however, ASD and the hybrid RF-ASD are novel and have been proposed in this 

study. In this work, blackout forecast is tackled as both a regression problem as well as a 

classification problem. The objective of blackout regression is to predict continuous value 

output which indicates the blackout event and duration. On the other hand, the objective of the 

blackout classifier is to predict a binary output that indicates the occurrence of a blackout event. 

Adaptive Similar Days (ASD) blackout prediction approach: it has long been established that 

the past day’s data in a time series, can be used to make a short-term forecast. As already 

observed in the preceding Fig. 13 and 14, some months suffer from more power outage 

episodes than others, and the outage trend may evolve dramatically from one month to the next. 

Due to the stochastic nature of blackouts, a longer moving window could corrupt the training 

algorithm and yield lower accuracy. Therefore, it was deemed necessary to develop a model 

that uses fewer training data for prediction rather than a model that requires a large dataset to 

gain prediction competency. It is on this premise that past historical blackout data going 2 

weeks back were used in our method for short-term (15 minutes-ahead, hour-ahead, and day-

ahead horizon) power outage prediction. Given below is the adaptive similar days (ASD) 

algorithms equation for short-term blackout prediction 

 𝐵𝑓𝑡 =
𝑒𝑡

𝑁
+

1

𝑛
∑ (𝑏1𝑡 + 𝑏2𝑡 + 𝑏3𝑡 + 𝑏7𝑡 + 𝑏14𝑡)𝑛

𝑡=1   (3) 

 

From Equation (3), assume a short-term (either 15 minutes-ahead, hour-ahead, or 24 hrs-ahead) 

blackout forecast to be represented by 𝐵𝑓𝑡 . Whereby, 𝑛 is the number of blackout data points.  

𝑏1𝑡 is the blackout index value at the time t one day before, 𝑏2𝑡 is blackout index at time t two 

days before, 𝑏3𝑡 is blackout index at time t three days before, 𝑏7𝑡 is blackout index at time t 
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seven day before, 𝑏14𝑡 is blackout index at time t fourteen days earlier. 𝑒𝑡 is the forecast error 

obtained as a difference between the prediction value and the observed value. The N is a 

positive number forming the fraction error term   
𝑒𝑡

𝑁
  . The vectors 𝑏1 to 𝑏14 form 2 weeks 

sliding window. They are chosen because they are closer to the short-term forecast target, and 

it is assumed that they will capture any blackout pattern nuances that may exist in the time 

series data if any cyclical trends exist. For example, in predicting blackout events of the current 

week’s Monday, the previous week's Monday’s blackout data (𝑏7𝑡) as well as the Monday 2 

weeks ago (𝑏14𝑡) are assumed to have some influence on the blackout prediction dynamics.  

Short-term blackout forecast 𝐵𝑓𝑡 in this work is computed according to Equation (3), using the 

following algorithm steps: 

(i) Step 1: then 𝐵𝑓𝑡 will be determined by the mean of the past blackout vectors for 𝑏1𝑡 , 

𝑏2𝑡, 𝑏3𝑡, 𝑏7𝑡, and 𝑏14𝑡. For example, if we wish to predict the second hour of the day, 

t = 01hrs, then  𝑏1𝑡 will be the blackout index value in the previous 1 day at the 

corresponding second hour of the day (01 hrs), whereas 𝑏2𝑡 is the blackout index value 

2 days before at the corresponding second hour of the day (01 hrs), and so on.  

(ii) Step 2: The resulting short-term power outage prediction is compared to the actual 

observed blackout data for that respective day (prediction target day), and the difference 

(error), 
𝑒𝑡

𝑁
 , is saved in a lookup table.  

(iii) Step 3: The resulting short-term blackout prediction vector is summed with the fraction 

of the previous prediction error vector, 
𝑒𝑡

𝑁
, from the lookup table (memory). After 

performing sensitivity analysis, N=2 was found to increase prediction accuracy. The 

term 
𝑒𝑡

𝑁
 is used to correct the weights of day-ahead predicted power outage profile - 𝐵𝑓𝑡 . 

(iv) Step 4: The 2 weeks sliding window is moved one interval step forward, to make the 

next short-term power outage prediction. 

(v) Step 5: Repeat steps 1 to 4. 

Additionally, some general assumptions that govern the mechanism of the ASD and RF 

algorithms used in this work are: 

(i) Assumption 1: Recent records or observations closer to the short-term prediction target 

have a stronger influence on the intended target period being forecasted. In other words, 
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they have a higher probability of being similar to the forecast target period. Therefore, 

in the vein of the Pareto principle, past records used in the 2 weeks sliding window of 

the ASD algorithm have more importance in predicting the short-term target than past 

records beyond or before the sliding window. In case there were no blackouts in the 2 

weeks window, the probability of an imminent blackout is assumed to be very low. 

(ii) Assumption 2: Power outage duration for the short-term target period does not exceed 

the maximum outage event duration of the preceding outages within the sliding 

window. 

(iii) Assumption 3: By extension to assumption 1, power interruptions, and disturbances are 

cyclical in nature, thus, the interval of the third outage event is assumed to be the same 

as the interval between the previous two blackout events. For example, if the first 

blackout event in a day is observed at time t, and the second blackout occurs at time 3t, 

then the algorithm will expect the third blackout event to occur at time 5t. Granted, this 

may not hold true in all cases due to the stochastic behaviour of blackouts. For this 

reason, assumption 4 is used in effect to reset the learnt interval pattern if an incorrect 

prediction is made.   

(iv) Assumption 4: Under normal conditions, the power line is assumed to have electric 

power by default, and without power under abnormal (blackout) conditions. At the start 

of the prediction day, the ASD algorithm is given a temporary prediction token or 

permit, after which it can make a prediction. This involves asserting a flag variable. 

However, if it incorrectly predicts the occurrence of blackout in the short-term target 

period contrary to the observed data showing no outage or being under normal powered 

conditions. In this case, the token is temporarily revoked or withheld by clearing the 

flag variable, and the power line is now considered to be back to normal operating 

conditions. Yet again, when a new power outage is detected a prediction token is 

granted back to the ASD algorithm by re-asserting the flag variable, and it continues to 

participate in subsequent outage predictions.   

Random forest (RF) algorithm is a nonparametric machine learning method that can handle 

non-linear regression as well as classification challenges. It is based on decision trees which 

individually act as weak learners but overall become strong learners. The RF algorithm is 

robust and has been found to work well with small datasets as well as datasets with some 

missing values. A random forest of 10 bagged ensemble regression trees, and 100 classifier 

trees were grown and used to forecast short-term power outages. In this kind of problem, short-
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term forecasts depend on past recorded data, therefore the walk-forward validation method was 

used instead of cross-validation. After training and fitting the RF model, a single-step forecast 

is made followed by error measurements, and then updating the RF model with observed data 

for the predicted day (target day) by appending it to input data ready for the next one-step 

forecast loop. The model steps through the entire test data in this manner of predicting and 

updating, until the last test data is reached by the walk-forward validation. 

Random Forest Adaptive Similar Days (RF-ASD) hybrid model: Output from ASD module 

that predicts day-ahead from a sliding window lookup-table spanning 14 days prior to the target 

day, is fused with RF prediction, giving a final optimised RF-ASD blackout prediction via 

element-wise vector mean of both models. In other words, the output of the ASD model is 

combined with that of the RF model to obtain the mean of the two models. Thus, the RF-ASD 

hybrid model is an average of both RF and ASD models.  Figure 18 also describes the RF-ASD 

blackout prediction algorithm flowchart.  

Availability of localized blackout data from the utility company such as TANESCO regarding 

distribution line faults, maintenance work, tree trimming schedule, and rainfall could 

potentially improve the BF model due to correlation between such inputs and power outage 

occurrence. 
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3.8 Model Evaluation Metrics 

To evaluate the load forecast and blackout regression algorithm’s prediction skill, the mean 

absolute error (MAE) and root mean square error (RMSE) were employed. For the case of 

blackout forecast, MAE and RMSE of predicted values were measured only against instances 

when blackout events were actually observed, in order to focus and gauge the efficacy of the 

models in blackout prediction since grid power is ON most of the time. The MAE metric 
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Figure 20:  The RF-ASD hybrid model algorithm flow chart 
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(Equation 4) is more resilient to outliers in the results, whereas RMSE (Equation 5) penalises 

outliers in the results.  

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1   (4) 

 

 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑦𝑗 − �̂�𝑗)2𝑛

𝑗=1   
(5) 

 

Whereby, 𝑛 is the number of load/blackout data points, 𝑦𝑗 is the observed load/blackout value 

and �̂�𝑗 is the forecasted short-term blackout value. 

R-squared (Equation 6) provides a measure of how well the linear regression model fits the 

data points on a scale from 0 to 1. However, it does not provide information about the practical 

significance or meaningfulness of the relationship between the predictors and the response 

variable. R-squared alone cannot indicate whether the model's predictions are accurate or if the 

relationship between the variables is meaningful in the real-world context. The R-squared 

assumes that the model satisfies the underlying assumptions of linear regression, such as 

linearity, independence of errors, and homoscedasticity (constant variance of residuals). If 

these assumptions are violated, R-squared may not provide a reliable measure of model 

performance. Since the forecast challenge in this study is non-linear, R-squared metric was not 

preferred. 

 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
  (6) 

 

Whereby, SSE is the sum of squared error, SST is the sum of squared total. 

The MSE (Equation 7), is a commonly used metric for evaluating the performance of regression 

models, while the MAE provides a measure of the average absolute difference between the 

predicted and actual values. The MSE gives equal weight to all errors, including outliers. 

Outliers can have a significant impact on the squared errors due to the squaring operation, 

which may distort the evaluation of the overall model performance. Therefore, MSE is highly 

sensitive to outliers and can be influenced disproportionately by them. Squaring the errors in 

MSE amplifies the effect of larger errors more than smaller errors. Consequently, MSE may 

prioritize minimizing larger errors at the expense of overall accuracy. This can lead to models 

that perform well on extreme values but poorly on the majority of the data. 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑗 − �̂�𝑗)2𝑛

𝑗=1   (7) 
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Whereby, 𝑛 is the number of load/blackout data points, 𝑦𝑗 is the observed load/blackout value 

and �̂�𝑗 is the forecasted short-term blackout value. 

The MAPE (Equation 8), is a commonly used metric for evaluating the accuracy of forecasting 

models, as it provides the average percentage deviation between the predicted and actual 

values. However, it has weaknesses which make it unsuitable for the dataset used in this study, 

since the dataset set had zero values in some cases. The MAPE becomes undefined when the 

actual value (denominator) is zero. This can happen when dealing with datasets that contain 

zero values or very small values. It restricts the use of MAPE in such cases. The MAPE is 

sensitive to extreme values or outliers in the dataset. Since the calculation involves dividing by 

the actual value, a large or small actual value can greatly impact the percentage error. As a 

result, MAPE may not accurately represent the overall accuracy if extreme values are present. 

 
𝑀𝐴𝑃𝐸 =

100%

𝑛
∑ |

𝑦𝑗−�̂�𝑗

𝑦𝑗
|𝑛

𝑗=1   
(8) 

 

Whereby, 𝑛 is the number of load/blackout data points, 𝑦𝑗 is the observed load/blackout value 

and �̂�𝑗 is the forecasted short-term blackout value. 

To assess blackout classifier model performance, a confusion matrix was used along with 

classification accuracy score, precision, recall, and F1 score. The classification accuracy score 

gives the ratio of correct forecasts to the remaining forecasts, it denotes how accurate the 

prediction model is. The accuracy score is represented in Equation 6. True positive values are 

those whose observed value and forecasted value are true. False negative is a misclassification 

where the observed value is true but the predicted value turns out false. False positive is also a 

misclassification where the forecast value is true whereas the observed value is false. True 

negative is the case where the observed value is false and the forecast value is also false.  

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑠𝑐𝑜𝑟𝑒 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (9) 

 

Recall metric may be defined as the ratio of correctly classified data divided by the total actual 

samples of the target class. The blackout recall used in this work is represented below by 

Equation 10. On the other hand, the precision metric is the ratio of correct positive predictions 

relative to total positive predictions. It is represented in Equation 11. A classifier with good 

precision will not label as positive a data sample that is negative. Another classification metric 

especially useful in this work due to the imbalanced dataset employed is the F1 score, shown 

in Equation 12. The  F1 score is the harmonic mean of precision and recall. The best F1 score 

is 1 while the worst is 0. 
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 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑟𝑒𝑐𝑎𝑙𝑙) =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡
  (10) 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡
  (11) 

 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
  (12) 

 

3.9 Low-cost EMS Smart Meter and Energy Dashboard Prototype 

This section gives an overview of the low-cost EMS smart meter developed in this work that 

could be suitable for hybrid microgrids even in a rural setting. The main features considered in 

the design are load forecast and blackout forecast; electrical parameters sensors; Load control; 

Occupancy detection; battery management; data logging; weather sensors; user engagement; 

security and privacy. Figure 21 gives a visual summary of the developed EMS smart meter 

features followed by the description of key features. 

 

Figure 21:  Developed experimental low-cost EMS smart meter main features 

3.9.1 Microcontroller  

Microcontrollers play an important role in low-cost smart meter designs; they integrate well 

with various analogue sensors and peripherals. Arduino Mega and ESP8266 (NodeMCU) 

microcontrollers were employed in the smart meter design because they were available in the 

local market and they met the project requirement. Arduino Mega was selected because it has 

many ADC and GPIO pins; thus, being scalable in that, extra sensors and modules could be 

added if the need arose. The NodeMCU was selected since it has wifi capability and can 

therefore aid in connecting the smart meter online for remote monitoring and upload of data to 

the cloud services. 
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3.9.2 Sensors  

Weather measurements can be useful inputs to ML models; the Dallas DS18B20 module was 

used for temperature measurements whereas the DHT22 module was used for both temperature 

and humidity measurements. The DS18B20 and DHT22 sensors were interfaced to the Arduino 

Mega board. One of the core roles of a smart meter is to be able to measure electrical parameters 

such as the utility grid’s AC voltage, Alternating Current, AC frequency; PV voltage and 

current; and battery voltage in order to estimate SOC. The PZEM-004T electronic module 

filled the role of measuring AC voltage, current, and frequency. The PV voltage and battery 

voltage were measured with a voltage divider circuit interfaced to Arduino Mega’s ADC pins 

whereas, PV current was measured by ACS712 hall effect current sensor module also 

interfaced to the ADC port of Arduino Mega board. 

3.9.3 Occupancy Detection  

The EMS modules are meant to increase energy efficiency for instance by turning OFF 

appliances when there is no one using them – to prevent wastage. Therefore, a passive infrared 

(PIR) sensor and reed switch were used in the developed prototype. The PIR sensor picks up 

infrared signals emitted by warm bodies of humans; they are useful in detecting the presence 

of a person in the vicinity. Reed switch was placed at the door to indicate when someone enters 

or leaves the room; it was also connected to the GPIO pin of Arduino Mega. With the help of 

these two sensors, Arduino Mega turns off the lights and other non-essential appliances when 

the room is empty. 

3.9.4 Data Logging 

 Storage of measured sensor data in regular intervals – say minute intervals, is important to an 

EMS smart meter in order to provide insights that can help improve energy efficiency. Stored 

historical data are important inputs to machine learning models necessary for load forecast and 

blackout forecast. In this work, data from the developed smart meter sensors was uploaded to 

a SQL database using HTTPS protocol via NodeMCU. Sensor data was additionally uploaded 

to a Google spreadsheet, and also locally stored on an SD (Secure Digital) memory card to 

prevent loss of data in the event of internet connection problems. One of the office telephones 

at the prototype pilot site – a smartphone, was used as an internet MODEM; providing internet 

connectivity to the NodeMCU via password protected internet hotspot. 
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3.9.5 Human-Machine Interface  

 A graphical user interface (GUI) goes a long way in helping a user increase energy efficiency; 

it can provide the end user with an energy dashboard that raises awareness of energy 

consumption and forecasts. This way the end user gets a tool to visually aid in counting the 

cost of energy and help make informed better decisions. Energy dashboards implemented in 

this work were: A web page; Telegram chatbot; ThingsBoard; google spreadsheet and Google 

Apps Script; and an on-site hardware interface. The main energy dashboard used in this work 

was a dynamic web page that interacts with the MySQL database sensor data repository. The 

webpage was developed using HTML, CSS, and JavaScript for the front-end; whereas PHP 

language was used on the back-end – server side. A password-protected login page was added 

to the web page energy dashboard portal. Since there is a growing number of people on social 

media, Telegram was used as a tool to engage the end user and provide an interactive user 

interface, thanks to its chatbot API that conveniently integrates with IoT devices allowing 

remote monitoring and control of the smart grid. The community version of ThingsBoard was 

tested, however this only provided monitoring functions, there was no option for controlling 

appliances remotely as was the case with the web page developed, telegram chatbot, and 

Google spreadsheet. Google spreadsheet and Google Apps Script were linked with NodeMCU 

with the daily spreadsheet sensor generated was saved automatically saved on Google drive. 

Both Telegram, Google spreadsheet, and Apps Script use world-class security features 

implementation, thus ensuring privacy when using these services in the developed EMS smart 

meter prototype. 

3.9.6 Low-cost Machine Learning 

 The ML can be computationally intensive and at times IoT applications require ML elements, 

therefore, numerous cloud services have sprung up. The ML learning model development was 

primarily done on a desktop personal computer (PC) using Matlab programming language and 

Python language; however, the developed ML algorithm was successfully run on a shared 

hosting web server in the cloud that remotely communicated with the smart meter and visually 

offered load forecast and blackout forecast charts to the end user. This was possible because 

the web server was Linux OS based, thus, able to run Python open-source ML libraries such as 

Pandas, Matplotlib, and Scikit-learn. In testing a real-world deployment of the developed ML 

model, the Python ML scripts were run daily on the web server at predetermined intervals via 

a task-schedular (cron job) in order to produce a short-term load forecast and blackout forecast. 

Since the smart meter prototype pilot site used a smartphone as an internet modem, the same 
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Android mid-range smartphone was also used to capitalize on its ML potential tool via the 

Termux app. Python open-source ML-related libraries were installed and used on the test site 

dataset. In order to realize a low-cost ML platform Termux app running ML libraries could 

potentially be linked to cloud storage services such as Google drive. 

3.9.7 Direct Load Control and Prioritization 

Appliances in the pilot site where the prototype was deployed were connected to Arduino Mega 

via three electrical relay modules corresponding to ‘load 1’, ‘load 2’, and ‘load 3’ classification 

of loads. ‘Load 1’ is the primary load of highest priority whereas, ‘load 3’ is of lowest priority. 

Under this scheme, the on-premise video surveillance system was placed under ‘load 1’ 

category; the implication being that the surveillance camera system is the last to be turned off 

in case of a power outage and when battery SOC is low. The user has an option to turn the 

loads ON/OFF remotely via an internet-connected NodeMCU linked to Arduino Mega. A 

second NodeMCU was used in a relay-based changeover circuitry in order to remotely choose 

a power source – between PV-inverter or TANESCO grid power. 

3.9.8 Battery Management System  

The EMS smart meter prototype was deployed at a site with PV battery already installed. Solar 

batteries – in this case, lead-acid batteries, need to be protected against overcharging and over-

discharging; the two things that kill a battery and reduce its lifespan. A PWM battery charging 

system was developed as part of the smart meter. Figure 22 shows the proposed battery 

management algorithm. The algorithm works under the assumption that the site has an 

undersized grid-connected solar system installed that is only capable of supporting a few light 

loads, with heavy loads connected to the main grid. This is so because, in emerging countries, 

you may have a consumer connected to a weak grid that experiences short-lived power cuts for 

a few hours, therefore, consumers opt to deploy a backup solar system that continues to support 

a few important loads during a power outage. Since the smart meter performs a blackout 

forecast, therefore, the battery can be maintained near full charge (by float charging) if a 

blackout is imminent as per generated forecast or allowed to be discharged to low SOC if no 

power outage is imminent. The PWM charging signals were produced by one of the PWM pins 

of the Arduino Mega into a P-channel MOSFET (IRF9540N) high-side switch battery charging 

circuitry; a circuit that can be operated under the MPPT charging principle. Additionally, a 

relay module interfaced to NodeMCU was also connected between the PV array and the battery 

to control charging by automatically disconnecting/reconnecting the PV array and another for 

engaging/disengaging the main grid charging of the batteries.   
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Figure 22:  Proposed battery management algorithm employing blackout prediction 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Load Forecast Results 

This section shows the results of the comparative analysis on the impact of day-ahead (24hrs) 

load profile forecasting with respect to variations in input features and prediction models. This 

results in different forecasting strategies namely: (a) load forecast using all the 23 features; (b) 

load forecast using features from standard FS such as Random Forest, ReliefF algorithm, 

ensemble regression, compact tree, NCA, (c)  proposed FS methods (principal k-features union, 

principal k-features mean score, refined exhaustive features search); and lastly (d) hybrid load 

forecast models formed by fusion of two standard regression models through elementwise 

mean, max, min of the two models outputs. 

Figure 23 (a) shows load forecast evaluation using the test dataset on the 20 conventional 

prediction algorithms. Each of the 8 feature selection methods in Fig. 23 (a) was applied to all 

the 20 conventional prediction models. The principal k-features union approach performed best 

with ‘linearSVM’ prediction model, however it performed poorly in the case of: ‘FineGSVM’; 

‘MaternGPR’; ‘rqGPR’; and ‘eGPR’ models. This observed poor performance is contributed 

by the ‘All features MAE’ being an inherent part of the k-features union. The principal k-

features mean score approach performed relatively good across all the 20 prediction models. 

The authors,  Dai and Zhao (2020), developed a SVM-PSO-based day-ahead load forecast 

model using minimum redundancy maximum relevancy (mRMR) approach which also gave 

attention to real-time pricing as an essential feature of Singapore grid data. Their model 

outperformed other NN models used as their benchmarks, however, their model only used 

mRMR feature selection it failed to compare performance with other feature selection methods. 

It also failed to show how the model would perform on a smaller microgrid like the one used 

in this work. Phyo and Jeenanunta (2022), developed an LR-SVR ensemble STLF model which 

outperformed DNN, LSTM, and LSTM-CNN deep learning models. Only Spearman’s 

correlation coefficient was used for input features selection, their work failed to compare the 

impact of other feature selection methods, and limited their STLF comparison to the three deep 

learning models. 
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Figure 23:  (a) Prediction models evaluation; (b) Linear SVM performance 

comparison on each of the 8 feature selection methods 

Figure 24 shows a prediction algorithms comparison using a subset of predictors obtained from 

the proposed k-Union feature selection method. Predictors used were 'Load', 'T1_Load', 'Hour', 

'T2_Load', 'Day', 'P_DG', 'Month', 'Vdc_bus', and 'P_inv'. Generally, the performance trend of 

the 20 algorithms tested was the same across the five-evaluation metrics considered, namely: 

MAE, RMSE, MAPE, MSE, and R-squared. The MAE and RMSE are robust against outliers 

and are widely used in the literature, therefore they were the preferred metric of evaluating the 

prediction models. The MAPE is not suitable when dataset contains zero values. The load 

profile used in some instances contained zero values. Electric load forecast problems are 

typically considered as non-linear regression problems rather than linear regression problems. 

This is because the relationship between the independent variables (such as weather conditions, 

time of day, day of the week, etc.) and the dependent variable (electric load) often exhibits non-

linear patterns and interactions. Thus, R-squared metric is not well suited for non-linear 

regression models. The MSE is usually larger than MAE since it squares the difference between 

predicted and actual values. This is also evident in Fig. 24. The MSE is more suitable when 

large errors should be heavily penalized or when optimization algorithms that require 

differentiability are used. On the other hand, MAE is preferred when outliers should be 

downplayed or when interpretability and equal weighting of errors are crucial. The dataset used 

is from a small microgrid susceptible to many outliers, therefore MAE was preferred over 

MSE. Notably, ‘linearSVM’ algorithm had an overall good performance in all the five error 

evaluation metrics. 



65 

 
Figure 24:  Evaluation error metrics comparison on the LF prediction models 

 The Linear SVM prediction algorithm was identified as the best prediction model. For 

prediction examples, Fig. 25 shows individual next-day load forecast plots for February 3rd to 

February 6th 2018 using the ‘LinearSVM’ prediction model. The forecast was done with 95% 

confidence band. The prediction model is used with the features selected from the principal k-

features union approach. Prediction accuracy varies from one day to the next. However, the 

actual consumption pattern modestly lies within the predicted confidence band. Agrawal et al. 

(2018), performed a long-term load forecast based on LSTM networks. Similar to this work, 

the authors also used 95% confidence bands, however, their target was a yearly forecast horizon 

using a large dataset (the ISO New England public dataset). The authors Zhai and Che (2022), 

reported good performance of their PSO-SVR STLF model using real-life data with MAE, 

RMSE, MAPE, and R2 (coefficient of determination) evaluation metrics. In their work, missing 

values were filled with predictions from RF. Although the authors did not employ confidence 

interval bands, their observations agree with the findings of this work, in that, the prediction 

skill of the model with feature selection is better than without.  

 



66 

 
Figure 25:  Linear SVM Forecast model performance on Ngarenanyuki dataset 

Table 5 shows the top 20 next-day load forecast results obtained using the refined exhaustive 

search and Linear SVM prediction model. The refined exhaustive search involved choosing 5 

features out of all 23 features and using the chosen 5 features on the ‘LinearSVM’ prediction 

model. In other words, referring to equation (2), a 5 features subset of 23 features set was used 

in predicting day-ahead load forecast using ‘LinearSVM’ prediction model. This resulted in a 

total of 5989 different combinations of 5 features which at least include the ‘Load’ variable but 

exclude the ‘Year’ variable. The latter was correctly omitted since it has no meaningful 

influence on day-to-day short-term load forecast because it remains constant from one day to 

the next. Bouktif et al. (2018), made a comparison between machine learning models and 

LSTM deep learning models in load forecasting using feature selection and GA. They found 

that their LSTM model outperformed machine learning models, however, their model was only 

tested on one dataset. They experimented with different forecasting horizons, from 2 weeks to 

4 months, but they failed to report the performance of their model for day-ahead forecasts. The 

authors (Hu et al., 2015), developed an STLF model based on SVR for load forecast and partial 

mutual information coupled with the firefly algorithm for feature selection. Their work 

successfully demonstrated the viability of using filter methods and wrapper methods for feature 

selection. However, their work failed to extensively compare their feature selection with other 

established feature selection methods, and only used SVR as a modeler without considering 

other established prediction models. 
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Table 5:  Refined exhaustive search load forecast results 

# Feature subset RMSE MAE 

1 'Load,SOC,Vdc_bus,T1_temp,Weekend' 283.3 125.8 

2 'Load,RHumidity,SOC,Vdc_bus,temp' 289.6 127.9 

3 'Load,SOC,Vdc_bus,T1_temp,DewpointTemp' 288.5 129.1 

4 'Load,SOC,Vdc_bus,T2_temp,temp' 289.8 131.5 

5 'Load,Vdc_bus,DewpointTemp,atmPressure,Weekend' 296.3 132.3 

6 'Load,RHumidity,SOC,Vdc_bus,Weekend' 295.1 132.6 

7 'Load,SOC,Vdc_bus,T1_temp,P_HYD' 292.4 133.5 

8 'Load,SOC,Vdc_bus,P_HYD,P_DG' 284.7 133.7 

9 'Load,SOC,Vdc_bus,temp,P_HYD' 300.2 133.9 

10 'Load,SOC,Vdc_bus,atmPressure,Weekend' 295.4 134.0 

11 'Load,RHumidity,SOC,Vdc_bus,T1_temp' 300.1 134.2 

12 'Load,SOC,Vdc_bus,P_HYD,Weekend' 294.8 134.4 

13 'Load,RHumidity,SOC,Vdc_bus,P_HYD' 302.6 134.6 

14 'Load,SOC,Vdc_bus,DewpointTemp,Weekend' 290.0 135.4 

15 'Load,RHumidity,Vdc_bus,T1_temp,Weekend' 302.4 135.6 

16 'Load,Vdc_bus,T1_temp,DewpointTemp,Weekend' 305.6 136.2 

17 'Load,SOC,Vdc_bus,WeekDay,Weekend' 298.6 136.7 

18 'Load,SOC,Vdc_bus,T1_temp,P_DG' 294.5 136.7 

19 'Load,SOC,Vdc_bus,WeekDay,atmPressure' 300.8 137.0 

20 'Load,SOC,Vdc_bus,DewpointTemp,P_HYD' 302.1 137.0 

Figure 26 (a) shows the MAE and RMSE prediction result evaluation when a subset of top 5 

most important features selected from mean score votes of the 6 FS conventional models was 

trained and tested on each of the 20 regression models. Figure 26 (b) shows a general 

improvement in MAE error performance when hybrid models are formed by the fusion of two 

regression models through elementwise mean, max, and min of the two conventional regression 

models outputs. The resulting hybrid models formed from the maximum forecast instances of 

two regression models exhibited the lowest MAE prediction error. This is possibly because the 

load profile of the microgrid being considered fluctuates a lot, any appliance that is turned on 

or off the effect is immediately observable in the baseline load profile, and is therefore likely 

to be captured by the ‘mae-max’ hybrid model. Overall, the results agree with error reduction 

enhancements typically obtained from STLF model aggregation (Feng & Zhang, 2020). 
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Figure 26:  (a) Conventional prediction models evaluation; (b) Hybrid regression 

models 

Based on the microgrid dataset used in this work, both the k-features mean score and subset 

union approaches registered the lowest error values when they were used with ‘linearSVM’ 

prediction model. The principal k-features union approach model registered MAE error of 

224.7 while the principal k-features mean score approach registered 227.4. The refined 

exhaustive search used together with ‘linearSVM’ prediction model registered the lowest MAE 

error of 125.8, however, it was computational more intensive. Furthermore, a hybrid prediction 

model formed from the elementwise maximum forecast instances of two regression models 

yielded better MAE prediction error than the individual regression models fused to form the 

hybrid. In this case study, the overall best prediction model was found to be the hybrid 

regression model formed from ‘linearSVM’ and ‘cubicSVM’ regression models and showed 

improved prediction performance than the individual regression models, MAE was reduced by 

5.4%. Therefore, given a different microgrid it is recommended to find the best features using 

the proposed principal k-features union approach and in turn form a hybrid regression model 

based on the top two performing conventional prediction models.  

With regards to load forecast, at times it is not straight-forward to do a direct comparison 

between load forecast study cases because the performance of the model is dependent on data 

(which may not be publicly available) it was trained on, platform, and computer specifications 

where the model was developed. In the study by Eseye et al. (2019), the authors proposed using 

binary Genetic Algorithm (BGA) and GSR in feature selection when undertaking load forecast 
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procedure. Although the model performed better than the conventional NCA FS method, the 

study failed to compare the proposed BGA-GSR with other bio-inspired optimization 

algorithms like PSO, and Ant Colony Optimization (ACO). Chen et al. (2019), implemented 

an hour-ahead load forecast RF classifier model that converts the forecasted numerical value 

into 3 energy levels (high, medium, low) using percentile ordinal partitioning in order for the 

consumer to easily comprehend the model’s output. The accuracy of the RF classifier model 

decreased with increased energy levels when 7 levels were used. This study performed LF 

using 24 hours ahead regression with RF for feature selection instead of the 1 hour ahead 

forecast employed in their work. However, their work could serve as an alternative extension 

to this study.  

Yildiz et al. (2018), performed a short-term load forecast of residential loads using ANN and 

SVM models. They tested the impact of different data resolutions and forecast horizons on the 

model’s prediction ability. They found that higher input resolution data yielded results with 

more error than low-resolution data whereas the short forecast horizon had more accuracy than 

the distant forecast horizon. This agrees with the observations made in this study. Moon et al. 

(2020), showcased an STLF model that uses an N-number of base models for prediction which 

in turn feeds a meta-model that trains on the received values in order to give a final more 

accurate output. The stacking ensemble model approach they proposed used 4 DNNs. The 

DNN models are effective on large datasets, this dissertation used a small dataset and a 

maximum of two base models without stacking. Stacking and using many base models 

increases complexity and computation time.  

4.2 Power Outage Forecast Results 

Figure 27 below shows the blackout classification accuracy score for RF, ASD, and RF-ASD 

models. The results are for a 15-minutes-ahead power outage forecast. The three models 

showed an overall accuracy score of about 90%. However, because most of the time power is 

available, observed actual blackout events were fewer in the test dataset, inevitably resulting 

in an imbalanced dataset. Therefore, the machine learning models inadvertently also get few 

effective observed blackout samples to train on. It is ideally desired for any classifier model to 

classify all samples appropriately as True Negatives (TN) and True Positives (TP) – the two 

diagonal parts of the 2x2 confusion matrix  in Fig. 27. 
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Figure 27:  Power outage classification accuracy scores for 15-minutes-ahead 

predictions 

The stand-alone RF model correctly classified 89.4% of the test data samples as the power 

available (TN), while 1.5% were misclassified as power outages (FP) instead of being predicted 

as instances where the supply line had power ON (available). The RF model misclassified 6.2% 

of the blackout events and mistook them for power ON instances instead of blackouts. The RF 

model only correctly predicted 672 power outages out of the total 2085 blackout events. These 

2085 blackouts formed only 9.1% of the total samples, whereas actual power was available/ON 

90.9% of the recorded data. The RF model did relatively better at predicting the presence of 

power and fared badly at predicting blackout events as compared to the ASD model and RF-

ASD hybrid model. The ASD model did better than the RF model in predicting blackouts, it 

accurately predicted 971 counts of blackout events. The RF-ASD hybrid model predicted 

accurately almost half of the blackouts (1025 counts), thereby performing slightly better than 

the RF, and ASD models. 

Typically, in emerging countries scenario, the user may want to know in advance if there is 

going to be any power outage the following day in order to take appropriate actions to alleviate 

the effects of lack of electricity supply. For this, the 24 hrs-ahead blackout predictions may be 

useful. The hour-ahead and 15-minutes ahead blackout prediction may be advantageous to a 

grid operator. Table 6 summarizes the overall blackout forecast classification of the 3 models 

RF, ASD, and RF-ASD along 3 forecast horizons namely: 15-minutes ahead, hour-ahead, and 

24 hrs-ahead forecast horizon. Considering firstly accuracy score metric, it was found to be 

92.4%, 90.6%, and 90.2% for RF, ASD, and RF-ASD models respectively for the 15-minutes-

ahead forecast horizon. These are high accuracy scores for a classification model; however, 

they have been driven up by the majority class (power ON class data) instead of the blackout 

minority class. The accuracy score is also high for the hour-ahead forecast horizon. The 

accuracy score was found to be low for the 24-hours-ahead forecasts due to the stochastic 

nature of blackouts. The ASD model fared better with an accuracy score of 85%. Attempting 

to predict a blackout many time steps in advance is more prone to forecast errors. As was found 
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to be the case in 24-hours-ahead blackout prediction. All in all, the accuracy score, in this case, 

does not correctly reflect the performance of the model in predicting blackouts, which is our 

target. 

Looking at the 15-minutes-ahead forecast horizon, the recall metric was found to be 32.2%, 

46.6%, and 49.2% for RF, ASD, and RF-ASD models respectively. For our case the higher the 

recall value the better, as it implies the model was able to predict accurately more blackout 

events. Combining the RF and ASD model to form RF-ASD had a good effect of increasing 

blackout recall by up to 49.2%. The same effect was observed in the case of hour-ahead and 

24-hours-ahead forecasts. Just like recall, it is desired to have a model with a higher precision 

value. The RF model had higher precision values than ASD and RF-ASD models in both 15-

minutes-ahead and hour-ahead forecast horizons. However, the ASD had higher precision in 

the 24-hours-ahead horizon. The F1 score is a suitable metric for identifying an overall good-

performing classifier model for an imbalanced dataset as was the case in this work. The RF-

ASD model scored slightly higher with an F1 score of 47.7%, with the other models lagging. 

Therefore, making the RF-ASD model a better candidate for 15-minutes-ahead blackout 

forecasting. In hour-ahead forecasts, the RF model lagged in performance compared to ASD, 

and RF-ASD which both scored 45.7%. The ASD model had outperformed RF and RF-ASD 

models in the 24-hours-ahead blackout forecast. 

Table 6:      Overall blackout forecast classification performance 

Forecast horizon 
classifier 

model 

Accuracy 

score 

Blackout 

sensitivity 

(recall) 

Blackout 

precision 
F1 score 

15-minutes-ahead 

RF 92.4% 32.2% 66.4% 43.4% 

ASD 90.6% 46.6% 48.6% 47.6% 

RF-ASD 90.2% 49.2% 46.3% 47.7% 

Hour-ahead 

RF 88.4% 17.0% 52.1% 25.6% 

ASD 87.3% 45.7% 45.8% 45.7% 

RF-ASD 86.8% 47.2% 44.3 45.7% 

24hrs-ahead 

RF 62.0% 67.8% 19.4% 30.2% 

ASD 85.0% 38.0% 36.6% 37.3% 

RF-ASD 60.9% 73.4% 19.4% 30.7% 

Figure 28 gives insight into the performance of the blackout classifier across different months. 

The chart below considers the RF-ASD classifier model for 15-minutes-ahead predictions. The 

overall accuracy score is observed to be relatively high from March to October, where it then 

drops to 64% in November and 57% percent in December.  
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Figure 28:  Monthly blackout forecast performance for 15-minutes-ahead RF-ASD 

classifier model  

The F1 score is derived from both recall and precision metrics and is a better indicator of the 

performance of a classifier. The F1score for March, April, and May perform fairly well above 

50%. However, it drops to 18%, 13%, and 34% in June, July, and August. In contrast, the 

accuracy score remains high above 90%. With respect to Fig. 16 of Section 3, June, July, and 

August had less consistent blackouts which occur sparsely and thus affecting negatively the 

performance of the model in predicting blackouts. For this reason, the classifier model 

performed poorly in the recall, precision, and F1 score metrics. November and December had 

many random blackouts thus causing the classifier model to perform poorly in accuracy, recall, 

precision, and F1 scores. Although March and April had about the same level of blackouts as 

November and December, blackouts in March and April were contiguous and more converged, 

unlike those of November and December which were dispersed. Therefore, the classifier had 

better prediction skills in those earlier months than in November and December. 

