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Abstract

Optimizing the operation and maintenance of wind turbines is crucial as the wind energy

sector continues to expand. Predicting the mass imbalance of wind turbines, which

can seriously damage the rotor blades, gearbox, and other components, is one of the

key issues in this field. In this work, we propose a machine learning-based method

for predicting the mass imbalance of wind turbines utilizing information from multiple

sensors and monitoring systems. We collected data and trained the model from Adwen

AD8 wind turbine model and evaluated on the real wind turbine SCADA data which is

located at Fraunhofer IWES, Bremerhaven. The data included various parameters such

as wind speed, blade root bending moments and rotor speed. We used this data to train

and test machine learning classification models based on different algorithms, including

extra-tree classifiers, support vector machines, and random forest. Our results showed

that the machine learning models were able to predict the mass imbalance percentage

of wind turbines with high accuracy. Particularly, the extra tree classifiers with blade

root bending moments outperformed other research for multiclassification problem with

an F1 score of 0.91 and an accuracy of 90%. Additionally, we examined the significance

of various features in predicting the mass imbalance and observed that the rotor speed

and blade root bending moments were the most crucial variables. Our research has

significant effects for the wind energy sector since it offers a reliable and efficient way

for predicting wind turbine mass imbalance. Wind farm operators can save maintenance

costs, minimize downtime of wind turbines, and increase the lifespan of turbine compo-

nents by identifying and eliminating mass imbalances. Also, further investigation will

allow us to apply our method to different kinds of wind turbines, and it is simple to

incorporate into current monitoring systems as it supports prediction without installing

additional sensors. In conclusion, our study demonstrates the potential of machine

learning for predicting the percentage of mass imbalance of wind turbines. We believe

that our approach can significantly benefit the wind energy industry and contribute to

the development of sustainable energy sources.

Keywords: Mass Imbalance, Wind Turbines, Condition Monitoring Systems, SCADA

Data, Rotor Speed, Blade Root Bending Moments, Wind Speed, ExtratreesClassifier,

Multiclassification
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1 Introduction

1.1 Wind turbine technology / Condition Monitoring

As the world’s energy needs increase for reasons of both energy security and reduc-

ing greenhouse gas emissions, a large-scale usage of renewable energy sources is immi-

nent.One of the most practical sources of alternative energy is wind power, but in order

for there to be more installations, wind power needs to be more dependable and less

expensive. These may be ensured by making sure that the wind resource is used to

produce electricity as efficiently as possible and by having a generally reduced operating

cost. Since wind energy is one of the most environmentally benign and sustainable energy

sources, Wind Turbine (WT) is expanding quickly. By 2026, the European Union (EU)

wants to double the amount of renewable energy it produces. According to Energy

Voice’s study from 2020, this goal is being driven mostly by investments in wind energy.

In the UK, the combined installed capacity of solar and wind power facilities will reach

64 Gigawatt (GW) in 2026. The installed offshore wind turbine capacity in this nation

is anticipated to increase from 10.5 GW in 2020 to 27.5 GW in 2026 [14]. In recent

years, wind energy has grown and developed significantly compared to other sources.

Each year, the capacity of produced wind power rises by 20% globally, reaching a total

of 743 gigawatts [15]. Wind power output grew by about 273 TWh (up 17%) in 2021,

the greatest rise of all power generation methods and an expansion rate of 45% greater

than that of 2020 [16]. Wind energy usage increased in the US in 2021, giving millions of

their citizens access to affordable renewable energy sources. In 2021, the U.S. wind sector

added 13,413 megawatts (MW) of brand-new wind power, raising the total installed wind

capacity to 135,886 MW2 [17].Over 9% of the nation’s power comes from wind, more

than 50 percent in South Dakota and Iowa, as well as more than 30% in Kansas [18].

• A sustainable and clean energy source, wind energy emits no harmful emissions or

contaminants.

• Wind energy is a versatile source of energy since it can be harnessed on both

onshore and offshore.

• Wind energy has its potential to lessen reliance on fossil fuels while also increasing

energy security over time.

• Wind energy can also helps to reduce greenhouse gas emissions and possibly effects

of climate change.
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1 Introduction

Figure 1.1: The renewable energy capacity per country [1]

Wind energy has had tremendous growth and development in Germany and widely

in europe. By the tail end of 2017, Germany had 55.6 GW of installed wind power,

with 5.2 GW coming from offshore installations. Wind energy provided 25% of the

nation’s overall energy supply in 2019 compared to an estimated 9.3% in 2010 [?]. More

current statistics show that Germany’s onshore wind energy capacity has risen, rising

from 56,046 megawatts in 2015 to 58,186 megawatts in 2022. In terms of renewable

energy sources, wind power contributed the most to Germany’s mix of energy sources in

previous years [19].

According to the International Energy Agency, wind energy might provide more than

420,000 terrawatt hours annually worldwide by 2025, providing up to 18% of the world’s

power needs [20]. Also the benefits of renewable energy resource such as wind energy is

enormous which includes the reduction of greenhouse gas emissions that improves the

energy security and increase in number of jobs for the local communities [16]. Mongolian

renewable energy development offers significant promise due to its plentiful resources

and advantageous geographical position. The development of solar and wind power

facilities provides a chance to meet peak electricity demands while decreasing dependency
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1 Introduction

on imported energy[21]. The Renewable Energy Law, and subsequent changes, have

effectively drawn foreign investment and promoted sectors expansion. However, the

law’s provision that electricity sales be made in US dollars has created complications

due to exchange rate swings. Since 2007, the average USD exchange rate has climbed by

143.41%, resulting in large increases in solar and wind power plant electricity rates[21].

To solve this issue, it is proposed that the law be altered to allow for the selling of power

in local currency, thereby reducing the influence of exchange rate changes on consumer

pricing. Furthermore, the inclusion of a 30 Megawatt (MW) solar power plant and a

102 MW wind power facility would raise the feed-in tariff, promoting renewable energy

development. Mongolia should encourage competition in the renewable energy sector

and work on lowering investment costs to correspond with dropping global equipment

prices in order to achieve long-term sustainability. This approach, together with a focus

on cost-effective solutions, will allow the country to capitalize on its renewable energy

potential and contribute to a more economical and sustainable energy system[21].

Figure 1.2: Worldwide renewable energy consumption in 2021 [1]
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1 Introduction

Additionally, the need to lower the cost of energy has caused a steady increase in

WT size over the past few decades. However, this increases the structural strains on

the various WT components, which quickly raises the cost of maintenance. The field of

automated failure detection in WTs is rapidly developing, primarily to cut down on the

downtime and maintenance expenses of the turbine. Early anomaly detection allows the

maintenance crews to properly plan their work and, most significantly, increases the like-

lihood that catastrophic failure won’t occur. WTs can fail in a variety of ways, including

through bearing erosion, blade imbalance, aerodynamic imbalance, and mass imbalance

[2]. The state of the wind turbines must be regularly checked in order to increase the

safety concerns, reduce downtime, reduce the frequency of abrupt breakdowns and the ac-

companying high maintenance and logistic costs, and offer reliable power output. In the

WT sector, the most advanced way for establishing maintenance strategy is reliability-

centered maintenance, which comprises of preventative maintenance strategy based on

performance and parameter monitoring and subsequent actions. Condition-monitoring is

employed in this technique to establish the optimal point between corrective and planned

maintenance procedures. WTs are generally intended to work for twenty years. Time-

based maintenance, like other mechanical systems, implies that the failure behavior of

WTs is deterministic. Three failure modes essentially explain the failure characteristics

of WT mechanical systems. Figure depicts a hypothetical failure rate vs time in a

mechanical system, where

β <1 indicates a falling failure rate,

β = 1 represents a steady failure rate,

β > 1 represents an increasing failure rate

Figure 1.3: The bathtub curve [2]
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1 Introduction

• The number of fault increases linearly with the increase of size of wind turbines.

There are many components in the wind turbine which is subjected to various

faults with low to high severity.

• To the context of our work, the faults based on wind turbine rotor blades such as

mass imbalance is discussed.

• The electrical system, control system, hydraulic system, sensors, and rotor blades

are five component groups that, according to a 15-year review of 1500WTs, account

for 67% of WT failures. This is illustrated by the pie chart[2].

Figure 1.4: Percentage of faults per components [2]

• The various components posses different level of faults which can be rectified by

the turbine itself after restarting and some needs longer downtime of the turbine.

Particularly, the 19% of rotor blades fault have longer downtime compared to other

components since the manual power, logistic power and maintenance cost is very

high.

• Fischer et al [22] found that only 15% of WT failures account for 75% of yearly

downtime. This outcome supports the findings of Haln et al [23] on the average

failure rate and downtime per component. The results of this study are also in

line with those of Crabtree et al. [24], who evaluated failure rates and downtime

for various WT components using data from surveys of European wind-energy

conversion systems.
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• Figure 1.5 depicts the failure rate and downtime of various WT components.

Similar findings were obtained from the reliability and downtime statistics of the

Egmond aan Zee wind farm in Germany, i.e., the failure frequency of the gearbox

is small, but the related downtime and expenses are large; in contrast, the failure

frequency of the rotor blades is average, but the resulting downtime and costs are

high when compared to gearbox failures.

• As a result, among all components, the gearbox and rotor blades has the largest

proportion of lost electricity production [24].

Figure 1.5: Component failure rate along with downtime [2]

1.1.1 Problem Statement

• Wind turbine mass imbalance can cause considerable damage to the blades, result-

ing in lower performance and increased turbine maintenance costs.

• Traditional techniques of detecting mass imbalance rely on visual examinations and

manual measurements, which are prone to human error and can be time-consuming.

• The demand for frequent wind turbine blade inspections and maintenance is grow-

ing as the number of installed turbines rises globally, necessitating the development

of more efficient and cost-effective methods of detecting mass imbalances.

• The application of machine learning algorithms for mass imbalance identification

in wind turbines is a promising data-driven method that has the potential to cut

maintenance time and costs while also enhancing detection accuracy.

13



1 Introduction

1.1.2 Objective

The objectives of this thesis are as follows:

• To develop a data-driven approach for mass imbalance detection in wind turbines

using machine learning algorithms.

• To evaluate the performance of the model using real-world SCADA data

• To compare the proposed approach with existing methods for mass imbalance

detection in terms of accuracy, computational time, and explainability

1.1.3 Scope of the thesis

• The goal of this thesis is to provide a data-driven strategy for detecting mass

imbalance in wind turbines using machine learning techniques.

