

Edinburgh Research Explorer

F-IVM: Analytics over Relational Databases under Updates

Citation for published version:
Kara, A, Nikolic, M, Olteanu, D & Zhang, H 2023, 'F-IVM: Analytics over Relational Databases under
Updates', VLDB Journal, pp. 1-27. https://doi.org/10.1007/s00778-023-00817-w

Digital Object Identifier (DOI):
10.1007/s00778-023-00817-w

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
VLDB Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Nov. 2023

https://doi.org/10.1007/s00778-023-00817-w
https://doi.org/10.1007/s00778-023-00817-w
https://www.research.ed.ac.uk/en/publications/f571561a-561d-47eb-8dbb-4d25850f5a16

Noname manuscript No.
(will be inserted by the editor)

F-IVM: Analytics over Relational Databases under Updates

Ahmet Kara · Milos Nikolic · Dan Olteanu · Haozhe Zhang

Received: date / Accepted: date

Abstract This article describes F-IVM, a unified ap-

proach for maintaining analytics over changing rela-

tional data. We exemplify its versatility in four disci-

plines: processing queries with group-by aggregates and

joins; learning linear regression models using the covari-

ance matrix of the input features; building Chow-Liu

trees using pairwise mutual information of the input

features; and matrix chain multiplication.

F-IVM has three main ingredients: higher-order in-

cremental view maintenance; factorized computation;

and ring abstraction. F-IVM reduces the maintenance

of a task to that of a hierarchy of simple views. Such

views are functions mapping keys, which are tuples of

input values, to payloads, which are elements from a

ring. F-IVM supports efficient factorized computation

over keys, payloads, and updates. It treats uniformly

seemingly disparate tasks: While in the key space, all

tasks require general joins and variable marginalization,

in the payload space, tasks differ in the definition of the

sum and product ring operations.

We implemented F-IVM on top of DBToaster and

show that it can outperform classical first-order and

fully recursive higher-order incremental view mainte-

nance by orders of magnitude while using less memory.

Ahmet Kara
Department of Informatics, University of Zurich, Switzerland
E-mail: kara@ifi.uzh.ch

Milos Nikolic
School of Informatics, University of Edinburgh, UK
E-mail: milos.nikolic@ed.ac.uk

Dan Olteanu
Department of Informatics, University of Zurich, Switzerland
E-mail: olteanu@ifi.uzh.ch

Haozhe Zhang
Department of Informatics, University of Zurich, Switzerland
E-mail: zhang@ifi.uzh.ch

1 Introduction

Supporting modern applications that rely on accurate

and real-time analytics computed over large and contin-

uously evolving databases is a challenging data manage-

ment problem [7]. Special cases are the classical prob-

lems of incremental view maintenance (IVM) [18,33]

and stream query processing [4,37].

Recent efforts studied the problem of computing

machine learning (ML) tasks over static databases. The

predominant approach loosely integrates the database

systems with the statistical packages [27,55,40,54,35]:

First, the database system computes the input to the

statistical package by joining the database relations. It

then exports the join result to the statistical package for

training ML models. This approach precludes real-time

analytics due to the expensive export/import steps.

Systems like Morpheus [36] and LMFAO [59] push the

ML task inside the database and learn ML models over

static normalized data. In particular, LMFAO, and its

precursors F [58] and AC/DC [31], decompose the task

of learning classification and regression models over ar-

bitrary joins into factorized computation of aggregates

over joins and fixpoint computation of model parame-

ters. This factorization may significantly lower the com-

plexity by avoiding the computation of Cartesian prod-

ucts lurking within joins [8,52]. Both the tight inte-

gration of the database computation step and of the

statistical computation step as well as the factorized

computation are pre-requisites for real-time analytics.

This article describes F-IVM1, a unified approach

for maintaining analytics over changing relational data.

We exemplify its versatility in four disciplines: process-

ing queries with group-by aggregates and joins; learning

1 https://github.com/fdbresearch/FIVM.

https://github.com/fdbresearch/FIVM

2 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

linear regression models using the covariance matrix of

the input features; building Chow-Liu trees using pair-

wise mutual information matrix of the input features;

and matrix chain multiplication.

F-IVM has three main ingredients: higher-order in-

cremental view maintenance (IVM); factorized compu-

tation and data representation; and ring abstraction.

The first ingredient reduces the maintenance task to

that of a hierarchy of simple views. Such views are func-

tions mapping keys, which are tuples of input values, to

payloads, which are elements from a ring. In contrast

to classical (first-order) IVM, which computes changes

to the query result on the fly and does not use extra

views, F-IVM can significantly speed up the mainte-

nance task and lower its complexity by using carefully

chosen views. Yet F-IVM can use substantially fewer

views than the fully-recursive IVM, which is used by the

state-of-the-art IVM system DBToaster [33]. In our ex-

periments, F-IVM outperforms first-order and higher-

order IVM by up to two orders of magnitude in both

runtime and memory requirements.

The second ingredient supports efficient computa-

tion and representation for keys, payloads, and updates.

F-IVM exploits insights from query evaluation algo-

rithms with best known complexity and optimizations

that push aggregates past joins [8,52,6]. It can process

bulk updates expressed as low-rank decompositions [34,

61] and maintain a factorized representation of query

results, which is essential to achieve low complexity for

free-connex acyclic and q-hierarchical queries.

The third ingredient allows F-IVM to treat uni-

formly seemingly disparate tasks. In the key space, all

tasks require joins and variable marginalization. In the

payload space, tasks differ in the ring operations. To

maintain linear regression models and Chow-Liu trees

under updates, F-IVM uses a new ring that captures the

maintenance of a covariance matrix over continuous and

categorical features from the input database. Further-

more, it composes rings to capture the data-dependent

computation for complex analytics. Thanks to the ring

abstraction, F-IVM is highly extensible: efficient main-

tenance for new analytics over relational databases is

readily available as long as they come with appropriate

sum and product ring operations.

F-IVM was introduced in prior work [46]. This ar-

ticle complements it as follows. Sec. 2 overviews the F-

IVM design. Sec. 7 shows how F-IVM achieves the best

known complexity for q-hierarchical and free-connex

acyclic queries. Sec. 8 introduces the covariance ring

over continuous and categorical features. Sec. 9 includes

new experiments on: the covariance matrix for contin-

uous and categorical features; end-to-end linear regres-

sion models; Chow-Liu trees; q-hierarchical queries with

Fig. 1 View tree for the query in Ex. 1.1. The propagation
paths for updates to S (right red) and to T (left blue).

eager and lazy approaches and payloads carrying the

listing or the factorized representation of the query re-

sult; and path queries of increasing length on graph

data to stress-test the scalability of the IVM engines.

1.1 F-IVM by Example

Consider the following SQL query over a database D
with relations R(A,B), S(A,C,E), and T (C,D):

Q := SELECT A, C, SUM(B * D * E)

FROM R NATURAL JOIN S NATURAL JOIN T

GROUP BY A, C;

A näıve query evaluation approach first computes the

join and then the aggregate. This takes O(N3) time,

where N is the size of D. An alternative approach ex-

ploits the distributivity of SUM over multiplication to

partially push the aggregate past joins and then com-

bine the partial aggregates. For instance, one such par-

tial sum over S can be expressed as the view VS:

VS := SELECT A, C, SUM(E) AS SE
FROM S GROUP BY A, C;

In the view VS, we identify keys, which are tuples over

(A,C), and payloads, which are aggregate values SE.

Similarly, we compute partial sums over R and T as

views VR and VT. These views are joined as depicted

by the view tree in Fig. 1, which is akin to a query

plan with aggregates pushed past joins. This view tree

computes the result of Q in O(N) time.

Consider now the problem of learning, for each pair

(a, c) of (A,C)-values in the natural join of R, S, and

T , a linear function fa,c with parameters θ0, θD and θE
that predicts the label B given the features D and E:

f(D,E) = θ0 + θD ·D + θE · E

Our insight is that the same view tree in Fig. 1 can com-

pute the gradient vector used for learning fa,c, where

we replace the SQL SUM and * operators.

As shown in Sec. 8.1, the gradient of the square loss

objective function needs the computation of three types

F-IVM: Analytics over Relational Databases under Updates 3

of aggregates: the scalar c that is the count aggregate

SUM(1); the vector s of linear aggregates SUM(i), for

i ∈ {B, D, E}; and the matrix Q of quadratic aggregates

SUM(i ∗ j), where i, j ∈ {B, D, E}. These aggregates cap-

ture the correlation between the features and the label.

We treat these aggregates as one compound aggre-

gate (c, s,Q) so we can share computation across them.

This compound aggregate can be partially pushed past

joins similarly to the SUM aggregate discussed before.

Its values are carried in the key payloads of views in

the view tree from Fig. 1. For instance, the partial

compound aggregate (cT, sT,QT) at the view VT com-

putes, for each C-value, the count, sum, and sum of

squares of the D-values in T . Similarly, the partial ag-

gregate (cS, sS,QS) at the view VS computes, for each

pair (A,C), the count, sum, and sum of squares of E-

values in S. In the view VST, which is the join of VT

and VS, each key (a, c) is associated with the multipli-

cation of the payloads for the keys c in VT and (a, c)

in VS. This multiplication works on compound aggre-

gates: The scalar cST is the arithmetic multiplication

of cT and cS; the vector of linear aggregates sST is the

sum of the scalar-vector products cTsS and cSsT; finally,

the matrixQST of quadratic aggregates is the sum of the

scalar-matrix products cTQS and cSQT, and of the outer

products of the vectors sT and the transpose of sS and

also of sS and the transpose of sT. Our approach shares

the computation across the aggregates: The scalar ag-

gregates are used to scale up the linear and quadratic

aggregates, while the linear aggregates are used to com-

pute the quadratic aggregates.

We now turn to incremental view maintenance. F-

IVM operates over view trees. Whereas for non-incre-

mental computation we only materialize the top view

in the tree and the input relations, for incremental com-

putation we may materialize additional views to speed

up the maintenance task. Our approach is an instance

of higher-order IVM, where an update to one relation

may trigger the maintenance of several views.

Fig. 1 shows the leaf-to-root maintenance paths un-

der changes to S and T. For updates δS to S, each delta

view δVS, δVST, and δQ, is computed using delta rules:

δVS := SELECT A, C, SUM(E) AS SE
FROM δS GROUP BY A, C;

δVST := SELECT A, C, SUM(SD * SE) AS SC
FROM VT NATURAL JOIN δVS GROUP BY A, C;

δQ := SELECT A, C, SUM(SB * SC)

FROM VR NATURAL JOIN δVST GROUP BY A, C;

An update may consist of both inserts and deletes,

which are encoded as keys with positive and respec-

tively negative payloads. For the count aggregate, the

payload is 1 for an insert and −1 for a delete. For the

compound aggregate, the payload is (1,05×1,05×5) for

Fig. 2 Overview of the F-IVM system.

an insert and (−1,05×1,05×5) for a delete, where 0n×m

is the n-by-m matrix with all zero values.

F-IVM materializes and maintains views depending

on the update workload. For updates to all input re-

lations, it materializes each view in the view tree. For

updates to R only, it materializes VST; for updates to S

only, it materializes VR and VT; for updates to T only,

it materializes VR and VS. F-IVM takes constant time

for updates to S and linear time for updates to R and

T; these complexities are in the number of distinct keys

in the views. In contrast, the first-order IVM computes

one delta query per each updated relation and without

the use of extra views. It takes linear time for updates

to any of the three relations for our example query. The

fully-recursive higher-order IVM constructs a view tree

for each delta query, so overall more views, including

the view materializing the join of VR, VS, and δT.

F-IVM thus needs the same view tree and views

for our query with one SUM aggregate and even for the

learning task with the ten SUM aggregates. In contrast,

the first-order IVM needs to compute a distinct delta

query for each of these aggregates for updates to any

of the three relations. DBToaster, which is the state-

of-the-art fully recursive IVM, computes 31 views, ten

top views and 21 auxiliary ones. Whereas F-IVM shares

the computation across these aggregates, the other IVM

approaches do not. This significantly widens the perfor-

mance gap between F-IVM and its competitors.

2 Overview of the F-IVM System

Fig. 2 overviews the main components of F-IVM, anno-

tated with the numbers of sections where they are dis-

cussed. Applications (Sec. 8), e.g., database analytics,

training linear regression model and Chow-Liu trees,

and linear algebra computation, rely on queries with

natural joins and group-by aggregates, where each ag-

gregate is expressed using the sum and product oper-

ations in a ring. Queries and rings serve as input to

F-IVM, together with a stream of updates (tuple in-

serts and deletes) to the underlying database. Sec. 3

details the data model, the query language supported

by F-IVM, and the ring algebraic structure.

4 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

The logical optimizer creates a variable order for

the input query (Sec. 4). This is akin to a query plan,

albeit expressed as a partial order on the query vari-

ables as opposed to a partial order on the relations to

join. Classical query evaluation uses query plans that

dictate the order in which the relations are joined. F-

IVM uses variable orders that dictate the order in which

the variables are marginalized. For each join variable,

all relations with that variable are joined. This choice

is motivated by the observation that relation-at-a-time

query plans is suboptimal in general, whereas the eval-

uation by variable orders is worst-case optimal [43].

Finding a good variable order is a hard problem. Q-

hierarchical queries [12] admit asymptotically best vari-

able orders that can be found efficiently (Sec. 7). This

also applies to queries, which become q-hierarchical on

databases that satisfy functional dependencies.

Given a variable order for a query, the physical op-

timizer creates a view tree (Sec. 4), which is a tree of

views to support the maintenance and output enumer-

ation of the query. Updates to base relations are propa-

gated bottom-up in the tree, while output enumeration

requires top-down access in the view tree. Depending

on which base relations are updatable (dynamic) or

non-updatable (static), F-IVM decides to materialize

and maintain views in the view tree to support effi-

cient propagation of the updates and avoid recomputa-

tion. Sec. 5 discusses the view materialization problem,

whereas Sec. 6 discusses efficient update propagation.

Each view is accessed via indices with key-payload

entries. Its primary index is a hash map over all its keys

(Sec. 3). F-IVM may also need secondary and even ter-

tiary indices, which are hash maps over different subsets

of its keys. Such indices are updated lazily: the index

updates are buffered and only executed when index ac-

cess is required. The views for q-hierarchical queries

require the primary indices to support updates that

are propagated bottom-up in the view tree, and sec-

ondary indices to support output enumeration that pro-

ceeds top-down in the view tree (Sec. 7). F-IVM imple-

ments equality-based joins using in-memory hash-based

join operators. Aggregation is performed using variable

marginalization. To marginalize a variable, F-IVM enu-

merates the entries with the same key, except for the

marginalized variable, and applies the aggregation on

these entries on the fly.

For a view tree and ring specification for each vari-

able to be marginalized, the compiler outputs code in

DBToaster’s intermediate representation language M3.

DBToaster has its own optimizer and compiler that

turns M3 code into highly optimized C++ code. This

code takes the stream of input data updates, maintains

the views, and enumerates the query output, relying on

DBToaster’s runtime library for data ingestion.

3 Data Model and Query Language

The data model of F-IVM is based on relations over

rings and its query language allows for natural joins

and group-by aggregates over such relations.

Definition 1 A ring (D,+, ∗,0,1) is a set D with two

closed binary operations + and ∗, the additive identity

0, and the multiplicative identity 1 such that for all

a, b, c ∈ D, the following axioms are satisfied:

1. a+ b = b+ a.

2. (a+ b) + c = a+ (b+ c).

3. 0+ a = a+ 0 = a.

4. ∃ − a ∈ D : a+ (−a) = (−a) + a = 0.

5. (a ∗ b) ∗ c = a ∗ (b ∗ c).
6. a ∗ 1 = 1 ∗ a = a.

7. a ∗ (b+ c) = a ∗ b+a ∗ c and (a+ b) ∗ c = a ∗ c+ b ∗ c.