Table 7 summarizes the performance of the RF, ASD, and RF-ASD regression models.  The 

three models were formulated as regression models in order to tackle the challenge of 

quantifying the duration of the short-term blackout prediction. The overall prediction skill for 

the three models had small differences from each other in all the 3 forecast horizons considered. 

For the case of 15-minutes-ahead forecasts, the ASD model slightly improved with respect to 

both MAE and RMSE. Although the RF model had a similar MAE score to the RF-ASD model, 

its RMSE was slightly worse than that of RF-ASD. Implying that the output of the RF model 

suffered more from outliers. For the case hour-ahead forecasts, the RF model had a lower MAE 

value, but the RF-ASD model had the lowest RMSE value meaning that the RF model suffered 

from slightly more outlier results than the RF-ASD model. The ASD model had slightly better 

MAE and RMSE values than RF and RF-ASD models for the case of 24hrs-ahead forecasts. 

For the case of 15-minutes-ahead forecasts, 96 (24x4) predictions had to be made per day, 

while the hour-ahead approach requires only 24 predictions per day. Statistically, the 15-
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minutes-ahead approach ends up being more prone to forecast errors than the hour-ahead 

forecast approach. This is visible in Table 7 results. 

Table 7:  Overall performance for blackout forecast regression models 

Forecast horizon Regression model MAE RMSE 

 RF 0.253 0.333 

15-minutes-ahead ASD 0.251 0.325 

 RF-ASD 0.253 0.329 

 RF 0.169 0.298 

Hour-ahead ASD 0.203 0.323 

 RF-ASD 0.185 0.296 

 RF 0.268 0.431 

24hrs-ahead ASD 0.254 0.409 

 RF-ASD 0.258 0.418 

 
Figure 29:  Performance of the RF-ASD blackout forecast model on different month’s 

data, considering the hour-ahead, and 15-minutes-ahead forecast horizons 

Figure 29 gives further insight into the average performance of the RF-ASD regression model 

compared across different months of the test data. All the models performed relatively poorly 

in March, April, November, and December whereby the grid was under severe blackout 

disturbances, and also due to the haphazard nature of the outages. It is worth noting that, in the 

preceding named months where blackouts were prevalent, 15-minutes-ahead forecasts 

outperformed their counterparts, namely, 24 hours-ahead forecasts, and hour-ahead forecast. 

The RF-ASD 24 hrs-ahead prediction produces a blackout prediction for the entire 24hrs of the 

next day, whereas the RF-ASD hour-ahead blackout prediction algorithm only makes 

prediction one hour ahead at a time, and is, therefore, able to update and notice the developing 
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blackout trend of the grid. Thus, gaining prediction skills and being able to self-learn any prior 

inaccurate predictions.  

Figure 30 shows the blackout forecast for three reference days – April 17th to 19th 2021, 

whereby the grid was under severe blackout disturbances. In this hybrid regression model case, 

the RF-ASD hour-ahead short-term blackout prediction performed better than the RF-ASD 24 

hrs-ahead prediction, by almost a factor of 4. Although past values influence future values, the 

model is not entirely persistent, since short-term forecast values are not in all cases replicas of 

past observed values. 

 
Figure 30:  Blackout forecast plot for three reference days 

The models developed in this work were reasonably able to predict power outages using only 

few information regarding electric power parameters as observed from the point of coupling at 

the customer side and whilst having no prior information of scheduled power outages nor 

weather forecasts regarding any looming extreme weather events that might cause a blackout. 

It is more difficult to predict the duration of the blackout event than the mere occurrence of the 

blackout. Generally, the shorter the forecast horizon the more realistic and practical the 

prediction result is than when a long forecast horizon is used since grid dynamics may quickly 

change between one forecast and the next. 

With regards to blackout forecast, Kogo et al. (2014) conducted similar research on demand-

side blackout prediction their goal was merely a day-ahead prediction of power cut start time 

and not the duration of the power cut whereas this study addressed the prediction horizon of 

15 minutes, 1 hour, and 24 hours ahead. Similar to this study they used a similar-day approach 

of day-ahead power outage prediction assigning power cut binary value. The performance of 

their statistical model had a high prediction success ratio for times when blackouts were heavy 

(frequent) whereas they obtained a low prediction success ratio for times when blackouts were 

light (less frequent), this phenomenon resembles results obtained in this study. Although this 
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study aimed at a hybrid model combining a statistical approach (ASD) with machine learning 

(RF). Their study did not use a publicly available dataset; therefore, it is difficult to judge how 

the model in this study would fare given their dataset. In addition, their work used hit ratio and 

inclusion ratio as evaluation metrics in contrast to this study.  

Other researchers have used RF for blackout prediction, for example, Nateghi et al. (2014c), 

used random forest with reasonable accuracy for blackout prediction however their model 

focused on the blackout of the large power system from the utility point of view and it targeted 

blackouts emanating from hurricanes. In contrast to the approach adopted in this work, their 

model used many inputs including the poles quantity, transformers, switches, distribution line 

length, served clients quantity, wind speed, and tree trimming variable. So far, it is not easy to 

compare the blackout prediction model from one author to the next since in most cases the 

dataset used involves power system inventory information for the geographical area where the 

model is developed upon. 

Kankanala et al. (2014), used a boosting algorithm ADABOOST+ on a large dataset (6 years 

data) to predict power outages due to wind and lightning in overhead distribution systems of 

four cities in Kansas. The concept of boosting used in their work is similar to this work, 

whereby weak learners are combined to form a strong learner. Not surprising for the power 

outage prediction challenge, their model had low accuracy for sparse outage data as was the 

case in this study. The ensemble (hybrid) in their work was based only on boosting weak learner 

neural networks to form a final strong learner neural newtowork with less MSE error, whereas, 

this study used ASD and RF models to form a hybrid RF-ASD model. A common trait from 

the study by Kankanala et al. (2014), and other studies that address power outages from a utility 

point of view is the inclusion of weather data in the model’s input (Davidson & Stedinger, 

2005; Li et al., 2010; Liu et al., 2008; Zhu et al., 2007). 

4.3 EMS Smart Meter Prototype Results 

The test site microgrid deployed in this work is connected to the TANESCO utility grid under 

the prepaid meter scheme. Under this scheme, a customer is provided with a prepaid meter 

console where they can manually recharge purchased electric units and continue using 

electricity till the time purchased units run out. When a customer’s purchased units run out 

electricity supply is automatically cut-off, unless the customer recharges by purchasing new 

electric units, otherwise, the customer experiences a power outage. The TANESCO’s prepaid 

meters do not send notifications to the customer of the imminent power outage due to energy 

credits running out.  The smart EMS deployed in this work prevents the consumer from 
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mistakenly thinking that the power outage is from TANESCO, or even preventing power 

outage due to finished energy credits. The smart energy management system does so by 

continuously monitoring power consumption status based on the data logged. If energy credits 

are low the user is notified to recharge in order to prevent a power outage. This feature does 

not currently exist in TANESCO’s prepaid meters. The energy credit balance alerts are sent to 

the user’s phone via a Telegram app chatbot. The chatbot provides real-time grid system 

information regarding day-ahead consumption and blackout forecast, and the ability to 

remotely control turning on/off loads (appliances).  

This work proposes leveraging any combination of the following four options as an energy 

dashboard for monitoring and reporting purposes in emerging countries scenarios, which have 

been tested: (a) using a hosted shared web server shown in Fig. 31 and 32; (b) using cloud 

services such as Google apps services (shown in Fig. 33), which includes spreadsheet and 

Google drive storage which can be utilized for grid monitoring and control; (c) Using IoT 

platform services like Things Board (Shown in Fig. 34); (d) using chatbots services such as 

Telegram’s chatbot (shown in Fig. 35a) which easily engages the user from their mobile phone. 

Apart from remotely controlling appliances, the user can select the battery bank charging 

option between TANESCO or PV (when there is enough sunlight), in order to ensure sufficient 

backup in case of power outage; (e) using apps like Termux (Fig. 35b) for machine learning, 

this can provide basic computation needed to perform forecast from the user’s mobile phone. 

 
Figure 31:  Energy dashboard web portal with: (a) Grid parameters monitoring, (b) 

Remote load control 
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Figure 32:  Energy dashboard interface showing consumption forecast and historical 

load charts 

 

Figure 33:  Low-cost EMS energy dashboard implementation via Google spreadsheet 

 
Figure 34:  EMS dashboard interface implementation using ThingsBoard community 

version account 
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Figure 35:  EMS user engagement via mobile phones. (a) Telegram app offers 

developers with API which could be tailored for energy monitoring 

activities. (b) Termux mobile phone terminal emulator can be adopted for 

mobile phone machine learning EMS forecasts 

Free versions (community versions) of IoT platforms the likes of ThingsBoard have limited 

functionality – in this case study, it was only possible to monitor the grid without remote control 

functionality unless paid version was unlocked. Therefore, compromises have to be made when 

deploying microgrids with such IoT platforms; they still remain attractive because of their ease 

of use with a rapid learning curve. On the other hand, developing an energy dashboard for user 

engagement via a web portal on a shared website requires relatively more effort to build the 

website, but it has more advantages of customization and the freedom to add desired features, 

unlike IoT platforms which limits the subscriber only to the features available – in store. On 

the plus side, machine learning which is critical for EMS load and blackout forecast can also 

be performed on the same web server, eliminating the need to rent ML processing power 

services from elsewhere. Apps like Google spreadsheet, Google Drive, and Google Apps 

Scripts also have the potential of being used in low-cost microgrid energy dashboards however, 

if deployed in a project they may suffer from any policy changes rolled out by Google, thus, 

affecting the implementation already in place in the field. Their merit includes offering world-

class security and authentication features. 

The number of social media users in emerging countries is substantial, especially since mid-

range and low-end smartphones tend to support social media apps; what better way to engage 

a user than using mobile phone Apps? Unlike WhatsApp which is monetized, Telegram offers 

a free API that allows developers to link Telegram chatbot with their IoT applications, thus, 

being the most cost-effective EMS option than the aforementioned approaches; the only caveat 
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being that the user requires to have active internet connectivity and the only cost being that of 

internet connection. For the case of emerging countries, if the site for EMS deployment has 

poor or expensive internet connectivity then an alternative solution would be using GSM 

modules (like SIM800L or SIM900L modules) to notify the user or perform remote control 

operations, however, graphical visualization charts are not possible with this approach since it 

relies on SMS. 

Figure 36 shows the low-cost EMS prototype hardware implemented in this work at Levolosi 

ward, Arusha – Tanzania. It was implemented with open-source Arduino Mega and NodeMCU 

microcontrollers which are relatively easier to program and obtain. They have wide online 

community supporters and contributors making them ideal for emerging countries' EMS 

applications. As per Table 8, the overall EMS prototype hardware cost was around 100 USD 

being more economical than commercial EMS/SCADA systems which may cost up to 

thousands of US dollars. Figure 37, shows the low-cost SG3525-based inverter module used in 

this work; a NodeMCU unit was added to the inverter for IoT cloud connectivity; a set of relays 

linked to the NodeMCU forms a remote controllable change-over circuit which allows the 

selection of either utility grid power or inverter power supply.  

 
Figure 36:  Developed low-cost EMS smart meter prototype hardware, (a) device 

exterior (b) device interior 
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Figure 37:  SG3525 based solar modified sine wave prototype inverter interfaced with 

NodeMCU for IoT operations 

Table 8:  Developed EMS smart meter bill of material 

S/N Component Quantity Cost (USD) 

1 Arduino Mega 1 14.00 

2 NodeMCU 2 8.00 

3 DHT22 1 3.00 

4 DS18B20 1 1.50 

5 PIR sensor 1 1.50 

6 Reed switch 1 1.50 

7 LCD display 1 5.00 

8 ACS712 current sensor 2 1.50 

9 PZEM-004T energy meter 1 5.00 

10 SD memory card module 1 1.00 

11 Miscellaneous (casing, resistor, wires etc.)  58.00 

 TOTAL  100.00 

 

Karthick et al. (2021), proposed a smart meter for energy monitoring and control with DSM 

that also tracked power quality issues. Similar to this work, they used low-cost IoT devices like 

ESP8266 and ESP32 as WiFi modules, Relays for switching loads, a Raspberry pi 4B+ for 

local storage, and cloud linkage with Blynk App.  The Blynk App is a commercial IoT platform 

that simplifies remote monitoring and control, but it may add to the cost of EMS 

implementation since it’s a paid App. Their study did not incorporate any machine learning, 

although the Raspberry pi module is ML capable, it was underused in their study. This study 

did not use Raspberry pi since it is relatively more expensive than popular IoT microcontrollers 

like ESP8266 and ESP32. This study capitalized on the fact that most deployment sites have 
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users already with smartphones that could be used as internet hotspot modem, machine 

learning, and user interaction. Thus, bringing down the total cost of EMS implementation in 

emerging countries. The smart SCADA system implementation by researchers Aghenta and 

Iqbal (2019), was similar to that of Karthick et al. (2021), save for using the ThingsBoard IoT 

platform instead of Blynk App. Free versions of Apps like Blynk, and ThingBoard have many 

limitations, with useful features unlocked only for paying subscribers. Though this study 

explored the free version of ThingsBoard as an energy dashboard, it fell short of providing 

machine learning and remote control of loads.  

In the study by Pawar et al. (2020), an IoT-based EMS was proposed with DSM load 

scheduling strategy and PV power generation prediction. Their PV power prediction model 

used PSO and SVM regression for hourly and day-ahead forecasts. They used solar irradiation 

data of the site from NREL (National Renewable Energy Laboratory) instead of locally 

measured data. The Xbee IoT modules were used and consumption data was stored on a local 

server. Their proposed EMS omitted load forecast and battery monitoring. Researchers Hijawi 

et al. (2020), implemented a lightweight and cost-effective EMS. They also considered 

environment sensing units for temperature, humidity, light, and occupancy detection. However, 

their work neither implemented any DSM control strategies nor load forecasting and energy 

storage management. In a study by Chen et al. (2014), the authors experimented to engage 

residents of a dense campus building via a web-based energy dashboard and email 

interactions/reminders. They observed that 90% of energy dashboard interactions were due to 

half of the participants and that participants interacted with the energy dashboard at mid-day. 

Email notifications increased energy conservation effectiveness and user engagement. This 

observation tallies with the hypothesis of this dissertation, that EMS user engagement in 

emerging countries can be achieved through smartphones web Apps, and Social Apps 

(especially instant messaging Apps). The study by Chen et al. (2014), achieved energy 

conservation simply through reporting to the end-users their real-time energy usage, arguably 

this has a limitation, it is far better to combine energy use reporting with remote control, 

forecasting, and suggestions (on load shedding or shifting) to the end-user.  

4.4 Results Highlights 

Input data feature selection methods have a substantial impact on the load forecast model’s 

performance. Reducing the number of input features had a positive effect of reducing 

computation time and boosting the model’s performance. Established feature selection 

methods can be blended by averaging to produce a subset pool of input features more 

effectively in prediction. Using many input features does not translate into higher prediction 
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efficacy, on the contrary, results show that only a few important input features should be used 

in the model. The STLF model aggregation results in a robust more accurate model than the 

stand-alone individual models constituting the hybrid model. In general, SVM-based models 

were found to perform better than decision-trees-based models in load forecast tasks. If there 

is no limitation on available computational resources and highest degree of prediction 

performance is desired, then it is recommended to use refined exhaustive principal k-features 

selection approach and hybrid model formed from element-wise min of two regression models 

selected from a superset of all the available LF models. 

Short-term blackout forecast can either be solved as a classification challenge or a regression 

challenge. A hybrid Adaptive Similar Day (ASD) and Random Forest (RF) model for short-

term power outage prediction has been proposed in this work. Accuracy score was found to be 

a less appropriate metric for blackout forecast since data was imbalanced with more records of 

power ON (no power cut) than instances of a power outage. Therefore, a better metric was 

found to be the F1score. The random nature of blackouts caused the models to struggle to 

predict power outages and resulted in only modest performance. The models developed found 

it easier to forecast blackouts when they were frequent than when they were sparse. Results 

indicate more work is needed to improve the blackout forecasting accuracy perhaps by using 

more exogenous inputs such as poles quantity, transformers, switches, distribution line length, 

served clients quantity, wind speed, rainfall, and tree trimming variable. Literature shows that, 

there is correlation between exogenous inputs and electric energy forecast (Mir et al., 2020; 

Nateghi et al., 2014c; Vivas et al., 2020). 

Low-cost IoT components were used to implement a practical EMS smart meter with user 

interaction using readily available open-source components such as Arduino boards and 

sensors. The smart meter developed, successfully exploited the use of social media apps such 

as the Telegram app platform for remote energy monitoring and control. Other energy 

dashboard platforms exploited were: A web page; a combination of cloud services (Google 

spreadsheet, Drive cloud storage, Google Apps script); and the Things Board IoT platform as 

an energy dashboard.  Furthermore, the developed smart meter incorporated artificial 

intelligence with load forecast and blackout forecast functionality which can run on smartphone 

apps such as Termux. The goal of the smart meter linked to the energy dashboard is to engage 

the end user, shape energy use for the better, and increase energy efficiency by curbing energy 

wastefulness. 

 Although there are various web services, applications, and platforms which can be used in 

implementation of energy dashboard, the main technical parameter to be considered include 
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availability of API compatible with smart meter microcontroller, speed of data transmission, 

and ability to provide interactive visualization charts or widgets to the end user. The examined 

remote monitoring services are equally accurate, however, the main difference was in speed, 

aesthetic, and number of free remote operations available as already discussed in Section 4.3. 

In the end, a trade-off has to be made in choosing the proposed solutions by taking into account 

the specific needs of the deployment site.   
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion 

This study developed machine-learning based EMS with electric energy forecasting and 

monitoring for use in microgrids. In the first objective, machine learning techniques suitable 

for EMS in hybrid microgrids have been identified and employed to achieve objectives two 

and three. In the second objective, a short-term load forecasting model framework has been 

proposed. It has been shown that the blending of conventional feature selection methods gives 

more reliable global subset principal features that improve prediction model performance. 

Furthermore, blending two conventional regression models forms hybrid regression models 

with improved prediction performance in agreement with other works in the literature. There 

was a 43.6% error reduction from ‘finetree’ decision tree model to 'linearSVM’ model. An 

additional improvement was obtained when the overall best prediction model ‘linearSVM’ and 

‘cubicSVM’ were combined to form a hybrid model resulting in a 5.4% MAE reduction. Three 

approaches were proposed for the supervised selection of a subset of principal k-features from 

a superset of N features through 1) mean score; 2) subset union; 3) refined exhaustive search 

based on k-combination. For computational time reasons, the mean score and subset union 

approach can be applied and the best of the two chosen after evaluating their performance on 

prediction models. If further prediction performance is desired, then a refined exhaustive 

principal k-features search can be applied although it is more resource intensive. Ultimately, 

the choice of which path to follow in the proposed framework depends on the computational 

resources available as well as the degree of prediction performance desired.  

In the third objective, a short-term blackout forecasting model framework has been proposed. 

Generally, the regression and classification algorithms considered in this work namely: RF, 

ASD, and RF-ASD had about the same performance in blackout prediction. RF-ASD predicted 

accurately almost half of the blackouts (49.16%), thereby performing slightly better than the 

stand-alone RF (32.23%), and ASD (46.57%) models. The models developed were only able 

to predict blackouts if they occurred frequently and contiguously but performed poorly if they 

were sparse or dispersed. This is because the algorithm heavily relies its prediction on recent 

historical data, hence, if there no recent blackouts, it assumes there will continue to be no 

blackout in the short-term horizon. Including exogenous inputs correlated to power outage 

occurrence such as distribution line faults, utility lines maintenance work, utility lines tree 

trimming schedule, weather forecast (including rainfall) could potentially improve blackout 
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forecast even for dispersed power outage incidents. The developed models merely make an 

educated guess on the possible occurrence of a blackout, but not the precise time of the outage 

incidence. Overall, the blackout regression and classification models investigated in this work 

had fair performance in power outage prediction challenges along the test data considered 

months.  

In the fourth objective, A low-cost EMS smart meter has been developed and implemented in 

this work as a tool for load control, battery management, user engagement, and energy 

awareness. The combination of the smart meter and energy dashboard technologies explored 

was found to be practical for low-income countries where most users are oblivious to their 

energy expenditure and footprint. A smart meter is a viable option for increasing energy 

efficiency and in the long run can be serviced easily with affordable components, in case of 

any breakdown that may arise, since the parts used are based on open-source projects with 

substantial online support material, forums, and communities. Most studies usually focus on 

only one entity of EMS – either load forecast, blackout forecast, or monitoring and control – 

in undertaking the third objective, all the aforementioned pillars of EMS were implemented 

and harmonised in one synergetic system. Thus, attesting to the uniqueness and practicality of 

the proposed EMS for emerging countries implementation, although, improvements are in 

order – as given in the recommendations section that follows. 

Furthermore, in emerging countries scenario, a smartphone should be part and parcel of the 

EMS implementation due to increased smart phones penetration and use. It makes sense 

because smartphones are central in people’s lives making it potentially easier to shape energy 

usage habits for the better – especially with smartphones at people’s fingertips and their 

versatility. Their role in EMS proposed in this work is many folds: from providing physical 

interactions with the microgrid through energy dashboard (GUI); instant notifications; to being 

an internet hotspot for cloud connectivity and remote control – and if it has 2 or 3 SIM cards 

reliability of remote-control increases – this is key for rural deployment; to being a cost-

effective option of running basic machine learning models for use in EMS. 

All things considered; this study has attempted to answer the three research questions laid out 

at the outset. It is safe to conclude that, it’s difficult to obtain an optimal electric energy forecast 

model for either load forecast and blackout forecast challenges since: the performance of most 

machine learning models is dependent on the platform and hardware specifications from which 

they are trained on; the modern-day grid and lifestyle keeps evolving as new consumer products 

and technologies are adopted, thus influencing how energy is produced and consumed; as long 
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as the issue of climate change remains unresolved, the weather will keep being difficult to 

forecast and so will load forecast and blackout forecast – due to the correlation between weather 

and electric energy forecast (LF and BF). In deploying EMS hardware and software (energy 

dashboard), it is better to opt for open-source material with substantial online support 

community and forum. A user-friendly manual and a service manual should be provided for 

the long-term sustainability of the project. 

5.2 Recommendations 

Other bio-inspired FS methods and prediction models could be explored to study their 

performance in load forecasting and blackout forecasting. It is worth investigating efficacy of 

blending and stacking multiple algorithms in load and blackout forecasting.  

When monitoring weak grids, such as is the case in emerging countries, special attention should 

be given to the data logging system which should have multiple data storage contingency 

options to prevent any loss of data that leads to datasets with ‘holes’ or missing values. Missing 

data equals missed opportunities and insights. This study used a simple approach of estimating 

the remaining internet bundle credit of the internet modem used based on the number of data 

uploaded and received at the server side. A better approach, that prevents network loss – albeit, 

data loss due to finished internet credit would be to direct poll and scan SMS for the actual 

remaining subscribed internet credit balance from the Internet Service Provider (ISP) or mobile 

network operator. 

Blackout prediction is a challenging task because it is caused by many factors such as weather, 

various faults in the grid, and their complex interactions. This work has endeavoured to predict 

blackouts only from the customer’s point of connection to the grid without having other 

information about the grid as a whole which could be experiencing disturbances that may result 

in a blackout. If the blackout prediction model in this work is supplied with more data from the 

local electricity utility distributor (TANESCO) about the status of the grid at large, this would 

give the model a better vantage point in predicting imminent blackouts and increase 

performance. In addition, the load forecast and blackout forecast models developed have the 

potential to improve demand-side battery management. Prediction of blackouts can help battery 

management systems (BMS) determine whether to go into conservation mode whereby the 

smart BMS operates the battery storage near full charge. This prepares the system to cope with 

any sudden power outage, however, if the probability of blackout is very low, as predicted by 

the model, then the system can go into a relaxed mode where the battery state of charge level 

is allowed to discharge to low levels. 
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The low-cost EMS smart meter implemented in this work as an extension of the load and 

blackout forecast functions of EMS is reliant on internet connectivity. This may be unsuitable 

in areas with a poor internet connection, other internet-independent technologies should be 

studied for example long-range communication devices like LoRa, Zigbee, and so on. Grids 

studied in this work are small scale, there is the potential of gaining more insights from large 

grids as well as larger datasets. There is potentially more insight to be gained if blackout studies 

are performed on multiple communities within the same city but distant, in order to study 

cascading blackouts and rolling blackout predictions; specifically, how the onset of a blackout 

in one community may predict imminent blackout in another nearby in a chain reaction.  

User engagement of EMS can be investigated when applied to multiple trending social media 

apps to determine the viability of such platforms in increasing energy efficiency in emerging 

countries scenarios. Conducting such a study on a dense community such as a campus could 

potentially be a good litmus test of the efficacy of the approach. Currently, users are not able 

to input energy tokens in TANESCO prepaid meters remotely, this function was not 

implemented in the proposed smart energy meter in this study, however, future studies could 

implement this feature. 
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APPENDICES 

Appendix 1:  Ngarenanyuki Microgrid Data Collection Setup 

Overview 

Data access: The PLC has the capacity to store the school’s grid electric data equivalent to 2 

months, still, due to a PLC software bug, it saves 5 files (equivalent to 5 days data), and 

thereafter the PLC overwrites the files. Initially one of the school staff volunteered to manually 

download data, but with inconsistency leading to missing some data. An internet satellite dish 

equipment (Figure 1) was installed in the school in August 2015, which among many benefits, 

now facilitates remote access of the installed switchboards and PLC. Daily PLC data download 

process is now fully automated thanks to combination of a computer script, Cloud computing 

services and a task scheduler.  

 
Figure 38:  Internet satellite dish installed to provide E4G team with remote 

connectivity to the installed energy hub at Ngarenanyuki school 

 

 

 

 

 

Description summary: 

(i) A laptop located inside the school manager’s office (James’ office) runs the 

“E4GftpScript” which automatically copies csv files from the PLC into a dropbox 

Switchboar
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Data 
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Figure 39: Ngarenanyuki Datalogging set-up 
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folder in the laptop. Since the Laptop is wirelessly connected to the internet, PLC csv 

files are automatically synchronized with another dropbox folder in a PC in Bovisa 

campus PoliMi. The more powerful Bovisa PC in turn, runs at least once a day, 

“E4GfileTransfer” script which startup Matlab code to analyse the csv files and send 

an email notification. 

(ii) Ngarenanyuki laptop can be accessed remotely via teamviewer software, in the same 

manner the PLC data is accessible via teamviewer. Mostly PLC data is accessed by the 

“E4GftpScript” unsupervised/automatically.  

(iii) Challenges: sometimes the Ngarenanyuki laptop goes offline and fails to synchronize 

via dropbox. Other times the laptop fails to fetch data files from the PLC, perhaps due 

to loose Ethernet cable linking the PLC to the laptop. 

This documentation gives an overview on the automated email notification system for 

Ngarenanyuki Micro-grid. The automatic email notification setup involves configuration of the 

window task scheduler to execute a batch file, which in turn copies the most recent 8 csv files 

into the GUI folder. Matlab ngareEMSmain script is run to process the 8 csv files and generate 

the plots photos. The next script to be run is the ngareEMSmailer which is responsible for using 

the Matlab inbuilt sendmail function to send email with attachments to the specified recipients. 

 

Figure 40:  Automated Matlab email notification script setup 

The automation batch file 

In the case of Ngarenanyuki, it is only one batch file which is setup to run once each day.  

Batch File explanation 

1. The first section of the batch file ensures that the batch file script runs in administrator 

mode.  

2. del command is used to erase previous 8 csv files from the GuiData folder in order to 

make room for the most recent new 8 csv files from the dropbox folder  

e4g ngarenanyuki

• dropbox folder

Matlab

• ngareEMSmain

• ngareEMSmailer
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• energy4growing
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3. robocopy command is used to copy the most recent 8 csv files from the dropbox folder 

to the GuiData folder. 

4. taskkill command is used to close down any running matlab programs 

5. With reference to figure 1, a new session/instance of matlab is run (-r) with with no 

startup matlab logo (-nosplash) to save time. ngareEMSmain matlab script is executed 

in the try-end block to avoid any possible error. When ngareEMSmain script is done 

processing the 8 csv files it will eventually call ngareEMSmailer in order to sendmail 

with attachments to the recipients. 

 

 

Figure 41: Batch script for automatic email notification 
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Appendix 2:  Load Forecast Matlab Source Code 

Load data 

clear;clc; 

%load('WeatherTT_hourly.mat'); 

load Hourly_table.mat; 

HourlyTT=table2timetable(Hourly_table); 

% HourlyT.Time=datetime(HourlyT.Time,'InputFormat','yyyy.MM.dd HH:mm:ss'); 

% TT = table2timetable(HourlyT); 

% TT = removevars(TT, {'Date','Minute'}); 

% HourlyTT = retime(TT,'hourly','mean'); 

 

% HourlyTT= rmmissing(HourlyTT); % removing missing values & NaNs 

 

% DateVector = [Year,Month,Day]; 

% formatOut = 'yyyy.MM.dd'; 

% %Date=datetime(datenum(HourlyTT.Time,formatOut)); 

% Date= datetime(DateVector,'Format',formatOut); 

% Date=string(Date); 

% HourlyTT = addvars(HourlyTT,Date,'Before','Year'); 

 

clear Year Month Day H MN S 

 

data smoothing 

L=HourlyTT.Load; 

%L=WeatherTT.Load; 

 

%smoothTech = {'original','movmean','movmedian','sgolay','lowess','rlowess','loess','rloess','gaussian' }; 

%smoothTech = {'original','movmean'}; 

smoothTech = {'sgolay'}; 

 

switch smoothTech{1} 

    case 'original'  

%         close all; 

         legend_str='original'; 

        y = L;  

      subplot_str = ' subplot(3,3,1)'; 

    case 'movmean' 

%         close all; 

         legend_str='movmean'; 

        y = smoothdata(L); 

        y(y<0)=0; % return to Zero all values below zero 

       subplot_str = 'subplot(3,3,2)'; 

       %hold off 

    case 'movmedian' 

%         close all; 

         legend_str='movmedian'; 

        y = smoothdata(L,'movmedian','SmoothingFactor',0.5); 

        y(y<0)=0; % return to Zero all values below zero 

       subplot_str = 'subplot(3,3,3)'; 

    case 'sgolay' 

%         close all; 

         legend_str='sgolay'; 

       y = smoothdata(L,'sgolay');        

       y(y<0)=0; % return to Zero all values below zero 

       subplot_str = 'subplot(3,3,4)'; 

    case 'lowess' 

%         close all; 

        legend_str='lowess'; 

       y = smoothdata(L,'lowess'); 

       y(y<0)=0; % return to Zero all values below zero 

       subplot_str = 'subplot(3,3,5)'; 
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    case 'rlowess' 

%         close all; 

         legend_str='rlowess'; 

       y = smoothdata(L,'rlowess'); 

       y(y<0)=0; % return to Zero all values below zero 

      subplot_str =  'subplot(3,3,6)'; 

    case 'loess' 

%         close all; 

         legend_str='loess'; 

       y = smoothdata(L,'loess'); 

       y(y<0)=0; % return to Zero all values below zero 

      subplot_str = 'subplot(3,3,7)'; 

    case 'rloess' 

%         close all; 

         legend_str='rloess'; 

       y = smoothdata(L,'rloess'); 

       y(y<0)=0; % return to Zero all values below zero 

      subplot_str = 'subplot(3,3,8)'; 

    case 'gaussian'  

%         close all; 

        legend_str='gaussian'; 

        window = 5; 

        SF = 0.25; %smoothing factor 0 to 1 

      y = smoothdata(L,'gaussian','SmoothingFactor',SF); 

      y(y<0)=0; % return to Zero all values below zero 

     subplot_str = 'subplot(3,3,9)'; 

     hold off 

    otherwise 

        warning('Unexpected plot type. No plot created.') 

end 

 

 

Replace original load with smoothed load 

Load=y; 

smoothT=HourlyTT; 

smoothT = removevars(smoothT, 'Load'); 

smoothT = addvars(smoothT,Load,'Before','SOC'); 

save('smoothT.mat','smoothT') 

 

 

Test data 

TestDays=fetchTestData('2018.02.01',30,smoothT); 

ans = 'finished in 0.01 minutes' 

Day-ahead load 

% subroutine to introduce nexday load 

D=[]; 

for i=2:length(TestDays) 

A=TestDays{i-1}; 

B=TestDays{i}; 

nextDayLoad=B.Load; 

C=[A table(nextDayLoad)]; 

D=[D;C]; 

end 

TestData=D; 

TestData = movevars(TestData, 'Load', 'After', 'T1_Load'); 

TestData = timetable2table(TestData); 

 

Training data 

myNNtable = fetchTrainData('2015.05.03','2018.01.31',smoothT); 

ans = 'finished in 0.0 minutes' 

myNNtable = movevars(myNNtable, 'Load', 'After', 'T1_Load'); 
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toc/60 

ans = 0.0020 

Day-ahead load 

% subroutine to introduce nexday load 

Dates=unique(myNNtable.Date); % identify total number of unique dates 

trainData = cell(length(Dates),1); %create empty cell 

%myNNtable=table2timetable(myNNtable,predictorNames); %convert table to timetable in order to use 

timerange function 

 

for i=1:length(Dates) 

S=timerange(datetime(Dates{i},'InputFormat','yyyy.MM.dd'),'days'); 

trainData{i}=timetable2table(myNNtable(S,:)); 

end 

 

myNNtable=timetable2table(myNNtable); 

D=[]; 

for i=2:length(Dates) 

A=trainData{i-1}; 

B=trainData{i}; 

nextDayLoad=B.Load; 

C=[A table(nextDayLoad)]; 

D=[D;C]; 

end 

myNNtable=D; 

 

clear A B C D nextDayLoad S i  

 

 

%------------------------------------------------------------------------------------  

% predictorNames = {'Month', 'Day', 'WeekDay', 'Hour', 'Weekend', 'temp', 'P_DG', 'P_HYD', 'P_inv', 

'Vdc_bus', 'PPV', 'atmPressure', 'RHumidity', 'T2_temp', 'T2_Load', 'T1_temp', 'T1_Load', 'Load'}; 

predictorNames = {  'P_DG', 'P_HYD', 'P_inv',  'Load'}; 

 

function varargout = RegressionLearner(trainingData,TestData,predictorNames,varargin) 

%function Ypred = RegressionLearner(trainingData,Method) 

 

inputTable = trainingData; 

 

 

 

Standardize Data 

For a better fit and to prevent the training from diverging, standardize the training data to have zero mean and 

unit variance. At prediction time, you must standardize the test data using the same parameters as the training 

data. 

if length(varargin)>=2  % only execute if there is more than two optional inputs 

if strcmp(varargin{2}, 'standardize') 

% mu = mean(smoothT); 

% sig = std(smoothT); 

%  

% dataTrainStandardized = (smoothT - mu) / sig; 

 

%important features 

impFeatures=predictorNames; 

impFeatures{1,end+1}='nextDayLoad'; 

D=[]; 

for k=1:length(impFeatures) 

    A=inputTable(:,impFeatures{k}); 

    B=varfun(@mean,A); % mean aka mu 

    C=varfun(@std,A); %standard deviation aka sigma 

    %standardize 

    A{:,impFeatures{k}}=(A{:,impFeatures{k}}-B{1,1})/C{1,1}; 

    if(k==(length(impFeatures)-1)) %load case 

        mu_load=B{1,1}; 
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        sigma_load=C{1,1}; 

    elseif(k==length(impFeatures))%nextDayLoad case 

         mu_nextDayLoad=B{1,1}; 

        sigma_nextDayLoad=C{1,1}; 

    end 

    D=[D A]; 

end 

 

inputTable=D; 

end 

end 

 

% predictorNames = {'Month', 'Day', 'WeekDay', 'Hour', 'Weekend', 'temp', 'P_DG', 'P_HYD', 'P_inv', 

'Vdc_bus', 'PPV', 'atmPressure', 'RHumidity', 'T2_temp', 'T2_Load', 'T1_temp', 'T1_Load', 'Load'}; 

predictors = inputTable(:, predictorNames); 

 

response = inputTable.nextDayLoad; 

% isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, false, false, false, false, 

false, false, false, false]; 

 

% Train a regression model 

% This code specifies all the model options and trains the model. 

concatenatedPredictorsAndResponse = predictors; 

concatenatedPredictorsAndResponse.nextDayLoad = response; 

 

 

 

% Method = 'sgolay'; 

METHOD=varargin{1}; 

if strcmp(METHOD, 'best') 

     Method = {'linear','interactions','robustLinear','stepwiseLinear',... 

          'FineTree','MediumTree','CoarseTree','BaggedTree','BoostedTree',... 

         'linearSVM','QuadraticSVM','CubicSVM',... 

         'FineGSVM','MediumGSVM','CoarseGSVM',... 

         'seGPR','MaternGPR','eGPR','rqGPR','neuralnet'}; 

elseif strcmp(METHOD, 'very best') 

      Method = {'linear','interactions','robustLinear','stepwiseLinear',... 

