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Abstract

Motivation

When analysing one-dimensional time series, scientists are often interested in identifying regions

where one variable depends linearly on the other. Typically they use an ad hoc and therefore often

subjective method to do so.

Results

Here we develop a statistically rigorous, Bayesian approach to infer the optimal partitioning of a

data set not only into contiguous piece-wise linear segments, but also into contiguous segments

described by linear combinations of arbitrary basis functions. We therefore present a general

solution to the problem of identifying discontinuous change points. Focusing on microbial growth,

we use the algorithm to find the range of optical density where this density is linearly proportional to

the number of cells and to automatically find the regions of exponential growth for both Escherichia

coli and Saccharomyces cerevisiae. For budding yeast, we consequently are able to infer the Monod

constant for growth on fructose. Our algorithm lends itself to automation and high throughput

studies, increases reproducibility, and should facilitate data analyses for a broad range of scientists.
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Availability and Implementation

The corresponding Python package, entitled Nunchaku, is available at PyPI:

https://pypi.org/project/nunchaku.

Introduction 1

A common scientific problem is understanding the relationship between two variables. When the 2

dependent variable, or some transformation of it, depends linearly on the independent variable, the 3

underlying system linking the two often behaves more simply than generally. As a consequence, 4

scientists commonly focus their efforts on identifying and understanding this linear regime. 5

A well-known example is the growth of a population of cells. In log phase, when the logarithm 6

of the number of cells increases linearly with time, the total mass of every intracellular component 7

grows exponentially and the mass per cell is approximately constant. Such steady-state conditions 8

regularise growth; metabolic fluxes are balanced; and physiology simplifies, generating behaviours 9

controlled by only a handful of variables [?]. 10

Biologists therefore often wish to determine when growth is in log phase. Historically the 11

approach has been to plot the logarithm of a variable correlating with the number of cells, such as 12

optical density (OD), against time and to identify a linear region by eye [?]. Today this subjective 13

technique is still used, with one scientist’s linear region not necessarily the same as another’s. 14

A challenge to developing objective approaches is identifying a suitable non-linear model with 15

which to compare the linear one. There is no general way to describe all relationships that we may 16

observe. With a mechanistic understanding, we might generate a non-linear description, but such 17

an understanding is often lacking and, anyhow, may obviate the need to find linear regimes. 18

Here we circumvent this problem by inferring the piece-wise linear description that best 19

approximates an entire one dimensional time series. By doing so, we reframe the task to one of 20

detecting change points — time points where the process generating the time series changes, a 21

well-studied problem [?] with an established frequentist solution [?]. We use a Bayesian approach, 22

complementing others [?, ?], and generalise by allowing each segment of data to be described 23
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by a linear combination of arbitrary basis functions, with straight lines being but one example. 24

For a given set of basis functions, we compare the evidence for every possible piece-wise linear 25

combination, found by marginalising over all possible fits to all possible contiguous subdivisions 26

of the data. For linear segments and for the optimal choice of segments, we provide statistics for 27

each segment, allowing users to select straightforwardly the segment or segments of most interest. 28

To illustrate our algorithm, we primarily discuss two examples: determining the range of OD of a 29

liquid culture where the OD depends linearly on the number of cells and finding the exponential 30

phases of microbial growth curves. 31

Results 32

Approximating data with a piece-wise linear model 33

Although our goal is to allow scientists to choose objectively the segment of their data that is ‘most’ 34

linear, we adopt a general methodology and allow the data to be described by linear combinations of 35

arbitrary basis functions. For straight lines, there are two basis functions, ϕ1(x) = 1 and ϕ2(x) = x, 36

but data sets may require higher order polynomials or even Gaussian or sigmoid functions [?]. 37

For a one-dimensional time series and a given set of basis functions, we will infer the optimal 38

piece-wise description — the number of contiguous segments into which we should divide the data, 39

where the boundaries of each of those segments should be, and the best-fit linear combination of 40

basis functions for each segment. Deciding which of these segments is then most appropriate for 41

the task in hand is unavoidably subjective. It is straightforward, however, to compare different 42

segments by comparing properties of their best-fit linear combinations. For lines, these properties 43

include their gradients and R2 value — how much of the variance of the dependent variable is 44

explained by the independent one [?]. 45

We use a Bayesian approach to infer the best piece-wise description and assume only that the 46

data of each segment is normally distributed around a linear combination of the basis functions 47

