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ParBFT: An Optimised Byzantine Consensus
Parallelism Scheme

Xiao Chen, Btissam Er-Rahmadi, Tiejun Ma and Jane Hillston

Abstract—Byzantine fault-tolerance (BFT) consensus is a fundamental building block of distributed systems such as blockchains.
However, implementations based on classic PBFT and most linear PBFT-variants still suffer from message communication complexity,
restricting the scalability and performance of BFT algorithms when serving large-scale systems with growing numbers of peers. To
tackle the scalability and performance challenges, we propose ParBFT, a new Byzantine consensus parallelism scheme combining
classic BFT protocols and a novel Bilevel Mixed-Integer Linear Programming (BL-MILP)-based optimisation model. The core aim of
ParBFT is to improve scalability via parallel consensus while providing enhanced safety (i.e. ensuring consistent total order across all
correct replicas). Another core novelty is the integration of the BL-MILP model into ParBFT. The BL-MILP allows us to compute optimal
numerical decisions for parallel committees (i.e. the optimal number of committees and peer allocation for each committee) and improve
consensus performance while ensuring security. Finally, we test the performance of the proposed ParBFT on Microsoft Azure Cloud
systems with 20 to 300 peers and find that ParBFT can achieve significant improvement compared to the state-of-the-art protocols.

Index Terms—Byzantine Fault Tolerance, Parallel Consensus, Blockchains, Consensus Committee Optimisation.

✦

1 INTRODUCTION

B YZANTINE fault tolerance (BFT) is the property that a
system can resist the class of failures derived from the

Byzantine Generals’ Problem. BFT algorithms, e.g., Practical
Byzantine Fault Tolerance (PBFT) [1], have attracted sig-
nificant attention in building distributed systems in recent
years due to their ability to prevent a set of adversaries
(≤ N+1

3
) in N total replicas from gaining a consensus

relating to a trusted decision. BFT algorithm applications
include replicated file systems [1] and blockchains [2]. BFT
systems suffer from scalability and performance issues due
to their message-passing complexity (i.e. O(N2)), particu-
larly low throughput in contrast to Crash Fault Tolerance
(CFT) schemes. With the rapid development of blockchains,
recent trends show substantial attention shift from Proof of
X (PoX) to high performance BFT/CFT algorithms.

Scalable Consensus Protocols. As the classic PBFT al-
gorithm limits scalability, researchers proposed an opti-
mistic/speculative approach in which most replicas are
assumed to rarely fail. For example, XPaxos is an optimistic
state machine replication (SMR), that requires only 2f+1 repli-
cas to tolerate f faults. However, it results in O(N2) message
complexity due to all-to-all multicast [3]. Zyzzyva uses
speculation to improve performance, as it executes clients’
requests directly following the order proposed by the pri-
mary without running any explicit consensus [4]. These ap-
proaches improve scalability and performance through us-
ing fewer peers and simplifying operations but lead to more
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costs in terms of tolerance of Byzantine adversaries. For
this reason, tamper-proof hardware (e.g., trusted execution
environment, TEE) is used to secure optimistic/speculative
consensus. MinBFT utilises a trusted counter service to
prevent Byzantine counter-faults and implement classic BFT
operations with only a reduced minimal set of peers 2f+1
[5]. CheapBFT applies TEEs to an optimistic BFT protocol,
which requires only f+1 active replicas to participate in
execution and consensus [6]. FastBFT is another hardware-
secured BFT algorithm, which uses TEEs to secure counters
and a secret-sharing scheme to achieve BFT consensus with
2f+1 replicas [7]. In addition, HotStuff [10] and SBFT [11]
minimise BFT operations and message exchanges in order
to gain improved performance and scalability. HotStuff pro-
poses an optimised view-change and a pipe-lining design
while SBFT allows for a dual-mode design combining a fast
agreement in optimistic executions with a linear-PBFT. The
above algorithms have contributed to improved scalability
and performance, but they still have limitations: 1) the
optimistic/speculative approaches (e.g., [3], [4]) may have
worse performance degradation when failures increase; 2)
tamper-proof BFT protocols (e.g., [5], [7], [8], [9]) rely on
trusted hardware that may incur additional encryption
costs; 3) optimised BFT protocols (e.g., [10], [11], [12], [13],
[14]) are still limited to the linear complexity, particularly
under a large-scale system with growing numbers of peers.

Parallel Consensus Solutions. Parallel consensus is consid-
ered an important but harder problem in message passing,
which has been explored based on classic fault tolerance
theory by [15]. In recent years, researchers have found
new approaches (i.e. consensus-sharding) for scalable and
parallel blockchain consensus. Elastico [16], Omniledger [17]
and Chainspace [18] implement consensus on multiple com-
mittees/shards, called consensus sharding. The consensus
system builds on a hierarchical architecture in which each
sub-layer committee concurrently runs a consensus protocol



(e.g., PBFT) to agree on a group of transactions ordered
locally. Thereafter, the top-layer committee needs to run
another round of consensus to agree on the total order of all
local transactions. Since each committee executes consensus
independently and simultaneously, the global consensus is
reached in the top-layer committee to which the replicas
in the sublayer only keep updates. In this case, the global
consensus is not reached by correct replicas of all commit-
tees which weakens safety. In addition, some other solutions
(e.g., Rapidchain [19], RepChain [20], and OptChain [21])
adopt similar consensus sharding without considering the
challenge of safety when improving scalability. To address
the issue, this paper designs an optimisation model to assist
the consensus network partitioning for improved scalability
while ensuring safety.

Mathematical Optimisation Modelling. Optimisation of
consensus parallelisation is strongly similar to partition
optimisation. The latter has attracted the interest of many
researchers seeking to address complex and combinatorial
problems in real-world applications. Carli and Notarstefano
[22] propose a new partition-based framework using a
dual decomposition that allows the solution of distributed
optimisation in peer-to-peer (P2P) network systems. Such
a design provides partitioning policies for the overall op-
timisation problem into sub-problems while considering
network system requirements. Brock et al. [23] analyse the
optimal reuse of a cache by multiple cores: the cache space
can either be shared, partitioned or both. The theoretical
analysis developed a partitioning problem tackled by dy-
namic programming that aims to minimise the overall miss
ratio while guaranteeing a certain level of fairness. The au-
thors proved that this optimisation model achieves between
28% and 98% better performance than legacy partitioning
schemes. More related partitioning problems (e.g., [24], [25],
[26], [27]) have been approached efficiently with mathemat-
ical programming, which inspires our optimisation design
combined with ParBFT.

To tackle the scalability and safety challenges, we pro-
pose a novel optimisation-integrated Parallel Byzantine
Fault-Tolerance framework, i.e. ParBFT. ParBFT combines
proposed consensus parallelism with the classic BFT for
high scalability. Such a design provides improved safety by
allowing all correct replicas to reach a global consensus on
the total order compared to the current parallel consensus
solutions. Those solutions rely on a smaller group of shard
replicas to ensure the total order, leading to weakened
safety. To address the issue, our proposed consensus paral-
lelism includes a global commit phase allowing all replicas
to ensure the total order via parallel consensus. Due to
the parallelism, ParBFT minimises message complexity to
a constant-level (i.e. O(1)) in each local committee.

Another novelty is an integrated Bilevel Mixed Integer
Linear Programming (BL-MILP)-based committee optimi-
sation model. Such a model can compute an optimised
committee configuration scheme to optimise the consensus
performance. Specifically, the BL-MILP: i) enables effective
and optimal decisions on the optimal number of consensus
committees and the optimised allocation of peers to each
committee to maximise the throughput; and ii) to ensure
safety and maximise the reliability of each committee.

The consensus parallelism and committee optimisation

are critical features of the proposed ParBFT scheme, pro-
viding high scalability, performance and safety. Our real-
world testbed experiments show that ParBFT exhibits sub-
stantially enhanced throughput when the network size (i.e.
the number of consensus peers) increases. In summary, the
main contributions of our work are:

• ParBFT presents a novel consensus parallelism
scheme combined with classic BFT protocols, im-
plementing parallel consensus for high scalability.
Compared to the current parallel consensus solutions
(e.g., [16], [17], [18]), ParBFT provides better safety.
Moreover, ParBFT reduces message complexity to a
constant-level in local committees compared to most
recent linear BFT-variants (e.g., [10], [11]).

• ParBFT integrates a novel BL-MILP-based committee
optimisation model providing dynamic committee
configuration optimisation by numerically comput-
ing the optimal number of committees and peer allo-
cation based on a set of system figures. The optimised
committee configuration can improve consensus per-
formance by 30%-50% while ensuring security.

To our knowledge, ParBFT is the first solution to com-
bine the classic BFT protocol with parallelism and BL-MILP-
based committee optimisation. Our results strongly indicate
that such a design significantly improves BFT consensus
in related applications such as blockchains and distributed
systems where both performance and security are vital.

2 PARBFT OVERVIEW

ParBFT approaches the state machine replication problem in
a scalable and safe way by changing the classic three-phase
(i.e. pre-prepare, prepare and commit) BFT into a hierarchical
and parallel architecture, integrating an optimisation model
for improved performance and security.

2.1 System Model
We design ParBFT as a parallel BFT Framework that can
be applied to any deterministic replicated service with a
state and a set of operations; these can be considered arbi-
trary deterministic computations using state and operation
arguments (e.g., blockchain consensus). In this case, clients
issue requests to replicated services by invoking operations
implemented by N replicas (denoted ris including all pri-
mary and backup peers) and then wait for a reply. ParBFT
provides correctness by ensuring both safety and liveness.
Let R denote the complete set of ris, known as the replica
set. Table 1 shows the related notations.