A semiring (D,+, ∗,0,1) satisfies all of the above prop-
erties except the additive inverse property (Property 4)

and adds the axiom 0 ∗ a = a ∗ 0 = 0. A (semi)ring for

which a ∗ b = b ∗ a is commutative. □

Example 1 The number sets Z, Q, R, and C with arith-

metic operations + and · and numbers 0 and 1 form

commutative rings. The set M of (n × n) matrices

forms a non-commutative ring (M, ·,+, 0n,n, In), where

0n,n and In are the zero matrix and the identity ma-

trix of size (n × n). The set N of natural numbers

is a commutative semiring but not a ring because it
has no additive inverse. Further examples are the max-

product semiring (R+,max,×, 0, 1), the Boolean semir-

ing ({true, false},∨,∧, false, true), and the set semiring

(2U ,∪,∩, ∅, U) of all possible subsets of a given set U .□

Data. A schema S is a set of variables. Let Dom(X)

denote the domain of a variable X. A tuple t over

schema S has the domain Dom(S) =
∏

X∈S Dom(X).

The empty tuple () is the tuple over the empty schema.

Let (D,+,∗,0,1) be a ring. A relation R over schema

S and the ring D is a function R : Dom(S) → D map-

ping tuples over schema S to values in D such that

R[t] ̸= 0 for finitely many tuples t. The tuple t is called

a key, while its mapping R[t] is the payload of t in R. We

use sch(R) to denote the schema of R. The statement

t ∈ R tests if R[t] ̸= 0. The size |R| of R is the size of

the set {t | t ∈ R}, which consists of all keys with non-0

payloads. A database D is a collection of relations over

the same ring. Its size |D| is the sum of the sizes of its

relations. This data model is in line with prior work on

F-IVM: Analytics over Relational Databases under Updates 5

K-relations over provenance semirings [25], generalized

multiset relations [32], and factors over semirings [6].

Each relation or materialized view R over schema S
is implemented as a hash map or a multidimensional ar-

ray that stores key-payload entries (t,R[t]) for each tu-

ple t with R[t] ̸= 0. The data structure can: (1) look up,

insert, and delete entries in amortized constant time,

and (2) enumerate all stored entries in R with con-

stant delay, i.e., the following times are constant: (i)

the time between the start of the enumeration and out-

putting the first tuple, (ii) the time between outputting

any two consecutive tuples, and (iii) the time between

outputting the last tuple and the end of the enumera-

tion [21]. For a schema X ⊂ S, we use an index data

structure that for any t ∈ Dom(X) can: (4) enumer-

ate all tuples in σX=tR with constant delay, (5) check

t ∈ πXR in amortized constant time; and (7) insert and

delete index entries in amortized constant time.

We give a hash-based example data structure that

supports the above operations with the stated complex-

ities. Consider a relation R over schema S. A hash ta-

ble with chaining stores key-value entries of the form

(t, R(t)) for each tuple t over S with R(t) ̸= 0. The

entries are doubly linked to support enumeration with

constant delay. The hash table can report the number

of its entries in constant time and supports lookups, in-

serts, and deletes in amortized constant time. To sup-

port index operations on a schema X ⊂ S, we create

another hash table with chaining where each table en-

try stores an X -value t as key and a doubly-linked list

of pointers to the entries in R having t as X -value.

Looking up an index entry given t takes amortized con-

stant time, and its doubly-linked list enables enumera-

tion of the matching entries in R with constant delay.

Inserting an index entry into the hash table addition-

ally prepends a new pointer to the doubly-linked list for

a given t; overall, this operation takes amortized con-

stant time. For efficient deletion of index entries, each

entry in R also stores back-pointers to its index entries

(one back-pointer per index for R). When an entry is

deleted from R, locating and deleting its index entries

in doubly-linked lists takes constant time per index.

Query Language. We consider queries with natural

joins and group-by aggregates:

SELECT X1, . . . , Xf , SUM(gf+1(Xf+1) ∗ ... ∗ gm(Xm))
FROM R1 NATURAL JOIN . . . NATURAL JOIN Rn

GROUP BY X1, . . . , Xf

The group-by variables X1, . . . , Xf are free, while the

other variables Xf+1, . . . , Xm are bound. The SUM ag-

gregate values are from a ring (D,+, ∗,0,1). The SUM

operator uses the addition + from D. Further aggre-

gates can be expressed using the sum and product oper-

ations from the ring. A lifting function gk : Dom(Xk) →
D, for f < k ≤ m, maps Xk-values to elements in D:

when marginalizing Xk, we aggregate the values gk(x)

from D and not the values x from Dom(Xk).

Instead of the verbose SQL notation, we use the

following more compact encoding:

Q[X1 , . . . ,Xf] =
⊕

Xf+1
· · ·

⊕
Xm

⊗
i∈[n] Ri[Si]

where
⊗

is the join operator,
⊕

Xf+1
is the aggregation

operator that marginalizes over the variable Xf+1, and

each relation Ri is a function mapping keys over schema

Si to payloads in D. We also need a union operator ⊎
to express updates (insert/delete) to relations.

Example 2 The SQL query

SELECT SUM(1) FROM R NATURAL JOIN S NATURAL JOIN T

over tables R(A,B), S(A,C,E), and T (C,D) can be

encoded as follows in our formalism. The table R is

encoded as a relation R : Dom(A)× Dom(B) → Z that

maps tuples (a, b) to their multiplicity in R; similarly,

we encode the tables S and T as relations S and T. We

translate the SQL query into:

Q[] =
⊕

A,B,C,D,E

R[A,B]⊗ S[A,C ,E]⊗ T[C ,D]

where
⊕

A,B,C,D,E

abbreviates
⊕

A · · ·
⊕

E . The lifting

functions used for marginalization map all values to 1.

Recall that by definition R, S, and T are finite. The

relation Q maps the empty tuple () to the count. □

Given a ring (D,+, ∗,0,1), relations R and S over

schema S1 and relation T over schema S2, a variable

X ∈ S1, and a lifting function gX : Dom(X) → D, we

define the three operators as follows:
union:

∀t ∈ D1: (R ⊎ S)[t] = R[t] + S[t]

join:

∀t ∈ D2: (S⊗ T)[t] = S[πS1(t)] ∗ T[πS2(t)]

aggregation by marginalization:

∀t ∈ D3: (
⊕

X R)[t] =
∑

{R[t1] ∗ gX(π{X}(t1)) |
t1 ∈D1, t = πS1\{X}(t1)}

where D1 = Dom(S1), D2 = Dom(S1 ∪ S2), and D3 =

Dom(S1 \ {X}), and πS(t) is a tuple representing the

projection of tuple t on the schema S.

Example 3 Consider relations over a ring (D,+,∗,0,1):
A B → R[A,B]

a1 b1 → r1
a2 b1 → r2

A B → S[A,B]

a2 b1 → s1
a3 b2 → s2

B C → T[B ,C]

b1 c1 → t1
b2 c2 → t2

The values r1, r2, s1, s2, t1, t2 are non-0 values from

D. The operators ⊎, ⊗, and ⊕ are akin to union, join,

and aggregation (gA :Dom(A)→D is the lifting for A):

6 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

A B → (R ⊎ S)[A,B]

a1 b1 → r1
a2 b1 → r2 + s1
a3 b2 → s2

A B C →
(
(R ⊎ S)⊗ T

)
[A,B,C]

a1 b1 c1 → r1 ∗ t1
a2 b1 c1 → (r2 + s1) ∗ t1
a3 b2 c2 → s2 ∗ t2

B C →
(⊕

A(R ⊎ S)⊗ T
)
[B,C]

b1 c1 → r1 ∗ t1 ∗ gA(a1) + (r2 + s1) ∗ t1 ∗ gA(a2)
b2 c2 → s2 ∗ t2 ∗ gA(a3)

Example 4 Let us consider the SQL query from Sec-

tion 1.1, which computes SUM(R.B * T.D * S.E) grouped

by A, C. Assume that B, D, and E take values from Z.
We model the tables R, S, and T as relations mapping

tuples to their multiplicity, as in Ex. 2. The variables

A and C are free, while B, D, and E are bound.

When marginalizing over the bound variables, we

apply the same lifting function to these variables: ∀x ∈
Z : gB(x) = gD(x) = gE(x) = x. The SQL query can

be expressed in our formalism as follows:

Q[A,C] =
⊕

B,D,E

R[A,B]⊗ S[A,C ,E]⊗ T[C ,D]

The computation of the aggregate SUM(R.B * T.D * S.E)

now happens over payloads. □

By using relations over rings, we avoid the intrica-

cies of incremental computation under multiset seman-

tics caused by the non-commutativity of inserts and

deletes. We simplify delta processing by representing

both inserts and deletes as tuples, with the distinction

that they map to positive and respectively negative ring

values. This uniform treatment allows for simple delta

rules for the three operators of our query language.

4 Factorized Ring Computation

This section introduces a framework for query evalu-

ation based on factorized computation and data rings.

The next section extends it to incremental maintenance.

Variable Orders. Given a join query Q, a variable

X depends on a variable Y if both are in the schema of

a relation in Q.

Definition 2 (adapted from [52]) A variable order

ω for a join query Q is a pair (F, dep), where F is a

rooted forest with one node per variable in Q, and dep is

a function mapping each variable X to a set of variables

in F . It satisfies the following constraints:

– For each relation in Q, all of its variables lie along

a root-to-leaf path in F .

– For each variable X, dep(X) is the subset of its an-

cestors in F on which the variables in the subtree

rooted at X depend.

A

B C

ED

S

R

T

dep(A) = ∅
dep(B) = {A}
dep(C) = {A}
dep(D) = {C}
dep(E) = {A,C}

V@A
RST[]

V@B
R [A] V@C

ST [A]

V@D
T [C] V@E

S [A,C]
R[A,B]

S[A,C ,E]T[C ,D]
V@E

S [A,C] =
⊕

E S[A,C ,E]

V@D
T [C] =

⊕
D T[C ,D] V@A

RST[] =
⊕

A

(
V@B

R [A]⊗ V@C
ST [A]

)
V@B

R [A] =
⊕

B R[A,B] V@C
ST [A] =

⊕
C

(
V@D

T [C]⊗ V@E
S [A,C]

)
Fig. 3 (top left) Variable order ω of the natural join of the
relations R[A,B], S[A,C ,E], and T[C ,D]; (top right) View
tree over ω and F = ∅; (bottom) View definitions.

Example 5 Consider the query from Ex. 2 that joins

the relations R[A,B], S[A,C ,E], and T[C ,D]. Fig. 3

gives a variable order (top left) for the query. Variable

D has ancestors A and C, yet it only depends on C

since C and D appear in the same relation T and D

does not occur in any relation together with A. Thus,

dep(D) = {C}. Given C, the variables D and E are

independent of each other. □

For a query Q with free variables, a variable order is

free-top if no bound variable is an ancestor of a free

variable [29]. Variable orders are a different syntax [52]

for hypertree decompositions [24]. They are more nat-

ural for algorithms that proceed one variable at a time.

View Trees. Our framework relies on a variable or-

der ω for the input query Q to describe the structure of

the computation and indicate which variable marginal-

izations are pushed past joins. Based on ω, we construct
a tree of views that represent F-IVM’s data structure

to support query maintenance and enumeration.

Fig. 4 gives a function τ that constructs a view tree

τ for a variable order ω and the set F of free variables of

the query Q. Without loss of generality, we assume that

ω is a single rooted tree. Otherwise, we apply τ to each

tree in ω to obtain a set of view trees. For simplicity,

we assume that ω was first extended with relations as

children under their lowest variable.

The function τ maps the variable order to a view

tree of the same tree structure, yet with each variable

X replaced by a view V@X
rels [keys]. This notation states

that the view V is (recursively) defined over the input

relations rels, has free variables keys, and it corresponds

to the variable X in ω; in case of a view for an input

relation R, we use the simplified notation R[sch(R)].
The base case (leaf in the extended variable order)

is that of an input relation: We construct a view that

is the relation itself. At a variable X (inner node), we

distinguish two cases: If X is a bound variable, then

F-IVM: Analytics over Relational Databases under Updates 7

τ(variable order ω, free variables F) : view tree

switch ω:

R return R[sch(R)]

X

ω1 . . .ωk

let Ti = τ(ωi,F), ∀i ∈ [k]

let V@ωi

relsi
[keysi] = root of Ti, ∀i ∈ [k]

let keys = dep(X) ∪ (F ∩ vars(ω))

let rels =
⋃

i∈[k] relsi

if X /∈ F
V@X

rels [keys] =
⊕

X

⊗
i∈[k] V

@ωi

relsi
[keysi]

else

V@X
rels [keys] =

⊗
i∈[k] V

@ωi

relsi
[keysi]

return

V@X

rels [keys]

T1 . . . Tk

Fig. 4 Creating a view tree τ(ω,F) for a variable order ω
and a set of free variables F .

V@A
RST[A,C]

V@B
R [A] V@C

ST [A,C]

V@D
T [C] V@E

S [A,C]
R[A,B]

S[A,C ,E]T[C ,D]

V@A
RST[A,C] = V@B

R [A]⊗ V@C
ST [A,C]

V@C
ST [A,C] = V@D

T [C]⊗ V@E
S [A,C]

V@E
S [A,C] =

⊕
E S[A,C ,E]

V@B
R [A] =

⊕
B R[A,B]

V@D
T [C] =

⊕
D T[C ,D]

Fig. 5 (left) View tree over the variable order ω in Fig. 3
and F = {A,C}; (right) View definitions.

we construct a view that marginalizes out X in the

natural join of the views that are children of the current

view; we thus first join on X, then apply the lifting

function for X on its values, and aggregate X away. If

X is a free variable, however, then we retain it in the

view schema without applying the lifting function to its

values. The schema of the view consists of dep(X) and

the free variables in the subtree of ω rooted at X.

Example 6 Fig. 3 shows the view tree constructed by

the function τ from Fig. 4 over the variable order ω

and the empty set of free variables. Fig. 5 depicts the

view tree constructed over the same variable order but

for the set F = {A,C} of free variables.

Fig. 6 gives the contents of the views in the view

tree from Fig. 3, where R, S, and T are relations over a

ring D with payloads pi ∈ D for i ∈ [12]. Assume that

D is the Z ring, each tuple in these relations is mapped

to 1, i.e., pi = 1 for i ∈ [12], and the lifting functions

map all values to 1. Then, the view tree computes the

COUNT query from Ex. 2 and the root view V@A
RST maps

the empty tuple to the overall count 10. □

By default, the function τ in Fig. 4 constructs one

view per variable in the variable order ω. A wide re-

A B → R[A,B]

a1 b1 → p1

a1 b2 → p2

a2 b3 → p3

a3 b4 → p4

A C E → S[A,C,E]

a1 c1 e1 → p5

a1 c1 e2 → p6

a1 c2 e3 → p7

a2 c2 e4 → p8

C D → T[C,D]

c1 d1 → p9

c2 d2 → p10

c2 d3 → p11

c3 d4 → p12

()→ V@A
RST[]

()→V@C
ST [a1] ∗ V@B

R [a1] ∗ gA(a1) + V@C
ST [a2] ∗ V@B

R [a2] ∗ gA(a2)

A →V@B
R [A]

a1 → p1 ∗ gB(b1) + p2 ∗ gB(b2)
a2 → p3 ∗ gB(b3)
a3 → p4 ∗ gB(b4)

A →V@C
ST [A]

a1 →V@E
S [a1, c1] ∗ V@D

T [c1] ∗ gC(c1) + V@E
S [a1, c2] ∗ V@D

T [c2] ∗ gC(c2)

a2 →V@E
S [a2, c2] ∗ V@D

T [c2] ∗ gC(c2)

C →V@D
T [C]

c1 → p9 ∗ gD(d1)
c2 → p10 ∗ gD(d2) + p11 ∗ gD(d3)
c3 → p12 ∗ gD(d4)

A C →V@E
S [A,C]

a1 c1 → p5 ∗ gE(e1) + p6 ∗ gE(e2)
a1 c2 → p7 ∗ gE(e3)
a2 c2 → p8 ∗ gE(e4)

Fig. 6 Contents of the views in the view tree from Fig. 3 in
case the relations R, S, and T are over a ring (D,+, ∗,0,1)
with pi ∈ D for i ∈ [12].

lation (with many variables) leads to long branches in

ω with variables that are only local to this relation.

