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Purpose: The purpose of this study was to perform a systematic review and meta-
analysis to synthesize evidence from studies using deep learning (DL) to predict cardio-
vascular disease (CVD) risk from retinal images.

Methods: A systematic literature search was performed in MEDLINE, Scopus, and Web
of Science up to June 2022.We extracted data pertaining to predicted outcomes, model
development, and validation and model performance metrics. Included studies were
graded using the Quality Assessment of Diagnostic Accuracies Studies 2 tool. Model
performance was pooled across eligible studies using a random-effects meta-analysis
model.

Results: A total of 26 studies were included in the analysis. There were 42 CVD risk-
related outcomes predicted from retinal images were identified, including 33 CVD risk
factors, 4 cardiac imaging biomarkers, 2 CVD risk scores, the presence of CVD, and
incident CVD. Three studies that aimed to predict the development of future CVDevents
reported an area under the receiver operating curve (AUROC) between 0.68 and 0.81.
Models that used retinal images as input data had a pooledmean absolute error of 3.19
years (95% confidence interval [CI] = 2.95–3.43) for age prediction; a pooled AUROC of
0.96 (95% CI = 0.95–0.97) for gender classification; a pooled AUROC of 0.80 (95% CI =
0.73–0.86) for diabetes detection; and a pooled AUROC of 0.86 (95% CI = 0.81–0.92) for
the detection of chronic kidney disease. We observed a high level of heterogeneity and
variation in study designs.

Conclusions: Although DLmodels appear to have reasonably good performance when
it comes to predicting CVD risk, further work is necessary to evaluate the real-world
applicability and predictive accuracy.

Translational Relevance: DL-based CVD risk assessment from retinal images holds
great promise tobe translated to clinical practice as a novel approach for CVD risk assess-
ment, given its simple, quick, and noninvasive nature.
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Introduction

Although cardiovascular diseases (CVDs) are the
leading cause of mortality globally, up to 80% of
premature CVD events can be prevented by manag-
ing modifiable risk factors through lifestyle improve-
ment.1,2 A comprehensive risk assessment consider-
ing multiple risk factors is effective in preventing
CVD events3 and is therefore considered the first key
step for early identification and intervention of high-
risk patients.4 Numerous risk assessment tools that
integrate various clinical risk factors have been devel-
oped in the past, such as the Framingham risk score,
Systemic COronary Risk Evaluation (SCORE), and
QRISK.5–7 Although these risk-factor-based assess-
ment tools are well-established and even adopted by
guidelines, the involvement of blood test results and
the limited time for comprehensive data collection and
entry in real-world clinics may limit their widespread
usage.8

The retina is recognized as a “window” to visual-
ize and assess cardiovascular health noninvasively,9 as
it is considered to share similar anatomic structure and
physiological function with cardiac vasculature.9 Previ-
ous studies have indicated associations between various
retinal features and the risk of developing CVD,
ranging from retinal vascular geometry/morphology
(i.e. vessel caliber, branching angle, tortuosity, and
fractal dimension), retinal vascular network patterns,
and retinal pathologies (cotton wool spots, arteri-
ovenous nicking, and microaneurysm).10–13 However,
exclusively focusing on specific measurements might
overlook some implicit information and underestimate
the potential of the retina as a whole to inform cardio-
vascular (CV) health.

Deep learning (DL) is a subfield of the artifi-
cial intelligence (AI) techniques that focuses on utiliz-
ing artificial neural networks with multiple compu-
tational layers to learn and extract complex predic-
tive features from high-dimensional data, including
medical images.14 Recent studies have developed DL
algorithms that could make accurate diagnoses for
diseases that are largely dependent on morphology,

such as diabetic retinopathy, returning comparable
or slightly better performance from AI than human
graders.15

With all these resources, it is an emerging area
of research to investigate the application of DL to
predict the risk of CVD using retinal images. However,
distinct datasets and methodologies were adopted in
the development and validation of the algorithms, and
a variety of CVD-related risk factors or outcomes were
used as the prediction outcome in different studies.
Recently,Wong et al. have conducted a narrative review
on the current scope and future directions of AI on
retinal images for CVD prediction.16 Arnould et al.
also conducted a review focusing on the application
of retinal vascular networks and the development of
oculomics in future CVD risk assessment.17 Despite
the importance of these studies, very few studies have
performed a systematic review to comprehensively
evaluate the characteristics of these studies.

