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Impacts of extreme weather events on mortgage risks and their evolution under
climate change: A case study on Florida

Raffaella Calabrese1, Timothy Dombrowski2, Antoine Mandel3, R. Kelley Pace4, Luca Zanin5,

Abstract: We develop an additive Cox proportional hazard model with time-varying covariates,
including spatio-temporal characteristics of weather events, to study the impact of weather ex-
tremes (heavy rains and tropical cyclones) on the probability of mortgage default and prepayment.
We compare the survival model with a flexible logistic model and an extreme gradient boosting
algorithm. We estimate the models on a portfolio of mortgages in Florida, consisting of 69,046
loans and 3,707,831 loan-month observations with localization data at the five-digit ZIP code level.
We find a statistically significant and non-linear impact of tropical cyclone intensity on default as
well as a significant impact of heavy rains in areas with large exposure to flood risks. These findings
confirm existing results in the literature and also provide estimates of the impact of the extreme
event characteristics on mortgage risk, e.g. the impact of tropical cyclones on default more than
doubles in magnitude when moving from a hurricane of category two to a hurricane of category
three or more. We build on the identified effect of exposure to flood risk (in interaction with heavy
rainfall) on mortgage default to perform a scenario analysis of the future impacts of climate change
using the First Street flood model, which provides projections of exposure to floods in 2050 under
RCP 4.5. We find a systematic increase in risk under climate change that can vary based on the
scenario of extreme events considered. Climate-adjusted credit risk allows risk managers to better
evaluate the impact of climate-related risks on mortgage portfolios.
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1 Introduction

In his seminal 2015 speech on “breaking the tragedy of the horizon,” Mark Carney, then Governor
of the Bank of England and Chairman of the Financial Stability Board (FSB), emphasized that
climate change could impact the soundness of financial institutions and pose a threat to global
financial stability (Carney, 2015). Since then, concern among central banks and regulators about
the implications of climate change for credit institutions has been growing steadily. In particular,
the FSB set up the Task Force on Climate-related Financial Disclosures (TCFD) to establish a set
of recommendations for “disclosures that will help financial market participants understand their
climate risks” (FSB-TCFD, 2017). The Network of Central Banks and Supervisors for Greening
the Financial System (NGFS), which gathers over 100 financial regulators representing almost all
major economies, has put forward as one of its core objectives “the development of environment
and climate risk management in the financial sector” (NGFS, 2017). The US Federal Reserve has
stressed in a recent report how climate change can increase financial shocks and financial instability
(Board of Governors of the Federal Reserve System, 2020). Finally, the Basel Committee on Bank-
ing Supervision has recently published 18 principles for the effective management and supervision of
climate-related financial risks (Basel Committee on Banking Supervision, 2022), which emphasize
in particular that “Banks should take into account the unique characteristics of [climate-related]
risks” (principle 8) and that “Banks should take material physical and transition risk drivers into
consideration when developing and implementing their business strategies” (principle 12).

Despite these major concerns among regulators and practitioners alike, the literature on the
impacts of climate change on credit risk is still in its infancy. This paper aims to contribute to
the development of the knowledge base on the topic by (a) providing two models of a mortgage
default and prepayment that account for risks due to extreme weather events, (b) applying them to
analyze the impact of tropical cyclones and heavy rainfall events on mortgage risk in Florida, and
(c) projecting future changes in flood risk exposure induced by climate change. We demonstrate
that the inclusion of weather-related variables leads to more accurate default and prepayment
predictions and find that climate change can increase default risk, particularly in flood-prone areas.

Mortgages are of particular concern in the context of climate-related financial risks because their
collateral, composed of immovable assets, is fully exposed to physical risks. Florida is a relevant case
study as it has been visited by some of the most destructive and devastating hurricanes on record in
the United States causing over $450 billion in damage since the early 20th century and because the
value of property in Florida insured against windstorm damage is the highest in the country and
on the rise (Malmstadt et al., 2009). Our analysis focuses on a portfolio constructed by extracting
origination and performance data from Moody’s Analytics mortgage dataset. This dataset offers
an overview of the non-agency U.S. mortgage market, which corresponds to loans within private-
label securitizations (PLS)6. New originations of these PLS largely vanished in 2008; however, in
recent years, they have begun to regain a small share of new first-lien originations, growing to
4.8% in Q1 of 2022 (Urban Institute Housing Finance Policy Center, 2022). As for weather-related
covariates, we focus on tropical cyclones and the associated flood risks because these are the most
quantitatively relevant hazards for the United States. For example, they represent over 50% of
damages for the period 1980–2020 in the ‘billion-dollar events’ database of the NOAA (Smith and
Katz, 2013). Furthermore, the increasing exposure to flood risks due to climate change (Hinkel

6PLS are mortgage-backed securities that are not issued by one of multiple government agencies.
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et al., 2014) flows through to financial risks via major natural disasters that can have devastating
impacts on real estate values, and subsequently, mortgage markets.

From a methodological perspective, we use a spatial additive survival approach as a scoring
model to incorporate the effects of extreme weather events in the analysis of credit risk. This
choice is motivated first by results from the literature on scoring models that show the importance
of including spatial effects to improve the performance of these models (Calabrese et al., 2019).
Second, the survival approach is widely used in credit scoring to predict not only if but also when
a loan might default (Thomas et al., 2017). Third, additive models have been used to capture
non-linear underlying covariate-response relationships Berg (2007); Calabrese et al. (2015). Yet, to
our knowledge, our paper is the first to merge these three approaches in a scoring model to capture
the effect of extreme weather events on the default and prepayment probability.

Finally, to project the impacts of climate change on credit risks, we perform a scenario analysis
that considers the evolution in the exposure to flooding risks given by the First Street (FS) Foun-
dation Flood model (First Street Foundation, 2020; Bates et al., 2021). Specifically, we consider
the exposure at the 2050 horizon (FS2050) according to the FS model under the RCP7 4.5 scenario,
compared to the current conditions (FS2020). For the FS2050 scenario, global climate projections
are applied to forecast how flood risk will change over the next 30 years through changing environ-
mental factors including sea-level rise, increasing cyclonic intensity, higher probabilities of cyclone
landfall locations at higher latitudes, shifting precipitation patterns, and shifts in river discharge.

Our results first highlight that there is an improvement in the predictive accuracy of default and
prepayment when we include weather-related risks. Specifically, we find that a borrower exposed to
a hurricane has a higher probability of default than when tropical cyclones do not occur, while no
significant effect is observed on the prepayment behavior. Moreover, we see a positive, statistically
significant impact of intense rain events on default probability when they occur in areas with a high
percentage of properties that are at risk for flood damage. However, the event of intense rainfalls in
areas at risk for flood damage tends to discourage prepayment. A homeowner without a loan has
only insurance to protect their equity in the event of a disaster, and many borrowers have difficulty
getting insurers to pay after a disaster. However, borrowers with a loan have the option to default if
insurance fails to pay. Therefore, borrowers have incentives to keep a loan (not prepay) as this can
limit their loss and shift it to the lender. Overall, our results confirm previous findings as far as the
impact of tropical cyclones on default is concerned. Furthermore, our approach allows quantifying
more precisely the specific impact of extreme weather events by accounting for spatio-temporal
effects, for the physical characteristics of the events under consideration and for the interactions
between hazard and exposure.

These features also enable us to provide a micro-founded assessment of the future impacts of
climate change on mortgage risk. In this respect, we find an increase in credit risk, in the sense
of first-order stochastic dominance, as one shift from FS2020 exposure to FS2050 exposure. The
average probability of default exhibits a mild increase between the FS2020 scenario and FS2050
scenario when considering (i) 300mm precipitation without a tropical storm (single event) and (ii)
200mm precipitation with a category two hurricane (compound event), respectively.8 The effect is

7Representative Concentration Pathways (RCP) are scenarios for pathways of greenhouse gas concentrations
developed by the Intergovernmental Panel on Climate Change (IPCC) that are used in particular to standardize
the projections of future climate impacts. RCP 4.5 corresponds to a likely range of global mean surface temperature
increase between 1.1 and 2.6°C in 2100 (IPCC, 2013).

8Scenarios (i) and (ii) are defined based on extreme events of rainfalls observed in Figure 4 below.
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more pronounced in the tail of the distribution of PDs at the 99th percentile with an increase of
9 and 10 basis points for scenarios (i) and (ii), respectively. We also find substantial geographical
heterogeneity in the impacts of climate change, even at the very local scale. The largest increase
in exposure and risk occurs in coastal areas and is likely due to sea-level rise.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 describes the data used in our analysis. Section 4 presents the modeling method considered
for the empirical analysis. Section 5 reports the estimation results for mortgage defaults and
prepayments and compares performance across various model specifications. Section 6 concludes.

2 Relation to the literature

From the methodological point of view, our paper contributes to the literature on credit scoring
and more precisely to the survival approach to credit scoring (Stepanova and Lyn, 2002). It more
specifically relates to recent contributions that add spatial features to this class of models (Zhu and
Pace, 2014; Calabrese and Crook, 2020). Considering the spatial dimension allows us to capture in
particular the geographical heterogeneity of the impacts of weather events.

From the empirical perspective, our paper contributes to the literature on the impacts of weather
extremes on credit risk, particularly mortgage default and prepayment risk. A number of studies
have found a significant impact of natural disasters on mortgage defaults. The literature has
investigated the impact of different types of climate events, such as wildfires (Issler et al., 2020),
hurricanes (Kousky et al., 2020; Vigdor, 2008), or natural disasters in general (Klomp, 2008). It
also has focused on different geographical areas such as California (Issler et al., 2020), Louisiana
and Mississippi (Vigdor, 2008) or the global scale (Klomp, 2008).