Communication Model. We assume that the ParBFT
scheme executes in an asynchronous distributed system, in
which messages can arrive at random times, and servers
can take steps at arbitrary speeds. The levels of uncertainty
and security risk in an asynchronous system are increased
compared to synchronous one. To guarantee liveness (i.e.
clients eventually receive replies to their requests) in an
asynchronous system, we assume a partially synchronous
communication model [28], in which a known finite time-
bound δ on message transmission holds after some un-
known global stabilization time (GST). Communication is
peer-to-peer (P2P) and authenticated by a mutual digital
signature scheme using elliptic curve cryptography.
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TABLE 1: Notations of ParBFT
Notation Description

u, m, mk, o, d Client; message; message accepted by committee k; message operation; message digest.
sn, n, v, k, δ, t Sequence number; counter; view number; timestamp; committee number; a timeout period; a timestamp.
Sk
c , Sv , pk, bk, pv , bv kth consensus committee; verification committee; primary of Sk

c ; backup of Sk
c , primary of Sv , backup of Sv .

ri; ri∈R; |R|=N A replica; the replica set in system; number of replicas in system.
Rk; |Rk|=Nk; fk Replica set in the committee k; number of replicas in the committee k; number of faulty replicas in Rk .
Rk

b ; |Rk
b | Set of replicas in the committee k excluding pk ; Number of replicas in committee k excluding pk .

pubKi, prvKi; l, h Public key, private key; lower/upper bound of a message sequence number, respectively.
PK , σ, σu, σp, σb Public key set; multi-signature; signature of a client; signature a primary; signature of a backup.
N ′ Number of replicas to be partitioned: the entire replica set excluding Sv ’s, i.e. N ′ = |R − Sv |.
ρ Maximum number of committees that could be set.
Xk

i,j Boolean decision variable equals to 1 if peer i is peer j’s primary, i, j ∈ [1, N ′] in committee k, k ∈ [1, ρ]; 0 otherwise.
Uu,i A boolean parameter equal to 1 if peer i (i ∈ [1, N ′]) belongs to user u, u ∈ U ; 0 otherwise.
Di,j A random parameter that represents communication delay from peer j to peer i, i, j ∈ [1, N ′].
πi; γi;β Probability of crash failure of peer i; Byzantine failure rate of peer i; number of Byzantine peers β =

∑N′

i=2 βi.
PF A system parameter representing the maximally tolerated probability of crash failures in the system.
fmin Minimum number of tolerated Byzantine faulty peers in a committee, which implies fk ≤ fmin.
BF A system parameter representing the maximally tolerated rate of Byzantine failures in the system.
βi A boolean parameter equal to 1 if i, i ∈ [1, N ′], is prone to Byzantine failure; 0 otherwise.
CV P Capacity of the primary of Sv (identified by i = 1) measured as the number of parallel communications.

Failure Model. Since the system is asynchronous, the con-
sensus may suffer from message delivery failures, e.g., mes-
sage delay, duplication, or out-of-order delivery [3]. There-
fore, we consider the Byzantine failure model to represent
arbitrary faulty peer behaviours, in which we assume that
the number of replicas N ≥ 3f + 1 where f is the maximum
number of replicas that may have faulty behaviours in the
system [3]. We need to guarantee the safety of the system,
which means that the replicated service satisfies linearis-
ability [1]. More specifically, an algorithm provides safety
if all non-faulty replicas agree on the sequence numbers of
requests that they commit locally.

Adversary Model. The adversary can exert complete con-
trol over a set of replicas Ra with |Ra|≤f . The adversary can
arbitrarily choose and control replicas from R. Byzantine
behaviours can be specified in either long delay for crash
failures or tampered message content for malicious attacks.
In a worse case, the strong adversary is allowed to have
the following Byzantine operations: faulty peers collusion,
communication delay and correct peers delay, which simu-
lates severe damage to the system [1]. We assume that an
adversary cannot delay the correct peers indefinitely, since
the system behaves asynchronously until GST and syn-
chronously after GST (i.e. partially synchronous). Otherwise,
the adversary can compromise and delay multiple correct
peers, which may easily violate the basic BFT constraint
(i.e. f ≤ |R|−1

3
). The adversary is also assumed to have a

computational bound so that it cannot subvert the currently
used cryptographic techniques, which are used to prevent
spoofing and to detect corrupted messages. For example,
unforgeable digital signatures and collision-resistant hash
functions are used to authenticate communication and pro-
duce message digests, respectively.

2.2 Hierarchical Consensus and Optimisation

The ParBFT scheme, as shown in Fig. 1, runs on K consen-
sus committees, denoted Sk

c , 1 ≤ k ≤ K, and one verification
committee, denoted Sv. Each consensus committee consists of
a designated primary peer denoted pk, and a set of backup
peers bki , 1 ≤ i ≤ Nk, i.e. R=

⋃
k(p

k ∪ (∪ib
k
i )). The members

of Sv are selected from R and are in charge of signature
verification, global consensus and committee organisation.

The hierarchical framework is constructed by each Sk
c con-

necting to Sv. The number of Sk
c s can be increased with a

growing R and each Sk
c maintains its local states and a

stable number of replicas. All replicas follow a sequence
of peer configurations termed views. Replicas within the
same committee share their views, which are independent
of other committees. Each Sk

c runs the ParBFT protocol
concurrently but collaborates with Sv to reach the con-
sensus. The P2P links are used for the intra-committee
message exchange. Most cross-committee messages are sent
via committees’ primaries except some error messages via
broadcasts. Each replica in the system maintains the latest
topology and public-key set of all replicas during a period
that is considered an epoch presenting the time spent on a
specific number of blocks to be finalized.

The consensus committees can independently accept re-
quests and concurrently execute the normal-case protocol
and finally achieve the consensus. Compared to single
committee-based protocols (e.g., PBFT [1]), these commit-
tees need to be reconfigured every epoch to ensure safety.
In ParBFT, the verification committee together with the con-
sensus committee Sk

c ensure the total order of all requests
proposed by each Sk

c for enhanced safety, and eventually
reach a consensus. In contrast, the current parallel consensus
schemes (e.g., [17], [29]) only rely on a top-layer committee
(similar to our Sv) to guarantee the total order safety and
only allow the sublayer committees (similar to Sk

c s) to vali-
date and keep up to date. To implement the system monitor
and optimiser components, we use a separate committee
as a view manager to handle the committee reconfigura-
tion based on the BL-MILP-based committee optimisation
model, which aims to maximise consensus performance
while guaranteeing security (see details in Section 4).

2.3 Protocol Overview

Unlike the classic PBFT [1], ParBFT implements the com-
plete BFT SMR with a number of hierarchical and parallel
committees, i.e. Sv and Sk

c s denoted in Section 2.2. Fig. 1
depicts the basic operation flow of ParBFT built on a hierar-
chical multi-committee framework.

In Fig. 1, a client first sends an execution request to one
of K Sk

c s and then waits for a reply after starting a timer for

3
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this request. Next, the primary pk of Sk
c starts the pre-prepare

phase by locally ordering the request and sending it to local
backups, i.e. bki s. The prepare phase in Sk

c (see the Consensus
Committee 1 or K in Fig. 1) includes three message steps
referring to the multi-signature-based voting operations (de-
tails in Section 3.2). In this phase, all replicas (i.e. pk and bki s
of Sk

c ) need to validate the proposed request and vote for the
same valid request by generating a multi-signature which is
used as a quorum certificate to prove that the prepare phase
is completed. Each Sk

c runs pre-prepare and prepare phases
in parallel (simultaneously). At the end of prepare phase,
each pk sends an aggregated prepare message to Sv in which
all valid prepare messages (including client requests) will be
totally ordered and combined into a block (denoted Φ) by
the primary pv of Sv . In the Sv, all correct replicas (i.e. pv and
bvs) need to validate each received prepare message included
in Φ and reach an agreement on the same Φ by running a
round of three-phase multi-signature-based BFT consensus
(see the Verification Committee in Fig. 1). Finally, the agreed Φ

will be returned to each Sk
c to continue a global commit phase

to finalise Φ. The global commit allows all local replicas of K
Sk
c s to validate Φ for improved consensus safety. However,

the classic parallel consensus solutions (e.g., [16], [17], [18])
rely only on a single committee (similar to Sv) to validate
Φ, which weakens safety. Therefore, our global commit
design improves safety while retaining scalability, which is
considered one of our main feature.

3 PARBFT CONSENSUS DESIGN

ParBFT combines classic BFT with a novel consensus paral-
lelism for improved scalability and safety. It also integrates a
committee optimisation model for high performance while
ensuring safety. ParBFT contains two sub-protocols: The
first protocol is the normal case protocol, which concurrently
executes the three-phase BFT operations across multiple
committees and ensuring the total order for safety. The sec-
ond one is the view change protocol, which performs classic
view change operations in each committee for liveness. We
detail the integrated optimisation model in Section 4.

3.1 Startup Operations
ParBFT implements two core modules for Byzantine con-
sensus and committee optimisation. Fig. 2 depicts the basic
ParBFT workflow based on these two modules while Algo-
rithm 1 defines the entire workflow.