          'FineTree','MediumTree','CoarseTree','BaggedTree','BoostedTree',... 

         'linearSVM','QuadraticSVM','CubicSVM',... 

         'FineGSVM','MediumGSVM','CoarseGSVM',... 

         'seGPR','MaternGPR','eGPR','rqGPR','neuralnet'}; 

else 

    Method={METHOD}; 

end 

 

varargout = cell(nargout,1); 

 

for k=1:length(Method) 

     

switch Method{k} 

    case 'linear'    

         

     linearModel = fitlm(... 

    concatenatedPredictorsAndResponse, ... 

    'linear', ... 

    'RobustOpts', 'off'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

linearModelPredictFcn = @(x) predict(linearModel, x); 

linearRegression_Model.predictFcn = @(x) linearModelPredictFcn(predictorExtractionFcn(x)); 

trainedModel=linearRegression_Model; 

yfit=linearRegression_Model.predictFcn(TestData); 
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yfit(yfit<0)=0; 

 

 

      %subplot_str = ' subplot(3,3,1)'; 

       

       

    case 'interactions' 

         

        linearModel = fitlm(... 

    concatenatedPredictorsAndResponse, ... 

    'interactions', ... 

    'RobustOpts', 'off'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

linearModelPredictFcn = @(x) predict(linearModel, x); 

interactionsRegression_Model.predictFcn = @(x) linearModelPredictFcn(predictorExtractionFcn(x)); 

trainedModel=interactionsRegression_Model; 

yfit=interactionsRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

      % subplot_str = 'subplot(3,3,2)';        

     

            

    case 'robustLinear'         

         

        linearModel = fitlm(... 

    concatenatedPredictorsAndResponse, ... 

    'linear', ... 

    'RobustOpts', 'on'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

linearModelPredictFcn = @(x) predict(linearModel, x); 

robustLinearRegression_model.predictFcn = @(x) linearModelPredictFcn(predictorExtractionFcn(x)); 

trainedModel=robustLinearRegression_model; 

yfit=robustLinearRegression_model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

     

    case 'stepwiseLinear'         

         

        linearModel = stepwiselm(... 

    concatenatedPredictorsAndResponse, ... 

    'linear', ... 

    'Upper', 'interactions', ... 

    'NSteps', 1000, ... 

    'Verbose', 0); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

linearModelPredictFcn = @(x) predict(linearModel, x); 

stepwiseLinearRegression_Model.predictFcn = @(x) linearModelPredictFcn(predictorExtractionFcn(x)); 

trainedModel=stepwiseLinearRegression_Model; 

yfit=stepwiseLinearRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'FineTree' 

    % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionTree = fitrtree(... 
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    predictors, ... 

    response, ... 

    'MinLeafSize', 4, ... 

    'Surrogate', 'off'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

treePredictFcn = @(x) predict(regressionTree, x); 

FineTreeRegression_Model.predictFcn = @(x) treePredictFcn(predictorExtractionFcn(x)); 

trainedModel=FineTreeRegression_Model; 

yfit=FineTreeRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'MediumTree' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionTree = fitrtree(... 

    predictors, ... 

    response, ... 

    'MinLeafSize', 12, ... 

    'Surrogate', 'off'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

treePredictFcn = @(x) predict(regressionTree, x); 

MediumTreeRegression_Model.predictFcn = @(x) treePredictFcn(predictorExtractionFcn(x)); 

trainedModel=MediumTreeRegression_Model; 

yfit=MediumTreeRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'CoarseTree' 

        % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionTree = fitrtree(... 

    predictors, ... 

    response, ... 

    'MinLeafSize', 36, ... 

    'Surrogate', 'off'); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

treePredictFcn = @(x) predict(regressionTree, x); 

CoarseTreeRegression_Model.predictFcn = @(x) treePredictFcn(predictorExtractionFcn(x)); 

trainedModel=CoarseTreeRegression_Model; 

yfit=CoarseTreeRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

     case 'BaggedTree' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

template = templateTree(... 

    'MinLeafSize', 8); 

regressionEnsemble = fitrensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'Bag', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template); 
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% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(regressionEnsemble, x); 

BaggedTree_Model.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

trainedModel=BaggedTree_Model; 

yfit=BaggedTree_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'BoostedTree' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

template = templateTree(... 

    'MinLeafSize', 8); 

regressionEnsemble = fitrensemble(... 

    predictors, ... 

    response, ... 

    'Method', 'LSBoost', ... 

    'NumLearningCycles', 30, ... 

    'Learners', template, ... 

    'LearnRate', 0.1); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

ensemblePredictFcn = @(x) predict(regressionEnsemble, x); 

BoostedTreesRegression_Model.predictFcn = @(x) ensemblePredictFcn(predictorExtractionFcn(x)); 

trainedModel=BoostedTreesRegression_Model; 

yfit=BoostedTreesRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

    case 'linearSVM' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 

boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

LinearSVMRegression_Model.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

trainedModel=LinearSVMRegression_Model; 

yfit=LinearSVMRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'QuadraticSVM' 

         

        % Train a regression model 
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% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 

boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 2, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

QSVM_Model.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

trainedModel=QSVM_Model; 

yfit=QSVM_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'CubicSVM' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 

boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'polynomial', ... 

    'PolynomialOrder', 3, ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

CubicSVMRegression_Model.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

trainedModel=CubicSVMRegression_Model; 

yfit=CubicSVMRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

            

    case 'FineGSVM' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 
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boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 1.1, ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

FineGSVMRegression_Model.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

trainedModel=FineGSVMRegression_Model; 

yfit=FineGSVMRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'MediumGSVM' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 

boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 4.2, ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

MediumSVMGaussianRegression_Model.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

trainedModel=MediumSVMGaussianRegression_Model; 

yfit=MediumSVMGaussianRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'CoarseGSVM' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

responseScale = iqr(response); 

if ~isfinite(responseScale) || responseScale == 0.0 

    responseScale = 1.0; 

end 

boxConstraint = responseScale/1.349; 

epsilon = responseScale/13.49; 

regressionSVM = fitrsvm(... 

    predictors, ... 

    response, ... 
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    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 17, ... 

    'BoxConstraint', boxConstraint, ... 

    'Epsilon', epsilon, ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(regressionSVM, x); 

CoarseGSVMRegression_Model.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

trainedModel=CoarseGSVMRegression_Model; 

yfit=CoarseGSVMRegression_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'seGPR' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionGP = fitrgp(... 

    predictors, ... 

    response, ... 

    'BasisFunction', 'constant', ... 

    'KernelFunction', 'squaredexponential', ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

gpPredictFcn = @(x) predict(regressionGP, x); 

squaredeGPR_Model.predictFcn = @(x) gpPredictFcn(predictorExtractionFcn(x)); 

trainedModel=squaredeGPR_Model; 

yfit=squaredeGPR_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'MaternGPR' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionGP = fitrgp(... 

    predictors, ... 

    response, ... 

    'BasisFunction', 'constant', ... 

    'KernelFunction', 'matern52', ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

gpPredictFcn = @(x) predict(regressionGP, x); 

matern52gpModel.predictFcn = @(x) gpPredictFcn(predictorExtractionFcn(x)); 

trainedModel=matern52gpModel; 

yfit=matern52gpModel.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

 

    case 'eGPR' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionGP = fitrgp(... 

    predictors, ... 

    response, ... 
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    'BasisFunction', 'constant', ... 

    'KernelFunction', 'exponential', ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

gpPredictFcn = @(x) predict(regressionGP, x); 

eGPR_Model.predictFcn = @(x) gpPredictFcn(predictorExtractionFcn(x)); 

trainedModel=eGPR_Model; 

yfit=eGPR_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

 

    case 'rqGPR' 

         

        % Train a regression model 

% This code specifies all the model options and trains the model. 

regressionGP = fitrgp(... 

    predictors, ... 

    response, ... 

    'BasisFunction', 'constant', ... 

    'KernelFunction', 'rationalquadratic', ... 

    'Standardize', true); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

gpPredictFcn = @(x) predict(regressionGP, x); 

RationalQuadraticGPR_Model.predictFcn = @(x) gpPredictFcn(predictorExtractionFcn(x)); 

trainedModel=RationalQuadraticGPR_Model; 

yfit=RationalQuadraticGPR_Model.predictFcn(TestData); 

yfit(yfit<0)=0; 

     

 

    case 'LSTM' 

         

    case 'ARIMA' 

         

    case 'neuralnet' 

               

% Train a regression model 

predictors= table2array(predictors)'; 

response = response'; 

 

TestData_Load=TestData.Load'; 

Test_Data=TestData(:,predictorNames); 

Test_Data=table2array(Test_Data)'; 

% TestData=TestData'; 

 

% myTrainers={'trainlm','trainscg','trainbr','trainbfg','traincgb',... 

%     'traincgf','traincgp','traingd','traingda','traingdm','traingdx','trainoss','trainrp'}; 

% trainFxn = num2str(cell2mat(myTrainers(1,kk)));  % Levenberg-Marquardt backpropagation. 

trainFxn = 'trainlm'; 

 

% Create a Fitting Network 

% hiddenLayerSize = 10*i; 

hdnLSize = 10; 

net = fitnet(hdnLSize,trainFxn); 

%net = cascadeforwardnet(hdnLSize,trainFxn); 

%net = feedforwardnet(hdnLSize,trainFxn); 

% Setup Division of Data for Training, Validation, Testing 

rng('default') 

net.trainParam.epochs = 100; 

net.trainParam.showWindow = 0; 
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net.divideFcn = 'dividerand'; 

% net.divideFcn = 'divideblock'; 

%net.divideFcn = 'divideint'; 

 

% use only with either dividerand / divideblock / divideint 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

 

% Train the Network 

%[net,tr] = train(net,x,t,'useParallel','yes'); 

NNnet_model = train(net,predictors,response,'useParallel','yes'); 

 

% Create the result struct with predict function 

 

trainedModel=NNnet_model; 

 

yfit = sim(NNnet_model, Test_Data)'; 

yfit(yfit<0)=0; 

 

 

% % Test the Network 

% y = NN_net(x); 

% e = gsubtract(t,y); 

% performance = perform(NN_net,t,y); 

%  

% clear y e 

 

 

 

% [net,y,e] = adapt(net,x,t); 

 

    otherwise 

        warning('Unexpected plot type. No plot created.') 

end 

 

%------------ inside for loop ------------------- 

%--------------- error performance calculation -------------- 

ERROR=yfit-TestData.Load; 

RMSE = sqrt(mean((ERROR).^2)); 

MAE=mean(abs(ERROR)); 

% MAPE=mean(abs((ERROR)./TestData.Load))*100; 

% ------------- destandardization -------------------------- 

try 

if strcmp(varargin{2}, 'standardize') 

    disp('standardization opted!'); 

%destandardize 

%yfit=yfit*sigma_nextDayLoad + mu_nextDayLoad; 

 

end 

catch  

     

end 

%--------------end of standardization routine ------------------ 

 

%-------------- concatenate results on each loop -------------------------- 

ResultData{k,1}=Method{k}; % Regression method name 

ResultData{k,2}=trainedModel; 

ResultData{k,3}=yfit; % prediction 

ResultData{k,4}=RMSE; 

ResultData{k,5}=MAE; 

%ResultData{k,6}=MAPE; 

ResultData{k,6}=predictorNames'; 
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end 

 

%-------------- outside for loop --------------------------- 

% -------------output variable result ----------------------- 

 

if strcmp(METHOD, 'very best') 

    ResultData=sortrows(ResultData,5,'ascend'); 

    ResultData=ResultData(1,:); 

%     trainedModel_Name=ResultData{1,1}; 

%     trainedModel=ResultData{1,2}; 

%     yfit=ResultData{1,3}; 

%     RMSE=ResultData{1,4}; 

%     MAE=ResultData{1,5}; 

%     %MAPE=ResultData{1,6}; 

%     predictorNames=ResultData{1,6}; 

%  

%  result={ResultData,trainedModel_Name,yfit,RMSE,MAE,trainedModel}; 

  result={ResultData}; 

  

for k=1:nargout 

       varargout{k}=result{k}; 

end 

%varargout=ResultData; 

elseif strcmp(METHOD, 'best') 

    ResultData=sortrows(ResultData,5,'ascend');  

    trainedModel_Name=ResultData{1,1}; 

    trainedModel=ResultData{1,2}; 

    yfit=ResultData{1,3}; 

    RMSE=ResultData{1,4}; 

    MAE=ResultData{1,5}; 

    %MAPE=ResultData{1,6}; 

    predictorNames=ResultData{1,6}; 

 

 result={ResultData,trainedModel_Name,yfit,RMSE,MAE,trainedModel}; 

  

for k=1:nargout 

       varargout{k}=result{k}; 

end 

else 

%     ResultData=sortrows(ResultData,5,'ascend'); 

    trainedModel_Name=METHOD; 

    result={ResultData,trainedModel_Name,yfit,RMSE,MAE,trainedModel}; 

    

for k=1:nargout 

       varargout{k}=result{k}; 

end 

     

end 

 

% ------------------------------------------------------------ 

 

end 

 

linearRegression_Model 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'l

inear'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('LinearRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 
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xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'l

inear','standardize'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('LinearRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

interactionsRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'i

nteractions'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('interactions Regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

RobustLinearRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'r

obustLinear'); 

Warning: Iteration limit reached. 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('robustLinearRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

stepwiseLinearRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

stepwiseLinear'); 

 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('stepwiseLinearRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

FineTreeRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

FineTree'); 

 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('FineTreeRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 
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xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

MediumTreeRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

MediumTree'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('MediumTreeRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

CourseTreeRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

CoarseTree'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('CoarseTreeRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

LinearSVM_Regression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'l

inearSVM'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('LinearSVMRegression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

QSVM_Model 

%% make sure model inputs are tables and not timetables 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

QuadraticSVM'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Quadratic SVM Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

CubicSVM_Model 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

CubicSVM'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Cubic SVM Regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 
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title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

FineGaussianSVMRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

FineGaussianSVM'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Fine Gaussian SVM Regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

MediumGaussianSVMRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

MediumGaussianSVM'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Medium Gaussian SVM Regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

CoarseGaussianSVMRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

CoarseGaussianSVM'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Coarse Gaussian SVM Regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

BaggedTree_Model 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

BaggedTree'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load)); 

str = sprintf('BaggedTree Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

BoostedTreesRegression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

BoostedTree'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Boosted Trees Regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 



126 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

Squared Exponential Gaussian Process Regression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

seGPR'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Squared exponential GPR Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

Matern 5/2 Gaussian Process Regression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

MaternGPR'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('matern52GP Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

Exponential Gaussian Process Regression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'

exponentialGPR'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

str = sprintf('Exponential GPR Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

Rational quadratic Gaussian Process Regression 

[ResultData,trainedModel_Name,yfit,RMSE,MAE]=RegressionLearner(myNNtable,TestData,predictorNames,'r

qGPR'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

RMSE = sqrt(mean((yfit-TestData.Load).^2)); 

MAE=mean(abs(yfit-TestData.Load));  

MAE=mean(abs(yfit-TestData.Load));  

MAE=sum(abs(yfit(:)-TestData.Load(:)))/numel(yfit) 

 

str = sprintf('Rational quadratic GPR Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

Neural Network 

[trainedModel_Name,trainedModel,yfit,RMSE,MAE,ResultData]=RegressionLearner(myNNtable,TestData,pre

dictorNames,'neuralnet'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',trainedModel_Name,RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 
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legend(["Observed" "Predicted"]) 

 

Best prediction model 

% predictorNames = {'Month', 'Day', 'WeekDay', 'Hour', 'Weekend', 'temp', 'P_DG', 'P_HYD', 'P_inv', 

'Vdc_bus', 'PPV', 'atmPressure', 'RHumidity', 'T2_temp', 'T2_Load', 'T1_temp', 'T1_Load', 'Load'}; 

% predictorNames = {'Month', 'Day', 'Hour', 'P_DG', 'P_HYD', 'P_inv', 'Vdc_bus', 'RHumidity', 'T2_Load', 

'T1_Load', 'Load'}; 

% predictorNames = { 'Hour', 'P_DG', 'P_HYD', 'P_inv', 'Vdc_bus', 'RHumidity', 'Load'}; 

% predictorNames = { 'Hour', 'P_DG', 'P_HYD', 'P_inv',  'Load'}; 

predictorNames = {  'P_DG', 'P_HYD', 'P_inv',  'Load'}; 

 

[ResultData,trainedModel_Name,yfit,RMSE,MAE,MAPE]=RegressionLearner(myNNtable,TestData,predictor

Names,'best'); 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',trainedModel_Name,RMSE,MAE); 

title(str); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

%  

% predictorNames = {  'P_DG', 'P_HYD', 'P_inv',  'Load'}; 

% 

[trainedModel_Name,trainedModel,yfit,RMSE,MAE,ResultData]=RegressionLearner(myNNtable,TestData,pre

dictorNames,'linear'); 

for k=1:length(ResultData) 

    if k<=9 

 figure(1) 

        subplot_str = sprintf('subplot(3,3,%0.0f)',k); 

eval(subplot_str) 

yfit=ResultData{k,3}; 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s  (RMSE=%0.0f, MAE=%0.0f) ',ResultData{k,1},ResultData{k,4},ResultData{k,5}); 

title(str); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

hold on 

    elseif k>9 && k<=18 

     figure(2) 

        subplot_str = sprintf('subplot(3,3,%0.0f)',k-9); 

eval(subplot_str) 

yfit=ResultData{k,3}; 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s  (RMSE=%0.0f, MAE=%0.0f) ',ResultData{k,1},ResultData{k,4},ResultData{k,5}); 

title(str); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

hold on 

if k==9 || k==18 

        hold off 

    end 

    elseif k>18 

       figure(3) 

        subplot_str = sprintf('subplot(2,1,%0.0f)',k-18); 

eval(subplot_str) 

yfit=ResultData{k,3}; 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s  Load Forecast (RMSE=%0.0f, MAE=%0.0f) 

',ResultData{k,1},ResultData{k,4},ResultData{k,5}); 

title(str); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"])  

hold on 
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if k==9 || k==18 

        hold off 

    end 

    end 

     

end 

 

hold off 

 

Bargraph: Prediction model comparison by error 

methods=ResultData(:,1); 

methods=categorical(methods,methods); 

Mae_bar=cell2mat(ResultData(:,5)); 

RMSE_bar=cell2mat(ResultData(:,4)); 

error_index=[Mae_bar,RMSE_bar]; 

bar(methods,error_index) 

title('Prediction model comparison by error') 

xlabel('Prediction model');ylabel('Error'); 

legend(["mae" "rmse"]) 

 

 

hybrid models 

 

hybrid={}; 

p=0; 

for n=1:length(ResultData) 

m=n; 

for k=1:length(ResultData) 

    p=p+1; 

A=ResultData{m,3};     

B=ResultData{k,3}; %i.e B=A+1...next model in 'sliding window' 

yyfit=[A';B']; 

yfit_mean=mean(yyfit)'; 

yfit_max=max(yyfit)'; 

yfit_min=min(yyfit)'; 

RMSE_mean = sqrt(mean((yfit_mean-TestData.Load).^2)); 

MAE_mean=mean(abs(yfit_mean-TestData.Load));  

RMSE_max = sqrt(mean((yfit_max-TestData.Load).^2)); 

MAE_max=mean(abs(yfit_max-TestData.Load)); 

RMSE_min = sqrt(mean((yfit_min-TestData.Load).^2)); 

MAE_min=mean(abs(yfit_min-TestData.Load)); 

 

    hybrid{p,1}=ResultData{m,1}; % model name 

    hybrid{p,2}=ResultData{k,1}; % model name 

    hybrid{p,3}=ResultData{m,4}; % rmse 

    hybrid{p,4}=ResultData{m,5}; % mae 

    hybrid{p,5}=ResultData{k,4}; % rmse 

    hybrid{p,6}=ResultData{k,5}; % mae     

    hybrid{p,7}=RMSE_mean; % mean hybrid rmse 

    hybrid{p,8}=MAE_mean; % mean hybrid mae 

    hybrid{p,9}=RMSE_max; % max hybrid rmse 

    hybrid{p,10}=MAE_max; % max hybrid rmse 

    hybrid{p,11}=RMSE_min; % max hybrid rmse 

    hybrid{p,12}=MAE_min; % max hybrid rmse 

end 

end 

 

hybrid=sortrows(hybrid,10,'ascend'); 

 

% create table 

modelA=hybrid(:,1); 

modelB=hybrid(:,2); 

rmseA=hybrid(:,3); 
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maeA=hybrid(:,4); 

rmseB=hybrid(:,5); 

maeB=hybrid(:,6); 

rmseMean=hybrid(:,7); 

maeMean=hybrid(:,8); 

rmseMax=hybrid(:,9); 

maeMax=hybrid(:,10); 

rmseMin=hybrid(:,11); 

maeMin=hybrid(:,12); 

 

hybrid=[table(modelA) table(modelB) table(rmseA) table(maeA) table(rmseB) table(maeB) ... 

    table(rmseMean) table(maeMean) table(rmseMax) table(maeMax) table(rmseMin) table(maeMin)]; 

 

%remove duplicate rows 

k=1; 

while k<height(hybrid) 

A=hybrid{k,1:2}; 

B=hybrid{k+1,1:2}; 

C=ismember(A,B); 

if C(1)&C(2) 

    hybrid(k+1,:)=[]; 

end 

k=k+1; 

end 

 

%remove duplicate 1st and 2nd rows 

k=1; 

while k<=height(hybrid) 

A=hybrid{k,1}; 

B=hybrid{k,2}; 

if strcmp(A,B) 

    hybrid(k,:)=[]; 

end 

k=k+1; 

end 

 

subplot(5,1,1) 

plot(TestData.Time,TestData.Load,TestData.Time,A) 

RMSE_A = sqrt(mean((A-TestData.Load).^2)); 

MAE_A=mean(abs(A-TestData.Load));  

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',ResultData{1,1},RMSE_A,MAE_A); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

subplot(5,1,2) 

plot(TestData.Time,TestData.Load,TestData.Time,B) 

RMSE_B = sqrt(mean((B-TestData.Load).^2)); 

MAE_B=mean(abs(B-TestData.Load));  

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',ResultData{2,1},RMSE_B,MAE_B); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

subplot(5,1,3) 

plot(TestData.Time,TestData.Load,TestData.Time,yfit_mean) 

RMSE_mean = sqrt(mean((yfit_mean-TestData.Load).^2)); 

MAE_mean=mean(abs(yfit_mean-TestData.Load));  

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ','mean',RMSE_mean,MAE_mean); 

title(str); 

% title('Load Forecast'); 
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xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

subplot(5,1,4) 

plot(TestData.Time,TestData.Load,TestData.Time,yfit_max) 

RMSE_max = sqrt(mean((yfit_max-TestData.Load).^2)); 

MAE_max=mean(abs(yfit_max-TestData.Load));  

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ','max',RMSE_max,MAE_max); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

subplot(5,1,5) 

plot(TestData.Time,TestData.Load,TestData.Time,yfit_min) 

RMSE_min = sqrt(mean((yfit_min-TestData.Load).^2)); 

MAE_min=mean(abs(yfit_min-TestData.Load));  

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ','max',RMSE_min,MAE_min); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

 

 

%------- confidence band ------------------------- 

xData =datenum(TestData.Time); 

SEM = std(xData)/sqrt(length(xData));  

err=SEM*yfit; 

hi=yfit+err; 

lo=yfit-err; 

lo(lo<0)=0; %prevent negative energy/watts 

%  

 

% calculate confidence interval 

ci=0.95; 

a=1-ci; 

n=size(xData,1); 

T_multiplier=tinv(1-a/2,n-1); 

ci95 = T_multiplier*std(xData)/sqrt(n); 

 

%apply confidence interval to data 

err_ci=ci95*yfit; 

 

%err=SEM*yData; 

hi=yfit+err_ci; 

lo=yfit-err_ci; 

lo(lo<0)=0; %prevent negative energy/watts 

 

 

%plot(TestData.Time,TestData.Load,TestData.Time,yfit,[hi,lo],'--m') 

 

figure 

plot(TestData.Time,yfit) 

ax1 = gca; % current axes 

ax1.YColor = 'r'; 

 

%  

 

ax1_pos = ax1.Position; % position of first axes 

ax2 = axes('Position',ax1_pos,... 

    'XAxisLocation','top',... 

    'YAxisLocation','right',... 

    'Color','none'); 

hold on 
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plot(TestData.Time,[hi,lo],'Parent',ax2,'Color','k') 

opt={'-s','MarkerSize',4,'MarkerEdgeColor','red','MarkerFaceColor','red','CapSize',12}; 

 

 

figure( 'Name', 'errorbar based on ci' ); 

errorbar(xData,yfit,err_ci,opt{:}); 

 

 

 

hold on 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',trainedModel_Name,RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted" "Confidence band"]) 

 

legend(["Observed" "Predicted"]) 

 

% predictorNames = {'Month', 'Day', 'WeekDay', 'Hour', 'Weekend', 'temp', 'P_DG', 'P_HYD', 'P_inv', 

'Vdc_bus', 'PPV', 'atmPressure', 'RHumidity', 'T2_temp', 'T2_Load', 'T1_temp', 'T1_Load', 'Load'}; 

predictorNames = {  'P_DG', 'P_HYD', 'P_inv',  'Load'}; 

[trainedModel_Name,trainedModel,yfit,RMSE,MAE,ResultData]=RegressionLearner(myNNtable,TestData,pre

dictorNames,'best'); 

 

plot(TestData.Time,TestData.Load,TestData.Time,yfit) 

str = sprintf('%s regression Load Forecast (RMSE=%0.0f, MAE=%0.0f) ',trainedModel_Name,RMSE,MAE); 

title(str); 

% title('Load Forecast'); 

xlabel('Time');ylabel('Load [W]'); 

legend(["Observed" "Predicted"]) 

hold off 

 

Result_Data=sortrows(ResultData,5,'ascend'); 
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Appendix 3 : Blackout Forecast Python Source Code 

import os 

import winsound 

from keras.regularizers import L1L2 

# this line is important in order to suppress numpy and pandas import errors 

os.environ['OPENBLAS_NUM_THREADS'] = '1'  

import traceback 

#from signal import signal, SIGPIPE, SIG_DFL  

#Ignore SIG_PIPE and don't throw exceptions on it... (http://docs.python.org/library/signal.html) 

#signal(SIGPIPE,SIG_DFL)  

import numpy as np 

import pandas as pd 

pd.options.mode.chained_assignment = None  # default='warn' 

#import pymysql 

#from sqlalchemy import create_engine 

import matplotlib.pyplot as plt 

import seaborn as sns 

sns.set() 

from scipy.interpolate import UnivariateSpline 

from scipy.signal import savgol_filter 

import joblib  

import datetime # to get current time for error logging  

import time # to time routines/tasks durations 

import pytz # to convert from server to Tanzania timezone 

 

import statistics 

 

# machine learning modules 

from sklearn.svm import SVR 

import sklearn.metrics as metrics 

import math 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import MinMaxScaler 

from sklearn import preprocessing, svm  

from sklearn.ensemble import RandomForestRegressor 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import accuracy_score 

from sklearn.model_selection import train_test_split  

from sklearn.linear_model import LinearRegression 

 

def blackout_forecast_15min(): 

 tic = time.perf_counter() 

 #allDays = convert_to_15min() 

 #check_timer(tic) 

 allDays = pd.read_pickle("./allDays15min_filled.pkl") 

 #allDays = pd.read_pickle("./allDays15min.pkl") 

  

 # fetch all dates again, this now includes valid dataframes 

 all_dates=allDays['Date'].unique() 

 #print("last day is ",len(allDays.loc[allDays['Date'] == allDays.iloc[-1].Date] )," records long!") 

 #print("allDays\n",len(allDays.loc[allDays['Date'] == all_dates[-1]])) 

# print("last day \n",allDays.loc[allDays['Date'] == allDays.iloc[-

1].Date,('Date','hour','minute')].to_string(index=False) ) 

 #print("allDays\n",allDays) 

 print("final all_dates \n",allDays['Date'].unique()) 

 print("total dataset days \n",len(allDays['Date'].unique())) 

  

  

 trainData=allDays.loc[allDays.Date<='2021-03-31']  
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 testData=allDays.loc[allDays.Date >'2021-03-31'] 

 #print("trainData\n",trainData) 

 #print("testData\n",testData) 

 

 #------------ BLACKOUT PREDICTIONS ----------------------- 

  

 # BLACKOUT MODEL TRAINING --------------------------------- 

 next_blackout=allDays.loc[allDays.Date>=all_dates[14] ].blackout 

 #print("next_blackout startdate ",all_dates[14],"currentDay startdate ",all_dates[13]) 

 #next_blackout=allDays.loc[allDays.Date >= all_dates[14] ] 

 #print("next_blackout\n",next_blackout)  

 #next_blackout = next_blackout['Date','blackout']    

 #print("start_date length is :",len(next_blackout)) 

 #print("start day index ",next_blackout.index.values[0])  

 currentDay=allDays.loc[allDays['Date'] >= all_dates[13],: ] 

 #print("currentDay\n",currentDay) 

 #print("final all_dates \n",all_dates[13] ) 

  

 #print("day2 length is :",len(currentDay)) 

 currentDay.reset_index(drop=True, inplace=True) 

 currentDay=currentDay.loc[0:len(next_blackout)-1] 

 #print("tomorrow is ",all_dates[14], 

 #"\nsimilar day 14 days back : ",(datetime.datetime.strptime(all_dates[14], '%Y-%m-%d')-

datetime.timedelta(days=14)).strftime('%Y-%m-%d'), 

 #"\n the is also :",all_dates[0]) 

  

 #select relevant columns only 

 desired_features = ['Date','weekday','hour','day','ac_voltage','frequency','blackout'] 

 currentDay = currentDay[desired_features] 

 d1=allDays.loc[allDays.Date>=all_dates[12]].blackout 

 d1.reset_index(drop=True, inplace=True) 

 d1=d1.loc[0:len(next_blackout)-1] 

 d2=allDays.loc[allDays.Date>=all_dates[11]].blackout 

 d2.reset_index(drop=True, inplace=True) 

 d2=d2.loc[0:len(next_blackout)-1] 

 d7=allDays.loc[allDays.Date>=all_dates[7]].blackout 

 d7.reset_index(drop=True, inplace=True) 

 d7=d7.loc[0:len(next_blackout)-1] 

 d14=allDays.loc[allDays.Date>=all_dates[0]].blackout 

 d14.reset_index(drop=True, inplace=True) 

 d14=d14.loc[0:len(next_blackout)-1] 

 

 currentDay = 

currentDay.assign(b14=d14.values,b7=d7.values,b2=d2.values,b1=d1.values,next_blackout=next_blackout.valu

es) 

 currentDay = 

currentDay[['Date','weekday','hour','day','ac_voltage','frequency','b14','b7','b2','b1','blackout','next_blackout']] 

 #print("final dataset \n",currentDay.loc[0:47]) 

 #print("final dataset \n",currentDay) 

 #print("final dataset \n",currentDay.info()) 

  

 

 

 predictorNames=currentDay.columns.values[1:-1] 

 #print("predictors: ",predictorNames)  

 #print("predictors length: ",len(predictorNames)) 

 #x=currentDay[predictorNames].values 

 #y=currentDay['next_blackout'].values 

 

 # ------------ train and test data split --------------- 

 train_dates=currentDay['Date'].unique() 

 #print("train dates\n",train_dates) 
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 #print("currentDay\n",len(currentDay)) 

 #print("currentDay\n",currentDay) 

 #get train 80% and 20% test 

 #cutoff=int(np.floor(len(train_dates)*0.8)) 

 cutoff=int(np.floor(len(train_dates)*0.2))  

 cutoff=str(train_dates[cutoff]) 

 #cutoff="2021-05-31" 

 print("cutoff date: ",cutoff) 

  

 x_train=currentDay[currentDay['Date']<=cutoff]  

  

 x_train=x_train[predictorNames].values 

 y_train=currentDay[currentDay['Date']<=cutoff] 

 y_train=y_train['next_blackout'].values 

 

 #x_test=currentDay[(currentDay['Date']>cutoff) & (currentDay['Date']< "2021-07-01")] 

 #x_test=currentDay[(currentDay['Date']>"2021-10-03") & (currentDay['Date']<="2021-04-01")] 

 x_test=currentDay[(currentDay['Date']>cutoff) ] 

 #print("x_test\n",x_test[0:100].to_string(index=False)) 

 print("x_test\n",x_test['Date'].unique()) 

  

 

  

 #x_test=x_test[predictorNames].values 

 #x_test=x_test[predictorNames] 

 y_test=currentDay[currentDay['Date']>cutoff] 

 y_test=y_test[{'next_blackout','Date'}] 

 #print("x_train is\n",x_train) 

 #print("y_train is\n",y_train) 

 #print("x_test is\n",x_test) 

 #print("y_test is\n",y_test) 

 

  

 blackout_pred_rf=[] 

 blackout_actual=[] 

 #observations=list()  

 maeScore_rf=list() 

 mapeScore_rf=list() 

 mseScore_rf=list() 

 r2Score_rf=list() 

 

  

 

 historyX=[x for x in x_train] 

 historyY=[y for y in y_train] 

 

 

 #Random forest model 

 blackoutmodel_rf = RandomForestRegressor(n_estimators=10) 

 #forward-walk-validation 

 test_dates=x_test['Date'].unique() 

 #print("all dates tail\n",test_dates) 

 #print("y_test\n",y_test) 

 #model_svr.fit(x_train, y_train) 

 

 #ytest=ytest.values 

 # oggi = currentDay.loc[currentDay.Date=="2021-09-14"] 

 

 blocker=0 

 

 dayLength = 24*4 #each hour has 4 quarters 

 start_index = 0 

 prev_amp = 0 
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 for k in range(start_index,len(test_dates)): 

 #for k in range(3):  

# for k in range(len(test_dates)): 

   print("\nOuter loop is ",k)    

   print("date is ",test_dates[k]) 

   print("length of test_dates is ",len(test_dates)) 

   xtest=x_test[x_test['Date']==test_dates[k]]  

 

   xtest.reset_index(drop=True, inplace=True) 

      

   print("*** Length of day : ",len(xtest)) 

    

   #make sure you only fetch a day 24hrs long, if longer trim it to only 24hrs 

   # length will be 96 for a 15min interval day 

   if len(xtest)>dayLength: 

    xtest = xtest.loc[0:dayLength-1] 

 

   ytest=xtest['next_blackout'].values 

   xtest=xtest.values[:,1:-1] 

 

 

   #print("length of xtest is ",len(xtest),"\nxtest is\n",xtest) 

 

   oggi = currentDay.loc[currentDay.Date==test_dates[k]] 

   oggi.reset_index(drop=True, inplace=True) 

   if len(oggi)>dayLength: 

    oggi = oggi.loc[0:dayLength-1] 

    

   minCount=0    

   if sum(oggi.b14)>0 or sum(oggi.b7)>0 or sum(oggi.b2)>0 or sum(oggi.b1)>0: 

    minCount=1 

 

   # now count blackout events in the past 24hrs, assume they have high influence on 

the next 24hrs 

   maxCount=0 

   for i, element in enumerate(oggi.blackout): 

    if oggi.blackout[i]>0: 

     maxCount+=1    

   #if there was no blackout event, then allow only 1 positive blackout event in the next 

24hrs 

   if maxCount==0: 

    maxCount=minCount 

 

   # check max amplitude (blackout duration) in the past 2weeks, assume this to be the 

max permissible prediction amplitude for next 24hrs prediction 

   maxAmplitude=max(oggi.b14) 

   if maxAmplitude < max(oggi.b7): 

    maxAmplitude=max(oggi.b7) 

   if maxAmplitude < max(oggi.b2): 

    maxAmplitude=max(oggi.b2) 

   if maxAmplitude < max(oggi.b1): 

    maxAmplitude=max(oggi.b1) 

   if maxAmplitude < max(oggi.blackout): 

    maxAmplitude=max(oggi.blackout) 

   maxAmplitude = 

statistics.mean([max(oggi.b14),max(oggi.b7),max(oggi.b2),max(oggi.b1),max(oggi.blackout)]) 

   # pred_permit allows predictions or suppresses them 

   pred_permit=1 

   asd_interval1 = 0 

   asd_interval2 = 0 

   next_day = [0]*dayLength 

   # make hourly prediction for current day before next outer incremented day loop 

   for j in range(len(oggi)): 



136 

    print("\ncurrent minute quarter is ",j)  

    #u=b14 v=b7 w=b2 x=b1 y=blackout z=next_blackout 

    u=oggi.b14[j] 

    v=oggi.b7[j] 

    w=oggi.b2[j] 

    x=oggi.b1[j] 

    y=oggi.blackout[j]  

 

    

    if (u>0 and v>0): 

     if w>0 and x>0 and y>0: 

      #print("oggi.Date ",oggi.Date[0]) 

      #print("nextday ",next_day," b14 ",oggi.b14," b7 

",oggi.b7," b2 ",oggi.b2," b1 ",oggi.b1," blackout ", oggi.blackout) 

      #next_day[j] = oggi.b14[j] + oggi.b7[j] + oggi.b2[j] + 

oggi.b1[j] + oggi.blackout[j] 

      next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j] , 

oggi.b2[j] , oggi.b1[j] , oggi.blackout[j]] ,axis=0) 

      print("sector 1") 

     elif (w>0 and x>0 )or (w>0 and y>0) or (x>0 and y>0): 

      if (w>0 and x>0 ): 

       #next_day[j] = oggi.b14[j] + oggi.b7[j] + 

oggi.b2[j] + oggi.b1[j] 

       next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j] , 

oggi.b2[j] , oggi.b1[j] ] ,axis=0) 

       print("sector 2") 

      if (w>0 and y>0): 

       #next_day[j] = oggi.b14[j] + oggi.b7[j] + 

oggi.b2[j] + oggi.blackout[j] 

       next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j] , 

oggi.b2[j] , oggi.blackout[j]] ,axis=0) 

       print("sector 3") 

      if (x>0 and y>0): 

      

 #print("oggi.b14\n",oggi.b14,"oggi.b7\n",oggi.b7," oggi.b1 \n", oggi.b1,"oggi.blackout 

\n",oggi.blackout) 

       #next_day[j] = oggi.b14[j] + oggi.b7[j] + 

oggi.b1[j] + oggi.blackout[j] 

       next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j], 

oggi.b1[j] , oggi.blackout[j]] ,axis=0) 

       print("sector 4") 

     else: 

      #next_day[j] = oggi.b14[j] + oggi.b7[j]  

      next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j]] ,axis=0) 

      print("sector 5") 

    elif (w>0 and x>0 )or (w>0 and y>0) or (x>0 and y>0): 

     if w>0 and x>0 and y>0: 

      #next_day[j] =  oggi.b2[j] + oggi.b1[j] + oggi.blackout[j] 

      next_day[j] = np.mean([ oggi.b2[j] , oggi.b1[j] , 

oggi.blackout[j]] ,axis=0) 

      print("sector 6") 

     elif (w>0 and x>0 )or (w>0 and y>0) or (x>0 and y>0): 

      if (w>0 and x>0 ): 

       next_day[j] =  oggi.b2[j] + oggi.b1[j] 

       next_day[j] = np.mean([  oggi.b2[j] , 

oggi.b1[j]],axis=0) 

       print("sector 7") 

      if (w>0 and y>0): 

       #next_day[j] =  oggi.b2[j] + oggi.blackout[j] 

       next_day[j] = np.mean([oggi.b2[j] , 

oggi.blackout[j]] ,axis=0) 

       print("sector 8") 

      if (x>0 and y>0): 
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       #next_day[j] =  oggi.b1[j] + oggi.blackout[j] 

       next_day[j] = np.mean([  oggi.b1[j] , 

oggi.blackout[j]] ,axis=0) 

       print("sector 9") 

    else: 

     next_day[j] =  oggi.blackout[j] 

     print("sector 10") 

    print("\npredicted: ",next_day[j], "actual:",oggi.next_blackout[j]) 

    # check and correct error for the respective hour 

    if j==0: 

     # use previous day blackout duration amplitude, if any 

     if next_day[j] > 0 and prev_amp > 0: 

      next_day[j] = prev_amp    

  

     predError_hr = oggi.next_blackout[j] - next_day[j] 

     predError_hr = predError_hr/2 

     # take note of previous blackout amplitude, next prediction 

shouldn't exceed this 

     prev_amp=oggi.next_blackout[j] 

     if oggi.next_blackout[j]==0: 

      if next_day[j] > 0: 

       pred_permit = 0 

     #if blackout has occured get amplitude and start counter for 

interval to detect second blackout event 

     elif oggi.next_blackout[j] > 0: 

      asd_amp1 = oggi.next_blackout[j] 

      # j value will also be used to mark next blackout, then 

derive/deduce interval for 3rd blackout  

      asd_interval1 = j 

    elif j>0: 

     if pred_permit == 1: 

      #adjust predicted hr/quarter with previous quarter error 

      next_day[j] = next_day[j] + predError_hr 

      #ensure blackout prediction doesnt exceed previous 

blackout value 

      if next_day[j] >= prev_amp: 

       next_day[j] = prev_amp 

      predError_hr = oggi.next_blackout[j] - next_day[j] 

      predError_hr = predError_hr/2 

      #allow positive prediction if maxCount has not runout 

      if next_day[j]>0 and maxCount>0: 

       maxCount-=1 

      elif next_day[j]>0 and maxCount==0 and prev_amp==0: 

       next_day[j]=0  

      elif next_day[j]>0 and maxCount==0 and prev_amp > 0: 

       next_day[j]=prev_amp  

      #make prediction if both 1st & 2nd blackout have occured 

      if asd_interval1 > 0 and asd_interval2 > 0: 

       #compute interval 

       asd_pred_interval =  asd_interval2 - 

asd_interval1 

       #check current elapsed time, if it's time to allow 

prediction 

       if (asd_interval2 + asd_pred_interval) == j: 

        # prediction is mean of 1st and 2nd 

blackout that occured prior 

        next_day[j] = 

round(np.mean([asd_amp1,asd_amp2]),2) 

        currentPrediction = next_day[j] 

        #reset/update trackers 

        asd_interval1 = j-1  

        asd_interval2 = asd_interval1 + 

asd_pred_interval 
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        asd_amp1 = prev_amp 

        asd_amp2 =  prev_amp 

        print("@@@@@@@@@@@ 

executed!") 