This is, for instance, the case of our retailer dataset

used in Sec. 9. Such long branches create long chains of

views, where each view marginalizes one bound variable

over its child view in the chain. For practical reasons,

we compose such long chains into a single view that

marginalizes several variables at a time.

5 Factorized Higher-Order IVM

We introduce incremental view maintenance in our fac-

torized ring computation framework. Unlike evaluation,

the incremental maintenance of the query result may

require the materialization and maintenance of views.

An update to a relation R triggers changes in all views

from the leaf R to the root of the view tree.

Updates. The insertion (deletion) of a tuple t into

(from) a relation R is expressed as a delta relation δR
that maps t to 1 (and respectively −1). In general, δR
can be a relation, thus a collection of tuples mapped to

payloads. The updated relation is then the union of the

old relation and the delta relation: R := R ⊎ δR.

Delta Views. For each view V affected by an up-

date, a delta view δV defines the change in the view

content. In case the view V represents a relation R, then
δV = δR if there are updates to R and δV = ∅ otherwise.
If the view is defined using operators on other views,

8 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

∆(view tree τ , update δR) : delta view tree

switch τ :

R[sch(R)] return δR[sch(R)]

V@X
rels [keys]

τ1 . . . τk

let V@Xi

relsi
[keysi] be root of τi, ∀i ∈ [k]

let j ∈ [k] be such that R ∈ relsj

let δV[keys] = δV
@Xj

relsj
[keysj]

⊗
i∈[k],i ̸=j

V@Xi

relsi
[keysi]

if X /∈ keys

δV@X
rels [keys] = Optimize

(⊕
X δV[keys]

)
else

δV@X
rels [keys] = δV[keys]

return

V@X

rels [keys]

τ1 . . . ∆(τj , δR) . . . τk

Fig. 7 Creating a delta view tree ∆(τ, δR) for a view tree τ
to process an update δR to relation R.

δV is derived using the following delta rules:

δ(V1 ⊎ V2) = δV1 ⊎ δV2

δ(V1 ⊗ V2) = (δV1 ⊗ V2) ⊎ (V1 ⊗ δV2) ⊎ (δV1 ⊗ δV2)

δ(
⊕

X V) =
⊕

X δV

The correctness of the rules follows from the asso-

ciativity of ⊎ and the distributivity of ⊗ over ⊎;
⊕

X is

equivalent to the repeated application of ⊎ for the pos-

sible values of X. The derived delta views are subject

to standard simplifications: If V is not defined over the

updated relation R, then its delta view δV is empty, and

then we propagate this information using the identities

∅ ⊎ V = V ⊎ ∅ = V and ∅ ⊗ V = V ⊗ ∅ = ∅.

Delta Trees. Under updates to one relation, a view

tree becomes a delta tree where the affected views be-

come delta views. The function ∆ in Fig. 7 replaces the

views along the path from the updated relation to the

root with delta views. The Optimize method rewrites

delta view expressions to exploit factorized updates by

avoiding the materialization of Cartesian products and

pushing marginalization past joins (see Sec. 6).

Example 7 Consider again the query from Ex. 2, its

view tree in Fig. 3, and the same relations over the

Z ring and the lifting functions that map all values

to 1 as in Ex. 6. An update δT[C,D] = {(c1, d1) →
−1, (c2, d2) → 3} triggers delta computation at each

view from the leaf T to the root of the view tree:

δV@D
T [C] =

⊕
D δT[C ,D]

δV@C
ST [A] =

⊕
C δV@D

T [C]⊗ V@E
S [A,C]

δV@A
RST[] =

⊕
A V@B

R [A]⊗ δV@C
ST [A]

µ(view tree τ , updatable relations U) : view set

switch τ :

root

τ1 . . . τk

children = {Vi is root of τi}i∈[k]

m root = if (root has no parent) {root} else ∅
m children = {Vi | Vi,Vj ∈ children,

Vi ̸= Vj, rels(Vj) ∩ U ≠ ∅}
return m root ∪ m children ∪

⋃
i∈[k] µ(τi,U)

Fig. 8 Deciding which views in a view tree τ to materialize in
order to support updates to a set of relations U . The notation
rels(Vj) denotes the relations under the view Vj in τ .

Given that V@E
S = {(a1, c1) → 2, (a1, c2) → 1,

(a2, c2) → 1} and V@B
R = {a1 → 2, a2 → 1, a3 → 1},

we obtain δV@D
T [C] = {c1 → −1, c2 → 3}, δV@C

ST [A] =

{a1 → 1, a2 → 3}, and δV@A
RST = {() → 5}.

A single-tuple update to T fixes the values for C

and D. Computing δV@D
T then takes constant time. The

delta view δV@C
ST iterates over all possible A-values for

a fixed C-value, which takes linear time; δV@A
RST incurs

the same linear-time cost. A single-tuple update to R or

S fixes all variables on a leaf-to-root path in the delta

view tree, giving a constant view maintenance cost. □

In contrast to classical (first-order) IVM that only

requires maintenance of the query result [18], our ap-

proach is higher-order IVM as updates may trigger ma-

intenance of several interrelated views. The fully-recur-

sive IVM scheme of DBToaster [32,33] creates one ma-

terialization hierarchy per relation in the query, whereas

we use one view tree for all relations. This view tree

relies on variable orders to decompose the query into

views and factorize its computation and maintenance.

Which Views to Materialize and Maintain?

The answer to this question depends on which relations

may change. The set of the updatable relations deter-

mines the possible delta propagation paths in a view

tree, and these paths may use materialized views.

Propagating changes along a leaf-to-root path is co-

mputationally most effective if each delta view joins

with sibling views that are already materialized. Fig. 8

gives an algorithm that reflects this idea: Given a view

tree τ and a set of updatable relations U , the algorithm
traverses the tree top-down to discover the views that

need to be materialized. The root of the view tree τ is

always stored as it represents the query result. Every

other view Vi is stored only if there exists a sibling view

Vj defined over an updatable relation.

Example 8 We continue with our query from Ex. 7. For

updates to T only, i.e., U = {T}, we store the root

V@A
RST and the views V@E

S and V@B
R used to compute the

deltas δV@C
ST and δV@A

RST. Only the root view is affected:

V@A
RST[] = V@A

RST[]⊎δV@A
RST[]. It is not necessary to main-

F-IVM: Analytics over Relational Databases under Updates 9

tain other views. To also support updates to R and S,
we need to materialize V@C

ST and V@D
T . If no updates are

supported, then only the root view is stored. □

For queries with free variables, several views in their

(delta) view trees may be identical: This can happen

when all variables in their keys are free and thus cannot

be marginalized. For instance, a variable order ω for

the query from Ex. 4 may have the variables A and C

above all other variables, in which case their views are

the same in the view tree for ω. We then store only the

top view out of these identical views.

IVM Triggers. For each updatable relation R, F-
IVM constructs a trigger procedure that takes as input

an update δR and implements the maintenance schema

of the corresponding delta view tree. This procedure

also maintains all materialized views needed for the

given update workload.

A bulk of updates to several relations is handled as a

sequence of updates, one per relation. Update sequences

can also happen when updating a relation R that occurs

several times in the query. The instances representing

the same relation are at different leaves in the delta tree

and lead to changes along multiple leaf-to-root paths.

6 Factorizable Updates

Our focus so far has been on supporting updates rep-

resented by delta relations. We next consider an alter-

native approach that decomposes a delta relation into

a union of factorizable relations. The cumulative size

of the decomposed relations can be much less than the

size of the original delta relation. Also, the complexity

of propagating a factorized update can be much lower

than that of its unfactorized (listing) representation,

since the factorization makes explicit the independence

between query variables and enables optimizations of

delta propagation such as pushing marginalization past

joins. Besides the factorized view computation, this is

the second instance where F-IVM exploits factorization.

Factorizable updates arise in many domains such as

linear algebra and machine learning. Section 8 demon-

strates how our framework can be used for the incre-

mental evaluation of matrix chain multiplication, recov-

ering prior work on this [44]. Matrix chain computation

can be phrased in our language of joins and aggregates,

where matrices are binary relations. Changes to one

row/column in an input matrix may be expressed as a

product of two vectors. In general, an arbitrary update

matrix can be decomposed into a sum of rank-1 ma-

trices, each of them expressible as products of vectors,

using low-rank tensor decomposition methods [34,61].

Example 9 Arbitrary relations can be decomposed into

a union of factorizable relations. The relation R[A,B]

= {(ai, bj) → 1 | i ∈ [n], j ∈ [m]} can be decomposed

as R1[A] ⊗ R2[B], where R1[A] = {(ai) → 1 | i ∈ [n]}
and R2[B] = {(bj) → 1 | j ∈ [m]}. We thus reduced a

relation of size nm to two relations of cumulative size

n+m. If R were a delta relation, the delta views on top

of it would now be expressed over R1[A] ⊗ R2[B] and

their computation can be factorized as done for queries

in Section 4. Product decomposition of relations can

be done in linearithmic time in both the number of

variables and the size of the relation [49].

Consider now R′[A,B] = R[A,B] ⊎ {(an+1, bj) → 1 |
j ∈ [m− 1]} with R as above. We can decompose each

of the two terms in R′ similarly to R, yielding overall

n+2m values instead of nm+m−1. A different decom-

position with n+m+3 values is given by a factorizable

over-approximation of R′ compensated by a small prod-

uct with negative payload: {(ai) → 1 | i ∈ [n + 1]} ⊗
{(bj) → 1 | j ∈ [m]} ⊎ {(an+1) → 1} ⊗ {(bm) → −1}.□

The Optimize method used in the delta view tree

algorithm in Figure 7 exploits the distributivity of join

⊗ over marginalization
⊕

X to push the latter past the

former and down to the views with variable X. This

optimization is reminiscent of pushing aggregates past

joins in databases and variable elimination in proba-

bilistic graphical models [6]. In case the delta views

express Cartesian products, then they are not mate-

rialized but instead kept factorized.

Example 10 Consider the query Q from Example 7 and

its view tree in Figure 3. In the delta view tree derived

for updates to S, the top-level delta is computed as:

δV@A
RST[] =

⊕
A V@B

R [A]⊗
(⊕

C V@D
T [C]⊗⊕

E δS[A,C ,E]︸ ︷︷ ︸
δV@E

S [A,C]

)
︸ ︷︷ ︸

δV@C
ST [A]

A single-tuple update δS binds variables A, C, and E,

and computing δV@A
RST requires O(1) lookups in V@D

T

and V@B
R . An arbitrary-sized update δS can then be

processed in O(|δS|) time.

Assume now that δS is factorizable as δS[A,C ,E] =

δSA[A] ⊗ δSC[C] ⊗ δSE[E]. In the construction of the

delta view tree, the Optimize method exploits this fac-

torization to push the marginalization past joins at each

variable; for example, the delta at E becomes:

δV@E
S [A,C] =

⊕
E δSA[A]⊗ δSC[C]⊗ δSE[E]

= δSA[A]⊗ δSC[C]⊗
⊕

E δSE[E]

10 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

We also transform the top-level delta into a product of

three views:

δV@A
RST[] =

(⊕
A V@B

R [A]⊗ δSA[A]
)
⊗(⊕

C V@D
T [C]⊗ δSC[C]

)
⊗
(⊕

E δSE[E]
)

The computation time for this delta is proportional to

the sizes of the three views representing the update:

O(min(|V@B
R |, |δSA|) + min(|V@D

T |, |δSC|) + |δSE|). □

7 F-IVM for Special Query Classes

This section shows how F-IVM maintains free-connex

(α-)acyclic queries [28] and q-hierarchical queries [12].

The analysis for these queries is refined into: (i) the pre-

processing phase, where the view tree is constructed;

(ii) the enumeration phase, where we present the query

result one tuple at a time; and (iii) the update phase,

where we update the view tree. The following data com-

plexity2 claims assume that the ring operations require

constant time, otherwise the complexity results stated

in this section have an extra multiplying factor to ac-

count for the complexity of the ring operations.

Theorem 1 Let a query Q and a database of size N .

F-IVM can maintain Q with O(N) preprocessing,

O(1) enumeration delay, and O(N) single-tuple update

in case Q is free-connex acyclic.

F-IVM can maintain Q with O(N) preprocessing,

O(1) enumeration delay, and O(1) single-tuple update

in case Q is q-hierarchical.

Remark. F-IVM has a special treatment for cyclic

queries. Whereas for acyclic join queries the size of each

view is asymptotically upper-bounded by the size of the

query result, for cyclic queries views may be larger than

the query result. In prior work [46], we show how to re-

duce the size of intermediate views for cyclic queries

by adding indicator projections [6] to view trees. Such

projections do not effect the query result but can con-

strain views (e.g., create cycles) and bring asymptotic

savings in space and time. To decide which indicator

projections to use, we apply a variant of the GYO re-

duction [10] that discovers cyclic parts in the query. □

7.1 Free-Connex Acyclic Queries

We first introduce the class of free-connex acyclic que-

ries and then explain how F-IVM maintains them.

2 The data complexity is a function of the database size.

Definition 3 ([65,13]) A join tree for a query is a

tree, where each node is a relation and if any two nodes

have variables in common, then all nodes along the path

between them also have these variables.

A query is (α-)acyclic if it admits a join tree. A

query is free-connex acyclic if it is acyclic and remains

acyclic after adding a new relation whose schema con-

sists of the free variables of the query.

Example 11 Consider the query Q[A,B ,C] =
⊕

D

⊕
E

R[A,B]⊗ S[A,C ,E]⊗T[C ,D]. A possible join tree for

Q is R[A,B]−S[A,C ,E]−T[C ,D], where “−” denotes

the parent-child relationship. Hence, Q is acyclic.

Consider the triangle query Q△[] =
⊕

A

⊕
B

⊕
C

R[A,B]⊗ S[B ,C]⊗T[A,C]. A possible tree built from

the relations of Q△ is R[A,B]− S[B ,C]−T[A,C]. The

variable A occurs in the first and last relations but not

in the middle relation; thus, this tree is not a join tree

for Q△. One can show that any tree built from the rela-

tions of Q△ is not a join tree. Hence, Q△ is not acyclic.

The tree R[A,B]−U[A,B ,C]−S[A,C ,E]−T[C ,D]

is a join tree of Q extended with the relation U whose

schema consists of the free variables of Q. Hence, Q is

free-connex acyclic. Consider now the variant Q′ of Q
where only the variables B and C are free. Adding a

fresh relation U ′ with schema (B,C) to Q′ turns it into

a cyclic query Q′′ that does not admit a join tree. □

We next detail how F-IVM achieves the complexity

from Theorem 1 for a free-connex acyclic query Q.
Preprocessing. In the preprocessing phase, we cre-

ate a view tree that compactly represent the result of

Q. Given a variable order, the function τ in Fig. 4 con-

structs a view tree where the root view consists of all

tuples over the free variables. While this view allows for

constant enumeration delay, it may require superlinear

computation and maintenance time as the free variables

may originate from different input relations. We would

like to avoid this super-linearity.

To keep the preprocessing and update times linear,

we proceed as follows. We construct view trees such

that the query result is kept and maintained factorized

over several views at the top of the view tree. This ap-

proach still allows for constant enumeration delay, us-

ing a known enumeration approach for factorized rep-

resentations [52]. We construct the view tree following

a free-top variable order of the query Q and materialize

a view over the schema {X}∪ dep(X) for each variable

X in the variable order. A key insight is that every

free-connex acyclic query admits a free-top variable or-

der where for each variable X, the set {X}∪ dep(X) is

covered by the variables of a single relation [11]. This

ensures linear preprocessing and maintenance time for

all views in view trees following such variable orders.