The contributions most closely related to ours are Rossi (2021), Kousky et al. (2020) and Ouazad
and Kahn (2021), which investigate the impact of tropical cyclones on the mortgage market. Rossi
(2021) finds a substantial impact of exposure to hurricanes on mortgage default. Kousky et al.
(2020) investigates mortgage credit risk in the aftermath of Hurricane Harvey. They find that, in
the short term, loans on moderately to severely damaged homes are more likely to become 90 days
delinquent. They further emphasize the key role of insurance in the longer term: in areas where
flood insurance is required, prepayment rates rise. In areas where flood insurance is not required,
default rates rise. Ouazad and Kahn (2021) analyses the impact of tropical cyclones on lenders’
behavior on the mortgage market. They find a significant effect of the disaster on lenders’ risk
perception as measured by securitization behavior: there is a substantial increase in securitization
activity in years following a large disaster, and the increase is larger in neighborhoods that do not
have a long history of hurricanes. They then simulate the impacts of climate change by considering
a scenario with declining real-estate prices. In contrast with these studies, Breia et al. (2019) find
that hurricanes in the Caribbean do not increase the risk of default.

A major difference between our approach and that of the preceding contributions is that we
consider the physical characteristics of extreme events as explanatory variables rather than the
ex-post assessment of damages. This approach allows us to link default probability to the physical
characteristics of weather events, e.g. we show that the impact of tropical cyclones more than
doubles in magnitude when moving from a hurricane of category two to a hurricane of category
three or more (see Table 2 below). More fundamentally, such an approach is necessary to integrate
changes in the distribution of extreme events induced by climate change and thus to develop
projections of the impacts of future climate change on mortgage default, as we do in Section 5.5.
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As a matter of fact, previous contributions (Breia et al., 2019; Klomp, 2008; Issler et al., 2020;
Kousky et al., 2020; Rossi, 2021) do not account for future changes in risk induced by climate
change.

Through this focus on the future impacts of climate change, the paper contributes to the
emerging literature on climate finance (see e.g. Battiston et al., 2017; Mandel et al., 2021). In this
setting, credit risks have been assessed at the sectoral or macro level on the basis of forward-looking
projections of climate impacts, but the models used are not backed by empirical estimations on
micro-level data.

3 Data

This section discusses the sources of data for our analysis and describes the process of cleaning and
preparing the final dataset for our models. The starting point for this data work is from Moody’s
Analytics, which provides details about mortgage loan characteristics and performance over time.
This mortgage data is combined with more data from the Federal Reserve Economic Data (FRED),
First Street Foundation (FS), National Flood Insurance Program (NFIP), the National Hurricane
Center, and Copernicus.

3.1 Moody’s Analytics Mortgage Data

The Moody’s mortgage dataset consists of several large tables providing an overview of the non-
agency mortgage market in the U.S. The full dataset contains origination details for more than 35
million mortgages; however, this total is reduced to roughly 24 million loans when requiring that
the loans have a recorded five-digit ZIP code. In addition to loan characteristics, the dataset also
contains monthly updates to track performance at the loan level, as well as deal-level information
regarding the mortgage-backed securities (MBS) that contain these loans.

We start with the set of mortgages that originated in 1990 or later and are labeled as active
in January 2010. This avoids capturing the surge in defaults associated with the 2008 recession.
We then examine the performance of those loans over the 2010–2019 period.9 In the January 2010
update, there are over 8 million unique loans in total, with over 6 million classified as active. This
set of active loans is further restricted to 30-year fixed-rate mortgages secured by single-family
properties.

Beyond those data restrictions, we remove any loans that already met our default definition
(90+ days delinquent) as of January 2010. We also remove any loans that appear to have errors in
their loan-to-value (LTV) ratios.10 Next, we narrow the focus to loans secured by properties in the
state of Florida,11 which is an intuitive case study for examining the impact of extreme weather
events. This yields 109,603 loans.

After merging the loan characteristics with their monthly performances, we made a few more
restrictions to ensure sufficient data for the analysis. First, any loans that are missing more than

9The monthly data is observed through August 2019.
10These are detected by identifying those where the original LTV ratio differs from the Moody’s cleaned origination

LTV ratio by more than 0.1%, which typically is just indicative of a misplaced decimal.
11In addition to Florida being the state that experiences the highest frequency of hurricane impacts, it is also a

recourse state that allows for deficiency judgments within a court’s discretion. Thus, this provides a conservative
setting for examining the impacts on mortgage defaults and the expected impacts would larger for non-recourse states.
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25% of monthly observations prior to termination are removed. Then we remove any loans that are
missing more than 50% of the dynamic LTV ratios.12 After removing any loans with insufficient
data, any remaining missing values are imputed using the most recent non-missing value, which
effectively assumes that LTV ratios remain constant until there is an update in the data. After all of
these merges and restrictions, we are left with a final set of 69,044 loans and 3,707,779 loan-month
observations.13

To further summarize the representative nature of this sample in regard to securitization, these
loans span 3,688 unique MBS deals, which corresponds to an average of 18.7 loans per deal. Further,
among those deals, there are 37 distinct lead managers, which are financial institutions that take
on the primary responsibility for issuing the securities. The distribution of these deals among
the largest financial institutions shows the largest share (Bank of America) at over 10%, and 17
institutions have a share > 1% (see Figure 10 in the online Appendix). However, nearly 30% of loans
have missing values for that variable. Thus, our sample is fairly representative of the non-agency
mortgage market. These private-label securitizations tend to be riskier than government-backed
loans, which contributes to the large default rates observed in our sample.14

3.2 Mortgage Outcomes

The mortgage outcomes fall under one of three categories: loan performance, prepayment, or
default. Since our sample period spans less than 10 years, many loans remain current throughout
the entirety of the period. Possible early termination options include default and prepayment. As
alluded to above, we define default in this study as a loan that is observed as 90+ days delinquent
or worse, which follows the guidelines set forth by the Basel Committee on Banking Supervision
(2017). We construct a binary variable following the rule:

defaulti,t =

{
1 if borrower i is 90+ days delinquent at time t
0 otherwise

(1)

This classification of 90+ days delinquent is derived from a variable named mbadelinqstatus
in the Moody’s dataset, which includes several categories for a distressed loan as it moves through
various delinquency stages, and out to foreclosure, REO (real estate owned), and liquidation. These
classifications follow from the methodology put forth by the Mortgage Bankers Association.

Prepayments are directly observed in the data with its own category in the mbadelinqstatus
variable. We construct a binary variable following the rule:

prepaymenti,t =

{
1 if borrower i fully repays the mortgage in advance at time t
0 otherwise

(2)

Once a loan is observed as terminated (either from default or prepayment), any subsequent
observations are removed since the termination has been observed. We find that roughly 50% of

12These incorporate not just the amortizing loan balances, but also the adjusted property values based on a
quarterly CBSA-level house price index from the Federal Housing Finance Agency.

13This filtering down from 109K loans to 69K loans does not substantially alter the observed default/prepayment
rates. However, it does result in the omission of the Miami metro from our sample since the dynamic LTV estimates
in the data are missing.

14We find that the observed default rates for our sample are similar to those observed in sub-prime mortgage
markets in Amromin and Paulson (2009) using a similarly large number of observations.
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loans in the sample terminate through default, 30% terminate via prepayment, and 20% remain
active throughout the entire period. Figure 1 depicts the default and prepayment rates for the loans
in our sample over the 2010–2019 period. Figure 9 in the online Appendix shows the distribution
of loan ages at termination to summarize the lifetime of the loans in our sample.
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Figure 1: Monthly time series of the percentage of prepayments and defaults of Moody’s mortgages
in Florida observed in 2010–2019. The percentages of events are relative to the number of non-
terminated loans as of the prior month.

Figure 1 provides a representation of the evolution of the prepayment (left-panel) and default
(right-panel) rates of a cohort of mortgages over time. As for the default rate, one observes a
downward trend which corresponds to the progressive sorting-out of higher quality mortgages and of
the decreasing incentives to default due to decreasing LTV ratios. However, one observes a spike in
default between late 2017 and early 2018. We posit that this spike can be explained by the exposure
of corresponding borrowers, in the previous four months, to some extreme climate events including
hurricanes (Irma and Nate) and intense rainfalls (maximum consecutive 5-day precipitation above
140mm). The actual quantitative impact of these extreme events on default is captured in our
subsequent analysis. Furthermore, our scenario analysis, investigates how the increased frequency
of such extreme events under climate change could increase the rate of mortgage defaults. As for
prepayment rates, the upward trend can be explained by the amortizing loan balances lowering the
cost of fully prepaying the mortgage. Regarding the two spikes in 2017 and 2019, these followed
periods of decreasing mortgage rates, which may be a possible explanation.

3.3 Predictor Variables

From the Moody’s dataset, we retain several predictor variables for our models. We use the included
dynamic LTV ratios in the Moody’s dataset to measure a borrower’s home equity and capture
strategic incentives to default which could arise when the value of the house is worth less than
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the mortgage. In addition to this, the data includes the borrower’s FICO score at origination,
as well as several characteristics about the loan/property. These include classifications for the
property’s occupancy type, number of units, loan purpose, loan product, whether there is an active
prepayment penalty, and the lead manager for the MBS deal containing the loan. Tables 11 and
12 in the online Appendix provide some summary statistics for these explanatory variables.

This set of loan-month observations from Moody’s data is then merged with macroeconomic
variables to control for general economic factors impacting the mortgage outcomes, in line with the
literature (Bellotti and Crook, 2009).

First, the variable “Mortgage30US” is the average 30-year fixed mortgage rate from Freddie
Mac (FRED, 2021a). This is used in combination with the fixed interest rate of each loan (i)
to construct a dynamic interest rate spread, denoted as Spread IRi,t, where t indexes time at a
monthly frequency.