(Materials & Methods). To proceed analytically we marginalise over all coefficients constituting the 48

linear combination for each segment using a mild approximation and choose the optimal number 49
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of segments by comparing marginal likelihoods. The data points bounding each segment are 50

then estimated by the means of their posterior distribution. We consider the case with known 51

measurement error separately from an unknown one and call our algorithm nunchaku. 52

Verifying our approach 53

Figure 1. The nunchaku algorithm correctly predicts the number of linear segments in synthetic
data when the measurement noise is not too high. (A) Example synthetic data sets with the ground
truth in blue and the triplicate raw data in grey. The red circles are the predicted boundaries
of each linear segment with the best-fit line in red. Left: with a measurement error of 0.25, the
predictions overlap the data; Right: with a measurement error of 8, the predictions miss some
segments, which the noise obscures. As a prior, we specify only that the gradient of each line lies
between [−25, 25]. For this data, a measurement error of 0.25 is 0.5% of the mean of y and an error
of 8 is almost 15%. (B) The algorithm underestimates the number of linear segments only once
the magnitude of the measurement noise becomes sufficiently high. The actual number of segments
is M ; the estimated number is M̂ .

To verify our methodology (Materials & Methods), we first focused on identifying linear regions. 54

We generated synthetic data using piece-wise linear functions, where we know the number of 55

segments and their gradients, added Gaussian noise, and then inferred from this data the optimal 56

number of segments and the gradients of the best-fit lines, assuming that we know the magnitude 57

of the measurement noise (Fig. 1A). 58

The algorithm predicts correctly the number of segments when the noise in the data is sufficiently 59

low (Fig. 1B & S1), but underestimates this number when the noise is larger. Such noise tends to 60

blur two neighbouring segments so they seem one, rather than cause a single segment to appear as 61
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two or more. Similarly, if we decrease the angle between neighbouring segments, the noise is more 62

likely to make two neighbouring segments appear contiguous, and the algorithm’s accuracy falls 63

(Fig. S1). 64

We confirmed that the algorithm also correctly predicts the underlying piece-wise linear functions, 65

and hence the gradient of the lines generating the data in the segments (Fig. S1). As expected, 66

this accuracy falls too with more noisy data. 67

When the measurement error is unknown, the results are similar (Fig. S1), but the algorithm is 68

slower because we numerically integrate over all possible magnitudes of this measurement error. We 69

also confirmed that the algorithm’s performance is robust to broad choices of the prior distribution 70

(Fig. S2). 71

We next compared our methodology to the Narrowest-Over-Threshold (NOT) algorithm [?], a 72

state-of-the-art frequentist approach. Whether we consider the root mean square error between 73

the best-fit lines and the ground truth (Fig. 2A) or the predicted number of segments (Fig. 2B), 74

our algorithm consistently performs as well as or better (see also Fig. S3). This greater accuracy 75

however comes at the expense of speed: the NOT algorithm is faster than our implementation of 76

nunchaku. 77

Finally we demonstrated that nunchaku works with other basis functions, including constant 78

functions, third-order polynomials, and sines (Fig. S4). 79

Application 1: Finding the range of OD that increases linearly with cell 80

number 81

The optical density (OD) of a microbial culture increases linearly with the number of cells only 82

for sufficiently small ODs. At higher ODs, the light from the spectrophotometer may scatter off 83

multiple cells, and the relationship between OD and the number of cells becomes non-linear [?]. 84

To calibrate OD measurements, researchers often serially dilute a dense culture of microbes and 85

measure the relationship between the OD and the dilution factor [?, ?] (Fig. 3A). Interpolating 86

this curve, we can convert an OD measurement to the corresponding dilution factor and so correct 87

for any non-linearity between the OD and cell numbers. 88
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Figure 2. nunchaku performs as well as or better than the Narrowest-Over-Threshold (NOT)
algorithm [?]. This algorithm only supports input of one y value for each x value: we therefore
input either one replicate or the mean of three replicates. The data is generated similarly to that
in Fig. 1 (Materials & Methods). As a prior for nunchaku, we specify that the gradient of each line
lies between [−25, 25]. (A) The root mean squared error (RMSE) between the ground truth and
the best-fit lines. (B) The difference between the predicted number of segments M̂ and the ground
truth M (left) and the percentage of correct predictions of M with M̂ = M (right).