F-IVM: Analytics over Relational Databases under Updates 11

ν (free-top variable order ω) : view tree

switch ω:

R return R[sch(R)]

X

ω1 . . .ωk

let Ti = τ(ωi), ∀i ∈ [k]

let V@ωi

relsi
[keysi] = root of Ti, ∀i ∈ [k]

let keys = {X} ∪ dep(X)

let rels =
⋃

i∈[k] relsi

let H@X
rels [keys] =

⊗
i∈[k] V

@ωi

relsi
[keysi]

let V@X
rels [keys \ {X}] =

⊕
X H@X

rels [keys]

if X has more than one child (k ≥ 2)

if X has no sibling

return

H@X

rels [keys]

T1 . . . Tk

else

return

V@X
rels [keys \ {X}]

H@X
rels [keys]

T1 . . . Tk

else

if X has no sibling

return T1

else

return

V@X

rels [keys \ {X}]

T1

Fig. 9 Creating a view tree for a free-top variable order.

The function ν in Fig. 9 constructs a view tree for

a given free-top variable order of a free-connex query.

If a variable X has at least two children, it proceeds
as follows. It creates at X a view H@X

rels with schema

{X}∪ dep(X) that joins the child views of X. If X has

at least one sibling, it additionally creates a view V@X
rels

on top of H@X
rels obtained from H@X

rels by marginalizing X.

The first view enables efficient enumeration of X-values

in the query result given a value tuple over dep(X); the

second view enables efficient updates coming from the

subtrees rooted at siblings ofX. IfX has only one child,

the creation of the view H@X
rels is not needed for efficient

enumeration. In this case, the function creates a view

V@X
rels marginalizing X in the child view if X has siblings.

Example 12 Consider the free-connex acyclic query Q
from Ex. 11. Fig. 3 gives a free-top variable order ω

for Q. Fig. 10 (left) depicts the view tree ν(ω). The

view H@C
ST can be computed by iterating over the (A,C)-

tuples in V@E
S and multiplying the payload of each such

tuple with the payload of the matching C-value in V@D
T .

Since each such (A,C)-tuple must be in S, we need to

iterate over only linearly many such tuples. Similarly,

H@A
RST[A]

V@C
ST [A]

H@C
ST [A,C]

V@E
S [A,C]

S[A,C ,E]

V@D
T [C]

T[C ,D]

V@B
R [A]

R[A,B]

δH@A
RST[A]

δV@C
ST [A]

δH@C
ST [A, c]

V@E
S [A,C]

S[A,C ,E]

δV@D
T [c]

δT[c, d]

V@B
R [A]

R[A,B]

Fig. 10 (left) View tree constructed by the function ν in
Fig. 9 for the variable order ω in Fig. 3; (right) Delta view
tree for a single-tuple update to T.

the view H@A
RST can be computed by iterating over the

A-values in one of the child views and doing lookups

in the other child view to retrieve the payloads. For

the computation of both views H@C
ST and H@A

RST, we it-

erate over linearly many tuples and do a constant-time

lookup for each such tuple. All other views are obtained

by marginalizing one variable from their child views.

Hence, all views can be computed in linear time. □

Updates. The construction of delta view trees un-

der single-tuple updates is exactly as described by the

function ∆ in Fig. 7 (Sec. 5). Since the view trees can

be constructed in linear time, the delta view trees can

also be constructed in linear time.

Example 13 Continuing Ex. 12, we consider a single-

tuple update δT[c, d] to relation T. Fig. 10 depicts the

original view tree (left) and the delta view tree for up-

dates to T (right). The difference is that along the path

from T to the root, we now have delta views. The delta

view δV@D
T results from δT[c, d] by marginalizing D,

which takes constant time since D is fixed to the con-

stant d. To compute δH@C
ST , we iterate over all A-values

paired with c in V@E
S . This operation takes linear time

with the support of an index on variable C built for

this view. We obtain δV@C
ST from δH@C

ST by marginalizing

the variable C. This requires constant time because C

is fixed to the constant c. The top delta view δH@A
RST is

obtained by intersecting the two child views, e.g., by

iterating over δV@C
ST and doing lookups in V@B

R . This

requires linear time. We conclude that the delta views

can be computed in linear time. □

Enumeration. Consider a view tree τ constructed

using the function ν from Fig. 9 for a free-top variable

order of a query Q. We first describe how to enumerate

with constant delay the distinct tuples in the result of Q
using τ . Then, we explain how to compute the payload

of each result tuple in constant time.

Let X1, . . . , Xn be an ordering of the free variables

of the query that is compatible with a top-down traver-

sal of the free-top variable order. We use the views

V1, . . . ,Vn to enumerate the distinct tuples in the result

12 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

payload(view tree τ , tuple t): payload

switch τ :

R return R(t)

V[X]

τ1 . . . τk

if X = sch(t)

return V(t)

else // X ⊂ sch(t)

let Vi = variables in τi, ∀i ∈ [k]

return
∏

i∈[k] payload(τi, πVi
t)

Fig. 11 Computing the payload of a tuple from a view tree.

of Q, where Vj is H
@Xj

rels if Xj has at least two children

and it is the child view of Xj otherwise. We retrieve

from V1 the first X1-value in the result. When we ar-

rive at a view Vj with j > 1, we have already fixed the

values of the variables above Xj in the variable order.

We retrieve from Vj the first Xj-value paired with these

values. Once the values over all free variables are fixed,

we have a complete result tuple that we output. Then,

we iterate over the remaining distinct Xn-values in Vn

paired with the fixed values over the ancestor variables

of Xn and output a new tuple for each such value. Af-

ter all Xn-values are exhausted, we backtrack, i.e., we

move to the next Xn−1-value and restart the iteration

of the matching Xn-values, and so on.

Given a complete tuple t constructed from the view

tree τ , we use the function payload from Fig. 11 to com-

pute its payload. The function first checks whether the

schema of the root view is exactly the schema sch(t) of
t. If so, it returns the payload of t in this view. Other-

wise, the root view covers only a subset of the schema

of the tuple. In this case, the function recursively com-

putes the payload for each subtree τi of the root view

and the projection of t onto the variables in τi. The

final payload is the product of the payloads returned

for the subtrees. The returned payloads are from the

lowest views in the view tree whose schemas consist of

free variables only. If all variables are free, then these

lowest views are the input relations themselves.

Remark 1 The enumeration procedure needs the pay-

loads of the lowest views whose schemas consist of free

variables. The payloads from the views above these

views thus need not be maintained, beyond keeping

track of the multiplicities of each of their tuples. The

maintenance of multiplicities is important for correct-

ness, as it tells whether a tuple is to be removed from a

view or still has at least one possible derivation from the

input. For expensive payloads, such as those introduced

in Sec. 8, it is therefore more efficient to only main-

tain them for the views from the input relations up to

the views used to compute the payloads. Their ancestor

views only need maintenance of tuple multiplicities. □

Example 14 We enumerate the distinct result tuples of

the query Q[A,B ,C] from Ex. 11 using the view tree

in Fig. 10 (left). We iterate with constant delay over

the A-values in H@A
RST[A]. For each such A-value a, we

iterate with constant delay over the B-values in R[a,B]

and over the C-values in H@C
ST [a,C]. Each triple (a, b, c)

obtained in this way is a result tuple of Q. Its payload
is R[a, b] · H@C

ST [a, c]. □

Remark 2 To efficiently support enumeration and up-

dates, we may need several indices for the views in a

view tree for a free-connex acyclic query. Each view

(and input relation) in the view tree in Fig. 10 (left)

needs an index that can retrieve the payload for a given

tuple of values over its variables. This is a primary in-

dex. For (top-down) enumeration, we may also need a

secondary index per view to lookup for tuples that have

as prefix a tuple of values over the variables shared

with its parent view. Yet in case of some views, we

may also need a tertiary index to support updates,

which are propagated bottom-up. For instance, the view

V@E
S [A,C] requires: a primary index to retrieve the pay-

load for each (A,C)-tuple; a secondary index to enu-

merate the C-values paired with a given A-value fixed

by the parent view; and a tertiary index to obtain all A-

values paired with a given C-value c fixed by the delta

of its left sibling δV@D
T [c]. All other views only require

primary and secondary indices and no tertiary index.□

7.2 Q-Hierarchical Queries

Q-hierarchical queries form a strict subclass of the free-

connex acyclic queries. They admit linear preprocessing

time, constant update time, and constant enumeration

delay [12]. Under widely-held complexity theoretic as-

sumptions, there is no algorithm that achieves constant

update time and enumeration delay for queries that are

not q-hierarchical and have no repeating relation sym-

bols [12]. F-IVM recovers the aforementioned complexi-

ties using exactly the same approach as for free-connex

acyclic queries detailed in Sec. 7.1. This directly im-

plies linear preprocessing time and constant enumera-

tion delay. Constant update time follows from the fol-

lowing observation. Every q-hierarchical query admits

a free-top variables order, where each root-to-leaf path

consists of variables that represent precisely the schema

of a relation in the query. A single-tuple update to that

relation then sets all these variables to constants, effec-

tively making each delta view along that path of con-

stant size. Our view tree construction also ensures that

the computation of each delta view only requires one

constant-time lookup per child view.

F-IVM: Analytics over Relational Databases under Updates 13

A

B C

ED

S

R

T

dep(A) = ∅
dep(B) = {A}
dep(C) = {A}
dep(D) = {A,C}
dep(E) = {A,C}

H@A
RST[A]

V@C
ST [A]

H@C
ST [A,C]

V@E
S [A,C]

S[A,C ,E]

V@D
T [A,C]

T[A,C ,D]

V@B
R [A]

R[A,B]

Fig. 12 (left) Canonical free-top variable order of the query
Qh from Ex. 15; (right) Corresponding view tree.

We first define q-hierarchical queries and then show

how F-IVM achieves constant-time update for them.

For a variable X in a query, we denote by rels(X) the

set of relations that contain X in their schema.

Definition 4 ([62,12]) A query is hierarchical if for

any two variables X and Y , it holds rels(X) ⊆ rels(Y),

rels(Y) ⊆ rels(X), or rels(X) ∩ rels(Y) = ∅.
A query is q-hierarchical if it is hierarchical and for

any two variablesX and Y , it holds: if rels(X) ⊃ rels(Y)

and Y is free, then X is free.

Every q-hierarchical query admits a canonical free-

top variable order, where (i) each root-to-leaf path con-

sists of variables that form the schema of a relation and

(2) no bound variable is above a free variable [29]. We

can construct such a variable order in polynomial time

in the query size as follows. We start with the empty

variable order. For each relation R, we add to the vari-

able order a root-to-leaf path made up of R’s variables

ordered as follows: a variable X is before a variable

Y if (1) rels(X) ⊃ rels(Y) or (2) rels(X) ̸⊃ rels(Y),

rels(X) ̸⊂ rels(Y), X is free, and Y is bound.

Example 15 The free-connex acyclic query Q[A,B ,C]

=
⊕

D

⊕
E R[A,B]⊗ S[A,C ,E]⊗T[C ,D] from Ex. 11

is not hierarchical: the sets rels(A) = {R,S} rels(C) =

{S,T} are not disjoint, nor one is included in the other.

By extending the schema of T with A, we obtain the

q-hierarchical query Qh[A,B ,C] =
⊕

D

⊕
E R[A,B] ⊗

S[A,C ,E] ⊗ T[A,C ,D] whose canonical free-top vari-

able order is given in Fig. 12 (left). The variant of the

query, where variable A is bound is hierarchical but

not q-hierarchical because the set rels(A) = {R,S,T}
for the bound variable A is a strict superset of the set

rels(B) = {R} for the free variable B. □

We next exemplify how F-IVM achieves constant-

time update for a q-hierarchical query.

Example 16 Fig. 12 shows the view tree (right) mod-

eled on the canonical free-top variable order (left) of

the q-hierarchical query Qh in Ex. 15. Fig. 13 shows the

delta view trees under single-tuple updates to R and T.

δH@A
RST[a]

V@C
ST [A]

H@C
ST [A,C]

V@E
S [A,C]

S[A,C ,E]

V@D
T [A,C]

T[A,C ,D]

δV@B
R [a]

δR[a, b]

δH@A
RST[a]

δV@C
ST [a]

δH@C
ST [a, c]

V@E
S [A,C]

S[A,C ,E]

δV@D
T [a, c]

δT[a, c, d]

V@B
R [A]

R[A,B]

Fig. 13 Delta view trees derived from the view tree in Fig. 12
for single-tuple updates to relations R (left) and T (right).

In the delta view tree for R, the delta view δH@A
RST can

be computed by a constant-time lookup in V@C
ST . In the

delta view tree for T, the delta views δH@C
ST and δH@A

RST

can be computed by constant-time lookups in V@E
S and

V@B
R , respectively. All other delta views are computed

by marginalizing a variable with a single value. □

Remark 3 Q-hierarchical queries admit view trees who-

se views only need primary indices to support payload

lookup and updates and possibly secondary indices to

support enumeration. Consider the view tree in Fig. 12.

Enumeration proceeds top-down: We iterate over the A-

values in the top view and for each such value a, we look

up in R[a,B] to enumerate over all the B-values paired

with a, and also look up into H@C
ST [a,C] to enumerate

over all C-values paired with a. All these look-ups re-

quire primary or secondary indices.

Fig. 13 shows the delta view trees for single-tuple

updates to R and T. To compute a delta view along the

path from the delta relation to the root of the delta

view tree, we either perform a projection on a delta

view or a lookup in the primary index of a sibling view

(so with all keys of the index set to constants). □

7.3 Queries under Functional Dependencies

Non-hierarchical queries may become hierarchical un-

der functional dependencies (fds) [48].

Given a set Σ of fds, we denote by CLOSUREΣ(S)
the closure of the set S of variables under Σ [5]. For

instance, given the fds Σ = {A → D;BD → E}, we
have CLOSUREΣ({A,B,C}) = {A,B,C,D,E}.

Definition 5 (adapted from [48]) Given a set Σ of

fds and a query Q[S] =
⊕

B R1[S1] ⊗ · · · ⊗ Rn[Sn], the

Σ-reduct of Q under Σ is:

Q[CLOSUREΣ (S)] =
⊕

BR1[CLOSUREΣ (S1)]⊗ · · ·⊗
Rn[CLOSUREΣ (Sn)]

The Σ-reduct of a query is thus another query, where

the schema of each relation is extended to include all

variables in the closure of this schema under Σ. Since

14 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

D

C

B

A

T

S

R

D

C

B

A

T

S

R

D

C

B

A

dep(D) = ∅
dep(C) = {D}
dep(B) = {C}
dep(A) = {B}

H@C
RST[C ,D]

V@B
RS [C]

H@B
RS [B ,C]

V@A
R [B]

R[A,B]

S[B ,C]

T[C ,D]

Fig. 14 From left to right: Hypergraph of the query Q and its
Σ-reduct for Σ = {B → C,C → D} from Ex. 17; canonical
variable order ω for Q; view tree modeled on ω.

δH@C
RST[c, d]

δV@B
RS [c]

δH@B
RS [b, c]

δV@A
R [b]

δR[a, b]

S[B ,C]

T[C ,D]

δH@C
RST[c, d]

δV@B
RS [c]

δH@B
RS [b, c]

V@A
R [B]

R[A,B]

δS[b, c]

T[C ,D]

δH@C
RST[c, d]

V@B
RS [C]

H@B
RS [B ,C]

V@A
R [B]

R[A,B]

S[B ,C]

δT[c, d]

Fig. 15 Delta view trees derived from the view tree in Fig. 14
for single-tuple updates to R, S, and T (left to right). The
values b and c functionally determine c and d, respectively.

the added variables are functionally determined by the

original schema, they do not add more information.

So, we could extend these schemas and the underly-

ing database without increasing the number of tuples

in the relations. For any database D with fds Σ and a

query Q, the query result Q(D) is the same as the result

of its Σ-reduct over the extended database. The benefit

of this rewriting is that queries may admit free-connex

acyclic or even q-hierarchical Σ-reducts. We need not

physically extend the database to reap this benefit. In-

stead, we use the Σ-reduct of Q to infer a free-top vari-

able order or even a canonical free-top variable order

for Q in case the Σ-reduct is free-connex acyclic or q-

hierarchical, respectively. Using this variable order, we

construct a view tree for Q that enjoys the preprocess-

ing, update, and enumerate times as for its Σ-reduct.