Spread IRi,t = Loan Ratei −Mortgage30USt. (3)

This rate spread captures much of a borrower’s incentive to refinance a mortgage in order to attain a
lower rate. When property values are rising, termination of a loan via prepayment (and refinancing
to a new loan) can be an alternative for distressed borrowers who might otherwise default.

Second, we consider the state-level unemployment rate. The data is available at the monthly
frequency from the Bureau of Labor Statistics (FRED, 2021b). The unemployment rate is often
used in the literature as one of the main indicators to monitor the “health status” of the economy
over business cycles, and its impact on mortgage default and prepayment (Bellotti and Crook,
2009; Zanin, 2014; Gerardi et al., 2017). Furthermore, there is substantial evidence of the impact
of extreme weather events (Hsiang and Jina, 2014) and of hurricanes in particular (Ewing and
Kruse, 2005; Groen et al., 2020) on unemployment and thus on income. Although the evidence on
the long-term impact of extreme events is mixed (Deryugina et al., 2018), there is no ambiguity on
the short-term impacts that are the most relevant to explain mortgage defaults. In the aftermath
of extreme events, unemployment rises and income falls.

3.4 Weather Events

The key novelty of our approach is to integrate weather-related variables to account for the impact
of extreme weather events and of their spatio-temporal characteristics on mortgage risk. In the
Florida case, tropical cyclones are by far the most relevant hazards (Smith and Katz, 2013). They
can impact properties directly through wind damage, indirectly through flooding caused by heavy
rainfalls or storm surges, and through a combination of factors (Wahl et al., 2015). To account for
these potential impacts, we take into consideration the spatio-temporal characteristics of tropical
cyclones and heavy rainfall episodes at a high level of geographical granularity.

As regards tropical cyclones, the data source is the second-generation North Atlantic hurricane
database (HURDAT2; Landsea and Franklin, 2013) of the National Hurricane Center. The database
covers the period 1851 to 2019. It includes information on the name, date, hour (typically a record
every six hours), and typology of the event, its geographical coordinates, and its maximum wind
speed (in knots). However, it does not provide information on wind speed at the five-digit ZIP code
level. We estimate this information by applying the wind speed model proposed by Willoughby
et al. (2006) and implemented in the stormwindmodel R package.15 The model allows estimating the

15https://github.com/geanders/stormwindmodel.
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maximum sustained winds (in knots) for each five-digit ZIP code considering the tropical cyclone’s
track.

Wind speed (knots)

[0,33]

(33,63]

(63,82]

(82,95]

(95,130]

Hurricane Michael − 2018

Figure 2: Hurricane Michael’s track (October 2018) and the estimated maximum sustained wind
speeds (knots) by applying the wind speed model of Willoughby et al. (2006).

Figure 2 shows a graphical representation of the estimation for Hurricane Michael’s case in
2018. Hurricane Michael was one of the most recent major hurricanes (category three or greater)
in Florida. The plot reports a spatial detail at the county’s level instead of at the five-digit ZIP
code for better graphical visualization. The red line represents the tropical cyclone’s track, and
around, the estimated maximum sustained winds (in knots) for each location. We can see maximum
sustained winds greater than 95 knots (black areas) at Hurricane Michael’s landfall in Florida. After
estimating wind speed for each location, we have used the Saffir-Simpson hurricane wind scale to
classify the tropical cyclone category. Specifically, we have defined a categorical variable as follows:
no events (in the absence of tropical cyclones or wind speeds lower than 34 knots), tropical storm
(34–63 knots), hurricane category 1 (64–82 knots), hurricane category 2 (83–95 knots), hurricane
category 3+ (greater than 95 knots). In the 2010–2019 period, based on the National Hurricane
Center classification, Florida was exposed to eight tropical storms and six hurricanes. In particular,
Figure 3 displays how hurricanes of category 2+ have been rare events. However, they are important
events for risk managers because they can potentially cause material damages when they occur (e.g.,
Pielke et al. (2008)).

Looking at precipitations, several indices of intensity of rainfall are proposed in the literature

8



No tropical cyclone Tropical storm Hurricane Cat. 1 Hurricane Cat. 2 Hurricane Cat. 3+
0

25

50

75

100

Tropical storm Hurricane Cat. 1 Hurricane Cat. 2 Hurricane Cat. 3+

0.0

0.5

1.0

1.5

P
er

ce
nt

ag
e

Figure 3: Histogram of the tropical cyclone events in Florida during the 2010–2019 period. Per-
centages calculated on 3,707,779 loan-month observations.

(e.g. Zhang et al., 2011). We consider using as a measure of rainfall intensity the monthly maximum
accumulated consecutive 5-day precipitation (Rx5day) in millimeters (mm). The Rx5day is com-
puted as the max(PRECtmy), where PRECtmy is the precipitation amount > 1mm for the 5-day
interval ending t, in the month m of the year y. We compute the Rx5day using the information
on total precipitations recorded in the ERA5 database of Copernicus (Hersbach et al., 2018). The
data on precipitations (accumulated liquid and frozen water, comprising rain and snow, that falls
to the Earth’s surface) are in a regular latitude-longitude grid of 0.25◦ × 0.25◦ (≈ 30 km) with an
hourly temporal resolution.

For each five-digit ZIP code, we have associated the value of Rx5daymy (computed for each grid
point) with the loan-month observation that satisfies the minimum Haversine distance16 between
the centroid of the five-digit ZIP code and each grid point. After the merging process, we observe
the median distance is 10.37 km between the two geographical points, while the maximum distance
is 18.07 km. Some studies use Rx5day to describe flood risks (e.g. Wu and Huang, 2015). In areas
that drain slowly, heavy rain increases the risk that water accumulates rapidly, causing flooding.
In addition, heavy rain increases the risk that rivers can overflow their banks. Figure 4 shows
that heavy rain mainly occurs jointly with a tropical cyclone. So that, we are in the presence
of compound extreme weather events. The median values of Rx5day are typically highest as the
tropical cyclone’s category increases. However, we also observe some intense rainfall events that
occur outside a tropical cyclone.

16The distance between two points on a sphere given the information on latitude and longitude.
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Figure 4: Boxplot of the monthly Rx5day indicator in the absence or during a tropical cyclone in
the areas where there is a Moody’s mortgage during the 2010–2019 period.

3.5 Flood Risk and Insurance

Lastly, we incorporate measures of exposure to flood risk and insurance take-up. For exposure to
flood risk, we use data from the First Street Foundation (FS) Flood Model (First Street Foundation,
2020; Bates et al., 2021). The FS model is a high-resolution model of the risk of flooding in the
contiguous United States due to rainfall (pluvial), riverine (fluvial), and coastal surge flooding
(First Street Foundation, 2020; Bates et al., 2021). It provides in particular an estimate of the
percentage of properties at risk in 2020 at the ZIP code level. We denote this variable as (FS2020)
and use it as a benchmark measure of exposure to flood risk, corresponding to current climate
conditions. In addition to the 2020 estimates, the FS dataset includes projections of the impact
of climate change on the percentage of properties exposed to flood risk. Namely, the FS model
considers the IPCC RCP 4.5 climate change scenario, which corresponds to radiative forcing being
stabilized at 4.5W.m−2 after 2100 and to a likely range of global mean surface temperature increase
between 1.1 and 2.6°C in 2100 IPCC (2013). For this climate change scenario, it estimates the
share of properties exposed to flood risk in 2050. We denote this variable as (FS2050) and use it
as a measure of exposure to flood risk under future conditions induced by climate change.

When considering flood risk and the impacts of climate change, insurance is an important factor.
The National Flood Insurance Program (NFIP) is the predominant flood insurance provider in the
U.S. They also publish policy-level data that we use to compute monthly take-up rates at the ZIP
code level (FEMA, 2022). These are computed by dividing the number of active policies in the ZIP
code (# NFIP Policies) by the total number of properties provided by the FS data (# Properties).
We denote this as FItakeupj,t where j is the j-th 5-digit ZIP code

FItakeupj,t =
# NFIP Policiesj,t

# Propertiesj
. (4)
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4 Methodology

We model the probability of mortgage default and prepayment using an additive Cox proportional
hazard model with time-varying covariates. This time-to-event framework is appealing because it
allows assessing the hazard of default or prepayment over the mortgage life-cycle when predictors
are changing over time.

We consider a Generalized Additive Model (GAM) to flexibly capture non-linearities in the
outcome-predictor relationships. GAM framework allows to relax assumptions on the functional
form that represents the relationship between predictors and outcome. Instead of imposing a given
parametric relationship, the function is estimated by the model. To avoid overfitting, we use a
penalty to estimate the splines, therefore called penalized splines. Studies in different disciplines
show that penalized splines increase the interpretability of the models (e.g. Zanin and Marra, 2012;
Djeundje and Crook, 2019b), as well as the predictive accuracy (e.g. Berg, 2007; Zanin, 2020).