• The work has been done on two approaches, one of which uses the standard devia-

tion of blade root bending moments in the edgewise direction and mean wind speed

as input features, and the other uses the Power Spectral Density (PSD) value of

the 1p peak frequency of the rotor speed and mean wind speed as input features

with eight different mass imbalance percentages (0%, 2%, 4%, 6%, 8%, 10%, 14%,

and 18%) as output class labels.

• The final approach is tested with real-world SCADA data from Adwen AD8 wind

turbine at the Fraunhofer IWES location.

1.1.4 Research Questions

• Can a data-driven strategy based on machine learning algorithms identify mass

imbalance in wind turbines accurately?

• How does the proposed method compare to the existing approaches for mass im-

balance detection on the basis of cost-effectiveness, accuracy and speed?

• Is the suggested method applicable to different types of wind turbines and diverse

environmental conditions?

• Can the suggested method identify mass imbalance in real-time, allowing for early

identification and avoidance of future turbine damage?

• How can the suggested solution for automatic mass imbalance detection and alert-

ing be incorporated into a wind farm’s current Supervisory Control and Data

Acquisition (SCADA)?

14



2 State of the art

2.1 Wind turbine technology / Condition Monitoring

Wind turbine machines are so complex that can undergo a lot of issues particularly

in wind turbine rotor blade that includes aerodynamic imbalance and Mass Imbalance

(MI). Condition Monitoring (CM) is the process of monitoring the components of a

wind turbine to discover changes in operation that may indicate the development of a

malfunction. It is an essential part of wind turbine maintenance and operation strategy

and it is obvious that detecting errors before they occur through strong Condition mon-

itoring should result in considerable reductions in Operation and Maintenance (O&M)

expenditures of the wind turbine [5]. Condition monitoring is the practice of extracting

and analysing the data from sensors on the wind turbine operational state to detect

faults or anomalies that could be responsible for low performance of the wind turbines.

The main causes of failure in wind turbine blades are manufacturing errors and damage,

both of which are subject to environmental influences, with some kinds of local damage

degrading structural performance and propagating significantly [3].

• Wind energy industry experts utilizes condition monitoring for their predictive

maintenance thereby allowing them to conduct replacements or timely repair which

avoids long downtime and reduce maintenance cost.

• The figure 2.1 presents a breakdown of the wind turbine maintenance techniques.

Condition-based maintenance is frequently used to minimize equipment failure

or breakdown as well as to lower failure rates, which promotes high equipment

dependability. In this sense, condition-based maintenance can be used to the

maintenance of wind turbine blades

.
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2 State of the art

Figure 2.1: Condition Monitoring Process[3]

According to Fig 2.1, thorough condition-based maintenance is a process of fault

detection through data collecting, data diagnostics, and remaining lifetime prognostics

[3] The study [25] reveals that O&M costs typically account for 20% to 25% of the

total Levelized Cost Of Electricity (LCOE) of current wind power systems and that the

LCOE in onshore projects has decreased by 45% while in offshore it has decreased by

28%. Furthermore, the O&M costs of onshore projects have declined by 52% while in the

case of offshore projects, it has declined by 45%. This study highlights the importance

of limiting the maximum faults in offshore wind turbines as their maintenance is more

complex. Though this study provides a comprehensive review of recent research on wind

farm maintenance, it does not discuss the potential impact of emerging technologies such

as machine learning on wind turbine maintenance strategies.

In wind energy industry, there are many types of condition monitoring strategies are

used such as acoustic emission monitoring, vibration analysis, oil analysis, power perfor-

mance monitoring and temperature monitoring [5]. Vibration analysis is one of the im-

portant and widely used condition monitoring techniques for wind turbines. Major wind

turbine components such as rotor, generator and gearbox possess strong vibration when

the turbine undergoes any faults. As a part of condition monitoring, the imbalanced

rotor produces higher vibration levels that can be measured and analyse it and identify

the issue that causes rotor imbalance i.e., Aerodynamic imbalance or mass imbalance

of the rotor depending upon the frequency pattern of the vibration signal. Acoustic

emission monitoring is another technique used for wind turbine condition monitoring. It

detects high frequency sound waves generated by the wind turbine components during its

operational state and this technique is used for fault detection such as fractures, cracks

16



2 State of the art

and other defects that can lead to dangerous failures. Specifically, an unbalanced rotor

produces higher level of acoustic emissions that can be detected using this technique.

Condition monitoring technique such as temperature monitoring involves measuring the

temperature levels of the critical turbine components such as gearbox, generator and

bearings which can reveal issues like misalignment, bearing wear and other issues that

leads to higher repair cost. In other hand, the power performance monitoring measures

and analyse various parameters such as rotor speed, turbine’s power output curve, blade

pitch and wind speed to evaluate the efficiency and power output of the wind turbine.

This approach helps in identify issues like blade mass imbalance, aerodynamic imbalance,

and other performance related issues.

2.2 Mass Imbalance in wind turbines

One of the critical issues that affects the wind turbine performance and safety is mass

imbalance. Wind turbine blade mass imbalance can be caused by manufacturing and

construction faults, massive blade repair, fluid inclusions in the texture of the blades,

variable static moments within a blade set, rotor division mistake, fatigue, corrosion,

and icing. Because of the harmonic effects of the centre of mass being shifted from the

rotor plane axis, the rotor mass imbalance generates a vibration on the generator shaft

[26]. Wind turbines consist of various components which combined to generate electricity

from the wind resource. The components such as rotor blades, hub, generator, gearbox,

yaw systems, nacelle, tower etc which each plays a vital role in the energy production.

In this section we will discuss about the turbine components which is highly impacted

by the rotor mass imbalance of the turbine.

2.2.1 Rotor Blades

The rotor blades are the three (typically three) long, thin blades that connect to the

nacelle hub. These blades are intended to convert the kinetic energy in the wind as it

passes into rotational energy. As of 2021, the largest wind turbines being constructed in

the world are 15MW turbines. The rotor blades of these turbines are little over 115m

long. A 15MW wind turbine’s blade tips sweep through the air at about 230 mph while

operating at regular operational rates! The rotor blades play a very important role in

detecting the mass imbalance in the wind turbine rotor. As the blades rotate, having

any mass imbalance in the rotor blades will cause the blades to oscillate or vibrate. The

generated vibration can be measured by the sensors mounted on the rotor blades which

can measure the frequency of the vibrations. The abnormal vibration pattern i.e.,1p

(rotational frequency) for the mass imbalance can indicate the mass imbalance fault in

the wind turbine rotor[27]
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2.2.2 Hub

The wind turbine hub also plays a role in detecting rotor mass imbalance. The hub is

designed to balance the blade weight and ensure that the turbine rotor is symmetrical.

One of the most crucial components of a wind turbine is the rotor hub, which joins the

blades to the main shaft of the turbine and ultimately to the rest of the drive train,

which transfers mechanical rotational power from the rotor hub to the generator.

2.2.3 Generator

The gearbox’s high-speed output shaft contains rotational energy, which the turbine

generator converts into an electrical current. An electric current is formed (or ”induced”)

in a coil of wire when a magnet moves past it, according to the electrical theory of

electromagnetic induction. The two main components of the generator are the stator

as well as rotor. All the rotating pieces make up the rotor, while all the stationary

ones make up the stator. Both strategies get the same outcome: an electric current is

produced at the coils’ output. Some systems employ rotating magnets against static

coils of wire, and other systems use rotating coils of wire against static magnets [27]

2.2.4 Nacelle

The nacelle is the wind turbine’s ’head,’ and it is situated on top of the support tower.

The rotor blade assembly is linked to the nacelle’s front. A conventional 2MW onshore

wind turbine assembly’s nacelle weighs roughly 72 tons. It consists of five major compo-

nents such as Gearbox, Generator, aerodynamic braking system, mechanical braking

system and electrical power transmission systems. Nacelle’s vibration during rotor

imbalance is one of the important features for detection [27]

Many approaches for early detection of blade imbalance have been developed, the

majority of which involve specific methodologies to extract the fault characteristics in-

cluded in the vibration signal, generator current, or other factors. Various research used

various approaches to analyse the stator current or rotor current in frequency domain,

such as derivation, Hilbert envelope demodulation, dq coordinate transformation, order

tracking analysis, and so on, which can enhance the fault features while decreasing the

influence of fundamental frequency. Some defined the distinctions between aerodynamic

imbalance and rotor mass imbalance. They were able to tell them apart by using various

harmonics in the rotor speed frequency spectrum. Unfortunately, the outcome was only

proven in constant wind circumstances. Other scholars investigated the link between

blade imbalance and wind turbine vibration using finite element analysis or constructing

a computational model [28]

In [29] the author developed an algorithm for aerodynamic and mass imbalance es-

timation from vibrational measurements. The developed method uses mathematical
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model to connect the load caused by rotor imbalances to the resulting vibrations and

inverse problem of calculating aerodynamic and mass imbalances from the vibrational

data solved using nonlinear regularization theory. However, it is only evaluated with

numerical examples and to validate its performance, the testing of real-world application

with field measurements is necessary. Addition to that, the algorithm’s accuracy depends

on correct initial guess of the mass imbalance value. It should be noted that Tikhonov

nonlinear function has a possibility to have several local minima where the iteration

might stick, so it will be difficult to find an optimal initial value.

2.3 Data Driven Approaches for Mass Imbalance Detection:

In recent years, as a part of technology development, machine learning plays a pow-

erful technique to leverage the business model and been increasingly applied in wind

energy systems and particularly to detect rotor mass imbalance of the turbine. Much

research has been made and still there is lot of research have been going along with

the development of AI to improve the fault detection in an early phase to plan the

predictive maintenance strategies, but the effective fault detection method has not been

yet developed. The few important research that developed a data driven approaches

for mass imbalance detection are to discuss. Stetco et al [5]provides a comprehensive

review of the application of machine learning techniques in condition monitoring. The

authors classify the machine learning models by typical steps including data sources,

feature selection, feature extraction, model selection which includes classification and

regression, validation and decision making. According to the study, the majority of the

models employ simulated or SCADA data, with roughly two thirds of the methods using

classification method and the remaining ones employing regression[5] They identified the

need for further research in the area, especially in addressing the issue of imbalanced

data and developing the interpretable models.