Theorem 1 can be generalized to account for fds.

Theorem 2 Let a query Q and a database of size N

and with a set Σ of functional dependencies.

F-IVM can maintain Q with O(N) preprocessing,

O(1) enumeration delay, and O(N) single-tuple updates

in case the Σ-reduct of Q is free-connex acyclic.

F-IVM can maintain Q with O(N) preprocessing,

O(1) enumeration delay, and O(1) single-tuple updates

in case the Σ-reduct of Q is q-hierarchical.

Example 17 Consider Σ = {B → C,C → D} and the

free-connex acyclic but not hierarchical query

Q[A,B ,C ,D] = R[A,B]⊗ S[B ,C]⊗ T[C ,D].

The Σ-reduct of Q is

Q′[A,B ,C ,D] = R[A,B ,C ,D]⊗ S[B ,C ,D]⊗ T[C ,D].

Fig. 14 depicts the hypergraphs of Q and Q′ (left), a

free-top variable order for Q that is also canonical for

Q′ (middle), and the view tree for Q modeled on this

variable order (right). Since Q is free-connex acylic, we

can compute the view tree in linear time and enumerate

the result tuples of Q with constant delay, as explained

in Sec. 7.1. We next describe how to achieve constant-

time update by exploiting the fds. Fig. 15 shows the

delta view trees obtained from the view tree for Q for

single-tuple updates to R, S, and T.
Consider first the update δR[a, b] to relation R. The

delta view δV@A
R [b] is just a projection of the update

tuple. The delta view δH@B
RS [b, c] requires a lookup in

S[B ,C] for B = b. In general, there may be many C-

values paired with b. However, under the fd B → C,

there is at most one C-value c paired with b. Hence,

the construction of this delta view takes constant time.

Similarly, the delta view δH@C
RST[c, d] requires a lookup

in T[C ,D] for C = c. Again, there may be many D-

values paired with c, yet under the fd C → D, there is

at most one D-value d paired with c. Hence, the con-

struction of this delta view takes constant time, too.

Similar reasoning applies to the update δS[b, c]. To
compute the delta view δH@B

RS [c, b], we need a constant-

time lookup in the view V@A
R [B] with B = b. Computing

δH@C
RST[c, d] takes constant time due to the fd C → D,

as with updates to R. Processing the update δT[c, d]
takes constant time without exploiting the fds: it only

requires a lookup in the view V@B
RS [C] with C = c. □

8 Applications

This section highlights four applications of F-IVM, in-

cluding learning regression models, building Chow-Liu

trees, computing listing or factorized representations of

the results of conjunctive queries, and multiplying a se-

quence of matrices. They behave the same in the key

space, yet differ in the rings used to define the payloads.

8.1 Covariance Matrix and Linear Regression

We next introduce the covariance matrix ring used for

training linear regression models.

Linear Regression. Consider a training dataset that

consists of k samples with (Xi)i∈[m−1] features and a

label Xm arranged into a design matrixM of size k×m;

in our setting, this design matrix is the result of a

join query. The goal of linear regression is to learn

F-IVM: Analytics over Relational Databases under Updates 15

the parameters θ = [θ1 . . . θm]T of a linear function3

f(X1, ..., Xm−1) =
∑

i∈[m−1] θiXi best satisfyingMθ ≈
0k×1, where 0k×1 is the zero matrix of size k × 1.

We can solve this optimization problem using batch

gradient descent. This method iteratively updates the

model parameters in the direction of the gradient to de-

crease the squared error loss and eventually converge to

the optimal value. Each convergence step iterates over

the entire training dataset to update the parameters,

θ := θ − αMTMθ, where α is an adjustable step size.

The complexity of each step is O(mk). The covariance

matrix MTM quantifies the degree of correlation for

each pair of features (or feature and label) in the data.

Its computation can be done once for all convergence

steps [58]. This is crucial for performance in casem ≪ k

as each iteration step now avoids processing the entire

training dataset and takes time O(m2).

We next show how to compute the covariance ma-

trix assuming all features have continuous domains; we

consider the case with categorical features later on.

The covariance matrix MTM accounts for the in-

teractions SUM(X*Y) of variables X and Y with contin-

uous domains. We can factorize their computation over

training datasets defined by arbitrary join queries [58].

We can further share their computation by casting the

covariance matrix computation as the computation of

one compound aggregate. This compound aggregate is

a triple (c, s,Q), where c is the number of tuples in

the training dataset (size k of the design matrix), s is

an m× 1 matrix (or vector) with one sum of values per

variable, and Q is an m×m matrix of sums of products

of values for any two variables. The covariance matrix

computation can be captured by a ring.

Definition 6 Fix a ring (D,+, ∗,0,1) and m ∈ N.
Let C denote the set of triples (D,Dm,Dm×m), 0C =

(0,0m×1,0m×m), and 1C = (1,0m×1,0m×m), where

0m×n is an m × n matrix with all zeros from D. For

a = (ca, sa,Qa) ∈ C and b = (cb, sb,Qb) ∈ C, define
the operations +C and ∗C over C as:

a+C b = (ca + cb, sa +sb, Qa +Qb)

a ∗C b= (cacb, cbsa + casb, cbQa + caQb +sas
T
b +sbs

T
a)

using matrix addition, scalar multiplication, and matrix

multiplication over D. We refer to (C,+C, ∗C,0C,1C) as

the covariance structure of degree m over D.

Theorem 3 For m ∈ N and a ring D, the covariance

structure of degree m over D forms a commutative ring.

3 We consider wlog: θ1 is the bias parameter and then X1 =
1 for all tuples in the input data; θm remains fixed to −1 and
corresponds to the label/response Xm in the data.

Definition 7 The continuous covariance ring of degree

m is the covariance structure of degree m over R.

We next show how to use this ring to compute the

covariance matrix over a training dataset defined by

a join with relations (Ri)i∈[n] over variables (Xj)j∈[m].

The payload of each tuple in a relation is the identity

1C from the continuous covariance ring of degree m.

The query computing the covariance matrix is:

Q =
⊕

X1
· · ·

⊕
Xm

⊗
i∈[n] Ri[sch(Ri)]

For each Xj-value x, the lifting function is gXj
(x) =

(1, s,Q), where s is anm×1 vector with all zeros except

the value of x at position j, i.e., sj = x, and Q is an

m × m matrix with all zeros except the value x2 at

position (j, j): Q(j,j) = x2.

Example 18 We show how to compute the covariance

matrix using the join and view tree from Fig. 3 and

the database from Fig. 6. We assume alphabetical or-

der of the five variables in the covariance matrix. The

leaf relations R, S, and T map tuples to 1C from the

continuous covariance ring of degree 5.

In the view V@D
T , each D-value d is lifted to a triple

(1, s,Q), where s is a 5 × 1 vector with one non-zero

element s4 = d, and Q is a (5 × 5) matrix with one

non-zero element Q(4,4) = d2. Those covariance triples

with the same key c are summed up, yielding:

V@D
T [c1] = (1, s4 = d1,Q(4,4) = d21)

V@D
T [c2] = (2, s4 = d2 + d3,Q(4,4) = d22 + d23)

V@D
T [c3] = (1, s4 = d4,Q(4,4) = d24)

The views V@B
R and V@E

S are computed similarly.

The view V@C
ST joins V@D

T and V@E
S and marginalizes C.

For instance, the payload for the key a2 is:

V@C
ST [a2] = V@D

T [c2] ∗C V@E
S [a2 , c2] ∗C gC(c2)

= V@D
T [c2] ∗C

1,
∣∣∣∣∣∣∣∣∣
0
0
0
0
e4

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 e24

∣∣∣∣∣∣∣∣∣

∗C

1,
∣∣∣∣∣∣∣∣∣
0
0
c2
0
0

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
c22 0 0 0 0
0 0 0 0 0
0 0 0 0 0

∣∣∣∣∣∣∣∣∣

=

2,

∣∣∣∣∣∣∣∣∣
0
0
2c2

d2 + d3
2e4

∣∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
0 0 0 0 0
0 0 0 0 0
0 0 2c22 c2(d2 + d3) 2c2e4
0 0 c2(d2 + d3) d22 + d23 (d2 + d3)e4
0 0 2c2e4 (d2 + d3)e4 2e24

∣∣∣∣∣∣∣∣∣

The root view V@A

RST maps the empty tuple to the

ring element
∑

i∈[2] V
@B
R [ai] ∗C V@C

ST [ai] ∗C gA(ai). This

payload has aggregates for the entire join result: the

count of tuples in the result, the vector with one sum

of values per variable, and the covariance matrix. □

16 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

Linear Regression with Categorical Variables.
Real-world datasets consists of both continuous and

categorical variables. The latter take on values from

predefined sets of possible values (categories). It is com-

mon practice to one-hot encode categorical variables as

indicator vectors. This encoding can blow up the size

of the covariance matrix and increase its sparsity.

Instead of blowing up the covariance matrix with

one-hot encoding, we can capture the interactions be-

tween continuous and categorical variables as group-by

queries: SUM(X) group by Y , when X is continuous and

Y is categorical, and SUM(1) group by X and Y , when

X and Y are categorical. Using the group-by queries en-

sures a compact representation of such interactions by

considering only those categories and interactions that

exist in the join result. We can encode those interactions

as values from the relational data ring, introduced next.

Definition 8 Let F[R] denote the set of relations over

the R ring, the zero 0 in F[R] is the empty relation {},
which maps every tuple to 0 ∈ R, and the identity 1

is the relation {() → 1}, which maps the empty tuple

to 1 ∈ R and all other tuples to 0 ∈ R. The structure

(F[R],⊎,⊗,0,1) forms the relational data ring.4

We generalize the continuous covariance ring from

Definition 7 to uniformly treat continuous and cate-

gorical variables as follows: we use relations from the

relational data ring as values in c, s, and Q instead of

scalars; we use union and join instead of scalar addition

and multiplication; we use the empty relation 0 instead

of the zero scalar. The operations +C and ∗C over triples

(c, s,Q) remain unchanged.

Definition 9 The generalized covariance ring of degree

m is the covariance structure of degree m over F[R].

For clarity, we show the operations +C and ∗C of the

generalized covariance ring C of degree m.

(c′, s′,Q′) +C (c′′, s′′,Q′′) = (c, s,Q)

where c = c′ ⊎ c′′, sj = s′j ⊎ s′′j , Q(i,j) = Q′′
(i,j) ⊎Q′′

(i,j);

(c′, s′,Q′) ∗C (c′′, s′′,Q′′) = (c, s,Q)

where c = c′ ⊗ c′′, sj = (c′′ ⊗ s′j) ⊎ (c′ ⊗ s′′j), and

Q(i,j) = (c′′⊗Q′
(i,j))⊎(c′⊗Q′′

(i,j))⊎(s′i⊗s′′j)⊎(s′′i ⊗s′j).

The lifting function gXj
now depends on whether

Xj is continuous or categorical. For each Xj-value x,

gXj
(x) = (1, s,Q), where 1 = {() → 1}, s is an m ×

4 To form a proper ring, we need a generalization [32] of re-
lations and join and union operators, where: tuples have their
own schemas; union applies to tuples with possibly different
schemas; join accounts for multiple derivations of output tu-
ples. For our needs this generalization is not necessary.

1 vector with all 0s except sj = {() → x} if Xj is

continuous and sj = {x → 1} otherwise, and Q is an

m×m matrix with all 0s except Q(j,j) = {() → x2} if

Xj is continuous and Q(j,j) = {x → 1} otherwise.

Example 19 We compute the covariance matrix using

the view tree and database from Ex. 18 assuming that

C is categorical. Since B, D, and E are continuous, the

contents of V@B
R , V@D

T , and V@E
S are similar to those of

Ex. 18 except that every scalar value x in their pay-

loads is replaced by the relation {() → x}. The view

V@C
ST marginalizes C, lifting every C-value c to (1, s3 =

{c → 1},Q(3,3) = {c → 1}), and the other entries in s

and Q are 0s. The payload V@C
ST [a2] encodes the result

of SUM(1) group by C as s3 = Q(3,3) = {c2 → 2}, the
result of SUM(D) group by C as Q(3,4) = {c2 → d2+d3},
and the result of SUM(E) group by C as Q(3,5) = {c2 →
2e4}. The remaining entries in the payload V@C

ST [a2] are

relations mapping the empty tuple to the same scalar

value from V@C
ST [a2] in Ex. 18. The root view V@A

RST com-

putes the payload associated with the empty tuple in

the same manner as in the continuous-only case but

under the generalized covariance ring. □

Remark 4 For performance reasons, we only store as

payloads blocks of matrices with non-zero values and

assemble larger matrices as the computation progresses

towards the root of the view tree. We further exploit

the symmetry of the covariance matrix to compute only

the entries above and including the diagonal. For the

generalized covariance ring, we store relations, which

have the empty tuple as key, as scalar values.

8.2 Mutual Information and Chow-Liu Tree

The mutual information (MI) of two random variables

X and Y quantifies their degree of correlation [42]:

I(X,Y) =
∑

x∈Dom(X)

∑
y∈Dom(Y)

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)

where pXY (x, y) is the joint probability of X = x and

Y = y, and pX(x) and pY (y) are the marginal proba-

bilities of X = x and Y = y, respectively. A value close

to 0 means the variables are almost independent, while

a large value means they are highly correlated. It can

be used to identify variables that predict a given label

variable and can thus be used for model selection [42].

In our case, we are given the joint probability of sev-

eral categorical variables as a relation, or the join of sev-

eral relations. The probabilities defining the MI of any

pair of variables can be computed as group-by aggre-

gates over this relation. Let C∅ = SUM(1), CX = SUM(1)

group by X, CY = SUM(1) group by Y , and CXY =

F-IVM: Analytics over Relational Databases under Updates 17

SUM(1) group by X,Y . Then, pXY (x, y) = CXY (x,y)
C∅

,

pX(x) = CX(x)
C∅

, pY (y) =
CY (y)
C∅

, and

I(X,Y) =
∑

x∈Dom(X)

∑
y∈Dom(Y)

CXY (x, y)

C∅
log

C∅CXY (x, y)

CX(x)CY (y)

The aggregates C∅, CX , and CXY define the covariance

matrix over categorical variables, so we can use the gen-

eralized covariance ring to compute and maintain them

(Sec. 8.1). To compute the MI for continuous variables,

we first discretize their domains into finitely many bins,

so we turn them into categorical variables.

Mutual information is used for learning the struc-

ture of Bayesian networks. Let a graph with one node

per variable and one edge per pair of variables weighted

by their MI, a Chow-Liu tree is a maximum weight

spanning tree. The Chow-Liu algorithm [19] constructs

such a tree in several rounds: it starts with a single node

in the tree and in each round it connects a new node to

a node already in the tree such that their pairwise MI

is maximal among all pairs of variables not chosen yet.

8.3 Factorized Representation of Query Results

Our framework can also support scenarios where the

view payloads are themselves relations representing re-

sults of conjunctive queries, or even their factorized rep-

resentations. Factorized representations can be much

smaller than the listing representation of a query re-

sult [52], with orders of magnitude size gaps reported

in practice [58]. They nevertheless remain lossless and

support constant-delay enumeration of the tuples in the

query result as well as subsequent aggregate processing

in one pass. Besides the factorized view computation

and the factorizable updates, this is the third instance

where our framework exploits factorization.

We store entire relations as payloads using a variant

of the relational data ring (c.f. Definition 8) where val-

ues are relations over the Z ring. We denote this ring as

F[Z]. When marginalizing a variable, we move its values

from the key space to the payload space. The tuple pay-

loads in a view are now relations over the same schema.

These relations have themselves payloads in the Z ring

used to maintain the multiplicities of their tuples.

We model conjunctive queries as count queries that

marginalize every variable but use different lifting func-

tions for the free and bound variables. For a free vari-

able X and any of its values x, we define gX(x) = {x →
1}, i.e., the lifting function maps x to the unary relation

that consists of the single value x whose payload is 1. In

case X is bound, we define gX(x) = 1 = {() → 1}, i.e.,
the lifting function maps x to the identity element 1 of

the relational data ring. This element is the unique re-

lation that consist of the empty tuple whose payload is

1. We have relational operations occurring at two lev-

els: for keys, we join views and marginalize variables

as before; for payloads, we interpret multiplication and

addition of payloads as join and union of relations.