In line with the literature (Stepanova and Lyn, 2002; Bellotti and Crook, 2009; Calabrese and
Crook, 2020), we use a survival approach not only to predict the probability that a borrower will
default or prepay the mortgage loan but also to study the behavior of these probabilities over
time. Let z = (z1,z2,...,zk)

′ be a vector of k covariates and let T be a corresponding absolutely
continuous time to default or prepayment. We consider a Cox model which is specified by the
hazard relationship

λ(t; z) = lim
h→0+

P (t ≤ T < t+ h|T ≥ t, z)/h = λ0(t)r(t, z) t > 0 (5)

In equation (5), λ0(t) is a baseline hazard function and the risk function r(t, z) represents the
relationship between the explanatory variables z and the hazard function. Cox (1972) proposes the
exponential form for the relative risk function which yields the model

λ(t; z) = λ0(t) exp [Z(t)′β] (6)

where Z(t) = [Z1(t),...,Zk(t)]
′ is a vector of time-invariant and time-dependent covariates obtained

as functions of t and the basic covariate vector z. The baseline hazard function λ0(t) corresponds
to Z(t) = [0,0,...,0]′ for all t and β = [β1,...,βk]

′ is a vector of unknown regression parameters. The
additive Cox model generalises equation (6) with the following semiparametric form

λ(t; z) = λ0(t) exp

 k∑
j=1

ηj [Z(t)]

 (7)

where {ηj(·), j = 1,2,...,k} are univariate unknown smooth functions. Some empirical analyses
show that they could reach higher predictive accuracy using survival additive models for credit risk
(Djeundje and Crook, 2019a; Luo et al., 2016).

Use of maximum likelihood to estimate the additive Cox proportional model in equation (7)
would result in over-fitting estimates of the splines ηj . For this reason, additive models are usually
fit using penalized likelihood maximization, in which each smooth function in the likelihood has a
penalty (Hastie and Tibshirani, 1990). To control the trade-off between penalizing and over-fitting,
each penalty is multiplied by an associated smoothing parameter (Wood, 2017).

We define ηj = [ηj(zj1),ηj(zj2),...]
T so ηj = Θjβj where Θj is an n × pj model matrix for the
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smooth that contain its basis functions evaluated at the observed values, while βj is the correspond-
ing coefficient vector. We can write the smoothing penalty for ηj as βTj Sjβj , where Sj contains
known coefficients. For identification, we apply the following constraint

∑
i ηj(zji) = 0.

If we consider the smoothing parameters λ, we can write a combined smoothing penalty as∑
j

λjβ
T
j Sjβj =

∑
j

λjβ
TSjβ = βTSλβ

where Sj is a zero padded version of Sj and Sλ =
∑

j λjSj . We now apply a penalised likelihood
approach

β̂ = arg max
β

[
l(β)− β

TSλβ

2

]
. (8)

For the maximization of (8), we use the penalized iteratively reweighted least squares (PIRLS)
approach suggested by Wood et al. (2017) and suitable for large sample sizes.

Different typologies of reduced rank model terms are available in the literature for representing
the unknown functions ηj (for example, cubic splines, P-splines, thin-plate splines) that are included
in the model (7). Wood (2017) provides an overview of the smooth functions available. If the
covariate described in Section 3.3 is a continuous variable, we consider ηj as a penalized cubic
regression spline for a low setup cost (Wood, 2017, Sections 5.3.1 and 5.3.2).

To study the joint impact of intense rainfall (Rx5day) and the exposure of properties to flooding
risks (FS2020) on mortgage default and prepayment, we include in the model a spline for the in-
teraction between these two variables. To estimate this spline, we use a tensor product interaction
approach based on the ANOVA decomposition of the smooths as it is well-suited to investigate
smooth models with main effects and an interaction structure (Wood, 2017, Section 5.6.3). Par-
ticularly, the marginal smooths of Rx5day and FS2020 in the tensor product are summed to zero
before constructing the tensor product basis to ensure identification.

Finally, we consider a smooth function ηj that captures the spatial effects in the model. We
consider a low-rank Gaussian process smooth based on the Matérn correlation function as sug-
gested by Kammann and Wand (2003) to ensure numerical stability (Wood, 2017, Section 5.8.2).
Empirically, we use the latitude and longitude coordinates of the centroids of the 5-digit ZIP code
where the property is located.

5 Empirical results

5.1 Model selection

Before estimating the models, we split the observations in a training sample and a control sample
within a K-fold cross-validation framework (with k set to 5) using the createfolds() function
available in the R package caret (Kuhn et al., 2020). We construct the K-fold by sampling from
the list of 69,046 loans. Afterward, we merge the training and control sample IDs with loan-month
observations to estimate the model and assess the predictive accuracy. For simplicity, we describe
the results of one of the five training samples defined within the cross-validation framework. As we
found similar estimates on the different sets, we can infer that our empirical results are robust.

We estimate the additive Cox proportional hazard model with time-varying covariates using
the bam() function implemented in the R package mgcv (Wood, 2021). To choose the sets of
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Default model Prepayment model

Model Variables AIC BIC AIC BIC

Additive Base model 259,530.46 263,229.54 191,369.92 195,316.50

Survival Cyclone 259,339.20 263,110.40 191,366.08 195,354.68
Rx5day 259,356.52 263,175.24 191,277.96 195,301.38
Cyclone+Rx5day 259,235.84 263,081.46 191,283.84 195,351.42

Table 1: Model selection measures. The models with the lowest AIC and BIC are reported in bold.

independent variables to include in the semiparametric models, we consider the Akaike Information
Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC). According to these criteria,
the best model shows the lowest AIC or BIC.

We report the results in Table 1 for the scoring and the prepayment models. The base model
is without any weather-related variables. For the default model, the lowest AIC and BIC values
are achieved when tropical cyclones (Cyclone) and intense rainfalls (Rx5day) are included. On
the contrary, the prepayment model shows the lowest AIC and BIC when only intense rainfalls
(Rx5day) are considered. The two semiparametric approaches show coherent results for the scoring
and the prepayment models.

Sub-sections 5.2 and 5.3 below describe the estimates for the additive survival model (6) that
minimize the AIC and the BIC for the probability of default and the probability of prepayment.

5.2 Estimation results for mortgage defaults

We compare the results obtained from the estimated survival model ignoring (base model) and
including weather variables (base model + weather). Table 2 reports the parameter estimates, the
standard deviation and the significance level for the parametric components. The semiparametric
components are s(·) and ti(·), where s(·) indicates that the variable is estimated as an univariate
smooth function, while ti(·) represents a tensor product interaction that is appropriate when the
main effects are also included. Table 2 reports the estimated degrees of freedom (edf ) and the
approximate significance for the semiparametric components. Therefore, the values for the semi-
parametric components represent the strength of the relationships, and not the direction of the
relationship as the parametric components show. Figure 5 shows the plots of the semiparametric
components for the continuous variables.

We perform a sensitivity analysis for the variables of tropical cyclones and the best goodness-of-
fit is achieved for a four-month lag between the mortgage default and the tropical cyclone variables.
Some important results in Table 2 show that all the tropical cyclone variables are significant and
have direct effects on the default probability, in line with the expectations. Of interest, we note
that the parameter estimate of tropical cyclones more than doubles in magnitude when moving
from a hurricane of category two (with a coefficient equal to 1.657) to a hurricane of category
three or more (with a coefficient equal to 3.347). This is in line with damages associated with the
description of Saffir-Simpson Hurricane Wind Scale,17 which describes how a hurricane of category
3+ can produce devastating or catastrophic damages, such as loss of the roof structure and/or some

17https://www.nhc.noaa.gov/aboutsshws.php
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exterior walls of homes. Similar results have been captured by Rossi (2021).
In Figure 5, we report among the estimated smooth components the main effects of Rx5day

and the FS2020 and the structure of the interaction between Rx5day and FS2020. Coherently
with expectations, we observe that Rx5day has a non-linear increasing pattern on the default
probability. This means that the survival probability of the mortgage reduces as intense rainfalls
and likely damages to properties occur (for example, intense rainfalls increase the probability of
flooding events or flash flooding; see Section 3.3). FS2020 has a significant impact on the default
probability at a 0.1 level of significance. When we consider the interaction between Rx5day and
FS2020, the level of significance increases to 0.05. We can observe that intense rainfalls increase
the probability of default when occurring in the area where properties are most exposed to flood
risk. Intense rainfalls in areas not exposed to flood risk do not have an impact on the survival
probability of the mortgage.

We find some interesting results for the mortgage and property characteristics. Specifically,
we observe a non-linear positive highly significant relationship between the LTV ratio and the
default probability (Figure 5) that suggests how borrowers with less home equity (larger LTV)
are more likely to default. Loans taken out as the result of refinancing activities are less likely
to default compared to the baseline group of new purchase mortgages. The default probability
rises with the riskier categories so that Alt-A loans are more likely to default than prime loans,
subprime loans are more likely to default than Alt-A, and the unknown category is the most likely to
default. Mortgages for second homes or investment properties (non-owner-occupied) are less likely
to default when compared to the baseline group of owner-occupied properties. Note that both of
these categories have higher underwriting standards. The variable FItakeupt−4 measuring the flood
insurance coverage has a significant non-linear inverse relationship with the default probability. This
suggests that flood insurance protects mortgage borrowers against credit risk, in line with Kousky
et al. (2020). Coherently with the expectations and the literature (Bellotti and Crook, 2009; Tian
et al., 2016) we obtain that the unemployment rate has a significant direct effect on the default
probability. The spatial components are highly significant, as shown by previous studies (Calabrese
and Crook, 2020). Some heterogeneous spatial effects are captured and displayed in the map of
Florida and reported in Figure 5. We can observe how mortgages for properties located mainly in
the western coastal areas show the highest probability of default.

5.3 Estimation Results for Mortgage Prepayment

In the prepayment survival model, the categorical variables for storm classification are omitted
as Table 1 shows that when they are included in the model, the AIC and BIC increase. These
variables are also not statistically significant. One additional difference between the prepayment
model and the default model is that the dynamic predictor variables are only one month lagged,
since the observation of prepayment is immediate compared to the 90-day lag built into the default
definition described in Section 3.2.

