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Abstract 23 

Offspring from three full-sib Sitka spruce families were clonally replicated to produce 12 ramets from 24 

each of 1500 offspring per family. The trees were planted across three sites, with each offspring 25 

represented by one ramet in each of four blocks per site. All trees were measured for height at 2, 4, 26 

6 and 11 years of age and, depending on site and family, for bud burst at 5 years and pilodyn 27 

penetration depth at 10 years.  Genotypes were obtained by RADseq for all six parents and for a 28 

subset of 1524 offspring and a linkage map was used to impute genotypes for 1630 loci segregating 29 

in all three families. A linear mixed model was developed which combines all available phenotypic 30 

and genomic data on all genotyped and non-genotyped trees to estimate the fraction of additive 31 

genetic variance (fa) for each trait and family. The consensus value for fa increased with age for 32 

height from 0.60 at 2 years to 0.80 at 11 years, with non-overlapping 95% support intervals (I95). The 33 

estimated value of fa for bud burst was 0.83 (I95=[0.78, 0.90]) and was 0.80 (I95=[0.76, 0.92]) for 34 

pilodyn depth. There was no evidence of differences in fa between families for bud burst and height, 35 

but there was evidence of differences for pilodyn depth (P<0.05).  There was no evidence of 36 

inbreeding depression associated with genomic homozygosity, which would be expected if 37 

dominance variance were the major component of the non-additive variance, and the results offer 38 

no support for the development of sublines for crossing within the species.  39 

[256 words]  40 



Introduction 41 

Breeding is well-established in many forest tree species but it is often hindered by the lengths of 42 

generation intervals. Current breeding cycles in conifers including spruces, pines, larches, firs, 43 

among others, commonly exceed 15 years requiring candidate trees to have reached reproductive 44 

age and have sufficiently accurate predictions of breeding value obtained from early predictors of 45 

adult performance, possibly supplemented with progeny testing, prior to selection decisions being 46 

made. The history of Sitka spruce (Picea sitchensis [Bong.] Carr.) in the UK is an example of a well-47 

planned and executed breeding program which is faced with this challenge of long intervals. Sitka is 48 

a conifer species originating from the Pacific North West extending from south-eastern Alaska to 49 

northern California. It was first brought to the UK in the 1830’s (Lee et al. 2013), and now accounts 50 

for over 50% of all the area planted with conifers and ~25% of all woodland area of Great Britain 51 

(IFOS-Statistics, 2022). Breeding objectives for the species relate to its primary use for construction 52 

timber and wood pulp (Lee et al. 2013), and although improvements have been achieved since the 53 

start of plus tree selection in the early 1960s, only two cycles of selection have been completed (Lee 54 

and Connelly, 2010). This time constraint along with the high cost of field evaluations, among others, 55 

has often limited the ability to fully characterise the genetic control of phenotypic traits, such as their 56 

partitioning into additive and non-additive gene effects.  57 

 58 

An attraction of genomic prediction is the potential to transform forest breeding through reducing 59 

generation intervals while retaining sufficient accuracy of the predicted breeding values (EBVs) to 60 

obtain faster rates of improvement (Grattapaglia, 2017). This is due to a different approach to 61 

estimating breeding values using molecular data (Meuwissen et al. 2001) and genomic relationship 62 

coefficients (Van Raden, 2008), compared to using pedigree and the matrix of numerator relationship 63 

coefficients derived from it. In the pedigree approach, the breeding values are predicted from models 64 

which, beyond the base generation, rely on estimating Mendelian sampling terms of individuals, 65 

which in turn relies on obtaining phenotypic information on the candidate or offspring. In contrast, 66 

when applying the molecular approach, the breeding values are predicted from the estimated effects 67 

of (dense and genome wide) marker alleles, typically SNPs, which can be obtained for all genotyped 68 

individuals provided relevant data are available for estimating the SNP effects. With genotypes 69 



available from ‘conception’ one barrier to reducing the generation interval and obtaining an EBV that 70 

encompasses an individual’s own genome is removed.  71 

 72 

While most attention in tree breeding (as in other fields) has focused upon developing genomic 73 

predictions of breeding value, or additive genetic merit, and the variance of the breeding values 74 

defines the additive genetic variance. However, the total genetic variance includes contributions from 75 

non-additive genetic variation, and predicting non-additive effects can be used to improve the merit 76 

of those deployed in the wider forest population for timber. The SNP data make it possible to access 77 

the non-additive genetic effects more directly, and to predict non-additive components of the total 78 

genetic merit (Vitezica et al. 2017; Joshi et al. 2020). One benefit of using the genomic data is that 79 

it is feasible to estimate non-additive genetic variance from simpler designs than would be necessary 80 

using pedigree data. In forestry, the ease of vegetative propagation allows clonal experiments to be 81 

established which provide material to estimate the total genetic variance and broad heritability (H2), 82 

while the genotypic data can be used to estimate genomic relationships, and hence estimate the 83 

additive genetic variance and narrow sense heritability (h2). Consequently, the extent and potential 84 

impact of the non-additive genetic variance can be estimated. 85 

 86 

One of the challenges of advancing the use of genomic techniques in Sitka has been the need to 87 

generate the thousands of SNP marker genotypes on selection candidates to provide a marker 88 

coverage of the genome that is sufficiently dense. There are multiple ways of obtaining SNP 89 

genotypes, e.g. through SNP chip arrays, whole genome resequencing, or reduced representation 90 

sequencing. Restriction-site associated DNA sequencing (RADseq) belongs to a group of reduced 91 

representation sequencing methods which have been particularly popular in non-model species. The 92 

benefits of RADseq are its flexibility and relatively low cost compared to whole genome resequencing 93 

(Parchman et al. 2018) but it is particularly attractive for species, including many conifers, with large 94 

repetitive genomes where the compilation of a draft reference genome is challenging (Pan et al. 95 

2015; Fuentes-Utrilla et al. 2017; Parchman et al. 2018). While assays for RADseq have been 96 

described for Sitka (Fuentes-Utrilla et al. 2017), this was for a single family and their application and 97 

performance across multiple families is unknown. One of the drawbacks of RADseq is the stochastic 98 



nature of the sequence reads for a given coverage, particularly when the coverage is low but this 99 

can be overcome using imputation (e.g. Li et al. 2009). 100 

 101 

The goal of this paper was to estimate the fraction of additive genetic variance in the total genetic 102 

variance of Sitka spruce, based on SNP markers derived from RADseq data and phenotypic data 103 

collected on height, wood density and bud burst in the offspring of three full sib families. The newly 104 

developed linkage map of the Sitka spruce genome (Tumas et al. 2023) allowed us to apply an 105 

imputation procedure which enabled missing genotypes to be recovered, thereby making maximum 106 

use of the available SNP data. The tree height data was collected at different ages, and allowed the 107 

sensitivity to site and family variation to be studied as it came from three large full sib families, clonally 108 

replicated across three geographically and climatically diverse sites. The analyses employed spatial 109 

modelling to account for natural and extraneous variation within each site (Gilmour et al. 1997). To 110 

the authors’ knowledge, this is the first paper where the heritability of economically important traits 111 

in conifers was estimated using analyses which simultaneously accounted for additive and non-112 

additive genetic variance based on genomic data along with spatial modelling. 113 