 

      # take note of current blackout amplitude, next prediction 

shouldn't exceed this 

      if oggi.next_blackout[j]>0: 

       prev_amp=oggi.next_blackout[j] 

       pred_permit = 1 

       if asd_interval1 == 0 and asd_interval2 == 0: 

        asd_interval1 = j 

        asd_amp1 = oggi.next_blackout[j] 

       elif asd_interval1 > 0 and asd_interval2 == 0: 

        asd_interval2 = j 

        asd_amp2 = oggi.next_blackout[j] 

       

      # revoke prediction ability if algo wrongly make a 

prediction without it actually occuring 

      if oggi.next_blackout[j]==0: 

       if next_day[j] > 0: 

        pred_permit = 0 

        asd_interval1 = 0 

        asd_interval2 = 0 

 

 

     elif pred_permit == 0: 

      next_day[j]=0 #assume no blackout 

      # if blackout occurs, grant permission to make new 

predictions, until the next incorrect prediction 

      if oggi.next_blackout[j]>0: 

       pred_permit = 1 

       prev_amp=oggi.next_blackout[j]  

   

 

    #remove predictions greater than 1, or less than 0 

    if next_day[j] > maxAmplitude: 

     next_day[j] = maxAmplitude 

    if next_day[j]<0: 

     next_day[j]=0 

    #if next_day[j] > maxAmplitude: 

    # next_day[j] = maxAmplitude 

   print(" \nk is now",k)  

   print("*************** progress complete:..........  

",np.round((k/len(test_dates))*100,1),"% **************************") 

   print("date is ",test_dates[k]) 

   check_timer(tic) 

   #####------------ routine to estimate remaining time-----------######## 

   remaining_time(tic,k,len(test_dates)) 

   if k == start_index: 

    print("oggi.next_blackout[j] is ",oggi.next_blackout[j]," next_day[j] is 

",next_day[j])    

    bestMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

    worstMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

    bestMaeDate = oggi.Date[0] 

    worstMaeDate = oggi.Date[0] 

    observations = oggi.next_blackout 

    predError = oggi.next_blackout - next_day 

    next_day_list1 = next_day 

    next_day_list2 = next_day 

    maeScore_list1=list() 
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    maeScore_list2=list() 

    mseScore_list2=list() 

    rmseScore_list2=list() 

    r2Score_list2=list() 

   

 maeScore_list1.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3))  

   

   

 maeScore_list2.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3))  

   

 mseScore_list2.append(round(metrics.mean_squared_error(oggi.next_blackout,next_day),3)) 

   

 rmseScore_list2.append(round(math.sqrt(metrics.mean_squared_error(oggi.next_blackout,next_day)),3

)) 

   

 r2Score_list2.append(round(metrics.r2_score(oggi.next_blackout,next_day),3)) 

    #print("next_day\n",next_day) 

    #print("prediction error\n",predError) 

    #print("prediction error\n",predError/4) 

    predError = predError/2 

   elif k>start_index :    

    observations=np.hstack((observations,oggi.next_blackout)) 

    #if len(next_day)<24: 

    #print("next_day original\n",next_day) 

    next_day_list1=np.hstack((next_day_list1,next_day)) 

   

 maeScore_list1.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3)) 

   

     

    predError_prev_day = oggi.next_blackout - next_day 

    #next_day = next_day + predError 

 

    next_day_list2=np.hstack((next_day_list2,next_day))   

    

    #print("prediction error before correction\n",predError_prev_day) 

    #print("actual DATA\n",oggi.next_blackout) 

    #print("predicted DATA\n",next_day) 

    #print("#k is ",k, "date is ",oggi.Date[0])    

  

    

    if bestMae > 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3): 

      bestMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

      bestMaeDate = oggi.Date[0] 

    if worstMae < 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3): 

     worstMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

     worstMaeDate = oggi.Date[0]    

   

 maeScore_list2.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3)) 

   

 mseScore_list2.append(round(metrics.mean_squared_error(oggi.next_blackout,next_day),3)) 

   

 rmseScore_list2.append(round(math.sqrt(metrics.mean_squared_error(oggi.next_blackout,next_day)),3

)) 

   

 r2Score_list2.append(round(metrics.r2_score(oggi.next_blackout,next_day),3)) 

     

    #print("k ",k," mae 

",round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3))    

    #print("next_day error corrected\n",next_day) 
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    predError = oggi.next_blackout - next_day 

    #print("prediction error after correction\n",predError) 

    #print("prediction error\n",predError/4) 

    predError = predError/2 

 

        

   blk_ypred_rf = [0]*dayLength 

 

   #print("*** input length ",len(xtest[0])) 

   #print("*** xtest[j] ",np.array(xtest[0].reshape(1,10)).shape) 

   #print("*** historyX ",np.array(historyX).shape)  

    

   #check past days for max blackout events, past24hrs get all votes, other days max of 

1 event ceiling 

   #u=b14 v=b7 w=b2 x=b1 y=blackout z=next_blackout 

   #minCount sets a 'floor' for the influence of days previous to 24hrs, their influence is 

assumed low 

   minCount=0    

   if sum(oggi.b14)>0 or sum(oggi.b7)>0 or sum(oggi.b2)>0 or sum(oggi.b1)>0: 

    minCount=1 

 

   # now count blackout events in the past 24hrs, assume they have high influence on 

the next 24hrs 

   maxCount=0 

   for i, element in enumerate(oggi.blackout): 

    if oggi.blackout[i]>0: 

     maxCount+=1    

   #if there was no blackout event, then allow only 1 positive blackout event in the next 

24hrs 

   if maxCount==0: 

    maxCount=minCount 

   # pred_permit allows predictions or suppresses them 

   pred_permit=1 

   rf_interval1 = 0 

   rf_interval2 = 0 

   prev_amp = 0 

 

   for j in range(len(xtest)): 

    activeDate = oggi.Date[0] 

    #training with Random forest model 

    blackoutmodel_rf.fit(historyX, historyY) 

    #predict with RF model, [0] used to extract array element instead of 

returning an array 

    blk_ypred_rf[j] = blackoutmodel_rf.predict(xtest[j].reshape(1, 

len(xtest[j])))[0] 

 

    # check and correct error for the respective hour if prediction is still 

permissible 

    if j==0: 

     # predError_rf = ytest[j] - blk_ypred_rf[j] 

     # predError_rf = predError_rf/2 

     # take note of previous blackout amplitude, next prediction 

shouldn't exceed this 

     prev_amp=ytest[j] 

     if ytest[j]==0: 

      if blk_ypred_rf[j] > 0: 

       pred_permit = 0 

     #element can't be higher than maxAmplitude, for first prediction 

     if blk_ypred_rf[j]>maxAmplitude: 

      blk_ypred_rf[j]=maxAmplitude 

     #pass 

    elif j>0: 

     if pred_permit == 1: 
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      if blk_ypred_rf[j] >= prev_amp: 

       blk_ypred_rf[j] = prev_amp 

      #allow positive prediction if maxCount has not runout 

      if blk_ypred_rf[j]>0 and maxCount>0: 

       maxCount-=1 

      elif blk_ypred_rf[j]>0 and maxCount==0 and 

prev_amp==0: 

       blk_ypred_rf[j]=0 

      elif blk_ypred_rf[j]>0 and maxCount==0 and prev_amp > 

0: 

       blk_ypred_rf[j] = prev_amp 

      #make prediction if both 1st & 2nd blackout have occured 

      if rf_interval1 > 0 and rf_interval2 > 0: 

       #compute interval 

       rf_pred_interval =  rf_interval2 - rf_interval1 

       #check current elapsed time, if it's time to allow 

prediction 

       if (rf_interval2 + rf_pred_interval) == j: 

        # prediction is mean of 1st and 2nd 

blackout that occured prior 

        blk_ypred_rf[j] = 

round(np.mean([rf_amp1,rf_amp2]),2) 

         

        #reset/update trackers 

        rf_interval1 = j-1  

        rf_interval2 = rf_interval1 + 

rf_pred_interval 

        rf_amp1 = prev_amp 

        rf_amp2 =  prev_amp 

        print("########### executed!") 

 

      # take note of current blackout amplitude, next prediction 

shouldn't exceed this 

      if ytest[j] > 0: 

       prev_amp=ytest[j] 

       pred_permit = 1 

       if rf_interval1 == 0 and rf_interval2 == 0: 

        rf_interval1 = j 

        rf_amp1 = ytest[j] 

       elif rf_interval1 > 0 and rf_interval2 == 0: 

        rf_interval2 = j 

        rf_amp2 = ytest[j] 

      if ytest[j]==0: 

       if blk_ypred_rf[j] > 0: 

        pred_permit = 0 

        rf_interval1 = 0 

        rf_interval2 = 0   

    

      # include routine to track blackout interval, and predict 

third occurance based on the interval 

 

      #adjust predicted hr with previous hr error 

      # blk_ypred_rf[j] = blk_ypred_rf[j] + predError_rf 

      # predError_rf = ytest[j] - blk_ypred_rf[j] 

      # predError_rf = predError_rf/2 

      #pass 

     elif pred_permit == 0: 

 

      blk_ypred_rf[j]=0 #assume no blackout 

 

      # if blackout occurs, grant permission to make new 

predictions, until the next incorrect prediction 

      if ytest[j] > 0: 
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       pred_permit = 1 

       prev_amp=ytest[j]  

    actualPrediction = blk_ypred_rf[j] 

    actualBlackout = ytest[j] 

    #element can't be higher than 1 

    if blk_ypred_rf[j] > maxAmplitude: 

     blk_ypred_rf[j] = maxAmplitude  

    #no element permited below zero 

    if blk_ypred_rf[j] < 0: 

     blk_ypred_rf[j] = 0  

 

 

 

    #add actual observations to history for next loop 

    historyX=np.vstack((historyX,xtest[j])) 

    historyY=np.hstack((historyY,ytest[j])) 

 

   # ensure no element is greater than 1 or less than 0 or greater than sliding window 

maxAmplitude 

 

  

 

    #mae_rf = round(metrics.mean_absolute_error(ytest,blk_ypred_rf),3) 

    mae_rf = round(metrics.mean_absolute_error(ytest,blk_ypred_rf),3) 

    mse_rf = round(metrics.mean_squared_error(ytest,blk_ypred_rf),3) 

    r2_rf = round(metrics.r2_score(ytest,blk_ypred_rf),3) 

    mape_rf = 

round(metrics.mean_absolute_percentage_error(ytest,blk_ypred_rf),3) 

 

     

    #store all predictions in a list  

    #predictions.append(y_pred) 

    blackout_pred_rf=np.hstack((blackout_pred_rf,blk_ypred_rf[j]))          

    blackout_actual=np.hstack((blackout_actual,ytest[j])) 

    #observations.append(ytest) 

    #print("ytest is ",ytest) 

    #print("xtest is ",xtest)       

    pastday=historyY[len(historyY)-24:len(historyY)] 

 

    if k==start_index: 

     pastdayLog = pastday 

      

    else: 

     #print("°°° predictions_lstm1 is now 

\n",predictions_lstm1,"\nypred_lstm1 is \n",predictions_lstm1) 

     pastdayLog = np.hstack((pastdayLog,pastday)) 

 

    #matokeo=round(model_svr.score(xtest,ytest),1) 

     

    maeScore_rf.append(mae_rf) 

    mseScore_rf.append(mse_rf) 

    r2Score_rf.append(r2_rf) 

    mapeScore_rf.append(mape_rf) 

 

    

   #print("SVR efficiency mae: ",mae_svr) 

 

 

    #print("RFefficiency mae: ",mae_rf) 

    #print("past day len",len(pastday)) 

    #print("k is ",k) 

    mae_asd = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 
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    RF_ASD =[pd.DataFrame(next_day),pd.DataFrame(blk_ypred_rf)]  

    RF_ASD=pd.concat(RF_ASD).groupby(level=0).mean() 

    RF_ASD=RF_ASD.round(1) 

    RF_ASD=np.array(RF_ASD.values) 

    maeRFasd = 

round(metrics.mean_absolute_error(oggi.next_blackout,RF_ASD),3) 

 

   if oggi.Date[0] == "2021-04-01" and blocker==1: 

    worstday_15min = next_day 

   

 worstday_15min=pd.DataFrame(worstday_15min,columns=['worstday_15min']) 

    worstday_15min.to_pickle("./worstday_15min.pkl") 

    dpi = 600 

    px = 1/plt.rcParams['figure.dpi']  

    #plt.figure(figsize=(10, 4)) 

    plt.figure(figsize=(dpi*px, dpi*px)) 

    plt.plot( next_day, color ='b') 

    plt.plot( blk_ypred_rf, color ='r') 

    plt.plot( RF_ASD, color ='g') 

    plt.plot( oggi.next_blackout, color ='k',marker='o') 

    plt.plot( oggi.blackout, color ='b',linestyle = ':')    

    plt.xlabel('Time[hr]') 

    plt.xticks(np.arange(0,24,2)) 

    plt.ylabel('blackout index') 

    plt.title('blackout forecast' ) 

    plt.legend(['ASD mae: '+str(mae_asd),'Random Forest mae: 

'+str(mae_rf),'RF-ASD mae: '+str(maeRFasd),'actual','yesterday']) 

    plt.tight_layout() 

    plt.show() 

    #plt.savefig('img/blackout_forecast.png') 

    plt.close() 

    blocker=1 

 

   '''if bestMaeDate == "2021-10-13" and blocker==1: 

    dpi = 600 

    px = 1/plt.rcParams['figure.dpi']  

    #plt.figure(figsize=(10, 4)) 

    plt.figure(figsize=(dpi*px, dpi*px)) 

    plt.plot( next_day, color ='b') 

    plt.plot( blk_ypred_rf, color ='r') 

    plt.plot( RF_ASD, color ='g') 

    plt.plot( ytest, color ='k',marker='o') 

    plt.plot( pastday, color ='b',linestyle = ':')    

    plt.xlabel('Time') 

    plt.xticks(np.arange(0,24,2)) 

    plt.ylabel('blackout index') 

    plt.title('blackout forecast bestMaeDate'+oggi.Date[0] ) 

    plt.legend(['ASD mae: '+str(mae_asd),'Random Forest mae: 

'+str(mae_rf),'RF-ASD mae: '+str(maeRFasd),'actual','yesterday']) 

    plt.tight_layout() 

    plt.show() 

    #plt.savefig('img/blackout_forecast.png') 

    plt.close() 

    blocker=2''' 

 

   

 print("bestMaeDate ",bestMaeDate," bestMae ",bestMae, 

 "\nworstMaeDate ",worstMaeDate,"worstMae ",worstMae) 

  

 # #make prediction for nextday i.e current day and save 

 # xtest_today=allDays.loc[allDays.Date==all_dates[-1] ] 

 # #print("xtest_today length is :",len(xtest_today)) 

 # #print("xtest_today length is :",xtest_today) 
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 # xtest_today.reset_index(drop=True, inplace=True) 

 # #select relevant columns only 

 # xtest_today = xtest_today[desired_features] 

 # #print("xtest_today \n",xtest_today) 

 # d1=allDays.loc[allDays.Date==all_dates[-2]].blackout 

 # d1.reset_index(drop=True, inplace=True) 

 # d2=allDays.loc[allDays.Date==all_dates[-3]].blackout 

 # d2.reset_index(drop=True, inplace=True) 

 # #print("d2 \n",d2) 

 # d3=allDays.loc[allDays.Date==all_dates[-4]].blackout 

 # d3.reset_index(drop=True, inplace=True) 

 # #print("d3 \n",d3) 

 # d4=allDays.loc[allDays.Date==all_dates[-5]].blackout 

 # d4.reset_index(drop=True, inplace=True) 

 # #print("d4 \n",d4) 

 # d5=allDays.loc[allDays.Date==all_dates[-6]].blackout 

 # d5.reset_index(drop=True, inplace=True) 

 # #print("d5 \n",d5) 

 # #print("d5 full data\n",allDays.loc[allDays.Date==all_dates[-6]]) 

 # d6=allDays.loc[allDays.Date==all_dates[-7]].blackout 

 # d6.reset_index(drop=True, inplace=True) 

 # #print("d6 \n",d6) 

 # #print("d6 full data\n",allDays.loc[allDays.Date==all_dates[-7]]) 

 # d7=allDays.loc[allDays.Date==all_dates[-8]].blackout 

 # d7.reset_index(drop=True, inplace=True) 

 # #print("d7 \n",d7) 

 # #print("d7 full data\n",allDays.loc[allDays.Date==all_dates[-8]]) 

  

 # try: 

 #     xtest_today = 

xtest_today.assign(b7=d7.values,b6=d6.values,b5=d5.values,b4=d4.values,b3=d3.values,b2=d2.values,b1=d1.v

alues) 

 # except Exception as error: 

 #     print("error has occured!") 

 #  #msg =msg+ str(ct)+" An exception occurred: {}".format(traceback.format_exc()) 

  

 

  

 #print("final dataset \n",xtest_today) 

 

 #xtest=xtest_today.values[:,1:] 

 #print("xtest dataset \n",xtest) 

 #make prediction once a day 

 #blk_ypred_svr = blackoutmodel_svr.predict(xtest) 

 #blk_ypred_rf = blackoutmodel_rf.predict(xtest) 

 #add predicted with yesterday value 

 #get mean of predicted data and past 2 days data 

 

 ypred_mean1 =[pd.DataFrame(next_day_list2),pd.DataFrame(blackout_pred_rf)]  

 ypred_mean1=pd.concat(ypred_mean1).groupby(level=0).mean() 

 ypred_mean1=ypred_mean1.round(1) 

 ypred_mean1=np.array(ypred_mean1.values) 

 mae_asd_rf = round(metrics.mean_absolute_error(blackout_actual,ypred_mean1),3) 

 rmse_asd_rf = round(math.sqrt(metrics.mean_squared_error(blackout_actual,ypred_mean1)),3) 

 mse_asd_rf = round(metrics.mean_squared_error(blackout_actual,ypred_mean1),3) 

 r2_asd_rf = round(metrics.r2_score(blackout_actual,ypred_mean1),3) 

 

 

 #get only mae & rmse for instances where blackout occured only 

 true_blackouts =pd.concat([pd.DataFrame(blackout_actual,columns = 

['blackout_actual']),pd.DataFrame(next_day_list2,columns = ['ASD']),pd.DataFrame(blackout_pred_rf,columns 

= ['RF']),pd.DataFrame(ypred_mean1,columns = ['RF_ASD'])],axis=1)  

 print("true blackouts\n",true_blackouts) 
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 true_blackouts = true_blackouts.loc[true_blackouts.blackout_actual > 0]  

 print("true blackouts after\n",true_blackouts) 

 print("ASD mae: 

",round(metrics.mean_absolute_error(true_blackouts.blackout_actual.values,true_blackouts.ASD.values),3)," 

ASD rmse: 

",round(math.sqrt(metrics.mean_squared_error(true_blackouts.blackout_actual.values,true_blackouts.ASD.valu

es)),3)) 

 print("RF mae: 

",round(metrics.mean_absolute_error(true_blackouts.blackout_actual.values,true_blackouts.RF.values),3), " RF 

rmse: 

",round(math.sqrt(metrics.mean_squared_error(true_blackouts.blackout_actual.values,true_blackouts.RF.values

)),3)) 

 print("RF-ASD mae: 

",round(metrics.mean_absolute_error(true_blackouts.blackout_actual.values,true_blackouts.RF_ASD.values),3)

," RF-ASD rmse: 

",round(math.sqrt(metrics.mean_squared_error(true_blackouts.blackout_actual.values,true_blackouts.RF_ASD.

values)),3)) 

 beeper() 

 exit() 

 #blackoutForecast=np.round(max(ypred_mean)*100,1) 

 

 #print("blackout_actual length:",len(blackout_actual)," days: ",len(blackout_actual)/24) 

  

 mean_list2_mae =round(np.mean(maeScore_list2),3) 

 mean_list2_rmse =round(np.mean(rmseScore_list2),3) 

 mean_list2_mse =round(np.mean(mseScore_list2),3) 

 mean_list2_rmse =round(np.mean(rmseScore_list2),3) 

 mean_list2_r2score =round(np.mean(r2Score_list2),3) 

  

 mean_rf_mae =round(np.mean(maeScore_rf),3) 

 mean_rf_rmse =round(math.sqrt(np.mean(mseScore_rf)),3) 

 mean_rf_mse =round(np.mean(mseScore_rf),3) 

 mean_rf_r2 =round(np.mean(r2Score_rf),3) 

  

 print("RF: mae(",mean_rf_mae,") rmse(",mean_rf_rmse,") mse(",mean_rf_mse,") r2(",mean_rf_r2,")") 

 print("ASD: mae(",mean_list2_mae,") rmse(",mean_list2_rmse,") mse(",mean_list2_mse,") 

r2(",mean_list2_r2score,")")  

 print("RF-ASD: mae(",mae_asd_rf,") rmse(",rmse_asd_rf,") mse(",mse_asd_rf,") r2(",r2_asd_rf,")") 

 

 print("first date ",x_test['Date']) 

 #print("last date ",x_test['Date'][len(x_test)-1]) 

  

 check_timer(tic) 

 #make audible tone 

 beeper() 

 plt.close() 

 dpi = 1000 

 px = 1/plt.rcParams['figure.dpi']  

 #plt.figure(figsize=(10, 4)) 

 fig = plt.figure(figsize=(dpi*px, dpi*px)) 

 #plt.figure(figsize=(dpi*px, dpi*px)) 

 ax = plt.subplot(111) 

 #plt.plot( next_day_list1, color ='b',marker='o') 

 ax.plot( next_day_list2, color ='g',marker='s',lw=3) 

 ax.plot( ypred_mean1, color ='r',marker='o',linestyle = '-.') 

 ax.plot( blackout_pred_rf, color ='b',marker='P',linestyle = '--') 

 ax.plot( blackout_actual, color ='k',marker='o') 

 #ax.plot( pastdayLog, color ='r',marker='.',linestyle = ':') 

 #plt.plot( next_day_list2, color ='m',marker='.') 

 #plt.plot( ypred_mean1, color ='g',marker='o',linestyle = '-.') 

 #plt.plot( blackout_pred_rf, color ='b',linestyle = '--') 

 #plt.plot( blackout_actual, color ='k',marker='o') 

 #plt.plot( pastdayLog, color ='r',marker='.',linestyle = ':') 
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 #plt.axvline(x=24,  color='k', linestyle='--')  

 #plt.text(24,1,'d1 ',horizontalalignment='right') 

 xposition = [(dayLength*x)-1 for x in range(1,(int(len(blackout_actual)/dayLength))+1,1)] 

 for xc in xposition: 

  plt.axvline(x=xc, color='k', linestyle=':',ymin=0, ymax=1) 

  plt.text(xc,1,'d'+str(int(np.ceil(xc/dayLength)))+' ',horizontalalignment='right') 

 plt.xlabel('Time [Hr]') 

 plt.ylabel('Blackout Index') 

 plt.title('Blackout Forecast') 

 plt.ylim(-0.03, 1.05) 

 #plt.legend(['SVR blackout','RF blackout','actual','yesterday']) 

# plt.legend([ 

#  #'SD1 (mae:'+str(mean_list1_mae)+')', 

# 'ASD (mae:'+str(mean_list2_mae)+', rmse:'+str(mean_list2_rmse)+')', 

# 'ASD-RF (mae: '+str(mae_asd_rf)+', rmse:'+str(rmse_asd_rf)+')', 

# 'RF (mae: '+str(mean_rf_mae)+', rmse:'+str(mean_rf_rmse)+')', 

# 'actual','previous day'],loc='upper center',ncol=2)  

 ax.legend([ 

  #'SD1 (mae:'+str(mean_list1_mae)+')', 

 'ASD (mae:'+str(mean_list2_mae)+')', 

 'ASD-RF (mae: '+str(mae_asd_rf)+')', 

 'RF (mae: '+str(mean_rf_mae)+')', 

 

 'actual'],loc='upper center',bbox_to_anchor=(0.9, 0.95),ncol=1)  

 #'actual','previous day'],loc='upper center',bbox_to_anchor=(0.5, -0.08),ncol=5) 

 #matplotlib.rcParams['legend.fontsize'] = 20 

 #plt.tight_layout() 

 plt.show() 

 

def blackout_15min_classifier(): 

 tic = time.perf_counter() 

 #allDays = convert_to_15min() 

 #check_timer(tic) 

 

 allDays = pd.read_pickle("./allDays15min_filled.pkl") 

 #allDays = pd.read_pickle("./allDays15min.pkl") 

  

 # fetch all dates again, this now includes valid dataframes 

 all_dates=allDays['Date'].unique() 

 #print("last day is ",len(allDays.loc[allDays['Date'] == allDays.iloc[-1].Date] )," records long!") 

 #print("allDays\n",len(allDays.loc[allDays['Date'] == all_dates[-1]])) 

# print("last day \n",allDays.loc[allDays['Date'] == allDays.iloc[-

1].Date,('Date','hour','minute')].to_string(index=False) ) 

 #print("allDays\n",allDays) 

 print("final all_dates \n",allDays['Date'].unique()) 

 print("total dataset days \n",len(allDays['Date'].unique())) 

  

  

 trainData=allDays.loc[allDays.Date<='2021-03-31']  

 testData=allDays.loc[allDays.Date >'2021-03-31'] 

 #print("trainData\n",trainData) 

 #print("testData\n",testData) 

 

 #------------ BLACKOUT PREDICTIONS ----------------------- 

  

 # BLACKOUT MODEL TRAINING --------------------------------- 

 next_blackout=allDays.loc[allDays.Date>=all_dates[14] ].blackout 

 #print("next_blackout startdate ",all_dates[14],"currentDay startdate ",all_dates[13]) 

 #next_blackout=allDays.loc[allDays.Date >= all_dates[14] ] 

 #print("next_blackout\n",next_blackout)  

 #next_blackout = next_blackout['Date','blackout']    

 #print("start_date length is :",len(next_blackout)) 

 #print("start day index ",next_blackout.index.values[0])  
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 currentDay=allDays.loc[allDays['Date'] >= all_dates[13],: ] 

 #print("currentDay\n",currentDay) 

 #print("final all_dates \n",all_dates[13] ) 

  

 #print("day2 length is :",len(currentDay)) 

 currentDay.reset_index(drop=True, inplace=True) 

 currentDay=currentDay.loc[0:len(next_blackout)-1] 

 #print("tomorrow is ",all_dates[14], 

 #"\nsimilar day 14 days back : ",(datetime.datetime.strptime(all_dates[14], '%Y-%m-%d')-

datetime.timedelta(days=14)).strftime('%Y-%m-%d'), 

 #"\n the is also :",all_dates[0]) 

  

 #select relevant columns only 

 desired_features = ['Date','weekday','hour','day','ac_voltage','frequency','blackout'] 

 currentDay = currentDay[desired_features] 

 d1=allDays.loc[allDays.Date>=all_dates[12]].blackout 

 d1.reset_index(drop=True, inplace=True) 

 d1=d1.loc[0:len(next_blackout)-1] 

 d2=allDays.loc[allDays.Date>=all_dates[11]].blackout 

 d2.reset_index(drop=True, inplace=True) 

 d2=d2.loc[0:len(next_blackout)-1] 

 d7=allDays.loc[allDays.Date>=all_dates[7]].blackout 

 d7.reset_index(drop=True, inplace=True) 

 d7=d7.loc[0:len(next_blackout)-1] 

 d14=allDays.loc[allDays.Date>=all_dates[0]].blackout 

 d14.reset_index(drop=True, inplace=True) 

 d14=d14.loc[0:len(next_blackout)-1] 

 

 currentDay = 

currentDay.assign(b14=d14.values,b7=d7.values,b2=d2.values,b1=d1.values,next_blackout=next_blackout.valu

es) 

 currentDay = 

currentDay[['Date','weekday','hour','day','ac_voltage','frequency','b14','b7','b2','b1','blackout','next_blackout']] 

 #print("final dataset \n",currentDay.loc[0:47]) 

 #print("final dataset \n",currentDay) 

 #print("final dataset \n",currentDay.info()) 

 #//todo ensure all blackout values have only binary values, and not continuous values 

 currentDay.loc[(currentDay.blackout > 0),('blackout')] = 1 

 currentDay.loc[(currentDay.b14 > 0),('b14')] = 1 

 currentDay.loc[(currentDay.b7 > 0),('b7')] = 1 

 currentDay.loc[(currentDay.b2 > 0),('b2')] = 1 

 currentDay.loc[(currentDay.b1 > 0),('b1')] = 1 

 currentDay.loc[(currentDay.next_blackout > 0),('next_blackout')] = 1 

 

   

 

 

 predictorNames=currentDay.columns.values[1:-1] 

 #print("predictors: ",predictorNames)  

 #print("predictors length: ",len(predictorNames)) 

 #x=currentDay[predictorNames].values 

 #y=currentDay['next_blackout'].values 

 

 #convert all blackout events into binary 

 print("dataset\n",currentDay) 

  

 

 # ------------ train and test data split --------------- 

 train_dates=currentDay['Date'].unique() 

 #print("train dates\n",train_dates) 

 

 #print("currentDay\n",len(currentDay)) 

 #print("currentDay\n",currentDay) 
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 #get train 80% and 20% test 

 #cutoff=int(np.floor(len(train_dates)*0.8)) 

 cutoff=int(np.floor(len(train_dates)*0.2))  

 cutoff=str(train_dates[cutoff]) 

 #cutoff="2021-03-01" 

 print("cutoff date: ",cutoff)  

 x_train=currentDay[currentDay['Date']<cutoff]  

  

 x_train=x_train[predictorNames] 

 #x_train.to_csv("./matlabData/x_train.csv") 

 x_train=x_train.values 

 y_train=currentDay[currentDay['Date']<cutoff] 

 y_train=y_train['next_blackout'] 

 #y_train.to_csv("./matlabData/y_train.csv") 

 y_train=y_train.values 

 

 #x_test=currentDay[(currentDay['Date']>=cutoff) & (currentDay['Date']< "2021-04-01")] 

 #x_test=currentDay[(currentDay['Date']>"2021-10-03") & (currentDay['Date']<="2021-04-01")] 

 x_test=currentDay[(currentDay['Date']>=cutoff) ] 

 #x_test.to_csv("./matlabData/x_test.csv") 

 #print("x_test\n",x_test[0:100].to_string(index=False)) 

 print("x_test\n",x_test['Date'].unique()) 

  

 

  

 #x_test=x_test[predictorNames].values 

 #x_test=x_test[predictorNames] 

 y_test=currentDay[currentDay['Date']>=cutoff] 

 y_test=y_test[{'next_blackout','Date'}] 

 #print("x_train is\n",x_train) 

 #print("y_train is\n",y_train) 

 #print("x_test is\n",x_test) 

 #print("y_test is\n",y_test) 

 

  

 blackout_pred_rf=[] 

 blackout_actual=[] 

 #observations=list()  

 maeScore_rf=list() 

 mapeScore_rf=list() 

 mseScore_rf=list() 

 r2Score_rf=list() 

 

  

 

 historyX=[x for x in x_train] 

 historyY=[y for y in y_train] 

 

 

 #//todo Random forest classifier model instead of regressor 

 #blackoutmodel_rf = RandomForestRegressor(n_estimators=10) 

 blackout_rf_classifier = RandomForestClassifier(n_estimators=500,max_depth=2,random_state=0) 

 #forward-walk-validation 

 test_dates=x_test['Date'].unique() 

 #test_dates.to_csv("./matlabData/test_dates.csv") 

 #print("all dates tail\n",test_dates) 

 #print("y_test\n",y_test) 

 #model_svr.fit(x_train, y_train) 

 

 #ytest=ytest.values 

 # oggi = currentDay.loc[currentDay.Date=="2021-09-14"] 

 

 blocker=0 
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 dayLength = 24*4 #each hour has 4 quarters 

 start_index = 0 

 prev_amp = 0 

 for k in range(start_index,len(test_dates)): 

 #for k in range(2):  

# for k in range(len(test_dates)): 

   print("\nOuter loop is ",k)   

   print("*************** progress complete:..........  