Table 3 shows that mortgages for non-owner-occupied (investment) properties are less likely to
prepay. From the mortgage characteristics, higher prepayment penalties lower the probability of
prepayment. For loan purpose, our baseline group is new purchase loans. Loans resulting from
refinancing activity are less likely to prepay, whereas construction to permanent loans are more
likely to prepay, albeit this is only marginally significant. Conversely, regular construction loans
are less likely to prepay. In regard to the asset type or risk class of the mortgages, the negative
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Base Model Base Model+Weather

Variables Estimates Std. Error Estimates Std. Error

Occupancy Type (Base:Owner)
Second Home −0.126∗∗∗ 0.041 −0.126∗∗∗ 0.041
Vacant −9.583 52.390 −9.559 52.332
Other −0.007 0.580 −0.026 0.580
Non-Owner Occupied −0.101∗∗∗ 0.023 −0.102∗∗∗ 0.023
Unknown 0.317∗∗∗ 0.059 0.318∗∗∗ 0.057
Number of Units 0.054∗ 0.028 0.053∗ 0.028

Mortgage Characteristics

Loan Purpose (Base: Purchase)
Construction −0.122 0.105 −0.124 0.105
Cash Out Refinancing −0.112∗∗∗ 0.016 −0.113∗∗∗ 0.016
Construction to Permanent 0.032 0.219 0.032 0.219
Debt Consolidation −0.221∗∗ 0.090 −0.222∗∗ 0.090
Home Improvement −0.357∗ 0.193 −0.356∗ 0.193
Refinancing −0.158∗∗∗ 0.022 −0.158∗∗∗ 0.022
Other −0.126 0.292 −1.128 0.292
Unknown 0.347∗∗∗ 0.043 0.346∗∗∗ 0.043

Loan Class (Base: Prime)
Alt-A 0.052∗∗ 0.023 0.051∗∗ 0.023
Subprime 0.161∗∗∗ 0.031 0.160∗∗∗ 0.031
Unknown 0.340∗∗∗ 0.058 0.339∗∗∗ 0.058

Edf Edf

s(LTVt−4) 1.987∗∗∗ 1.987∗∗∗

s(FICO) 4.781∗∗∗ 4.781∗∗∗

Macroeconomics + Insurance
s(FItakeupt−4) 1.002∗∗∗ 1.411∗∗∗

s(Spread IRt−4) 5.273∗∗∗ 5.258∗∗∗

s(Unemployment Ratet−4) 1.993∗∗∗ 1.992∗∗∗

Spatial Component
s(lat,lon) 15.548∗∗∗ 15.172∗∗∗

Weather Variables
ti(Rx5dayt−4) 3.236∗∗∗

ti(FS2020) 1.617∗

ti(FS2020, Rx5dayt−4) 2.839∗∗

Estimates Std. Error

Tropical Cyclone (Base: No event)
Tropical stormt−4 0.469∗∗∗ 0.063
Hurricane of category 1t−4 1.474∗∗∗ 0.189
Hurricane of category 2t−4 1.657∗∗∗ 0.507
Hurricane of category (3+)t−4 3.347∗∗∗ 0.324

Deviance explained 6.30% 6.45%
Loan-month observation count 2.75M 2.75M

Table 2: Estimates for the default probability. For the parametric components, we report the
parameter estimates, the standard error, and the statistical significance. For the smooth function
components (s(·) or ti(·)), we report the edf (estimated degrees of freedom) and the associated
approximate significance. We include the number of months from origination and fixed effects for
the MBS lead manager. P-value: ∗∗∗ < 0.01,∗∗< 0.05,∗< 0.10.
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Figure 5: Estimated smooth components for the continuous variable in the default model. The
results are on the scale of the respective linear predictors. Dashed lines represent 95% Bayesian
credible intervals. We report the estimated degrees of freedom on the Y-axis in round brackets.
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estimate for Alt-A is not significant relative to the baseline of prime loans. Subprime mortgages
exhibit significance with their lower prepayment risk compared to prime loans. This may naturally
follow from prime loans generally being for larger dollar amounts, and thus, the benefits from
refinancing to a lower rate are greater for these larger loans.

Coherently with the expectations, higher flood risk is associated with a lower probability of
prepayment, as Figure 6 shows. From the same Figure we can note that borrowers with higher
FICO score and lower LTVt−1 are more likely to prepay their loans. Higher credit scores are usually
associated with more financially literate borrowers (e.g. Duca and Kumar, 2014; Bajo and Barbi,
2018).

In line with Quercia et al. (2016), higher unemployment rates are associated with a higher
probability of repayment. Analogously to the probability of default, the spatial component is also
highly significant for the probability of prepayment. However, we note that weather variables show
different behaviors for the two probabilities. For example, the interaction between Rx5dayt−1 and
FS2020 is not significant for the probability of prepayment but it is for explaining the default
event. Both the weather variables Rx5dayt−1 and FS2020 are significant but their interaction is
not. Some non-linear spatial effects are reported in the map of Florida in Figure 6. We can observe
how, after controlling for several factors, prepayment is most likely in the northern part of the
Florida panhandle.

5.4 Model Performance

To assess the performance of our survival model, we compare its predictive accuracy with a logistic
regression approach and an extreme gradient boosting tree approach (see online Appendix A for
details on these models). The logistic approach is widely used in the banking industry (Thomas
et al., 2017). The XGBoost approach has recently been put forward as a method of choice for credit
risk assessment (Chang et al., 2018) and credit scoring (Gunnarsson et al., 2021; Xia et al., 2017).

We compare predictive accuracy between these approaches and our survival model (5) when
excluding or including weather-related variables using a five-fold out-of-sample cross-validation and
a five-fold out-of-time cross-validation. We assess the predictive accuracy using the Area under the
ROC Curve (AUC), H-measure (H), and the Kolmogorov-Smirnoff (KS) statistic analogously to
Calabrese and Crook (2020).

In Table 4, we report the results of the five-fold out-of-sample cross-validation. We observe
that all the models estimating the probability of default and including the weather variables tend
to outperform the models without weather-related variables. As discussed in Section 5.3, the
tropical cyclone event has no statistically significant impact on prepayment probability. Therefore,
we consider only Rx5day as a weather-related variable in the GAM survival and GAM logistic
for prepayment. The XGBoost outperforms the survival and logistic models for both default and
prepayment. However, some measures show only a small improvement.

To further investigate the model performance, in Figure 15 in Appendix D, we compare the
observed percentage of default and the predicted one, estimated by including and excluding the
weather-related variables, over time in the out-of-sample. Figure 16 in Appendix D reports a similar
time series for the probability of prepayment. We note that the survival and logistic GAMs show
similar results for the default probability. If we include weather-related variables in these models,
this helps in capturing some important spikes in the time series.

Both Figures 15 and 16 show that the XGBoost, with or without including weather events,



Base Model Base Model+Weather

Variables Estimates Std. Error Estimates Std. Error

Occupancy Type (Base: Owner)
Second Home 0.059 0.037 0.060 0.037
Vacant 0.861 0.709 0.807 0.709
Other −8.354 43.857 −9.264 72.190
Non-Owner Occupied −0.250∗∗∗ 0.023 −0.241∗∗∗ 0.023
Unknown 0.434∗∗∗ 0.062 0.441∗∗∗ 0.062
Number of Units −0.154∗∗∗ 0.028 −0.150∗∗∗ 0.028

Mortgage Characteristics

Prepayment Penalty −0.620∗∗∗ 0.171 −0.616∗∗∗ 0.171
Loan Purpose (Base: Purchase)
Construction −0.537∗∗∗ 0.202 −0.545∗∗∗ 0.202
Cash Out Refinancing −0.220∗∗∗ 0.019 −0.217∗∗∗ 0.019
Construction to Permanent 0.274∗ 0.161 0.267∗ 0.162
Debt Consolidation −0.300∗ 0.169 −0.280∗ 0.169
Home Improvement −0.275 0.230 −0.276 0.230
Refinancing −0.074∗∗∗ 0.023 −0.070∗∗∗ 0.023
Other −0.378 0.322 −0.376 0.322
Unknown 0.058 0.057 0.058 0.057

Loan Class (Base: Prime)
Alt-A −0.017 0.023 −0.017 0.023
Subprime −0.076∗∗ 0.036 −0.075∗∗ 0.036
Unknown −0.378∗∗∗ 0.074 −0.378∗∗∗ 0.074

Edf Edf

s(LTV t−1) 1.983∗∗∗ 1.983∗∗∗

s(FICO) 4.405∗∗∗ 4.398∗∗∗

Macroeconomics + Insurance
s(FItakeupt−1) 6.471∗∗∗ 6.346∗∗∗

s(Spread IRt−1) 5.046∗∗∗ 4.991∗∗∗

s(Unemployment Ratet−1) 3.713∗∗∗ 3.742∗∗∗

Spatial Component
s(lat,lon) 20.069∗∗∗ 18.744∗∗∗

Weather Variables
ti(Rx5dayt−1) 2.383∗

ti(FS2020) 3.900∗∗∗

ti(FS2020, Rx5dayt−1) 1.012

Deviance explained 8.57% 8.64%
loan-month observation count 2.91M 2.91M

Table 3: Estimates for the prepayment probability. For the parametric components, we report the
parameter estimates, the standard error, and the statistical significance. For the smooth function
components (s(·) or ti(·)), we report the edf (estimated degrees of freedom) and the associated
approximate significance. We include the number of months from origination and fixed effects for
the MBS lead manager. P-value: ∗∗∗ < 0.01,∗∗< 0.05,∗< 0.10.18
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Figure 6: Estimated smooth components for the continuous variable in the prepayment model.
Results are on the scale of the respective linear predictors. Dashed lines represent 95% Bayesian
credible intervals. We report the estimated degrees of freedom on the Y-axis in round brackets.
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Default model Prepayment model

Model Base Model+ AUC H KS AUC H KS

GAM No Extremes 0.7117 0.1280 0.3199 0.7504 0.1637 0.3800

Survival Cyclone 0.7134 0.1291 0.3221 . . .
Rx5day 0.7131 0.1291 0.3199 0.7512 0.1645 0.3798
Cyclone+Rx5day 0.7140 0.1300 0.3214 . . .