Dilution factors, however, are not intuitive units, and it is useful to identify the range of ODs 89

over which there is a linear relationship with cell numbers. Not only is this range itself important, 90

but by using the ratio of the maximum of the range to the corresponding dilution factor, we can 91

re-scale the dilution factors back into ODs. 92

We used the nunchaku algorithm to identify the linear range, using basis functions that generate 93

straight lines and an unknown measurement error. Two linear segments are optimal, and the one of 94

interest, where OD is proportional to the number of cells, is the segment beginning at the smallest 95

OD. This segment also has the highest coefficient of determination R2. Its maximal OD is 0.66 for 96

a relative cell number of 0.25 (Fig. 3A), and we should therefore multiply the dilution factors by 97

0.66/0.25, or 2.6, to convert back to ODs. 98

Application 2: Identifying the log phase of microbial growth 99

Microbes are most often studied when growing exponentially, with the log(OD) of the culture 100

increasing linearly with time [?]. Researchers identify this log-phase growth from microbial growth 101
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curves. 102

To detect log phase automatically, we applied nunchaku, again with basis functions generating 103

lines, to OD measurements of Escherichia coli (Fig. 3B). Partitioning the data into six segments 104

is optimal, and the segment whose best-fit line has the highest gradient — the greatest specific 105

growth rate — corresponds to exponential growth. 106

Monod noticed an empirical relationship between the nutrient concentration and the specific

growth rate of microbes in log phase [?]. Denoting this growth rate as λ, the maximal specific

growth rate as λmax, and the nutrient concentration as s, his equation becomes

λ = λmax
s

KM + s
(1)

where KM is now called the Monod constant. To estimate λmax and KM , researchers systematically 107

vary the concentration of the carbon source and identify the log phase and the corresponding 108

gradient for each growth curve. 109

Here we use the nunchaku algorithm to select data to estimate λmax and KM for S. cerevisiae 110

growing on fructose (Materials & Methods), from 38 growth curves measured with plate readers 111

(Fig. 3C). Each biological replicate has two technical replicates. 112

Discussion 113

Determining where data is best described by a line is a problem familiar to most scientists. We 114

present a statistically rigorous solution, which we generalise by considering linear combinations of 115

arbitrary basis functions. Our methodology is Bayesian and similar in approach to earlier work 116

that focused on piece-wise constant functions [?]. 117

Like all Bayesian inference, our algorithm depends on prior information: the bounds on the 118

coefficients constituting the linear combination of basis functions. For basis functions generating 119

lines, these bounds describe the range of the gradients and intercepts of all possible lines within 120

a segment. The optimal number of segments will depend on this prior if the amount of data is 121

sufficiently small, as it should [?]. In practice, however, users interested in lines need specify only 122
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one prior range with the other inferred (Materials & Methods), and we see that although a wide 123

prior favours fewer segments, a single segment is robustly assigned to sections of the data that 124

appear linear. 125

Our method makes two assumptions about how the data deviate from a linear combination of 126

basis functions. We assume these deviations are independent and we assume that each deviation 127

obeys a normal distribution. For some data, a distribution with a purely non-negative support, such 128

as a log normal, may be more appropriate. Although we can use such a distribution in principle, in 129

practice some of the steps that we performed analytically would have to become numerical. Further, 130

if nothing is known a priori about these deviations, we assume that their standard deviation is 131

identical for all time points. Our algorithm would work too if the standard deviations vary but are 132

proportional to a known function of xj and yj. 133

Our work adds to existing algorithms for detecting change points in time series, including those 134