Therefore, we aim to perform a systematic review
and meta-analysis to evaluate the studies that apply
DL and retinal images in the prediction of CVD
risk, to comprehensively understand the characteristics
of these studies in terms of model development and
validation, predictors, and CVD-risk-related outcomes
and quantify the performances of theDLmodels in the
prediction of CVD risk.

Methods

We conducted the systematic review following the
Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) checklist.18 This study
protocol is registered on the International Prospective
Register of Systematic Reviews (PROSPERO) under
the ID CRD42022364921.

Literature Search

We performed a systematic literature search in
PubMed, Scopus, and Web of Science on June 30,
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2022, using search terms to identify eligible articles
with no limitations on the publication year. The
keywords used for the search included “artificial
intelligence,” “machine learning,” or “deep learn-
ing,” combined with “retinal image,” “retinal photo,”
“fundus photo,” “fundus image,” and combined
“cardiovascular disease,” “cardiovascular risk,”
“coronary heart disease,” “myocardial infarction,”
or “stroke,” and “risk assessment” or “screening.”
The detailed search strategy is shown in the Appendix
1. Titles and abstracts were independently reviewed
by two researchers (authors W.H. and R.C.), and all
relevant citations were included for full-text analysis.

Eligibility Criteria

Studies that reported the performance of DL
algorithms in predicting CVD risk, including CVD
risk factors, CVD risk score, or incident CVD events,
and using retinal images as their input were included.
Studies that reported DL algorithms using vascu-
lar segmentation or extracting specific retinal features
from the retinal image to predict CVD risk were
excluded from this study as the present review focused
on the DL pipeline that took a whole image directly as
input, which provides a more holistic approach to risk
prediction by understanding different predictive infor-
mation from all potential retinal features and arguably
has greater clinical utility insofar as automated predic-
tion is concerned. Included studies had to be written
in English, conducted on human subjects, and report
original research. Preprints and conference papers were
also included. To find any other potentially relevant
research, relevant studies cited by eligible studies were
also examined.

Data Extraction and Quality Assessment

Data extraction and quality assessment were
performed by one reviewer (authors W.H.) and under-
went double check by another two reviewers (authors
X.Z. and F.Y.) independently. Relevant data were
extracted from the retrieved articles using a predefined
Excel spreadsheet. For all the retrieved articles, the
extracted data included the first author, publication
year, type of DL model structure, predictive horizon,
the study populations, the input(s) for the development
of the DL models (retinal images with/without other
inputs), the reference standard (the prediction outcome
of the DL models), the datasets used, sample sizes,
and the number of outcomes for model development
and internal validation, the type of internal validation
(cross-validation or random split), and external valida-
tion if available. We also included the measurement

and results used in assessing the diagnostic accuracy
or reliability of the DL algorithms in the internal
and external validation datasets, and the features
highlighted in the retrieved attention maps of the
algorithms if available.

In addition, more data were extracted for a subset
of studies of those that the prediction outcomes were
incident CVD cases. The extracted data included basic
article information, the definition of CVD events
(including the prediction horizon of incident CVD),
follow-up periods, predictors (retinal images per se
or retina-predicted intermediate traits), sample sizes,
and cases of the cohorts, modeling method, and
the measurement adopted with results of diagnostic
accuracy.

Quality assessment was performed during data
extraction, using Quality Assessment of Diagnostic
Accuracies Studies 2 (QUADAS-2).19 This assessment
tool designed for diagnostic accuracy studies system-
atically evaluated the risk of bias in four domains,
including patient selection, index test, reference test,
and flow and timing, and concerns of the applicabil-
ity of the studies regarding the review questions in all
the domains except for flow and timing.

Data Synthesis and Analysis

Data synthesis was performed qualitatively to
summarize the characteristics of included studies,
including the type of DL model structures used, the
CVD risk-related prediction outcomes, the predictors
and sample size of studies, the studies that under-
went external validation, and the studies that gener-
ated attention maps and the features highlighted in
different studies for certain CVD risk-related predic-
tion outcomes.