GAM No Extremes 0.7115 0.1268 0.3204 0.7528 0.1654 0.3855
Logistic Cyclone 0.7132 0.1279 0.3214 . . .

Rx5day 0.7130 0.1277 0.3193 0.7535 0.1664 0.3863
Cyclone+Rx5day 0.7139 0.1285 0.3211 . . .

XGBoost No Extremes 0.7249 0.1412 0.3380 0.7787 0.2083 0.4288
Logistic Cyclone+Rx5day 0.7252 0.1413 0.3389 0.7807 0.2122 0.4308

Table 4: The average predictive accuracy measures on five-fold out-of-sample cross-validation. The
sample size of each fold is about 743,990 loan-month observations. The models with the best
predictive accuracy are in bold.

better captures the spikes in the time series than the GAM models. This is because this algorithm
sequentially combines base models to achieve the best predictive accuracy.

We also perform a five-fold out-of-time cross-validation. Table 5 reports the results of the
predictive accuracy measures. Analogously to the results observed for the out-of-sample cross-
validation, all the models estimating the probability of default and prepayment and including
the weather variables tend to outperform the models without weather-related variables. We also
confirm again that the XGBoost outperforms the survival and logistic models for both default
and prepayment. However, as a point of attention in interpreting the results of defaults, we point
out that in the period used for training the models (2010-2017), we do not observe the most acute
events of hurricanes (categories greater than two) that we observe instead in the out-of-time sample.
Therefore, when evaluating the predictive accuracy of the models, it is likely that they could suffer
from some under-performance. We do not report the Figures of the percentage of observed default
and predicted one over time, as we obtain qualitative similar evidence as observed for Figures 15
and 16, but restricted to the out-of-time sample.

Overall, for all models, the inclusion of weather-related variables improves predictive accuracy.
In terms of relative performance, the XGBoost approach has the best predictive accuracy. However,
the next session shows that the XGBoost approach leads to incoherent results when used for future
projections and scenario analysis.

Further to this performance analysis, we highlight, in online Appendix C, the impact of the
inclusion of extreme weather events on the survival curves for two representative mortgages from
our dataset.
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Default model Prepayment model

Model Base Model+ AUC H KS AUC H KS

GAM No Extremes 0.6121 0.0520 0.1956 0.5978 0.0367 0.1493

Survival Cyclone 0.5933 0.0491 0.1581 . . .
Rx5day 0.6128 0.0611 0.1918 0.6002 0.0369 0.1538
Cyclone+Rx5day 0.6348 0.0654 0.2201 . . .

GAM No Extremes 0.6137 0.0479 0.1879 0.5974 0.0351 0.1472
Logistic Cyclone 0.5906 0.0441 0.1484 . . .

Rx5day 0.6145 0.0569 0.1876 0.5996 0.0360 0.1517
Cyclone+Rx5day 0.6317 0.0623 0.2121 . . .

XGBoost No Extremes 0.5981 0.0363 0.1656 0.5925 0.0431 0.1344
Logistic Cyclone+Rx5day 0.6523 0.0911 0.2275 0.6042 0.0486 0.1523

Table 5: The average predictive accuracy measures on five-fold out-of-time cross-validation. The
training sample covers the period from 2010 to 2017, while the test sample the period from January
2018 to August 2019. The sample size of each test set fold is about 57,660 loan-month observations.
The models with the best predictive accuracy are in bold.

5.5 Scenario analysis

To assess the potential impact of extreme climate events on mortgage default risk, we project the
probability of default due to climate-induced changes in exposure to flooding from the First Street
Foundation (FS) Flood Model.

The FS model provides high-resolution probabilistic projections of the exposure to flooding in
the contiguous United States due to rainfall (pluvial), riverine (fluvial), and coastal surge flooding
(First Street Foundation, 2020; Bates et al., 2021). More precisely, it applies global climate model
projections to forecast how exposure to flood risk will change over the next 30 years through chang-
ing environmental factors including sea-level rise, increasing cyclonic intensity, higher probabilities
of cyclone landfall locations at higher latitudes, shifting precipitation patterns, and shifts in river
discharge. The FS model focuses on the RCP 4.5 scenario, which corresponds to We thank the
reviewer for this comment and we add a part in the conclusions where we address the main limita-
tions of the paper. at 4.5W.m−2 after 2100 and to a likely range of global mean surface temperature
increase between 1.1 and 2.6°C in 2100 (IPCC, 2013). The key inputs of the FS-model to our anal-
ysis are the share of properties estimated at risk of flooding per ZIP code under current climate
conditions in 2020 (FS2020) and under the RCP4.5 climate change scenario in 2050 (FS2050).

To analyze the impact of climate-induced changes on default risk, we performed a scenario anal-
ysis on the portfolio of mortgages active in January 2019. We consider hurricanes and heavy rains
as extreme weather events. We analyse two scenarios of weather events: (i) 300mm precipitation
(Rx5day) without a tropical storm and an (ii) 200mm precipitation (Rx5day) with a category two
hurricane. The properties’ exposure to flood risk are by (*) the FS-model with current climate
conditions (FS2020) and (**) the FS-model with RCP 4.5 2050 climate conditions (FS2050). The
comparison of these two estimates allows us to compare the change in mortgage default risk due to
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climate change. We use the XGBoost and the survival model as scoring models.
Figure 7 shows the percentage change in the default probability under the FS2050 and the

FS2020 flood risk for the scenario (i) (300mm precipitation and no hurricane).18 The left plot on
the left hand side in Figure 7 shows the results for the XGBoost and the one on the right hand side
for the survival model. These results highlight that the XGBoost generates incoherent estimates
for the default probability as the default risk decreases when the exposure to flooding risk increases
from FS2020 to FS2050. On the contrary, the survival approach shows a systematic increase in risk
as one shifts from FS2020 to FS2050 as well as a default probability differential increasing with the
flooding risk differential (see the right panel of Figure 7).
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Figure 7: Scatter plots of the percentage change in the default probability under the FS2050
compared to FS2020 flood risk for the scenario (i) (300mm precipitation and no hurricane).

Table 6 shows some descriptive statistics of the default probability distribution for the scenario
(i) with the 300mm precipitation event without a tropical cyclone. Focusing on results from the
survival model, one observes an increase in the mean of 2 basis points as one shifts from FS2020
to FS2050 exposure. The impact is more apparent in the tail of the distribution where the default
probability at the 99th percentile increases by 9 basis points as one shifts from FS2020 to FS2050
exposure. This represents a 5% increase in relative terms.

Table 7 focuses on the scenario (ii) with category two hurricane and 200mm precipitation
event. In this setting, we observe an increase of 3 basis points as one shifts from FS2020 to FS2050
exposure, with a more pronounced impact in the tail of the distribution. It is worth pointing
out that RCP 4.5 is a relatively mild climate scenario and that impacts could be substantially
more stringent in unmitigated scenarios such as RCP 8.5. Furthermore, if properties become
more exposed to extreme weather events due to climate change, insurers will likely demand higher
insurance premiums. This may lower the value of housing and thus increase the loan-to-value ratio
with an associated higher probability of default.

18The results for the scenario (ii) are available upon request to the authors. We do not report them as they are
consistent with those of scenario (i).
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XGBoost Survival model
Scenario FS Mean Median 95th percentile 99th percentile Mean Median 95th percentile 99th percentile

Base model 0.30 0.25 0.64 1.20 0.32 0.30 0.61 0.81

FS2020 0.79 0.59 1.97 3.42 0.64 0.58 1.22 1.67
FS2050 0.80 0.60 2.00 3.43 0.66 0.60 1.28 1.76

Table 6: Some descriptive statistics of the default probability (PD, in percentage points) distribu-
tion for the scenario (i) (300mm precipitation and no hurricane). The Base model does not include
weather related variables.

XGBoost Survival model
Scenario FS Mean Median 95th percentile 99th percentile Mean Median 95th percentile 99th percentile

Base model 0.30 0.25 0.64 1.20 0.32 0.30 0.61 0.81

FS2020 1.12 0.84 2.85 4.75 2.14 1.97 4.03 5.32
FS2050 1.14 0.85 2.88 4.89 2.17 2.00 4.11 5.42

Table 7: Some descriptive statistics of the default probability (PD, in percentage points) distri-
bution for the scenario (ii) (200mm precipitation and with a category two hurricane). The Base
model does not include weather related variables.

Figure 8: Evolution of exposure to flood risk in the shift from FS2020 to FS2050. The map displays
the increase in the share of properties at risk of flooding between FS2020 and FS2050.
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City ZIP scenario (i) City ZIP scenario (ii)

Cape Coral 33909 36.11 Cape Coral 33909 16.97
Jacksonville 32202 30.90 Jacksonville 32202 14.21
Neptune Beach 32266 29.36 Edgewater 32132 12.82
Atlantic Beach 32233 28.66 Neptune Beach 32266 12.43
Ponte Vedra Beach 32082 27.17 Atlantic Beach 32233 12.11
Edgewater 32132 26.88 North Port 34286 10.90
North Port 34286 22.96 Ponte Vedra Beach 32082 10.67
Port Charlotte 33954 22.80 Palm Harbor 34685 10.27
Tampa 33629 22.37 North Port 34288 9.19
Palm Harbor 34685 21.94 Fleming Island 32003 9.08
New Smyrna Beach 32169 20.47 Port Charlotte 33954 8.82
Clearwater 33760 20.06 Jacksonville 32204 8.11
Naples 34103 19.22 Tampa 33629 7.79
Jacksonville 32204 18.27 New Smyrna Beach 32169 7.64
Tampa 33619 17.72 Jacksonville 32217 7.63

Table 8: Top 15 ZIP codes in terms of increase in default probability following a change in exposure
from FS 2020 to FS2050. Results are reported for extreme event scenarios (i) and (ii) and are based
on the survival models. Results are expressed as variations in percentage terms.