Initialisation with Epoch Randomness. ParBFT uses a con-
ventional RandHound protocol (see [32]) to provide bias-
resistant random committee initialisation for the (first) gene-

sis epoch (see Algorithm 1: Step 1), which is also called epoch
randomness (cf. Algorand [31]). Since RandHound requires a
leader to orchestrate the protocol operations, ParBFT allows
all replicas (i.e. ris) to run a verifiable random function
(VRF)-based leader election algorithm (see [30]), which can
unpredictably and unbiasedly generate a replica leader (de-
noted rp) from the replica-set R (Algorithm 1: Line 3). Then
all ris execute the RandHound protocol that must be started
by rp (Line 4). Once ris complete a run of RandHound
rp broadcasts a random value (denoted rnde) and its cor-
rectness proof. Each ri can first verify rnde and use it to
compute a permutation πe representing K+1approximately
equally-sized buckets subdivided from R (Line 5) [17]. The
last step is to determine the ris assigned to Sv and each Sk

c

(Line 8). This step is also depicted by the first two workflow
components, i.e. epoch randomness and genesis epoch in Fig. 2.
The random initialisation enhances resilience to adversaries
by following two important principles: i). random partition-
ing of the replica set; ii). adequately large committee size to
tolerate fk adversaries in each committee.

Identity Setup. This is a one-off run between all replicas
of Sk

c s and Sv when the genesis epoch is initialised (until
newly registered peers are added). To set up identities, each
replica ri generates a multi-signature σi (by calling sign() in
Appendix A: Algorithm 1) for a public message mp known
to every peer and sends ⟨σi, pubKi⟩ to Sv (Lines: 10-12). Sv

verifies σi via verify() (see Appendix A: Algorithm 1) and
checks whether the public key pubKi ∈PK (PK is a public-
key set for all registered participants). Sv aborts when it
does not: correctly verify σi; find a pubKi ∈ PK; or receive
σi for every pubKi ∈ PK. Otherwise, all honest members of
Sv must agree on the verified identity set. The next step
of the protocol (i.e. the Normal Case Operations shown in
Fig. 2 and defined in Algorithm 2) can start (Lines: 13-
16). We assume that each replica holds the latest network
topology and PK. To minimise message complexity, ParBFT
uses a mutual Schnorr signature algorithm to aggregate
multiple signatures [33], which has been used and explored
by blockchain applications (i.e. Zilliqa [29] and Bitcoin [34]).

When new peers join the system due to a view change,
they need to register and verify their identities, as stated
in Step 2 Identity Setup. Subsequently, they will be notified
to other replicas to participate in consensus operations,
which are running simultaneously based on each parallel
consensus committee (Lines: 17-18). In this process, when
a committee’s primary node failure is detected, the view-
change protocol will be triggered based on the correspond-
ing committee. After the view change, if there are new

4



Algorithm 1: ParBFT Organisation
1 Step 1: Initialisation

2 foreach ri ∈ R do
3 ▷ executes a VRF-based leader election algorithm (see [31],

[32]) to elect a replica leader, i.e. rp;
4 ▷ executes RandHound protocol started by rp for a rnde;
5 ▷ computes πe with rnde and then subdivides R into

K+1 equally-sized buckets;
6 if rp fails within ∆ then
7 repeats Lines 3-5;

8 ▷ determines the assignment to Sv and K numbers of Sk
c s;

9 Step 2: Identity Setup

10 foreach ri ∈ Sk
c s do

11 ▷ sign a public message: sign(mp) → σi;
12 ▷ sends ⟨σi, pubKi⟩ to Sv ;

13 upon receipt of each ⟨σi, pubKi⟩, Sv do
14 ▷ verifies σi and checks whether pubKi ∈ PK;
15 ▷ until: all pubKis in PK are verified and agreed upon by Sv ;
16 ▷ runs the Normal Case Operations defined in Algorithm 2;
17 if new peers join the system due to the view change then
18 ▷ restart Step 2: Identity Step for these peers before

continuing the Normal Case Operations;

19 Step 3: Optimised Reconfiguration

20 ▷ the System Monitor observes ri’s status;
21 ▷ the BL-MILP Optimisation model computes an optimised

configuration scheme for the next epoch;
22 ▷ the Epoch Reconfiguration starts based on all registered peers.

replicas that join the system, the replica identities need to
be updated to continue the normal case operations (see the
consensus component in Fig. 2).

BL-MILP optimisation-based Reconfiguration. The random
partitioning scheme used at initialisation may not optimise
the performance with respect to safety as replica charac-
teristics are unknown. However, in Fig. 2, the “BL-MILP
optimization” model is used to periodically compute an
optimised “epoch reconfiguration” (including the commit-
tee size/committee amount and replica allocation) based on
the “system status” observed by “system monitor”. While
consensus proceeds, the system monitor records the average
delay between each connected replica as well as its failure
rate (see Line 20). All these records are defined as the system
status, which needs to be shared and secured by all correct
view manager replicas. Before the current epoch terminates,
the BL-MILP optimisation model will compute an optimised
scheme based on a snapshot of the system status, which
is used for the committee reconfiguration (see Lines 21-
22). The view manager implements the optimisation model
to maximise consensus performance while ensuring safety.
More details will be given in Section 4.

3.2 Normal Case Operations

Algorithm 2 defines the normal case of ParBFT. For sim-
plicity, we assume that the requests are processed in a stop-
and-wait mode and the exchanged messages are signed and
encrypted by their senders. We will describe a complete
consensus round based on a single Sk

c and Sv but note
that other committees will run consensus concurrently. For
each replica, its state indicates the latest state of service,
the current view number and a message log including all
messages exchanged in the consensus process.

Request (Algorithm 2: Line 1). For a Sk
c , the protocol

is triggered when a client makes a request. The client u

requests the execution of state machine operation o by
sending a request message m = ⟨REQ , o, t , u⟩u to the primary
(i.e. pk) of the Sk

c (see Algorithm 2: Line 1). REQ (request)
indicates the message type or the current state. t is the
unique timestamp indicating the execution instant of the
client request, which ensures exactly-once semantics. Client’s
requests are locally ordered by timestamps in Sk

c , which
means the later requests are associated with higher counters.

Pre-prepare Phase (Algorithm 2: Lines 2-7). Upon re-
ceipt of m, the pk first validates m by checking whether
the same request has been accepted. If m is new, pk orders
it by assigning a unique sequence number in the system
sn=(n, v, k) where n is a monotonic counter value, v is the
view number and k is the committee number (Lines 3-
4). A request with a higher timestamp must be associated
with a larger sequence counter. pk then executes m for a
result rs and sends a pre-prepare message ⟨PreP , sn, d , t⟩p
as well as ⟨m, rs⟩p to each bk (Line 5), and appends m in
its local log. The request is executed before the commit
which allows the request and its execution results to be
agreed upon during a consensus. The pre-prepare message
only includes the digest of m and rs (i.e. d = D(m, rs)) rather
than a complete request message to keep the message size
small, as it is only used as the proof of the fact that the
request has been ordered with a unique sequence number
based on the current view of Sk

c . Decoupling the request
transfer from the protocol can reduce the messaging cost of
executing the protocol and support the optimisation of data
dissemination.

Prepare Phase (Algorithm 2: Lines 8-31). Backups bks
accept a pre-prepare message ⟨PreP , sn, d , t⟩p if the message
is valid (i.e. valid signature and ordering in Lines 9-10), and
sn must be within the boundaries of the log as in Section 3.5.
The operation in m must be not accepted in history and then
each bk executes the operation for a result rs and validates
whether d=d′=D(m, rs′) (Line 11). Any incorrect validation
indicates a faulty primary (Lines 12-13). Otherwise, each bk

accepts the pre-prepare message by returning pk a prepare
message: ⟨PRE , sn, d ,Qi , pubKi ⟩b where Qi is a random value
generated by resp reception() (see Appendix B: Algorithm 2)
for confirming the acceptance and pubKi is the public key of
the ith bk (Lines 15-17). In the following message round,
pk will aggregate all the received prepare messages and
generate a multi-signature.

The pk verifies the prepare messages collected from
bks via vef sender(bki ) and marks each valid receipt on a
bitmap BMQ . The ith element of BMQ [i ] is set to 1 (True)
if the pubKi contained in the prepare message is present
in the public keys set PK , and set to 0 (False) other-
wise. Next, pk aggregates the collected Qis and pubKis by
calling gen aggregation()→⟨r ,Q , pubK ⟩ where r is a hash of
Q, pubK and ⟨m, rs⟩ used for validating the aggregation
(Lines 18-20). Then, pk sends each bk a validation message:
⟨VAL, sn, r ,Q , pubK ⟩p to confirm the aggregation (Lines 21).

Each bk calls vef aggregation() to validate r and generate
si with the valid r and bk’s private key prvKi. After that, bk

responds to pk by sending ⟨RES , sn, si , pubKi ⟩b (Lines 22-24),
which means that bk agrees on the aggregation.