",np.round((k/len(test_dates))*100,1),"% **************************") 

   print("date is ",test_dates[k]) 

   print("length of test_dates is ",len(test_dates)) 

   xtest=x_test[x_test['Date']==test_dates[k]]  

 

   xtest.reset_index(drop=True, inplace=True) 

      

   print("*** Length of day : ",len(xtest)) 

    

   #make sure you only fetch a day 24hrs long, if longer trim it to only 24hrs 

   # length will be 96 for a 15min interval day 

   if len(xtest)>dayLength: 

    xtest = xtest.loc[0:dayLength-1] 

 

   ytest=xtest['next_blackout'].values 

   xtest=xtest.values[:,1:-1] 

 

 

   #print("length of xtest is ",len(xtest),"\nxtest is\n",xtest) 

 

   oggi = currentDay.loc[currentDay.Date==test_dates[k]] 

   oggi.reset_index(drop=True, inplace=True) 

   if len(oggi)>dayLength: 

    oggi = oggi.loc[0:dayLength-1] 

    

   minCount=0    

   if sum(oggi.b14)>0 or sum(oggi.b7)>0 or sum(oggi.b2)>0 or sum(oggi.b1)>0: 

    minCount=1 

 

   # now count blackout events in the past 24hrs, assume they have high influence on 

the next 24hrs 

   maxCount=0 

   for i, element in enumerate(oggi.blackout): 

    if oggi.blackout[i]>0: 

     maxCount+=1    

   #if there was no blackout event, then allow only 1 positive blackout event in the next 

24hrs 

   if maxCount==0: 

    maxCount=minCount 

 

   # check max amplitude (blackout duration) in the past 2weeks, assume this to be the 

max permissible prediction amplitude for next 24hrs prediction 

   maxAmplitude=max(oggi.b14) 

   if maxAmplitude < max(oggi.b7): 

    maxAmplitude=max(oggi.b7) 

   if maxAmplitude < max(oggi.b2): 

    maxAmplitude=max(oggi.b2) 

   if maxAmplitude < max(oggi.b1): 

    maxAmplitude=max(oggi.b1) 

   if maxAmplitude < max(oggi.blackout): 

    maxAmplitude=max(oggi.blackout) 

   maxAmplitude = 

statistics.mean([max(oggi.b14),max(oggi.b7),max(oggi.b2),max(oggi.b1),max(oggi.blackout)]) 

   # pred_permit allows predictions or suppresses them 
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   pred_permit=1 

   asd_interval1 = 0 

   asd_interval2 = 0 

   next_day = [0]*dayLength 

   # make hourly prediction for current day before next outer incremented day loop 

   for j in range(len(oggi)): 

    print("\ncurrent minute quarter is ",j)  

    #u=b14 v=b7 w=b2 x=b1 y=blackout z=next_blackout 

    u=oggi.b14[j] 

    v=oggi.b7[j] 

    w=oggi.b2[j] 

    x=oggi.b1[j] 

    y=oggi.blackout[j]  

 

    

    if (u>0 and v>0): 

     if w>0 and x>0 and y>0: 

      #print("oggi.Date ",oggi.Date[0]) 

      #print("nextday ",next_day," b14 ",oggi.b14," b7 

",oggi.b7," b2 ",oggi.b2," b1 ",oggi.b1," blackout ", oggi.blackout) 

      #next_day[j] = oggi.b14[j] + oggi.b7[j] + oggi.b2[j] + 

oggi.b1[j] + oggi.blackout[j] 

      next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j] , 

oggi.b2[j] , oggi.b1[j] , oggi.blackout[j]] ,axis=0) 

      print("sector 1") 

     elif (w>0 and x>0 )or (w>0 and y>0) or (x>0 and y>0): 

      if (w>0 and x>0 ): 

       #next_day[j] = oggi.b14[j] + oggi.b7[j] + 

oggi.b2[j] + oggi.b1[j] 

       next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j] , 

oggi.b2[j] , oggi.b1[j] ] ,axis=0) 

       print("sector 2") 

      if (w>0 and y>0): 

       #next_day[j] = oggi.b14[j] + oggi.b7[j] + 

oggi.b2[j] + oggi.blackout[j] 

       next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j] , 

oggi.b2[j] , oggi.blackout[j]] ,axis=0) 

       print("sector 3") 

      if (x>0 and y>0): 

      

 #print("oggi.b14\n",oggi.b14,"oggi.b7\n",oggi.b7," oggi.b1 \n", oggi.b1,"oggi.blackout 

\n",oggi.blackout) 

       #next_day[j] = oggi.b14[j] + oggi.b7[j] + 

oggi.b1[j] + oggi.blackout[j] 

       next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j], 

oggi.b1[j] , oggi.blackout[j]] ,axis=0) 

       print("sector 4") 

     else: 

      #next_day[j] = oggi.b14[j] + oggi.b7[j]  

      next_day[j] = np.mean([ oggi.b14[j] , oggi.b7[j]] ,axis=0) 

      print("sector 5") 

    elif (w>0 and x>0 )or (w>0 and y>0) or (x>0 and y>0): 

     if w>0 and x>0 and y>0: 

      #next_day[j] =  oggi.b2[j] + oggi.b1[j] + oggi.blackout[j] 

      next_day[j] = np.mean([ oggi.b2[j] , oggi.b1[j] , 

oggi.blackout[j]] ,axis=0) 

      print("sector 6") 

     elif (w>0 and x>0 )or (w>0 and y>0) or (x>0 and y>0): 

      if (w>0 and x>0 ): 

       next_day[j] =  oggi.b2[j] + oggi.b1[j] 

       next_day[j] = np.mean([  oggi.b2[j] , 

oggi.b1[j]],axis=0) 

       print("sector 7") 
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      if (w>0 and y>0): 

       #next_day[j] =  oggi.b2[j] + oggi.blackout[j] 

       next_day[j] = np.mean([oggi.b2[j] , 

oggi.blackout[j]] ,axis=0) 

       print("sector 8") 

      if (x>0 and y>0): 

       #next_day[j] =  oggi.b1[j] + oggi.blackout[j] 

       next_day[j] = np.mean([  oggi.b1[j] , 

oggi.blackout[j]] ,axis=0) 

       print("sector 9") 

    else: 

     next_day[j] =  oggi.blackout[j] 

     print("sector 10") 

    print("\npredicted: ",next_day[j], "actual:",oggi.next_blackout[j]) 

    # check and correct error for the respective hour 

    if j==0: 

     # use previous day blackout duration amplitude, if any 

     if next_day[j] > 0 and prev_amp > 0: 

      next_day[j] = prev_amp    

  

     predError_hr = oggi.next_blackout[j] - next_day[j] 

     predError_hr = predError_hr/2 

     # take note of previous blackout amplitude, next prediction 

shouldn't exceed this 

     prev_amp=oggi.next_blackout[j] 

     if oggi.next_blackout[j]==0: 

      if next_day[j] > 0: 

       pred_permit = 0 

     #if blackout has occured get amplitude and start counter for 

interval to detect second blackout event 

     elif oggi.next_blackout[j] > 0: 

      asd_amp1 = oggi.next_blackout[j] 

      # j value will also be used to mark next blackout, then 

derive/deduce interval for 3rd blackout  

      asd_interval1 = j 

    elif j>0: 

     if pred_permit == 1: 

      #adjust predicted hr/quarter with previous quarter error 

      next_day[j] = next_day[j] + predError_hr 

      #ensure blackout prediction doesnt exceed previous 

blackout value 

      if next_day[j] >= prev_amp: 

       next_day[j] = prev_amp 

      predError_hr = oggi.next_blackout[j] - next_day[j] 

      predError_hr = predError_hr/2 

      #allow positive prediction if maxCount has not runout 

      if next_day[j]>0 and maxCount>0: 

       maxCount-=1 

      elif next_day[j]>0 and maxCount==0 and prev_amp==0: 

       next_day[j]=0  

      elif next_day[j]>0 and maxCount==0 and prev_amp > 0: 

       next_day[j]=prev_amp  

      #make prediction if both 1st & 2nd blackout have occured 

      if asd_interval1 > 0 and asd_interval2 > 0: 

       #compute interval 

       asd_pred_interval =  asd_interval2 - 

asd_interval1 

       #check current elapsed time, if it's time to allow 

prediction 

       if (asd_interval2 + asd_pred_interval) == j: 

        # prediction is mean of 1st and 2nd 

blackout that occured prior 
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        next_day[j] = 

round(np.mean([asd_amp1,asd_amp2]),2) 

        currentPrediction = next_day[j] 

        #reset/update trackers 

        asd_interval1 = j-1  

        asd_interval2 = asd_interval1 + 

asd_pred_interval 

        asd_amp1 = prev_amp 

        asd_amp2 =  prev_amp 

        print("@@@@@@@@@@@ 

executed!") 

 

      # take note of current blackout amplitude, next prediction 

shouldn't exceed this 

      if oggi.next_blackout[j]>0: 

       prev_amp=oggi.next_blackout[j] 

       pred_permit = 1 

       if asd_interval1 == 0 and asd_interval2 == 0: 

        asd_interval1 = j 

        asd_amp1 = oggi.next_blackout[j] 

       elif asd_interval1 > 0 and asd_interval2 == 0: 

        asd_interval2 = j 

        asd_amp2 = oggi.next_blackout[j] 

       

      # revoke prediction ability if algo wrongly make a 

prediction without it actually occuring 

      if oggi.next_blackout[j]==0: 

       if next_day[j] > 0: 

        pred_permit = 0 

        asd_interval1 = 0 

        asd_interval2 = 0 

 

 

     elif pred_permit == 0: 

      next_day[j]=0 #assume no blackout 

      # if blackout occurs, grant permission to make new 

predictions, until the next incorrect prediction 

      if oggi.next_blackout[j]>0: 

       pred_permit = 1 

       prev_amp=oggi.next_blackout[j]  

   

 

    #force all predictions greater than 0 to 1 

    if next_day[j] > 0: 

     next_day[j] = 1 

    if next_day[j]<0: 

     next_day[j]=0 

    #if next_day[j] > maxAmplitude: 

    # next_day[j] = maxAmplitude 

   print(" \nk is now",k) 

   print("*************** progress complete:..........  

",np.round((k/len(test_dates))*100,1),"% **************************") 

   print("date is ",test_dates[k]) 

   check_timer(tic) 

   #####------------ routine to estimate remaining time-----------######## 

   remaining_time(tic,k,len(test_dates)) 

   if k == start_index: 

    print("oggi.next_blackout[j] is ",oggi.next_blackout[j]," next_day[j] is 

",next_day[j])    

    bestMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

    worstMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 
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    bestMaeDate = oggi.Date[0] 

    worstMaeDate = oggi.Date[0] 

    observations = oggi.next_blackout 

    predError = oggi.next_blackout - next_day 

    next_day_list1 = next_day 

    next_day_list2 = next_day 

    maeScore_list1=list() 

    maeScore_list2=list() 

    mseScore_list2=list() 

    rmseScore_list2=list() 

    r2Score_list2=list() 

   

 maeScore_list1.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3))  

   

   

 maeScore_list2.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3))  

   

 mseScore_list2.append(round(metrics.mean_squared_error(oggi.next_blackout,next_day),3)) 

   

 rmseScore_list2.append(round(math.sqrt(metrics.mean_squared_error(oggi.next_blackout,next_day)),3

)) 

   

 r2Score_list2.append(round(metrics.r2_score(oggi.next_blackout,next_day),3)) 

    #print("next_day\n",next_day) 

    #print("prediction error\n",predError) 

    #print("prediction error\n",predError/4) 

    predError = predError/2 

   elif k>start_index :    

    observations=np.hstack((observations,oggi.next_blackout)) 

    #if len(next_day)<24: 

    #print("next_day original\n",next_day) 

    next_day_list1=np.hstack((next_day_list1,next_day)) 

   

 maeScore_list1.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3)) 

   

     

    predError_prev_day = oggi.next_blackout - next_day 

    #next_day = next_day + predError 

 

    next_day_list2=np.hstack((next_day_list2,next_day))   

    

    #print("prediction error before correction\n",predError_prev_day) 

    #print("actual DATA\n",oggi.next_blackout) 

    #print("predicted DATA\n",next_day) 

    #print("#k is ",k, "date is ",oggi.Date[0])    

  

    

    if bestMae > 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3): 

      bestMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

      bestMaeDate = oggi.Date[0] 

    if worstMae < 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3): 

     worstMae = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

     worstMaeDate = oggi.Date[0]    

   

 maeScore_list2.append(round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3)) 

   

 mseScore_list2.append(round(metrics.mean_squared_error(oggi.next_blackout,next_day),3)) 
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 rmseScore_list2.append(round(math.sqrt(metrics.mean_squared_error(oggi.next_blackout,next_day)),3

)) 

   

 r2Score_list2.append(round(metrics.r2_score(oggi.next_blackout,next_day),3)) 

     

    #print("k ",k," mae 

",round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3))    

    #print("next_day error corrected\n",next_day) 

    predError = oggi.next_blackout - next_day 

    #print("prediction error after correction\n",predError) 

    #print("prediction error\n",predError/4) 

    predError = predError/2 

 

        

   blk_ypred_rf = [0]*dayLength 

 

   #print("*** input length ",len(xtest[0])) 

   #print("*** xtest[j] ",np.array(xtest[0].reshape(1,10)).shape) 

   #print("*** historyX ",np.array(historyX).shape)  

    

   #check past days for max blackout events, past24hrs get all votes, other days max of 

1 event ceiling 

   #u=b14 v=b7 w=b2 x=b1 y=blackout z=next_blackout 

   #minCount sets a 'floor' for the influence of days previous to 24hrs, their influence is 

assumed low 

   minCount=0    

   if sum(oggi.b14)>0 or sum(oggi.b7)>0 or sum(oggi.b2)>0 or sum(oggi.b1)>0: 

    minCount=1 

 

   # now count blackout events in the past 24hrs, assume they have high influence on 

the next 24hrs 

   maxCount=0 

   for i, element in enumerate(oggi.blackout): 

    if oggi.blackout[i]>0: 

     maxCount+=1    

   #if there was no blackout event, then allow only 1 positive blackout event in the next 

24hrs 

   if maxCount==0: 

    maxCount=minCount 

   # pred_permit allows predictions or suppresses them 

   pred_permit=1 

   rf_interval1 = 0 

   rf_interval2 = 0 

   prev_amp = 0 

 

   for j in range(len(xtest)): 

    activeDate = oggi.Date[0] 

    #training with Random forest classifier model 

    blackout_rf_classifier.fit(historyX, historyY) 

    #predict with RF model, [0] used to extract array element instead of 

returning an array 

    blk_ypred_rf[j] = blackout_rf_classifier.predict(xtest[j].reshape(1, 

len(xtest[j])))[0] 

 

    # check and correct error for the respective hour if prediction is still 

permissible 

    if j==0: 

     # predError_rf = ytest[j] - blk_ypred_rf[j] 

     # predError_rf = predError_rf/2 

     # take note of previous blackout amplitude, next prediction 

shouldn't exceed this 

     prev_amp=ytest[j] 
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     if ytest[j]==0: 

      if blk_ypred_rf[j] > 0: 

       pred_permit = 0 

     #element can't be higher than maxAmplitude, for first prediction 

     if blk_ypred_rf[j]>maxAmplitude: 

      blk_ypred_rf[j]=maxAmplitude 

     #pass 

    elif j>0: 

     if pred_permit == 1: 

      if blk_ypred_rf[j] >= prev_amp: 

       blk_ypred_rf[j] = prev_amp 

      #allow positive prediction if maxCount has not runout 

      if blk_ypred_rf[j]>0 and maxCount>0: 

       maxCount-=1 

      elif blk_ypred_rf[j]>0 and maxCount==0 and 

prev_amp==0: 

       blk_ypred_rf[j]=0 

      elif blk_ypred_rf[j]>0 and maxCount==0 and prev_amp > 

0: 

       blk_ypred_rf[j] = prev_amp 

      #make prediction if both 1st & 2nd blackout have occured 

      if rf_interval1 > 0 and rf_interval2 > 0: 

       #compute interval 

       rf_pred_interval =  rf_interval2 - rf_interval1 

       #check current elapsed time, if it's time to allow 

prediction 

       if (rf_interval2 + rf_pred_interval) == j: 

        # prediction is mean of 1st and 2nd 

blackout that occured prior 

        blk_ypred_rf[j] = 

round(np.mean([rf_amp1,rf_amp2]),2) 

         

        #reset/update trackers 

        rf_interval1 = j-1  

        rf_interval2 = rf_interval1 + 

rf_pred_interval 

        rf_amp1 = prev_amp 

        rf_amp2 =  prev_amp 

        print("########### executed!") 

 

      # take note of current blackout amplitude, next prediction 

shouldn't exceed this 

      if ytest[j] > 0: 

       prev_amp=ytest[j] 

       pred_permit = 1 

       if rf_interval1 == 0 and rf_interval2 == 0: 

        rf_interval1 = j 

        rf_amp1 = ytest[j] 

       elif rf_interval1 > 0 and rf_interval2 == 0: 

        rf_interval2 = j 

        rf_amp2 = ytest[j] 

      if ytest[j]==0: 

       if blk_ypred_rf[j] > 0: 

        pred_permit = 0 

        rf_interval1 = 0 

        rf_interval2 = 0   

    

      # include routine to track blackout interval, and predict 

third occurance based on the interval 

 

      #adjust predicted hr with previous hr error 

      # blk_ypred_rf[j] = blk_ypred_rf[j] + predError_rf 

      # predError_rf = ytest[j] - blk_ypred_rf[j] 
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      # predError_rf = predError_rf/2 

      #pass 

     elif pred_permit == 0: 

 

      blk_ypred_rf[j]=0 #assume no blackout 

 

      # if blackout occurs, grant permission to make new 

predictions, until the next incorrect prediction 

      if ytest[j] > 0: 

       pred_permit = 1 

       prev_amp=ytest[j] 

    actualPrediction = blk_ypred_rf[j] 

    actualBlackout = ytest[j] 

    #element can't be higher than 1 

    if blk_ypred_rf[j] > 0: 

     blk_ypred_rf[j] = 1  

    #no element permited below zero 

    if blk_ypred_rf[j] < 0: 

     blk_ypred_rf[j] = 0  

 

 

 

    #add actual observations to history for next loop 

    historyX=np.vstack((historyX,xtest[j])) 

    historyY=np.hstack((historyY,ytest[j])) 

 

   # ensure no element is greater than 1 or less than 0 or greater than sliding window 

maxAmplitude 

 

 

 

    #mae_rf = round(metrics.mean_absolute_error(ytest,blk_ypred_rf),3) 

    mae_rf = round(metrics.mean_absolute_error(ytest,blk_ypred_rf),3) 

    mse_rf = round(metrics.mean_squared_error(ytest,blk_ypred_rf),3) 

    r2_rf = round(metrics.r2_score(ytest,blk_ypred_rf),3) 

    mape_rf = 

round(metrics.mean_absolute_percentage_error(ytest,blk_ypred_rf),3) 

 

     

    #store all predictions in a list  

    #predictions.append(y_pred) 

    blackout_pred_rf=np.hstack((blackout_pred_rf,blk_ypred_rf[j]))          

    blackout_actual=np.hstack((blackout_actual,ytest[j])) 

    #observations.append(ytest) 

    #print("ytest is ",ytest) 

    #print("xtest is ",xtest)       

    pastday=historyY[len(historyY)-24:len(historyY)] 

 

    if k==start_index: 

     pastdayLog = pastday 

      

    else: 

     #print("°°° predictions_lstm1 is now 

\n",predictions_lstm1,"\nypred_lstm1 is \n",predictions_lstm1) 

     pastdayLog = np.hstack((pastdayLog,pastday)) 

 

    #matokeo=round(model_svr.score(xtest,ytest),1) 

     

    maeScore_rf.append(mae_rf) 

    mseScore_rf.append(mse_rf) 

    r2Score_rf.append(r2_rf) 

    mapeScore_rf.append(mape_rf) 
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   #print("SVR efficiency mae: ",mae_svr) 

 

 

    #print("RFefficiency mae: ",mae_rf) 

    #print("past day len",len(pastday)) 

    #print("k is ",k) 

    mae_asd = 

round(metrics.mean_absolute_error(oggi.next_blackout,next_day),3) 

    RF_ASD =[pd.DataFrame(next_day),pd.DataFrame(blk_ypred_rf)]  

    RF_ASD=pd.concat(RF_ASD).groupby(level=0).mean() 

    RF_ASD=RF_ASD.round(1) 

    RF_ASD=np.array(RF_ASD.values) 

    maeRFasd = 

round(metrics.mean_absolute_error(oggi.next_blackout,RF_ASD),3) 

 

   #if oggi.Date[0] == "2021-04-01" and blocker==1: 

   if blocker==1:   

    worstday_15min = next_day 

   

 worstday_15min=pd.DataFrame(worstday_15min,columns=['worstday_15min']) 

    worstday_15min.to_pickle("./worstday_15min.pkl") 

    dpi = 600 

    px = 1/plt.rcParams['figure.dpi']  

    #plt.figure(figsize=(10, 4)) 

    plt.figure(figsize=(dpi*px, dpi*px)) 

    #plt.plot( next_day, color ='b') 

    plt.plot( blk_ypred_rf, color ='r',marker='o') 

    #plt.plot( RF_ASD, color ='g') 

    plt.plot( oggi.next_blackout, color ='k',marker='o') 

    #plt.plot( oggi.blackout, color ='b',linestyle = ':')    

    plt.xlabel('Time[hr]') 

    plt.xticks(np.arange(0,dayLength,2)) 

    plt.ylabel('blackout index') 

    plt.title('blackout forecast' ) 

    plt.legend(['Random Forest mae: '+str(mae_rf),'actual']) 

    #plt.legend(['ASD mae: '+str(mae_asd),'Random Forest mae: 

'+str(mae_rf),'RF-ASD mae: '+str(maeRFasd),'actual','yesterday']) 

    plt.tight_layout() 

    plt.show() 

    #plt.savefig('img/blackout_forecast.png') 

    plt.close() 

    #blocker=1 

 

   '''if bestMaeDate == "2021-10-13" and blocker==1: 

    dpi = 600 

    px = 1/plt.rcParams['figure.dpi']  

    #plt.figure(figsize=(10, 4)) 

    plt.figure(figsize=(dpi*px, dpi*px)) 

    plt.plot( next_day, color ='b') 

    plt.plot( blk_ypred_rf, color ='r') 

    plt.plot( RF_ASD, color ='g') 

    plt.plot( ytest, color ='k',marker='o') 

    plt.plot( pastday, color ='b',linestyle = ':')    

    plt.xlabel('Time') 

    plt.xticks(np.arange(0,24,2)) 

    plt.ylabel('blackout index') 

    plt.title('blackout forecast bestMaeDate'+oggi.Date[0] ) 

    plt.legend(['ASD mae: '+str(mae_asd),'Random Forest mae: 

'+str(mae_rf),'RF-ASD mae: '+str(maeRFasd),'actual','yesterday']) 

    plt.tight_layout() 

    plt.show() 

    #plt.savefig('img/blackout_forecast.png') 
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    plt.close() 

    blocker=2''' 

 

   

 print("bestMaeDate ",bestMaeDate," bestMae ",bestMae, 

 "\nworstMaeDate ",worstMaeDate,"worstMae ",worstMae) 

 

 # #make prediction for nextday i.e current day and save 

 # xtest_today=allDays.loc[allDays.Date==all_dates[-1] ] 

 # #print("xtest_today length is :",len(xtest_today)) 

 # #print("xtest_today length is :",xtest_today) 

 # xtest_today.reset_index(drop=True, inplace=True) 

 # #select relevant columns only 

 # xtest_today = xtest_today[desired_features] 

 # #print("xtest_today \n",xtest_today) 

 # d1=allDays.loc[allDays.Date==all_dates[-2]].blackout 

 # d1.reset_index(drop=True, inplace=True) 

 # d2=allDays.loc[allDays.Date==all_dates[-3]].blackout 

 # d2.reset_index(drop=True, inplace=True) 

 # #print("d2 \n",d2) 

 # d3=allDays.loc[allDays.Date==all_dates[-4]].blackout 

 # d3.reset_index(drop=True, inplace=True) 

 # #print("d3 \n",d3) 

 # d4=allDays.loc[allDays.Date==all_dates[-5]].blackout 

 # d4.reset_index(drop=True, inplace=True) 

 # #print("d4 \n",d4) 

 # d5=allDays.loc[allDays.Date==all_dates[-6]].blackout 

 # d5.reset_index(drop=True, inplace=True) 

 # #print("d5 \n",d5) 

 # #print("d5 full data\n",allDays.loc[allDays.Date==all_dates[-6]]) 

 # d6=allDays.loc[allDays.Date==all_dates[-7]].blackout 

 # d6.reset_index(drop=True, inplace=True) 

 # #print("d6 \n",d6) 

 # #print("d6 full data\n",allDays.loc[allDays.Date==all_dates[-7]]) 

 # d7=allDays.loc[allDays.Date==all_dates[-8]].blackout 

 # d7.reset_index(drop=True, inplace=True) 

 # #print("d7 \n",d7) 

 # #print("d7 full data\n",allDays.loc[allDays.Date==all_dates[-8]]) 

 

 # try: 

 #     xtest_today = 

xtest_today.assign(b7=d7.values,b6=d6.values,b5=d5.values,b4=d4.values,b3=d3.values,b2=d2.values,b1=d1.v

alues) 

 # except Exception as error: 

 #     print("error has occured!") 

 #  #msg =msg+ str(ct)+" An exception occurred: {}".format(traceback.format_exc()) 

 

 

 

 #print("final dataset \n",xtest_today) 

 

 #xtest=xtest_today.values[:,1:] 

 #print("xtest dataset \n",xtest) 

 #make prediction once a day 

 #blk_ypred_svr = blackoutmodel_svr.predict(xtest) 

 #blk_ypred_rf = blackoutmodel_rf.predict(xtest) 

 #add predicted with yesterday value 

 #get mean of predicted data and past 2 days data 

 

 ypred_mean1 =[pd.DataFrame(next_day_list2),pd.DataFrame(blackout_pred_rf)]  

 ypred_mean1=pd.concat(ypred_mean1).groupby(level=0).mean() 

 ypred_mean1=ypred_mean1.round(1) 

 ypred_mean1.columns = ['data'] 
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 blackout_actual=pd.DataFrame(blackout_actual,columns=['blackout_actual']) 

 blackout_pred_rf=pd.DataFrame(blackout_pred_rf,columns=['blackout_pred_rf']) 

 blackout_actual.to_pickle("./blackout_actual.pkl")  

 blackout_pred_rf.to_pickle("./blackout_pred_rf.pkl") 

 blackout_actual = pd.read_pickle("./blackout_actual.pkl") 

 blackout_actual['blackout_actual'] = blackout_actual['blackout_actual'].apply(np.ceil) 

 blackout_pred_rf = pd.read_pickle("./blackout_pred_rf.pkl") 

 blackout_pred_rf['blackout_pred_rf'] = blackout_pred_rf['blackout_pred_rf'].apply(np.ceil) 

 blackout_actual = blackout_actual.blackout_actual.values 

 blackout_pred_rf = blackout_pred_rf.blackout_pred_rf.values 

   

 print("ypred_mean1\n",ypred_mean1) 

 #currentDay.loc[(currentDay.blackout > 0),('blackout')] = 1 

 ypred_mean1.loc[ypred_mean1.data > 0 ,('data')] = 1 

 ypred_mean1.to_pickle("./results15min/ypred_mean1.pkl")  

 ypred_mean1=np.array(ypred_mean1.data.values) 

 mae_asd_rf = round(metrics.mean_absolute_error(blackout_actual,ypred_mean1),3) 

 rmse_asd_rf = round(math.sqrt(metrics.mean_squared_error(blackout_actual,ypred_mean1)),3) 

 mse_asd_rf = round(metrics.mean_squared_error(blackout_actual,ypred_mean1),3) 

 r2_asd_rf = round(metrics.r2_score(blackout_actual,ypred_mean1),3) 

 

 #blackoutForecast=np.round(max(ypred_mean)*100,1) 

 #print("blackout_actual length:",len(blackout_actual)," days: ",len(blackout_actual)/24) 

 

 mean_list2_mae =round(np.mean(maeScore_list2),3) 

 mean_list2_rmse =round(np.mean(rmseScore_list2),3) 

 mean_list2_mse =round(np.mean(mseScore_list2),3) 

 mean_list2_rmse =round(np.mean(rmseScore_list2),3) 

 mean_list2_r2score =round(np.mean(r2Score_list2),3) 

 

 mean_rf_mae =round(np.mean(maeScore_rf),3) 

 mean_rf_rmse =round(math.sqrt(np.mean(mseScore_rf)),3) 

 mean_rf_mse =round(np.mean(mseScore_rf),3) 

 mean_rf_r2 =round(np.mean(r2Score_rf),3) 

 

 print("RF: mae(",mean_rf_mae,") rmse(",mean_rf_rmse,") mse(",mean_rf_mse,") r2(",mean_rf_r2,")") 

 print("ASD: mae(",mean_list2_mae,") rmse(",mean_list2_rmse,") mse(",mean_list2_mse,") 

r2(",mean_list2_r2score,")")  

 print("RF-ASD: mae(",mae_asd_rf,") rmse(",rmse_asd_rf,") mse(",mse_asd_rf,") r2(",r2_asd_rf,")") 

 

 print("first date ",x_test['Date']) 

 #print("last date ",x_test['Date'][len(x_test)-1]) 

 

 check_timer(tic) 

 #make audible tone 

 beeper() 

 

 

 

 cm = confusion_matrix(blackout_actual,blackout_pred_rf) 

 print("confusion matrix\n",cm)  

 cm_df = pd.DataFrame(cm, 

                     index = ['Power_ON','Blackout'],  

                     columns = ['Power_ON','Blackout']) 

 print("confusion matrix dataframe\n",cm_df) 

 print("RF accuracy: ",accuracy_score(blackout_actual,blackout_pred_rf)) 

 

 

 plt.close()  

 dpi = 1200 

 px = 1/plt.rcParams['figure.dpi']  

 #plt.figure(figsize=(10, 4)) 
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 #plt.figure(figsize=(dpi*px, dpi*px)) 

 #f,(ax1,ax2,ax3) = plt.subplots(1,3,sharey=True,figsize=(dpi*px, dpi*px)) 

 f,(ax1,ax2,ax3, axcb) = plt.subplots(1,4,  

            gridspec_kw={'width_ratios':[1,1,1,0.08]},figsize=(10, 4)) 

 ax1.get_shared_y_axes().join(ax2,ax3) 

 labels = [np.round(value*100,1) for value in 

          

 cm_df.values/np.sum(cm_df.values)] 

 a =[f"{value}%" for value in labels[0]] 

 a = [np.array([f"TN\n{cm_df.values[0][0]}\n{a[0]}", f"FP\n{cm_df.values[0][1]}\n{a[1]}"])] 

 b =[f"{value}%" for value in labels[1]] 

 b = [np.array([f"FN\n{cm_df.values[1][0]}\n{b[0]}", f"TP\n{cm_df.values[1][1]}\n{b[1]}"])] 

 labels = np.concatenate((a, b), axis=0) 

 labels = labels.reshape(2,2) 

 g1 = sns.heatmap(cm_df, annot=labels, annot_kws={'size': 15} ,cmap='YlGnBu', 

fmt='',cbar=False,ax=ax1) 

 g1.set_title('RF confusion matrix') 

 g1.set_ylabel('Actual values',fontsize=13,fontweight='bold') 

 g1.set_xlabel('') 

 g1.set_yticklabels(cm_df.index,fontsize=13) 

 

 next_day_list2 = np.ceil(next_day_list2) 

 pd.DataFrame(next_day_list2).to_pickle("./results15min/next_day_list2.pkl") 

 cm = confusion_matrix(blackout_actual,next_day_list2) 

 print("confusion matrix\n",cm)  

 cm_df = pd.DataFrame(cm, 

                     index = ['Power_ON','Blackout'],  

                     columns = ['Power_ON','Blackout']) 

 print("confusion matrix dataframe\n",cm_df) 

 print("ASD accuracy: ",accuracy_score(blackout_actual,next_day_list2)) 

 labels = [np.round(value*100,1) for value in 

          

 cm_df.values/np.sum(cm_df.values)] 

 a =[f"{value}%" for value in labels[0]] 

 a = [np.array([f"TN\n{cm_df.values[0][0]}\n{a[0]}", f"FP\n{cm_df.values[0][1]}\n{a[1]}"])] 

 b =[f"{value}%" for value in labels[1]] 

 b = [np.array([f"FN\n{cm_df.values[1][0]}\n{b[0]}", f"TP\n{cm_df.values[1][1]}\n{b[1]}"])] 

 labels = np.concatenate((a, b), axis=0) 

 labels = labels.reshape(2,2) 

 g2 = sns.heatmap(cm_df, annot=labels,  annot_kws={'size': 15} ,cmap='YlGnBu', 

fmt='',cbar=False,ax=ax2) 

 g2.set_title('ASD confusion matrix') 

 g2.set_ylabel('') 

 g2.set_xlabel('Predicted values', fontsize=13,fontweight='bold') 

 g2.set_yticks([]) 

 

 cm = confusion_matrix(blackout_actual,ypred_mean1) 

 print("confusion matrix\n",cm)  

 cm_df = pd.DataFrame(cm, 

                     index = ['Power_ON','Blackout'],  

                     columns = ['Power_ON','Blackout']) 

 print("confusion matrix dataframe\n",cm_df) 

 print("RF-ASD accuracy: ",accuracy_score(blackout_actual,ypred_mean1)) 

 print("RF-ASD recall: 

",(cm_df.Blackout['Blackout']/(cm_df.Blackout['Blackout']+cm_df.Power_ON['Blackout']))*100) 

 labels = [np.round(value*100,1) for value in 

          

 cm_df.values/np.sum(cm_df.values)] 

 a =[f"{value}%" for value in labels[0]] 

 a = [np.array([f"TN\n{cm_df.values[0][0]}\n{a[0]}", f"FP\n{cm_df.values[0][1]}\n{a[1]}"])] 

 b =[f"{value}%" for value in labels[1]] 

 b = [np.array([f"FN\n{cm_df.values[1][0]}\n{b[0]}", f"TP\n{cm_df.values[1][1]}\n{b[1]}"])] 

 labels = np.concatenate((a, b), axis=0) 
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 labels = labels.reshape(2,2) 

 g3 = sns.heatmap(cm_df, annot=labels , annot_kws={'size': 15},cmap='YlGnBu', 

fmt='',ax=ax3,cbar_ax=axcb) 

 g3.set_title('RF-ASD confusion matrix') 

 g3.set_ylabel('') 

 g3.set_xlabel('') 

 g3.set_yticks([]) 

 plt.tight_layout() 

 plt.savefig('img/confusion_matrix.png',dpi=1200) 

 plt.show() 

  

 ######################################################################## 

 exit() 

 

 #confusion matrix plot for pure RF 

 #print(",blackout_actual\n",blackout_actual,"blackout_pred_rf\n",blackout_pred_rf) 

 cm = confusion_matrix(blackout_actual,blackout_pred_rf) 

 print("confusion matrix\n",cm)  

 cm_df = pd.DataFrame(cm, 

                     index = ['Power_ON','Blackout'],  

                     columns = ['Power_ON','Blackout']) 

 print("confusion matrix dataframe\n",cm_df) 

 

 plt.close()  

 dpi = 1200 

 px = 1/plt.rcParams['figure.dpi']  

 #plt.figure(figsize=(10, 4)) 

 plt.figure(figsize=(dpi*px, dpi*px)) 

 plt.subplot(131) 

 sns.heatmap(cm_df, annot=True, annot_kws={'size': 15} ,cmap='Blues', fmt='g')#fmt='g' ensures 

values are printed as they are without using scientific exponent notation 

 #plt.suptitle(month+' Blackout Heatmap', fontsize=30) 

 plt.title('Confusion Matrix',fontsize=16) 

 plt.ylabel('Actual Values',fontsize=16) 

 plt.xlabel('Predicted Values',fontsize=16) 

 #plt.tight_layout() 

 #plt.savefig('img/confusion_matrix_rfclf.png') 

 #plt.show() 

 

 #confusion matrix plot for ASD 

 #print(",blackout_actual\n",blackout_actual,"blackout_pred_rf\n",blackout_pred_rf) 

 next_day_list2 = np.ceil(next_day_list2) 

 pd.DataFrame(next_day_list2).to_pickle("./results15min/next_day_list2.pkl") 

 #next_day_list2.to_pickle(".results15min/next_day_list2.pkl") 

 cm = confusion_matrix(blackout_actual,next_day_list2) 

 print("confusion matrix\n",cm)  

 cm_df = pd.DataFrame(cm, 

                     index = ['Power_ON','Blackout'],  

                     columns = ['Power_ON','Blackout']) 

 print("confusion matrix dataframe\n",cm_df) 

 

 #plt.close()  

 #dpi = 1200 

 #px = 1/plt.rcParams['figure.dpi']  

 #plt.figure(figsize=(10, 4)) 

 #plt.figure(figsize=(dpi*px, dpi*px)) 

 plt.subplot(132) 

 sns.heatmap(cm_df, annot=True,  annot_kws={'size': 15} ,cmap='Blues', fmt='g')#fmt='g' ensures 

values are printed as they are without using scientific exponent notation 

 #plt.suptitle(month+' Blackout Heatmap', fontsize=30) 

 plt.title('ASD Confusion Matrix',fontsize=16) 

 plt.ylabel('Actual Values',fontsize=16) 

 plt.xlabel('Predicted Values',fontsize=16) 
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 #plt.tight_layout() 

 #plt.savefig('img/confusion_matrix_ASDclf.png') 

 #plt.show() 

  

 #confusion matrix plot for pure RF-ASD 

 #print(",blackout_actual\n",blackout_actual,"blackout_pred_rf\n",blackout_pred_rf) 

 

 cm = confusion_matrix(blackout_actual,ypred_mean1) 

 print("confusion matrix\n",cm)  

 cm_df = pd.DataFrame(cm, 

                     index = ['Power_ON','Blackout'],  

                     columns = ['Power_ON','Blackout']) 

 print("confusion matrix dataframe\n",cm_df) 

 

 #plt.close()  

 #dpi = 1200 

 #px = 1/plt.rcParams['figure.dpi']  

 #plt.figure(figsize=(10, 4)) 

 #plt.figure(figsize=(dpi*px, dpi*px)) 

 plt.subplot(133) 

 sns.heatmap(cm_df, annot=True , annot_kws={'size': 15},cmap='Blues', fmt='g')#fmt='g' ensures 

values are printed as they are without using scientific exponent notation 

 #plt.suptitle(month+' Blackout Heatmap', fontsize=30) 

 plt.title('RF-ASD Confusion Matrix',fontsize=16) 

 plt.ylabel('Actual Values',fontsize=16) 

 plt.xlabel('Predicted Values',fontsize=16) 

 plt.tight_layout() 

 plt.savefig('img/confusion_matrix_RFASDclf.png') 

 plt.show() 

   

 #line plot 

 plt.close() 

 dpi = 1200 

 px = 1/plt.rcParams['figure.dpi']  

 #plt.figure(figsize=(10, 4)) 

 fig = plt.figure(figsize=(dpi*px, dpi*px)) 

 #plt.figure(figsize=(dpi*px, dpi*px)) 

 ax = plt.subplot(111) 

 #plt.plot( next_day_list1, color ='b',marker='o') 

 ax.plot( next_day_list2, color ='g',marker='s',lw=3) 

 ax.plot( ypred_mean1, color ='r',marker='o',linestyle = '-.') 

 ax.plot( blackout_pred_rf, color ='b',marker='P',linestyle = '--') 

 ax.plot( blackout_actual, color ='k',marker='o') 

 #ax.plot( pastdayLog, color ='r',marker='.',linestyle = ':') 

 #plt.plot( next_day_list2, color ='m',marker='.') 