 114 

Materials & Methods 115 

Population 116 

The phenotypic and SNP data were based on material in a large field experiment established in 2005 117 

by Forest Research. The experiment consisted of three full-sib families (denoted as FS1, FS2 and 118 

FS3) each with 1,500 offspring (where offspring represent a unique genotype), clonally replicated 119 

across three contrasting sites: Huntly, Llandovery and Torridge (Table 1).  120 

 121 

The families were created by controlled pollination of maternal clones growing in the Sitka spruce 122 

clone bank of Forest Research. Each offspring was vegetatively propagated from cuttings to produce 123 

12 ramets (clonally replicated copies of an offspring genotype), with four ramets of each genotype 124 

on each site and, within sites, one ramet of each genotype in each of four randomised blocks. In 125 

addition to 1,500 offspring trees, each block contained 46 control trees raised from open pollinated 126 



seed collected from Haida Gwaii (formerly Queen Charlotte Islands), British Columbia. The trees of 127 

FS1 at Torridge formed the data for a previous publication (Fuentes-Utrilla et al. 2017). 128 

 129 

Traits 130 

All trees had their height measured after 2, 4, 6 and 11 years of age. In addition, the depth of 131 

penetration of a pilodyn pin at breast height after 10 years was recorded as an indicator trait for wood 132 

density at the Torridge site only. Trees from family FS1 were also scored for the timing of bud-burst 133 

at the start of the fifth year, using an 8-point scale according to Krutzsch (1973) at all sites. This 134 

scoring was carried out on three occasions within a three-week period (5A, 5B and 5C). A summary 135 

of the design for the measurement of traits is shown in Table 2. The number of trees available for 136 

measurement of height at each age is shown in Table 3, which also provides a guide to numbers of 137 

trees assessed for bud burst and pilodyn measurements at the intermediate ages. 138 

 139 

RADseq Genotypes 140 

Assay  141 

The RADseq data used for FS1 were initially produced for Noveltree 142 

(https://cordis.europa.eu/project/id/211868), and those for FS2 and FS3 were produced for 143 

Procogen (https://cordis.europa.eu/project/id/289841). DNA was extracted from the needles of all 6 144 

parents and from randomly-selected subsets of the 1,500 offspring in each family, with 622, 493 and 145 

496 sampled from FS1, FS2 and FS3 respectively. The protocols for DNA extraction and RADseq 146 

digestion were fully described in Fuentes-Utrilla et al. (2017). Briefly, DNA was extracted using a 147 

Qiagen DNeasy Plant mini-kit but with the protocol modified to maximize DNA quantity. The 148 

extracted DNA was then subjected to a double-digest RADseq protocol using AlnwI and PstI 149 

enzymes. Paired-end reads were produced for parents, and single-end for offspring using Illumina 150 

HiSeq2000.  While the protocol for the RADseq digestion was the same for all 3 families, the resulting 151 

average read length ranged from 45bp in offspring of FS1 to 112bp in parents of FS2 and FS3.  152 

Bioinformatic pre-processing of RADseq data 153 

The raw, barcoded fastq-libraries were de-multiplexed using RADtools v1.2.4 (Baxter et al. 2011). 154 

The paired-end reads of parents were then screened for PCR duplicates using a Perl script (Kerth, 155 



2014) which removed between 22-24% reads in parents of FS1 and 43-46% reads in parents of FS2 156 

and FS3. Offspring whose number of reads fell outside 3 standard deviations from the overall mean 157 

within each family were removed, and this resulted in the removal of 5, 4 and 8 offspring from families 158 

FS1, FS2 and FS3 respectively.  Adapter sequences were removed from all reads using Scythe 159 

v.0.994 (Buffalo, 2014). The reads were then processed with the ‘process radtags’ package of Stacks 160 

v.2 (Rochette and Catchen, 2017) to remove reads with uncalled bases and quality scores <20, and 161 

then to truncate all reads to 45bp to allow simultaneous processing of all three families. The ‘k-mer 162 

filter’ option of Stacks v.2 was used to remove both abundant and rare k-mers, with the default k-163 

mer size set to 15. The final number of reads retained for further analysis ranged between 17.4 and 164 

20.2M for each of the six parents, and between 2.2 and 3.5M reads for each of the 1,594 remaining 165 

offspring.  166 

 167 

SNP genotyping  168 

SNP markers were identified and genotyped using the Stacks v.2 pipeline: ‘ustacks’ to build loci 169 

within a sample; ‘cstacks’ to construct a catalogue of loci from parental samples; ‘sstacks’ to match 170 

loci from all samples to the catalogue; ‘tsv2bam’ to transpose data to become locus oriented; 171 

‘gstacks’ to call variants sites and genotyping individuals. The parameters used for the genotyping 172 

were optimised as recommended in Paris et al. (2017). The outcome was: minimum stack depth (m) 173 

set to 2, distance between stacks (M) set to 3, and distance between catalogued loci (n) set to 3. 174 

The resulting genotypes were exported to a vcf format using the ‘populations’ package of Stacks v.2, 175 

parameterised so that a locus was processed if it was detected in at least 3 populations (p=3), and 176 

in at least 3% of all individuals across all populations (R=3). The parameter values were chosen to 177 

minimise the number of Mendelian inconsistencies and missing values across the resulting 178 

genotypes. 179 

 180 

SNP quality control 181 

The genotypes were split into 3 within-family datasets using Plink (Purcell et al. 2007). Quality control 182 

was then applied within each family by sequentially removing individuals with call rates less than 0.6 183 

and then removing SNPs with call rates less than 0.8 and MAF<0.15. Note that within families the 184 



segregating SNPs are expected to have frequencies of either 0.25, 0.5 or 0.75. The resulting call 185 

rates across all retained individuals and SNPs were 0.77, 0.79 and 0.81 for FS1, FS2 and FS3 186 

respectively. The SNP genotypes were then tested for Mendelian inconsistencies using a custom 187 

Python script (https://github.com/joannailska/Mendelian_inconsistencies), with a Bonferroni 188 

correction for multiple testing. The resulting numbers of trees and SNPs per family are reported in 189 

Table 4. Among the retained SNPs, 2,054 SNPs were segregating in all 3 families and offered an 190 

element of validation, and these are henceforth referred to as “common SNPs”. 191 

 192 

Imputation 193 

Among the common SNPs, 1,630 (78%) had been reliably assigned to the 12 linkage groups of the 194 

linkage map compiled by Tumas et al. (2023) and this map was used for imputation. For each of the 195 

three families used in this study, the genotyping data for these 1,630 loci were assigned to the 12 196 

linkage groups and ordered within them. The genotypes identified were processed using AlphaPeel 197 

