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Abstract State-of-the-art Machine Learning systems are able to process and ana-
lyze a large amount of data but they still struggle to generalize to out-of-distribution
scenarios. To use Judea Pearl’s words, “Data are profoundly dumb" (Pearl & Macken-
zie, 2018); possessing a model of the world, a representation through which to frame
reality is a necessary requirement in order to discriminate between relevant and
irrelevant information and to deal with unknown scenarios. The aim of this paper
is to address the crucial challenge of out-of-distribution generalization in automated
systems by developing an understanding of how human agents build models to act
in a dynamic environment. The steps needed to reach this goal are described by
Pearl through the metaphor of the Ladder of Causation. In this paper, I support the
relevance of inductive biases in order for an agent to reach the second rung on the
Ladder: that of actively interacting with the environment.

1 Introduction

Diagnosis of skin cancer, autonomous driving, and recommender systems are only a
few examples of decision-making processes in which Artificial Intelligence (AI) is
increasingly involved. The question that emerges from the fast progress of automated
systems in this areas is whether, thanks to the growing availability of data, machines
will soon become better than humans at decision-making. While some warn against a
future where AI will take over human jobs and personal life, others are skeptical that
this can happen, unless machines acquire the ability of organizing the manifold of
data they process into models that allow them to deal with uncertainty and generalize
to out-of-distribution scenarios.

Machine learning (ML) models are very good at handling within-distribution gen-
eralization. Still, observing correlations between data is not enough for successfully
dealing with scenarios that lie outside the training distribution. To use Judea Pearl’s
words, “Data are profoundly dumb” (Pearl & Mackenzie, 2018). Big Data are not
enough to be capable of generalization, abstraction, and agency; possessing a robust
model of the world, a representation through which to frame reality, is a necessary
requirement in order to deal with unknown scenarios. The steps needed to reach this
goal are described by Pearl through the Ladder of Causation, a metaphor that Pearl
uses to describe the performance of a system (Pearl & Mackenzie, 2018). Pearl argues
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that current state-of-the-art ML models do not progress beyond the first rung of the
Ladder: that of observing the environment and finding statistical correlation between
available data.1 AHow to extract from available knowledge the information needed to
abstract to out-of-distribution scenarios is the central challenge that I aim to address
in this paper. The key for achieving the necessary generalization skills is a feature
that will occupy the central stage: robustness (Bertsimas & Thiele, 2006; Hansen &
Sargent, 2011). A central contribution of this proposal is to argue in favour of the
relevance of inductive biases in building robustness in decision-making systems. To
support this claim, I take inspiration from Daniel Kahneman’s dual system of human
cognition (Kahneman, 2011) to then extend the discussion to the consideration of
how robustness can be implemented in hybrid AI models (Garcez & Lamb, 2020).

I conclude by arguing how strategies for embedding inductive biases into ML
systems that are based on statistical learning are not enough to achieve the necessary
robustness to generalize to out-of-distribution scenarios. Rather, methods aimed at
identifying the causal dependencies between variables, such as graphical causal
models, are better suited for this scope.

2 Out-of-distribution Generalization

Statistics is commonly concerned with within-distribution generalization and di�er-
ent strategies are already successfully employed to generalize to unseen data drawn
from the same distribution (e.g. logistic regression, stochastic regularization, and
Wasserstein DRO). What is still a challenge, is to make ML systems perform out-of-
distribution generalization, where the testing distribution is unknown and di�erent
from the training set. Various methods to solve this problem have been proposed:
stable learning (Kuang et al., 2018), domain generalization (Muandet et al., 2013),
and causal learning methods (Peters et al., 2016), among others. Still, despite the
advancements in the field, a decisive solution to this problem has not been found,
yet.

The problem of abstracting to unknown scenarios is pervasive in ML applications.
For state-of-the-art Natural Language Inference models, drawing inferences between
pairs that require knowledge about phenomena such as modals, implicatives, con-
ditionals, etc. is still a challenge. For example, as pointed out in a recent work by
Kalouli (Kalouli et al., 2020), current deep learning models struggle to recognize
how the sentence “The judge believed the tourist arrived" implies the sentence “The
judge believed the tourist". Most state-of-the-art Natural Language Processing sys-
tems are, indeed, both brittle and spurious, failing when text is added or modified,
even if its meaning is preserved (Seo et al., 2016).