The pk uses vef response() to verify all received responses
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Algorithm 2: Normal Case Protocol
1 ▷ client sends m = ⟨REQ , o, t , u⟩u to pk ;
2 Pre-prepare:
3 upon receipt of m, pk do:
4 ▷ validate m and order it by assigning sn = (n, v, k);
5 ▷ execute m and obtain results rs, d = D(m, rs);
6 ▷ create a Pre-prepare message: ⟨PreP , sn, d , t⟩p ;
7 ▷ multicast the Pre-prepare message and ⟨m, rs⟩p to each bk ;
8 Prepare:
9 upon receipt of ⟨PreP , sn, d , t⟩p , bk do:

10 ▷ validate m, σp, sn and t;
11 ▷ execute m for results rs′ and d′ = D(m, rs′), check d′ = d;
12 if Lines 10-11 fail then
13 report Byzantine fault at pk ;
14 else
15 notify pk a prepare message for aggregation:
16 ▷ compute resp reception(pubKi ) → Qi ;
17 ▷ send ⟨PRE , sn, d ,Qi , pubKi ⟩b to pk ;

18 upon receipt of ⟨PRE , sn, d ,Qi , pubKi ⟩b , pk do:
19 ▷ verify each sender via vef sender(pubKi ) → BMQ ;
20 ▷ aggregate information: gen aggregation() → ⟨r ,Q , pubK ⟩;
21 ▷ request validation: multicast ⟨VAL, sn, r ,Q , pubK ⟩p to bks;
22 upon receipt of ⟨VAL, sn, r ,Q , pubK ⟩p , bk do:
23 ▷ validate aggregation: vef aggregation(r ,Q , pubK ) → si ;
24 ▷ response aggregation: sends ⟨RES , sn, si , pubKi ⟩σb to pk ;
25 upon receipt of ⟨RES , sn, si , pubKi ⟩b , pk do:
26 ▷ verify each response: vef response(si , pubKi ) → BMs ;
27 if BMs = BMQ then
28 ▷ generate multi-signature: gen MuSig(si ,BMs) → σ;
29 ▷ send an aggregated prepare message

⟨PRE , sn, rs, d , σ,BMQ , t⟩p to the primary of Sv ;
30 else
31 ▷ execute detect failure(BMs ,BMQ ) and restart Line 20;

32 upon receipt of ⟨PRE , sn, rs, d , σ,BMQ , t⟩p , Sv do:
33 foreach ⟨PRE , sn, rs, d , σ,BMQ , t⟩p do
34 ▷ verify if exists o = o′ but sn ̸= sn′;
35 ▷ invoke vef MuSig(σ,m, rs,BMQ ) to execute:
36 if

∑
i BMQ[i] ≥ 2Nk

3
+ 1 then

37 if verify() = 1 then valid σ;
38 else invalid σ indicating faulty primary;
39 else
40 over 1/3 faulty peers indicating that Sk

c failed;

41 ▷ totally order each request and its valid prepare messages
⟨m, ⟨PRE , sn, rs, d , σ,BMQ , t⟩⟩pv to form a block Φ;

42 ▷ run another consensus on Φ for a multi-signature σv ;
43 ▷ send Φ and σv to each pk who multicasts them to bks;
44 Commit:
45 upon receipt of Φ, pk/bks do:
46 ▷ verify the multi-signature σv generated by Sv for Φ;
47 foreach ⟨m, ⟨PRE , sn, rs, d , σ,BMQ , t⟩⟩Sv ∈ Φ do
48 ▷ validate d = D(m, rs) and check whether existing

d′ = d but sn′ ̸= sn;
49 ▷ validates σ and BMQ in the same way to Sv :
50 if vef MuSig(σ,m,BMQ ) = 0 then
51 ▷ invalid BMQ or σ indicating that Sv failed;

52 if Φ is valid then
53 ▷ pk generates another multi-signature σ′, similar to the

prepare phase (see Lines: 15-31), and creates a commit
message: ⟨CMT , sn, d ′, σ′,BM ′

Q , t⟩p ;

54 ▷ pk multicasts the commit message to bks and reply to client;
55 upon receipt of ⟨CMT , sn, d ′, σ′,BM ′

Q , t⟩p , pk/bks do:
56 ▷ execute the multi-signature verification;
57 if ∀⟨CMT ⟩, vef MuSig(σ′,m ′,BM ′

Q ) = 1 then
58 ▷ complete the local consensus based on Sk

c ;
59 ▷ Post-commit: continue to complete the global consensus;
60 else
61 ▷ invalid σ′ indicating faulty primary.

62 ▷ client accepts the reply after verifying σ and σ′;

(i.e. ⟨RES , sn, si , pubKi ⟩bs) and obtains another bitmap BMs

for each valid response (Lines 25-26). Then, pk checks
whether bks complete the above operations (Lines 9-24) by
comparing BMs to BMQ . If BMs = BMQ , pk generates a multi-
signature σ using gen MuSig(), and creates a new prepare
message: ⟨PRE , sn, rs, d , σ,BMQ , t⟩σp which proves the agree-
ment on ⟨m, rs⟩ by some replicas (Lines 27-29). Otherwise, if
BMs ̸=BMQ then it means that at least one backup failed. pk

calls an integrated failure handler detect failure(BMs ,BMQ )

(see Appendix B: Algorithm 2) to sort out faulty bks, and
then restarts from Line 20. Finally, pk sends the prepare
message to the verification committee for total ordering.

Total Ordering (Algorithm 2: Lines 32-43). The primary
replica of the verification committee Sv (denoted pv) collects
⟨PRE , sn, rs, d , σ,BMQ , t⟩σp messages from Sk

c s until a timeout
δpre expires. Then pv verifies these messages to ensure (see
Lines: 33-40): 1) whether there exist two different prepare
messages in which o=o′ but sn ̸= sn′, which indicates faulty
clients; 2) the number of signers using vef MuSig() (see
Appendix B: Algorithm 2): if over 2/3 replicas in Sk

c have
completed the prepare phase (i.e.

∑
i BMQ[i] ≥ 2Nk

3
+ 1), the

next step continues; otherwise, there is over 1/3 faulty
replicas in Sk

c , which means that Sk
c fails; 3) the multi-

signature σ using verify() (see Appendix A: Algorithm 1)
is verified: if the verify() returns 1, σ is valid; otherwise, an
invalid σ means that Sk

c ’s primary is faulty.
The correct verification for any prepare message means

that at least 2f i+1 replicas of Sk
c agree on the same

m and rs. As a result, pv can combine each valid prepare
message as well as its corresponding request message
(⟨m, ⟨PRE , sn, rs, d , σ,BMQ , t⟩pk ⟩pv ) to form a transaction (de-
noted Tx), and then build a block Φ by specifying the total
order of all Txs based on their unique sequence numbers.
The pv needs to run another round of normal-case consensus
so that all correct replicas of Sv agree on a totally ordered Φ

(Lines: 41-42). This phase achieves the global consensus on
the total order of Φ based on Sv.

Up to now, the pre-prepare and prepare phases ensure that
at least 2f i+1 replicas of Sk

c agree on the locally proposed
m and rs with consistent sn within a view of each commit-
tee. The totally ordered Φ including requests from different
Sk
c s needs to be agreed by all correct replicas of each Sk

c

to complete the global consensus in system. Therefore, the
following global commit phase aims to validate Φ and reach
a global consensus based on each Sk

c while completing
the local consensus by committing each locally proposed
m and rs.

Global Commit Phase (Algorithm 2: Lines 44-61). In
the global commit phase, instead of only committing a locally
proposed transaction, all replicas of each Sk

c first verify
the multi-signature σv (Line: 46) and then validate each
transaction in Φ as follows: 1) validate the content of each
transaction, i.e. check whether d=D(m) and there is an
existing d′=d but sn′ ̸=sn (Line: 48); 2) check the multi-
signature σ and BMQ via vef MuSig() to confirm that at least
2f i+1 replicas have prepared for m and rs (Lines: 49-51).
Any failure in the above verification indicates that there is a
Byzantine fault in Sv. Otherwise, replicas of Sk

c confirm the
valid Φ by repeating operations (Lines: 15-31) similar to the
prepare phase, and finally generate another multi-signature
σ′ and a commit message: ⟨CMT , sn, d ′, σ′,BM ′

Q , t⟩σp where
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d′=D(Φ) seeing Line: 53.
Upon receipt of the commit message, replicas (pk and

bks) of Sk
c verify the commit message, similarly to the oper-

ations in prepare (see Lines: 35-40). If the commit message is
valid, the replicas complete the local consensus on m and rs

proposed in the same Sk
c (Lines: 56-58). Replicas continue a

post-commit phase to commit on the same Φ, which means
that all correct replicas of Sk

c reach a global consensus on
Φ. When all Sk

c s complete the post-commit phase, the global
consensus on Φ has been reached within each Sk

c .
Reply Phase (Algorithm 2: Line 62). When the pk

completes the local consensus based on its local committee
Sk
c , it can respond to the client by sending a reply message:

⟨REP , sn, rs, d , σ,BMQ , d ′, σ′,BM ′
Q , t⟩p . The client accepts the

reply after successfully verifying σ and σ′. The client starts
a timer δu when it sends the request m for the first time. If
the client does not receive a valid reply when δu expires, it
broadcasts m to Sk

c . After receiving a resent m, each correct
bk will directly send a reply to the client and pk. If pk is not
faulty or crashed, it immediately resends a reply to the client
and all bks; otherwise, bks will suspect a faulty/crashed pk

and trigger a view change (see Section 3.5).
In summary, the normal case protocol allows each Sk

c

to run a local consensus on the locally proposed requests
and uses Sv to totally order all valid requests prepared by
different Sk

c s and build a block Φ. Specifically, Sk
c submits

the prepared request rather than the committed request
to Sv for the total ordering. Thereafter, replicas of a Sk

c

continue the commit phase to validate the block including
the request locally proposed by Sk

c . We call this phase global
commit in which all correct replicas of each Sk

c need to
agree on the same block. In contrast, the existing parallel
consensus designs (e.g., Omniledger [17] and Zilliqa [29])
first implement a round of consensus (e.g., PBFT) based
on each sublayer committee (similar to Sk

c ) to ensure the
local order of requests, and then executes another round of
consensus based on a top-layer committee (similar to Sv)
to guarantee the total order. Such a design only allows the
top-layer committee to agree on the total order of the block
during consensus, while the sublayer replicas just validate
the block before appending it to their local ledger. This kind
of design achieves hierarchical and parallel BFT consensus
but weakens safety since it uses a smaller group of repli-
cas (i.e. a reduced lower-bound) to secure the total order
consensus. However, our design allows sublayer replicas to
participate in the total order consensus for improved safety.