(v1.1.0; Whalen et al. 2018) using the multi-locus peeling option, with an additional parameter giving 198 

the map distance in Morgans spanning the loci for each linkage group. The distribution of SNPs 199 

across linkage groups and families is shown in Table 5.  Imputation accuracy was assessed using 200 

posterior genotype probabilities provided by AlphaPeel for the full-sib offspring and summarised by 201 

assuming genotypes to be assigned if a genotype posterior probability was greater than p and 202 

varying p over the range 0.5 to 1. For a given value of p, the SNP call rate over offspring and offspring 203 

call rates over SNPs were calculated.   204 

 205 

Statistical models  206 

A site and family combination is hereafter referred to as a trial (with 9 trials in total). Each trial was 207 

designed as a randomised complete block design with four replicate blocks. Each block was 208 

allocated 46 control trees and 1,500 offspring trees. Due to topographic constraints, some blocks 209 

were spatially separated (non-contiguous) which required “master blocks” to be constructed. For 210 

trials with non-contiguous blocks, two master blocks were created and filler plots with missing 211 

phenotypes were added to ensure a continuous spatial structure within each master block. Trials 212 



with contiguous blocks were treated as having a single master block. The number of master blocks 213 

in each trial is shown in Table 2. 214 

 215 

All models were fitted separately for each trial, and included: (i) a preliminary spatial model without 216 

genomic data, and (ii) an extended spatial model with genomic data. The novel feature of (ii) is that 217 

phenotypic data was included on all control and offspring trees (regardless of whether they have 218 

been genotyped) while genomic data was also included on the subset of genotyped trees in each 219 

family. This preserved all data to estimate the genetic and non-genetic variance parameters, and 220 

also enabled estimates of additive and non-additive genetic variance parameters to be obtained. 221 

 222 

Preliminary spatial model   223 

This is a univariate BLUP model which accommodates the experimental design and spatial modelling 224 

for each trial. The linear mixed model for 𝐲, the vector of available phenotypic data on all 46 control 225 

trees and 1,500 offspring trees in each trial, can be written as: 226 

𝐲 = 𝐗𝐛 + 𝐙𝑢𝐮 + 𝐙𝑣𝐯 + 𝐞   (1) 227 

where 𝐛 is the vector of fixed effects, here only the mean, with 𝐗 being a vector 1’s, 𝐮 is the vector 228 

of random genetic effects for all offspring trees with design matrix Zu, 𝐯 is a vector of random non-229 

genetic effects, here only blocks, with design matrix 𝐙𝑣, and 𝐞 is the vector of residuals. The genetic 230 

effects are assumed to be distributed as u ~ MVN(𝟎, σ𝑢
2 𝐈), where σ𝑢

2  is the total genetic variance. 231 

The block effects are assumed to be distributed as 𝐯 ~ MVN(𝟎, σ𝑣
2𝐈), where σ𝑣

2 is the block variance. 232 

The residuals are assumed to be distributed as 𝐞 ~ MVN(𝟎, 𝐑), where 𝐑 is the residual variance 233 

matrix which includes a model for natural and extraneous variation, i.e. variation due to random error 234 

and correlated spatial error (Gilmour et al. 1997). The residual variance matrix is given by: 235 

𝐑 = σ𝑟
2𝐈 + σ𝑠

2 ⊕𝑘=1
𝑏 𝚺𝑐(𝑘)(𝜌𝑐) ⊗ 𝚺𝑟(𝑘)(𝜌𝑟)    (2) 236 

where σ𝑟
2 is the random error variance and σ𝑠

2 is the spatial error variance, such that fr =237 

𝜎𝑟
2/(𝜎𝑟

2 + 𝜎𝑠
2) and fs = 𝜎𝑠

2/(𝜎𝑟
2 + 𝜎𝑠

2) are the fractions of random and spatial error variance. The 238 

Kronecker plus operator (⊕) constructs a block-diagonal model across the 𝑏 master-blocks (𝑏 = 1 239 

or 2; Table 2) and the Kronecker product operator (⊗) constructs a separable model between the 240 



columns and rows in each master block. Note that the model for each master block is parameterised 241 

by different auto-correlation matrices, i.e. 𝚺𝑐(𝑘) and 𝚺𝑟(𝑘), but the same auto-correlation parameters, 242 

𝜌𝑐 and 𝜌𝑟. The significance of the spatial models were informally assessed by log-likelihood ratio 243 

tests and the Akaike Information Criterion, and showed considerable improvements compared to 244 

models with independent residuals, i.e. 𝐞 ~ MVN(𝟎, σ𝑒
2𝐈). The model described by Equations [1] and 245 

[2] is hereafter referred to as Model 1.  246 

 247 

Extension to include genomic data 248 

Model 1 was then extended to genomic BLUP using a genomic relationship matrix, 𝐆, derived from 249 

RADseq data (described below). This model included phenotypic data on all 46 control trees and 250 

1,500 offspring trees, while genomic data were also included on the 572, 470 and 482 genotyped 251 

trees in FS1, FS2 and FS3 respectively. Let the vector of genetic effects be partitioned as 𝒖 =252 

(𝒖1, 𝒖2) where 𝒖1 and 𝒖2 are the vectors for the non-genotyped and genotyped trees, respectively. 253 

Since there is clonal replication, the genetic effects for the genotyped trees can be further partitioned 254 

into additive and non-additive effects, where 𝒖2 = 𝒖2(𝑎) + 𝒖2(𝑑). The design matrix is partitioned 255 

conformably with 𝒖, where 𝐙 = [𝐙1  𝐙2].  256 

The linear mixed model for 𝐲 can now be written as: 257 

𝐲 = 𝐗𝐛 + 𝐙1𝐮1 + 𝐙2[𝐮2(𝑎) + 𝐮2(𝑑)] + 𝐙𝑣𝐯 + 𝐞    (3) 258 

where the non-genetic and residual terms are as described for Model 1. The genetic effects for the 259 

non-genotyped trees are assumed to be distributed as 𝐮1 ~ MVN(𝟎, σ𝑢
2 𝐈). The additive genetic effects 260 

(breeding values) for the genotyped trees are assumed to be distributed as 𝐮2(𝑎) ~ MVN(𝟎, σ𝑎
2𝐆), 261 

where σ𝑎
2  is the additive genetic variance and 𝐆 is the genomic relationship matrix. The non-additive 262 

effects for the genotyped trees are assumed to be distributed as 𝐮2(𝑑) ~ MVN(𝟎, σ𝑑
2 𝐈), where σ𝑑

2  is 263 

the non-additive genetic variance. The model described by Equations [2] and [3] is hereafter referred 264 

to as Model 2. Model 2 was repeated with heterozygosity included as a covariate: this extension is 265 

of interest in describing -1x inbreeding depression, but potentially removes non-additive variance 266 

and results are given in Supplementary File 1.  267 

 268 



Model 2 provides a direct estimate of the total genetic variance from the non-genotyped trees (σ𝑢
2 ) 269 

and an indirect estimate from the genotyped trees, which is a function of the additive (σ𝑎
2) and non-270 

additive (σ𝑑
2 ) genetic variances. In terms of the additive genetic variance, it should be noted that the 271 

model parameter σ𝑎
2 is not the additive genetic variance of each family since it corresponds to a 272 

population with markers in Hardy-Weinberg equilibrium. In a full-sib family there is negative 273 

assortment of alleles, i.e. increased heterozygosity, when selfing is excluded. The true additive 274 

genetic variance of each family was therefore estimated by 𝑘σ𝑎
2 , where 𝑘 = 𝑑𝑖𝑎𝑔(𝐆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐆 with the bar 275 

denoting the mean value, and 𝑘 = 0.669, 0.686 and 0.603 for FS1, FS2, and FS3 respectively. Note 276 

that scaling was not necessary for σ𝑑
2  and σ𝑢

2  since 𝑑𝑖𝑎𝑔(𝐈)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − �̅� ≈ 1 when the number of genotyped 277 

and non-genotyped trees is large. The total genetic variance for the non-genotyped and genotyped 278 

trees was therefore constrained as: 279 

σ𝑢
2 = 𝑘σ𝑎

2 + σ𝑑
2              (4) 280 

This constraint was applied when fitting Model 2 (see below). 281 

Genomic relationship matrix 282 

The genomic relationship matrix, 𝐆, was constructed separately for each family following Van 283 