 #plt.plot( ypred_mean1, color ='g',marker='o',linestyle = '-.') 

 #plt.plot( blackout_pred_rf, color ='b',linestyle = '--') 

 #plt.plot( blackout_actual, color ='k',marker='o') 

 #plt.plot( pastdayLog, color ='r',marker='.',linestyle = ':') 

 #plt.axvline(x=24,  color='k', linestyle='--')  

 #plt.text(24,1,'d1 ',horizontalalignment='right') 

 xposition = [(dayLength*x)-1 for x in range(1,(int(len(blackout_actual)/dayLength))+1,1)] 

 for xc in xposition: 

  plt.axvline(x=xc, color='k', linestyle=':',ymin=0, ymax=1) 

  plt.text(xc,1,'d'+str(int(np.ceil(xc/dayLength)))+' ',horizontalalignment='right') 

 plt.xlabel('Time [Hr]') 

 plt.ylabel('Blackout Index') 

 plt.title('Blackout Forecast') 

 plt.ylim(-0.03, 1.05) 

 #plt.legend(['SVR blackout','RF blackout','actual','yesterday']) 

 # plt.legend([ 

 #  #'SD1 (mae:'+str(mean_list1_mae)+')', 

 # 'ASD (mae:'+str(mean_list2_mae)+', rmse:'+str(mean_list2_rmse)+')', 
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 # 'ASD-RF (mae: '+str(mae_asd_rf)+', rmse:'+str(rmse_asd_rf)+')', 

 # 'RF (mae: '+str(mean_rf_mae)+', rmse:'+str(mean_rf_rmse)+')', 

 # 'actual','previous day'],loc='upper center',ncol=2)  

 ax.legend([ 

  #'SD1 (mae:'+str(mean_list1_mae)+')', 

 'ASD (mae:'+str(mean_list2_mae)+')', 

 'ASD-RF (mae: '+str(mae_asd_rf)+')', 

 'RF (mae: '+str(mean_rf_mae)+')', 

 

 'actual'],loc='upper center',bbox_to_anchor=(0.9, 0.95),ncol=1)  

 #'actual','previous day'],loc='upper center',bbox_to_anchor=(0.5, -0.08),ncol=5) 

 #matplotlib.rcParams['legend.fontsize'] = 20 

 plt.tight_layout() 

 plt.savefig('img/blackout_15min_classifier.png') 

 plt.show() 
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Appendix 4: Smart Meter Arduino Code  

 

// Include the libraries: 

#include <PZEM004Tv30.h> 

//#include <Wire.h> // Library for I2C communication, used with lcd and sending data to wifi module 

//#define i2c_address 6 

#define baudrate 9600 

String received_i2c_data; 

#define datasize 200 // ample datasize to accomodate all characters sent from arduino 

 

 

#include <LiquidCrystal_I2C.h> // Library for LCD 

#include "RTClib.h" 

RTC_DS1307 rtc; 

char daysOfTheWeek[7][12] = {"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"}; 

// Wiring: SDA pin is connected to A4 and SCL pin to A5. 

// Connect to LCD via I2C, default address 0x27 (A0-A2 not jumpered) 

LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x3F, 20, 4); // Change to (0x27,16,2) for 16x2 LCD. 

#include "DHT.h" 

#define DHTPIN 7     // Digital pin connected to the DHT sensor 

// Uncomment whatever type you're using! 

//#define DHTTYPE DHT11   // DHT 11 

#define DHTTYPE DHT22   // DHT 22  (AM2302), AM2321 

// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor 

 

// Initialize DHT sensor. 

// Note that older versions of this library took an optional third parameter to 

// tweak the timings for faster processors.  This parameter is no longer needed 

// as the current DHT reading algorithm adjusts itself to work on faster procs. 

DHT dht(DHTPIN, DHTTYPE); 

 

#include <OneWire.h> 

#include <DallasTemperature.h> 

 

// Data wire is plugged into port 2 on the Arduino 

#define ONE_WIRE_BUS 8 

 

// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs) 

OneWire oneWire(ONE_WIRE_BUS); 

 

// Pass our oneWire reference to Dallas Temperature.  

DallasTemperature sensors(&oneWire); 

 

// configuration for bluetooth module ------------------------------------------------- 

#include <SoftwareSerial.h> 

#define rxPin 18 

#define txPin 22 

 

#define baudrate 57600 

SoftwareSerial bluetooth(rxPin ,txPin); 

String bluetooth_data; //bluetooth_data buffer 

char character; 

 

#include <ArduinoJson.h> 

//~~~~~~~~~~~~~~~~~~ configuration parameters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // 

 

// configuration for sim800L gsm module ------------------------------------------------- 

SoftwareSerial mySerial(42, 44); ////SIM800L Tx & Rx is connected to Arduino #10 & #11 

//~~~~~~~~~~~~~~~~~~ configuration parameters ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // 

// These are parameters that can be adjusted/tuned 

// constants won't change : 
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const long interval = 10000;           // 30s interval at which to show time and check pir pin 

(milliseconds)*************************** 

const long interval_pir = 1;           // 5min interval at which to check pir pin (minutes) 

unsigned long interval_log = 1;           // interval at the end of the day, after sheet data has been cleared 

float offsetVoltage = 2338.9896875;//2395.930859375 ;//2508.7084375;//2412;//2377.92;//2363;//2533.85; // ac 

current sensor offset voltage 

int sampling = 500;            // read 500 samples of voltage & current sensor analog pins 

float OFFset_inv2 = 0;//offset for inverter voltage value 

const long poll_pir_interval = 1000;     // check pir & dht22 status every 2s 

// 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ // 

const int wifiModule_enable = 10; 

//---- parameters for load3 -------------------------- 

const int load1 = 32; // photocopier 

const int load2 = 30; // cctv 

const int load3 = 28;  // lights , epson printer              // choose the pin for the LED/load3 

bool LightON = HIGH, LightOFF = LOW; 

String load1_status="1",load2_status="1",load3_status="1", inverter_fan="0",loadControl_flag; 

String inverter_status="1",pv_charger_status="1",inverter_temp="0",tanesco_charger_status="1"; 

             

//---- parameters for PIR -------------------------- 

const int inputPin = 3;               // choose the input pin (for PIR sensor) 

 

 

//const byte interruptPin = 2;    // choose the input pin (for PIR sensor) 

int motion = 0, person = 0, backlight_timer=0;                    // variable for reading the PIR pin status 

 // flag for pir wait time, this ensures that the mcu has waited at least 10minutes of 

 //inactivity before turning off appliances 

bool wait_time = false, wait_more_time = false, appliance = true, clear_sheet_data = false ;                  

 

//---- parameters for RTC -------------------------- 

// Generally, you should use "unsigned long" for variables that hold time 

// The motionue will quickly become too large for an int to store 

 

//String ds18b20_temp,dht22_temp,hic,dht22_humidity,load1,load2,load3,ac_voltage,currentvalue,frequency 

,pv_volt,pv_current,charged_percent,charging_status ,bat_volt ,person,dc_fan_status ,inv_fan_status ,inv_temp 

,inv_status ,power_blackout ,reed_switch_indicator , mega2nodemcu; 

 

const long interval_nodemcu_post = 0;  

unsigned long previousMillis_nodemcu_post = 0; 

unsigned long previous_pir_poll = 0;        // will store last time LED was updated 

unsigned long previousMillis = 0;        // will store last time LED was updated 

unsigned long previousMillis_pir = 0;        // will store last time LED was updated 

unsigned long currentMillis_pir = 0; 

unsigned long previous_tracker_log = 0;        // will store last time LED was updated 

  unsigned long current_tracker_log = 0; 

 

//---- parameters for Battery & PV sensor --------------------------------- 

const int charging_status = 24 ; //pwm on / off charging indicator 

const int bat_volt_sensor = A5;//A4 is possibly damaged, it's giving false adc values 

float bat_offset = 0.2; 

 

float pvCounter = 0; 

float PVavg = 0;  

 

const int pv_current_sensor = A3; 

const int pv_currentSensor = 5; 

float pv_current =0; 

float pv_value = 0; 

float pv_current_peak_value = 0; 

float pv_current_min_value = 0; 

const int pv_volt_sensor = A2; 
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float adc_value = 0, vin = 0, bat_volt=0, pv_volt = 0; 

float R1 = 100000, R2 = 10000; 

const int pv_pwm = 6; 

int pv_charging_counter = 0, pv_charger_flag=1,charged_percent = 0, eveningFlag = 0;  

const int dc_fan = 38; 

int chon = 60; // charging time duration 

int choff = 65; // charging OFF time limit 

float setpoint = 14; // battery max charge set point 

float difference = 0; // var for storing difference between setpoint and actual battery charge 

 

float OFFset_inv1 = 2319;//2368.1640625;// since 220V produces 751 adc motion, then 220/751=0.292943  

 

const int inv_enable = 36; 

const int inv_current = A8; 

float inv_current_peak_value = 0; 

float inv_current_min_value = 0; 

float inv_value = 0; 

float inv_current_value = 0; 

 

float iCurrentCounter = 0; 

float iCurrentavg = 0;  

 

//---------- parameters for ac current , voltage sensor, & frequency counter ------------------------------ 

const int currentPin = A0; 

const int currentSensor = 9; 

float current_peak_value = 0; 

float current_min_value = 0; 

int sensitivity = 66;//66 100 185; 

float currentvalue = 0; 

float current_buffer =0; 

float current_avg=0; 

 

const int ac_sensor = A1; 

float ac_value =0; 

float ac_voltage=0; 

float acVoltage = 0; 

float ac_avg = 0;  

 float OFFset_ac1 = 0.315417256;// since 220V produces 751 adc motion, then 220/751=0.292943  

 float currentOffset = 0.5;//0.16; //obtained by 1.3k=0.73 ...0.73A was the true value, while 1.3A was the 

recorded value 

 //hence each adc motionue multiplied by 0.29 will give an approximate ac voltage  

 float invCurrentOffset = 0.125; 

 float POWER = 0; 

  

 float FreqOffset =0.494; 

const int frequency_count_pin = 2; 

int acPowerStatus = 34; 

unsigned long previous_acPower_poll = 0;   

const long poll_acPower_interval = 5000;  

int power_blackout = 1; 

int blackout_flag = 0; 

//---- reed switch  --------------------------------- 

const int reed_switch = 26;                 // show if office door is open/close 

const int heartBeatpin =40; 

bool heartbeat = 0;  

 

String mega2nodemcu="0"; 

float ds18b20_temp,dht22_temp,heat_index,dht22_humidity; 

int post = 1; 

uint16_t tmr1 = 0; 

float period, frequency; 

 

#include <SPI.h> 
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#include <SD.h> 

 

File myFile; 

int epoch=0; 

String myFileName = ""; 

//String FileName = ""; 

String dataString = ""; 

Sd2Card card; 

 

SdVolume volume; 

 

SdFile root; 

float SDstatus = 0; 

float cardStatus = 0; 

//SoftwareSerial nodeSerial(15, 14); // RX, TX 

 

PZEM004Tv30 pzem(11, 12); // Software Serial pin 11 (RX) & 12 (TX) 

String received_uart_data; 

//********************* functions ****************************************** 

void nodemcu2arduino(){ 

    // if wifimodule is off turn it ON 

    Serial.print("wifiEnable pin is ");Serial.println(digitalRead(wifiModule_enable)); 

  if(digitalRead(wifiModule_enable)== 0){ 

  digitalWrite(wifiModule_enable, HIGH); // Now turn wifimodule ON 

  } 

  received_uart_data = ""; //clear serial comm receiver first 

  //Begin serial communication with Arduino and nodemcu 

while (Serial3.available() > 0) {   

  // read the incoming byte from nodemcu: 

    //String str = Serial3.readString();  

     String str = Serial3.readStringUntil('\n'); 

    Serial.print("received: ");Serial.println(str); 

     received_uart_data.concat(str);  

    //detect last character 

    /*if(str.substring(0) == "\n"){       

      break; // end loop 

      }*/ 

} 

//cleanup received data, remove mangled characters 

int index2 = received_uart_data.indexOf("⸮",3); 

if(received_uart_data.indexOf("⸮",3)>0){ 

  received_uart_data = "";//bad data received, fetch another stream 

  } 

int index1 = received_uart_data.indexOf("{",3); 

  

 if(index1>0){ 

 Serial.print("start index: ");Serial.println(index1); 

received_uart_data = received_uart_data.substring(index1); 

Serial.print("*clean data: ");Serial.println(received_uart_data); 

} 

else 

return; // no need to continue(bad data received) break out of function 

  

 

 

DynamicJsonDocument doc(2048); 

 deserializeJson(doc, received_uart_data); 

       

 

 

//StaticJsonDocument<1024> doc; 

 

//DeserializationError error = deserializeJson(doc, Serial3); 
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 // root.prettyPrintTo(Serial);  

 //serializeJsonPretty(doc,Serial) ; 

 //Serial.println(""); 

 

     String ld1=doc["load1"]; 

     String ld2=doc["load2"]; 

     String ld3=doc["load3"]; 

     String inv=doc["inverter"]; 

     String tanesco=doc["tanescoCharger"]; 

     String pv=doc["pvCharger"]; 

     String inv_fan=doc["inverter_fan"]; 

     String inv_temp=doc["inverter_temp"]; 

     String load_flag=doc["loadControl_flag"]; 

 

      // update arduino mega global variables with data from wifi module 

      load1_status=ld1; 

     load2_status=ld2; 

      load3_status=ld3; 

      inverter_status=inv; 

      tanesco_charger_status=tanesco; 

      pv_charger_status=pv; 

      inverter_fan=inv_fan; 

      inverter_temp=inv_temp; 

      loadControl_flag=load_flag; 

 

Serial.print("data received from nodemcu is "); 

Serial.println(" "+load1_status+" "+load2_status+" "+load3_status+" "+inverter_status+" 

"+tanesco_charger_status+" "+pv_charger_status+" "+inverter_fan+" "+inverter_temp); 

return; 

 

// Now control arduino mega I/O based on data received from wifi module 

  // if wifimodule is off turn it ON 

  if(loadControl_flag=="reset_wifi"){ 

  digitalWrite(wifiModule_enable, LOW); // Now turn wifimodule ON 

  delay(3000); // wait 3seconds 

  digitalWrite(wifiModule_enable, HIGH); // Now turn wifimodule ON 

  loadControl_flag="load1_on"; 

  } 

if(loadControl_flag=="load1_on"){ digitalWrite(load1, LOW); } 

  else if(loadControl_flag=="load1_off"){digitalWrite(load1, HIGH);} 

  else if(loadControl_flag=="load2_on"){digitalWrite(load2, HIGH);} 

  else if(loadControl_flag=="load2_off"){digitalWrite(load2, LOW);} 

  else if(loadControl_flag=="load3_on"){digitalWrite(load3, LightON);} 

  else if(loadControl_flag=="load3_off"){digitalWrite(load3, LightOFF);} 

  else if(loadControl_flag=="pv_on"){ pv_charger_flag=1;} 

  else if(loadControl_flag=="pv_off"){pv_charger_flag=0;} 

  else{ 

    if(pv_charger_status=="1"){ 

  pv_charger_flag=1; 

  Serial.println("**** pv_charger_status is now ON "); 

  } 

else if(pv_charger_status=="0"){ 

  pv_charger_flag=0; 

   Serial.println("**** pv_charger_status is now OFF "); 

  } 

  if( load1_status=="1"){ 

  digitalWrite(load1, LOW); // turn ON load1, load1 uses inverted logic where off is HIGh and on is LOW  

        Serial.println("turning load1 ON "); 

        } 

        else if( load1_status=="0"){ 

            digitalWrite(load1, HIGH); // turn OFF load1 
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             Serial.println("turning load1 OFF "); 

          } 

      if( load2_status=="1"){ 

  digitalWrite(load2, HIGH); // turn ON load1  

        Serial.println("turning load2 ON "); 

        } 

        else if( load2_status=="0"){ 

            digitalWrite(load2, LOW); // turn OFF load1 

             Serial.println("turning load2 OFF "); 

          } 

            if( load3_status=="1" ){ 

  digitalWrite(load3, LightON); // turn ON load1  

        Serial.println("turning load3 ON "); 

        } 

        else if( load3_status=="0"){ 

            digitalWrite(load3, LightOFF); // turn OFF load1 

             Serial.println("turning load3 OFF "); 

          }           

    } 

        

  post = 1; 

  } 

 

void arduino2nodemcu(){ 

  // if wifimodule is off turn it ON 

  Serial.print("wifiEnable pin is ");Serial.println(digitalRead(wifiModule_enable)); 

  if(digitalRead(wifiModule_enable)== 0){ 

  digitalWrite(wifiModule_enable, HIGH); // Now turn wifimodule ON 

  } 

  unsigned long currentMillis_nodemcu_post = millis();   

  if (currentMillis_nodemcu_post - previousMillis_nodemcu_post >= interval_nodemcu_post) {   

    // save the last time you processed this block 

    previousMillis_nodemcu_post = currentMillis_nodemcu_post;   

     

//StaticJsonDocument<1024> doc; 

DynamicJsonDocument doc(2048); 

 doc["ds18b20_temp"] = String(ds18b20_temp); 

  doc["dht22_temp"] = String(dht22_temp); 

  doc["heat_index"] = String(heat_index); 

  doc["dht22_humidity"] = String(dht22_humidity); 

  doc["load1"] = load1_status; 

  doc["load2"] = String(digitalRead(load2)); 

  doc["load3"] = String(!digitalRead(inv_enable)); // this corresponds to load 3 being high 

  doc["ac_voltage"] = String(ac_voltage); 

  doc["currentvalue"] = String(currentvalue); 

  doc["frequency"] = String(frequency); 

  doc["inv_current"] = String(inv_current_value); 

  doc["pv_volt"] = String(pv_volt); 

  doc["pv_current"] = String(pv_current); 

  doc["charged_percent"] = String(charged_percent); 

  doc["charging_status"] = String(digitalRead(charging_status)); 

  doc["bat_volt"] = String(bat_volt); 

  doc["person"] = String(person); 

  doc["dc_fan_status"] = String(digitalRead(dc_fan)); 

  doc["inv_fan_status"] = inverter_fan; 

  doc["inv_temp"] = inverter_temp; 

  doc["inv_status"] = inverter_status; 

  doc["power_blackout"] = String(power_blackout); 

  doc["reed_switch_indicator"] = String(digitalRead(reed_switch)); 

   doc["cardStatus"] = String(cardStatus); 

//mega2nodemcu = "ds18b20_temp=" +  String(ds18b20_temp) + "&dht22_temp=" + String(dht22_temp)+ 

"&dht22_heatIndex_temp=" + String(heat_index)+  "&dht22_humidity=" + 

String(dht22_humidity)+"&load1="+load1_status+"&load2="+load2_status+"&load3="+load3_status+ 
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"&ac_voltage=" + String(ac_voltage)+ "&ac_current=" + String(currentvalue)+  

"&frequency="+String(frequency) + "&inv_current=" + String(inv_current_value)+"&pv_voltage=" + 

String(pv_volt)+  "&pv_current=" + String(pv_current)+  "&soc=" + String(charged_percent)+  

"&pv_bat_charging=" + String(digitalRead(charging_status))+  "&battery_voltage=" + String(bat_volt)+  

"&pir_status=" + String(person)+  "&dc_fan_status=" + String(digitalRead(dc_fan))+  "&inv_fan_status=" + 

inverter_status+  "&inverter_temp=" + inverter_temp+  "&inverter_status=" + inverter_status+  "&blackout=" + 

String(power_blackout)+  "&door_status=" + String(digitalRead(reed_switch))+  "&cardStatus=" + 

String(cardStatus); 

  

// now encode and send data to nodemcu 

serializeJson(doc, Serial3); 

//Serial.print("mega2nodemcu data: ");Serial.println(mega2nodemcu); 

// deserialize data which was jsonified 

 

//serializeJson(doc, mega2nodemcu); 

//Serial.print("mega2nodemcu data: ");Serial.println(mega2nodemcu); 

Serial.println("data sent from arduino to nodemcu..."); 

/* 

  String payload =  "{\"ds18b20_temp\":\""+String(ds18b20_temp)+ "\"," + 

  "\"dht22_temp\":\""+String(dht22_temp)+ "\","; 

 // "\"}\n"; 

//payload = "I am Benson Mbuya a fighter"; 

// send data from arduino via serial communication 

send2nodemcu(payload); 

payload="\"heat_index\":\""+String(heat_index)+ "\"," + 

"\"dht22_humidity\":\""+String(dht22_humidity)+"\","; 

send2nodemcu(payload); 

payload="\"load1_status\":\""+load1_status+ "\"," + 

"\"load2_status\":\""+load2_status+"\","+ 

"\"load3_status\":\""+load3_status+"}"; 

send2nodemcu(payload); 

send2nodemcu("\n"); 

*/ 

 /* String payload =  "{\"ds18b20_temp\":"+String(ds18b20_temp)+ "\"," + 

  "\"dht22_temp\":\""+String(dht22_temp)+ "\"," + 

  "\"heat_index\":\""+String(heat_index)+ "\"," +  

  "\"dht22_humidity\":\""+String(dht22_humidity)+"\","+ 

  "\"load1_status\":\""+load1_status+"\","+load2_status+"\","+load3_status+ "\"," + String(ac_voltage)+ "\","+ 

String(currentvalue)+  "\","+String(frequency)+ "\","  + String(pv_volt)  + "\"}\n"; 

*/ 

  post = 0; 

  } 

  } 

 

// function below was abandoned   

void send2nodemcu(String payload){ 

  char buf[datasize]; 

  //sprintf(buf,"%s", "Hello I am nodemcu\n");//this has the same effect as using toCharArray method 

  payload.toCharArray(buf, datasize); 

  Serial3.write(buf);//Serial.write only sends characters not strings convert to character first 

  // No need to read data from nodemcu since signal volts is 3.3v it is received mangled 

  } 

 

// function that executes whenever data is received from master 

void receiveEvent(int howMany) { 

  received_i2c_data = ""; //clear buffer 

 while (0 <Wire.available()) { 

    char character = Wire.read();      /* receive byte as a character */ 

    Serial.print(character);           /* print the character */ 

    received_i2c_data.concat(character); 

  } 

 Serial.println();             /* to newline */ 

} 
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// function that executes whenever data is requested from master 

void requestEvent() { 

//String mega2nodemcu =  "my name is Benson"+ "," + " Mbuya";  

    //String payload = "Hello I am nodemcu\n"; 

    // String payload = String(load1_status)+String(", Mbuya\n");  

   // String payload =  String(ds18b20_temp) + "," + String(dht22_temp)+ "," + String(heat_index)+  "," + 

String(dht22_humidity)+","+load1_status+","+load2_status+","+load3_status+ "," + String(ac_voltage)+ "," + 

String(currentvalue)+  ","+String(frequency) + "," + String(inv_current_value)+"," + String(pv_volt)+  "," + 

String(pv_current)+  "," + String(charged_percent)+  "," + String(charging_status)+  "," + String(bat_volt)+  "," 

+ String(person)+  "," + String(dc_fan)+  "," + inverter_status+  "," + inverter_temp+  "," + inverter_status+  "," 

+ String(power_blackout)+  "," + String(reed_switch)+  "," + String(cardStatus)+"\n"; 

 // you can only transmit 11 items...safer to only transmit 10 items 

// "{\"benson\":\"mbuya\"}"; 

 // String payload = "{\"ds18b20_temp\":\""+ String(ds18b20_temp) + "\"}\n"; 

 // a response to nodemcu to indicate that data it sent was received 

   String payload = "{\"response\":\""+ String("ok") + "\"}\n"; 

 char buf[datasize]; 

  //sprintf(buf,"%s", "Hello I am nodemcu\n");//this has the same effect as using toCharArray method 

  payload.toCharArray(buf, datasize); 

  //sprintf(buf,"%s\n",mega2nodemcu);//this has the same effect as using toCharArray method 

 Wire.write(buf);  /* sends string to arduino */  

// Wire.write("Hello I am arduino uno\n");  /*send string on request, important to include end of line escape */ 

// Wire.write(printTime);  /* sends string to arduino */  

} 

 

void wattmeter(){ 

   float min_max=0,vpp=0,voltage_peak_value=0,voltage_min_value=0; 

int avg=0; 

  /// clear variables 

  current_peak_value=0;current_min_value=0; 

    pv_current_peak_value=0;pv_current_min_value=0; 

     inv_current_peak_value=0;inv_current_min_value=0; 

  voltage_peak_value=0; ac_voltage =0; 

       

  // ********** PV voltage measurement ******************** 

  adc_value = analogRead(pv_volt_sensor); 

  //Serial.print("pv adc: ");  Serial.println(adc_value,3);    

   vin = (adc_value*5)/1024; 

  // Serial.print("pv vin: ");  Serial.println(vin,3);      

   pv_volt = vin / (R2/(R1+R2)); // formula for calculating voltage in i.e. GND    

   if (pv_volt<0.09)//condition  

        pv_volt=0.00;//statement to quash undesired reading ! 

 

         pvCounter = pvCounter + 1; 

         PVavg = PVavg + pv_volt;  

         pv_volt = PVavg/pvCounter; 

   

  // change the analog out value: 

 // Serial.print("battery voltage: ");   Serial.println(bat_volt,1);  

 //Serial.print("PV voltage: ");   Serial.println(pv_volt,1);  

  lcd.setCursor(6, 1); //Set the cursor on the third column and the second row (counting starts at 0!). 

   lcd.print("PV"); lcd.print(pv_volt,1);  lcd.print("V"); // Battery voltage 

   

 

  // ********** AC voltage , Current, & frequency measurement ******************** 

 

    

  //---- current sensor operations -------------------------- 

  for (int k = 0; k < sampling; k++) { 

  adc_value = analogRead(currentPin); 

  //Serial.print("%%%%% ac current adc: ");Serial.println(adc_value); 

 ac_value = analogRead(ac_sensor); 
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 inv_value = analogRead(inv_current); 

 

pv_value = analogRead( pv_current_sensor); 

 

if(ac_value>voltage_peak_value) 

voltage_peak_value=ac_value; 

if(ac_value<voltage_min_value) 

voltage_min_value=ac_value; 

if(adc_value > 300) 

 {  

  current_peak_value+=adc_value; 

   avg=avg+1; 

 } 

 if(adc_value<current_min_value) 

 current_min_value=adc_value; 

 if(pv_value>pv_current_peak_value) 

  pv_current_peak_value=pv_value; 

 if(pv_value<pv_current_min_value) 

 pv_current_min_value=pv_value; 

  if(inv_value>inv_current_peak_value) 

  inv_current_peak_value=inv_value; 

 if(inv_value<inv_current_min_value) 

 inv_current_min_value=inv_value; 

    delayMicroseconds(200); // let ADC settle before next sample 3ms  

  

  } 

 

 //Serial.print("****adc value: ");Serial.println(adc_value); 

  min_max = current_peak_value/avg; 

        //    Serial.print("%%%%% current_peak_value: ");Serial.println(current_peak_value); 

        //   Serial.print("%%%%% avg: ");Serial.println(avg); 

         //            Serial.print("%%%%% ac current adc: ");Serial.println(min_max); 

  if(min_max>480){ 

  vpp = (min_max* 5000)/1024.0; // currentvalue = (( offsetVoltage-adcVoltage) / sensitivity); 

  currentvalue = abs((vpp-offsetVoltage)/sensitivity); //sensitivity(mVperAmp); 

   //currentvalue = (vpp-offsetVoltage)/sensitivity; 

   // currentvalue = (offsetVoltage-vpp)/sensitivity; //sensitivity(mVperAmp); 

  // Serial.print("####ac current: ");Serial.println(currentvalue); 

   if(currentvalue>1) 

   currentvalue = currentvalue * currentOffset; 

   else if (currentvalue<1 && currentvalue>0.1){ 

    currentvalue = currentvalue; 

    } 

  }   

  else{ 

  // Serial.print("####resulting current is too small ... less than 0.1A ");    

  }//currentvalue = currentvalue * currentOffset; 

 

  //currentvalue=abs(currentvalue); 

  currentvalue = pzem.current(); 

   

  //current_avg = current_avg + 1; 

  //current_buffer = current_buffer + currentvalue; 

  //currentvalue=current_buffer /current_avg; 

   

 

   // inv_current_value = ((((inv_current_peak_value-inv_current_min_value)* 5000)/1024.0)-

673.828125)/sensitivity; 

     inv_current_value = (((inv_current_peak_value* 5000)/1024.0)-OFFset_inv1)/sensitivity; 

  //     Serial.print("%%%%% inv adc: ");Serial.println(inv_current_peak_value);       

  // Serial.print("####inv current: ");Serial.println(inv_current_value); 

      //if(tanesco_charger_status=="1") 

      inv_current_value = abs(inv_current_value*currentOffset); 
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      //inv_current_value = abs(inv_current_value); 

 //Serial.print("$$$$$ offset inv current: ");Serial.println(inv_current_value); 

  // Serial.print("***** tanesco_charger_status: ");Serial.println(tanesco_charger_status); 

          // iCurrentCounter = iCurrentCounter + 1; 

         //iCurrentavg = iCurrentavg + inv_current_value;  

         //inv_current_value = iCurrentavg/iCurrentavg; 

   

  if(inv_current_value<0.005) 

   inv_current_value=0; 

      

      pv_current = ((((pv_current_peak_value-pv_current_min_value)* 5000)/1024.0)-offsetVoltage)/sensitivity; 

//sensitivity(mVperAmp); 

   if(pv_current<0.005) 

   pv_current=0; 

 

     //analogWrite(dc_fan, 250);        // turn cooling fan ON 

     //digitalWrite(dc_fan, HIGH); 

   if(pv_current > 1 ||ds18b20_temp > 28 ) 

   { 

    digitalWrite(dc_fan, HIGH);  // turn cooling fan ON 

    //analogWrite(dc_fan, 150);        // turn cooling fan ON 

    } 

    else 

    { 

      digitalWrite(dc_fan, LOW);  // turn cooling fan OFF 

      // analogWrite(dc_fan,0);  

    } 

     

 if(currentvalue<0.005 || currentvalue==NAN ) 

   currentvalue=0; 

 

         lcd.setCursor(7, 2); //Set the cursor on the third column and the second row (counting starts at 0!). 

   lcd.print("PV"); lcd.print(pv_current,1);  lcd.print("A "); // Battery voltage 

 

  //ac_voltage = ((voltage_peak_value-voltage_min_value) * OFFset_ac1)-OFFset_ac2; 

 ac_voltage = voltage_peak_value * OFFset_ac1; 

 ac_voltage = pzem.voltage(); 

 //ac_avg = ac_avg + 1; 

 //acVoltage = acVoltage + ac_voltage;  

 //ac_voltage = acVoltage/ac_avg; 

  

if(ac_voltage<100 || ac_voltage==NAN ){ 

 ac_voltage=0; 

        digitalWrite(currentSensor, LOW); // turn current sensor module OFF 

 } 

 else{ 

   digitalWrite(currentSensor, HIGH); // turn current sensor module ON 

  } 

 

      if(heartbeat==1){ 

lcd.setCursor(7,3);  lcd.print(currentvalue,2); lcd.print("A   ");   

 lcd.setCursor(0,3);  lcd.print(frequency,1); lcd.print("Hz "); 

  } 

    else{ 

         lcd.setCursor(7, 3); //Set the cursor on the third column and the second row (counting starts at 0!). 

   lcd.print("i"); lcd.print(inv_current_value,2);  lcd.print("A "); // Battery voltage 

      lcd.setCursor(0,3);  lcd.print(ac_voltage,1); lcd.print("V "); 

      } 

  

//  Serial.print("ac sensor adc value:"); 

//Serial.println(voltage_peak_value); 

//Serial.print("ac voltage value:"); 
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// Serial.println(ac_voltage); 

//analogWrite(pv_pwm, 255);  

digitalWrite(pv_currentSensor, HIGH);  

  if( pv_charger_flag==1){ 

    //tanesco_charger_status="0"; 

 // digitalWrite(LED_BUILTIN, HIGH); // turn ON load1  

  //      Serial.println("turning pv_charger_status ON "); 

       if(pv_charging_counter<chon){ 

 

   if((bat_volt < 12.5)&&(bat_volt > 0)  && (pv_volt > bat_volt)){ 

  //analogWrite(pv_pwm, 242.25);        // boost charging 

  analogWrite(pv_pwm, 255);        // boost charging 

  digitalWrite(charging_status,HIGH);       

      digitalWrite(pv_currentSensor, HIGH);  // turn current sensor module ON 

      } 

else if((bat_volt < 13.5)&&(bat_volt > 12.5)  && (pv_volt > bat_volt)){ 

  analogWrite(pv_pwm, 255);    // float charging 

  //analogWrite(pv_pwm, 255);  

  digitalWrite(charging_status,HIGH);     

      digitalWrite(pv_currentSensor, HIGH);  // turn current sensor module ON 

      } 

      else if((bat_volt < 14.5)&&(bat_volt > 13.5)  && (pv_volt > bat_volt)){ 

  analogWrite(pv_pwm, 5);    // float charging 

  //analogWrite(pv_pwm, 255);  

  digitalWrite(charging_status,HIGH);     

      digitalWrite(pv_currentSensor, HIGH);  // turn current sensor module ON 

      } 

else if ((bat_volt > 14.5) or (pv_volt < bat_volt) or eveningFlag==1) 

{ 

  analogWrite(pv_pwm,0); 

//analogWrite(pv_pwm, 255);  

digitalWrite(charging_status,LOW); // green LED will off as no charging is done during this time 

digitalWrite(pv_currentSensor, LOW); 

 pv_current=0; 

} 

 

} 

if (pv_charging_counter>chon && pv_charging_counter<choff){ 

   analogWrite(pv_pwm,0); 

   digitalWrite(pv_currentSensor, LOW); 

   digitalWrite(charging_status,LOW); 

             pv_current=0; 

             ac_avg = 0; 

             acVoltage = 0;  

             pvCounter = 0; 

             PVavg = 0;  

             current_buffer =0; 

             current_avg=0; 

             iCurrentCounter = 0; 

             iCurrentavg = 0;  

    measure_battery(); 

              

  } 

  else if (pv_charging_counter>choff){ 

   pv_charging_counter=0; // reset counter 

 

    } 

        } 

        else if( pv_charger_flag==0){ 

        //    digitalWrite(LED_BUILTIN, LOW); // turn OFF load1 

     //        Serial.println("turning pv_charger_status OFF "); 

             analogWrite(pv_pwm,0);              

             digitalWrite(pv_currentSensor, LOW); 
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             digitalWrite(charging_status,LOW); 

             pv_current=0; 

             measure_battery(); 

              

//digitalWrite(charging_status,LOW); // green LED will off as no charging is done during this time 

//digitalWrite(pv_currentSensor, LOW); 

          }           

 

 

  POWER = ac_voltage * currentvalue; 

//    Serial.print(" POWER = "); 

//  Serial.println(POWER);  

  //lcd.setCursor(0,1); 

  //lcd.print("Current =       "); 

 // lcd.clear();   

 

   //   Serial.print("chon :");Serial.print(chon);Serial.print(" choff : ");Serial.println(choff); 

 

  } 

 

//****************** end of functions ****************************************** 

void setup() { 

    // initialize digital pin LED_BUILTIN as an output. It'll act as heartbeat to indicate program is running 

smoothly 

     

  pinMode(wifiModule_enable, OUTPUT); // turns on/off wifimodule at startup 

   digitalWrite(wifiModule_enable, HIGH); // Turn wifi module off to permit mega to go on first 

  pinMode(acPowerStatus, INPUT);  

  pinMode(heartBeatpin, OUTPUT); 

  pinMode(load3, OUTPUT);      // lights, epson printer, radio amplifier 

  pinMode(load2, OUTPUT);      // cctv 

  pinMode(load1, OUTPUT);      // tanesco loads: canon photocopier, microwave machine 

  pinMode(charging_status, OUTPUT);      // declare LED as output  

  pinMode(currentSensor, OUTPUT);      // declare current sensor 5V wire as output 

  pinMode(pv_currentSensor, OUTPUT); 

  pinMode(pv_pwm, OUTPUT); 

  pinMode(dc_fan,OUTPUT);   

   pinMode(inv_enable,OUTPUT); 

   digitalWrite(inv_enable,LOW); // allow inverter power through 

  pinMode(inputPin, INPUT);     // declare PIR sensor on interrupt pin 2 as input  

  pinMode(ac_sensor,INPUT); // set pin a1 as input pin 

  pinMode(currentPin,INPUT); // set pin a1 as input pin 

  pinMode(bat_volt_sensor,INPUT); // set pin a1 as input pin  

   pinMode(reed_switch, INPUT);        //Sets digital pin 13 as output pin   

    pinMode(inv_current,INPUT); // set pin a1 as input pin      

     pinMode(pv_current_sensor,INPUT); // set pin a1 as input pin   

      pinMode(pv_volt_sensor,INPUT); // set pin a1 as input pin   

      

  attachInterrupt(digitalPinToInterrupt(inputPin), pir_isr, RISING); 