Studies with the same predictor (retinal images or
retinal images with clinical data), prediction outcome,
and measure(s) of diagnostic accuracy or reliability,
performed in two or more studies with three or more
cohorts were synthesized for meta-analysis. Random-
effect models were used to estimate the pooled effect
sizes across studies, using precomputed effect sizes and
their 95% confidence intervals (CIs) extracted from
the articles. If the algorithm was evaluated in both
internal validation and external validation in differ-
ent cohorts, it was considered as a different study
in the meta-analysis. I2 was used to evaluate the
heterogeneity between studies (25%–50%, 50%–75%,
and 75% and over represent low, moderate, and high
heterogeneity, respectively). All statistical analyses were
performed using Stata version 16 (StataCorp LLC,
College Station, TX).
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Results

A total of 859 records were found using the search
strategy, and 277 duplicates were removed, resulting
in a total of 582 records for screening. Five hundred
thirty-eight records were excluded after reviewing the
titles and abstracts. Of the remaining articles for full-
text screening, 18 studies were excluded because of the
adoption of vessel segmentation or feature extraction
instead of whole retinal image analysis as the input,
using other irrelevant imaging modalities or irrelevant
prediction outcomes, being a case study, without suffi-
cient data on the datasets and outcome measures, or
being retracted. A total of 26 studies were included in
the study for qualitative appraisal.20–45 Three studies

were synthesized for the pooled performance of the
algorithms used for age prediction, four for gender
prediction, three for diabetes detection, and two for
chronic kidney disease (CKD) detection. Results from
internal and external validation cohorts, if available,
of the same study were included for the meta-analysis.
The PRISMA flow diagram is shown in Figure 1. The
data extracted to demonstrate the characteristics of all
the included studies are shown in detail in Appendix
2. The characteristics of a subset of these studies that
utilized retinal images or retinal image-predicted inter-
mediate traits to further predict incident CVD events
are listed separately in Appendix 3. The quality assess-
ment results are displayed in Figure 2 and details are
described in Appendix 4. The main reasons for the risk
of bias lie in the adoption of a case-control designs in

Figure 1. PRISMA flow diagram.

Figure 2. Diagram of quality assessment results of the 26 included studies using QUADAS-2.
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Figure 3. Summary of CVD risk-related prediction outcomes in the included studies.

terms of patient selection, the unclear definition of the
reference standards, and the use of inappropriate inter-
vals between the index test (retinal image acquisition)
and the reference standard.

CVD Risk-Related Outcomes

A total of 42 CVD risk-related outcomes were
predicted using retinal images in the included studies
as some studies predicted more than one outcome. The
detailed breakdown of the CVD risk-related outcomes
that have been used for prediction from retinal images
are depicted in Figure 3. A total of 33 of them were
CVD risk factors spanning the following categories:
demographic factors and lifestyle, cardiometabolic
factors, other blood measures, renal function, and
CKD. Four of them are cardiac imaging biomarkers.
The other CVD risk-related outcomes included CVD
risk scores (10-year ischemic CVD [ICVD] risk score)
and 10-year atherosclerotic CVD [ASCVD] risk score),
presence of CVD (presence of CVD and presence

of peripheral artery disease, and presence of stroke),
and incident CVD. Among these, 6 studies predicted
the longitudinal CVD risk-related outcomes, including
incident type 2 diabetes, incident CKD, and incident
CVD. The most common CVD risk-related outcomes
were: age (n = 10), gender (n = 6), smoking status (n =
5), diabetes (n = 5), HbA1C (n = 4), body mass index
(BMI; n = 4), blood glucose (n = 3), hypertension (n =
3), HDL-cholesterol (n = 3), coronary artery calcium
(CAC) score (n = 3), presence of renal impairment or
CKD (n = 3), presence of CVD (n = 4), and incident
CVD (n= 3). Notably, different definitions of the refer-
ence standards may be used in different studies, which
can be found in detail in Appendix 2.