Example 20 Consider the conjunctive query

Q(A,B,C,D) = R(A,B), S(A,C,E), T (C,D)

over the three relations from Fig. 6, where each tuple

gets the identity payload {() → 1} ∈ F[Z]. The corre-

sponding view marginalizes all the variables:

Q[] =
⊕

A . . .
⊕

E R[A,B]⊗ S[A,C ,E]⊗ T[C ,D]

The lifting function for E maps each value to {() → 1},
while the lifting functions for all other variables map

value x to {x → 1}.
Fig. 16 shows the contents of the views with rela-

tional data payloads (in black and red) for the view

tree from Fig. 3 and the database from Fig. 6. The

view keys gradually move to payloads as the computa-

tion progresses towards the root. The view definitions

are identical to those of the COUNT query (but under a

different ring!). The view V@D
T lifts each D-value d from

T to the relation {d → 1} over schema {D}, multiplies

(joins) it with the payload 1 of each tuple, and sums up

(union) all payloads with the same c-value. The views at

V@B
R and V@E

S are computed similarly, except the latter

lifts e-values to 1 since E is a bound variable. The view

V@C
ST assigns to each A-value a payload that is a union of

Cartesian products of the payloads of its children and

the lifted C-value. The root view V@A
RST similarly com-

putes the payload of the empty tuple, which represents

the query result (both views are at the right). □

We next show how to construct a factorized repre-

sentation of the query result. In contrast to the sce-

narios discussed above, this representation is not avail-

able as one payload at the root view, but distributed

over the payloads of all views. This hierarchy of pay-

loads, linked via the keys of the views, becomes the

factorized representation. A further difference lies with

the multiplication operation. For the listing representa-

tion, the multiplication is the Cartesian product. For a

given view, it is used to concatenate payloads from its

child views. For the factorized representation, we fur-

ther project away values for all but the marginalized

variable. More precisely, for each view V@X
rels [S] and each

of its keys aS , let P[T] = V@X
rels [aS] be the correspond-

ing payload relation. Then, instead of computing this

payload, we compute
⊕

Y ∈T −{X} P[T] by marginalizing

the variables in T − {X} and summing up the multi-

plicities of the tuples in P[T] with the same X-value.

18 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

()→V@A
RST[]

()→
A
a1→8
a2→2

()→ V@A
RST[]

()→

A B C D
a1 b1 c1 d1→2
a1 b1 c2 d2→1
a1 b1 c2 d3→1
a1 b2 c1 d1→2
a1 b2 c2 d2→1
a1 b2 c2 d3→1
a2 b3 c2 d2→1
a2 b3 c2 d3→1

A →V@C
ST [A]

a1 →
C
c1 → 2
c2 → 2

a2 → C
c2 → 2 A → V@C

ST [A]

a1 →

C D
c1 d1 → 2
c2 d2 → 1
c2 d3 → 1

a2 →
C D
c2 d2 → 1
c2 d3 → 1

A C →V@E
S [A,C]

a1 c1 → ()→ 2

a1 c2 → ()→ 1

a2 c2 → ()→ 1

A → V@B
R [A]

a1 →
B
b1 → 1
b2 → 1

a2 → B
b3 → 1

a3 → B
b4 → 1

C →V@D
T [C]

c1 → D
d1 → 1

c2 →
D
d2 → 1
d3 → 1

c3 → D
d4 → 1

Fig. 16 Computing the query from Ex. 20 over the database
in Fig. 6 and the relational ring, where ∀i ∈ [12] : pi = {() →
1}. The computation uses the view tree τ in Fig. 3. The red
views (rightmost column) have payloads storing the listing
representation of the intermediate and final query results.
The blue views (top two views in the middle column) en-
code a factorized representation of these results distributed
over their payloads. The remaining (black) views remain the
same for both representations.

Example 21 We continue Ex. 20. Fig. 16 shows the con-

tents of the views with factorized payloads (first two

columns in black and blue). Each view stores relational

payloads that have the schema of the marginalized vari-

able. Together, these payloads form a factorized repre-

sentation over the variable order ω used to define the

view tree in Fig. 3. At the top of the factorization, we

have a union of two A-values: a1 and a2. This is stored

in the payloads of (middle) VA
RST[]. The payloads of

(middle) V@C
ST [A] store a union of C-values c1 and c2

under a1, and a singleton union of c2 under a2. The

payloads of V@B
R [A] store a union of B-values b1 and b2

under a1 and a singleton union of b3 under a2. Note

the (conditional) independence of the variables B and

C given a value for A. This is key to succinctness of

factorization. In contrast, the listing representation ex-

plicitly materializes all pairings of B and C-values for

each A-value, as shown in the payload of (right) VA
RST[].

Furthermore, the variable D is independent of the other

variables given C. This is a further source of succinct-

ness in the factorization: Even though c2 occurs under

both a1 and a2, the relations under c2, in this case the

union of d2 and d3, is only stored once in V@D
T [C]. Each

value in the factorization keeps a multiplicity, that is,

the number of its derivations from the input data. This

is necessary for maintenance.

This factorization is over a variable order that can

be used for all queries with same body and different free

variables: As long as their free variables sit on top of

the bound variables, the variable order is valid and so is

the factorization over it. For instance, if the variable D

were not free, then the factorization for the new query

would be the same except that we would now discard

the D-values from the payload of the view V@D
T . □

8.4 Matrix Chain Multiplication

Consider the problem of computing a product of a se-

quence of matrices A1, . . . ,An over some ring D, where

matrix Ai[xi, xi+1] has the size pi × pi+1, i ∈ [n]. The

product A = A1 · · ·An is a matrix of size p1 × pn+1

and can be formulated as follows:

A[x1, xn+1] =
∑

x2∈[p2]

· · ·
∑

xn∈[pn]

∏
i∈[n]

Ai[xi, xi+1]

We model a matrix Ai as a relation Ai[Xi ,Xi+1]

with the payload carrying matrix values. The query

that computes the matrix A is:

A[X1 ,Xn+1] =
⊕

X2
· · ·

⊕
Xn

⊗
i∈[n] Ai[Xi ,Xi+1]

where each of the lifting functions {gXj
}j∈[2,n] maps

any key value to payload 1 ∈ D. Different variable or-

ders lead to different evaluation plans for matrix chain

multiplication. The optimal variable order corresponds

to the optimal sequence of matrix multiplications that

minimizes the overall multiplication cost, which is the

textbook Matrix Chain Multiplication problem [20].

Example 22 Consider a multiplication chain of 4 matri-

ces of equal size p×p encoded as relations Ai[Xi ,Xi+1].

Let F = {X1, X5} be the set of free variables and ω be

the variable order X1−X5−X3−{X2, X4}, i.e., X2 and

X4 are children of X3, with the matrix relations placed

below the leaf variables in ω. The view tree τ(ω,F) has

the following views (from bottom to top; the views at

X5 and X1 are equivalent to the view at X3):

V@X2

A1A2
[X1 ,X3] =

⊕
X2

A1[X1 ,X2]⊗ A2[X2 ,X3]

V@X4

A3A4
[X3 ,X5] =

⊕
X4

A3[X3 ,X4]⊗ A4[X4 ,X5]

V@X3

A1A2A3A4
[X1 ,X5] =

⊕
X3

V@X2

A1A2
[X1 ,X3]⊗V@X4

A3A4
[X3 ,X5]

Recomputing these views from scratch for each update

to an input matrix takes O(p3) time. A single-value

change in any input matrix causes changes in one row

or column of the parent view, and propagating them to

compute the final delta view takes O(p2) time. Updates

to A2 and A3 change every value in A. In case of a

longer matrix chain, propagating δA further requires

O(p3) matrix multiplications, same as recomputation.

F-IVM: Analytics over Relational Databases under Updates 19

We exploit factorization to contain the effect of such

changes. For instance, if δA2 is a factorizable update ex-

pressible as δA2[X2 ,X3] = u[X2] ⊗ v[X3] (see Sec. 6),

then we can propagate deltas more efficiently, as prod-

ucts of subexpressions:

δV@X2

A1A2
[X1 ,X3] =

(⊕
X2

A1[X1 ,X2]⊗ u[X2]
)︸ ︷︷ ︸

u2[X1]

⊗v[X3]

δV@X3

A1A2A3A4
[X1 ,X5] = u2[X1]⊗(⊕

X3
v[X3]⊗ V@X4

A3A4
[X3 ,X5]

)
Using such factorizable updates enables the incremental

computation in O(p2) time. The final delta is also in

factorized form, suitable for further propagation.

In general, for a chain of k matrices of size p ×
p, using a binary view tree of the lowest depth, in-

cremental maintenance with factorizable updates takes

O(p2 log k) time, while reevaluation takes O(p3k) time.

The space needed in both cases is O(p2k). □

The above example recovers the main idea of LIN-

VIEW [44]: use factorization in the incremental compu-

tation of linear algebra programs where matrix changes

are encoded as vector outer products, δA = uvT. Such

rank-1 updates can capture many practical update pat-

terns such as perturbations of one complete row or col-

umn, or even changes of the whole matrix when the

same vector is added to every row or column. F-IVM

generalizes this idea to arbitrary join-aggregate queries.

9 Experiments

This section reports our experimental findings with our

system F-IVM and three competitors: first-order IVM

(1-IVM), DBToaster’s higher-order IVM (DBT), and

Apache Flink. We first summarize our findings.

(1) For maintaining covariance matrices over con-

tinuous variables, F-IVM outperforms DBT and 1-IVM

by up to three orders of magnitude. This is primarily

due to the use of the covariance ring in F-IVM, which

can capture the maintenance for an entire covariance

matrix of 100-800 entries with under ten views. In con-

trast, DBT requires 600-3,000 views, while 1-IVM needs

as many delta queries as matrix entries (136 - 820). A

similar conclusion holds for maintaining covariance ma-

trices over continuous and categorical variables and also

only over categorical variables, albeit the performance

gap becomes smaller. Thanks to the covariance ring,

F-IVM also has a low memory footprint, on par with

1-IVM and 4-16x less than DBT.

(2) Maintaining linear regression models over the

covariance matrices takes insignificant time if the batch

gradient descent resumes with the values for the model

parameters computed after the previous update batch.

(3) Maintaining mutual information and Chow-Liu

trees over the covariance matrices requires recomputa-

tion after every update batch and this can decrease the

throughput of F-IVM by up to one order of magnitude.

(4) For q-hierarchical queries, F-IVM is the fastest

approach in case the updates are followed occasionally

by a request to enumerate the query result. F-IVM

pushes the updates from the leaves to the root view

in the view tree, yet keeps the result factorized. This

ensures update time and enumeration delay per tuple

proportional to the payload size. We confirmed experi-

mentally that DBT and 1-IVM cannot achieve constant

time for both update and enumeration.

(5) For path queries of up to 20 joins over the Twit-

ter and TikTok graph datasets, F-IVM’s throughput

remains at least an order of magnitude larger than of

competitors. 1-IVM and Apache Flink do not manage

to process one 1K-batch within four hours for paths of

more than 10 joins.

Further experiments are reported in prior work [45]:

(1) F-IVM outperforms competitors for maintaining a

sum aggregate over joins; (2) Using batches of 1k−10k

updates is best for maintaining the covariance matrix;

(3) Factorized updates lead to two orders of magnitude

speedup for F-IVM over competitors for matrix chain

multiplication; and (4) For conjunctive query evalua-

tion, factorized payloads can speed up view mainte-

nance and reduce memory by up to two orders of magni-

tude compared to the listing representation of payloads.

9.1 Experimental Settings

Competitors. The three maintenance strategies use

DBToaster v2.3 [33], a system that compiles SQL queri-

es into code that maintains the query result under up-

dates to input relations. The generated code represents

an in-memory stream processor that is standalone and

independent of any database system. DBToaster’s per-

formance on decision support and financial workloads

can be several orders of magnitude better than state-

of-the-art commercial databases and stream processing

systems [33]. DBToaster natively supports DBT and 1-

IVM. We use the intermediate language of DBToaster

to encode F-IVM that maintains a set of materialized

views for a given variable order and a set of updatable

relations. We feed this encoding into the code generator

of DBToaster. Unless stated otherwise, all approaches

use the same runtime and store views as multi-indexed

maps with memory-pooled records. The algorithms and

record types used in these approaches can differ greatly.

20 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

Dataset #Tuples #Relations #JoinVars # Non-JoinVars

Housing 1.4M 6 1 26

Retailer 85M 5 4 39

Favorita 125M 6 3 15

Twitter 1.7M 1 2 0

TikTok 0.6M 1 2 0

Fig. 17 Characteristics of the input datasets.

We also report on the performance of Apache Flink

v1.17.1 [15] (via Table API), configured to utilize all

cores and main memory of our machine.

Datasets. Fig. 17 summarizes our datasets:

– Housing is a synthetic dataset modeling a house

price market [58]. It consists of six relations: House,

Shop, Institution, Restaurant, Demographics, and

Transport, arranged into a star schema. The natural

join of all relations is on the common variable (post-

code) and has 26 non-join variables, 14 continuous and

12 categorical. We consider a variable order where each

root-to-leaf path consists of variables of one relation.

– Retailer is a real-world dataset used by a retailer

to inform decision-making and forecast user demands

[58]. It has a snowflake schema with one large fact

relation Inventory storing information about the in-

ventory units for products in a location, at a given

date. This relation joins along three dimension hierar-

chies: Item (on product id), Weather (on location and

date), and Location (on location) with its lookup re-

lation Census (on zip). The natural join of these rela-

tions is acyclic and has 33 continuous and 6 categorical

non-join variables. We use a variable order, where the

variables of each relation form a distinct root-to-leaf

path, and the partial order on join variables is: loca-

tion - { date - { product id }, zip }.
– Favorita is a real-world dataset comprising sales

data of items sold in grocery stores in Ecuador [2]. It

has a star schema with one large fact relation Sales

storing information on sales transactions, including

the date, store, item, and item quantity. This relation

joins with five dimension tables: Stores (on store id),

Item (on item id), Transaction (on date and store

id), Holiday (on date), and Oil (on date). The natu-

ral join has 3 continuous and 12 categorical non-join

variables. We consider a variable order where the order

on join variables is: date - store id - item id.

– Twitter [38] and TikTok [53] are publicly available

graph datasets.

We evaluate the maintenance strategies over data

streams synthesized from the above datasets by inter-

leaving insertions to the input relations in a round-

robin fashion. These insertions arrive sorted following a

top-down order of F-IVM’s variable orders. This leads

F-IVM DBT 1-IVM

C
O
N
T Housing 11,570.2 (7) 953.7 (626) 0.7 (384)

Retailer 3,818.8 (9) 9.1∗ (3,186) 28.8 (825)

Favorita 1,411.3 (9) 33.2∗ (615) 182.0 (142)

M
IX

E
D Housing 996.4 (7) 682.6 (599) 1.3 (375)

Retailer 1,255.8 (9) 7.2∗ (3,144) 21.7∗ (819)

Favorita 354.0 (9) 18.3∗ (535) 87.2 (130)

Fig. 18 The average throughput (in thousands of tuples/sec)
and in parentheses the number of materialized views (includ-
ing input relations) for the maintenance of the covariance
matrix over datasets where features are treated as all con-
tinuous (CONT) and as a mix of continuous and categorical
(MIXED). The symbol ∗ denotes the one-hour timeout.

to improved runtimes of all systems relative to out-of-

order insertions. We group insertions into batches of

1000 tuples and place no restriction on the order of

records in input relations. In all experiments, we use

payloads defined over rings with additive inverse, thus

processing deletions is similar to processing insertions.