One study approached a method using Support Vector Machine (SVM) to detect mass

imbalance using estimated rotor speed through a combination of electrical quantities

(currents and voltages) [30]. The proposed method showed satisfactory accuracy scores

in identifying various levels of imbalance from the SVM classes in the study of multi-class

imbalance problem. The method must be validated using more real-world data since it

was only tested on simulated data.

Another study proposed a method using convolutional neural networks to detect mass

imbalance in a 1.5MW turbine [31]. They used estimated rotor speed as an input feature

for the multi-classification problem. The study showed a proposed method achieving high

prediction accuracy for different mass imbalance levels. However, this method requires

large amount of data, and it was evaluated on a single turbine model, and further testing

on a broader range of models is needed.
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In a simplified model, another study proposed the use of support vector machines

to detect imbalances in the rotor of the wind turbines [9]. This model used mass

weight on the shaft, variable torque, and harmonic forces as a feature for the prediction.

The proposed work achieved reasonable high accuracy for predicting the different mass

imbalance level, but the study was limited to a simplified model and further testing on

real world data is needed.

In [26]they proposed a method where they have used data augmentation using deep

learning. The Convolutional Neural Network (CNN) was proposed to detect mass

imbalance in the wind turbine rotor for a multiclassification problem and used input

feature as the estimated rotor speed. A 1.5MW turbine model was created using the

Turbulence Simulator (TURBSIM), Simulink and Fatigue, Aerodynamics, Structures,

and Turbulence (FAST) software. The trained model was validated under various wind

speeds ranges between 14.5 to 24.5m/s with turbulence intensities. However, the lower

wind speed level such as 3 to 12m/s that are prevalent as it helps to differentiate the

mass and aerodynamic imbalances. The proposed method showed an improvement in

the model performance using data augmentation and fusion techniques combined with

CNN architecture.

A deep learning technique for blade imbalance fault detection caused by ice accretion

was proposed [32] Long Short Term Memory (LSTM) neural network was used along

with an attention mechanism to extract the fault signal characteristics. The results

using simulation shows that the proposed method could detect the imbalance fault with

over 98% accuracy. The difficulties with the conventional mathematical technique are

addressed in this paper, which provides a potential solution.

The fault tolerance model to reduce the failures is discussed in paper[33] which as-

sess the rising complexity of computerized systems as computer technology advances,

resulting in an increase in embedded systems that are not recognized or regarded as

computers by people. Terms like ubiquitous computing, pervasive computing, and am-

bient intelligence reflect this approach. While many embedded systems aid humans or

provide pleasure, there is an increasing number of essential applications where system

faults could endanger individuals or cause considerable harm. Researchers have long

been interested in designing robust and fault-tolerant systems to reduce the likelihood

of failures. Depending on the application and study goals, many system models have

been employed to analyze fault tolerance. The work proposes a formal fault modeling

framework and a method for behavioral analysis under specific fault assumptions in order

to contribute to the development of fault-tolerant avionics systems. The framework

allows for the investigation of fault tolerance qualities in existing systems, making it

easier to validate design ideas. The study does not intend to provide specific design

ideas or strategies for developing fault-tolerant systems[33].
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2.4 Feature Engineering Techniques

Feature engineering technique is important and crucial steps in any machine learning

model. The raw data that extracts from database has lots of noise and sometimes the

raw data information is not sufficient to train a good machine learning model. After the

data extraction and data cleaning, the feature engineering techniques will be applied to

transform the raw data into meaningful data for the model training. There are many

techniques that are used and showed a good improvement in the model’s performance

and particularly to detect mass imbalance in wind turbine blades there are domain

specific techniques such as frequency analysis contributes to most of the data driven

approaches in mass imbalance detection. In Machine Learning (ML), there are various

feature engineering techniques that can be used to process all kinds of problems.

2.4.1 Feature Scaling

Normalization: In data pre-processing, Normalization is an important step in any ma-

chine learning application.During the data preparation process, normalization is a scaling

technique used in machine learning to change the values of numerical columns in a input

dataset to use a standard scale[34]. It normally ranges between 0 to 1 and it can be

applied in cases whenever the data distribution is not Gaussian. It usually affected if

the data consist of outliers. During mass imbalance detection, sometimes the input data

will have different range across the features. The normalization technique helps to scale

down all the features to one, so the model’s performance gets increased. Standardization:

Another scaling approach is standardization, in which the values are centred around the

mean and have a single standard deviation. The distribution that results has a unit

standard deviation and the parameter’s mean changes to zero to be the end result. This

technique can be applied if data distribution follows Gaussian. It is less prone to outliers

and preserves the feature relationship [35]

2.4.2 Feature selection

Feature selection is another technique used to eliminate the less impact features with

respect to output so that the complexity of the model gets reduced when training. It

consists of three classes such as filtering. Wrapper and embedded method.

Filtering

Filtering strategies eliminate features that are unlikely to be beneficial for the model.

For instance, one can determine the correlation or mutual information between every

feature and the response variable and then filter out characteristics that fall under a

certain threshold. Examples of these strategies for text characteristics are discussed
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in Chapter 3. Filtering approaches are substantially less expensive than the wrapper

methods mentioned below, but they do not take the model into consideration. This

may prevent them from selecting the proper model attributes. Prefiltering should be

done cautiously so that beneficial characteristics are not accidentally removed before

they reach the model training stage[36].

Wrapper Method

These strategies are costly, but they allow you to experiment with subsets of features,

ensuring that you won’t mistakenly prune away characteristics that are ineffective on

their own but valuable when combined. The wrapper technique considers the model to

be a black box that delivers a quality score for a suggested feature subset. A different

strategy is used to progressively refine the subset [36].

Embedded Method

These algorithms select features during the model training phase. A decision tree,

for example, does feature selection intrinsically because it chooses one feature on which

to divide the tree at each training phase. Another instance is the L1 regularizer, that

may be introduced to any linear model’s training objective. The L1 regularizer favours

models with fewer features rather than many features, hence it is also known as a sparsity

constraint on the model. As part of the model training process, embedded approaches

include feature selection. Certainly, it is not as effective as wrapper approaches, but

they are far less costly [36].

2.4.3 Domain Specific Feature Engineering

To detect mass imbalance in wind turbine, the additional domain specific feature

engineering strategies should be applied to solve the problem. This will help to extract

the specific information needed to detect mass imbalance in the rotor blades. It includes

time domain analysis, frequency domain analysis, also the wavelet analysis along with

statistical analysis.

Time domain analysis

This method involves analysing the raw time specific vibrational data from turbine

components such as nacelle, rotor speed and wind turbine tower. This method can be

used to extract useful features such as mean, variance, standard deviation, skewness

from the raw vibrational data that represent the overall properties of the vibrational

signal. However, the time domain data will not have the useful feature to detect the
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mass imbalance since the input vibrational data has frequency characteristics that will

be accurate for prediction.

Frequency domain analysis

This method involves analysing the same vibrational signal generated by the wind

turbine components but in frequency domain. It used to extract features such as

frequency, amplitude, and frequency spectrum of the signal. To detect mass imbalance,

the 1p rotational frequency is the fault signature and thus it can be extracted and used

for training the model.

Statistical analysis

“Numbers never lie” is the best way to explain about the effectiveness of the statistical

analysis. This method involves analysing the statistical properties of the vibrational

signal. Mean and standard deviation values are very important features to represent the

raw vibrational data and the machine learning model can be able to learn the patterns

effectively if the statistical properties of the raw data are given. The auto correlation

and cross correlation features from the signal can also be used for the detection.

Hybrid techniques

This method combines one or more feature engineering techniques to extract useful

features from the vibrational data. For instance, wavelet analysis combine with

statistical analysis or time domain combines with frequency domain analysis makes

powerful technique to detect mass imbalance in wind turbines. The paper published

in advances in computational intelligence [37] ,discusses the importance of machine

learning for wind turbine fault detection. The proposed method allows autonomous

learning to predict the component failures in wind turbines. The work compares the

simulated failures with traditional techniques such as frequency analysis with SVM and

K Nearest Neighbour (KNN) methodologies. The result show that implementing these

techniques allows foreseeing a breakdown and reduces downtime and costs. In [38], a

spectral technique is proposed for detecting Wind turbine rotor imbalance using only

the rotor speed signal. The 1p frequency i.e., Rotational frequency signature was used

to indicate the presence of mass imbalance, and multiple 1p side-bands around 3p and

its harmonics were used to indicate the presence of aerodynamic imbalance. The result

showed that without installing new sensors, the mass imbalance can be detected in high

accuracy using the vibrational signal frequency of the existing components.
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2.4.4 Overview of the Thesis

The current work attempts to build a data-driven approach to predicting mass imbal-

ance in wind turbines. Section 1 of the paper gives an introduction of the trends and

significance of wind energy, followed by a comprehensive assessment of the state-of-the-

art methods for mass imbalance detection utilizing both traditional and data-driven

methodologies. The findings and limitations of each strategy are explored in depth

in section 2. Section 3 contains in-depth information about the work’s cutting-edge

technology. The tools and technologies used for data preparation, feature engineering,

and machine learning are covered in this section. Data preparation entails cleaning,

filtering, and scaling of the data. The extraction of features from input data that can

aid in the prediction of mass imbalance in wind turbines is the goal of feature engineering

techniques. The section also goes over the machine learning algorithms that are used to

predict mass imbalances. Section 4 describes the proposed approach’s implementation.

The experimental setup, including the choice of the data set, the preparation of the

data, and the application of the machine learning model, is described in detail in this

section. The performance of the proposed method is evaluated using model evaluation

criteria, which are also described in this section. The findings of the present investigation

are presented in sections 5 and 6, respectively. The outcomes show that the suggested

method can correctly forecast the mass imbalance in wind turbines. These sections also

cover the suggested approach’s drawbacks and potential future applications.
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Method Description Pros and Cons

Vibration analysis Measuring and analyzing vibration

data to detect imbalance.

Non-invasive, can

detect other problems.

Requires baseline data,

subjective analysis, not

real-time.

Acoustic analysis Analyzing sound data to detect im-

balance.

Non-invasive, can

detect other problems.

Sensitive to background

noise, requires baseline

data.

Drive train torque Measuring torque on the drive train

to detect imbalance.

Can detect specific

causes of imbalance.

Invasive, can be

expensive, requires

calibration.

Blade pitch Adjusting blade pitch to counterbal-

ance the turbine

Real-time adjustment,

can improve perfor-

mance. May not be

enough to correct

severe imbalance,

affects power output.