Raden’s Model 1 (Van Raden, 2008), using the alternative allele dosages for each locus for each 284 

genotyped tree provided by AlphaPeel (Whalen et al. 2018) following imputation. The dosage is the 285 

expected number of alternative alleles accounting for the genotypic probabilities, and takes values 286 

between 0 and 2. For example, if the genotype probabilities for locus 𝑗 of tree 𝑖 are 0.01, 0.99 and 287 

0.00 for allele counts 0, 1 and 2 the dosage is 0.99 (0 × 0.01 +  1 × 0.99 +  2 × 0.00). The allele 288 

frequencies (𝑝𝑖  for locus 𝑖) used for centring the dosages and calculating the scaling factor 289 

(∑ 2𝑝𝑖𝑖 (1 − 𝑝𝑖)) were calculated from the full-sib parents for each family and were therefore either 290 

0.25, 0.50 or 0.75, as each parent had been genotyped to high coverage, and additionally had been 291 

imputed from the large full-sib family.  292 

Model fitting 293 

Models 1 and 2 were fitted separately for each trait and trial in ASReml-R (Butler et al., 2018), which 294 

obtains REML estimates of the variance parameters and empirical BLUPs of the random effects. 295 

The spatial model in Equation [2] was constructed by fitting a separate model for each master block, 296 



with the sets of auto-correlation and variance parameters constrained to be equal across master 297 

blocks using the vcc argument (see Tolhurst et, 2019). Model 2 was fitted with the constraint in 298 

Equation [4] using the ‘own’ function, which constructs user specified variance models. The variance 299 

models for the genotyped trees were constructed as var(𝐮2(𝑎)) = 𝜎𝑢
2fa𝐆/𝑘 and var(𝐮2(𝑑)) = 𝜎𝑢

2fd𝐈, 300 

where fa = 𝑘𝜎𝑎
2/𝜎𝑢

2 and fd = 𝜎𝑑
2/𝜎𝑢

2 are the fractions of additive and non-additive genetic variance 301 

and 𝜎𝑢
2 is constrained to equal the total genetic variance of the non-genotyped trees, i.e. var(𝐮1) =302 

𝜎𝑢
2𝐈. 303 

 304 

Model summaries 305 

Sample variograms showing the residual semi-variance between plots were constructed using a 306 

custom Python script  307 

(https://github.com/joannailska/Sitka_variogram/blob/main/variogram_Sitka.py). The variograms 308 

were used to informally assess the spatial models and detect any additional extraneous variation in 309 

the column or row directions. An example is presented and summarised in Supplementary File 2.  310 

 311 

Model 2 provided estimates of H2 and h2. These were defined for the observed populations of full-312 

sibs, as H2 = σu
2/( σu

2 + σv
2 + σr

2 + σs
2) and h2 = fa σu

2/( σu
2 + σv

2 + σr
2 + σs

2). The confidence intervals 313 

for the estimated fraction of additive genetic variance were obtained from likelihood profiles 314 

calculated by constraining fa in Model 2 to take values over relevant ranges in the interval [0,1], most 315 

densely around the REML estimates. The 95% confidence intervals were defined by the interval for 316 

which the drop in 2logL was less than 3.84, the 95% point for χ1
2.   Estimates of the parameters were 317 

pooled across families, and sometimes sites as described in the results. For the estimates of spatial 318 

parameters and heritabilities, this was done by weighting estimates by the reciprocal of their 319 

sampling variance. For the fraction of additive genetic variance, this was done by summing the 320 

likelihood profiles.  321 

 322 

Results 323 

Imputation 324 

https://github.com/joannailska/Sitka_variogram/blob/main/variogram_Sitka.py


The cumulative distribution functions of the call rates for SNPs over offspring are shown in Figure 325 

1a, and those for offspring over SNPs in Figure 1b, for no imputation and for different thresholds (p) 326 

for the posterior probability required to call a genotype following imputation by AlphaPeel. All such 327 

functions will tend to 1 as the call rate tends to 1, and if all genotypes were known with certainty the 328 

function would be a step function, where f(x)=0 for x<1 and f(x)=1 for x=1. The distribution functions 329 

will asymptote towards this step function as the number of genotypes called increases, and the 330 

sensitivity of the distribution functions to the value of p decreases as confidence in the imputation 331 

increases. When the threshold was set to p=0.9, 96% of SNPs had call rates exceeding 95% over 332 

all offspring (from Figure 1a), and 94% of offspring had call rates exceeding 95% over all SNPs (from 333 

Figure 1b). Without imputation, only 50% of SNPs and 67% of offspring had call rates exceeding 334 

95%. 335 

 336 

Spatial Parameters 337 

The spatial parameters described in Equation [2] are treated in this study as nuisance parameters 338 

and are summarised below in less detail than the genetic parameters of interest. The sample 339 

variograms presented in Supplementary Information 2 shows an example outcome from fitting Model 340 

2 and illustrate the residual semi-variance between plots x rows and y columns apart. The 341 

variograms peak at the spatial (σs
2) and total error variance (σr

2 + σs
2), with the discontinuity at zero 342 

displacement reflecting the random error variance (σr
2). The general shape of the variograms is 343 

determined by the auto-correlation parameters ρc and ρr. Table 6 summarises the fraction of random 344 

error variance (fr) and the auto-correlation parameters for height at all four ages. Since the ‘column’ 345 

and ‘row’ labels were arbitrarily assigned for each site, the values for ρr and ρc have been pooled 346 

into a common value ρ. 347 

 348 

Two trends for height were observed in Table 6: (i) fr diminished from 2 to 11 years of age, indicating 349 

stronger spatial (positive) associations in height with neighbours as the trees grew; and (ii) the auto-350 

correlations differed between sites, indicating that the observable associations extended over longer 351 

distances at Torridge, and conversely smallest at Llandovery.  The value of fr and ρ for pilodyn depth 352 

averaged across families at Torridge was 0.64 (range [0.39, 0.77]) and 0.92 (range [0.79, 0.98]), 353 



respectively.  For the three measurements of bud burst at 5 years of age (5A, 5B and 5C) for FS1 at 354 

the three sites, fr was comparatively high (mean 0.81; range [0.73, 0.94]) and ρ was also 355 

comparatively high (mean 0.78; range [0.61, 0.97]). Taken together, although the common 356 

environmental component of variance among neighbours decays slowly for all traits, there is 357 

substantial environmental variance independent of neighbours for these ages. 358 

 359 

Pilodyn depth at 10 years 360 

Pilodyn depth was measured at 10 years in all three families at Torridge only, with the results shown 361 

in Table 7.  The total genetic variance, σu
2, was considerable in all families, although the broad sense 362 

heritability, H2, differed widely between families (range [0.112, 0.349]). These differences were 363 

largely due to the differing environmental variances.  Considerable additive genetic variance, σa
2, 364 

was detected in all families with differences in h2 that reflected the differences in H2. This 365 

correspondence was due to a relative constancy in the fraction of additive genetic variance, fa. Figure 366 