3.3 Cross-committee Operations
Since ParBFT utilises multiple committees to concurrently
execute consensus operations, there is a possibility for a
transaction to involve multiple committees, resulting in a
cross-committee transaction. Therefore, ParBFT needs to
use a cross-committee transaction processing approach to
validate availability of transactions, such as a widely used
two-phase commit (2PC) protocol [35]. Based on the 2PC
protocol, there is a coordinator who is responsible for col-
lecting availability certificates of inputs and transmitting them
to the related participating committees. OmniLedger adopts
the client-driven 2PC protocol in which clients are responsi-
ble for generating the availability certificate before running
the consensus to agree on the final value transfer [17]. In

this paper, we assume that ParBFT can be combined with
a 2PC protocol to implement availability validation. This
paper is focused on the proposed parallel BFT consensus
framework rather than dealing with every element in a
sharding blockchain.

On the other hand, ParBFT must provide support for
secure cross-committee value transfer (i.e. transactions). For
example, cross-committee transactions (cross-Txs) can be
generated when the inputs and outputs are based on dif-
ferent committees. In this case, a malicious client may use
the same inputs for different outputs by submitting more
than one transaction to different consensus committees.
Therefore, it is essential to ensure consistency of transactions
between different committees. To ensure the global consis-
tency of cross-Txs, ParBFT is designed as a deterministic
protocol so that cross-committee consistency can be guaran-
teed by providing a correct total order of all transactions of a
block before appending it to the blockchain. In other words,
any conflicting transactions (i.e. two different transactions
that transfer two values from the same input to different
outputs at the same time) can be prevented even if these
transactions are requested from different committees. To
achieve this, when a client requests a transaction from a
consensus committee Sk

c , the request m must include the
latest state of input in the transaction operation o. However,
a malicious client may propose the same o via two different
requests (i.e. m=⟨REQ , o, t , u⟩u and m ′=⟨REQ , o, t ′, u⟩u ). We
assume that there is an identity authentication mechanism
to associate each client with a unique identity preventing
Sybil attacks. When the two requests are sent to the same
Sk
c , correct replicas can detect the second duplicate o and

identify it as a faulty operation (see Algorithm 2: Lines 4
and 10). Nevertheless, when m and m′ are submitted to
different Sk

c s, such inconsistency cannot be detected locally.
Therefore, once m and m′ have been prepared in local Sk

c s,
they are submitted to Sv for cross-committee validation
based on a specified operation (Line 34). As a result, one
of m and m′ will be identified as an invalid transaction. All
valid prepared transactions can be totally ordered and pro-
posed as a block that must be agreed by all correct replicas in
Sv (Lines 41-42). Furthermore, in the global commit phase,
replicas of each Sk

c need to validate the block by checking
each transaction and agree on its validity and total order,
which guarantees that the totally ordered block is consistent
in each Sk

c observing the global commit phase in Algorithm 2.
When an invalid transaction is detected, the error message
must be broadcast across all committees.

3.4 Checkpoints and Garbage Collection
ParBFT allows each replica to keep states in a local log
containing messages that can be used to generate the proof
of the replica’s state. However, generating the proof for
every operation is expensive. Instead ParBFT applies a
checkpoint mechanism, similar to PBFT’s [1]. The checkpoint
(denoted cp) is created periodically, for example when every
nnp requests have been executed. A checkpoint is considered
stable after being agreed upon by all correct replicas. To
achieve this, the primary first generates a checkpoint mes-
sage ⟨CP , snlast , snnew , dstate⟩σp where snlast is the sequence
number of last stable checkpoint before the newly created
snnew and dstate is the digest of replica’s state including
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the information of all processed requests since the last
checkpoint. Next, the primary proposes a consensus request
for the checkpoint message and goes through the normal
case operations of a committee so that at least 2f i+1 replicas
agree on the same dstate. The verified commit message can
be considered a checkpoint certificate (denoted Ccp) which
indicates that the replica’s state was correct up to the last
executed request before the latest checkpoint with snnew.
ParBFT uses only one verified commit message for the
proof of checkpoint correctness compared to PBFT that
collects 2f i+1 broadcast checkpoint messages to prove the
correctness. The checkpoint with Ccp is known as a stable
checkpoint. Finally, the replica can discard all messages with
the sequence numbers less than snnew. Similar to PBFT’s
garbage collection [1], the checkpoint is used to constrain
the scale of the log by setting two limiters: the low water
mark h recording the counter value in the sequence number
of the latest stable checkpoint; and, the high water mark
H=h+L where L is the maximum log size. All messages with
counter values greater than H will not be written to the log.
The checkpoint mechanism is confined to a single view of
a committee. Once the view changes, there will be a new
checkpoint generated by the primary, and the log is cleared.

3.5 View Change and Committee Reconfiguration
The view-change protocol deals with a faulty primary to en-
sure the liveness property. In ParBFT, a view change executes
in each committee due to the parallelism framework and it
can be triggered by: i) an expired timeout which means that
no response has been received from the primary within a
preset time; ii) a faulty operation detected by a backup in
the committee to which the primary belongs; iii) a faulty
operation detected by the verification committee who will
broadcast a view-change request to the corresponding con-
sensus committee. When one of these conditions is satisfied,
the correct backup will broadcast a view-change message
and a new view will eventually start.

Since ParBFT uses multiple committees for parallel con-
sensus, the view change depends on a two-phase protocol
executing independently in each committee, which is similar
to PBFT’s, to ensure correctness. For the sake of simplicity,
here we introduce the protocol based on a single committee.
Once a view change is triggered, the backup stops accepting
new requests (i.e. new pre-prepare messages) and starts view
change operations by multicasting a view-change message:
⟨VIEW -CHANGE , snlast , Ccp ,P⟩ where snlast is the sequence
number of last stable checkpoint, Ccp the certificate of the last
stable checkpoint and P contains a number of sets Pm for
each request m that has been prepared at this backup with
a sequence number greater than snlast. Each Pm contains a
valid pre-prepare message and a prepare message with a
multi-signature verified against at least 2f i+1 replicas.

A replica such that p=v mod |Rk| is selected as the new
primary for the next view. When the new primary receives
2fk valid view-change messages from other replicas, it mul-
ticasts a new-view message: ⟨NEW -VIEW , v+1 , Cvc ,O⟩ where
Cvc is the view-change certificate containing a set of valid view-
change messages received and sent by the new primary, and
O is a set of pre-prepare messages obtained as follows: i) the
new primary finds the sequence number of the last stable
checkpoint (i.e. snmin) from Cvc and the highest sequence

number in a prepare message in Cvc, denoted snmax; ii) the
new primary creates a new pre-prepare message for view
v + 1 for each sequence number between snmin and snmax.
If there is not such an associated pre-prepare message for
a sequence number (saying sn) in a Pm contained in the P
of some view-change message in Cvc, the new primary just
creates a null pre-prepare message with sn to fill in gaps.
The backup accepts a new-view message if the signature is
valid, Cvc is valid for view v+1 and O is correctly verified in
the same way to compute it at the new primary. All replicas
append messages in O to their local log. Thereafter, replicas
change to view v+1 and repeat the normal case protocol for
messages between snmin and snmax and directly using the
result if previously executed and stored in the log.

In the worst case, when a committee violates the lower
bound constraint fk ≤ ⌊ |Rk|−1

3
⌋, it may not correctly change

to a new view. To address this issue, each committee has to
contain an adequate number of replicas. This is considered
in our optimisation model (see Section 4). However, there is
still a risk that either Sk

c or Sv may suffer from a committee
failure. Therefore, ParBFT provides a committee reconfigu-
ration mechanism to ensure the safety and liveness in such
worst case scenario.

Specifically, when more than fk faulty replicas have been
detected for a Sk

c (see Line 40 in Algorithm 2), this Sk
c

will be suspended and not allowed to accept new requests
until completing a reconfiguration. In this case, the view
manager leads the reconfiguration mechanism by which the
faulty replicas will be replaced with some new peers. All
replicas of the committee need to reset their identities (see
Section 3.1) and start a new view. In this view, the primary
first updates the local log by running a consensus to get
a stable checkpoint and then accepts new requests from
clients who will resend all uncompleted requests. On the
other hand, if the main Sv fails (see Line 50 in Algorithm 2),
an error message will be broadcast to all other committees
including a spare verification committee S′

v . If S′
v receives

the same error messages from more than half different
Sk
c s, it becomes the main verification committee and takes

over all Sk
c s. The failed verification committee executes a

reconfiguration and then behaves as a spare.