Generalizing to unknown scenarios is problematic also in other fields of applica-
tion of ML. In image classification, for example, classifiers are subject to picking up
undesirable correlations during training. To use a frequently cited example, a 2016
work by Ribeiro et al. (Ribeiro et al., 2016) observes how in carrying out the task

1 In what follows, I will refer to a ‘system’ as the complex of the actuator of a decision-making
process and of the process itself.
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of distinguishing between pictures of wolves and huskies the success of a particular
classification model was not based on an understanding of the distinction between
the two species of animals but, rather, on the di�erent background of the pictures in
question. The classifier predicted ‘wolf’ if there was snow or a light background in
the picture and ‘husky’ otherwise.

The urgency of improving the generalization capabilities of ML systems is even
more compelling in applications such as medical diagnosis or autonomous driving,
where the mis-identification of a possible cancerous tissue or the mistake of a cyclist
for an inert object can lead to serious consequences. It is, therefore, critical to identify
the mechanisms through which automated systems of decision-making can become
more robust and, accordingly, achieve better abstraction skills.

3 Choice in Decision-making Processes

The aim of the rest of the paper is to get insights into how the out-of-distribution
generalization challenge can be addressed. To do so, I start by illustrating a decision-
making process in the light of Pearl and Mackenzie’s Ladder of Causation. This will
allow me to identify some crucial steps that lead agents to achieve higher abstraction
and generalization abilities.2

The Ladder of Causation is a metaphor used to describe a system’s competence.
It is structured in three rungs:

Rung 1: Correlation. A system operating on the first rung is a mere observer of
what happens in the world. The question the agent asks at this stage is: “What is the
probability that y happens, given x?”.

Rung 2: Intervention. In order to climb to this level, the agent needs to deliberately
interact with the environment and alter it. The question is: “What is the probability
that y happens if I do x?”.

Rung 3: Counterfactuality. Agents that reach this step are able to imagine coun-
terfactual scenarios and to adapt their actions accordingly. The question the agent
asks here is: “What is the probability that y’ would occur had x’ occurred, given that
I actually observed x and y?” (Pearl & Mackenzie, 2018).

In this paper, I will focus on the mechanism that enables agents to proceed from
Rung 1 to Rung 2, leaving the last step toward the third Rung to other discussions
(Moruzzi, 2022). I call this mechanism ‘choice’ and, in order to make the description
of how it works more concrete, I illustrate the process through an example.

Suppose that an agent (I will call her Anne) has a headache and her aim is to stop
it. The steps that she will (presumably) take to decide on the best choice in order to
achieve this aim follow the three rungs of the Ladder of Causation (see Figure 1).

From the data, or Knowledge, that is available to her, the agent begins to build
an initial, approximate, frame that helps her understand and organize the data (Fa).
In our example, to achieve the aim of getting rid of the headache, Anne may start
by observing with which probability the variable ‘No headache’ is associated to the

2 In this paper I will not discuss whether artificial systems can be deemed agents and what agency
amounts to, leaving this question to further research.
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variable (drinking) ‘Co�ee’. In other words, she observes with which probability the
action of drinking co�ee (x) is associated to the e�ect of stopping the headache (y).

Fig. 1 Decision-making Process

Anne may then proceed at the level of Intervention by drinking co�ee to confirm
the connection between the variables ‘Co�ee’ and ‘No headache’, observed in the
previous step. Her question is: “What is the probability that the headache will stop
if I drink co�ee?” If the intervention supports the observed data, the agent can draw
causal links between the variables ‘Co�ee’ and ‘No headache’.