2 shows the likelihood profile for fa in each family, together with the consensus profile pooled across 367 

families. The consensus value for fa was estimated as 0.80 with 95% confidence interval of [0.76, 368 

0.92]; although this estimate was within the 95% confidence intervals for each family, the hypothesis 369 

of a common value across families was rejected by the chi-squared test (P<0.05; X2 = 6.16 c.f. χ2
2). 370 

 371 

Bud burst at 5 years 372 

Bud burst at five years was only measured in FS1 and Table 8 focuses on the first measurement 373 

(5A), and the results for the other two measurements are given in the Supplementary Information 3. 374 

Estimates of H2 differed between sites (range [0.276, 0.476]) and these differences were, again, 375 

reflected in the estimates of h2 for the sites. However, fa was very similar across sites. Figure 3 shows 376 

the likelihood profiles for fa and the consensus profile pooled across sites. The consensus value for 377 

fa was estimated as 0.83 with 95% confidence interval of [0.78, 0.90]. There was no evidence to 378 

reject the hypothesis of a common value across sites (P>0.05; X2 = 0.617 c.f. χ2
2). Similar results 379 

were obtained for measurements 5B and 5C, which had consensus values of 0.91 (s.e. 0.03) and 380 

0.89 (s.e. 0.04) respectively. 381 

 382 



Height at 2, 4, 6 and 11 years 383 

Table 9 shows the broad sense heritabilities, H2, and phenotypic variances, σP
2, for height measured 384 

at 2, 4, 6 and 11 years in all four families at all three sites. For each site, σP
2 increased with age but 385 

there was no clear trend in the changes in H2 with age. The estimates of H2 for Llandovery were 386 

generally smaller than for Huntly and Torridge, which were associated with generally larger σP
2 at a 387 

given age compared to the other sites. There were no clear trends in H2 or σP
2 between families 388 

across ages or sites. 389 

 390 

The consensus values of fa pooled across families are given in Table 10 for each age and site. There 391 

was no evidence of differences in fa between families for each age and site (P<0.05). However, there 392 

was evidence of increasing fa with age at all sites, in particularly fa was largest at 11 years and 393 

smallest at 2 years. This trend is particularly evident in the consensus values of fa after pooling 394 

across sites with fa increasing from 0.60 at 2 and 4 years to 0.80 at 11 years, with 95% confidence 395 

intervals that do not overlap. The confidence interval for the consensus value of fa at 11 years does 396 

not include 1, i.e. not all genetic variance is additive. However, some individual families at some 397 

individual sites do include 1 in their confidence intervals, which are wider, and the best point effort 398 

for FS2 at 11 years at Llandovery was 1. There was no evidence of differences between families 399 

across sites from the goodness of fit tests.  400 

 401 

Discussion 402 

 403 

This study combines all available phenotypic and genomic data from a multi-site, clonally replicated 404 

experiment with large full-sib families produced by controlled crossing to partition the genetic 405 

variance observed between clones for height, bud burst and pilodyn penetration depth into additive 406 

and non-additive components.  The additive genetic variance formed the largest fraction of total 407 

genetic variation for all traits, with estimates of 0.60 for height at 2 years of age increasing to 0.80 at 408 

11 years, 0.80 for pilodyn penetration depth at 10 years, and ranging from 0.83 to 0.91 for the 3 409 

measures of bud burst at 5 years. This partition is possible as the model underlying the Van Raden 410 

relationship matrix, G, is a ridge regression model on marker allele counts and therefore only 411 



describes what is observed as an additive sum of effects over loci, whereas the total genetic variance 412 

obtained from the clonal replication includes dominance and epistasis.  The experimental design had 413 

several aspects that made the study feasible, or more powerful, beyond the clonal replication of the 414 

offspring. Firstly, the experiment’s large full-sib families made it possible to consolidate genotypes 415 

obtained from RADseq by imputation, using the recent availability of a molecular map for Sitka 416 

spruce (Tumas et al. 2023). Secondly, the measurement of traits across sites, or across families, or 417 

both, allowed for a degree of replication estimates of fa, and the estimates were found to be very 418 

largely consistent, subject to their sampling errors.  419 

 420 

The majority of studies identified by the authors that partition the genetic variance in forest species 421 

have used models based on pedigree combined with clones. An important theoretical perspective to 422 

consider when comparing the current results with those from published studies is that here the 423 

partitioning has been carried out entirely within full-sib families. Therefore, the estimates presented 424 

here are partitions of the Mendelian sampling variance and not the full genetic variance for a random-425 

mating population. The expectations for the additive and non-additive components can be scaled up 426 

to the corresponding variance for a full random-mating population, and based on these expectations, 427 

the fraction fa would increase. Although half the additive variation lies within families, a greater portion 428 

(3/4) of the dominance and the additive x additive epistatic variation is within families, and more than 429 

3/4 for higher order epistatic terms (Falconer & Mackay, 1996).  Assuming that any non-additive 430 

variation observed within families is explained by dominance or additive by additive, then the 431 

expectation is that fa in this study corresponds to 3 fa /(2+ fa) in a random mating population; e.g. fa 432 

= 0.6 and 0.8 corresponds to 0.69 and 0.86. While only three full-sib families were sampled, the 433 

consensus values for fa estimated for the traits measured on all families is important. 434 

 435 

Among previous studies, Weng et al. (2008) estimated partitions of genetic variance in white spruce, 436 

a close relative to Sitka spruce, for a similar range of ages for height, and also for pilodyn depth. 437 

Their results show comparable estimates of fa ranging from ~ 0.4 at 4 years to 0.8 at 14 years, 438 

despite the large s.e.s found in their data. The study of Nguyen et al. (2022) in Norway spruce 439 

covered a range of ages for height between 6 and 12 years and their results also appear to suggest 440 



that fa decreases between these ages, however examination of the results show large s.e.’s and 441 

negative estimates which fa seriously limit interpretation.  Results for Norway spruce were also 442 

reported by Chen et al. (2019) using genomic analysis: for height at 17 years,  fa ~ 0.4 and 0.6 at 443 

two sites, and for pilodyn depth at 30 years of age fa ~ 1 at both sites. Among other studies of height, 444 

Isik et al. (2003) assessed four ages between 1 and 6 years and Baltunis et al. (2007) at 2 years, 445 

both in loblolly pine, Baltunis et al. (2013) at 12 years in yellow cypress but for the large sampling 446 

errors limit comparability.  Few studies have examined pilodyn depth, but those that have are in 447 

agreement with the findings here that the fraction of additive genetic variance is very high, with 448 

estimates of 0.90 (s.e. 0.18) at 26 years of age in white spruce (Nguyen et al. 2022); ~0.8 in 449 