   

  //bluetooth.begin(baudrate); 

  Serial.begin(baudrate); 

  Serial.println("starting..."); 

  //Begin serial communication with Arduino and SIM800L 

  mySerial.begin(baudrate); 

//Begin serial communication with Arduino and nodemcu 

 Serial3.begin(baudrate); 

 //nodeSerial.begin(9600); 

 // attachInterrupt(digitalPinToInterrupt(rxPin), bluetooth_interrupt, CHANGE); 

   

  // frequency measurement setup 

  //  attachInterrupt(digitalPinToInterrupt(frequency_count_pin), frequency_counter, RISING); 

    // Timer1 module configuration  for frequency measurement 
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  TCCR1A = 0; 

  TCCR1B = 2;   // enable Timer1 module with 1/8 prescaler ( 2 ticks every 1 us) 

  TCNT1  = 0;   // Set Timer1 preload value to 0 (reset) 

  TIMSK1 = 1;   // enable Timer1 overflow interrupt  

  EIFR |= 1;  // clear INT0 flag 

  attachInterrupt(digitalPinToInterrupt(frequency_count_pin), frequency_isr, FALLING);  // enable external 

interrupt (INT0) 

 

   delay(1000); // wait for console opening 

 

  dht.begin(); 

 

  // Start up the dallas ds18b20 temperature library 

  sensors.begin(); 

 

// initialize i2c for sending data to and from wifi module 

/*   Wire.begin(i2c_address);   //join i2c bus with address 8  

// function that executes whenever data is received from master (nodemcu) 

 Wire.onReceive(receiveEvent); // register receive event  

 Wire.onRequest(requestEvent); */  

   

  // Initiate the LCD: 

  delay(1000); 

  lcd.init(); 

  lcd.backlight(); 

    // Print 'Hello World!' on the first line of the LCD: 

  lcd.setCursor(0, 0); // Set the cursor on the first column and first row. 

  lcd.print("Smart Energy Manager"); // Print the string "Hello World!" 

  lcd.setCursor(2, 1); //Set the cursor on the third column and the second row (counting starts at 0!). 

  lcd.print("Version 1.0"); 

 

/* mySerial.println("AT"); //Once the handshake test is successful, it will back to OK 

  updateSerial(); 

 

  mySerial.println("AT+CMGF=1"); // Configuring TEXT mode 

  updateSerial(); 

  mySerial.println("AT+CMGS=\"+255757541412\"");//change ZZ with country code and xxxxxxxxxxx with 

phone number to sms 

  updateSerial(); 

  mySerial.print("Last Minute Engineers | lastminuteengineers.com"); //text content 

  updateSerial(); 

  mySerial.write(26);*/ 

   

  delay(1000); 

  lcd.clear(); 

      if (! rtc.begin()) { 

    Serial.println("Couldn't find RTC"); 

   // while (1); 

    } 

// synchronize with PC time 

 // rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); 

 

measure_battery(); 

 Serial.println("Finished setup...");  

  digitalWrite(wifiModule_enable, HIGH); // Now turn wifimodule ON 

} 

 

 

void frequency_isr() { 

  tmr1 = TCNT1; 

  TCNT1  = 0;   // reset Timer1 

} 
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ISR(TIMER1_OVF_vect) {  // Timer1 interrupt service routine (ISR) 

  tmr1 = 0;             // related to frequency counter routine 

} 

 

void frequency_counter(){ 

   unsigned long current_acPower_poll = millis(); 

  if ( digitalRead(acPowerStatus) == LOW && ac_voltage>170) {            // check if the ac power is ON 

    // Serial.println("AC power line is ON"); 

     // Serial.println(ac_voltage); 

    //digitalWrite(load3, HIGH);                    // turn ON indicator light 

     power_blackout = 0;  

     blackout_flag = 0; 

     previous_acPower_poll = current_acPower_poll; 

  } 

  else 

  { 

     if(blackout_flag>10) 

     power_blackout = 1; 

    blackout_flag++; 

     

       

    } 

// if ac power has been off for more than 1sec then indicate that it's trully off 

  if( current_acPower_poll-previous_acPower_poll >= poll_acPower_interval && power_blackout == 1){ 

     

    //  Serial.println("AC power line is OFF"); 

    previous_acPower_poll = current_acPower_poll; 

    } 

  // save current Timer1 value 

  uint16_t value = tmr1; 

  // calculate signal period in milliseconds 

  // 8.0 is Timer1 prescaler and 16000 = MCU_CLK/1000 

  period = 8.0 * value/16000; 

  // calculate signal frequency which is = 1/period ; or = MCU_CLK/(Prescaler * Timer_Value) 

  if(value>20000){ 

    frequency = 16000000.0/(8UL*value); 

    // Serial.print("tmr1 value:"); Serial.println(tmr1); 

    //  Serial.print("period:"); Serial.println(period); 

    // Serial.print("frequency:");Serial.println(frequency); 

    if(ac_voltage<10 && frequency > 60){ 

      frequency=frequency*1.38;//this measures frequency of tanesco and inverter 

      frequency = pzem.frequency(); // this only measures tanesco frequency 

      } 

     

  } 

   value = 0; period = 0; //frequency = 0;  

   

  } 

void loop() { 

  // constant communication between nodemcu and arduino 

  //Serial.println("main loop..."); 

 load_controller(); 

 arduino2nodemcu(); 

 nodemcu2arduino(); 

/*if(post==1) 

nodemcu2arduino(); 

else if(post==0) 

arduino2nodemcu(); */ 

 // bluetooth_interrupt();      

    load_controller();  

 

      

  unsigned long currentMillis = millis(); 
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  unsigned long currentMillis_pir = millis(); // track pir...ensure enough time elapsed without motion before 

turning off applieances 

   unsigned long current_pir_poll = millis(); 

  if( current_pir_poll-previous_pir_poll >= poll_pir_interval){ 

    measure_battery();  

    heart_beat();     

    showTime();     

    pir(); 

    wattmeter();     

    weather_info();     

    frequency_counter(); 

     arduino2nodemcu(); 

 nodemcu2arduino(); 

/*if(post==1) 

nodemcu2arduino(); 

else if(post==0) 

arduino2nodemcu(); */  

    pv_charging_counter++; 

   // updateSerial();     

   previous_pir_poll = current_pir_poll;      

     

    } 

    // --------------------- interval for data logging ----------------------------------- 

  if (currentMillis - previousMillis >= interval) { 

    // save the last time you blinked the LED     

    //data2sdCard(); 

    previousMillis = currentMillis;   

    showTime(); 

   // wattmeter(); 

    pir();   

  //updateSerial();   

 

      // leave enough time to elapse then check if room is vacant then turn off appliances 

   DateTime pir_tracker = rtc.now(); 

   currentMillis_pir = pir_tracker .minute(); 

 if (currentMillis_pir - previousMillis_pir >= interval_pir && wait_time == true) { 

 previousMillis_pir = currentMillis_pir;  

 lcd.noBacklight(); 

 if(wait_more_time==true) 

{ 

  wait_time=true;     // wait 5 more minutes 

  wait_more_time = false; // clear waiting period flag 

} 

else if(wait_more_time==false) 

{ 

  wait_time = false; 

appliance = false; 

 lcd.noBacklight(); 

} 

 // Serial.println("TURN LOAD ON/OFF"); 

      //pir();  

  }       

  } 

 

   

} 

//######################### end of void() ############################################### 

 

 void load_controller(){ 

  // if wifimodule is off turn it ON 

  if(loadControl_flag=="reset_wifi"){ 

  digitalWrite(wifiModule_enable, LOW); // Now turn wifimodule ON 

  delay(3000); // wait 3seconds 
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  digitalWrite(wifiModule_enable, HIGH); // Now turn wifimodule ON 

  loadControl_flag="load1_on"; 

  } 

 if(loadControl_flag=="load1_on"){ digitalWrite(load1, LOW); } 

  else if(loadControl_flag=="load1_off"){digitalWrite(load1, HIGH);} 

  else if(loadControl_flag=="load2_on"){digitalWrite(load2, HIGH);} 

  else if(loadControl_flag=="load2_off"){digitalWrite(load2, LOW);} 

  else if(loadControl_flag=="load3_on"){digitalWrite(load3, LightON);} 

  else if(loadControl_flag=="load3_off"){digitalWrite(load3, LightOFF);} 

  else if(loadControl_flag=="pv_on"){ pv_charger_flag=1;} 

  else if(loadControl_flag=="pv_off"){pv_charger_flag=0;} 

  else{ 

    if(pv_charger_status=="1"){ 

  pv_charger_flag=1; 

  //Serial.println("**** pv_charger_status is now ON "); 

  } 

else if(pv_charger_status=="0"){ 

  pv_charger_flag=0; 

  // Serial.println("**** pv_charger_status is now OFF "); 

  } 

  if( load1_status=="1"){ 

  digitalWrite(load1, LOW); // turn ON load1, load1 uses inverted logic where off is HIGh and on is LOW  

      //  Serial.println("turning load1 ON "); 

        } 

        else if( load1_status=="0"){ 

            digitalWrite(load1, HIGH); // turn OFF load1 

         //    Serial.println("turning load1 OFF "); 

          } 

      if( load2_status=="1"){ 

  digitalWrite(load2, HIGH); // turn ON load1  

      //  Serial.println("turning load2 ON "); 

        } 

        else if( load2_status=="0"){ 

            digitalWrite(load2, LOW); // turn OFF load1 

        //     Serial.println("turning load2 OFF "); 

          } 

            if( load3_status=="1" ){ 

  digitalWrite(load3, LightON); // turn ON load1  

    //    Serial.println("turning load3 ON "); 

        } 

        else if( load3_status=="0"){ 

            digitalWrite(load3, LightOFF); // turn OFF load1 

         //    Serial.println("turning load3 OFF "); 

          }           

    }    

              

    } 

 

 

void pir_isr() { 

  motion = digitalRead(inputPin);  // read input motionue 

// clear counter flag for turning appliances OFF ... i.e wait 10 more minutes from now 

  previousMillis_pir = currentMillis_pir;   

} 

 

void pir(){ 

 // Serial.print("reed_switch status: ");Serial.println( digitalRead(reed_switch));  // check input again 

  motion = digitalRead(inputPin);  // check input again 

    

  if ( motion == HIGH || digitalRead(reed_switch)) {            // check if the input is HIGH 

    if(!digitalRead(load3))         // if load3 are currently OFF 

    {     

   //digitalWrite(load3, HIGH);  // turn load3/Lights ON       
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    person = 1;                 // Room occupied 

     wait_time = true;          // flag to help check room occupation for 5min interval 

    } 

    // Serial.println("Motion detected!"); 

        //lcd.clear(); 

         person = 1;                 // Room occupied        

 

        if(wait_time==true) 

        wait_more_time = 1;   // flag to show motion was detected during waiting period 

         

  }  

 

    if(!digitalRead(reed_switch)||motion == LOW && wait_time==false && appliance == false){ 

 

      lcd.noBacklight(); 

     // Serial.println("Motion ended!");  

     // Serial.println(digitalRead(currentSensor));  

      //lcd.clear(); 

      lcd.setCursor(0, 0);   

      lcd.print("P_OFF"); // print message at (0, 1)  

      person = 0;           // room is vacant i.e no person detected in past 5 min  

      //lcd.clear(); 

      }   

       //if(digitalRead(reed_switch)) 

  if( person==1 || digitalRead(reed_switch)) 

  { 

        lcd.setCursor(0, 0);         // move cursor to   (0, 1)    

        lcd.print("PR ON "); // print message at (0, 1) 

        if(backlight_timer<120 && person==1){ 

        lcd.backlight(); 

        backlight_timer++; 

        } 

        else if (backlight_timer>=120 && person==1) 

        lcd.noBacklight(); 

                 

        load3_status="1"; 

    } 

  // else if(!digitalRead(reed_switch)) 

    else if(person==0 || !digitalRead(reed_switch)) 

    { 

      backlight_timer=0; 

current_peak_value=0; 

      lcd.setCursor(0, 0);   

      lcd.print("PR OFF"); // print message at (0, 1)        

      load3_status="0"; 

       

      } 

      

       

} 

 

 

  void measure_battery(){ 

       // ********** Battery voltage measurement ********************        

  adc_value = analogRead(bat_volt_sensor); 

 // Serial.print("***Battery adc: ");  Serial.println(adc_value,3);    

   vin = (adc_value*5)/1024; 

   ///Serial.print("---Battery vin: ");  Serial.println(vin,3);      

   bat_volt = vin / (R2/(R1+R2)); // formula for calculating voltage in i.e. GND 

   bat_volt = bat_volt - bat_offset;  

 //   Serial.print("battery voltage: "); Serial.println(bat_volt,1);   

   if (bat_volt<0.09)//condition  

        bat_volt=0.00;//statement to quash undesired reading ! 
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  // Serial.print("PWM value: "); Serial.println(100);  

  lcd.setCursor(0, 1); //Set the cursor on the third column and the second row (counting starts at 0!). 

 //lcd.print("B");  

 lcd.print(bat_volt,1);  lcd.print("V "); // Battery voltage 

//Serial.print("bat_volt: ");Serial.println(bat_volt); 

 charged_percent=map(bat_volt*10, 115 , 130, 0, 100); 

 if(charged_percent<0) 

 charged_percent=0; 

 else if(charged_percent>100) 

 charged_percent=100; 

 //Serial.print("charged_percent: ");Serial.println(charged_percent); 

  lcd.setCursor(0, 2); //Set the cursor on the third column and the second row (counting starts at 0!). 

 lcd.print("soc"); lcd.print(charged_percent,1);   lcd.print("%");  

    } 

   

  void showTime(){    

   DateTime now = rtc.now();     

//    Serial.println("Current Date & Time: "); 

//    Serial.print(now.year(), DEC); 

    //lcd.clear(); 

    lcd.setCursor(6, 0); 

    //lcd.print(daysOfTheWeek[now.dayOfTheWeek()]); 

//    lcd.print(now.year()-2000); 

    char printTime[17]; 

    sprintf (printTime, "%02d %02d:%02d",now.day(), now.hour(), now.minute()); 

    lcd.print(printTime); 

    //lcd.print(now.second()); 

 

// stop charging in the evening and turnoff 

 

if(now.hour()>=19) 

    eveningFlag=1;     

    else 

    eveningFlag=0; 

       

  } 

void weather_info(){ 

  // Wait a few seconds between measurements. 

  //delay(2000); 

  // Reading temperature or humidity takes about 250 milliseconds! 

  // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor) 

   dht22_humidity = dht.readHumidity(); 

  // Read temperature as Celsius (the default) 

    dht22_temp = dht.readTemperature(); 

  // Read temperature as Fahrenheit (isFahrenheit = true) 

 // float f = dht.readTemperature(true); 

  // Compute heat index in Celsius (isFahreheit = false) 

   heat_index = dht.computeHeatIndex(dht22_temp, dht22_humidity, false); 

  // Check if any reads failed and exit early (to try again). 

  if (isnan(dht22_humidity) || isnan(dht22_temp)) { 

    Serial.println(F("Failed to read from DHT sensor!")); 

    dht.begin(); 

    //return; 

  } 

//  Serial.print(F("Humidity: ")); 

//  Serial.print(h); 

//  Serial.print(F("%  Temperature: ")); 

//  Serial.print(t); 

//  Serial.print(F("°C ")); 

//  Serial.print(f); 

//  Serial.print(F("°F  Heat index: ")); 

//  Serial.print(hic); 



182 

//  Serial.print(F("°C ")); 

 

 sensors.requestTemperatures(); // Send the command to get ds18b20 temperatures 

  // After we got the temperatures, we can print them here. 

  // We use the function ByIndex, and as an example get the temperature from the first sensor only. 

  ds18b20_temp = sensors.getTempCByIndex(0); 

   

  lcd.setCursor(15, 0); lcd.print(dht22_humidity,1);  lcd.print("%"); 

  lcd.setCursor(14, 1); //Set the cursor on the third column and the second row (counting starts at 0!). 

  lcd.print(ds18b20_temp,1); lcd.print(char(223)); lcd.print("C"); // ds18b20 temperature 

   lcd.setCursor(14, 2);lcd.print(dht22_temp,1); lcd.print(char(223)); lcd.print("C");  // dht22 temperature  

   lcd.setCursor(14, 3);lcd.print(heat_index,1);  lcd.print(char(223));lcd.print("C"); // dht22 heat index 

temperature  

     

  } 

 

 void heart_beat()  { 

    heartbeat = ! heartbeat; // toggle the builtin led (pin 13) variable 

   // digitalWrite(LED_BUILTIN, heartbeat);   // toggle the builtin led (pin 13) 

   // use pwm since LED at pin 13 has no limiting resistor 

    if(heartbeat==1) 

    digitalWrite(heartBeatpin,1); 

    else 

    digitalWrite(heartBeatpin,0); 

    } 

 

 

void data2sdCard(){ 

   SDstatus = 0; 

// ********** begin sd card code section *************************** 

 

// first check if sd card is not full before writing to it 

Serial.println("\nInitializing SD card..."); 

  if (!card.init(SPI_HALF_SPEED, 4)) { 

    Serial.println("initialization failed!"); 

   // while (1); 

  }   

 

// check sd card size 

if (!volume.init(card)) { 

    Serial.println("Could not find FAT16/FAT32 partition.\nMake sure you've formatted the card"); 

    //while (1); 

  }     

  // determine size of the card 

  uint32_t volumesize; 

  volumesize = volume.blocksPerCluster();    // clusters are collections of blocks 

  volumesize *= volume.clusterCount();       // we'll have a lot of clusters 

  volumesize /= 2;                           // SD card blocks are always 512 bytes (2 blocks are 1KB) 

//  Serial.print("Volume size (Kb):  "); 

//  Serial.println(volumesize); 

  Serial.print("Volume size (Mb):  "); 

  volumesize /= 1024; 

  Serial.println(volumesize); 

// uncomment the section below to see all the files in the SD card 

//  Serial.println("\nFiles found on the card (name, date and size in bytes): "); 

  //root.openRoot(volume); 

  // list all files in the card with date and size 

  //root.ls(LS_R | LS_DATE | LS_SIZE); 

 // root.ls(LS_R | LS_SIZE); 

 // root.close(); 

  

if(!SD.begin(4)){ 

   Serial.println("initialization failed. Things to check:"); 
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  } 

  else{ 

myFile = SD.open("/"); 

SDstatus=printDirectory(myFile, 0); 

Serial.print("Total file size is (bytes): ");Serial.println(SDstatus); 

SDstatus/=1024; //convert to Kb 

Serial.print("Total file size is (Kb): ");Serial.println(SDstatus); 

SDstatus=SDstatus/1024; // convert to MB 

Serial.print("Total file size is (MB): ");Serial.println(SDstatus); 

// if card is more than 90% full then wipe it...delete all files 

cardStatus = (SDstatus/volumesize)*100; 

Serial.print("card is  ");Serial.print(cardStatus,5 );Serial.println("% full ..."); 

 

if((float)SDstatus/volumesize > 0.9){ 

  myFile = SD.open("/"); 

  SDwipe(myFile, 0); 

} 

//SDwiper(myFile, 0); 

myFile.close(); 

  } 

 

// sd card can now be written to after confirming its not full or wiping it 

   DateTime now = rtc.now();  

// create file name corresponding to today's date 

    char FileName[17]; 

    sprintf (FileName, "%04d%02d%02d.csv", now.year(), now.month(), now.day()); 

 //   Serial.print("file name is ");Serial.println(String(FileName));  

 

//if (!SD.begin(4)) { 

//    Serial.println("initialization failed. Things to check:"); 

//    //while (1); 

//  } 

//    // re-open the file for checking file size: 

//   myFile = SD.open(String(FileName)); 

//    // check current file size 

//  Serial.print("file size (Bytes) is ");Serial.println(myFile.size()); 

//  Serial.print("file size (kB) is ");Serial.println(float(myFile.size()/1024)); 

//  Serial.print("file size (MB) is ");Serial.println(float(myFile.size()/(1024*1024))); 

//myFile.close(); 

// create time stamp in order to insert along with record     

    char timeStamp[17]; 

    sprintf (timeStamp, "%04d%02d%02d%02d%02d%02d", now.year(), now.month(), now.day(), now.hour(), 

now.minute(), now.second()); 

 // prep data to be recorded    

dataString =  String(timeStamp) +String(ds18b20_temp) + ","+ String(dht22_temp)+ "," + String(heat_index)+  

"," + String(dht22_humidity)+","+load1_status+","+load2_status+","+load3_status+ "," + String(ac_voltage)+ 

"," + String(currentvalue)+ "," +String(frequency) + "," + String(inv_current_value)+ "," + String(pv_volt)+  "," 

+ String(pv_current)+  ","+ String(charged_percent)+  "," + String(digitalRead(charging_status))+  "," + 

String(bat_volt)+  "," + String(person)+  ","+ String(digitalRead(dc_fan))+  "," + inverter_status+  "," + 

inverter_temp+  "," + inverter_status+  "," + String(power_blackout)+  "," + String(digitalRead(reed_switch)); 

  if (!SD.begin(4)) { 

    Serial.println("initialization failed. Things to check:"); 

    Serial.println("* is a card inserted?"); 

    Serial.println("* is your wiring correct?"); 

    Serial.println("* did you change the chipSelect pin to match your shield or module?"); 

    //while (1); 

  } 

  // open the file. note that only one file can be open at a time, 

  // so you have to close this one before opening another. 

   myFile = SD.open(String(FileName), FILE_WRITE); 

  // if the file opened okay, write to it: 

  if (myFile) { 

    myFile.println(dataString);    
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    // close the file: 

    myFile.close();  

    Serial.println("done writing to "+String(FileName)+" ..."); 

  } else { 

    // if the file didn't open, print an error: 

    Serial.println("error writing to "+String(FileName)); 

  } 

 

   

// code to read content of recorded file  

//  if (myFile) { 

//    // read from the file until there's nothing else in it: 

//    while (myFile.available()) { 

//      Serial.write(myFile.read()); 

//    } 

//    // close the file: 

//    myFile.close(); 

//  } else { 

//    // if the file didn't open, print an error: 

//    Serial.println("error reading "+ String(FileName)); 

//  } 

 

} 

 

int printDirectory(File dir, int numTabs){ 

  int fileSize = 0; 

  while (true) 

  { 

    File entry = dir.openNextFile(); 

    if (! entry) 

    { 

      if (numTabs == 0){ 

        Serial.println("******* finished checking sd occupied space size **********"); 

        return fileSize; 

        } 

      return; 

    } 

    

    for (uint8_t i = 0; i < numTabs; i++) 

    Serial.print('\t'); 

    Serial.println(entry.name()); 

    if (entry.isDirectory()) 

    { 

      printDirectory(entry, numTabs + 1); 

    } 

    else 

    { 

      fileSize+=int(entry.size()); 

    } 

    entry.close();     

  }   

} 

 

 

  void SDwipe(File dir, int numTabs){ 

  while (true) 

  { 

    File entry = dir.openNextFile(); 

    if (! entry) 

    { 

      if (numTabs == 0){ 

        Serial.println("***************sd card wipe finished! ****************"); 

        } 
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      return; 

    } 

    

    for (uint8_t i = 0; i < numTabs; i++) 

      Serial.print('\t'); 

   if(String(entry.name())!="SYSTEM~1" && String(entry.name())!="WPSETT~1.DAT" && 

String(entry.name())!="INDEXE~1"){ 

          // delete the file 

           Serial.println("deleted "+String(entry.name()))  ; 

    SD.remove(String(entry.name()));    

      }       

    entry.close();     

  }   

}   

 

 

 

 

//************* end of sd card code ****************************** 

 

/*void updateSerial(){ 

  delay(500); 

  while (Serial.available())  

  { 

    mySerial.write(Serial.read());//Forward what Serial received to Software Serial Port 

  } 

  while(mySerial.available())  

  { 

    Serial.write(mySerial.read());//Forward what Software Serial received to Serial Port 

  } 

}*/ 

/* void bluetooth_interrupt(){ 

while(bluetooth.available()){ 

    Serial.println("bluetooth routine"); 

       character = bluetooth.read(); 

    bluetooth_data.concat(character); 

  // Serial.print(bluetooth_data);  

   if(character == '\n'){ // if end of bluetooth_data received 

     bluetooth_data.trim(); // remove whitespaces 

     Serial.println(bluetooth_data); //display bluetooth_data and  

     //Serial.print(bluetooth_data.length()); 

     if(bluetooth_data == "ben") 

     { 

      // take action 1 

      Serial.println("bluetooth action 1"); 

     //digitalWrite(LED_BUILTIN, HIGH);       

     }  

     else if(bluetooth_data == "mbuya") 

     { 

      // take action 1 

      Serial.println("bluetooth action 2"); 

     //digitalWrite(LED_BUILTIN, LOW); 

     }  

     bluetooth_data = ""; //clear buffer 

     //Serial.println();      

  } 

  } 

  }*/ 

 

Wifi module source code 

 

#include <WiFiClient.h>  

#include <WiFiClientSecure.h> 
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#include <ESP8266WebServer.h> 

#include <ESP8266HTTPClient.h> 

#include <ESP8266WiFiMulti.h> 

 

#include <SoftwareSerial.h> 

SoftwareSerial esp2mega(D6,D5);// // (Rx, Tx) In NodeMCU we shall make pin 5 as Tx and pin 6 as Rx. 

#include <ArduinoJson.h> 

ESP8266WiFiMulti wifiMulti; 

// --------  station mode ------------------- 

const char* ssid1 = "BENnet";    // Enter SSID here 

const char* password1 = "Mbuya2020";  // Enter Password here 

const char* ssid2 = "Techcentral";    // Enter SSID here 

const char* password2 = "mbuya2020";  // Enter Password here 

const char* host = "https://iot.techcentrall.com"; 

 

const int httpsPort = 443; 

 

//SHA1 finger print of certificate use web browser to view and copy 

const char fingerprint[] PROGMEM = "E1:09:9B:EB:10:AE:36:C7:5F:0F:3B:4C:09:0E:4E:28:6E:B1:FB:13"; 

 

//----- for thingsboard ------- 

#include <ESP8266WiFi.h> 

#include <ThingsBoard.h> 

#define TOKEN "sURL0pLpenFPWcGiLHtX" 

char thingsboardServer[] = "demo.thingsboard.io"; 

int status = WL_IDLE_STATUS; 

 

// headers for gsheet communication 

#include "HTTPSRedirect.h" 

#include "DebugMacros.h" 

 

const char* spreadsheethost = "script.google.com"; 

const char *GScriptId = "AKfycbw6jZw5oo9HQL7WTZDQqRRCeglRoImS6ejAQ6-

rSs6SvSID9uRd9S_rJfLnynw5Cn8H"; // Replace with your own google script id 

 

// echo | openssl s_gsclient -connect script.google.com:443 |& openssl x509 -fingerprint -noout 

//const char* fingerprint = ""; 

 

String url = String("/macros/s/") + GScriptId + "/exec?value=ds18b20_temp";  // Write Teperature to Google 

Spreadsheet at cell A1 

// Fetch Google Calendar events for 1 week ahead 

String url2 = String("/macros/s/") + GScriptId + "/exec?";  // Write to Cell A continuosly 

 

//replace with sheet name not with spreadsheet file name taken from google 

String append_payload_base =  "{\"command\": \"appendRow\",\"sheet_name\": \"emsLog\",\"values\": "; 

String update_payload_base =  "{\"command\": \"update_row\",\"sheet_name\": \"dsm\", \"values\": "; 

String append_payload = ""; 

String update_payload = ""; 

 

const int RSSI_MAX =-50;// define maximum straighten of signal in dBm 

const int RSSI_MIN =-100;// define minimum strength of signal in dBm 

 

const long interval = 300;  

unsigned long previousMillis = 0; 

const long interval_post = 1;  

unsigned long previousMillis_post = 0;  

const long interval_fetch = 1; 

unsigned long previousMillis_fetch = 0; 

uint8_t LEDpin1 = D4;//D4; 

//uint8_t load1pin = D0; 

uint8_t load1 = D1; 

uint8_t load2 = D0; 

uint8_t load3 = D2; 
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bool LightON = HIGH, LightOFF = LOW; 

bool LEDstatus = LOW; 

bool heartbeat = LOW;   

String load1_status="1",load2_status="1", load3_status="1", inverter_status="1", 

tanesco_charger_status="1", pv_charger_status="1", 

inverter_fan="0",inverter_temp="0",postData,pir_status,door_status; 

 

//String 

ds18b20_temp,dht22_temp,heat_index,dht22_humidity,load1,load2,load3,ac_voltage,currentvalue,frequency,in

v_current ,pv_volt,pv_current,charged_percent,charging_status ,bat_volt ,person,dc_fan_status ,inv_fan_status 

,inv_temp ,inv_status ,power_blackout ,reed_switch_indicator,cardStatus , postData; 

//  String 

ds18b20_temp,dht22_temp,heat_index,dht22_humidity,load1,load2,load3,ac_voltage,currentvalue,frequency,in

v_current ,pv_volt,pv_current,charged_percent,charging_status ,bat_volt ,person,dc_fan_status ,inv_fan_status 

,inv_temp ,inv_status ,power_blackout ,reed_switch_indicator,cardStatus , postData; 

int post = 1,reset_counter=0,reset_flag=0; 

String dataUploaded,loadControl_flag; 

 

WiFiClientSecure client; 

 

//i2c one-wire is used to send/receive data from arduino mega with higher reliability than normal serial 

communication 

#include <Wire.h> 

#define datasize 500 // ample datasize to accomodate all characters sent from arduino 

#define i2c_address 6 // Slave in this case is arduino 

#define baudrate 57600 

String received_i2c_data; 

String received_uart_data; 

 

 

void setup() { 

 Serial.begin(baudrate); 

 //initialize wifi module for i2c communication i.e one wire communication 

esp2mega.begin(baudrate); // serial to receive/send data from/to arduino 

  Wire.begin(D1, D2); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */ 

  pinMode(LEDpin1, OUTPUT); 

  pinMode(load3, OUTPUT);      // lights, epson printer, radio amplifier 

  pinMode(load2, OUTPUT);      // cctv 

  pinMode(load1, OUTPUT);      // tanesco loads: canon photocopier, microwave machine 

   digitalWrite(LEDpin1, HIGH); 

   digitalWrite(load1, HIGH);  

 

 

   wifi_setup(); 

   client.setInsecure();  

//uncomment if you want to get a msg everytime a reset occurs 

 

  delay(1000); 

} 

 

 

void wifi_setup(){ 

   // Register multi WiFi networks 

  wifiMulti.addAP(ssid1, password1); 

  wifiMulti.addAP(ssid2, password2); 

 // wifiMulti.addAP("ssid_from_AP_3", "your_password_for_AP_3");  

   

 WiFi.mode(WIFI_STA); 

//WiFi.begin(ssid1,password1); 

 // while(WiFi.status()!= WL_CONNECTED){ //waiting for device to be connected to the network 

 // Wait for the Wi-Fi to connect: scan for Wi-Fi networks, and connect to the strongest of the networks above 

 while (wifiMulti.run() != WL_CONNECTED) { 

  Serial.print("."); 
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 delay(500); 

} 

Serial.print("CONNECTED TO WIFI : ");  Serial.println(WiFi.SSID()); 

Serial.print("IP:");Serial.println(WiFi.localIP()); 

 

// print the received signal strength 

  long rssi = WiFi.RSSI(); 

  Serial.print("Signal strength (RSSI):"); 

  Serial.print(rssi); 

  Serial.print(" dBm ( "); 

        Serial.print(dBmtoPercentage(rssi));//Signal strength in %   

      Serial.println("% )"); 

   

  } 

void loop(){ 

    ESP.wdtFeed();yield(); 

   load_controller(); 

  // Serial.println("void loop"); 

heart_beat(); 

 wifi_setup();  

  refreshSerial(); 

 

if(post==1){   

dataUploaded=uploadData(); 

delay(3000); 

//post=2; 

} 

else if(post==2){ 

  Serial.println("data fetch routine..."); 

fetchData(); 

} 

else if(post==3){ 

thingsboard(); 

  gsheetCom(dataUploaded);  

  }  

   

  } 

void json_sender(String data_sent){ 

    char jsonData[datasize]; 

    data_sent.toCharArray(jsonData, datasize); 

    //Serial.print("json is ");Serial.println(jsonData); 

esp2mega.write(jsonData); 

  } 

 void fetchData(){ 

// begin by fetching data from server first before sending it to arduino mega 

unsigned long currentMillis_fetch = millis(); 

   

  if (currentMillis_fetch - previousMillis_fetch >= interval_fetch) { 

   

    // save the last time you blinked the LED 

    previousMillis_fetch = currentMillis_fetch;  

       ESP.wdtFeed();yield(); 

     wifi_setup(); 

      

 HTTPClient http;    //Declare object of class HTTPClient 

 WiFiClientSecure client; 

client.setInsecure(); //the magic line, use with caution 

    Serial.print("Connect to: ");Serial.print(host);Serial.println(" and FETCH data");  

client.connect(host, httpsPort); 

 

       String serverPath = String("")+host+"/getUpdates.php"; 

 

      // Your Domain name with URL path or IP address with path 
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      http.begin(client, serverPath); 

       

  int httpResponseCode = http.GET();   //Send the request    

Serial.println(String(httpResponseCode)+" "+http.getString()); 

 ESP.wdtFeed();yield(); 

 if (httpResponseCode!=200){ 

    post = 3; 

 return ; 

 } 

  

 DynamicJsonDocument doc(2048); 

     deserializeJson(doc, http.getString()); 

     String ld1=doc["load1"]; 

     String ld2=doc["load2"]; 

     String ld3=doc["load3"]; 

     String inv=doc["inverter"]; 

     String tanesco=doc["tanescoCharger"]; 

     String pv=doc["pvCharger"]; 

     String inv_fan=doc["inverter_fan"]; 

     String inv_temp=doc["inverter_temp"]; 

     String load_flag=doc["loadControl_flag"]; 

     String pirStatus=doc["pir_status"]; 

     String doorStatus=doc["door_status"]; 

 

      load1_status=ld1; 

     load2_status=ld2; 

      load3_status=ld3; 

      inverter_status=inv; 

      tanesco_charger_status=tanesco; 

      pv_charger_status=pv; 

      inverter_fan=inv_fan; 

      inverter_temp=inv_temp; 

      loadControl_flag=load_flag; 

      pir_status=pirStatus; 

      door_status=doorStatus; 

 

//String payload = load1_status + "," + load2_status + "," + load3_status+ "," + inverter_status+ "," + 

tanesco_charger_status+ "," + pv_charger_status+ "," + inverter_fan+ "," + inverter_temp+ "," + 

loadControl_flag+ "," + pir_status+ "," + door_status; 

 

  Serial.print("server load1 status is : ");Serial.println(load1_status); 

  Serial.print("server load2 status is : ");Serial.println(load2_status); 

  Serial.print("server load3 status is : ");Serial.println(load3_status); 

  Serial.print("server inverter status is : ");Serial.println(inverter_status); 

  Serial.print("server tanesco_charger status is : ");Serial.println(tanesco_charger_status); 

  Serial.print("server pv_charger status is : ");Serial.println(pv_charger_status); 

  Serial.print("server inverter_fan status is : ");Serial.println(inverter_fan); 

   Serial.print("server inverter_temp is : ");Serial.println(inverter_temp); 

   Serial.print("loadControl_flag is : ");Serial.println(loadControl_flag); 

 

ESP.wdtFeed();yield(); 

 

// ############## SEND DATA TO ARDUINO MEGA ################################### 

    // now send data to arduino mega by serial communication 

//String data_sent = 

"{\"load1\":\"1\",\"load2\":\"1\",\"load3\":\"1\",\"inverter\":\"1\",\"tanescoCharger\":1,\"pvCharger\":\"1\",\"inver

ter_fan\":\"0\",\"inverter_temp\":\"36.44\",\"loadControl_flag\":\"tanesco_on\"}"; 

//json_sender(data_sent); 

// send 10x to guarantee transmission or wait to receive confirmation 'ok' while keep sending 

int messenger = 0; 

while(messenger < 10){ 

  String data_sent = "{\"load1\":\""+String(load1_status)+"\","; 

  //serializeJson(Data_sent, esp2mega); 
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  //send one data at a time 

  json_sender(data_sent); 

  data_sent = "\"load2\":\""+String(load2_status)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"load3\":\""+String(load3_status)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"inverter\":\""+String(inverter_status)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"tanescoCharger\":\""+String(tanesco_charger_status)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"pvCharger\":\""+String(pv_charger_status)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"inverter_fan\":\""+String(inverter_fan)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"inverter_temp\":\""+String(inverter_temp)+"\","; 

  json_sender(data_sent); 

  data_sent = "\"loadControl_flag\":\""+String(loadControl_flag)+"\"}\n"; 

  json_sender(data_sent); 

  messenger++; 

delay(1000);  

  } 

//return ;  

// prepare data to send to arduino mega board 

//StaticJsonDocument<1024> doc; 