Model Inputs, Development, and Internal
Validation

Retinal images as the only input for the develop-
ment of DL models were investigated in 25 (96.2%)
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studies, and one study only evaluated the multi-modal
DL algorithm with both retinal images and clinical
metadata as the input. Three studies experimented
with the used of retinal images only and multi-modal
input to assess the performance of DL models in
the prediction of CVD risk-related outcomes. In the
three studies that predicted incident CVD events,
Poplin et al. used retinal images per se (and clini-
cal metadata) for prediction,26 whereas Rim et al.
and Diaz.Pinto et al. used retina-predicted endophe-
notypes, including the RetiCAC (i.e. retina-predicted
probability of the presence of CAC) with demographic
factors and retina-predicted left ventricular mass
(LVM)/left ventricular end-diastolic volume (LVEDV)
with demographic factors, respectively.22,24

A variety of DL algorithms were used for model
development in the studies, including Convolu-
tional Neural Network (CNN) architectures, such
as visual geometry graphic (VGG), Inception, ResNet,
Inception-ResNet, Xception, EfficientNet, DiaNet,
MobileNet, cCondenseNet, DenseNet, NASNet-
Large, and one CNN architecture not specified. The
CNN architectures were also used in combination
with other models. For example, Mueller et al. utilized
multiple instance learning (MIL) to process images to
reserve high resolution of the input retinal images.29
Diaz Pinto et al. applied a multichannel variational
autoencoder (mcVAE), a multimodal AI model, that
integrates cardiac magnetic resonance imaging (MRI)
scans and retinal images for CVD risk prediction.24

Different terms were used in distinct studies for the
development, internal validation, and external valida-
tion of the DL model. In this review, development
datasets included both training and tuning sets in the
original articles. Internal validation in this review was
called the internal test in some studies. The sample sizes
of the development datasets were reported in terms
of retinal images and/or individuals, which ranged
between 135 images from 77 participants and 798,866
images from 390,947 participants. Seven studies that
predicted a categorical outcome did not specify the
number of cases included in the development datasets.
Two of them reported the cases in the internal valida-
tion set and the number can be estimated given the
random split of samples, whereas the other five studies
specified the number of cases neither in the develop-
ment nor internal validation set.

There were 18 (69.2%) studies that randomly split
the total sample for development and validation,
whereas 8 (30.8%) studies used k-fold cross-validation
for the development and internal validation of the
DL algorithms. The details of the DL model perfor-
mances of the internal validation can be found in
detail in Appendix 2.2. Regarding age prediction from

retinal images, the DL algorithms in different studies
achieved a mean absolute error (MAE) ranging from
2.74 to 3.55 years.26,31,32,34,42 For gender prediction,
the AUROC of the DL algorithms was between 0.704
and 0.978 among all relevant studies.26,28,31,32,40,44
Among the studies that investigated the prediction
of smoking status, the models achieved an AUROC
that ranged from 0.71 to 0.86.26,28,30,32,44 The DL
models had an MAE between 0.61% and 1.39% for
the prediction of HbA1c value26,32 and an MAE
between 0.652 and 1.06 mmol/l for the prediction
of blood glucose level.32,38 Among the studies that
predicted the presence of diabetes, the models had
an AUROC ranging from 0.731 to 0.923 using retinal
images only, which increased to 0.929 by adding clinical
data.23,28,33,38,40 The MAE ranged from 8.96 to 11.35
mm Hg for systolic blood pressure prediction, 6.42
to 6.84 mm Hg for diastolic blood pressure, and 3.29
to 4.31 kg/m2 for BMI prediction.26,32 The AUROC
for prediction of prevalent CKD was between 0.911
and 0.918 and was up to 0.938 when clinical metadata
was added to the model.37,38 As for the prediction
of prevalent CVD, the AUROC ranged from 0.499 to
0.700,40,44,45 and the accuracy was reported to be 0.756
when retinal images were used only and increased to
0.783 when dual-energy X-ray absorptiometry (DXA)
data was added.39