aimed at analysing microbial growth [?]. We have simplified this problem by considering change 135

points to occur only at data points and by imposing no continuity on the functions underlying 136

the data for each segment. These simplifications are not restrictive for our task of finding one 137

particular segment of interest. Identifying change points more generally typically requires Markov 138

chain Monte Carlo methods [?, ?]. 139

The nunchaku algorithm by using enumeration is robust and lends itself to automation, fa- 140

cilitating high throughput studies. It should both ease and increase the reproducibility of data 141

analyses for a wide range of scientists. 142

Materials and Methods 143

Inferring contiguous regions using model comparison 144

Given one dimensional time-series data and a set of K basis functions, we wish to divide the data 145

into the group of contiguous segments that is best characterised by piece-wise linear combinations 146

of the basis functions. Irrespective of the data’s behaviour, we will always find such a group. Our 147

approach answers two questions: how many piece-wise contiguous segments best describe the data 148
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given the basis functions and where the optimal segment boundaries lie. 149

Let us assume that we have observations, (xj, y
(r)
j ), where j runs from 1 to N and the xj are in 150

ascending order; r indexes the Nr replicates if any. We denote these observations collectively as D. 151

First, we consider whether we should divide the data into M or M ′ segments, using Bayesian

model comparison [?]. Assuming equal prior probabilities, P (M) = P (M ′), we write the Bayes’

factor as:

P (M |D)

P (M ′|D)
=

P (D|M)P (M)

P (D|M ′)P (M ′)
=

P (D|M)

P (D|M ′)
, (2)

and therefore we should determine the evidence P (D|M) for each M . 152

The evidence is a marginal likelihood. For M contiguous segments, there are M − 1 unknown 153

boundary points, which we denote as n ≡ (n1, · · · , nM−1) with ni < ni+1. These points are integers 154

and index an xj. The two remaining boundaries are the indices for the first and last x values: 1 155

and N . We assume that each segment contains a minimal number of data points ℓmin, so that 156

ni+1 ≥ ni + ℓmin. The choice of ℓmin depends on the type and number of basis functions: in general, 157

ℓmin ≥ K. 158

The evidence is a sum over all potential n:

P (D|M) =
∑
n

P (D|n,M)P (n|M)

= f(N,M, ℓmin)
∑
n

P (D|n,M) (3)

where we use that any permissible ni is equally likely as any other to write the prior P (n|M) as a

function of N , M , and ℓmin. Specifically, this bounded uniform prior is the reciprocal of the number

of possible n, which satisfy

n1 ≥ ℓmin, n2 ≥ n1 + ℓmin, · · · , nM−1 ≥ N − ℓmin. (4)

9



for a given M and ℓmin. We therefore have:

P (n|M) =

N−(M−1)ℓmin∑
n1=ℓmin

×
N−(M−2)ℓmin∑
n2=n1+ℓmin

· · · ×
N−ℓmin∑

nM−1=nM−2+ℓmin

1

−1

= f(N,M, ℓmin). (5)

Second, for a given M and n, we fit the data to M different linear combinations of the basis

functions, one for each segment, with each combination independent of the other. The linear

combination ending near the data points indexed by ni and ni+1 depends only on the data indexed

by the indices ni + 1 and ni+1 inclusively, denoted Di, and this data does not determine any other

linear combination. Therefore, mathematically,

P (D|n,M) = P (D1|1, n1)× P (D2|n1 + 1, n2) · · · × P (DM |nM−1 + 1, N) (6)

where P (Di|ni + 1, ni+1) is the likelihood of a linear combination of the basis functions describing 159

the data indexed by ni + 1 to ni+1. 160

Finding P (D|n,M) 161

For each segment of the data, we consider the K basis functions, each individually denoted ϕk(x) 162

and collectively ϕ(x), and correspondingly K coefficients, each denoted mk. If fitting lines, we have 163

two basis functions: ϕ1 = 1 and ϕ2 = x, and two mk where m1 determines the line’s y-intercept 164

and m2 its gradient. We then set ℓmin = 3 so that there are sufficient data points in each segment 165

to define a line. 166

We let P (yj|xj,m) describe how a data point yj at xj deviates from the linear combination of 167

basis functions and assume that this deviation is independent of the deviations of other data points. 168
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For the i’th segment, we then have