From a geographical perspective, Figure 8 illustrates that up to 2050 the largest increase in
exposure and in risk will occur in coastal areas. Table 8 highlights this fact from a more quantitative
perspective. There is a substantial increase in risk in some of the largest coastal cities of Florida
when considering the shift in exposure from FS2020 to FS2050 19. In scenario (i), the default
probability increases up to 36 percentage points in certain ZIP codes in Cape Coral, 30 percentage
points in Jacksonville and 22 percentage points in Tampa. In scenario (ii), the default probability
increases up to 17 percentage points in certain ZIP codes in Cape Coral, 14 percentage points in
Jacksonville and 7 percentage points in Tampa. These results strongly echo recent results in the
hydrological literature that emphasize the vulnerability of US coastal cities to compound flooding
events involving storm surges and heavy rainfall (Wahl et al., 2015; Zscheischler et al., 2018). This
literature also highlights sea-level rise as the major driver of long-term increase in risk under climate
change. The risk is also highly influenced by local geographical characteristics and exhibits large
heterogeneity even at the very local scale. For example, in Jacksonville, certain ZIP codes exhibit
no increase in risk while others are among the most strongly affected.

6 Conclusion

We use an additive Cox proportional hazard model with time-varying covariates, including spatio-
temporal characteristics of weather events, to study the impact of weather extremes (heavy rains
and tropical cyclones) on the probability of mortgage default and prepayment. The model is
estimated on a portfolio of non-agency mortgages in Florida consisting of 69,046 loans and 3,707,831

19Miami is absent from the sample due to missing data on LTV ratios.
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loan-month observations with localization data at the five-digit ZIP code level.
We find a statistically significant and non-linear impact of tropical cyclone intensity on default

as well as a significant impact of heavy rains on default in areas with large exposure to flood risks.
We do not identify a significant impact of tropical cyclones, per se, on prepayment but find that
heavy rain has a negative impact on prepayment when interacting with a large exposure to flood
risks. These findings confirm existing results in the literature and also provide estimates of the
impact of the extreme event characteristics on mortgage risk, e.g. the impact of tropical cyclones
more than doubles in magnitude when moving from a hurricane of category two to a hurricane of
category three or more.

We further build on the identified effect of exposure to flood risk (in interaction with heavy
rainfall) on mortgage default to perform a scenario analysis of the future impacts of climate change
using the metrics from the 2050 First Street flood model. Namely, we compare the distribution
of default probabilities relative to the mortgage probability under current exposure to flood risks
and relative to the projected exposure at the horizon 2050 for the RCP 4.5 scenario. We find a
systematic increase in risk with a more pronounced effect in the tail of the distribution and large
spatial heterogeneity. The largest increase in risk occurs in coastal areas, in line with recent results
in the hydrological literature that emphasise the vulnerability of US coastal cities to compound
flooding events involving storm surge and heavy rainfall.

We compare the results of our survival model with those obtained using (a) a generalized
additive logistic model and (b) an extreme gradient boosting approach (XGBoost) with a logistic
link. The XGBoost model exhibits high predictive accuracy consistently with previous findings
in the literature. However, the XGBoost also provides incoherent results in the scenario analysis.
Hence, overall, the survival approach appears as best fitted to our final objective, which is to
predict the impact of future climate change on credit risk. The survival approach also has a
temporal component, which provides more precise information to financial institutions as the loss
faced by a bank depends not only if a borrower defaults on the loan, but also when this happens.

Overall, our results suggest that climate change will lead to substantial changes in risk, con-
sidering in particular that RCP 4.5 is a relatively mild scenario and that impacts will increase
substantially more in the second half of the 21st century. Against this background, it seems neces-
sary to systematically account for the impact of extreme weather events in credit risk assessment.
Ours is an early contribution in that direction but substantial efforts are required to obtain a
comprehensive assessment of climate risks over all asset classes and geographies so as to integrate
climate-related risks in portfolio selection (Sirignano et al., 2016).

This study faces some main limitations. This manuscript analyzes the non-agency US mortgage
market, but different results could be obtained for agency mortgages provided by Freddie Mac and
Freddie Mae. Furthermore, our analysis considers a limited number of extreme events, such as
tropical cyclones of category 2 and above. Therefore, the potential effects of natural disasters could
be underestimated. Even if some areas have not been affected by tropical hurricanes, they could
be subjected in the future. As for the scenario analysis, an extension of the present study might be
considering climate models to generate (compound) scenarios of extreme events and evaluate their
impacts on credit risk.

To have a time horizon long enough to study the default event, we consider only loans originated
before 2010, in line with the literature (see, e.g., Medina-Olivares et al., 2023b,a). When more data
is available, a future analysis could also consider mortgages originated after 2010. Finally, the
impacts of different extreme weather events, such as wildfire and flooding, on mortgage defaults
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could also be studied.
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Supplementary material: Impacts of extreme weather
events on mortgage risks and their evolution under

climate change: A case study on Florida

Appendix A: Alternative modeling approaches

Generalized additive logistic model

We compare our proposal (6) with a widely used logistic regression model (Thomas et al., 2017).
Previous studies in the credit scoring literature showed that a Generalized Additive Model (GAM)
usually achieves higher predictive accuracy than a Generalized Linear Model (GLM) (e.g. Berg,
2007; Calabrese et al., 2015; Lohmann and Ohliger, 2019) for its flexibility. Based on these results,
we compare the semiparametric survival framework with an additive logistic regression model de-
fined as

Yi =

{
1 Y ∗i > 0
0 otherwise

(9)

where Yi is the binary dependent variable and Y ∗i is the latent variable described as

Y ∗i =

k∑
j=1

ηj [Zi] (10)

and {ηj(·), j = 1,2,...,k} are unknown smooth functions already considered in the additive Cox
model (7). Analogously to section (4), we use the PIRLS method to estimate the splines {ηj(·), j =
1,2,...,k} as suggested by Wood et al. (2017).

The estimates of the additive logistic models are available upon request to the authors and they
are similar to those obtained for the additive survival models.

Extreme gradient boosting (XGBoost)

A boosting approach assigns a weight to each observation that is then changed after a classifier is
trained on the data. Particularly, the weights for the correctly classified observations are reduced
and those for the wrongly classified observations are increased. In particular, Friedman (2001)
proposes the gradient boosting method where the weights are estimated based on the gradient
reduction of the loss function. This approach is then combined with a regression tree in an iterative
algorithm of decision trees. This is a tree ensemble method that implements a decision tree at each
step by fitting the gradients of the residuals of the previous tree in the previous step. This method
is known as a gradient boosting decision tree (GBDT).

Chen and Guestrin (2016) suggested the extreme gradient boosting tree (XGBoost) where the
loss function is normalized to decrease the complexities of modeling and the model variances. If the
GBDT approach used the first derivative, the XGBoost improves the estimation of the loss function
using the Taylor expansion. This increases the level of complexity but the normalization avoids
over-fitting. Another important difference is that GBDT uses decision trees as a classification basis,
while XGBoost considers linear classifiers. Moreover, the objective function also includes a penalty
term to avoid overfitting.
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Base Model Base Model+Weather
Variables Gain Variables Gain
Unemployment Ratet−4 0.313 Unemployment Ratet−4 0.284
LTVt−4 0.193 LTVt−4 0.171
FICO 0.144 FICO 0.131
Spread IRt−4 0.124 Spread IRt−4 0.107
FItakeupt−4 0.085 Rx5dayt−4 0.074
Loan purpose (Unknown) 0.008 FItakeupt−4 0.067
Loan purpose (Purchase) 0.007 FS2020 0.039
MBS lead manager (BOA) 0.007 Loan Purpose (Unknown) 0.008
Occupancy type (Owner) 0.006 MBS lead manager (BOA) 0.007
Occupancy type (Non-Owner Occupied) 0.005 MBS lead manager (Unknown) 0.006

Table 9: Feature importance for mortgage default based on XGBoost. We report the first ten most
important features based on the gain value.

Base Model Base Model+Weather
Variables Gain Variables Gain
LTVt−1 0.313 LTVt−1 0.291
Unemployment ratet−1 0.154 Unemployment ratet−1 0.139
Spread IRt−1 0.120 FICO 0.108
FICO 0.119 Spread IRt−1 0.106
FItakeupt−1 0.116 FItakeupt−1 0.098
MBS lead manager (BOA) 0.018 Rx5dayt−1 0.056
Occupancy type (Non-Owner Occupied) 0.017 FS2020 0.044
Loan purpose (Cash Out Refinancing ) 0.009 MBS lead manager (BOA) 0.017
Loan class (Alt-A) 0.009 Occupancy type (Non-Owner Occupied) 0.016
Loan class (Prime) 0.008 Loan purpose (Cash out refinancing ) 0.009

Table 10: Feature importance for mortgage prepayment based on XGBoost. We report the first
ten most important features based on the gain value.

Following Zanin (2020), we trained the XGBoost by setting the logistic regression for binary
classification as an objective function and the AUC as the evaluation metric of the out-of-sample
predictive performance20. Table 9 shows the ten most important features for the probability of
default excluding (Base Model) and including the weather variables (Base Model+Weather). Table
10 instead shows the results for the probability of prepayment. The higher the gain value, the
higher the importance of the feature for the prediction.