Queries. We consider the following queries:

– Covariance Matrix: For F-IVM, we use one query

per dataset to compute one covariance aggregate over

the natural join of the input relations. For instance,

the query over the Retailer schema is:

SELECT SUM(g1(X1) * ... * g39(X39))

FROM Inv NATURAL JOIN It NATURAL JOIN W

NATURAL JOIN L NATURAL JOIN C;

where {Xi}i∈[39] are all the non-join variables from

the Retailer schema. We consider three scenarios: (1)

we treat all variables as continuous; (2) with a mix

of continuous and categorical variables; and (3) with
all categorical variables. For the first, we use the con-

tinuous covariance ring of degree 39 and the lifting

function gi(x) = (ci = 1, si = x,Q(i,i) = x2) for each

variable Xi, as in Ex. 18. For the other two, we use

the generalized covariance ring with relational values,

as in Ex. 19. Similarly, the queries over Housing (Fa-

vorita) use the covariance rings of degree 26 (15).

For DBT and 1-IVM, we use queries that compute

scalar sum aggregates in the covariance matrix. When

considering all variables as continuous, we use one

query per dataset to compute 1 + n + n(n+1)
2 sums,

where n is the number of variables; for Housing, Re-

tailer, and Favorita, we compute 378, 820, and 136

sums, respectively. When considering continuous and

categorical variables, we use a batch of group-by ag-

gregate queries as input to DBToaster. For Housing,

Retailer, and Favorita, the number of queries with dis-

tinct group-by variables is 46, 22, and 79, respectively.

– Q-Hierarchical Queries: We use the natural joins

of all relations in each dataset. For Housing, this is a

F-IVM: Analytics over Relational Databases under Updates 21

star join query. For Favorita, the relation Stores vi-

olates the q-hierarchical property: Its variables form

a strict subset of a root-to-leaf path in the canonical

variable order. To ensure constant time for single-tuple

updates, we require Stores to be non-updatable. For

Retailer, the query is q-hierarchical due to (1) the func-

tional dependency zip → location in Census and (2)

requiring the relation Item be non-updatable.

– k-Path Queries: These queries join k copies R1 to

Rk of the edge relation of the input graph:

SELECT A1, Ak+1, SUM(W1 * ... * Wk)

FROM R1 NATURAL JOIN ... NATURAL JOIN Rk
GROUP BY A1, Ak+1

Each relation Ri has schema (Ai, Ai+1, Wi) and can be

seen as the adjacency matrix of the input graph, with

rows indexed by Ai, columns indexed by Ai+1, and the

value Wi = 1 in cell (Ai, Ai+1). The path query is then

the k times multiplication of the adjacency matrix.

Experimental Setup. We run all experiments

on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz,

188GB RAM, with Debian 10. F-IVM, DBT, and 1-

IVM use the DBToaster v2.3 backend, which generates

single-threaded C++ code compiled using g++ 8.3.0

with the -O3 flag. Unless stated otherwise, we set a

one-hour timeout on each experiment and report wall-

clock times by averaging three best results out of four

runs. We profile memory utilization using gperftools,

excluding the memory used for storing input streams.

9.2 Covariance Matrix and Linear Regression

We benchmark the performance of maintaining a co-

variance matrix for learning regression models over nat-

ural joins. We consider updates to all input relations.

We compute the covariance matrix over all non-join

variables of the join query (i.e., over all non-join at-

tributes in the input database), which suffices to learn

linear regression models over any label and set of fea-

tures that is a subset of the set of variables [50]. This is

achieved by specializing the convergence step in batch

gradient descent to the relevant restriction of the co-

variance matrix. In our approach for learning linear re-

gression models over database joins, the convergence

step takes orders of magnitude less time compared to

the data-dependent covariance matrix computation.

Fig. 18 shows the number of views materialized by

F-IVM, DBT, and 1-IVM for computing the covariance

matrix. F-IVM computes one aggregate query with pay-

loads from a covariance ring. For Housing, where all re-

lations join on one variable, F-IVM materializes seven

views: one view per relation to marginalize out all non-

join variables, and the root view to join these views. For

Retailer, F-IVM materializes five views over the input

relations, three intermediate views, and the root view;

similarly, for Favorita. These views have payloads from

the continuous (generalized) covariance ring if all fea-

tures are continuous (continuous and categorical).

DBT and 1-IVM maintain a batch of sum aggre-

gate queries with scalar payloads. These materializa-

tion strategies fail to effectively share the computation

of covariance aggregates, materializing linearly many

views in the size of the covariance matrix: for instance,

when considering all variables as continuous, DBT and

1-IVM materialize 626 and respectively 384 views to

maintain 378 scalar aggregates for Housing; similar rea-

soning holds for the other datasets and the scenarios

with both continuous and categorical variables.

Throughput. Fig. 19 shows the throughput of F-

IVM, DBT, and 1-IVM as they process an increasing

fraction of the stream of tuple inserts. Fig. 18 shows

their average throughput after processing the entire

stream. The throughput is higher when all features are

continuous than for a mix of continuous and categorical

features. This is expected as the latter computes addi-

tional group-by aggregates for the categorical features;

in this case, the number of computed aggregates is data-

dependent. The occasional hiccups in the throughput of

F-IVM are due to doubling the memory allocated to the

underlying data structures used for the views.

The query for Housing joins all relations on the com-

mon variable, which is the root in our variable order;

thus, the query is hierarchical. F-IVM computes the co-

variance matrix using the query with no free variables

in both scenarios (CONT and MIXED) and can pro-

cess a single-tuple update to any input relation in time

linear in the size of the payload. In the continuous-only

scenario, the update time is O(m2), where m is the

number of continuous features; in the mixed scenario,

the update time depends on the size of the domain of

the categorical features. DBT exploits the conditional

independence in the derived deltas to materialize each

input relation separately such that all non-join vari-

ables are aggregated away. In the case of all continuous

features, each materialized view has O(1) maintenance

cost per update tuple, but the large number of views

in DBT is the main reason for its poor performance. 1-

IVM stores entire tuples of the input relations including

non-join variables. On each update, 1-IVM recomputes

a batch of aggregates on top of the join of these in-

put relations and the update tuple. Since the update

tuple binds the value of the common join variable, the

hypergraph of the delta query consists of disconnected

components. DBToaster first aggregates over each rela-

tion and then joins together the partial aggregates on

the common variable. Even with this optimization, 1-

22 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

Fig. 19 Incremental maintenance of the covariance matrix over the Housing dataset (left), Retailer dataset (middle), and
Favorita dataset (right) under updates of size 1, 000 to all relations with a one-hour timeout. The CONT plots consider all
features as continuous, while the MIXED plots consider a mix of continuous and categorical features.

Fig. 20 Maintaining linear regression models over the Housing dataset (left), Retailer dataset (middle), and Favorita dataset
(right) under updates of size 1, 000 to all relations using F-IVM. Batch gradient descent is invoked after every update using
previously learned parameters (TRAIN CONT) and parameters set to 0 (TRAIN SCRATCH). The NO TRAINING plots
show the time to compute the covariance matrices only. The bottom charts show the cumulative numbers of iterations used
by the batch gradient descent during the training phase.

Fig. 21 Solid lines: incremental maintenance of the covariance matrix over the Housing (left), Retailer (middle) and Favorita
(right) datasets under batches of 1,000 updates to all relations with a one-hour timeout. All features are either categorical
in the original dataset or made categorical by discretizing their domains into 100 buckets. Dotted line: computation of the
mutual information matrix and the Chow–Liu tree on top of the covariance matrix after each batch of 1,000 updates.

IVM takes time linear in the size of the dataset, which

explains its poor performance.

For Retailer, the inserts are mostly into Inventory.

Since the variables of this relation form a root-to-leaf

path in the variable order, F-IVM can process single-

tuple updates to this relation in O(1) time in data com-

plexity in the continuous-only scenario. DBT maintains

up tp four views per scalar aggregate and fails to pro-

cess the entire stream within a one-hour limit in both

scenarios. 1-IVM maintains one view per scalar group-

by aggregate but recomputes the delta query on each

update, resulting in 132x (58x) lower throughput than

F-IVM in the continuous-only (mixed) scenario.

For Favorita, 1-IVM achieves better performance

than on Retailer but still 7.8x (4.1x) slower than F-

IVM in the continuous (mixed) scenario. DBT fails to

finish the entire stream within a one-hour timeout.

Memory Consumption. Fig. 19 shows that F-

IVM achieves lower or comparable memory utilization

on the three datasets, while providing orders of magni-

F-IVM: Analytics over Relational Databases under Updates 23

tude better performance than its competitors. The rea-

son behind this memory efficiency is that F-IVM uses

compound aggregates and factorization structures to

express the covariance matrix computation over fewer

views compared to DBT and 1-IVM.

End-to-End Training. We next analyze the cost

of learning linear regression models from the computed

covariance matrices. We consider the scenario where all

variables are continuous and the target label is house

price (Housing), inventory units (Retailer), and sold

units (Favorita). Using batch gradient descent and the

covariance matrix, the time needed to converge on the

model parameters represents 0.24%, 0.2%, and 0.001%

of the time needed to process all updates in the stream

for Housing, Retailer, and Favorita, respectively.

Fig. 20 illustrates the performance of F-IVM for

maintaining the covariance matrix in three scenarios: 1)

without training the linear regression model (baseline);

2) with training after each batch update, starting from

previously learned parameters (CONT); and 3) with

training after every batch update, starting with value 0

for the parameters (SCRATCH). Continuously refresh-

ing the model after every update reduces the through-

put of baseline by 41%, 18%, and 2% for Housing, Re-

tailer, and Favorita. In contrast, retraining from scratch

after every update has significantly higher overheads

and reduces the baseline throughput by 95%, 99%, and

42% for the three datasets. Decreasing the training fre-

quency brings the throughput closer to the baseline.

Fig. 20 (bottom plots) shows for each dataset the cu-

mulative number of iterations of batch gradient descent

in the two training scenarios. Continuously improving

learned parameters yields 30x, 1160x, and 175x fewer it-

erations compared to retraining from scratch for Hous-

ing, Retailer, and Favorita, respectively. This reflects in

the throughput of the two training scenarios.

9.3 Mutual Information and Chow-Liu Trees

We benchmark the performance of maintaining the ma-

trix of pairwise mutual information (MI) for the fea-

tures representing the non-join variables in our datasets

and Chow-Liu trees on top of the MI matrices.

As explained in Sec. 8.2, the MI matrix can be de-

rived from the covariance matrix over categorical vari-

ables. We discretize the active domain of each contin-

uous variable into 100 bins of equal size. The Housing,

Retailer, and Favorita datasets have 26, 39, and 15 cat-

egorical variables, respectively. Insertions and deletions

of values for a continuous variable are distributed into

the appropriate bins, without changing the number of

bins. Whereas the covariance matrix can be maintained

incrementally under updates, the MI matrix needs to be

recomputed from scratch after each update batch.

The view construction and maintenance are as in

Sec. 9.2, except that all variables are now categorical.

Fig. 21 (solid lines) shows the throughput of F-IVM,

DBT, and 1-IVM for maintaining the covariance ma-

trix as they process an increasing fraction of the stream

of tuple updates. F-IVM is 74x faster than DBT and

28x faster than 1-IVM for the Retailer dataset and 9.3x

and 2.1x faster, respectively, for Favorita. For Hous-

ing, F-IVM is 2.8x faster than 1-IVM but 4.6x slower

than DBT. This is because: (i) Housing is a relatively

small dataset and the domain of the categorical vari-

ables is also small; (ii) DBT has specific optimizations

for group-by count over star joins such as in this case.

Computing the MI matrix from the covariance ma-

trix takes time linear in the number of categories of

the variables. Computing the Chow-Liu tree takes time

O(m logm), wherem is the number of variables. Fig. 21

(dotted line) shows the throughput of F-IVM when the

MI matrix and Chow–Liu tree are computed after each

update batch. This throughput is 46%, 86%, and 35%

smaller than the time to maintain the covariance matrix

for Housing, Retailer, and Favorita, respectively.

9.4 Q-Hierarchical Queries

We would like to understand how different IVM vari-

ants perform for the three q-hierarchical queries from

Sec. 9.1. We construct for each query a view tree mod-

elled on the canonical free-top variable order. The query

result is constructed and maintained in the payload

space. We consider two dimensions for this experiment.

One dimension is whether we push the updates all the

way to the result (eager) or we only update the in-

put relations and only construct the query result on

an enumeration request (lazy). The other dimension is

whether the query result has a listing representation

(one tuple after the other) or a factorized represen-

tation. This defines four variants: eager-list (which is

DBT), eager-fact (F-IVM’s default strategy), lazy-list

(1-IVM), and lazy-fact (a hybrid of F-IVM and 1-IVM).

Fig. 22 shows the average throughput of the four

variants for the three queries. We report the overall run-

time for update batches as in the previous experiments,

but where we also have requests for the enumeration of

all tuples in the query result after every INTVAL batches

of updates. We tried INTVAL values 1, 10, 100, 1000, and

10000. Each such value corresponds to different num-

bers of enumeration requests (#ENUM) as the datasets

have different sizes. The lazy-list variant did not fin-

ish within the time limit of 50 hours (denoted by ∗ in

24 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

Fig. 22 Incremental maintenance of the result of the q-hierarchical queries over the Housing (left), Retailer (middle), and
Favorita (right) datasets under update batches and requests to enumerate all tuples in the query results after every INTVL

update batches; #ENUM denotes the overall number of the enumeration requests. The symbol ∗ denotes the case where an IVM
variant did not finish within the time limit (50 hours) for this experiment. The throughput is not shown in this case.

Fig. 23 The number of rounds of updates to all relations in the path queries processed within four hours over the TikTok
(left) and Twitter (right) graph datasets under update batches of size 1, 000.

Fig. 22). The lazy-list variant has the lowest throughput

among the four variants in our experiment.

The two lazy variants are clear winners in case of

none or very few enumeration requests. In this case,

there is almost no difference between their throughputs

since they spend most of their time updating the input

relations. In case of more enumeration requests, how-

ever, the eager variants are the winners, with eager-fact

consistently outperforming eager-list.

Overall, the eager and lazy variants based on fac-

torized representation outperform those based on list-

ing representation in all but the trivial cases of none or

few enumeration requests, where the representation of

the query result plays no role. This is as expected, since

the enumeration delay and the update time can both

remain constant for our queries only if the query result

is kept factorized over the views in the view tree.

9.5 Path Queries

We investigate the scalability of the maintenance ap-

proaches as we increase the number of joins in the query.

We consider the path query with up to 20 self-joins of

the edge relation in the TikTok and Twitter graphs. The

edges are partitioned into batches of 1000 inserts. One

round of updates processes one batch of inserts for each

copy of the edge relation. Fig. 23 shows the number of

rounds of updates processed by each approach within

four hours. F-IVM outperforms all other approaches on

path queries of any length. All approaches are slower

for TikTok, since it is more skewed than Twitter.

Flink and 1-IVM have a similar poor performance

and do not scale for long path queries. Flink maintains

the join result via a left-deep binary view tree and com-

putes the aggregates at the root view. It projects away

the join variable after each join. This reduces the num-

ber of columns but not the number of rows in the join

result. For a delta to the bottom relation in the view

tree, Flink joins it with all other k − 1 relations in the

query. This triggers O(N⌈ k
2 ⌉) inserts to the join result,

where N is the number of edges. 1-IVM computes the

delta query by joining the batch of inserts with k − 1

relations and has the same complexity as Flink.

DBT and F-IVM avoid the materialization of the

large join result by pushing the aggregates past the joins

at each view. Both of them need O(N2) time to update

each view. Like Flink, F-IVM uses a left-deep view tree.

DBT uses one view tree per delta query, where the delta

relation is a child of the top view and the two subqueries

to the left and right of the delta relation have left-deep

view trees. F-IVM constructs fewer views than DBT:

For 20-path, F-IVM uses 19 views, while DBT uses 190

views. This explains the better performance of F-IVM.

F-IVM: Analytics over Relational Databases under Updates 25

10 Related Work

To the best of our knowledge, ours is the first approach

to propose factorized IVM for a range of distinct appli-

cations. It extends non-trivially two lines of prior work:

higher-order delta-based IVM and factorized computa-

tion of in-database analytics.