P (Di|ni + 1, ni+1) =

∫
dm P (m)

Nr∏
r=1

ni+1∏
j=ni+1

P (y
(r)
j |xj,m)

= P (m)

∫
dm

Nr∏
r=1

ni+1∏
j=ni+1

P (y
(r)
j |xj,m) (7)

assuming the prior P (m) is a constant, with each mk independently and uniformly distributed in

some bounded region so that

P (m) =


1

(mmax
1 −mmin

1 )···(mmax
K −mmin

K )
for m1 ∈ [mmin

1 ,mmax
1 ] , etc.

0 otherwise
(8)

for fixed mmin
k and mmax

k for all k. 169

Marginalising P (D|n,M) 170

Using Eq. 6, we factorise the sum in Eq. 3:

∑
n

P (D|n,M) =

N−(M−1)ℓmin∑
n1=ℓmin

P (D1|1, n1)×
N−(M−2)ℓmin∑
n2=n1+ℓmin

P (D2|n1 + 1, n2)× · · ·

×
N−2ℓmin∑

nM−2=nM−3+ℓmin

P (DM−2|nM−3 + 1, nM−2)

×
N−ℓmin∑

nM−1=nM−2+ℓmin

P (DM−1|nM−2 + 1, nM−1)P (DM |nM−1, N) (9)

and use the method of variable elimination [?] to evaluate these sums. First we perform the 171

rightmost one, over nM−1, to generate a function of nM−2. We then perform the next rightmost 172

sum, over nM−2, of this function and the next term in Eq. 9, which generates a function of nM−3. 173

We repeat this process until we reach the leftmost sum over n1, enabling O(MN2) operations in 174

total instead of O(NM). We evaluate Eq. 5 similarly. 175

All that remains is to determine P (Di|ni + 1, ni+1) so that we can find P (D|M) via Eq. 3 and 176

Eq. 9. 177
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Finding P (Di|ni + 1, ni+1) for known measurement error 178

To proceed, we assume that P (yj|xj,m) is a normal distribution with mean ϕ(xj)
Tm, or equivalently∑

k mkϕk(xj), and a standard deviation σj. If we know the σj, for example by approximating

each by the corresponding measurement error, then Eq. 7, the likelihood of a linear combination

describing the data indexed by ni + 1 to ni+1, becomes

P (D|ni + 1, ni+1,σ) = P (m)

ni+1∏
j=ni+1

(
√
2πσj)

−Nr

×
∫

dm exp

− Nr∑
r=1

ni+1∑
j=ni+1

[
y
(r)
j − ϕ(xj)

Tm
]2

2σ2
j

 . (10)

To evaluate the integral, we extend it to infinite range for all mk — a suitable approximation 179

because we expect the integrand to be strongly peaked at the most likely values of each mk [?]. We 180

can then perform the integration analytically. 181

Consider data with a single replicate. Define ℓi = ni+1 − ni to be the number of x values in the

i’th segment and z(i) to be a vector with components yj/σj, with the superscript i used to denote

the i’th segment. Let Φ(X) be the K × ℓi matrix with components Φkj = ϕk(xj)/σj, and further

defining

A(i) = ΦΦT ; m̄(i) =
(
A(i)
)−1

Φz(i) (11)

so that A
(i)
kk′ =

∑
j ϕk(xj)ϕk′(xj). A

(i) is a symmetric K ×K matrix, which is invertible when the

basis functions ϕk are linearly independent and when ℓi ≥ K. Then standard algebra gives

ni+1∑
j=ni+1

[
yj − ϕ(xj)

Tm
]2

2σ2
j

=
1

2
(m− m̄(i))TA(i) (m− m̄(i)) + U (i) (12)

where

2U (i) =
(
z(i)
)T

z(i) −
(
m̄(i)

)T
A(i) m̄(i). (13)
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Using Eq. 12 and the results for integrating multivariate Gaussian distributions [?], we have that

∫
dm exp

[
−

ni+1∑
j=ni+1

[
yj − ϕ(xj)

Tm
]2

2σ2
j

]
= (2π)

K
2

(
detA(i)

)− 1
2 e−U(i)

(14)

If we are fitting straight lines with K = 2 and ϕ1 = 1 and ϕ2 = x, then it is useful to define [?]