3.6 Complexity

ParBFT has an improved message complexity compared
to the classic algorithms (e.g., O(N2) for PBFT) and even
some state-of-the-art algorithms (e.g., FastBFT, HotStuff and
SBFT). These state-of-the-art algorithms execute the consen-
sus based on a single replica set and achieve linear level
complexity (i.e. O(N)) by using either threshold signature or
secret sharing. Similarly, ParBFT utilises a Schnorr signature
scheme to achieve signature aggregation [33] for reduced
validation overhead particularly when the verification com-
mittee performs block validation and total ordering. More-
over, ParBFT’s consensus parallelism and optimisation de-
signs allow the message complexity at a committee to re-
duce to a constant level - i.e. O(Ck)=O(1) where Ck is a rel-
atively stable number of replicas at a committee. According
to ParBFT design, each consensus committee connects to the
verification committee via the primary peer, so the number
of cross-committee links equals K (i.e. number of consensus
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committees). Therefore, ParBFT achieves an overall system-
level complexity around O(1) < O ≤ O(N). More details of
complexity can be found in Appendix C.

3.7 Correctness
Here we present informal proof of ParBFT’s correctness,
Appendix D presents safety and liveness theorems.

Safety. If a correct replica holds a sequence of requests in the
total order (mi,mj), all other correct replicas in the system hold
them in the same total order.

ParBFT guarantees the safety property by proving that
all correct replicas in the system can reach a consensus on
the total order of all valid requests proposed in each con-
sensus committee, even when these correct replicas belong
to different committees or suffer from view changes. Please
refer to the details in Appendix D.1.

Liveness. All correct replicas must eventually commit an
accepted request and reply to the client without indefinite delay.

The liveness property ensures that the consensus on an
accepted request can be eventually achieved by all correct
replicas within finite steps even though the primary or com-
mittee encounters a failure. See the details in Appendix D.2.

4 PARBFT PARALLEL DESIGN OPTIMISATION

In this paper, we propose an optimisation model for con-
sensus network partitioning, which is embedded within the
ParBFT to maximise its transaction throughput.

In distributed systems, there are a number of factors that
impact transaction performance and scalability: communi-
cation delays, failure behaviour (frequency and duration) of
peers, and system requirements towards reliable services,
among others. These factors may be varying continuously
as the system is running; therefore, it is fundamental to
embed these factors to achieve optimal 1) committee for-
mation and 2) committee update. Distributing slow peers
to different committees will delay the consensus in each
committee and hence slow down the overall consensus
process, which leads to lower overall system throughput
and higher latency. Also, grouping peers more prone to
failure in the same committee will lead to the failure of
the consensus in the corresponding committee, and hence
to the consensus failure. Considering the dynamics of net-
work links in terms of delays and losses, peers diversified
failure behaviours and large-scale P2P systems, this trade-
off becomes more problematic. Therefore, it is a non-trivial
challenge to model ParBFT’s performance objectives and
system constraints while achieving an autonomous ParBFT
optimisation that efficiently encompasses changing system
conditions. To tackle such challenges, we introduce a novel
Bilevel Mixed-Integer Linear Optimisation problem (BL-
MILP), which allows us to solve both consensus committee
number and peer allocation for each committee as a two-
layer embedded optimisation problem. We discuss the bene-
fits of a such programming paradigm in Appendix E. Table 1
contains the variables used to define the BL-MILP model.

4.1 Outer Optimisation Problem Modelling
The objective of the outer optimisation problem (OOP)
consists of providing the optimal number of committees
in a way that minimises the average delay per committee.

Consequently, the cost function of the OOP is to minimise
committees’ average delays, as stated in equation (1). The
optimal decision variables Xk

i,j are optimal solutions to the
inner optimisation problem (IOP). The formulation of the
OOP is as follows:

min
ρ,Xk

i,j

( ρ∑
k=1

N′∑
i=2

N′∑
j=2,j ̸=i

Xk
i,j ·Di,j

)
, s.t.: (1)

1 ≤
ρ∑

k=1

N′∑
i=2

Xk
i,i ≤ min

(⌈
N ′

min | Nk |

⌉
, CV P

)
, (2)

Xk
i,j ∈ {IOP}. (3)

In constraint (2), the sum
∑ρ

k=1

∑N′

i=2 Xk
i,i represents the

sum over randomly selected primaries (i.e. Xk
i,i=1), from

which we can infer the optimal number of committees, as
every committee is identified with a primary. The constraint
(2) ensures that the minimal number of committees is at
least one (no parallelisation). On the other hand, it provides
the maximum number of committees that might be set for
this system. More specifically, this upper-bound is defined
by two disjoint conditions: 1) the verification primary (VP)
capacity in terms of parallel computation/communications
that it could handle with formed committees; and 2) Byzan-
tine fault-tolerance (e.g., fmin faulty peers) as each com-
mittee should have at least 3fmin+1 backups (represented
by min |Nk|) to infer the maximum number of committees
that might be set for this system. Because the VP has
limited computation/communication capacity, the number
of committees bound is impacted by such VP capacity.

The overall optimisation problem aims to parallelise
peers so that ParBFT performance (i.e. transaction through-
put) is maximised: by minimising the transaction delay
in the inner optimisation objective problem (IOP) imple-
mented as constraint (3); this constraint restricts the possible
values of the variables Xk

i,j to be optimal solutions to IOP.

4.2 Inner Optimisation Problem Modelling
We recall that we are aiming to maximise the transac-
tion throughput (i.e. transactions per second, TPS). Given
an observation period T , transaction throughput is com-
puted as the ratio between the number of successfully
committed transactions and T . Consequently, obtaining
higher throughput is equivalent to successfully committing
a higher number of transactions during the observation pe-
riod of T . Alternatively, if we view the system from a single
transaction point of view, the time spent to successfully
commit this transaction should be as small as possible.

Let Tcons be the time spent by the system to commit a
single transaction block (Φ). Tcons represents the sum of five
time periods: 1) T 1: time spent in Pre-prepare and Prepare
phases of ParBFT based on Sk

c , which includes two rounds
of message round trip time (RTT) (i.e. T 1=2 · T prt) between
the local primary and backups (see Fig. 1); 2) T 2: time to
communicate the prepared transaction message from each
Sk
c to Sv, i.e. T 2=T cv ; 3) T 3: time to verify all prepared

transaction messages, decide the total of the valid messages
to form a block Φ, and reach an agreement on Φ based on Sv ,
which requires a total of four rounds of message RTTs, i.e.
T 3=4·T vrt; 4) T 4: time to communicate the valid Φ from Sv to
each Sk

c , i.e. T 4=T vc; and 5) T 5: time spent in the execution of
Global Commit phase based on Sk

c , which is used to validate
Φ including two rounds of RTTs, i.e. T 5=2 · T crt. We provide
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a detailed analysis of the expression of Tcons and associated
constraints in Appendix F.

The IOP is defined as:
Min

(
Tcons =2 ·T prt+T cv+4 ·T vrt+T vc+2 ·T crt

)
s.t.: (4)

∀k ∈ [2, ρ] : T prt ≥ T prt
k ; (5)

∀i, j ∈ [1, N ′] : T prt
k ≥ Xk

i,j Di,j +Xk
j,i Dj,i; (6)

∀k ∈ [2, ρ], ∀i ∈ [1, N ′], ∀j ∈ Sv : T cv ≥ Xk
i,i Di,j ; (7)

∀i, j ∈ Sv : T vrt ≥ X 1
i,j Di,j +X1

j,i Dj,i; (8)

∀k ∈ [2, ρ], ∀i ∈ [1, N ′], ∀j ∈ Sv : T vc ≥ Xk
i,i Dj,i; (9)

∀k ∈ [2, ρ], ∀i, j ∈ [1, N ′] : T crt ≥ Xk
i,j Di,j +Xk

j,i Dj,i; (10)

∀k ∈ [2, ρ] :

N∑
i=2

Xk
i,i = 1; (11)

∀i ∈ [1, N ′] :

ρ∑
k=1

Xk
i,i ≤ 1; (12)

∀k ∈ [2, ρ],∀i ∈ [1, N ′] : Xk
i,i +

N′∑
j=1,j ̸=i

Xk
j,i = 1; (13)

∀k ∈ [2, ρ] : 3fmin + 1 ≤
N′∑
i=1

N′∑
j=1

Xk
i,j ; (14)

∀k ∈ [2, ρ] :

N′∑
i=1

N′∑
j=1

Xk
i,j ≤ N ′ − (ρ− 1)(3fmin + 1); (15)

∀k ∈ [2, ρ],∀i ∈
{
1, N ′} : Xk

i,i πi ≤ PF ; (16)

∀k ∈ [2, ρ], ∀i ∈
{
1, N ′} : Xk

i,i γi ≤ BF ; (17)

∀k ∈ [2, ρ] :

N′∑
i=1

N′∑
j=1

Xk
i,j βj ≤

⌈
β

ρ

⌉
; (18)

∀k ∈ [2, ρ], ∀i ∈
{
1, N ′} : Xk

1,i = Xk
i,1 = Xk

i,i; (19)

∀k ∈ [2, ρ],∀i, j ∈
{
1, N ′} : Xk

i,j + Xk
j,i ≤ 1; (20)

∀k ∈ [2, ρ],∀u ∈ U :

N′∑
1

Uu,iXk
i,j +

N′∑
1

j ̸=i

Uu,jXk
i,j ≤

∑N′

i=1

∑N′

j=1 Xk
i,j − 1

3
.