External Validation

Six (23.1%) studies validated the performance of the
DL algorithms using a total of nine external valida-
tion sets. Sample sizes of the external validation sets
ranged from 1054 images from 527 participants to
56,301 participants. The six studies were developed in
Korean (n = 2), Chinese (n = 2), multi-ethnic (Malay,
Chinese, and Indian, n = 1), and Caucasian (n = 1)
populations. Only two of the studies were validated in
a population of different ethnicities. Nusinovici et al.25
developed theDL algorithm for the prediction of age in
the Korean population and validated the performance
in the UK Biobank, which predominantly consisted of
Caucasians. The AUROC of predicting the probabil-
ity of being 65 years and over was 0.968 (95% CI =
0.965–0.970) in the internal validation set, and 0.756
(95% CI = 0.753–0.759) in the external validation set.
Yun et al.40 developed an algorithm for the detection of
type 2 diabetes in the UK Biobank population, which
was validated in a sample composed of Korean patients
with diabetes and non-diabetic patients from the UK
Biobank. The AUROC in the internal and external
validation set was 0.731 (95% CI = 0.707–0.756) and
0.703 (95% CI = 0.691–0.715), respectively.
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Performance of the AI Algorithm and
Meta-Analysis

The performance of the DL algorithms was
measured in a series of parameters, including the
diagnostic accuracy and reliability measures such
as sensitivity, specificity, AUROC, accuracy positive
predictive value (PPV), negative predictive value
(NPV), area under the precision-recall curve (AUPRC),
F1 score for binary prediction outcomes, MAE, and
the limits of agreement for continuous outcomes. The
details of the performance measures were listed by
prediction outcome in Appendix 2.2. Meta-analysis
was performed for eligible studies that predicted age,
gender, diabetes, and the presence of CKD. The
detailed results are shown in Appendix 5.

CVD Risk Score Prediction

Two studies investigate the prediction of CVD risk
scores from retinal images only. Ma et al.35 devel-
oped and validated the algorithm to predict a 10-year
ICVD risk score, which was defined by 7 parame-
ters determined by the Cox regression models, includ-
ing age, sex, systolic blood pressure, total cholesterol,
BMI, smoking status, and diabetes. The AUROC for
borderline risk (ICVD risk >5%) was 0.971 (95% CI
= 0.967–0.975) and the AUROC for intermediate or
high risk (ICVD risk >7.5%) was 0.976 (95% CI =
0.973–0.980) on an individual level. The R2 was 0.876,
indicating that 87.6% of the variability in the retina-
predicted score is explained by the ICVD risk score.
Syed et al.41 performed a study to predict a 10-year
ASCVD risk score, which was defined by the pooled
cohort equations (PCEs) consisting of age, sex, systolic
and diastolic blood pressure, total and high-density
lipoprotein cholesterol, diabetes, and smoking status.
The MAE was 0.1085 (96% CI = 0.1053, 0.1116) and
R2 was 0.5338 (95% CI = 0.5036, 0.5628).

Longitudinal Prediction of Incident CVD
Events

Three studies investigated the prediction of incident
CVD events longitudinally (Appendix 3). Poplin et
al.26 developed an algorithm using retinal images per
se to predict 5-year major adverse CVD events in the
UK Biobank study, achieving an AUROC of 0.70
(95% CI = 0.65–0.74). When adding well-established
clinical risk factors or SCORE to the model, the
AUROCs were 0.73 (95% CI = 0.69-0.77) and 0.72
(95% CI = 0.67–0.76), respectively. Rim et al.22 tested
the predictive value of RetiCAC, which was an inter-
mediate trait predicted from retinal images, represent-

ing the probability of CAC presence. The combina-
tion of RetiCAC with age and gender, or with PCE
was modeled to predict incident fatal (and non-fatal)
CVD events during a median follow-up period ranging
from 4.1 years to 10.3 years in multiple cohorts. The
C-statistics ranged between 0.68 (95% CI = 0.58–0.79)
(retinal images and age and gender in the CMERC-
HI study) and 0.806 (95% CI = 0.790–0.828; retinal
images and PCE in the SEED study). Diaz Pinto et
al.24 used another endophenotype predicted from the
retinal image, namely the retina-predicted LVM and
retinal-predicted LVEDV in combination with minimal
demographic factors to predict incident myocardial
infarction. The mean (± standard deviation) accuracy
was 0.74 ± 0.03 and the mean (± standard devia-
tion) AUROC was 0.8 ± 0.02 in the UK Biobank
fromwhich the algorithm was developed. The AUROC
and accuracy were 0.59 and 0.59 when tested in the
age-related eye disease study (AREDS) with all age-
related macular degeneration (AMD) images included
and 0.70 and 0.68when all AMD imageswere excluded.