In order to reinforce the frame that the agent starts to build at the level of Associa-
tion, she chooses among the alterations to the environment the ones that produce the
desired outcome. In our example, Anne will use her frame to filter out variables that
are not related to the outcome ‘No headache’, for example (doing the) ‘Laundry’.
Once the agent observes the frame to work reliably, she starts interpreting data ac-
cording to it. In turn, the frame influences the agent in drawing causal links between
elements in future experiences (Filtering* in Fig. 1).

The two processes of framing and filtering are tightly interconnected in what I
call the mechanism of ‘choice’, as in this process the agent makes the decision of
which action to take to maximize her reward. Two are the components that allow
the success of the choice mechanism: feedback and inductive biases. I will address
inductive biases in section 4; here I briefly discuss the contribution brought by the
feedback component to the mechanism of choice.



Toward Out-of-Distribution Generalization Through Inductive Biases 5

The process of optimization and adaptation to other frames is facilitated by the
feedback received from an Adversarial Player, a notion taken from robust control
theory which refers to it also as Malevolent Nature (Hansen & Sargent, 2011). The
adversarial play between the agent and the Adversarial Player can be understood
as a max-min decision rule, which has the result of improving the robustness of
the model (Goodfellow et al., 2014). In our example, suppose Anne needs to stop
drinking co�ee because her blood pressure is too high. The Adversarial Player may
make Anne try di�erent things to get rid of the headache, for example drinking hot
milk, taking vitamin pills, practicing relaxation techniques, and so on. Through an
active intervention in the world (in Pearl’s terms, the do-operator), the agent learns to
discriminate between the actions that are successful (relevant information) and those
that are not (irrelevant information) and she adapts her frame to the new context.
For example, Anne may find out that practicing relaxation techniques works against
headache and add it to her frame (F2). Or, in another context, she may discover
that taking an Aspirin works, and add it to yet another frame (F1). The feedback
mechanism and the adaptation to other frames are essential in the process toward
building robustness in decision-making and performing counterfactual thinking, a
prerequisite to climb toward the third rung of the Ladder of Causation (Moruzzi,
2022).

4 Inductive Biases

In addition to the feedback received from the Adversarial Player, the success of the
choice mechanism depends also on inductive biases that the agent already possesses,
prior to engaging with the decision-making process in question.

Induction consists in drawing inferences about unknown values of variables on
the basis of past observations. The problematic nature of induction is well-known
(Vickers, 2014): How can we draw inferences to future occurrences on the basis of
past events? Even if the inductive framework we construct is accepted as valid, there
can still be contradictory observations that are consistent with our framework. We
humans move through the maze of uncertainty through guiding principles that give
us some confidence in the fact that our generalizations based on past observations
will extrapolate well into unknown ones. These principles are known as inductive
biases.

In Anne’s example, prior to engaging with the construction of the frame at the
level of Association, Anne may already have some priors that are relevant to the
selection of the information that will enter her frame. For example, she may start
by assuming that the ingestion of some liquids interacts with the body, triggering
chemical reactions. This assumption helps her identify ‘Co�ee’ as a potential relevant
variable in achieving the aim of stopping the headache.

Assuming that these inductive biases, or assumptions, help agents adapt their
frames to previously unseen scenarios, the question is which methods we should
use to inject similar inductive biases into automated systems of decision making, in
order to address the problem of out-of-distribution generalization. The first step is
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to consider which role inductive biases play in human decision-making processes. I
anticipate that Daniel Kahneman’s dual-system theory of human cognition, although
controversial, can help making the transition between human and artificial cognition
smoother and understanding how the introduction of inductive biases into automated
systems can support their climb toward generalization.

In his best-selling book, Thinking, Fast and Slow (Kahneman, 2011), Kahneman
uses the fictional characters of System 1 and 2 to refer to the two kinds of computation
of the brain. System 1 is e�ortless, fast, and automatic and it is the one that we use
the majority of the time to interact with the world. System 2, on the other hand, is
slower and more rational. It is activated when we need to perform a task that requires
our full attention or when we are confronted with an unexpected situation. I start
by trying to understand where these two systems come into play in the example of
Anne’s decision-making process.