Eucalyptus globulus at 4 years derived from the results of Costa de Silva et al. (2004). There are no 450 

comparable results for bud burst in other published studies. Each trait should be expected to have 451 

its own architecture, but too few results are available to attempt generalisation particularly given the 452 

substantial standard errors of many estimates (stem diameter in Norway spruce (Nguyen et al. 2022; 453 

Berlin et al. 2019), Eucalyptus globulus (Costa de Silva et al. 2004) and radiata pine (Baltunis et al. 454 

2009); wood quality traits in white spruce (Nguyen et al. 2022) and Norway spruce (Chen et al. 2019). 455 

 456 

This study partitions the genetic variance in Sitka spruce into additive and non-additive components 457 

using an approach similar to that of de Almeida Filho et al. (2019), which used the classical ridge 458 

regression model to estimate the fraction of additive genetic variance and the clonal variance to 459 

estimate the total genetic variance. However, their approach requires all trees to be genotyped, and 460 

removes any non-genotyped trees. In this paper, a linear mixed model was developed which 461 

combines all available phenotypic and genomic data on all trees, regardless of whether they have 462 

been genotyped. In particular, the fraction of additive genetic variance was estimated using the 463 

subset of genotyped trees and the total genetic variance was estimated using all genotyped and 464 

non-genotyped trees. This approach preserves all available data to estimate the genetic and non-465 

genetic variances, which is particularly important for spatial modelling (as it requires a continuous 466 

spatial structure). This approach also bears similarities to single-step GBLUP (Legarra et al. 2009), 467 

but without the need for pedigree or the need to construct a H matrix. The distinguishing feature here 468 

is that the primary goal of this study was to obtain reliable estimates of the fraction of additive genetic 469 



variance, rather than obtaining predictions of additive genetic merit for genomic selection. In fact, 470 

this approach is equivalent to setting the non-genotyped trees as diagonal (independent) in the 471 

genomic relationship matrix within Model 2, so that the additive component for these trees would not 472 

be well defined. 473 

 474 

Obtaining reasonable precision on the fraction of additive genetic variance using pedigree alone has 475 

proved challenging as it typically involves scaling up and calculating linear functions of the estimated 476 

pedigree components. The models used here are parsimonious in that no attempt has been made 477 

to partition the non-additive genetic variance into dominance and epistatic components to avoid 478 

overfitting. The further partition is in general feasible, without assuming Hardy-Weinberg equilibrium, 479 

as shown by Vitezica et al. (2017), and exemplified in Nile tilapia by Joshi et al. (2020). This involves 480 

using the markers to calculate orthogonal relationship matrices for the dominance and epistatic 481 

components (e.g. the additive by additive relationship matrix is proportional to the Hadamard product 482 

of G with itself). This was attempted in the study of Chen et al. (2019) in Norway spruce but assumed 483 

Hardy-Weinberg equilibrium.  Furthermore, no attempt has been made here to estimate genetic 484 

variance across families (as distinct from pooling the results within families) for two reasons: (i) the 485 

number of parents is small, and (ii) the number of markers are too few for satisfactory estimation 486 

across families, but more than adequate within families (Lillehammer et al. 2013). This leads to 487 

limitations in interpretation of this study, e.g. there is no assessment of whether additive marker 488 

effects in one family are similar to those from another, despite the consistency of the fa observed 489 

within families.  The different sets of anonymous markers segregating within the small number of 490 

families would make this uninterpretable. 491 

 492 

In conclusion, the evidence suggests that the fraction of additive genetic variance increases with age 493 

for height towards the high fractions observed for pilodyn and bud burst. The results of 494 

Supplementary Information 1 show no evidence of inbreeding depression for any of the traits and 495 

therefore no evidence on the form of the non-additive genetic variance e.g. in the study of Joshi et 496 

al. (2020) in Nile tilapia the extra genetic variance observed in full-sibs aligned with additive by 497 

additive epistasis and not dominance. While the form of the non-additive genetic variance may be 498 



less relevant for deployment strategies using clones, it does influence the form of the breeding 499 

program, as additive by additive fractions become converted to additive variance under selection 500 

and little benefit is expected from establishing sub-lines for crossing, as in reciprocal recurrent 501 

selection. 502 
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 649 

Table 1.  Geographic and climatic characteristics of the three sites. The accumulated temperature 650 

is defined by the number of days above 5C using historical data from the UK Meteorological Office 651 

over the 30-year recording period 1961-1990. 652 

 653 

Characteristic Units Huntly Llandovery Torridge 

  Scotland Wales England 

Latitude  °N 57.58 51.97 50.82 

Longitude  °W 2.82 4.12 4.37 

Height above sea level m 140 230 120 

Accumulated temperature  °days 1106 1450 1828 

 654 
 655 
 656 

Table 2.  The design of trials showing which traits were measured at which sites and in which families 657 

(FS: 1, 2 or 3). Measurements were made for all trials other than those shaded grey. Trials shaded 658 

green are those which have one master block while trials shaded yellow have two master blocks 659 

(described in text). 660 

 661 

 662 
 663 
 664 
 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 

 673 

 674 

Table 3.  Numbers of trees measured for height according to site, age and family. The trials were 675 

allocated 6000 trees per family per site prior to planting.  676 

 677 
 Huntly Llandovery Torridge 

Age (years) FS1 FS2 FS3 FS1 FS2 FS3 FS1 FS2 FS3 

  2 5854 5903 5685 5786 5805 5821 5988 5981 5861 
  4 5698 5861 5414 5220 5288 5180 5987 5875 4219 
  6 5676 5857 5414 4716 4900 4539 5982 5829 4100 
11  5673 5856 5410 4326 4760 3958 5982 5829 4087 

 678 

 679 

 680 

 681 

Table 4.  The number of SNP markers and trees retained within each family (FS1, FS2 or FS3) 682 

following quality control, together with the percentage of these SNPs that were found in all 3 families. 683 

 684 

 685 

 686 

 687 
 688 
 689 

 690 
 691 
 692 

Trait Age Site 

 (years) Huntly Llandovery Torridge 

Height 2  1 2 3   1 2 3   1 2 3  
 4  1 2 3   1 2 3   1 2 3  
 6  1 2 3   1 2 3   1 2 3  
 11  1 2 3   1 2 3   1 2 3  

Bud Burst 5A  1 2 3   1 2 3   1 2 3  
 5B  1 2 3   1 2 3   1 2 3  
 5C  1 2 3   1 2 3   1 2 3  

Pilodyn 10  1 2 3   1 2 3   1 2 3  

  Family  

 FS1 FS2 FS3 

SNPs  15,452 17,915 13,176 

% present in all FS 13.2 11.5 15.6 

Trees 572 470 482 



Table 5.  The number of informative loci used for imputation according to family (FS1, FS2 and FS3) 693 

and linkage group and the group’s map length. 694 

 695 

Linkage Group Length Number of loci 

 (cM) FS1 FS2 FS3 

1 218 159 158 154 

2 194 163 163 154 

3 201 153 153 141 

4 194 146 145 141 

5 165 109 109 103 

6 174 139 139 138 

7 203 149 149 135 

8 199 129 129 122 

9 164 125 124 112 

10 157 129 129 127 

11 128 108 107 101 

12 146 121 121 117 

Total 2143 1630 1626 1545 

 696 
 697 
 698 
 699 
Table 6. The fraction of random error variance (fr) and the auto-correlation pooled across columns 700 
and rows (ρ) for height measured at four ages at all three sites (see Equation [2]). The values 701 
presented have been averaged across all three families with the range given in parentheses. 702 
 703 
Age Huntly Llandovery Torridge 