Attention Maps

Attention maps were retrieved in 17 (65.4%)
studies. For the prediction of age, the features
highlighted included the macula, optic disc (includ-
ing optic nerve head), blood vessels (including vessel
arcade at the posterior pole), and regions around
the blood vessels.25–27,31,34 Features in gender predic-
tion comprised of optic discs, macula (including the
fovea), and vessels.26,31 Specifically, Kim et al. reported
that the proximal vascular regions were prominently
highlighted in women.31 Blood vessels, perivascular
regions, and the fovea were indicated in the atten-
tion maps in the prediction of smoking status.26,30
Nonspecific perivascular surroundings were featured
in one study predicting HbA1C.26 In the predic-
tion of diabetes, the central retina area between the
optic disc and the macula was highlighted in one
study.23 In addition, another study found features
scattered throughout the whole image that may corre-
spond to diabetic retinopathy (DR) changes in some
cases, in patients with diabetes with/without DR.38
Blood vessels and nonspecific features were highlighted
in the prediction of systolic blood pressure and
diastolic blood pressure, respectively.26 Nonspecific
features were found for the prediction of BMI as
well.26 Blood vessels, in specific main retinal branches,
vessels around the optic disc and vascular arcades,
the optic nerve head and its pathologic changes,
and retinal pathologies, such as cotton-wool spots
were the major features highlighted for the predic-
tion of cardiac imaging biomarkers, including CAC
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score, branchial-ankle pulse wave velocity (baPWV),
and carotid atherosclerosis.21,22,27,43 As for the predic-
tion of renal function impairment or CKD, retinopa-
thy changes, retinal vascular geometry/morphology
(including venous caliber, vessel density, vessel branch
points, and arterio-venous junctions) and the optic
nerve were featured.36–38 Optic disc, vessels, and
macula were extracted in the prediction of CVD risk
score.41 The central region of the retina, microhe-
morrhage, vessel arcades, and the optic disc were
documented in the studies that predicted the presence
of CVD.29,39

Discussion

This study was conducted to qualitatively appraise
the characteristics of the studies that apply DL to
predict CVD risk-related outcomes from retinal images
and to quantify the diagnostic accuracy of studies that
were designed to predict the same CVD risk-related
outcomes. This systematic review identified a variety
of CVD risk-related outcomes that were predicted
from retinal images and the diagnostic accuracy of
commonly predicted CVD risk-related outcomes, such
as age, gender, diabetes, and CKD, were highly accept-
able in the experimental settings. Nevertheless, the
results need to be interpreted with caution given
the limited number of studies and the between-study
heterogeneities.

The application of DL to predict CVD risk from
the retinal image is an emerging area of research at
the exploratory stage. In terms of prediction outcome
of interest, more than 40 CVD risk-related outcomes
were summarized in this study. Regarding the perfor-
mances of the DL algorithms, variations can be found
in the performances of the DL algorithms that predicts
certain CVD risk-related outcome among different
studies. The differences may lie in the variation of
sample sizes, different DL algorithms used, and differ-
ent populations involved. This suggests that even the
algorithms achieved a reasonably good performance
in its development and validation, it warrants further
validation in different datasets to increase the relia-
bility, robustness, and generalizability. In the limited
number of studies that are eligible to examine the
pooled performance of the algorithms, the results
showed that the DL models achieved an area under
the curve (AUC) of at least 0.80 in discriminating
gender, diabetes status, and CKD. However, although
algorithms reported in the study achieved an accept-
able performance in predicting single risk factors, it
should be borne in mind that some of the risk factors

are nonspecific if used alone, and some are intuitive
without the need for retinal images and analytical
algorithms. In terms of the prediction scheme of the
CVD risk-related outcomes, most studies are detect-
ing the CVD risk-related features cross-sectionally, and
the prediction of future risk is not defined or further
investigated. There could be difficulties in the accurate
prediction of future CVD events as the effects of
treatment and future comorbid changes will become
manifest over a longitudinal period.46 This may explain
why the majority of prediction schemes for cross-
sectional endophenotypes or CVD risk scores are
retinal images only, whereas the prediction of future
CVD risk requires the addition of clinical risk factors
to improve the performance of the AI algorithms.