Machine learning Using data-driven algorithms to de-

tect imbalance.

Real-time detection,

can learn from data,

customizable. Requires

data collection and

preprocessing, requires

training.

Table 2.1: Pros and Cons of Different Methods for Detecting Imbalance
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3.1 Mass Imbalance:

Mass Imbalance (MI) may appear due to of variations in mass distribution or overall

mass of the wind turbine blade. This fault applies extra torque to the rotor. Under

ideal conditions, the three wind turbine blades are of identical quality [38]. However,

in real-world circumstances, the mass of WT blades is unbalanced owing to a variety of

causes.

• There are certain mass errors across the blades due to technical glitches in the

manufacturing process

• Wind turbine blades will be corroded because it exposes to harsh environments for

a long time due to turbine instalments in complex location.

• Also, during extreme weather conditions for an example dust or cold weather, the

blades will be covered with ice or dust. If it accumulates to a certain level, then

the mass imbalance may occur [32]

• Mass imbalance can also occur as a result of damage or wear and tear on wind

turbine blades over time. This can be caused by lightning strikes, blade erosion,

or weariness from repeated stress of the component.

• The implications of mass imbalance can be significant, resulting in decreased energy

output in some cases, greater mechanical stress on wind turbine components, and

serious safety issues due to large structure. As a result, it is critical to discover

and treat this issue as soon as possible.

• Mass imbalance can create extra torque on the rotor system of the wind turbine,

putting more strain on the blades and other components.

• In contrast, aerodynamic imbalance refers to a state in which the airflow across

the turbine blades is not uniform, resulting in uneven forces and moments on the

blades.

While both mass imbalance and aerodynamic imbalance can impair wind turbine

performance, they are caused by different factors and necessitate different detection

and mitigation approaches. In this work we have focused on mass imbalance

detection in the wind turbine blades.
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Figure 3.1: Wind Turbine Model[4]

Assume that this wind turbine is three bladed. Each blade may be equated to a

mass block with a mass of mi, and a distance of ri from the hub centre. Gi and Fi

represents each blade’s gravity and centrifugal force, respectively. Each of these blades

are equally affected by gravity and centrifugal force under typical circumstances. The

rotating torque of the rotor is unaffected because the centrifugal force crosses the hub

centre’s axis perpendicularly. Since the three blades are geometrically symmetric, the

torque produced by their combined gravitational attraction is zero while the rotor rotates

at angular velocity wv [4].

The equation is:m1gr1 sin(ωt) +m2gr2 sin (23π + ωt) +m3gr3 sin (43π + ωt) = 0 (3.1)

When a blade mass imbalance fault happens, the mass of one or more blades gets

higher, which can be interpreted as the existence of mass imbalance m in a blade. The

distance to the hub centre is R; the block spins with the blade at an angular velocity, w;

as shown in Figure 3.2, the force experienced by the mass block during rotation consists

mostly of gravity, mg, and centrifugal force, Fm[4]. The wind turbine transmission

system is going to cause vibration along the main shaft due to gravity and centrifugal

force. Because the tower’s vertical stiffness is high, it will mostly generate periodic

vibration of the blade and other structures in the horizontal direction [4]
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Figure 3.2: The Factor Affecting the Wind Turbine Model[4]
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The equivalent mass block, m, spins at w with the blade, and the gravitational torque

it generates can induce oscillations in the rotational speed of the main shaft. As seen in

Figure 3.3, the mass imbalance accelerates the rotational speed of the main shaft during

the downward revolution from top to bottom and decelerates the main shaft during the

upward rotation from bottom to top. Figure 3.3 depicts a schematic illustration of a

single WT blade’s mass imbalance [4]

Figure 3.3: The Mass Imbalance Model[4]

According to [39], a significant number of blades were tested that were created under

correct environmental circumstances and overseen by the certification organization Det

Norske Veritas (DNV-GL) to assure excellent quality, and the blade mass varied with

a coefficient of variation of 2.1%. In this research, we have added a simulated mass

imbalance to one of the blades with 2%,4%,6%,8%,10%,14% and 18% mass with respect

to ideal mass of the wind turbine. The mass imbalance can be detect using two important

features such as rotor speed and blade root bending moments addition to the variable

wind speeds. To reflect the real-world scenario, the turbulence wind speed of 9.5% was

introduced. By generating turbulence and shear, the change in wind with time and space

over the rotor plane is represented. Turbulence is the uneven motion of the wind that

causes both temporal and spatial variations in wind speed. Turbulence is a relatively

random phenomena due to the extremely irregular motion of the wind and variations over

multiple time and length scales, introducing a stochastic aspect to the wind conditions.

The intensity of turbulent flow is defined as the ratio of the standard deviation of wind

speed to the mean wind speed [40]

I =
σ

v
(3.2)
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where, I is the turbulence intensity, σis the standard deviation of wind speed and v is

the mean of wind speed.

3.2 Power Spectral Density

In machine learning life cycle, the feature engineering is the most important steps to

work on. For mass imbalance detection in wind turbine, the time domain data is the

initial format since SCADA stores sensor’s data in time domain. In our approach, when

using rotor speed feature, the vibrational data of the rotor speed should be measured.

Converting time domain to frequency domain is the efficient way for the vibrational

data to extract the frequency content of the signal. As we discussed, the specific

frequency content such as 1p frequency (rotational frequency of the turbine) should

be extracted. Depending upon the wind turbine nature, the 1p frequency will change

but our wind turbine has 1p frequency at 0.14hz. So, if peak frequency of the signal

present in rotational frequency, then we can conclude that the wind turbine is prone

to mass imbalance. Another blade fault such as aerodynamic imbalance possess peak

frequency at 3p frequency of the turbine.

Spectral analysis is the technique of finding the frequency elements of a continuous-

time signal in the discrete-time domain. The majority of natural occurrences may be

quantitatively described by random processes. As a result, the primary goal of spectral

analysis is to determine the PSD of an arbitrary process. The power is the Fourier

transform of a stationary random process’s autocorrelation sequence. The PSD is a

function that measures the distribution of total power as a function of frequency and so

plays a critical role in the understanding of stationary random processes[41]. The power

spectrum is also useful for detecting, tracking, and classifying periodic or narrowband

phenomena buried in noise [42]. The PSD consist of various methods in mass imbalance

detection using machine learning.

The periodogram was first used to look for underlying periodicities in sunspot data.

The periodogram can be computed using one of two approaches. The indirect technique

is one way. In this method, we first compute the autocorrelation sequence r(k) from the

data series x(n) for -(N-1) <=k<=(N-1), and then compute the Discrete Time Fourier

Transform (DTFT)[42].

Periodogram: PPER(f) =
∑N−1

k=−N+1 r
[k]e−j2πfk

Direct definition: PPER(f) = 1
N

∣∣∣∑N−1
n=0 x[n]e−j2πfn

∣∣∣2 = 1
N |X(f)|2

New frequencies: Df = {fk : fk = k
N , k = 0, 1, 2, . . . , (N − 1)}
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Periodogram with zero-padding: x′[n] =

{
x[n], 0 ≤ n ≤ N − 1

0, n ≥ N

New set of frequencies: D′
f = {fk : fk = k

N , k ∈ {0, 1, 2, . . . , (N − 1)}}

Periodogram with zero-padding: PPER(fk) =
1
N

∣∣∣∑N−1
n=0 x′[n]e−j2πkn/N ′

∣∣∣2 , fk ∈ D′
f

3.3 Welch’s Method

Another estimator that makes use of the periodogram is the Welch technique [43].

It is based on the same concept as the Bartlett method of segmenting the data and

calculating the average of their periodogram. The distinction is that the segments

overlap, and the data within each segment is windowed. If a sequence x(n) of length N

is segmented into K subsequence, each with a length L and a D-sample overlap between

the neighbouring subsequence, then [42]

N = L + D(K - 1)

where N is the total number of samples examined and K is the total number of

subsequences[41]. It is worth noting that if there is not any overlap, K = N/L; if there

is 50% overlap, K = 2N/L− 1. The ith subsequence is defined as follows:

xi(n) = x(n+ iD), 0 ≤ n ≤ L− 1; 0 ≤ i ≤ K − 1

and its periodogram is given by,

P i(f) = 1
L

∣∣∣∑L−1
n=0 w(n)xi(n)e

−j2πfn
∣∣∣2

Because the samples x(n) has been weighted by a non-rectangular window w(n), Pi(f)is

the adjusted periodogram of the data; the Welch spectrum estimate is consequently

provided by,

P̂Wel(f) =
1

KC

∑K
i=1 P̂

i(f)

where C is the normalization factor for power in the window function given by

C = 1
K

∑K−1
n=0 w2(n)

[41] Which has shown that the variance of the estimator is.

V ar(P̂Wel(f)) ≈

{
1
KP 2(f) for no overlapping
9
8KP 2(f) for 50% overlapping and Bartlett window
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By permitting subsequence overlap, more subsequence’s can be created than in the case

of Bartlett’s technique. As a result, the periodogram analysed by Welch’s will have less

variation than the periodogram evaluated by Bartlett [42]. In our approach, we have

used Welch’s PSD technique to extract 1p frequency of the rotor speed time varying

signal to detect mass imbalance in the wind turbine since it reduces the variance of the

periodogram and provide high resolution estimate of the PSD signal.

3.4 Machine Learning Algorithms

Once feature engineering of input data is completed, then we have an input data which

is having useful features by eliminating the noise in the data to train machine learning

model to prevent overfitting. In our mass imbalance detection problem, in the approach

of using rotor speed and wind speed, the transformed input data is 1p frequency of the

rotor speed and its according wind speed. The output features are the mass imbalance

percentage class labels. The two primary responsibilities of machine learning for the

identification of problems in wind turbines are the fault classification and the anomaly

detection. This method enables early failure detection, aiding in the quick implementa-

tion of corrective actions, significantly raising the system’s degree of dependability and

security [37]. ML consist of two types such as supervised learning and unsupervised

learning. The supervised learning consists of output class labels which is mapped to the

input data whereas unsupervised learning does not have class labels and it classifies only

using its input data. In supervised learning, there are two types such as regression and

classification and unsupervised learning consist of clustering.

Figure 3.4: The Types of Machine Learning[5]

In wind energy context, both supervised and unsupervised methods of ML is used

to solve the problem but widely used one among them is supervised learning method.