(years) fr ρ fr ρ fr ρ 

2 0.85 (0.80,0.92) 0.85 (0.75,0.90) 0.88 (0.87,0.89) 0.77 (0.67,0.86) 0.74 (0.67,0.77) 0.91 (0.79,0.98) 
4 0.76 (0.70,0.85) 0.82 (0.72,0.91) 0.70 (0.62,0.76) 0.70 (0.62,0.81) 0.60 (0.43,0.76) 0.90 (0.82,0.96) 
6 0.72 (0.63,0.80) 0.84 (0.79,0.91) 0.61 (0.57,0.68) 0.73 (0.64,0.81) 0.54 (0.40,0.72) 0.91 (0.84,0.95) 

11 0.52 (0.45,0.58) 0.91 (0.86,0.97) 0.53 (0.49,0.58) 0.81 (0.74,0.87) 0.60 (0.39,0.82) 0.93 (0.88,0.96) 

 704 
 705 
 706 
 707 
Table 7. The total genetic (σu

2) and phenotypic (σP
2) variances, broad (H2) and narrow (h2) sense 708 

heritabilities and the fraction of additive genetic variance (fa) for pilodyn depth measured at 10 years 709 
in all three families at Torridge.  The associated s.e.s are given in parentheses. 710 
 711 
Family σP

2 σu
2 H2 fa h2 

FS 1 2.994 (0.125) 1.046 (0.060) 0.349 (0.019) 0.912 (0.043) 0.319 (0.024) 
FS 2 4.673 (0.368) 1.283 (0.073) 0.275 (0.024) 0.751 (0.064) 0.206 (0.026) 
FS 3 4.657 (0.657) 0.520 (0.053) 0.112 (0.019) 0.918 (0.199) 0.102 (0.027) 

 712 
 713 
 714 
 715 
Table 8.  The total genetic (σu

2) and phenotypic (σP
2) variances, broad (H2) and narrow (h2) sense 716 

heritabilities and the fraction of additive genetic variance (fa) for the first measurement of bud burst 717 
at 5 years in family one at all three sites.  The associated s.e.s are given in parentheses. 718 
 719 
Site σP

2 σu
2 H2 fa h2 

Huntly 0.251 (0.010) 0.085 (0.005) 0.333 (0.019) 0.836 (0.056) 0.278 (0.026) 
Llandovery 0.499 (0.021) 0.138 (0.010) 0.276 (0.024) 0.831 (0.069) 0.229 (0.025) 
Torridge 0.699 (0.020) 0.326 (0.018) 0.476 (0.019) 0.851 (0.039) 0.405 (0.025) 

 720 
 721 



 722 
Table 9.  The broad sense heritability (H2) and phenotypic variance (σP

2) for height measured at four 723 
ages in all three families at all three sites. The associated s.e.s are given in parentheses. 724 
 725 
Age Family Huntly Llandovery Torridge 

(years)  H2 σP
2 H2 σP

2 H2 σP
2 

2 FS 1 0.202 (0.014) 0.013 (0.000) 0.101 (0.014) 0.015 (0.001) 0.256 (0.015) 0.019 (0.001) 
 FS 2 0.099 (0.018) 0.014 (0.002) 0.043 (0.011) 0.025 (0.001) 0.286 (0.014) 0.012 (0.001) 
 FS 3 0.194 (0.014) 0.012 (0.000) 0.101 (0.012) 0.012 (0.001) 0.198 (0.021) 0.009 (0.001) 

4 FS 1 0.155 (0.013) 0.087 (0.002) 0.088 (0.012) 0.140 (0.006) 0.239 (0.015) 0.130 (0.004) 
 FS 2 0.165 (0.014) 0.075 (0.004) 0.056 (0.012) 0.178 (0.005) 0.178 (0.015) 0.075 (0.004) 
 FS 3 0.152 (0.013) 0.097 (0.003) 0.062 (0.011) 0.128 (0.005) 0.063 (0.011) 0.085 (0.007) 

6 FS 1 0.149 (0.013) 0.341 (0.010) 0.061 (0.012) 0.590 (0.027) 0.225 (0.012) 0.402 (0.014) 
 FS 2 0.174 (0.013) 0.214 (0.005) 0.065 (0.012) 0.544 (0.016) 0.222 (0.015) 0.324 (0.017) 
 FS 3 0.155 (0.012) 0.289 (0.009) 0.096 (0.014) 0.357 (0.033) 0.081 (0.016) 0.367 (0.017) 

11 FS 1 0.089 (0.012) 1.416 (0.134) 0.056 (0.011) 1.786 (0.055) 0.214 (0.015) 0.779 (0.029) 
 FS 2 0.100 (0.028) 1.895 (0.505) 0.062 (0.011) 2.156 (0.136) 0.334 (0.027) 1.282 (0.097) 
 FS 3 0.202 (0.014) 1.622 (0.068) 0.076 (0.017) 1.344 (0.254) 0.183 (0.015) 1.470 (0.080) 

 726 
 727 
 728 
 729 
Table 10.  The fraction of additive genetic variance (fa) for height measured at four ages at all three 730 
sites. The values presented are pooled across families using likelihood profiles, and the consensus 731 
value is obtained by pooling the resulting profiles across sites. The associated 95% confidence 732 
intervals are given in parentheses. 733 
 734 
Age (years) Huntly Llandovery Torridge Consensus 

2 0.53 (0.38,0.68) 0.50 (0.25,0.75) 0.60 (0.49,0.71) 0.60 (0.47,0.65) 
4 0.60 (0.46,0.74) 0.50 (0.25,0.75) 0.68 (0.56,0.80) 0.60 (0.54,0.72) 
6 0.57 (0.49,0.75) 0.60 (0.36,0.90) 0.72 (0.62,0.82) 0.70 (0.61,0.76) 

11 0.70 (0.58,0.85) 1.00 (0.68,1.00) 0.80 (0.70,0.90) 0.80 (0.72,0.84) 

 735 
  736 



Figure 1.  A summary of imputation success rates for full-sib offspring obtained from AlphaPeel: (a) 737 

cumulative distribution function for SNP call rate over offspring, and (b) cumulative distribution 738 

function for offspring call rate over SNPs.  These are shown for no imputation (black), with genotypes 739 

assigned with probability >0.7 (blue), and genotypes assigned with probability >0.9 (red), and where 740 

light colours are for each family and the dark colour is their average. 741 
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  768 



Figure 2. The profiles of -2logL for pilodyn depth measured at 10 years in all three families (grey 769 
lines) according to the constrained fraction of additive genetic variance, and the profile pooled across 770 
families. Each profile has been adjusted by subtracting its minimum value and therefore the junction 771 
with the solid red line y=0 indicates the maximum likelihood estimate, and the interval below the 772 
dashed red line y=3.84 indicates the 95% confidence interval. 773 
 774 