(21)

The objective function (4) minimises the total time delay
of one complete consensus round, which consists of the five
previously defined time periods, i.e. T 1∼5s. Constraints (5)-
(10) defines each of five time periods (see details in Ap-
pendix F). Constraint (11) states that each committee should
have one primary randomly selected from the available
peers. Constraint (12) specifies that a peer can be a primary
for at most one committee. Constraint (13) ensures that
if a peer i is randomly selected as primary for a certain
committee, it cannot be a backup of another committee:
a peer is either a primary or a backup. Constraint (14)
provides lower-bounds for the minimum number of peers
per committee by 3fmin+1; this bound ensures that each
committee is tolerant to fmin Byzantine peers. Constraint
(15) clarifies the maximum number of peers that could
belong to a committee, if remaining committees have a
minimal number of peers (i.e. 3fmin+1). Constraints (16) and
(17) allow us to select the reliable peers at random to be com-
mittee primaries. Explicitly, constraint (16) states that the
probability of crash failure πi of each primary peer should
not exceed PF . This means that the most reliable peers to
crash failures are set to be the primaries of committees.
Similarly, constraint (17) states that the rate of Byzantine

failure γi of each primary candidate should not exceed
system tolerance threshold BF . The combined constraints
(16) and (17) favour peers with the least crash and Byzantine
failure to be selected as primary candidates. Constraint (18)
guarantees to randomly and evenly distribute peers prone
to Byzantine failures throughout the available committees.
This constraint ensures the randomness of distributing peers
with higher failure rates. The constraint (18) states that the
number of peers prone to failures allocated to a specific
committee does not exceed the ratio between the number of
peers prone to failure to the number of committees; this ratio
represents the balanced proportion of less reliable peers
of overall committee peers. This constraint sets a unified
upper bound for all committees on the number of possible
Byzantine peers per committee: these peers are then ran-
domly allocated to formed committees without exceeding
this upper bound, which retains partial randomness while
ensuring security. Practically, βi provides information about
the Byzantine failures of peer i such as βi=1 if γi > BF and
βi=0 otherwise. γi represents the Byzantine failure rate ob-
tained from peer i Byzantine faults collected by the system
monitor. Consequently, the number of Byzantine peers in
a committee k, which corresponds to

∑N′

i=2

∑N′

j=2 Xk
i,j · βj ,

should not exceed the upper-bound integer ratio
⌈
β
ρ

⌉
; this

upper-bound is the overall number of Byzantine peers
β=

∑N′

i=2 βi, divided by the number of committees ρ that may
be configured. Constraint (19) ensures the setting of a two-
way (uplink and downlink) link between the verification
primary and the peer i when i is selected as a consensus
committee primary. Constraint (20) ensures that if one of
two peers i and j is selected as primary and the other one
as its backup in the same committee k, then only the relation
primary-of-backup is represented by one-way linking, i.e. one
variable: either from i to j (Xk

i,j) or vice versa (Xk
j,i). In other

words, if i is the primary of j, j cannot be a primary to i.
Constraint (21) limits the allocation of peers belonging to
the same user or server host: the number of peers associated
with a certain user or located in the same server host within
a specific committee k should not exceed the Byzantine fault
tolerance threshold of this committee expressed as Nk−1

3
,

where Nk=
∑N′

i=2

∑N′

j=2 Xk
i,j .

4.3 Combined Bilevel ParBFT Optimisation Model
With the OOP model in Section 4.1 and IOP model in Section
4.2, the final ParBFT optimisation objective function is (22),
constrained by (23) and (24).

min
ρ,Xk

i,j

( ρ∑
k=1

N′∑
i=2

N′∑
j=2,j ̸=i

Xk
i,j ·Di,j

)
, s.t.: (22)

1 ≤
ρ∑

k=1

N∑
i=2

Xk
i,i ≤ min

(⌈ N ′ − 1

min | Nk |

⌉
, CV P

)
, (23)

Xk
i,j ∈

{
min
ρ,Xk

i,j

(
Tcons

)
s.t.: constraints: (5)-(21)

}
. (24)

Finding a numerical optimal solution of the above model
will provide the ParBFT with the optimal number of com-
mittees based on a given peer set and the random selection
of a primary and backups based on the optimised candidate
peer-sets for each committee. The number of consensus
committees is dominated by the capacity of the verification
committee as well as the committee lower-bound. For the
failure of committee primary, the view-change protocol can
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be executed to ensure the liveness by reconfiguring the
failed committee (see Section 3.5 and Appendix D: Theo-
rem 2 referring to Section 3.7).

4.4 Optimisation Implementation
The BL-MILP is implemented and solved by a committee
logically located in the upper layer. We call such committee
view manager inspired by BFT-SMART [38], the view manager
aims at maintaining the system status (behaving as the
system monitor) and managing the committee configuration
by running the BL-MILP optimisation model (behaving
as the system optimiser). Similar to other committees, the
view manager contains a set of manager replicas including
a primary and several backups. Thus, the view manager
can be deployed as the verification committee or another
designated committee to alleviate a potential performance
bottleneck depending on different applications and require-
ments. In this paper, we allow an independent committee
(neither Sv nor Sk

c ) to perform as the view manager (see
Section 2.2). Once the genesis epoch is created (see Sec-
tion 3.1), all committees are initialised by executing a classic
epoch randomness scheme, and then the view manager runs
the BL-MILP optimisation model together with a snapshot
of the system status to compute an optimised committee
reconfiguration for the next epoch.

Appendix G introduces the detailed implementation of
the proposed BL-MILP optimisation model, which includes
the approach of observing system status feeding in the BL-
MILP model, the key steps of BL-MILP-based optimisation
operations, and the approach of implementing consistent
reconfiguration based on all correct replicas.

Appendix I provides the proof of the BL-MILP optimi-
sation based on three crucial security properties, i.e. consis-
tency with availability and verifiability (i.e. Property 1); safe
lower-bound (i.e. Property 2); and partial randomness with
unbiasability and unpredictability (i.e. Property 3).

5 PERFORMANCE EVALUATION

Experiment Setup. The ParBFT testbed implements our pro-
posed consensus parallelism in Java. Each consensus peer
can behave either as a Sk

c -replica or a Sv-replica based on
a specified committee configuration. Moreover, client peers
are implemented to send their requests to the primary of
a Sk

c . Similar to the HotStuff testbed, a set of requests are
combined into an operation batch to mitigate the cost of dig-
ital signatures per decision [10]. The ParBFT testbed allows
the primary consensus peer to combine a group of client-
requests into an operation message that will be proposed for
a round of consensus. Therefore, the latency (i.e. milliseconds,
ms) is measured as the time spent from sending a group of
client-requests (i.e. transactions) to accept valid replies for
all requests in the group at the client. The throughput can be
represented as the number of operation messages processed
every second in the system which is operations per second,
op/s. We unify the operation size (known as “batch size” in
HotStuff) to 1 MB, and combine the same number of client-
requests into every operation for a fair comparison.

The adversary model is implemented by assigning each
peer a failure rate that indicates the possibility of a peer
having either an overlong suspension (i.e. crash fault) or a

tampered operation (i.e. Byzantine fault). We use the peers’
failure rates to limit the total number of faulty peers to f

of |R| and to control the number of faulty peers. Combin-
ing peers’ failure rates with the initial random committee-
configuration, some committees may have no faulty peers
while some others may suffer from committee failures due
to more than fk faulty peers in |Rk|. In addition, we use a
specific committee to perform the configuration module (i.e.
view-manager) that runs the BL-MILP model and generates
a valid optimised configuration scheme at the end of each
epoch. This scheme is broadcast to all other replicas to
update their committee organisation before the next epoch.
We deploy our testbed and other related schemes (such
as FastBFT [7], HotStuff [10], CheapBFT [6], MinBFT [5],
and XPaxos [3]) on the same testing environment which
adopts five Microsoft Azure VM-servers (each server with
8 cores and 32G RAM) for running consensus protocols and
a separate VM-server (with a quad-core vCPU and 8G RAM)
for executing the BL-MILP model. Servers communicate
with TCP/IP protocol. The experiments build at most 300
peer-instances randomly distributed on the five VM-servers.

5.1 Normal Experiments and Analysis
The normal experiments are deployed for the standard
ParBFT without injecting an adversary model and without
running the optimisation model (see Figs. 3 and 4). We use
the default committee partitioning scheme (i.e. four peers
per committee at random), in which every committee peer
can have either a crash or Byzantine fault but each commit-
tee has no more than fk faulty peers. When the committee
primary peer fails, the view-change will be triggered so that
the new primary can replace the failed primary peer and
resume the normal case operations (see Section 3.5).