In this method, we have two types such as regression and classification which will be
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based on the nature of the dataset. While classification algorithms aim to predict a

class label, regression techniques aim to predict a continuous variable. We evaluate the

accuracy of models for classification and regression differently [43]. In wind turbines,

the classification is used for the fault detection problem such as mass imbalance, aero-

dynamic imbalance in wind turbine blades and other components such as drive train.

It classifies the output in binary or multi class labels which corresponds to the faults

using various sensor components data. However, the regression is used to predict the

continuous state of the component such as predicting the power output in kilowatts of

the wind turbine based on rotor speed, wind speed, blade angles etc. so the two types

of supervised machine learning is based on nature of the problem. The fig 3.5 represents

the overview of how SCADA data is used for both classification and regression methods.

In mass imbalance detection using rotor speed and wind speed as an input feature,

the 1P frequency signal is extracted with its wind speed during the feature engineering

techniques which is discussed before. And for blade root bending moments as an input

feature, calculating the standard deviation of the bending moments and its corresponding

mean wind speed. The nature of the problem is multi-classification since the multiple

mass imbalance labels should be detected using machine learning. The next important

step is choosing the ideal machine learning classification algorithm for our dataset. The

fig 3.6 represents the entire machine learning algorithms used for both supervised and

unsupervised methods.
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Figure 3.5: The Machine Learning Methodologies[5]
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As you can see in fig below, there are many numbers of options to train the model and

also it is time consuming and bad idea to try all of them. So, we should narrow down

the list of algorithms depending upon 1. Objective of the project 2. Data availability

and its type 3. Good performance on relevant metrics such as multi-classification 4.

Explainability and Interpretability 5. Scalability and computational resources

Figure 3.6: Various Types of Machine Learning Algorithms[6]

3.4.1 Algorithm1 – Logistic Regression Classifier

Logistic regression is a supervised machine learning technique that is mostly used for

classification problems, with the purpose of predicting the likelihood that an instance

belongs to a specified class. Its term is logistic regression, and it is utilized for

classification methods. It is called regression because it takes the output of the linear

regression function as input and estimates the probability for the given class using a

sigmoid function[7].

Terminologies Involved in Logistic Regression
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Independent variables: The input features or predictor factors used to make predictions

for the dependent variable. The dependent variable in a logistic regression model is the

one that we are attempting to predict. The equation used to depict how the independent

and dependent variables relate to one another is known as the logistic function. The

logistic function converts the input variables into a probability value between 0 and 1,

representing the possibility that the dependent variable will be 1 or 0[7] Odds are the

ratio of something happening to something not happening. It differs from probability in

that probability is the ratio of anything happening to everything that could happen[7].

Log-odds: The natural logarithm of the chances is the log-odds, commonly known as

the logit function. The log chances of the dependent variable are represented as a

linear mixture of the independent factors and the intercept in logistic regression. The

predicted parameters of the logistic regression model illustrate how the independent

and dependent variables relate to one another. Intercept: In the logistic regression

model, a constant factor that reflects the log chances when all independent variables are

equal to zero. Maximum likelihood estimation: A technique for estimating the logistic

regression model’s coefficients that maximizes the likelihood of witnessing the data

given the model[7]. The logistic regression model converts the continuous value output

of the linear regression function into categorical values output by employing a sigmoid

function, which transfers any real-valued collection of independent variables input into

a value that ranges from 0 and 1.

Figure 3.7: Logistic Regression Model[7]

Let the independent input features be.
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X =


x11
x21
...

xn1

x12
x22
...

xn2

· · ·

x1m
x2m
...

xnm


Y =

(
0
)
if Class is 1, and

Y =
(

1
)
if Class is 2.

In this equation, x i is the ith observation of

X,wi = [w1, w2, w3, · · · , wm]

is the weights or Coefficient, and b is the bias factor, commonly referred to as the

intercept[7].This may be stated simply as the dot product of weight and bias.

Z = wX + b

The above discussed concept is linear regression and now we apply sigmoid function

where input will be z and we should find the probability between the range 0 and 1

that is our dependent feature for the problem. Figure 3.7 shows sigmoid function that

converts continuous variable into probability between 0 and 1.

• Sigma (z) towards 1 as z is infinity.

• Sigma (z) towards 0 as z is – infinity.

• Sigma (z) bounded between 0 and 1 class.

The probability of any one class is measured by:

p(X; b, w)

1− p(X; b, w)

Natural log is applied to the odds, then odds will be

log

(
p(X; b, w)

1− p(X; b, w)

)
Then the equation of logistic regression will become,

log

(
p(X; b, w)

1− p(X; b, w)

)
= β0 + β1X1 + · · ·+ βpXp

The logistic regression’s likelihood function states that the predicted probabilities will

p(X; b, w) = p(x) for y = 1, and for y = 0 the predicted probabilities would be 1 −
p(X; b, w) = 1− p(x).
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Logistic regression makes the following assumptions

• Observations that are independent of one another: Each observation is independent

of the other. This means that there is no association between any of the input

variables.

• Binary dependent variables: It assumes that the dependent variable must be binary

or dichotomous, which means that it can only have two values. Soft Max functions

are utilized for more than two class such as multi-classification which is applied on

our mass imbalance detection problem where we have more than two class.

• Linearity between independent variables and log odds: The connection between

the independent variables and the dependent variable’s log odds should be linear.

• No outliers: The dataset should have no outliers since logistic regression is prone

to outliers.

• Large sample size: the number of samples must be sufficient.

There are two types of logistic regression such as binomial logistic regression and multi-

nomial logistic regression. Binomial refers to binary class such as mass imbalance or no

mass imbalance and multinomial refers to more than two class such as predicting different

percentage of mass imbalance for our problem. When we consider multi-class, the Soft

Max activation function should be used rather than using sigmoid function which is for

binary class. Only when a decision threshold is introduced into the equation does logistic

regression become a classification approach. The threshold value is an important feature

of Logistic regression and is determined by the classification Problems itself.

3.4.2 Algorithm 2: KNN classifier

The k-Nearest Neighbours (KNN) algorithm is one of the simplest and popular machine

learning algorithms used for classification problem. In our research, the mass imbalance

detection consists of different output classes which can be detected by applying KNN

algorithm. And also, the mass imbalance detection problem will hugely be affected by

class imbalances when training such as one class is having more majority samples than

other classes and so. This issue can be eliminated by implementing under sampling,

oversampling and synthetic sampling techniques.

• Under sampling: To equalize the number of data points in each class, it entails

removing data points from the majority class.

• Oversampling: It is the practice of reproducing data points from the minority class

in order to equalize the quantity of data points in every class.
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• Synthetic Minority Over-sampling Technique (SMOTE): It is an approach for

producing synthetic data points for the minority class [44]

KNN learning algorithm is non-parametric. Unlike other learning algorithms, which

enable discarding training data once the model is created, KNN preserves all training

samples in memory. When a new, previously unseen example x arrives, the KNN algo-

rithm chooses k training instances that are closest to x and delivers the majority of the

label in classification or the average label in regression. A distance function determines

the proximity of two samples. For instance, the Euclidean distance shown above is

commonly utilized in practice. When the angle across two vectors is 0 degrees, the

vectors point in the same direction, and cosine similarity equals 1. The cosine similarity

is 0 if the vectors are orthogonal. The cosine similarity for vectors pointing in opposing

directions is 1. To utilize cosine similarity as a distance measure, we must multiply it

by 1. Chebyshev distance, Mahalanobis distance, and Hamming distance are some more

prominent distance measures.

• The Euclidean distance is a distance metric used to determine the distance across

two data points in n-dimensional space [45].

• A second distance metric used to estimate the distance across the two data points

is the Manhattan distance. It calculates the distance by adding the absolute

differences between the two positions’ coordinates.

• The Minkowski distance generalizes the Euclidean and Manhattan distances. It

can be expressed as the nth root of the sum of the absolute distances among the

two points increased to the power of n [1]. It signifies the Manhattan distance

when n=1 and the Euclidean distance when n=2 [45].

The researcher takes the decision on the metric of distance in addition to the value

of k prior executing the algorithm.[find out] The value of k, which specifies the total

number of nearest neighbours to consider, is likewise a hyper parameter that must be

adjusted for any given situation. If k is too little, the method becomes susceptible to

noise and outliers in the data, whereas if k gets too big, the algorithm underfits the data

and produces unsatisfactory results. To determine the ideal value of k, cross-validation

methods especially k-fold cross-validation could be utilized [45]. The few important

points to consider when we use KNN classifier:

• One of the simplest supervised machine learning algorithms is K-Nearest Neighbour

• The K-NN method assumes commonality among the new case/data and current

instances and places the new instance in the category that is most similar to the

existing categories.
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• The K-NN algorithm has been used for both regression and classification, however

it is more commonly utilized for classification tasks.

• K-NN is a non-parametric method, which means it makes no assumptions about

the underlying data.

• Because it maintains the dataset and subsequently acts on it during classification,

this method is often referred to as a lazy learner since it is unable to immediately

learn from the training set.

Despite all the positives, there are some disadvantages that makes KNN one step lower

to other classification algorithms when dealing with mass imbalance detection.

• As the dataset increases, the computational complexity is high and therefore the

KNN works slow for bigger datasets.

• Also, as the input features increases, then KNN struggles to predict the data points

which ultimately leads to curse of dimensionality.

• Since it is dependent on distance, all features should be in same scale.

• Choosing the optimal K value is challenging when new data point is introduced.

• As we discussed earlier, KNN struggles when input data is imbalanced because it

gives priority to majority class which will become a wrong prediction.

• KNN is very sensitive to outliers since its choses its neighbours according to dis-

tance [46]

3.4.3 Algorithm 3: Random Forest

One of the widely used supervised machine learning algorithm is random forest due to its

ease of use, simplicity and high accuracy by combining multiple decision trees to classify

the data. It is a powerful algorithm that can be used for both classification and regression.

The Random Forest technique generates a forest of decision trees, with each tree based

on a portion of the training data. The decision trees then categorize the data separately,

and the outcome of each tree is merged to generate the final classification result. Random

Forest is more accurate and less susceptible to over fitting than a single decision tree

when numerous decision trees are combined [8]. To boost classification accuracy, the

Random Forest method employs two essential techniques: bagging and random feature

selection. Random forest employs bagging, often referred to as bootstrap aggregation,

as an ensemble method. Bagging selects a random sample/random subset of the data

set at random. As a result, each model is constructed using the samples (Bootstrap

Samples) supplied by the Base Data using row sampling. This stage of row sampling
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with replacement is referred to as the bootstrap. Every model is now trained individually,

yielding outcomes. After merging the findings of all models, the final outcome depends

on a majority vote. Aggregation is the process of integrating all of the findings and

producing output based on majority voting[47] [8].