/*DynamicJsonDocument doc2(2048); 

  doc2["load1_status"] = load1_status; 

  doc2["load2_status"] = load2_status; 

  doc2["load3_status"] = load3_status; 

  doc2["inverter_status"] = inverter_status; 

  doc2["tanesco_charger_status"] = tanesco_charger_status; 

  doc2["pv_charger_status"] = pv_charger_status; 

  doc2["inverter_fan"]= inverter_fan; 

  doc2["inverter_temp"]= inverter_temp; 

  doc2["loadControl_flag"]= loadControl_flag; 

  //send atleast 10 times 

// usual routine for sending data to arduino mega through serial communication TX & RX 

  serializeJson(doc2, esp2mega);   

  //deserializeJson(doc, Serial);//uncomment to see what is being sent to arduino mega board 

  */           

  http.end();  //Close connection 

  }      

  post = 3; 

  } 

     

 void load_controller(){ 

      ESP.wdtFeed();yield(); 

 if(loadControl_flag=="load1_on"){ digitalWrite(load1, LOW); load1_status="1";} 

  else if(loadControl_flag=="load1_off"){digitalWrite(load1, HIGH);load1_status="0";} 

  else if(loadControl_flag=="load2_on"){digitalWrite(load2, HIGH);load2_status="1";} 

  else if(loadControl_flag=="load2_off"){digitalWrite(load2, LOW);load2_status="0";} 

  else if(loadControl_flag=="load3_on"){digitalWrite(load3, LightON);load3_status="1";} 

  else if(loadControl_flag=="load3_off"){digitalWrite(load3, LightOFF);load3_status="0";} 

  //else if(loadControl_flag=="pv_on"){ pv_charger_flag=1;} 

  //else if(loadControl_flag=="pv_off"){pv_charger_flag=0;} 

  else{ 

    if(pv_charger_status=="1"){ 

 // pv_charger_flag=1; 

   

  } 

else if(pv_charger_status=="0"){ 

 // pv_charger_flag=0; 

   

  } 
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  if( load1_status=="1" ){ 

  digitalWrite(load1, LOW); // turn ON load1, load1 uses inverted logic where off is HIGh and on is LOW  

          ESP.wdtFeed();yield(); 

        Serial.println("turning load1 ON "); 

        } 

        else if( load1_status=="0"){ 

            digitalWrite(load1, HIGH); // turn OFF load1 

             Serial.println("turning load1 OFF "); 

          } 

      if( load2_status=="1"){ 

  digitalWrite(load2, HIGH); // turn ON load1  

        Serial.println("turning load2 ON "); 

        } 

        else if( load2_status=="0"){ 

            digitalWrite(load2, LOW); // turn OFF load1 

             Serial.println("turning load2 OFF "); 

          } 

            if( load3_status=="1" || door_status=="1" ){ 

  digitalWrite(load3, LightON); // turn ON load1  

        Serial.println("turning load3 ON "); 

        } 

        else if( load3_status=="0" || door_status=="0"){ 

            digitalWrite(load3, LightOFF); // turn OFF load1 

             Serial.println("turning load3 OFF "); 

          }           

    }    

          ESP.wdtFeed();yield();      

    } 

 

  //function to send sensor data  

String uploadData() {  

  //------------ RECEIVE DATA FROM ARDUINO AND UPLOAD TO CLOUD ------------------------    

Serial.println("data upload routine inside..."); 

    ESP.wdtFeed();yield(); 

 

// receive data from arduino via serial communication 

while (esp2mega.available() > 0) { 

  //clear buffer first 

     received_uart_data=""; //clear buffer 

        // read the incoming byte: 

           String str  = esp2mega.readString();  

          // String str = esp2mega.readStringUntil('\n');   

          Serial.print("*received data: ");Serial.println(str);          

        //if received data is mangled i.e has '?', then discard 

            // substring(index) looks for the substring from the index position to the end: 

        if (received_uart_data.substring(0) == "?") { 

          received_uart_data=""; //clear buffer 

        } 

           //concat subsequent characters 

          received_uart_data.concat(str);             

        //Serial.print("arduino inside: ");Serial.println(received_uart_data); 

        //mega2node.write("be of good courage! never give up"); 

} 

 //Serial.println();// go to line below 

//Serial.print("arduino outside: ");Serial.println(received_uart_data); 

int index2 = received_uart_data.indexOf("⸮",3); 

if(index2>0){ 

   return "nothing";//bad data received, fetch another stream 

  } 

int index1 = received_uart_data.indexOf("{",3); 

 Serial.print("start index: ");Serial.println(index1); 

 if(index1>0){ 

received_uart_data = received_uart_data.substring(index1); 
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Serial.print("*cleaned data: ");Serial.println(received_uart_data); 

} 

else{ 

    String data_sent = "{\"loadControl_flag\":\"wifi_reset\"}"; 

  //serializeJson(Data_sent, esp2mega); 

  //send one data at a time 

  json_sender(data_sent); 

 return "nothing"; 

 } 

 delay(5000); 

 

   

  /*   char jsonData[datasize]; 

    received_uart_data.toCharArray(jsonData, datasize); 

    Serial.print("json is ");Serial.println(jsonData);*/ 

     

Serial.println("deserializing received cleaned data..."); 

 DynamicJsonDocument doc(2048); 

 // DeserializationError error = deserializeJson(doc, esp2mega); 

 //deserializeJson(doc, jsonData); 

 deserializeJson(doc, received_uart_data); 

 // JsonObject object = doc.as<JsonObject>(); 

  

 //deserializeJson(doc, esp2mega);  

   

String  ds18b20_temp = doc["ds18b20_temp"]; 

String  dht22_temp = doc["dht22_temp"]; 

String  heat_index = doc["heat_index"]; 

String  dht22_humidity=doc["dht22_humidity"]; 

String  load1=doc["load1"]; 

String  load2=doc["load2"]; 

String  load3=doc["load3"]; 

String  ac_voltage=doc["ac_voltage"]; 

String  currentvalue=doc["currentvalue"]; 

String  frequency=doc["frequency"]; 

String  inv_current=doc["inv_current"]; 

String  pv_volt=doc["pv_volt"]; 

String  pv_current=doc["pv_current"]; 

String  charged_percent=doc["charged_percent"]; 

String  charging_status=doc["charging_status"]; 

String  bat_volt=doc["bat_volt"]; 

String  person=doc["person"]; 

String  dc_fan_status=doc["dc_fan_status"]; 

String  inv_fan_status=inverter_fan; 

String  inv_temp=doc["inv_temp"]; 

String  inv_status=inverter_status; 

String  power_blackout=doc["power_blackout"]; 

String  reed_switch_indicator=doc["reed_switch_indicator"]; 

//String tanescoCharger=tanesco_charger_status; 

String  cardStatus=doc["cardStatus"]; 

 

pir_status=person; 

door_status=reed_switch_indicator; 

 

String postData = "ds18b20_temp=" +  ds18b20_temp + "&dht22_temp=" + dht22_temp+ 

"&dht22_heatIndex_temp=" + heat_index+  "&dht22_humidity=" + 

dht22_humidity+"&load1="+load1+"&load2="+load2+"&load3="+load3+ "&ac_voltage=" + ac_voltage+ 

"&ac_current=" + currentvalue+  "&frequency=" + frequency+ "&inv_current="+inv_current+"&pv_voltage=" 

+ pv_volt+  "&pv_current=" + pv_current+  "&soc=" + charged_percent+  "&pv_bat_charging=" + 

charging_status+  "&battery_voltage=" + bat_volt+  "&pir_status=" + person+  "&fan1_status=" + 

dc_fan_status+  "&fan2_status=" + inv_fan_status+  "&inverter_temp=" + inv_temp+  "&inverter_status=" + 

inv_status+  "&blackout=" + power_blackout+  "&door_status=" + reed_switch_indicator+  

"&cardStatus="+cardStatus+"&tanesco_charger_status="+tanesco_charger_status; 
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//String postData = "{\"command\":\"" +  ds18b20_temp + "," + dht22_temp+ "," + heat_index+  "," + 

dht22_humidity+","+load1+","+load2+","+load3+ "," + ac_voltage+ "," + currentvalue+  "," + frequency+ 

","+inv_current+"," + pv_volt+  "," + pv_current+  "," + charged_percent+  "," + charging_status+  "," + 

bat_volt+  "," + person+  "," + dc_fan_status+  "," + inv_fan_status+  "," + inv_temp+  "," + inv_status+  "," + 

power_blackout+  "," + reed_switch_indicator+  ","+cardStatus+","+tanesco_charger_status+"\"}"; 

//String postData = "{\"command\":\"" +  25 + "," + 26+ "," + 27+  "," + 50+","+1+","+1+","+1+ "," + 220+ "," 

+ 0.5+  "," + 50+ ","+0.5+"," + 19+  "," + 0.5+  "," + 100+  "," + 1+  "," + 13+  "," + 1+  "," + 1+  "," + 0+  "," + 

25+  "," + 1+  "," + 0+  "," + 1+  ","+0+","+1+"\"}"; 

String upload_data =   ds18b20_temp + "," + dht22_temp+ "," + heat_index+  "," + 

dht22_humidity+","+load1+","+load2+","+load3+ "," + ac_voltage+ "," + currentvalue+  "," + frequency+ 

","+inv_current+"," + pv_volt+  "," + pv_current+  "," + charged_percent+  "," + bat_volt+  "," + person+   "," + 

inv_temp+  "," + inv_status+  "," + power_blackout+  "," + reed_switch_indicator+ ","+tanesco_charger_status; 

      Serial.print("postData: "); Serial.println(postData); 

//if(ds18b20_temp.toInt())return "nothing"; 

if (ds18b20_temp == NULL)return ""; 

if (ds18b20_temp.isEmpty())  return ""; 

 

Serial.print("ds18b20_temp is "+ds18b20_temp+" temp "+String(ds18b20_temp.toFloat())+" isnan output: 

");Serial.println(isnan(ds18b20_temp.toFloat())); 

if(isnan(ds18b20_temp.toFloat())||ds18b20_temp.toFloat()<10)return ""; 

 

//post = 2;//################## remember to disable this command ####################  

//return "nothing"; //################## remember to disable this command ####################  

 

  unsigned long currentMillis_post = millis();   

  if (currentMillis_post - previousMillis_post >= interval_post) { 

   

    // save the last time you blinked the LED 

    previousMillis_post = currentMillis_post;     

     ESP.wdtFeed();yield(); 

     

 HTTPClient http;    //Declare object of class HTTPClient 

 WiFiClientSecure client; 

 

      if(reset_counter<1 && reset_flag==0){ 

       client.setFingerprint(fingerprint); 

  client.setTimeout(15000); // 15 Seconds  

  Serial.print("Connect to: ");Serial.print(host);Serial.println(" and post data");   

client.connect(host, httpsPort); 

     String serverPath = String("")+host+"/postData.php";         

      http.begin(client, serverPath);  

    http.addHeader("Content-Type", "application/x-www-form-urlencoded");    //Specify content-type header       

      http.addHeader("Content-Length",String(postData.length())); 

      //ESP.wdtFeed(); 

        int httpResponseCode = http.POST(postData);         

       // Serial.print("HTTP code: "); 

        Serial.println(String(httpResponseCode)+" "+http.getString());        

      yield(); 

        if (httpResponseCode!=200){ 

           reset_counter++;        

        }    

    } 

    

    if(reset_counter>=1 && reset_flag==0){ 

             client.setFingerprint(fingerprint); 

  client.setTimeout(15000); // 15 Seconds 

  Serial.print("Connect to: ");Serial.print(host);Serial.println(" and post data");   

client.connect(host, httpsPort); 

      String serverPath = String("")+host+"/getpostData.php?";      

     // http.begin(client, serverPath);  

  http.begin(client, serverPath+postData); 

       int httpResponseCode = http.GET();   //Send the request 

       // Serial.print("HTTP code: "); 
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        Serial.println(String(httpResponseCode)+" "+http.getString());        

      yield(); 

        if (httpResponseCode!=200){ 

          //ESP.reset(); 

          reset_counter++;            

        reset_flag=1; 

        }        

      } 

    

      if(reset_counter>=1 && reset_flag==1){ 

                    client.setInsecure(); //the magic line, use with caution 

  Serial.print("Connect to: ");Serial.print(host);Serial.println(" and post data");   

client.connect(host, httpsPort); 

      String serverPath = String("")+host+"/getpostData.php?";      

  http.begin(client, serverPath+postData); 

       int httpResponseCode = http.GET();   //Send the request 

        Serial.println(String(httpResponseCode)+" "+http.getString());        

      yield(); 

        if (httpResponseCode!=200){ 

              reset_counter=0; 

             reset_flag=0; 

              ESP.reset(); 

          //return "";//if upload failed exit now} 

          // instruct arduino mega to do a hard reset of nodemcu 

              String data_sent = "{\"loadControl_flag\":\"wifi_reset\"}"; 

  //serializeJson(Data_sent, esp2mega); 

  //send one data at a time 

  json_sender(data_sent); 

        } 

 

    //ESP.restart();     

    } 

 

 

 client.flush(); 

  

 http.end();  //Close connection  

} 

  

    post = 2;      

       

      

    Serial.print("upload data ....: ");Serial.println(upload_data); 

     return upload_data; 

} 

 

void refreshSerial(){ 

    Serial.begin(baudrate);//it's important to put the serial comm here to avoid null errors in the data received 

 //esp2mega.begin(baudrate); 

  //Wire.begin(D5, D6); /* join i2c bus with SDA=D5 and SCL=D6 of NodeMCU */ 

  } 

void gsheetCom(String input){ 

HTTPSRedirect* gsclient = nullptr; 

    ESP.wdtFeed();yield(); 

    static int error_count = 0; 

  static int connect_count = 0; 

  const unsigned int MAX_CONNECT = 20; 

  static bool flag = false; 

  append_payload =append_payload_base + "\""+input+ + "\"}";  

 

  Serial.print("data to be appended is:");Serial.println(append_payload); 

  if(append_payload=="nothing"){ 

    post=1; 
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  return; 

  } 

   post=1; 

 

   // ******* now post to spreadsheet ****************** 

     // Use HTTPSRedirect class to create a new TLS connection 

  gsclient = new HTTPSRedirect(httpsPort); 

  gsclient->setInsecure(); 

  gsclient->setPrintResponseBody(true); 

  gsclient->setContentTypeHeader("application/json"); 

  Serial.print("Connecting to "); 

  Serial.println(spreadsheethost);          //try to connect with "script.google.com" 

 

ESP.wdtFeed(); 

  // Try to connect for a maximum of 5 times then exit 

   flag = false; 

  for (int i = 0; i < 5; i++) { 

    int retval = gsclient->connect(spreadsheethost, httpsPort); 

      ESP.wdtFeed();yield(); 

    if (retval == 1) { 

      flag = true; 

      break; 

    } 

    else 

      return;//Serial.println("Connection failed. Retrying..."); 

  } 

 

  if (!flag) { 

    Serial.print("Could not connect to server: "); 

    Serial.println(spreadsheethost); 

    Serial.println("Exiting..."); 

    return; 

  } 

  Serial.println("\nWrite into cell 'A2'"); 

  Serial.println("------>"); 

  // fetch spreadsheet data 

    ESP.wdtFeed();yield(); 

  gsclient->GET(url, spreadsheethost); 

 ESP.wdtFeed(); 

  // delete HTTPSRedirect object 

  delete gsclient; 

  gsclient = nullptr; 

 ESP.wdtFeed(); 

     // Use HTTPSRedirect class to create a new TLS connection 

  gsclient = new HTTPSRedirect(httpsPort); 

  gsclient->setInsecure(); 

  gsclient->setPrintResponseBody(true); 

  gsclient->setContentTypeHeader("application/json"); 

  Serial.print("Connecting to "); 

  Serial.println(spreadsheethost);          //try to connect with "script.google.com" 

ESP.wdtFeed(); 

  if (!flag) { 

      ESP.wdtFeed();yield(); 

    gsclient = new HTTPSRedirect(httpsPort); 

    gsclient->setInsecure(); 

    flag = true; 

    gsclient->setPrintResponseBody(true); 

    gsclient->setContentTypeHeader("application/json"); 

  } 

ESP.wdtFeed(); 

  if (gsclient != nullptr) { 

      ESP.wdtFeed();yield(); 

    if (!gsclient->connected()) { 
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         ESP.wdtFeed();yield(); 

      gsclient->connect(spreadsheethost, httpsPort); 

      gsclient->POST(url2, spreadsheethost, append_payload, false); 

      Serial.print(".... ");  Serial.println(append_payload); 

    } 

  } 

  else { 

    DPRINTLN("Error creating gsclient object!"); 

    error_count = 5; 

  } 

 

 

ESP.wdtFeed(); 

    Serial.print("data to be appended is:");Serial.println(append_payload); 

  if (gsclient) { 

    int httpResponseCode =gsclient->POST(url2, spreadsheethost, append_payload); 

    ESP.wdtFeed();yield(); 

    Serial.print("*** httpResponseCode:");Serial.println(httpResponseCode); 

     Serial.println(gsclient->getStatusCode()); 

     Serial.println(gsclient->getReasonPhrase()); 

     Serial.println(gsclient->getResponseBody()); 

     ESP.wdtFeed();yield(); 

     //no need to deserialize 

     /* 

          DynamicJsonDocument doc(2048); 

     deserializeJson(doc, gsclient->getResponseBody()); 

     String load1=doc["load1"]; 

     String load2=doc["load2"]; 

     String load3=doc["load3"]; 

     String inverter=doc["inverter"]; 

     String tanescoCharger=doc["tanescoCharger"]; 

     String pvCharger=doc["pvCharger"];*/ 

  delete gsclient; 

   

  /* 

  // there is no need to send control updates since namecheap server is already being updated 

          httpResponseCode =gsclient->POST(url2, host, update_payload); 

    Serial.print("*** httpResponseCode:");Serial.println(httpResponseCode); 

     Serial.println(gsclient->getStatusCode()); 

     Serial.println(gsclient->getReasonPhrase()); 

     Serial.println(gsclient->getResponseBody());       

    */ 

 

 } 

 ESP.reset();  

 

  } 

 

void thingsboard(){ 

   ESP.wdtFeed();yield(); 

    

  WiFiClient wifiClient; 

ThingsBoard tb(wifiClient); 

 

// reconnect to thingsboard with our token 

   Serial.print("Connecting to ThingsBoard node ..."); 

    tb.connect(thingsboardServer, TOKEN); 

 

 ESP.wdtFeed();yield(); 

 // Prepare a JSON payload string 

DynamicJsonDocument doc(2048); 

  DeserializationError error = deserializeJson(doc, esp2mega); 

  // Test if parsing succeeds. 
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  if (error) { 

    return ; 

  } 

 // JsonObject object = doc.as<JsonObject>(); 

  

 //deserializeJson(doc, esp2mega);  

    Serial.println("JSON received and parsed data from arduino mega"); 

String  ds18b20_temp = doc["ds18b20_temp"]; 

String  dht22_temp = doc["dht22_temp"]; 

String  heat_index = doc["heat_index"]; 

String  dht22_humidity=doc["dht22_humidity"]; 

String  load1=load1_status; 

String  load2=load2_status; 

String  load3=load3_status; 

String  ac_voltage=doc["ac_voltage"]; 

String  currentvalue=doc["currentvalue"]; 

String  frequency=doc["frequency"]; 

String  inv_current=doc["inv_current"]; 

String  pv_volt=doc["pv_volt"]; 

String  pv_current=doc["pv_current"]; 

String  charged_percent=doc["charged_percent"]; 

String  charging_status=doc["charging_status"]; 

String  bat_volt=doc["bat_volt"]; 

String  person=doc["person"]; 

String  dc_fan_status=doc["dc_fan_status"]; 

String  inv_fan_status=inverter_fan; 

String  inv_temp=doc["inv_temp"]; 

String  inv_status=inverter_status; 

String  power_blackout=doc["power_blackout"]; 

String  reed_switch_indicator=doc["reed_switch_indicator"]; 

//String tanescoCharger=tanesco_charger_status; 

String  cardStatus=doc["cardStatus"]; 

 

   ESP.wdtFeed();yield(); 

   if(isnan(ds18b20_temp.toFloat()))return; 

Serial.println("data to thingsboard:"+ds18b20_temp); 

    tb.sendTelemetryFloat("ds18b20_temp", ds18b20_temp.toFloat()); 

  tb.sendTelemetryFloat("dht22_temp", dht22_temp.toFloat()); 

  tb.sendTelemetryFloat("heat_index", heat_index.toFloat()); 

  tb.sendTelemetryFloat("dht22_humidity", dht22_humidity.toFloat()); 

  tb.sendTelemetryFloat("load1", load1.toFloat()); 

  tb.sendTelemetryFloat("load2", load2.toFloat());  

  tb.sendTelemetryFloat("load3", load2.toFloat()); 

  if(power_blackout=="0"){ 

    float power =ac_voltage.toFloat()*currentvalue.toFloat(); 

    tb.sendTelemetryFloat("power", power); 

    }  

  else if(power_blackout=="1"){ 

        float power =220*inv_current.toFloat(); 

    tb.sendTelemetryFloat("power", power); 

    } 

  tb.sendTelemetryFloat("ac_voltage", ac_voltage.toFloat());  

      tb.sendTelemetryFloat("currentvalue", currentvalue.toFloat()); 

  tb.sendTelemetryFloat("frequency", frequency.toFloat()); 

  tb.sendTelemetryFloat("inv_current", inv_current.toFloat()); 

  tb.sendTelemetryFloat("pv_volt", pv_volt.toFloat()); 

  tb.sendTelemetryFloat("pv_current", pv_current.toFloat()); 

  tb.sendTelemetryFloat("charged_percent", charged_percent.toFloat());  

  tb.sendTelemetryFloat("bat_volt", bat_volt.toFloat());  

  tb.sendTelemetryFloat("person", person.toFloat()); 

    tb.sendTelemetryFloat("inv_temp", inv_temp.toFloat()); 

  tb.sendTelemetryFloat("inv_status", inv_status.toFloat()); 

  tb.sendTelemetryFloat("power_blackout", power_blackout.toFloat());  
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  tb.sendTelemetryFloat("door_status", reed_switch_indicator.toFloat());  

  tb.sendTelemetryFloat("tanesco_charger_status", tanesco_charger_status.toFloat());   

 

} 

 

  void heart_beat()  { 

  unsigned long currentMillis = millis(); 

  if (currentMillis - previousMillis >= interval) { 

    // save the last time you blinked the LED 

     heartbeat = ! heartbeat; 

    previousMillis = currentMillis;   

    digitalWrite(LEDpin1, heartbeat); 

  }    

    } 

  

  int dBmtoPercentage(int dBm){ 

  int quality; 

    if(dBm <= RSSI_MIN) 

    { 

        quality = 0; 

    } 

    else if(dBm >= RSSI_MAX) 

    {   

        quality = 100; 

    } 

    else 

    { 

        quality = 2 * (dBm + 100); 

   } 

 

     return quality; 

}//dBmtoPercentage      
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Appendix 5: Telegram Chatbot Python Source Code 

import datetime # to get current time for error logging  

import time # to time routines/tasks durations 

import pytz # to convert from server to Tanzania timezone 

 

#import ems functions 

import ems_functions as ems 

 

# telegram bot libraries 

import urllib3 

import json 

from telegram import * 

from telegram.ext import * 

bot_chat_id="160085" 

group_chat_id="-58036" 

bot_token="170232:AAGxLqurfNkiEYAaPPlzrWsKY" 

bot = Bot(bot_token) 

intruder_error="&#9940; you are not authorized &#8252; contact admin..." 

 

# main menu keyboard 

kbd_mainmenu = [['grid status', 'Forecasts','Charts'], ['consumption', 'blackout info','sub menu']] 

#kbd_submenu = [['consumption', 'credit balance','blackout info'], ['main menu']] 

kbd_submenu = [['tanesco on', 'tanesco off','credit balance'], ['inverter on','inverter off','grid reset'],['main 

menu']] 

#kbd = ReplyKeyboardMarkup(kbd_layout,resize_keyboard=True,one_time_keyboard=True) 

kbd1 = ReplyKeyboardMarkup(kbd_mainmenu,resize_keyboard=True) 

kbd2 = ReplyKeyboardMarkup(kbd_submenu,resize_keyboard=True) 

 

#list for tracking message IDs 

msg_id=[] 

 

#dayload is the average daily kwh obtained from luku control module 

dayload=1.14 

dateformat = "%Y-%m-%d" 

 

# approximation of MB used on each datalog record row 

rownet = 0.0119601329 

# approx 27MB are spent each day using halotel internet 

daynet = 27 

luku_tariff=356.13 

 

def menu_msg(): 

    # Send the message with menu 

    bot.send_message(group_chat_id,"choose an <b>option</b> 

below:",parse_mode='html',reply_markup=kbd1) 

     

 

def start_command(update, context):  

  welcome_msg="\t\t\tWelcome! \n Type any of the following commands to get a reply:\n\t/start\n\t/help \n\tgrid 

status \n\t tanesco balance \n\t total consumption \n\t internet balance\n\ttanesco on \n\t inverter on " 

  chat_id=update.message.chat_id 

  #make sure the sender belongs to our chat group 

  if str(chat_id)==group_chat_id: 

      #update.message.reply_text(welcome_msg) 

      bot.send_message(group_chat_id,welcome_msg,parse_mode='html',reply_markup=kbd1) 

       

  else: 

      update.message.reply_text(intruder_error) 

def standard_responses(user_message): 

    con = pymysql.connect(host="127.0.0.1",user="tech ",password="TwO&",db="tech 

",charset="utf8mb4",cursorclass=pymysql.cursors.DictCursor,autocommit=True) 
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    cursor = con.cursor() 

    conn = create_engine('mysql+pymysql://techd').connect() 

    if user_message in ("status", "grid status","voltage","volts","battery", "bat","soc","charge","current","inverter 

current","ac current"): 

        #select today's date and most recent time 

        sql = 'SELECT * FROM logs ORDER BY `id` DESC limit 1'; 

        df = pd.read_sql(sql, conn) 

        period=pd.to_datetime(df['Date'])+df['Time'] 

        df.insert(0,"datetime",period, True) 

        sql = 'SELECT * FROM loads where `id` =1'; 

        df2 = pd.read_sql(sql, conn)         

        muda = str(df.datetime[0].strftime("%Y-%m-%d %H:%M")) 

        msg="" 

        msg+="\n\tData last fetched at: "+muda 

        if df['blackout'].astype('float64').values[0]!=1 and df2['tanesco_charger'].astype('float64').values[0]==1: 

            power = df['ac_voltage'].astype('float64').values[0]*df['ac_current'].astype('float64').values[0] 

            msg+="\n\tac Power: <b>"+str(power.round(1))+"</b> W" 

            msg+="\n\tac voltage: <b>"+str(df['ac_voltage'].astype('float64').round(1).values[0])+"</b> V" 

            msg+="\n\tac current: <b>"+str(df['ac_current'].astype('float64').round(2).values[0])+"</b> A" 

        else: 

            power = 220*df['inv_current'].astype('float64').values[0] 

            msg+="\n\tac Power: <b>"+str(power.round(1))+"</b> W"        

            msg+="\n\tac voltage: <b>"+str(220)+"</b> V" 

            msg+="\n\tac current: <b>"+str(df['inv_current'].astype('float64').round(2).values[0])+"</b> A" 

 

        msg+="\n\tac frequency: <b>"+str(df['frequency'].astype('float64').round(1).values[0])+"</b> Hz" 

        msg+="\n\tPV volts: <b>"+str(df['pv_voltage'].astype('float64').round(1).values[0])+"</b> V" 

        msg+="\n\tbat volts: <b>"+str(df['battery_voltage'].astype('float64').round(1).values[0])+"</b> V" 

        msg+="\n\tbat charge: <b>"+str(df['soc'].astype('string').values[0])+"%</b> " 

        #update.message.reply_text(welcome_msg) 

        bot.send_message(group_chat_id, msg,parse_mode='html',reply_markup=kbd1) 

        return 

    if user_message in ("plots", "charts","graphs", "plot", "chart","graph"):  

         

        bot.send_photo(group_chat_id, photo=open('img/svr_forecast_nextday.png', 'rb')) 

         

        bot.send_photo(group_chat_id, photo=open('img/month_blackoutday_heatmap.png', 'rb')) 

         

        bot.send_photo(group_chat_id, photo=open('img/dataset_hist_kde.png', 'rb')) 

         

        bot.send_photo(group_chat_id, photo=open('img/megaplot_boxplot.png', 'rb')) 

         

        bot.send_photo(group_chat_id, photo=open('img/hourly_megaplot.png', 'rb')) 

         

        bot.send_photo(group_chat_id, photo=open('img/weekly_megaplot.png', 'rb')) 

         

        bot.send_photo(group_chat_id, photo=open('img/correlation_heatmap.png', 'rb')) 

         

        return 

    if user_message in ("blackout", "power off", "power loss","blackout info"):  

        bot.send_photo(group_chat_id, photo=open('img/weekday_blackoutday_heatmap.png', 'rb')) 

        bot.send_photo(group_chat_id, photo=open('img/wday_blackoutday_heatmap.png', 'rb')) 

        bot.send_photo(group_chat_id, photo=open('img/month_blackoutday_heatmap.png', 'rb')) 

        bot.send_photo(group_chat_id, photo=open('img/dataset_blackoutday_heatmap.png', 'rb')) 

        sqlSelect='SELECT `blackoutForecast` FROM loads where `id` =1' 

        # Execute the SQL SELECT query 

        cursor.execute(sqlSelect) 

        # Fetch pydate 

        blackoutForecast = cursor.fetchall() 

        blackoutForecast = float(blackoutForecast[0]['blackoutForecast']) 

        if blackoutForecast<60: 

            msg="blackout occurance is <b>LOW</b> with <b>"+str(blackoutForecast)+"%</b> probability!  " 

            bot.send_message(group_chat_id,text = msg,parse_mode='html',reply_markup=kbd1) 
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        elif blackoutForecast>60: 

            msg="blackout occurance is <b>HIGH</b> with <b>"+str(blackoutForecast)+"%</b> probability!  " 

            bot.send_message(group_chat_id,text = msg,parse_mode='html',reply_markup=kbd1) 

        return 

    if user_message in ("tanesco balance", "balance","internet balance", "internet", 

"data","expire","expiry","credit balance","netbal"):  

        luku_status('lukubal') 

        return 

    if user_message in ("total consumption", "consumption", "load","luku"):  

        luku_status('lukubal') 

        return 

    if user_message in ("reset", "restart","grid reset"): 

        #update the loadControl_flag 

        updateStatement = "UPDATE loads set loadControl_flag = 'reset' where id=1" 

        cursor.execute(updateStatement) 

        bot.send_message(group_chat_id,text = "Grid will be restarted 

shortly!",parse_mode='html',reply_markup=kbd2) 

        return         

    if user_message in ("tanesco on", "charger on"): 

        #update the loadControl_flag 

        updateStatement = "UPDATE loads SET tanesco_charger = 1 WHERE id=1" 

        cursor.execute(updateStatement) 

        #update the loadControl_flag 

        updateStatement = "UPDATE loads set loadControl_flag = 'tanesco_on' where id=1" 

        cursor.execute(updateStatement) 

        bot.send_message(group_chat_id,text = "Tanesco power has been set 

ON!",parse_mode='html',reply_markup=kbd2) 

        return 

    if user_message in ("tanesco off", "charger off"): 

        #update the loadControl_flag 

        updateStatement = "UPDATE loads SET tanesco_charger = 0 WHERE id=1" 

        cursor.execute(updateStatement) 

        #update the loadControl_flag 

        updateStatement = "UPDATE loads set loadControl_flag = 'tanesco_off' where id=1" 

        cursor.execute(updateStatement)  

        bot.send_message(group_chat_id,text = "Tanesco power has been set 

OFF!",parse_mode='html',reply_markup=kbd2) 

        return 

    if user_message in ("forecast","forecasts", "predict","prediction","predictions"):  

        url = 'img/svr_forecast_nextday.png' 

        bot.send_photo(group_chat_id, photo=open(url, 'rb')) 

        #sqlSelect   = "select `blackoutForecast` from loads" 

        sqlSelect='SELECT `blackoutForecast` FROM loads where `id` =1' 

        # Execute the SQL SELECT query 

        cursor.execute(sqlSelect) 

        # Fetch pydate 

        blackoutForecast = cursor.fetchall() 

        blackoutForecast = float(blackoutForecast[0]['blackoutForecast']) 

        if blackoutForecast<60: 

            msg="blackout occurance is <b>LOW</b> with <b>"+str(blackoutForecast)+"%</b> probability!  " 

            bot.send_message(group_chat_id,text = msg,parse_mode='html',reply_markup=kbd1) 

        elif blackoutForecast>60: 

            msg="blackout occurance is <b>HIGH</b> with <b>"+str(blackoutForecast)+"%</b> probability!  " 

            bot.send_message(group_chat_id,text = msg,parse_mode='html',reply_markup=kbd1) 

        return 

    if user_message in ("inverter on", "inv on"):  

        #update the loadControl_flag 

        updateStatement = "UPDATE loads SET inverter = 1 WHERE id=1" 

        cursor.execute(updateStatement) 

        #update the loadControl_flag 

        updateStatement = "UPDATE loads set loadControl_flag = 'inverter_on' where id=1" 

        cursor.execute(updateStatement)   
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        bot.send_message(group_chat_id,text = "inverter has been set 

ON!",parse_mode='html',reply_markup=kbd2) 

        return 

    if user_message in ("inverter off", "inv off","inverter_off"): 

        sqlSelect   = "select `blackout` from logs ORDER BY `id` DESC limit 1'" 

        # Execute the SQL SELECT query 

        cursor.execute(sqlSelect) 

        # Fetch pydate 

        blackout = cursor.fetchall() 

        if blackout==0: 

            #update the loadControl_flag 

            updateStatement = "UPDATE loads SET inverter = 0 WHERE id=1" 

            cursor.execute(updateStatement) 

            #update the loadControl_flag 

            updateStatement = "UPDATE loads set loadControl_flag = 'inverter_off' where id=1" 

            cursor.execute(updateStatement)  

            bot.send_message(group_chat_id,text = "inverter has been set 

OFF!",parse_mode='html',reply_markup=kbd2) 

        else: 

            bot.send_message(group_chat_id,text = "inverter can't be turned OFF!, contact 

admin",parse_mode='html',reply_markup=kbd2) 

        return  

    msg=user_message.split() 

    if len(user_message.split()) >= 2  and msg[0] in ("lukuinit", "luku_init","internetinit", 

"internet_init","netinit","net_init"): 

        #routine to load luku or check luku bal 

  

        luku_status(user_message) 

        return 

    elif msg[0] in ("lukubal", "luku_bal"): 

        luku_status(user_message) 

        return 

    else: 

        #print(user_message) 

        #print("invalid data format entered") 

        bot.send_message(group_chat_id,text = "\t I don't understand you! \n \tType any of the following valid 

commands to get a reply:\n\t/start\n\t/help  ",parse_mode='html',reply_markup=kbd1) 

      

 

     

def handle_message(update, context): 

    # make user input case insensitive 

    user_message = str(update.message.text).lower() 

    #get incoming message chat_id and compare with our group chat id 

    chat_id=update.message.chat_id 

    if str(chat_id)==group_chat_id: 

            if user_message=="sub menu": 

                kbd = ReplyKeyboardMarkup(kbd_submenu,resize_keyboard=True)  

                bot.send_message(group_chat_id,"choose an option below:",parse_mode='html',reply_markup=kbd2) 

            elif user_message=="main menu": 

                kbd = ReplyKeyboardMarkup(kbd_mainmenu,resize_keyboard=True)  

                bot.send_message(group_chat_id,"choose an option below:",reply_markup=kbd1)  

            else: 

                #bot.send_message(group_chat_id,"congratulations you've selected "+text,) 

                standard_responses(user_message) 

 

    else: 

        update.message.reply_text(intruder_error) 

         

 

 

 

def button(update: Update, context: CallbackContext) -> None: 
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    query = update.callback_query 

    query.answer() 

     

    # This will define which button the user tapped on (from what you assigned to "callback_data". As I assigned 

them "1" and "2"): 

    user_message = query.data 

    user_message = str(user_message).lower() 

    #check to see if button user pressed corresponds to our standard replies 

    standard_responses(user_message) 

 

def main(): 

  

  check_alarms() 

   

  updater = Updater(bot_token, use_context=True) 

  dp = updater.dispatcher 

 

  dp.add_handler(CommandHandler("start",start_command)) 

  dp.add_handler(CommandHandler("help",help_command)) 

  #dp.add_handler(MessageHandler(Filters.text,handle_message)) 

  updater.dispatcher.add_handler(MessageHandler(Filters.text & ~Filters.command, handle_message)) 

  updater.dispatcher.add_handler(CallbackQueryHandler(button)) 

  dp.add_error_handler(error) 

  updater.start_polling() 

  updater.idle() 

 

 

#-------------------- beginning of program ------------------------- 

#start by greeting user and displaying menu button options 

print("starting...") 

check_alarms() 

 

''' 

keyboard = [ 

    [ 

        InlineKeyboardButton("grid status", callback_data='status'), 

        InlineKeyboardButton("Forecast", callback_data='forecast'), 

        InlineKeyboardButton("Charts", callback_data='plots'), 

    ], 

    [ 

        InlineKeyboardButton("tanesco on", callback_data='tanesco on'), 

        InlineKeyboardButton("tanesco off", callback_data='tanesco off'), 

        InlineKeyboardButton("help ", callback_data='/help'),   

        ] 

    ] 

 

reply_markup = InlineKeyboardMarkup(keyboard) 

#update.message.reply_text("Replying to text", reply_markup=reply_markup) 

bot.send_message(group_chat_id,"Greetings! choose an option below:",reply_markup=reply_markup) 

''' 

 

# access database and and get parameter status 
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