If we compare the Base model and the model with weather variables in Table 9, we notice that
Unemployment Ratet−4, LTVt−4, FICO and Spread IRt−4 are the four most important features
for both models. When we include the weather characteristics, Rx5dayt−4 has a stronger contri-
bution to the outcome prediction than the hurricane variables. We observe different results in the

20For tuning parameters, we set the learning rate equal to 0.1 to avoid over-fitting, the maximum depth of a tree
equal to 5, and the number of boosting iterations stops when the performance did not improve for 50 rounds. We
use the default setting in the R package XGBoost (Chen et al., 2022) for the other tuning parameters.
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survival additive model for time-varying covariates and in the generalized additive logistic models.
Furthermore, the insurance coverage is an important feature for both the models in Table 9.

The five most important variables for the base model for default and prepayment are the same.
These are also the most important variables when we add the weather-related variables, as Table
10 shows. Similar to default, the most important weather-related variable also for prepayment is
Rx5dayt−4. Coherently with survival and semiparametric logistic models, the variables on hurri-
canes do not have a strong impact on mortgage prepayment.

Appendix B: Descriptive analyses

Variables Min Max Mean Median

Borrower/loan characteristics

LTV (%) 0.00 150.00 80.40 79.62

FICO score 400 850 674.25 676

N. months from mortgage origination 20 246 96.66 93

Prepayment penalty 0 1 0.01 0

Information on property
Number of Units 1 4 1.05 1

Macroeconomic variables
Spread IR (%) (3) −5.09 21.20 2.55 2.51

Unemployment Rate (%) 3.20 10.90 7.77 8.00

Weather + Exposure + Insurance
Rx5day (mm) 0.76 329.08 44.21 39.11

FS2020 (%) 0.00 100.00 18.94 10.50

FS2050 (%) 0.00 100.00 22.74 12.90

FItakeup (%) (4) 0.00 99.43 12.07 5.53

Observation counts: 69,044 unique loans, 3,707,779 loan-month observations

Table 11: Descriptive statistics for continuous and count variables.
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Variables Frequency Percentage

Static Loan Characteristics 69,044 100.00
Occupancy Type
Owner Occupied 55,560 80.47
Non Owner Occupied 9,981 14.46
Second Home 2,506 3.63
Vacant 8 0.00
Other 5 0.00
Unknown 984 1.43

Purpose Type
Cash Out Refinancing 32,432 46.97
Purchase 23,245 33.67
Refinancing 10,860 15.73
Construction 211 0.31
Construction to Permanent 94 0.14
Debt Consolidation 302 0.44
Home Improvement 87 0.13
Other 35 0.00
Unknown 1,778 2.58

Asset Type
Prime 30,994 44.89
Subprime 20,975 30.38
Alt-A 16,108 23.32
Unknown 967 1.40

Dynamic Variables 3,707,779 100.00
Prepayment Penalty 48,721 1.31

69,044 unique loans, 3,707,779 loan-month observations

Table 12: Descriptive statistics for categorical variables.
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Figure 11: Percentage of unique five-digit zipcodes over time exposed to tropical cyclone events. We
only report the events that affected the zipcodes associated to at least a mortgage in our sample.
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Figure 12: Boxplot distribution of the Rx5day (mm) observed in unique five-digit zipcodes over
time. We only report the events that affected the zipcodes associated to at least a mortgage in our
sample.
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Variables Default Prepayment

Borrower/loan characteristics
lag(.) LTV (%) 1.145 1.153
FICO score 1.633 1.635
Prepayment penalty . 1.026
Occupancy type 1.038 1.038
Purpose type 1.023 1.024
Asset type 1.175 1.175
MBS lead manager 1.006 1.007

Information on property
Number of Units 1.041 1.040

Macroeconomic + Insurance
lag(.) Spread IR (3) 1.038 1.154
lag(.) Unemployment Rate (%) 1.136 1.152
lag(.) FItakeup 1.508 1.510

Weather + Flood exposure
lag(.) Hurricane category 1.016 1.015
lag(.) Rx5day 1.062 1.063
FS2020 1.485 1.486

Table 13: Generalized Variance Inflation Factor (GVIF) analysis results to detect possible multi-
collinearity issues. Specifically, we report as a metric the GV IF [1/(2×Df)] to make GV IFs compa-
rable across dimensions. Df is the degree of freedom. lag(.) indicates that the variable enter into
the model with a lag. This lag(.) is equal to four for the default model, and it is equal to one for
the prepayment model.
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Appendix C: Example Survival Curves

We use the estimated models for mortgage default and prepayment to provide examples of survival
curves when the borrower is exposed to extreme weather events. Specifically, we show differences
(if any) in the survival curves when weather events are included or not in the models. To achieve
this aim, we selected two mortgages from the dataset as case-study. One case takes into account
a borrower exposed to an event of extreme wind speed (Mortgage A), while the other case is
represented by a borrower exposed to an event of extreme rainfall (Mortgage B). In Table 14, we
describe the main characteristics of the two selected mortgages.

Mortgage A Mortgage B
Mortgage Characteristics (Extreme wind) (Extreme rain)

Property Type
Occupancy type Owner Owner

Number of units 1 1

Mortgage Variables
N. months from origination 148 137
to weather event

Spread IR 3.0 2.9

LTV (%) 71.4 86.2

FICO score 719 798

Macroeconomics + Insurance
Unemployment Rate (%) 3.0 4.2

FItakeup (%) 21.4 18.9

Weather Variables
Month/Year of event 10/2018 8/2017

Tropical cyclone Cat. 3+ No

Rx5day (mm) 89.2 272.3

FS2020 (%) 13.8 93.3

Table 14: We selected two mortgages from the dataset characterised by the exposition to extreme
weather events. We rename the identifier of the mortgage for privacy reasons.
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Figure 13 shows the estimated survival curves for the Mortgage A. Focusing on climate events,
the borrower is characterised by exposure in October 2018 to Hurricane Michael of category 3+,
but not extreme precipitation in terms of Rx5day (89.2mm). Moreover, the property is not located
in an area at high risk of flood damages (FS2020 equals 13.8%). Thereby, in this case, we expect
that is the high wind speed the main cause of damages to the property.

The graph at the bottom right provides a zoom of the prepayment probability. We can note
some minor differences between the estimates when including or excluding the climate events. As
discussed in Section 5, hurricanes have no statistically significant impact on prepayment, while
Rx5day has a negative impact on the outcome, especially if the borrower has the property in a
five-digit ZIP code at high risk of flood damages.

In the first graph at the top right, we provide a zoom of the default probability around the
extreme climate event of interest. The estimated model suggests that the borrower’s exposure to
the hurricane of category 3+ reduces his/her the survival probability of the mortgage (with a lag of
four months from the event as studied in the estimated model) from 0.51 to 0.47. This jump-down
was not captured by the model that excludes the extreme weather events. So, using this last model,
banks do not consider the severity of some extreme weather events in the evaluation of the default
probability. After this extreme weather event, the servicer has registered a default of the Mortgage
A.

Figure 14 shows the estimated survival curves for the Mortgage B. In August 2017, the property
associated with the mortgage was exposed to an event of intense rainfall (Rx5day equal to 272.3mm)
in an area where FS2020 indicates that 93.3% of properties are at risk of flood damages. The graph
at the bottom right provides a zoom of the survival curve related to prepayment probability. In
the month following the climate event, we observe a slight slowdown in the descent pattern of the
survival curve. This could arise because exposure to intense rainfalls may reduce the borrower’s
incentive to prepay the mortgage as a homeowner without a loan has only insurance to protect
their equity in the event of a disaster, and many borrowers have difficulty getting insurers to pay
after a disaster. However, borrowers with a loan always have the option to default if insurance fails
to pay. Therefore, borrowers have incentives to keep a loan (not prepay) as this can limit their loss
and shift it to the lender. Also, increased expenses stemming from the disaster could reduce the
liquidity of individuals and thus their desire to fund prepayment. Finally, most prepayment comes
from the sale of a house and these sales may be affected by the disaster. In terms of default, the
intensity of rainfalls and the economic shock due to disaster recovery expenses may increase in the
probability of default. In this case, as we can see from the first graph at the top right, we observe
an estimated decrease in the survival probability – from about 0.88 to 0.87 – that is not captured
by the baseline model.

We expect a stronger impact on risk measures than observed in these two cases when there is a
combination of extreme weather events like intense rainfalls and tropical cyclones. This is because
the rate of increase in damage is much higher than when only one acute event occurs (see also
the documentation on the National Weather Service21). The evidence that emerges from the case
studies illustrated above emphasises the importance for financial institutions to include opportune
climate-adjusted measures of risk in their risk management framework.

21https://www.weather.gov/jetstream/tc_potential.
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Figure 13: Survival curves for the Mortgage A. The left column plots show the entire survival
curve as a result of the application of the default and prepayment models. The right column plots
show a zoom around the extreme weather event of interest (marked by a red dashed vertical line).
The black line refers to the baseline model, while the blue line to the model with extreme weather
events.
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Figure 14: Survival curves for the Mortgage B. The left column plots show the entire survival
curve as a result of the application of the default and prepayment models. The right column plots
show a zoom around the extreme weather event of interest (marked by a red dashed vertical line).
The black line refers to the baseline model, while the blue line to the model with extreme weather
events.
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Appendix D: Supplementary figures
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Figure 15: Time series of the percentage of defaults and average predicted probability of default
for the three type of models considered (survival, logistic and XGboost), for each point in time of
the out-of-sample .
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Figure 16: Time series of the percentage of prepayments and average predicted probability of
prepayment for the three type of models considered (survival, logistic and XGboost), for each point
in time of the out-of-sample.
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