Figure 3.8: Ensemble Techniques[8]

Random feature selection, on the other hand, picks a subset of features at random

for each decision tree. Random forest can lessen the danger of over-fitting and boost

classification accuracy by merging the outputs of numerous decision trees constructed

on various subsets of data and characteristics.

Feature Importance in Random Forest

Another important quality of random forest is they support feature importance

technique. It helps to find which features are important for our prediction and the

less important one can be eliminated after considering the domain aspects. In our mass

imbalance detection problem, we have used rotor speed, blade root bending moments and

variable wind speed as an input feature for the prediction and after the interpretation of

feature importance technique, we could justify the importance for the prediction. This

may be accomplished by examining how much impurity is reduced across all trees in the

forest by tree nodes that employ those features. After training, it computes this score

automatically for each feature and adjusts the findings such that the total importance

equals one.
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Hyper Parameters in Random Forest

The hyper parameters which is responsible for increasing the predictive power

• n estimators: The number of trees built by the algorithm before averaging the

predictions[47].

• max features: The maximum number of features considered by a random forest

while splitting a node.

• mini sample leaf: Counts the number of leaves needed to separate an internal

node[47].

• Criterion: How should each tree’s node be split? (Log Loss/Entropy/Gini impu-

rity)

• max leaf nodes: The number of leaf nodes in each tree [8]

The hyper parameters which is responsible for increasing the predictive power

• n jobs: this informs the engine how many processors it may utilize. If the value is

1, it can only utilize a single processor; if the value is -1, there is no limit.

• random state controls the unpredictability of the sample. If the model has a fixed

random state and is fed the same hyperparameters and training data, it will always

deliver identical outcomes.

• oob score: OOB stands for out of the bag. It is a random forest cross-validation

approach. In this case, one-third of the sample is not utilized to train the data but

rather to assess its performance[47]. These are referred to as out-of-bag samples

[8]

Advantages

• Wind turbine mass imbalance detection is taken as a classification and regression

problem, and the random forest technique can be employed well for both of this

purpose.

• By employing a majority vote or averaging strategy to create the result, the algo-

rithm helps to avoid over-fitting of the model, which is an important issue in wind

turbine mass imbalance detection.

• In the context of wind turbines, the SCADA data might frequently have null or

missing values owing to a variety of factors such as sensor malfunction, calibration

error and the algorithm can manage such data without impacting its performance.
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• The algorithm’s parallelization characteristic is especially helpful in the case of

wind turbines since it allows for faster processing of massive volumes of data.

• The algorithm’s reliability is critical in identifying mass imbalances in wind tur-

bines since it gets its output from the average answers given by a large number of

trees, making it less vulnerable to noise and oscillations in the data.

• The algorithm’s variety is also effective in detecting mass imbalance since it facil-

itates the evaluation of various attributes while creating each decision tree.

• Due to the enormous number of attributes in wind turbine input data, the algo-

rithm’s ability to limit the feature space by not evaluating all of the attributes is

useful in such instances.

Disadvantages

• It is computationally expensive and needs more processing power when dealing

with large number of datasets which will be especially the case of mass imbalance

detection where we deal with large wind turbine datasets.

• The performance can be sensitive to the choice of hyper-parameters we choose

during training.

• It is less interpretable which can be highly disadvantage for the mass imbalance

detection in wind turbine where explainability is important [8]

3.4.4 Algorithm 4: Extra-trees Classifier

Another tree-based ensemble type algorithm is extratreesclassifier. It is built on

decision tree as a base model, and it is almost similar to random forest algorithm

with few important differences that make extratreesclassifier as a powerful and effective

algorithm for mass imbalance classification problem. It is an acronym that stands for

”Extremely Randomized Trees Classifier” and is used to do regression and classification

problem. At training time, it constructs a large number of decision trees and outputs

the class that is the mode of the classes (classification). Extra-Trees Classifier is similar

to RandomForest Classifier since it both shares the ensemble properties, but it creates

decision trees in a different method. When selecting a split point for a feature in Extra-

Trees Classifier, the split point is picked totally at random from the range of potential

values for that feature compared to the best split in random forest. This increases the

unpredictability of the model, which can assist prevent over-fitting. The Extra-Trees

Classifier is a meta-estimator that employs averaging to increase prediction accuracy

and reduce model over-fitting. It fits a number of randomized decision trees (also known

as extra trees) to different sub-samples of the dataset. It features a number of hyper-

parameters that may be tweaked to enhance the model’s performance. N estimators,
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criteria, max depth, min samples split, min samples leaf, and max features are a few

of these hyper-parameters which are almost the same as the random forest hyper-

parameters [9]

Advantages

• It can handle binary and multi-class classification problems, which is suitable for

the identification of the different levels of mass imbalance.

• The ability to work with imbalanced datasets helps in detecting the mass imbalance

fault, which may occur at a relatively low frequency.

• Provides high accuracy, precision, recall, and F1 score, which are important metrics

for identifying the mass imbalance fault with high confidence.

• Its ensemble method resists over-fitting and enhances generalization performance.

• The low variance of the algorithm helps in providing consistent performance across

different datasets, which is important for mass imbalance detection.

• The algorithm is computationally efficient and can process large datasets in a rea-

sonable amount of time, which is important for real-time mass imbalance detection

applications.

• It can handle noisy or irrelevant features, which is important since the wind turbine

dataset may contain irrelevant features that could affect the performance of other

algorithms.

Disadvantages

• The better performance of the model depends on carefully choosing the model’s

various hyper-parameter values for the specific problem.

• Depending upon the length of datasets, there will be the bias and variance trade-

off. To achieve the ideal balance between bias and variance, determining the ideal

number of trees for a particular dataset might be crucial.
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Figure 3.9: Performance of ExtratreesCassifier Model[9]

3.4.5 Algorithm 5: Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning approach that may

help with both classification and regression problems. It seeks an ideal boundary known

as a hyperplane between distinct classes. SVM performs advanced data transformations

based on the kernel function specified, and it seeks to maximize the partition boundaries

between your data points based on those kernel transformation. SVM attempts

to identify a line that optimizes the separation among the two-class data set of 2-

dimensional space points when there is a linear separation[10].

Objective of SVM

• The goal of SVM is to find a hyperplane in an n-dimensional space that optimizes

the separation of data points to their actual classes.

• Support Vectors are data points that are nearest to the hyperplane and have the

shortest distance to it.

As an example, The three points positioned on the scattered lines in the following dia-

gram are the Support Vectors such as 2 blue and 1 green, and the separation hyperplane

being the central red line[10]
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Figure 3.10: Support Vectors[10]

A kernel function is used in the computation of data point separation. There are

several kernel functions, including Sigmoid, Polynomial, Gaussian, and Radial Basis

Function. The smoothness and effectiveness of class separation are determined by

these functions, and changing with these hyper-parameters may result in over-fitting or

under-fitting of the model[48] Normally, SVM supports binary classification problems by

splitting the binary support vectors with its hyperplane. To handle multiclass problems

the same technique should be applied by breaking down the multiclass problem into

multiple binary class problems[48] The following are some prominent ways for doing

multi-classification on issue statements using SVM:

• One vs One approach

• One vs Rest approach

• Directed Acyclic Graph approach
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One vs One Approach

This approach breaks down the multi-class problem into multiple binary classification

problems. After applying this technique, the binary classifier per each pair of classes are

obtained.It uses majority voting for final predictions along with the distance from the

margin. The problem we face in this approach is to train many SVM models. Assume

the mass imbalance problem having multi-class nature[10] For the s, t classifier:

• Positive samples are all the points in class sxi : s ∈ yi

• Negative samples: all the points in class t (xi : t ∈ yi)

• fs, t(x): the decision value of this classifier

• ft,s(x) = −fs,t(x)

• Prediction: f(x) = argmaxs (
∑

t fs,t(x))[10]

Figure 3.11: multiclass seperation[10]

We require a hyperplane to separate every two classes in the One-to-One technique,

ignoring the points of the third class. This signifies that the present split takes solely

the points of the two classes into consideration. The fig represents the separation of
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hyperplane for multi-class where red and blue line tries to maximize the separation only

in between blue and red point classes only not the green point classes[48].

Figure 3.12: One vs One Approach[10]

One vs Rest Approach

We aim to find a hyperplane to split the classes in the One vs All strategy. This

indicates that the separation considers all points and separates them into two groups,

one for the points of one class and the other for all other points. In this work, N

SVMs were utilized to learn binary classification problems. Each SVM is trained to

learn a single class of output. SVM-1, for example, is trained to learn the class output

equal to 1 versus the class output not equal to 1. Similarly, SVM-2 is trained to learn

the class output equal to 2 versus the class output not equal to 2, and so on. This

method allows for multi-class classification by dividing the challenge down into N binary

classification tasks, with each SVM learning to identify one class from the others. There

are a number of issues with training N number of SVM model using the One-vs-Rest

approach that must be resolved. First off, as more classifiers must be trained, the OVR

strategy’s computing complexity rises as the number of classes does. This can result

in longer training periods and more computing resource requirements, which in certain

48



3 State of the technology

circumstances may be a practical restriction. The OVA technique has the potential to

produce uneven class distributions, especially if the amount of training samples for each

class is not equal. In a mass imbalance dataset with 8 classes, for instance, if each class

contains 120 training samples, then for every SVM trained using the OVR approach,

one class will have 680 samples while the other class would only have 120 samples. As a

result, the classifier could not have enough information to understand the characteristics

that set that class apart from the others, which could result in poor performance on the

class with fewer samples[48][10].

Figure 3.13: One vs Rest Approach[10]

Several ways have been suggested to tackle these issues, such as employing data

augmentation methods to enhance the amount of the smaller classes or class weighting

algorithms to award larger weights to the minority class while training. Furthermore,

sophisticated approaches like the One-vs-One strategy and the Error-Correcting Output

Codes strategy can be utilized as alternatives to the OVR strategy to train multi-class

SVM classifiers. These solutions try to solve some of the shortcomings of the OVR

strategy and may be better appropriate for particular types of datasets. Therefore,

using the mentioned two methodologies, to categorize the data points from the L classes

data set:
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• The classifier in the One vs All technique can employ L SVMs.