T1 =
∑

j

y2j
2σ2

j
; T2 =

∑
j

x2
j

2σ2
j

T3 =
∑

j
1

2σ2
j

; T4 =
∑

j
yj
σ2
j

T5 =
∑

j
xjyj
σ2
j

; T6 =
∑

j
xj

σ2
j

(15)

with j running from ni + 1 to ni+1. Using these definitions,

A(i) =

2T3 T6

T6 2T2

 ; m̄(i) =

2T2T4−T5T6

4T2T3−T 2
6

2T3T5−T4T6

4T2T3−T 2
6

 ; U (i) = T1 − T2T 2
4+T3T 2

5−T4T5T6

4T2T3−T 2
6

(16)

and the integral becomes (2π)(4T2T3 − T 2
6 )

− 1
2 e−U(i)

. 182

With more than one replicate, z runs over all y in all replicates, with the replicates arranged 183

contiguously, and is of length Nrℓi; Φ has rows of length Nrℓi with xni+1 to xni+1
repeated Nr times 184

in each row to match the corresponding y values. For the linear case, the sums in Eq. 15 are over 185

both j and the number of replicates, so that T1, for example, becomes
∑

j,r

(
y
(r)
j

)2

2σ2
j

. 186

Returning to Eq. 10, we find

P (Di|ni + 1, ni+1,σ) = P (m)

(
ni+1∏

j=ni+1

(
√
2πσj)

−Nr

)
(2π)

K
2

(
detA(i)

)− 1
2 e−U(i)

(17)

with the help of Eq. 14. For this approximation to be valid, we require that the strongly peaked

region in m space is within the a priori range for m. The area under the integrand in Eq. 14

is proportional to the square root of detA(i), and the prior range of m must be large enough to

contain this area. Using Eq. 8, we need

(
detA(i)

) 1
2 × P (m) ≪ 1. (18)
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Finding the boundary points 187

After determining the optimal number of segments into which to divide the data from Eq. 2, we

next find their boundary points. Using Bayes’ theorem, the posterior for n is

P (n|D,M,σ) =
P (D|n,M,σ)P (n|M)

P (D|M,σ)
(19)

which we evaluate using Eq. 3, Eq. 5, and Eq. 6. We use the mean posterior value of ni to estimate

the optimal ni:

E[ni] =
∑
n

niP (n|D,M,σ)

=
P (n|M)

P (D|M,σ)

∑
n

niP (D|1, n1,σ) · · ·P (D|nM−1, N,σ) (20)

which we sum following Eq. 9. The posterior variance, Var[ni], determines the error in this estimate, 188

which we find similarly. 189

Finding P (D|M) for unknown measurement error 190

If the σj are unknown, we assume the same constant σ for all j with a uniform prior probability

between [σmin, σmax] [?]. Eq. 3 then becomes

P (D|M) = f(N,M, ℓmin)
∑
n

P (D|n,M)

= f(N,M, ℓmin)P (σ)
∑
n

∫ σmax

σmin

dσ P (D|n,M, σ). (21)

The constant P (σ) = 1/(σmax − σmin) will cancel in Eq. 2 when we compare the evidence for 191

different M . 192

Using the equivalent of Eq. 10 and Eq. 14, we find that

P (Di|ni + 1, ni+1, σ) = P (m)(
√
2πσ)−Nrℓi+K

(
detA(i)

)− 1
2 exp

[
−U (i)

σ2

]
(22)
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where we now explicitly follow σ and so set the σi in Eq. 11 to unity, making zi = yi and Φkj = ϕk(xj). 193

Similarly for the linear case, the σj become unity in Eq. 15. 194

Consequently,

P (D|n,M, σ) = P (D1|1, n1, σ)× P (D2|n1 + 1, n2, σ)× · · · × P (DM |nM−1 + 1, N, σ)