Fig. 3 shows the overall throughput with 20-300 peers.
ParBFT’s throughput peaks (up to 130 op/s) at 60 peers
and then levels out (around 100 op/s) when the number
of peers increases from 100 to 200. Compared to HotStuff
and FastBFT, ParBFT uses parallel consensus and allows the
incoming peers to join new consensus committees, which
can increase throughput before the verification committee
achieves 100% utilisation. This scenario is shown in Fig. 3,
i.e. a slight throughput increment before the peak value
around 130 op/s when running 60 replicas. Since a growing
number of peers join the system, they will form new con-
sensus committees, which results in increased delays in the
verification committee due to the limited networking and
computing resources. Therefore, the increased throughput
compensates for the longer verification time, which keeps
the system throughput stable as shown by peers varying
from 100 to 200. FastBFT or HotStuff, on the other hand,
is designed as a single-committee BFT protocol. Despite
their linear complexity, they still have a linear decline in
throughput. Therefore, HotStuff eventually underperforms
the ParBFT when the number of peers is more than 150.
As the number of peers continues to increase, i.e. from
200 to 300, ParBFT’s throughput turns to a linear decline
while HotStuff shows a sharper decrease. Meanwhile, the
throughput of FastBFT is always maintained at a lower level
(i.e. about 20-30 op/s). When there are 300 running replicas,
the throughput of ParBFT is twice that of HotStuff and four
times that of FastBFT. Hence, ParBFT has better scalability
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Fig. 3: Throughput of Standard ParBFT
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than HotStuff and FastBFT and much higher throughput
when serving more than 200 peers.

Fig. 4 demonstrates the latency of ParBFT and other
benchmarked algorithms. Since ParBFT adopts a hierarchi-
cal multi-committee consensus framework, there are addi-
tional cross-committee messages and operations between
the verification committee and multiple consensus commit-
tees compared to HotStuff and FastBFT. More specifically,
after receiving these cross-committee messages in the pre-
pare phase, the verification committee needs to: 1) validate
each proposed transaction request; 2) totally order every
valid transaction to build a block; and 3) run a global
consensus to agree on the same block (see Algorithm: 2:
Lines 32-43). The cross-committee message exchanges and
total ordering operations based on the verification commit-
tee result in additional overhead. This means that ParBFT’s
consensus parallelism can improve BFT scalability and gen-
erate high and stable throughput, but at the cost of longer
delays. Furthermore, when more consensus committees are
created in the system, there will be more communica-
tion overhead despite the higher throughput. Therefore, as
shown in Fig. 4, ParBFT has a slightly higher average latency
than HotStuff and FastBFT, but this difference is limited to
100 ms.

Figs. 3 and 4 are measured on the basis of a rigid com-
mittee partitioning scheme (i.e. four peers per committee at
random). Such a scheme might seriously compromise the
system throughput while a growing number of peers cre-
ates too many consensus committees, referring to an outer
optimisation problem (OOP) (in Section 4.1). Therefore, we
deploy more experiments by introducing committee parti-
tioning optimisation to address the OOP, see Figs. 5 and 6.

The OOP-based experiments aim to explore the impact
of the number of committees on consensus performance.
In this case, the BL-MILP-based outer optimisation is used
to find the optimal number of committees by considering
the number of peers and network capacity. In this case,
we use the same experimental conditions as the normal
experiments. Fig. 5 shows that the throughput can be im-

proved by 15%-30% with the increased number of peers
from 100 to 300 when we use the BL-MILP-based outer
optimisation to configure the number of committees while
randomly allocating peers to each committee. Similarly,
Fig. 6 presents the reduced latency based on the optimised
number of committees. Compared to normal experiments
that use the default committee partitioning scheme, the
outer optimisation decides the number of committees by
considering the trade-off between throughput increment
and cross-committee cost. Figs. 5 and 6 prove that outer
optimisation is the key problem to consensus performance
improvement. Nevertheless, OOP only refers to the num-
ber of committees without optimising the peer allocation
(i.e. the inner optimisation problem, IOP). The following
experiments explore the complete optimisation scheme (i.e.
BL-MILP for addressing OOP and IOP) for ParBFT by
deploying in an adversary-based environment.

5.2 Adversary-based Experiments and Analysis

We inject the adversary model into the experiment envi-
ronment by assigning each peer a failure rate so that a
committee might fail when the number of faulty peers is
greater than fk. For example, the random peer allocation
scheme may allocate more than fk high-risk peers to the
same committee, which results in a breach of the lower
bound constraint (i.e. committee failure). In this case, we
evaluate the performance of ParBFT under three conditions:
standard ParBFT operations, ParBFT with FD, and ParBFT
with FD and BL-MILP: see Figs. 7 and 8.

It is worth highlighting that ParBFT includes an internal
failure handler (see Algorithm 2: Line 31 detect failure()

that is defined in Appendix B: Algorithm 2) which can
detect crashed peers and record them in the system status,
and these peers will be blocked and replaced in the follow-
ing consensus round. Moreover, ParBFT can adopt another
probabilistic failure detector (FD) SONAFD [36], [37] based
on our previous work, which can quickly and accurately
detect crash failure peers based on the system status (i.e.
historic peer failure rates recorded by the internal failure
handler) to reduce consensus delays caused by potential
crash failures. Such failure detectors are used to detect
failures and prevent crashed peers from delaying consensus,
which is proven to achieve reliable consensus by reducing
consensus latency while improving throughput (see [40]).
As shown in Figs. 7 and 8, ParBFT with FD presents the
expected higher throughput and lower latency compared
with the ParBFT baseline. This is because the peers with
long-delayed crashes have been detected fast and isolated
during normal case operations so that the step delays and
crash-based committee failures can be reduced.
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TABLE 2: BL-MILP Optimisation Analysis

Nrep Topt (seconds) Nrep Topt (seconds)

50 0.369 500 5.128
100 0.599 600 7.134
150 0.836 700 9.431
200 1.097 800 14.44
250 1.419 900 19.03
300 1.781 1000 22.29

Furthermore, as stated in Section 4, ParBFT integrates
a BL-MILP model to implement consensus committee-
number optimisation (CCO) and peer allocation optimisa-
tion (PAO) in each committee. In contrast to Figs. 5 and 6,
the BL-MILP model first computes the optimal number of
committees and then optimises the allocation of primary
and backup peers for each committee. After implementing
CCO and PAO based on the FD-enabled ParBFT, the number
of committees will be adjusted with the network capacity,
and then the allocation of peers for each committee will be
decided by considering average delays. As a result, the lines
with crosses in Figs. 7 and 8 show that both throughput and
latency are further improved compared with the FD-enabled
ParBFT. Specifically, when ParBFT adopts BL-MILP (i.e.
CCO and PAO), it can achieve remarkable improvements:
1) the throughput is improved from around 50 to 80 op/s
compared to the ParBFT baseline under 90 failures among
300 peers; 2) the latency is reduced roughly from 255 to 200
milliseconds on average.

5.3 BL-MILP Optimisation Execution and Analysis

To evaluate the performance of BL-MILP optimization, we
deploy the view manager committee on a Microsoft Azure
virtual server with a quad-core vCPU and 8G RAM, where
the heuristic algorithm (see Appendix H) is executed to
solve the BL-MILP model. As a result, Table 2 shows the
average delay of running the BL-MILP heuristic algorithm
based on a number of replicas (denoted Nrep varying from
50 to 1000), where Topt represents the time spent on solv-
ing the heuristic algorithm for an optimized configuration
scheme. Furthermore, we analyse the scalability by running
the heuristic algorithm on a larger number of replicas, up
to 1000. Due to the limited server capacity, the applied
virtual servers cannot support more than 500 replicas to run
the ParBFT consensus protocol. Thus, we only measured
the time of solving the BL-MILP heuristic algorithm with
replicas varying from 50 to 1000. As shown in Table 2, the
optimisation model can be efficiently solved by running its
heuristic algorithm. The detailed implementation of the BL-
MILP model and design of the BL-MILP heuristic algorithm
are given in Appendices G and H, respectively.

6 RELATED WORK

HotStuff [10] has refined the design of BFT consensus phases
to integrate view-change into the standard consensus proce-
dure and aggregate consensus phases with a pipe-lining op-
eration. Similar to classic PBFT, HotStuff still uses a single-
committee design, resulting in limited scalability despite its
linear message complexity. According to our experiments,
HotStuff still suffers from a linear decline in throughput

with a growing number of peers. In contrast, the throughput
based on ParBFT is similar to that of HotStuff with over 100
peers, which remains stable due to consensus parallelism.
FastBFT [7] is a new hardware-secured BFT protocol using
2f + 1 replicas (compared to 3f + 1 in PBFT and HotStuff)
to tolerate no more than f Byzantine adversaries. The key
benefit of such a design is that it improves consensus scal-
ability and throughput by minimising message exchanges
due to the reduced number of replicas. Since FastBFT relies
on a trusted execution environment (TEE) to secure a secret-
sharing scheme used by 2f + 1 replicas, it also yields ad-
ditional costs in maintaining the TEE. In addition, FastBFT
adopts a single-committee consensus scheme, which limits
scalability and results in a linear throughput decline, similar
to HotStuff. Our evaluation results from a real-world cloud
platform show that the throughput of ParBFT can reach up
to 75 ops at 300 peers, which is faster than HotStuff (around
40 ops) and FastBFT (around 15 ops) [7], [10].

7 CONCLUSIONS

ParBFT is the first BFT-based consensus parallelism al-
gorithm combining with a BL-MILP-based optimisation
for higher scalability, security and consensus performance.
ParBFT builds a generic consensus parallelism scheme for
BFT protocols, which improves consensus safety while pro-
viding high scalability. Such a design also minimises the
message complexity to a constant level (i.e. O(1)) in every
local committee and provides relatively stable performance
with a growing peer-set. In contrast, most other BFT algo-
rithms still suffer from linear performance loss when the
number of peers increases. Moreover, the innovative BL-
MILP model computes the optimal consensus committee
configuration every epoch, which can maximise consensus
performance by an additional 30% improvement while en-
suring safety and security in general of ParBFT.
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