• The classifier in the One vs One technique can employ L(L-1)/2 SVMs.

Directed Acyclic Graph

This strategy is more hierarchical in structure, and it attempts to overcome the

difficulties of the One vs One and One vs All approaches. This is a graphical strategy

in which we group the classes based on some logical grouping[10].

• Benefits: This strategy has fewer SVM trains than the OVA approach and lowers

variation from the majority class, which is a concern with the OVA approach.

• challenge: If we have given the dataset in the form of distinct groups, we can

directly use this strategy; however, if we do not supply the classes, then the

challenge with this approach is identifying the logical grouping in the datasets[10]

Advantages of SVM

• SVM is a well-known binary classification technique that may be adapted to mul-

ticlass classification issues using approaches such as one-vs-all and one-vs-one.

• Because SVMs are less prone to over-fitting of the model, they are more resistant

to noisy and high-dimensional data.

• With the application of kernel functions, SVMs can handle both linear and non-

linear decision limits.

• SVMs have already been used effectively in a variety of real-world scenarios such as

wind turbine fault diagnostics and prognostics including mass imbalance detection.

Disadvantages of SVM

• SVMs are computationally expensive to train the model on big datasets, especially

when kernel functions are used.

• SVM effectiveness can be affected by the hyper-parameter selection of the model,

such as kernel and regularization parameters.

• SVM may not be suitable for severely unbalanced datasets in which one class has

considerably having majority than the other class.

• Because the decision boundary is often expressed as a complex function of the

input variables of the data, SVM can be difficult to comprehend.

• SVMs are not designed to handle missing or partial number of data, and managing

such scenarios may call for additional preprocessing of the data.
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3.5 Model Validation

The above machine learning models are tuned by its individual hyper parameters to get

the better performance of the model, but the model’s performance should be validated to

have the generalized performance score during testing. Therefore, such model validation

technique is called cross validation where data will be splitted to multiple folds and do

the train on each fold and average the performance of each fold and gives the generalized

accuracy of the model. We usually have to split the input data into train, validation

and test set. The train data is to train the model, validation set is to tune the hyper

parameters and know the model’s performance on new unseen test data and test data

is to test the model’s performance and it is known as hold-out validation. But there

is a catch. When the input data is limited (few thousands or hundreds of samples)

the splitting the data into three sets is not a good choice since each set will have only

fewer samples which may impact the model’s performance by not having enough data.

Especially, the mass imbalance detection problem is having limited dataset after the

intensive feature engineering techniques such as extracting 1p peak frequency of the

rotor by averaging every 10minutes samples and calculating the standard deviation of

blade root data for every 10minutes from millions of input samples. This issue will be

highly eliminated by using cross validation techniques. A cross-validation is a frequent

approach that might aid you when you don’t have a good validation set to adjust your

hyper-parameters. When there are few training instances, having both validation and

test sets may be prohibitively expensive. You would want to train the model with more

data. In this situation, you simply divide the data by training and test set. The training

set is then cross validated to replicate a validation set. There are few types of widely

used cross validation techniques which can be employed to our model such as

• K-fold cross-validation

• Hold-out cross-validation.

• Stratified k-fold cross-validation

• Leave-one-out cross-validation.

3.5.1 K-Fold Cross Validation

The whole dataset has been divided into k equal-sized sections with this approach, and

each partition is referred to as a fold. It’s called k-fold because it has k pieces, where

k can be any integer such as 4,5,10 etc. One-fold is utilized for validation, while the

remaining K-1 folds are used to train the model. This procedure is done k times until

each fold is utilized once as a validation set and the other left outs as a training set [49]

In our model, we tested out with five and ten fold cross validation and found five-fold
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cross-validation is the best k value for our model. With five-fold cross-validation, your

training data is randomly divided into five folds: F1, F2,..., F5. Each Fk, k = 1,. . . ,5

represents 20% of your training data. Then you train the following five different models

[11] To train the first model, f1, all instances from folds F2, F3, F4, and F5 are used

as the training set, while every instance from fold F1 is used as the validation set. The

instances from folds F1, F3, F4, and F5 are used to train the second model, f2, and

the examples taken from F2 are used as the validation set. You create models in this

manner continuously, computing the value of the measure of interest on each validation

set, from F1 to F5 [11].

Figure 3.14: Cross Validation Techniques[11]

The k-fold cross validation is not performing well when input data consist of imbal-

anced datasets where the model fails to train effectively on each class. In mass imbalance

detection problem, there may be an imbalanced dataset since it deals with multiple mass

imbalance classes and choosing the k-fold is entirely depends on nature of the balance.

3.5.2 Hold Out Cross Validation

The whole dataset is randomly partitioned into a training set and a test set in holdout

cross-validation. A good rule of thumb for data partitioning is to utilize almost 70%

of the total dataset as a training set and the remaining 30% as a validation set or 80%

for training and 20% for testing. Because the dataset is divided into only two sets, the

model is trained on training set and test using test set [49] Also, the hold out validation

can be splitted into three parts such as train, validation and test set where validation set

is used to tune the hyper-parameters of the model. This validation set is splitted from

the training set and it is unseen to the model so the performance on this set tells how

well the model is generalized to the new unseen test data. The ratio of splitting will be
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60% of training set, 20% of validation set (80% train split is further splitted by 60-20)

and 20% for test set. It is highly effective when there are enough samples for each set.

Figure 3.15: Hold Out Validation - Train/Test Split[11]

Figure 3.16: Hold Out Validation - Train/Validation/Test Split[11]

3.5.3 Stratified K-fold Cross Validation

To overcome the data imbalance issue in traditional K-fold cross validation, the stratified

K-fold cross validation is introduced. This method ensures that every fold contains

almost the same proportions of classes such that each fold will have an exact data

representation and therefore the model’s performance evaluation is effective among all

classes in the data [49].
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3.5.4 Leave One Out Cross Validation

As the name suggests, the model is validated by leaving one sample at a time and train

the model on remaining samples and this process is done iterative to all the samples in

the data. Since it leaves only one sample at a time, it is computationally expensive when

the input data is very large [49].

Figure 3.17: Leave One Out Cross Validation[11]

3.6 Hyperparameter Tuning

As we discussed about the hyper-parameters for the model in previous section, we

then discuss about the techniques to perform hyper-parameter tuning. There are two

types of techniques available such as random search and grid search to find the optimal

parameters for the model to improve its performance.

3.6.1 Random search

As the name suggests, the Random search technique will search the best mentioned

parameters randomly. Since it picks the parameters randomly, it is more efficient and

faster method compared to grid search technique especially when there is many hyper-

parameters to tune the model.

3.6.2 Grid search

Meanwhile, the grid search technique will search each and every combination of hyper-

parameters for tuning instead of random pick. It is an effective method compared to

random search which is not always find the optimal value at random, but grid search

is highly computational expensive since it selects all the parameters to find the best

combination while searching especially when there is many hyper-parameters.
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Figure 3.18: Grid Search vs Random Search[11]

In both techniques, cross validation is employed to validate the model performance

for each combination of parameters. In mass imbalance detection techniques, we used

K fold cross validation of k= 5,so each fold out five folds will be assigned by every com-

bination of hyper-parameters to find the optimal one when we use grid search, whereas

for the random search, the randomly picked best combination of hyper-parameters will

be employed.

3.7 Classification performance metrics:

Once the model is trained and tested with new unseen test data, now is the time to

evaluate the model’s performance. Since the mass imbalance detection problem is multi-

classification in nature, we have to concentrate on classification metrics. There are

various metrics to evaluate the performance of the classification model such as [12] 1.

Confusion matrix 2. Accuracy 3. Precision score 4. Recall score. 5. F1 score

3.7.1 Confusion Matrix

The Confusion matrix is one of the most simple and straightforward metrics for deter-

mining the accuracy as well as the correctness of the model. It is utilized for classification

problems where the result might be of binary or multi-classification classes. It is then

comparing the predicted labels with the actual true labels and provides the summary

of how well it actually classifies. It helps to measure the number of true positives, true

negatives, false positives and false negatives.
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• True positives (TP): True positives are when the actual class label is 1(True) and

the predicted is also 1(True).Ex. The wind turbine is having a mass imbalance

and the model also classifies that it has mass imbalance.

• True Negatives (TN): True negatives occur when the actual class of a data point is

0 (False) and the projected class is likewise 0 (False). Ex. The wind turbine NOT

having mass imbalance and the model classifies that it has NO mass imbalance.

• False positives (FP): False positives occur when the actual class of a data point is

0 (False) while the projected class is 1 (True). Ex. The wind turbine NOT having

mass imbalance, but the model classifies that it has mass imbalance.

• False Negatives (FN): False negatives occur when the actual class of a data point

is 1 (True) while the projected class is 0 (False). Ex. The wind turbine is having

mass imbalance, but the model classifies that it has NO mass imbalance.

3.7.2 Accuracy

In classification problems, accuracy is defined as the number of correct predictions pro-

duced by the model over all types of predictions made. Accuracy can be considered as

a good metric when the input data is almost balanced.

Accuracy =
TP + TN

TP + TN + FP + FN

3.7.3 Precision Score

Precision is defined as the percentage of accurately classified positive events. It is the

ratio of actual true positive class to the overall predicted positive classes.

Precision =
TP

TP + FP

3.7.4 Recall score

It is the ratio of actual true positive class to the overall true classes. For mass imbalance

detection, we have to obtain better recall score since the scenario like having mass

imbalance in wind turbine and the predicted is not having no mass imbalance should be

avoid mass imbalance in wind turbine and the predicted is not having no mass imbalance

should be avoided [12]

Recall =
TP

TP + FN
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3.7.5 F1 score

F1 score: It is the harmonic mean of precision and recall. In multi-class classification

model, the F1 score for each class can be calculated individually and then averaged to

yield the model’s overall F1 score. Based on the application, there are several methods

for computing the average value.