= P (m)M(
√
2πσ)−NrN+MK

M∏
i=1

(
detA(i)

)− 1
2 exp

(
−
∑M

i=1 U
(i)

σ2

)
. (23)

Although with Eq. 23 it is possible to approximate analytically the integral over σ in Eq. 21 by

extending the range of the integrand to (0,∞), the resulting expression prevents us from summing

over n using variable elimination. Instead, we swap the sum and the integral to write

P (D|M) = f(N,M, ℓmin)P (σ)

∫ σmax

σmin

dσ
∑
n

P (D|n,M, σ) (24)

and numerically evaluate, using variable elimination to sum over n in Eq. 24 for each σ chosen by 195

the integration algorithm. 196

We find the expected boundary points via Eq. 20, again numerically integrating over σ. 197

Performing the integration: To stabilise the numerical integration, we scale the integrand of

Eq. 24 by its value at the most likely value of σ, making the integrand nearly always less than one

and preventing overflow. We use expectation-maximisation (EM) to estimate the most likely σ for

a given M . The EM algorithm finds the σ that maximises P (D|M,σ) [?]. We guess a value of σ,

σo say, and find P (n|D, σo,M) from Eq. 19. To update σo, we maximise Q(σ, σo) with respect to

σ, where

Q(σ, σo) =
∑
n

P (n|D,M, σo) logP (D,n|M,σ)

= E
[
logP (D|n,M, σ) + logP (n|M,σ)

]
= E

[
logP (D|n,M, σ) + log f(N,M, ℓlin)

]
(25)
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with the expectations taken over P (n|D,M, σo). Expanding Eq. 25 using Eq. 23, there are only

two terms that depend on σ, and we can differentiate to find the updated σ = σn:

σ2
n =

2

NrN −MK

M∑
i=1

E[Ui]. (26)

We use the equivalent of Eq. 20 with σ = σo to evaluate these expectations and iterate until the 198

value of σ converges. 199

Implementation 200

For basis functions that generate lines, we compare the different linear segments by calculating the 201

gradient, intercept, and the coefficient of determination R2 of the line maximising the likelihood 202

for each segment. The user can then select a desired segment, such as the one with the largest 203

gradient. 204

The algorithm requires the a priori bounded region of m in Eq. 8. Again specialising to 205

straight lines, the prior specifies the range of the intercept m1 and the gradient m2: [m
min
1 ,mmax

1 ] 206

and [mmin
2 ,mmax

2 ]. The user can either provide both ranges or only the range of m2 or give the 207

maximal range of y possible in the experiment, [ymin, ymax]. If the user provides only the range of 208

m2, we estimate mmin
1 as min

(
−mmax

2 xmax, m
min
2 xmin

)
and mmax

1 as max
(
−mmin

2 xmax, m
max
2 xmin

)
. 209

If the user provides the range of y, we estimate the range of m2 as [−gmax, gmax], with gmax = 210

(ymax − ymin)/∆xmin and ∆xmin being the smallest difference between two neighbouring x values. 211

Availability 212

We coded the algorithm as a Python package available at 213

https://pypi.org/project/nunchaku and via pip. We have also embedded nunchaku into our 214

omniplate software for analysing plate-reader data [?]. 215

Generating and testing with synthetic data 216

To test our method, we generated a piece-wise linear function f(x) with 1 ≤ M ≤ 10 continuous 217

linear segments, each having between 10–50 data points and with a unit distance, ∆x = 1, between 218
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data points. We sampled θ, the angle between each segment and the x-axis, from a uniform 219

distribution on the interval [−tan−1(20), tan−1(20)], so that the gradient, tan θ, lies between 220

[−20, 20]. Furthermore we ensured that the difference in θ between neighbouring segments is larger 221

than a fixed minimum, θ0. We added Gaussian noise, ϵ ∼ Normal(0, σ2), to give three replicates 222

of y = f(x) + ϵ. We generated 3,600 synthetic data sets in total, a combination of 200 different 223

piece-wise linear functions f(x), three values of θ0, and six values of σ. In Figs. 1 & 2, θ0 = 10◦. 224