In terms of study reporting, some studies put
more emphasis on algorithm development and did not
describe in detail the selected datasets, the definition
of the reference tests, the image acquisition protocols,
and the flow and timing of data collection, which may
potentially introduce biases and limit the validity of
the studies from a clinical perspective of view. The
performance of the DL algorithms was also reported
in a variety of measurements. For some categori-
cal outcomes, only AUC or accuracy was reported
but no sensitivity, specificity, PPV, and NPV were
displayed, whichmight limit a holistic interpretation of
the algorithms. Further, as different measurements will
provide barriers to a pooled analysis and further trans-
lation of the technology in terms of establishing clinical
cutoff values or criteria.47 This could be addressed in
the future by developing and promoting the utilization
of standard reporting checklists for these trials, such as
Standards for Reporting Diagnostic accuracy studies -
Artificial Intelligence (STARD-AI).48

The generalizability of the studies should be taken
into consideration. Most studies were developed and
validated in the Caucasian and Asian populations,
and there is scarce evidence for the other ethnici-
ties that may be at a higher risk of CVD, such as
African Americans, aboriginal people in Canada, or
indigenous Australians.49–52 The performance of the
DL algorithms reported in the studies might consider
measures that do not exist or are inappropriate for
these populations thereby over- or underestimating
their importance so the robustness of such indices
needs to be interpreted with caution. Moreover, a
primary challenge for ensuring the generalizability of
DL models arises from domain shift, referring to the
differences in the distributions of the data between
the training sets and test sets, such as clinical practi-
cal settings. This shift may be due to the distinct
imaging protocols or machines provided by vendors or
different characteristics of the patient populations.53
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In addition, the DL algorithms will perform worse
on a new dataset compared with the original one,
because of overfitting or data leakage.53 Only a small
proportion of studies in the systematic review were
externally validated. In addition, for all the studies
included in the analysis, retrospective analyses of exist-
ing datasets were applied for development and valida-
tion. This could be attributable to the challenge that
large numbers of images need to recruited for DL
algorithm development in cases where prospective data
collection are used. This is time-consuming and costly.
Finally, as retrospective analysis allows image quality
assessment in advance and exempts the considera-
tion of the image acquisition success rate, it can
be expected that the application of these prototypes
prospectively in real-world clinical settings will face
greater challenges.

Nevertheless, the application of DL and retinal
images in predictingCVDrisk shows significant clinical
implications. Compared to risk factor-based models,
the use of DL and retinal images may create a more
efficient and labor-free approach for CVD risk assess-
ment. The traditional parametric prediction models
combining multiple risk factors that were consid-
ered to be cumbersome in real-world practice.8 The
retina-based CVD risk assessment could potentiate
efficiency by removing the need for blood tests, and
providing extra information on end-organ damage.
Retinal photography is one of the most widely adopted
and cost-effective imaging modalities used for routine
eye care.54 The development of retinal image acqui-
sition technologies, handheld fundus cameras, or
smartphone-based fundus photography will further
increase the accessibility of the service.55,56

The adoption of DL technology to analyze retinal
images has already been tested in a more advanced
stage in terms of detecting eye diseases, such as DR,
from which the experience can be learnt for the future
implementation in terms of CVD risk assessment.
Google has conducted a prospective interventional
cohort study in Thailand to investigate the perfor-
mance of AI as a real-time DR screening service
in community care settings. For vision-threatening
DR, the DL system achieved a comparable accuracy
(94.7% vs. 95.3%) and specificity (95.4% vs. 95.5%)
to the retinal specialists on-site and higher sensitivity
(91.4% vs. 84.8%).57 Based on evidence from prospec-
tive studies that prove the diagnostic accuracy of
AI application, recent years have also witnessed the
approval of twoAI screening systems, EyeArt and IDx-
DR by the US Food and Drug Administration (FDA)
to detect more-than-mild DR (mtmDR).58,59 Taken
together, the evidence from DR has shed light on the
feasibility and the impact of applying automated AI

systems can have on retinal image analysis and disease
diagnosis. Although no prospective studies have been
performed to validate the real-world performance of
the AI systems that predict CVD, we can extrapo-
late the great potential of implementing it in clinical
practice from the DR screening experience.