In human cognition, System 2 is responsible for the slow and analytical process of
selecting from the data the relevant variables that constitute the agent’s initial frame,
which allows her to start building a narrative from available knowledge (Kahneman
et al., 2021). What guides System 2 in this process are priors, inductive biases that
help the agent identify causal dependencies between variables.

Once the frame is built and set, and the agent is at the level of Intervention,
System 1 is activated as she needs to react fast in interpreting future scenarios using
the available frame. Frames can be considered to be cognitive shortcuts, they allow
the agent to focus her mind only on the relevant information, thus reducing cognitive
load. The e�ortlessness of System 1 and its speed in using this frame to interact with
the environment help the agent react to changing conditions. The feedback that the
agent receives from the environment when engaging in the search of variables that
lead to the achievement of her aim, contribute to making the frame more robust.

The fact that the human brain can e�ortlessly identify causal dependencies in the
environment has been interpreted by some as an evolutionary advantage of humans
(Tomasello, 2014). However, this advantage may turn into a source of cognitive
errors: harmful biases may emerge if the agent interprets data on the basis of a
wrong model of the world or if she identifies causal relations were there aren’t any
(Kahneman et al., 1982). Biases can be interpreted as deviations from the correct
model due to the fact that an agent applies System 1 thinking to create the links
without pausing to interrogate the data.

Going back to Anne’s example, suppose that she observes that the probability of
the two variables ‘Co�ee’ and (eating) ‘Cookies’ happening together is high. She
may, erroneously, conclude that the variable ‘Cookies’ is causally related to ‘No
headache’. This, in Pearl’s term, would be a confounder: a variable that is capable of
producing spurious associations between the input and outcome, not attributable to
their causal dependence (Pearl & Mackenzie, 2018).

In order to identify confounders, the agent necessarily needs to refine her frame.
This is made possible by the activation of System 2 during the feedback process.
Anne may start doubting that the frame she is using is the correct one. The doubt
could originate if, for example, she happened to eat cookies while drinking hot
milk and did not get the desired result of stopping the headache. By reflecting on
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whether the variable ‘Cookies’ should rather stay without of her frame, Anne is
employing her analytical skills to delay intuition and to adapt her frame in response
to the feedback received from the environment (Kahneman, 2011). This capacity
of adapting and refining frames allows the agent to prevent herself from drawing
spurious correlations and to make her decision-making process more robust.

5 Hybrid AI Methods

In the previous section, I supported the relevance of inductive biases for the robust-
ness of a decision-making process and for the generalization capabilities of the agent
that performs it. Inductive biases are currently introduced into ML systems through
various methods, for example dropout (Srivastava et al., 2014) or early stopping,
techniques used for addressing overfitting problems, and model selection based on
cross-validation.

If inductive biases are understood as a set of rules or assumptions that the agent
possesses a priori, in advance of starting the learning process, it seems arguably
easier to inject these priors into models that are built following a symbolic approach.
For example, systems based on inductive logic programming encode knowledge into
inductive biases and induce algorithms to derive hypothesis from a pre-specified
database of facts (Muggleton, 1991).

But while symbolic methods can handle extrapolation from pre-encoded infor-
mation and, as System 2 in human cognition, are better suited to analytically select
relevant information from a dataset thanks to inductive priors, they are also brittle
and less capable of processing large amounts of data in contrast to sub-symbolic
methods. On the other hand, sub-symbolic methods learn faster and, as System 1,
can quickly react to changing conditions in the environment. However, they are
prone to output spurious results and to let their decision-making process be guided
by undesirable correlations between variables in the training set (as noted in section
2).

Some claim that a way to solve this problem is to support the data-processing
skills of ML models through the capacity of abstraction and logical reasoning of
symbolic AI methods. This solution is the one proposed by the hybrid approach
in AI research, which is showing promising results in many areas (Bahdanau et
al., 2018; Bengio et al., 2019; Booch et al., 2020; Garcez & Lamb, 2020; Madan,
Ke, Goyal, Schölkopf, & Bengio, 2021; Moruzzi, 2020). This hybrid approach of
symbolic and sub-symbolic methods would arguably allow to hold the advantages of
both strategies, get rid of their respective weaknesses and, at the same time, program
models that fare much better in generalization and abstraction.