Experimental methods 225

We used a prototrophic strain of S. cerevisiae (FY4), pre-cultured in synthetic complete (SC) 226

medium with 2% (w/v) sodium pyruvate in a 30◦C shaking incubator at 180 rpm for two days. 227

Before the experiment, we diluted the cells six-fold and let them grow for six hours. After washing 228

the cells twice with fresh minimal media [?], we inoculated them into minimal media with different 229

concentrations of fructose on a 96-well microplate. The liquid volume of each well was 200 µl. 230

For E. coli, we pre-cultured cells in 3 ml liquid Luria broth (LB) with one colony from a fresh 231

plate and grew aerobically to log phase (6h) at 37◦C with 250 rpm shaking. We then inoculated 3 232

µl culture into 147 µl fresh LB medium per well on a 96-well microplate. 233

We used either a Tecan Infinite M200 Pro or F200 plate reader at 30◦C for S. cerevisiae and 234

37◦C for E. coli with linear shaking at amplitude 6 mm. Measurements of absorbance at 600 nm, 235

OD600, were taken every 10 minutes. 236

Data were analysed using the omniplate software [?]. 237

Fitting Monod’s equation 238

After estimating the specific growth rate λ at each concentration of fructose s, we have a data

set D ≡ {(λi, si)} with 38 data points. We use Bayesian inference to estimate the constants λmax

and KM of Monod’s equation. Assuming a Gaussian measurement error of λmax with a standard

deviation σ and independent measurements, the likelihood

P (D|λmax, KM , σ) = (
√
2πσ)−N

N∏
i=1

exp

(
−
(λi − λmax

si
KM+si

)2

2σ2

)
. (27)
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To marginalise over σ, we assume P (σ) ∝ 1/σ, so that

P (D|λmax, KM) ∝
∫ ∞

0

dσ P (D|λmax, KM , σ)P (σ) ∝

[
N∑
i=1

(λi − λmax
si

KM + si
)2

]−N
2

. (28)

We further assume that the prior P (λmax, KM ) is uniform, and so the posterior probability λmax and 239

KM is proportional to the likelihood, Eq. 28. We therefore maximise the likelihood with respect to 240

λmax and KM using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. We estimate the 241

errors in these inferences using the diagonal elements of the Hessian matrix −∇∇ logP (D|λmax, KM ) 242

evaluated at the maximum of the likelihood [?]. 243
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Figure 3. The nunchaku algorithm gives intuitive results when applied to biological data. (A)
The calibration curve for plate-reader measurements of the OD of Saccharomyces cerevisiae, found
by diluting an overnight culture in 2% fructose, is non-linear (blue dots). There are three replicate
measurements for each dilution factor. Our algorithm identifies two linear segments (boundaries
marked as circles). Orange circles bound the segment with the highest R2. We specify the likely
maximal range of OD as our prior: [0, 2]. Inset: the logarithm of the model evidence for the number
of segments. (B) Identifying contiguous linear segments in the logarithm of the OD of growing
E. coli cells as a function of time allows us to identify automatically the region of exponential growth.
We show the mean of four replicate measurements (blue) with twice their standard deviation shaded.
Circles denote the boundaries of linear segments; orange circles bound the segment with the best-fit
line with highest gradient and so highest specific growth rate. The average specific growth rate over
this segment is 1.5 h−1. Inset: the logarithm of the model evidence for the number of segments.
(C) With our algorithm, we can automatically identify the region of exponential growth in multiple
data sets, here 38, to reveal growth laws such as Monod’s equation. We plot the specific growth
rate in log phase for S. cerevisiae as a function of the concentration of fructose, with the solid line
a fit of Monod’s equation: λmax = 0.422± 0.006 h−1 and KM = 0.026± 0.002 % (w/v). The shaded
area shows the 95% confidence interval. Inset: three example growth curves with dots marking the
region of exponential growth, identified as the segment with the highest gradient. For panels (B)
and (C), we specify a prior on the range of the gradient: [0, 5] h−1.

19