Future studies and collaborations are needed to
improve the data source with sufficient sample sizes
and upgrade the algorithms to predict CVD events
accurately. The constraint of limited sample size could
be a major barrier in developing reliable algorithms.60
A couple of studies examined in this review has
fewer than 200 labeled images,20,27 potentially due
to the high intrinsic cost of obtaining certain suffi-
cient data for various labels, which to some extent
prevents the DL models to achieve their full poten-
tial. Furthermore, the limited number of longitudi-
nal cohort studies with sufficient incident CVD data
might be a reason of the scarcity of evidence on retinal
images in the prediction of incident CVD. To date,
only one study used retinal images as the sole input for
future CVD events, withmoderate-to-good discrimina-
tion of 0.70. The performance is comparable to well-
established clinical risk factor-based models, such as
the FRS, PCE, SCORE, and QRISK (AUC = 0.63 to
0.82).61–64 Therefore, future collaborations are needed
for the availability of multi-ethnic large-scale longi-
tudinal cohorts with follow-up information on both
predictors and outcomes to facilitate the development
and validation of algorithms. In addition to the avail-
ability of datasets, introducing the concept of open-
source algorithms to this field is also a beneficial way
to accelerate the translation and customization of the
technology as the availability of the codes enables more
validation and enhances the performance, facilitates
the adjustment of the technology to specific clinical
settings, reduces the cost, and enhances benign compe-
tition between similar products.65

The clinical implication and integration of this
technology into a feasible model of care requires
careful consideration. Compared to the diagnosis of
eye diseases which directly detected the pathologies
from the ocular images, CVD risk prediction is more
challenging as it is a multifactorial systemic disease, the
feature on the retinal images to inform cardiovascular
health can be influenced by the complex interplay of
environmental factors and genetic risk factors.66 There-
fore, accurate prediction of well-established CVD risk
scores might be a solution that could provide extra
individualized information than traditional risk factor-
based models and simplify the clinical procedure, such
as negating invasive tests and complex manual data
collection. Multimodal AI models combining retinal
images andminimal clinical metadatamight be another
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solution to improve the prediction performance of the
algorithms. But the inclusion of clinical data should
take into consideration the principle of noninvasive
and simple data acquisition procedures to maximize
the benefits of using retinal images as the predictor in
real practice over traditional risk factor-based models.

Strengths and Limitations of the Study

This systematic review comprehensively examines
the studies using DL to predict CVD risk-related
outcomes from retinal images, using structured search
terms, literature search, and extracting a wide range
of data which enables interpretation of the studies
from multiple angles. However, a couple of limita-
tions need to be made aware of. First, there is
high heterogeneity in the included studies in terms
of CVD risk-related outcomes, methodologies, and
measurements of outcomes, which prevented us from
performing quantification for all prediction outcomes.
Second, studies processing the retinal images with
vessel segmentation algorithms to predict CVD risk
were excluded in this review for the purpose of keeping
the predictors homogeneous to facilitate the inter-
pretation and preventing us from overlooking the
value of other retinal features. Nevertheless, retinal
vasculature is one of the most significant retinal
features in predicting CVD risk, and numerous studies
have been conducted on this specific topic, there-
fore, a review focusing on this topic is worthwhile
to be conducted separately. Third, a limited number
of studies were eligible for the meta-analysis which
increases the uncertainties of the outcome of pooled
estimates.67 Finally, as no quality assessment tools are
currently available for AI-based diagnostic accuracy
studies, we used the QUADAS-2 quality assessment
tool of which the interpretation can be varied between
studies.

Conclusion

In conclusion, this systematic review and meta-
analysis qualitatively interpret the studies that use
DL and retinal images to predict CVD risk-related
outcomes. A wide range of the predicted outcomes was
investigated but the evidence is scarce on the predic-
tion of incident CVD longitudinally. Future studies
are needed to validate and refine the algorithms,
especially in large-scale longitudinal cohorts. In
addition, prospective studies need to be conducted
to prove the applicability of the technology in real-
world practice.
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