Many of the conceptualizations of state-of-the-art hybrid AI methods have been
inspired by Kahneman’s dual-system theory of the human mind (Kahneman, 2011).
As mentioned above, the way System 1 works can be compared to the mechanisms of
sub-symbolic AI, which is essentially learning from experience and can react fast. On
the other hand, System 2’s capability of solving complex problems can be associated
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with techniques based on logic and planning that employ explicit knowledge and
reasoning with symbols.

The strength of state-of-the-art hybrid AI models is their capacity of combining the
computational power of Deep Learning with symbolic and logical reasoning to not
only process large amounts of data, but also to identify which elements within those
data stay stable (Bengio, 2017). To be able to handle dynamic, changing conditions,
without letting decision-making processes be subject to spurious correlations and
harmful biases, a possible way forward could, thus, be found in the combination
of statistical models, able to perform System 1 tasks and fast in adapting the initial
frames to the changing conditions of the environment, with symbolic models, able
to perform System 2 tasks and construct frames that help the agent interpret the
environment and interact with it.

Strategies to build inductive biases into ML systems are already widely adopted
(i.e. linear models, decision trees, naive Bayes). However, while they work well for
within-distribution generalization, they struggle to generalize to interventions that lie
outside of the training distribution. One of the reasons for this weakness is that these
methods are usually based on the observation of correlation among data, without
considering causal dependencies between variables. In Pearl’s terms, they are stuck
at Rung 1. A strategy that could help automated systems organize the information
into frames and climb up the ladder toward Rung 2 are graphical causal models,
graphs which represent probabilistic dependencies between variables and which can
be used by agents to organize their beliefs regarding causal structures (Pearl, 2000).
The structure of causal graphs remains invariant, even if the situation changes. The
ensuing advantage is that, by identifying the variables that are responsible for change
and that remain stable through varying conditions, the agent can more easily adapt
her frames to new and out-of-distribution situations (Pearl & Mackenzie, 2018).

Indeed, as suggested in (Eva et al., 2019), identifying similarities between causal
graphs can help the system adapt its behaviour to unknown scenarios and to predict
the outcomes of her actions. To use an overly simplified example, if Anne identifies
what is that the causal graph that connects ‘Co�ee’ to ‘No headache’ has in com-
mon with the graph that connects ‘Aspirin’ to ‘No headache’, she may be able to
extrapolate the information she needs in order to identify other, unknown variables
that can stop her headache. By identifying the dependencies between variables that
remain stable in dynamic context, the agent can, at the same time, generalize to
out-of-distribution interventions and climb toward the highest rungs of the Ladder
of Causation (Moruzzi, 2022).3

6 Conclusion

While the introduction of inductive biases into ML models is already adopted by
practitioners and has been addressed in past research (see section 4), strategies
employed so far do not perform well in generalization tasks. I suggested that graphical
causal models could represent a viable strategy to enable the move toward higher

3 I thank the reviewers for advising me to develop more this section.
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rungs of the Ladder of Causation, by allowing systems to identify structures of
dependencies between variables which can be used to forecast out-of-distribution
scenarios. The contribution that this paper brings to debates on generalization in ML
is twofold. First, the illustration of the decision-making process in the light of Pearl’s
Ladder of Causation allows to clearly identify the steps required in order to proceed
from the mere observation of variables to the interaction with the environment and its
modification. Secondly, it identifies the discrimination between harmful biases and
beneficial assumptions, namely inductive biases, a key component toward making
the decision-making process more robust, by drawing on the research conducted
by Kahneman’s research on errors and biases in human cognition (Gilovich et al.,
2002; Kahneman, 1973). Studying the role of inductive biases in supporting human
and automated systems to frame information can shed light on promising strategies
which can contribute to the development of artificial decision-making systems that
perform better in out-of-distribution generalization (Bender & Friedman, 2018).
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