Our view language is modelled on functional aggre-

gate queries over semirings [6] and generalized multiset

relations over rings [33]; the latter allowed us to adapt

DBToaster to factorized IVM.

IVM. IVM is a well-studied area spanning more

than three decades [18,57,63]. Prior work extensively

studied IVM for various query languages and showed

that the time complexity of IVM is lower than of re-

computation. We go beyond prior work on higher-order

IVM for queries with joins and aggregates, as realized in

DBToaster [33], and propose a unified approach for fac-

torized computation of aggregates over joins [8], factor-

ized incremental computation of linear algebra [44], and

in-database machine learning over database joins [58].

DBToaster uses one materialization hierarchy per rela-

tion in the query, whereas F-IVM uses one view tree

for all relations. DBToaster can thus have much higher

space requirements and update times. As we observed

experimentally, it does not consider the maintenance

of composite aggregates such as the covariance matrix.

IVM over array data [67] targets scientific workloads

but without exploiting data factorization.

F-IVM over the relational payload ring strictly sub-

sumes prior work on factorized IVM for acyclic joins [28]

as it can support arbitrary joins. F-IVM has efficient

support for free-connex acyclic [28] and q-hierarchical

queries [12]. Exploiting key attributes to enable suc-

cinct delta representations and accelerate maintenance

complements our approach [30]. Our framework gener-

alizes the main idea of the LINVIEW approach [44] for

maintaining matrix computation over arbitrary joins.

Unlike approaches that exploit the append-only nature

of data streams [64], F-IVM allows for both data in-

sertions and deletions. F-IVM can be used to improve

the memory-efficiency of systems that integrate IVM

into compilers to speed up the search in abstract syn-

tax trees [9]. Such systems suffer from the high storage

overhead of systems such as DBToaster that maintain

significantly more views than F-IVM.

Commercial DBMSs support IVM for restricted cla-

sses of queries, e.g., Oracle [3] and SQLServer [1]. Log-

icBlox supports higher-order IVM for Datalog meta-

programs [7,26]. Trill is a streaming engine that sup-

ports incremental processing of relational-style queries

but no complex aggregates like covariance matrices [16].

Differential Dataflow [39] supports incremental process-

ing for programs with recursion. There is a distinct line

of work on maintenance for recursive Datalog [41].

Static In-DB analytics. The emerging area of

in-database analytics has been overviewed in two tu-

torials [54,35] and a recent keynote [47]. Several sys-

tems support analytics over normalized data via a tight

integration of databases and machine learning [40,27,

55,54,35]. Other systems integrate with R to enable

in-situ data processing using domain-specialized rou-

tines [66,14]. The closest in spirit to our approach is

work on learning models over factorized joins [56,58,

50,31], pushing ML tasks past joins [23,59] and on in-

database linear algebra [22,17,51], yet they do not con-

sider incremental maintenance.

Learning. There is a wealth of work in the ML com-

munity on incremental or online learning over arbitrary

relations [60]. Our approach learns over joins and cru-

cially exploits the join dependencies in the underlying

training dataset to improve the runtime performance.

11 Conclusion and Future Work

This article introduces F-IVM, a system that unifies

the task of maintaining a variety of analytics over nor-

malized data under updates. We show its applicabil-

ity to learning linear regression models, building Chow

Liu trees, and query evaluation with listing/factorized

result representation. F-IVM recovers the best known

complexities for free-connex acyclic and q-hierarchical

queries. A prior version of this work [46] also discusses

the application of F-IVM to matrix chain multiplica-

tion. These tasks use the same computation paradigm

that factorizes the representation and the computation

of the keys, the payloads, and the updates. Their dif-

ferences are confined to the definition of the sum and

product operations in a suitable ring. F-IVM is pub-

licly available and was implemented as an extension of

DBToaster [33], a state-of-the-art system for incremen-

tal maintenance, and shown to outperform competitors

by orders of magnitude in both time and space.

Going forward, we would like to apply this approach

to further tasks such as inference in probabilistic graph-

ical models and more complex machine learning tasks.

F-IVM inherits the limitations of DBToaster, in par-

ticular it is single-threaded. A promising avenue of re-

search is to build F-IVM on top of an open-source par-

allel and distributed framework such as Apache Flink.

Another goal is to extend F-IVM to support further

SQL operators such as theta joins, nested subqueries,

and NULLs, which are relevant in practice.

If You Liked It, Then You Should Put A Ring On It.

– Beyoncé.

26 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang

Acknowledgements The project has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 682588.

References

1. Create Indexed Views. http://msdn.microsoft.com/

en-us/library/ms191432.aspx

2. Favorita Dataset. https://www.kaggle.com/

competitions/favorita-grocery-sales-forecasting

3. Materialized View Concepts and Architecture.
http://docs.oracle.com/cd/B28359_01/server.111/

b28326/repmview.htm

4. Abadi, D.J., Ahmad, Y., Balazinska, M., et al.: The De-
sign of the Borealis Stream Processing Engine. In: CIDR,
vol. 5, pp. 277–289 (2005)

5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of
Databases. Addison-Wesley (1995). URL http://

webdam.inria.fr/Alice/

6. Abo Khamis, M., Ngo, H.Q., Rudra, A.: FAQ: Questions
Asked Frequently. In: PODS, pp. 13–28 (2016)

7. Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B.,
Olteanu, D., Pasalic, E., Veldhuizen, T.L., Washburn, G.:
Design and Implementation of the LogicBlox System. In:
SIGMOD, pp. 1371–1382 (2015)

8. Bakibayev, N., Kociský, T., Olteanu, D., Závodnỳ,
J.: Aggregation and Ordering in Factorised Databases.
PVLDB 6(14), 1990–2001 (2013)

9. Balakrishnan, D., Nuessle, C., Kennedy, O., Ziarek, L.:
TreeToaster: Towards an IVM-Optimized Compiler. In:
G. Li, Z. Li, S. Idreos, D. Srivastava (eds.) SIGMOD, pp.
155–167 (2021)

10. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the
Desirability of Acyclic Database Schemes. J. ACM 30(3),
479–513 (1983)

11. Berkholz, C., Gerhardt, F., Schweikardt, N.: Constant
Delay Enumeration for Conjunctive Queries: a Tutorial.
ACM SIGLOG News 7(1), 4–33 (2020)

12. Berkholz, C., Keppeler, J., Schweikardt, N.: Answering
Conjunctive Queries under Updates. In: PODS, pp. 303–
318 (2017)

13. Brault-Baron, J.: De la pertinence de l’énumération:
Complexité en logiques propositionnelle et du premier
ordre. Ph.D. thesis, Université de Caen (2013)

14. Brown, P.G.: Overview of SciDB: Large Scale Array Stor-
age, Processing and Analysis. In: SIGMOD, pp. 963–968
(2010)

15. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V.,
Haridi, S., Tzoumas, K.: Apache Flink™: Stream and
Batch Processing in a Single Engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

16. Chandramouli, B., Goldstein, J., et al.: Trill: A High-
performance Incremental Query Processor for Diverse
Analytics. PVLDB 8(4), 401–412 (2014)

17. Chen, L., Kumar, A., Naughton, J.F., Patel, J.M.: To-
wards linear algebra over normalized data. Proc. VLDB
Endow. 10(11), 1214–1225 (2017)

18. Chirkova, R., Yang, J.: Materialized Views. Found. &
Trends in DB 4(4), 295–405 (2012)

19. Chow, C., Liu, C.: Approximating discrete probability
distributions with dependence trees. Trans. Inf. Theor.
14(3), 462–467 (2006)

20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:
Introduction to Algorithms. The MIT Press (2009)

21. Durand, A., Grandjean, E.: First-order Queries on Struc-
tures of Bounded Degree are Computable with Constant
Delay. TOCL 8(4), 21 (2007)

22. Elgohary, A., Boehm, M., Haas, P.J., Reiss, F.R., Rein-
wald, B.: Compressed Linear Algebra for Large-scale Ma-
chine Learning. PVLDB 9(12), 960–971 (2016)

23. Feng, X., Kumar, A., Recht, B., Ré, C.: Towards a Unified
Architecture for In-RDBMS Analytics. In: SIGMOD, pp.
325–336 (2012)

24. Gottlob, G., Leone, N., Scarcello, F.: Hypertree Decom-
positions and Tractable Queries. In: PODS, pp. 21–32
(1999)

25. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance
Semirings. In: PODS, pp. 31–40 (2007)

26. Green, T.J., Olteanu, D., Washburn, G.: Live Program-
ming in the LogicBlox System: A MetaLogiQL Approach.
PVLDB 8(12), 1782–1791 (2015)

27. Hellerstein, J.M., Ré, C., Schoppmann, F., Wang, D.Z.,
Fratkin, E., et al.: The MADlib Analytics Library or
MAD Skills, the SQL. PVLDB 5(12), 1700–1711 (2012)

28. Idris, M., Ugarte, M., Vansummeren, S.: The Dynamic
Yannakakis Algorithm: Compact and Efficient Query
Processing Under Updates. In: SIGMOD, pp. 1259–1274
(2017)

29. Kara, A., Nikolic, M., Olteanu, D., Zhang, H.: Trade-
offs in Static and Dynamic Evaluation of Hierarchical
Queries. In: PODS, pp. 375–392 (2020)

30. Katsis, Y., Ong, K.W., Papakonstantinou, Y., Zhao,
K.K.: Utilizing IDs to Accelerate Incremental View Main-
tenance. In: SIGMOD, pp. 1985–2000 (2015)

31. Khamis, M.A., Ngo, H.Q., Nguyen, X., Olteanu, D.,
Schleich, M.: Learning Models over Relational Data Us-
ing Sparse Tensors and Functional Dependencies. ACM
Trans. Database Syst. 45(2), 7:1–7:66 (2020)

32. Koch, C.: Incremental Query Evaluation in a Ring of
Databases. In: PODS, pp. 87–98 (2010)

33. Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli,
A., Lupei, D., Shaikhha, A.: DBToaster: Higher-order
Delta Processing for Dynamic, Frequently Fresh Views.
VLDB J. 23(2), 253–278 (2014)

34. Kolda, T.G., Bader, B.W.: Tensor decompositions and
applications. SIAM Rev. 51(3), 455–500 (2009)

35. Kumar, A., Boehm, M., Yang, J.: Data Management in
Machine Learning: Challenges, Techniques, and Systems.
In: SIGMOD, pp. 1717–1722 (2017)

36. Kumar, A., Naughton, J.F., Patel, J.M.: Learning Gen-
eralized Linear Models Over Normalized Data. In: SIG-
MOD, pp. 1969–1984 (2015)

37. Madden, S.R., et al.: TinyDB: An Acquisitional Query
Processing System for Sensor Networks. TODS 30(1),
122–173 (2005)

38. McAuley, J., Leskovec, J.: Learning to Discover Social
Circles in Ego Networks. In: NIPS, p. 539–547 (2012)

39. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differ-
ential Dataflow. In: CIDR (2013)

40. Meng, X., et al.: MLlib: Machine Learning in Apache
Spark. J. Mach. Learn. Res. 17(1), 1235–1241 (2016)

41. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Maintenance
of Datalog Materialisations Revisited. Artif. Intell. 269,
76–136 (2019)

42. Murphy, K.P.: Machine Learning : A Probabilistic Per-
spective. MIT Press, Cambridge, Mass. (2013)

43. Ngo, H.Q., Ré, C., Rudra, A.: Skew Strikes Back: New
Developments in the Theory of Join Algorithms. SIG-
MOD Record 42(4), 5–16 (2013)

44. Nikolic, M., Elseidy, M., Koch, C.: LINVIEW: Incremen-
tal View Maintenance for Complex Analytical Queries.
In: SIGMOD, pp. 253–264 (2014)

http://msdn.microsoft.com/en-us/library/ms191432.aspx
http://msdn.microsoft.com/en-us/library/ms191432.aspx
https://www.kaggle.com/competitions/favorita-grocery-sales-forecasting
https://www.kaggle.com/competitions/favorita-grocery-sales-forecasting
http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28326/repmview.htm
http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/

F-IVM: Analytics over Relational Databases under Updates 27

45. Nikolic, M., Olteanu, D.: Incremental view mainte-
nance with triple lock factorization benefits. CoRR
abs/1703.07484 (2017)

46. Nikolic, M., Olteanu, D.: Incremental View Maintenance
with Triple Lock Factorization Benefits. In: SIGMOD,
pp. 365–380. ACM (2018)

47. Olteanu, D.: The Relational Data Borg is Learning. Proc.
VLDB Endow. 13(12), 3502–3515 (2020)

48. Olteanu, D., Huang, J., Koch, C.: SPROUT: Lazy vs.
Eager Query Plans for Tuple-Independent Probabilistic
Databases. In: ICDE, pp. 640–651 (2009)

49. Olteanu, D., Koch, C., Antova, L.: World-set Decompo-
sitions: Expressiveness and Efficient Algorithms. Theor.
Comput. Sci. 403(2-3), 265–284 (2008)

50. Olteanu, D., Schleich, M.: F: Regression Models over Fac-
torized Views. PVLDB 9(13), 1573–1576 (2016)

51. Olteanu, D., Vortmeier, N., Zivanovic, D.: Givens QR
Decomposition over Relational Databases. In: SIGMOD,
pp. 1948–1961 (2022)

52. Olteanu, D., Závodnỳ, J.: Size Bounds for Factorised
Representations of Query Results. TODS 40(1), 2:1–2:44
(2015)

53. Peña-Fernández, S., Ureta, A., Gras, J.: Current affairs
on TikTok. Virality and entertainment for digital natives.
El Profesional de la Informacion 31, 12 (2022)

54. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data
Management Challenges in Production Machine Learn-
ing. In: SIGMOD, pp. 1723–1726 (2017)

55. Qin, C., Rusu, F.: Speculative Approximations for Teras-
cale Distributed Gradient Descent Optimization. In:
DanaC, pp. 1–10 (2015)

56. Rendle, S.: Scaling Factorization Machines to Relational
Data. PVLDB 6(5), 337–348 (2013)

57. Salem, K., Beyer, K.S., Cochrane, R., Lindsay, B.G.: How
To Roll a Join: Asynchronous Incremental View Mainte-
nance. In: SIGMOD, pp. 129–140 (2000)

58. Schleich, M., Olteanu, D., Ciucanu, R.: Learning Linear
Regression Models over Factorized Joins. In: SIGMOD,
pp. 3–18 (2016)

59. Schleich, M., Olteanu, D., Khamis, M.A., Ngo, H.Q.,
Nguyen, X.: A Layered Aggregate Engine for Analytics
Workloads. In: SIGMOD, pp. 1642–1659 (2019)

60. Shalev-Shwartz, S., et al.: Online Learning and Online
Convex Optimization. Found. & Trends in ML 4(2), 107–
194 (2012)

61. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K.,
Papalexakis, E.E., Faloutsos, C.: Tensor decomposition
for signal processing and machine learning. Trans. Sig.
Proc. 65(13), 3551–3582 (2017)

62. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic
Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers (2011)

63. Tang, D., Shang, Z., Elmore, A.J., Krishnan, S., Franklin,
M.J.: Thrifty Query Execution via Incrementability. In:
SIGMOD, pp. 1241–1256 (2020)

64. Yang, Y., Golab, L., Özsu, M.T.: ViewDF: Declarative
Incremental View Maintenance for Streaming Data. Inf.
Syst. 71, 55–67 (2017)

65. Yannakakis, M.: Algorithms for Acyclic Database
Schemes. In: VLDB, pp. 82–94 (1981)

66. Zaharia, M., et al.: Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Com-
puting. In: NSDI, pp. 15–28 (2012)

67. Zhao, W., Rusu, F., Dong, B., Wu, K., Nugent, P.: In-
cremental View Maintenance over Array Data. In: SIG-
MOD, pp. 139–154 (2017)

	Introduction
	Overview of the F-IVM System
	Data Model and Query Language
	Factorized Ring Computation
	Factorized Higher-Order IVM
	Factorizable Updates
	F-IVM for Special Query Classes
	Applications
	Experiments
	Related Work
	Conclusion and Future Work