 775 
 776 
 777 
 778 
Figure 3. The profiles of -2logL for the first measurement of bud burst at 5 years in family one at all 779 
three sites (grey lines) according to the constrained fraction of additive genetic variance, and the 780 
profile pooled across sites. Each profile has been adjusted by subtracting its minimum value and 781 
therefore the junction with the solid red line y=0 indicates the maximum likelihood estimate, and the 782 
interval below the dashed red line y=3.84 indicates the 95% confidence interval. 783 
 784 

  785 
 786 
  787 



Supplementary Information 1. Regression on observed heterozygosity. 788 

 789 

Methods. Model 2 was modified to include the heterozygosity of the offspring as a linear covariate, 790 

and it was fitted separately to all site by family by trait combinations. For tree heights and pilodyn 791 

penetration depth the coefficients were pooled across families within sites following Dersimian and 792 

Laird (1986).  The pooled value for height at each age, and the estimates for bud burst observations 793 

in Family 1 were then pooled over sites using DerSimian and Laird (1986).  794 

 795 

Results.  The regression coefficients are shown in Table S1.1. Since the covariate was 796 

heterozygosity positive values represent deleterious inbreeding depression. There was no evidence 797 

of heterogeneity when pooling across families for height or pilodyn. Similarly there was no evidence 798 

of heterogeneity when pooling across sites. The magnitudes of the consensus estimates rarely 799 

exceeded 1 s.e. and were always <1.2 s.e. In summary there was no evidence for an effect of 800 

heterozygosity and inbreeding depression in these data. 801 

 802 
Table S1.1. The regression coefficient for the fraction of heterozygous marker loci for height, bud 803 

burst and pilodyn. Coefficients were pooled across families, and consensus values across sites were 804 

calculated following DerSimian and Laird (1986).   805 

 806 
  Site  

Trait Age Huntly Llandovery Torridge Concensus 

Height 2 -0.01 (0.10) 0.03 (0.12) 0.01 (0.10) 0.01 (0.06) 
 4 -0.39 (0.37) -0.08 (0.46) 0.05 (0.33) -0.13 (0.22) 
 6 -0.72 (0.65) 0.34 (0.67) -0.44 (0.95) -0.25 (0.42) 
 11 -1.43 (1.01) 0.80 (1.85) -0.43 (1.03) -0.71 (0.67) 
Bud Burst * 5A 1.52 (0.91) -1.70 (1.38) 2.56 (1.62) 0.79 (1.18) 
 5B 0.39 (1.12) -0.18 (1.32) 2.75 (2.14) 0.51 (0.79) 
 5C 1.19 (0.95) -0.62 (1.10) 1.51 (1.96) 0.55 (0.68) 
Pilodyn 10     2.84 (2.44)   

 807 
Reference 808 
 809 
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Tr 7:177-188. 810 

http://doi.org/10.1016/0197-2456(86)90046-2  811 



Supplementary Information 2.  Example of the sample variograms obtained from fitting the residual 812 

spatial model in Model 2.  813 

 814 

Fig S2.1 shows the sample variograms obtained for height measured at 11 years in family FS1 at 815 

Huntly from fitting Model 2, which includes the residual spatial model in Eqn 2. This example was 816 

chosen as the fraction of random error variance was low (fr = 0.45) and the auto-correlation pooled 817 

across columns and rows was high (ρ=0.95). The sample variograms are constructed using the 818 

residual semi-variance between plots x rows and y columns apart, and are hence different to a 819 

theoretical variogram constructed directly from the column and row auto-correlation parameters, ρc 820 

and ρr (Gilmour et al. 1997). There are three important features of the sample variograms shown. 821 

Firstly, the variograms have properties determined by the parameters: Fig. 2.1 (a) peaks at ~0.7 822 

which reflects the spatial error variance (σs
2); and Fig. 2.1 (b) peaks at ~1.3 which reflects the total 823 

error variance (σr
2 + σs

2). The discontinuity at zero displacement in (b) is ~0.6 which reflects the 824 

random error variance (σr
2).  Secondly, both variograms demonstrate a substantial increase in semi-825 

variance between plots either 60 columns or 60 rows apart. Random column and row terms were 826 

fitted to account for this variation, but these proved unsuccessful. Lastly, there is a noticeable 827 

decrease in semi-variance between plots 11, 22, 33, … rows apart. Unfortunately, the source of this 828 

variation could not be identified. In models the standard random terms with effects for rows 1 to the 829 

number of rows were supplemented with terms cycled through 1 to 11 over the rows, but this proved 830 

unsuccessful. 831 

 832 

References 833 

Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous eariation in the 834 
analysis of field experiments. J Agric Biol Environ Stat 2:269-293. 835 
https://doi.org/10.2307/1400446 836 

  837 



Figure S2.1 Sample variograms for height measured at 11 years in FS1 at Huntly. Plot (a) shows 838 

the variogram for the correlated spatial error and (b) shows the variogram for the correlated spatial 839 

error plus random error. The z-axis shows the residual semi-variance between pairs of plots x rows 840 

and y columns apart. Only semi-variances based on more than 50 pairs are shown. 841 

 842 
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Supplementary Information 3.  Results for bud burst observations 5B and 5C.  845 

The 5B and 5C measurements of bud burst in FS1 were subject to the same analyses as 5A, and 846 

the results for 5A are presented in the main text. The Tables S3.1 and S3.2 show the results for 5B 847 

and 5C corresponding to Table 8 for 5A. The consensus estimates across sites, obtained using 848 

Dersiminian & Laird (1986), were 0.909 (s.e. 0.027) and 0.891 (s.e. 0.037) for 5B and 5C 849 

respectively. 850 

 851 

Table S3.1  Ortet (σu
2) and phenotypic (σP

2) variances, the broad (H2) and narrow (h2) heritabilities 852 

and the fraction of additive genetic variance (fA) for measurement 5B of bud burst in FS1.  The 853 

associated s.e.s are given in parentheses.  854 

 855 
Site σP

2 σu
2 H2 fA h2 

Huntly 0.475 (0.029) 0.077 (0.006) 0.163 (0.015) 0.867 (0.092) 0.141 (0.020) 
Llandovery 0.499 (0.019) 0.142 (0.010) 0.285 (0.018) 0.939 (0.063) 0.268 (0.024) 
Torridge 1.288 (0.044) 0.628 (0.034) 0.488 (0.018) 0.907 (0.032) 0.442 (0.024) 

 856 

Table S3.2  Ortet (σu
2) and phenotypic (σP

2) variances, the broad (H2) and narrow (h2) heritabilities 857 

and the fraction of additive genetic variance (fA) for measurement 5C of bud burst in FS1.  The 858 

associated s.e.s are given in parentheses. 859 

 860 
Site σP

2 σu
2 H2 fA h2 

Huntly 0.385 (0.025) 0.050 (0.005) 0.129 (0.014) 0.901 (0.116) 0.117 (0.019) 
Llandovery 0.381 (0.009) 0.061 (0.006) 0.159 (0.015) 0.846 (0.116) 0.135 (0.021) 
Torridge 1.267 (0.190) 0.408 (0.023) 0.322 (0.050) 0.895 (0.041) 0.289 (0.047) 

 861 

Reference 862 
 863 
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Tr 7:177-188. 864 

http://doi.org/10.1016/0197-2456(86)90046-2 865 
 866 