• Micro-averaged F1 score: In this technique, F1 scores are computed separately for

each of the class and then averaged using this formula:

F1micro =
2× TPtotal

2× TPtotal + FPtotal + FNtotal

• Macro-averaged F1 score: In this technique, F1 scores are computed individually

for each of the class and then averaged using this formula:

F1macro =
1

k

k∑
i=1

F1i

F1Score = 2× Precision×Recall

Precision+Recall

Figure 3.19: Terminologies of Confusion Matrix[12]
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3.8 Flask Framework

Once the machine learning model was built, it is necessary to create an application

where the end user can make use of the machine learning model for various purpose

such as predicting the mass imbalance in wind turbines. One of the popular and ease

of use python web framework is called Flask. It helps to build web applications easily

and also supports flexibility for building machine learning applications via Restful API.

Flask is a WSGI framework. It refers to the Web Server Gateway Interface. Essentially,

this is a method for web servers to route requests to web apps or frameworks. Flask

runs on the WSGI external library and the Jinja2 template engine [13] The fig 3.20

represents the methodologies of flask application. Here, the trained machine learning

model is exported to pickle file format and this file will be exposed to flask framework

to get the prediction result. The front end is developed using front end framework such

as HTML / CSS for the simple yet user friendly design. Once the user gives their input,

the REST API call will be made to obtain the results from flask which is having the

trained machine learning model as its back-end. Finally, the results obtained from the

flask framework via REST API call will be shown at the front-end application [13].

Figure 3.20: The Infrastructure of Flask Framework[13]

This project is divided into four sections:
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• model.py — This file includes the machine learning model’s code for predicting the

mass imbalance in wind turbines.

• app.py — This file contains Flask APIs that accepts input SCADA data of AD8

via GUI or API requests, compute the anticipated value based on our model, and

return it.

• request.py — This module calls the APIs provided in app.py and presents the

results.

• HTML/CSS — This includes the HTML template and CSS style to allow the

user to enter SCADA data in .csv file format and display the percentage of mass

imbalance in wind turbine if exist.

Advantages

• Flask is a lightweight, flexible and ease of use framework which can be used by

beginners to develop small to medium scale projects.

• It offers various extensions and libraries for the developers that makes easy to

upscale the framework by adding new kinds of functionality.

• For machine learning applications, Flask framework is an excellent choice for build-

ing RESTful API’s.

• It provides plenty of support and resources for building the applications.

Disadvantages

• Flask is not a good choice when we build more complex and larger applications

because it is difficult to manage the workflow.

• It offers less out of the box functionality than frameworks in large scope ex. Django.
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The input data is simulated from Adwen AD8 wind turbine model, which is located

at Fraunhofer IWES, Bremerhaven. The reason behind using the simulation data is to

having output labels for the input features since the SCADA data doesn’t have enough

information on ground truth of the data. To train supervised machine learning, the

input data must contain output class labels therefore, the input data is simulated from

Adwen AD8 model with same attributes that makes the behaviour of input data as

equal as SCADA data which helps model to learn more complex pattern and obtain

better prediction on mass imbalances. The research work has done on two approaches.

4.1 Mass Imbalance Detection Techniques

4.1.1 Impact

As we already know that mass imbalance is the relative variation of mass among the

turbine blades due to manufacturing error and harsh environmental conditions, it has

little to no effect on the power curve, but it modifies the loading and vibration pattern,

placing an extra periodic load on the blades with a frequency equal to the frequency of

rotation of the turbine on the tower and the drive train. These periodic stresses have a

substantial impact on the fatigue life of the wind turbine components.

4.1.2 Detection

Mass imbalance is defined by the existence of periodic fluctuation in loads measured at

the blade root and also in the rotor speed of the turbine.

The AD8 input data and feature engineering process is distinct in both techniques

to get the most out of each feature, although the input data sampling frequency, wind

speeds, and output class labels are the same throughout simulation modeling. The goal

of this study is to detect mass imbalance in the AD8 wind turbine with high accuracy

using SCADA test data using a trained machine learning model learned on simulation

data, as they both have the same statistical features.The fig shows the overview of

detection process for approach 1.
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Input Data

Feature Engineering

Technique (PSD

technique to extract

1p peak frequency)
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Extratreesclassifier

Model Training

Hyper-parameter

Tuning using

Grid Search CV

Model Validation

using CV=5

Model Evaluation
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4.2 Approach 1: Rotor Speed and Wind Speed

Feature Description

Fault Signature 1p Peak frequency signal (rotational frequency) at 0.14hz

Input Features Rotor speed (rpm) and Windspeed (m/s) Ranges from 4m/s

to 20m/s with turbulence intensity 9.5%

Sampling Frequency Fs=100Hz of 10 minutes period

Class Labels Mass Imbalance levels – 0, 2%, 4%, 6%, 8%, 10%, 14%, and

18%

Feature Engineering

Technique

Power spectral density Welch’s method is used to convert time

to frequency domain and extract PSD values of 1p peak fre-

quency as an input. (1p=0.14hz)

Table 4.1: Summary of Input Features, Class Labels, and Feature Engineering Technique

for the Mass Imbalance Fault Signature Dataset for the Approach 1

The detection process consists of few parts such as The input simulation data from

AD8 turbine model such as rotor speed in rpm and wind speed in m/s ranges from 12m/s

to 20m/s with turbulence intensity of 9.5%. The quantity of input data samples is in

millions since each mass imbalance percentage is measured against each different wind

speeds and each simulation has 10 minutes of samples with sample frequency of 100 Hz.

The fig 4.1 represents the 1minute time series representation of the rotor speed to have

better visualization. For detection, we only use 10minutes samples as discussed earlier.

Figure 4.1: Time Series Signature of Rotor Speed AD8 Data
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The input data is then extracted from the simulation model and performed the ex-

ploratory data analysis where we have checked whether the input data has any missing

values and also the balancing nature of each mass imbalance output classes. The noise

in the data is not exist because we have simulated in the nature where there is no class

imbalance and no missing values. Then the million samples of input data are employed to

perform the feature engineering techniques to transform the input data into meaningful

way to detect mass imbalances. After careful research, as we discussed earlier the time

domain data is converted into frequency domain data since time domain doesn’t consist

of enough information when dealing with vibration of the rotor speed. It is suggested

to convert to frequency domain since it contains power of the signal. This process is

performed by power spectral density of Welch’s method. The fig 4.2 represents the

frequency spectrum of the rotor speed where the peak frequency is equal to 1p frequency

of the turbine. Thereby it is proved that the wind turbine is affected by mass imbalance.

Figure 4.2: 1p Frequency of the Signal

The different level of mass imbalance is developed such as 0,2%,4%,6%,8%,10%,14%

and 18% and it is labelled as each output classes for the input data to predict. The fig

4.3 represents the 2% deviation from the base mass of the blades. The blue coloured

spectrum represents the balanced rotor that is no mass imbalance and orange coloured
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spectrum represents the 2% mass imbalanced rotor. The data analysis is performed to

check whether the mass imbalance percentages are correctly simulated. The same is

followed for all other mass imbalance percentages.

Figure 4.3: PSD Plot of Mass Imbalance 2%

After the data analysis and feature engineering, the input data with useful information

for prediction is obtained. The domain knowledge of wind energy is needed to perform

feature engineering techniques. Now, the input data after transformation is consist of

1p peak frequency PSD values and wind speed ranges from 4m/s to 20m/s. After the

transformation, our input has 4000 samples from raw data which has in millions. The

input data is then splitted into train and test set using hold-out cross validation method

which is essential for machine learning model. After careful consideration, the split we

have used is 80% for train and 20% for test. Another popular splitting such as 70%-30% is

also used to check the best split for the model and we have seen that 70-30 split performs

poorly compared to 80-20 rule since the input data sample is limited, the training data

should have more samples to train effectively. Therefore, we have considered 80-20 split

for our model. The various machine learning classification algorithm is used to train the

model such as
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• Logistic regression

• KNN classifiers

• Support Vector Machine

• Decision tree

• Random forest

• Extratreesclassifier

These models are selected based on following criteria such as

• Objective and quantity of input data since less input data samples won’t be effective

to train neural network model and the feature engineering performed by domain

knowledge person is needed instead of automatic process in deep learning models.

• Computationally efficient since predictive maintenance should perform as quickly

as possible.

• Explainability and interpretability of the model since the black box model does

not gives enough information of how the model works which could be an issue if

we don’t know which parameters are responsible for mass imbalance detection.

Section 3 discusses the definitions of all the algorithms. Before training, the model is

fine-tuned using hyperparameters using the grid search cross validation approach. Each

model has its own set of hyperparameters, which are chosen based on extensive machine

learning knowledge. Because it is a tree-based ensemble approach for classification,

Extratreesclassifier and random forest share the same hyperparameters. To discover

the best possible pair of hyperparameters for the mass imbalance model, the following

hyperparameters are chosen and trained using grid search cross validation.

Hyperparameters Values

n estimators 100, 200, 300, 400, 500

max depth 5, 10, 15, 20

min samples split 3, 6, 9

max features Log2, Auto, Sqrt

Table 4.2: Hyperparameters and their Corresponding Values

The table 4.2 depicts vaious parameters that is used to customize the extratreesclas-

sifier model’s hyperparameters. The grid search cv technique is then performed to
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this parameters with a cross validation value of 5, thus the grid search will find the

best possible pair of parameters for each fold of data by taking into account all of the

parameters and printing the best pairings for our model to train the model. Grid search

CV chooses the following hyperparameters for the extratreesclassifier model. Once the

Hyperparameters Values

n estimators 200

max depth 10

min samples split 3

max features Log2

Table 4.3: Grid Search Hyperparameter Values

hyperparameters are determined, a machine learning model, such as extratreesclassifier,

is trained on the parameters to achieve the best results. The training accuracy after

training the model is 90%, indicating that the model was properly trained and did not

overfit the data. The trained model is then evaluated on a 20% split unseen test set in

which the model is not visible during the training phase. The test accuracy measures

the model’s performance on unseen data, which is significant in machine learning. The

model scored 89% test accuracy for unseen test data with multiclass of more than three

classes, which is a very excellent result. The fig 4.4 represents the multiple classification

models which is trained and tested on our data and found out extratreesclassifier model

is the best fit model for our mass imbalance detection problem. The figure depicts

the top performing models, which include extratreesclassifier, random forest, LGBM

classifier, KNN Classifier, and bagging classifier, in which decision tree, KNN, and

extratreesclassifier models are bagged. Logistic regression is the worst performing model

for two reasons.

• Due to the intricacy of the dataset, the logistic regression model may be more

difficult to fit appropriately.

• It does not support the multi-classification problem; even when we try to fit the

model with 8 classes, we receive the bad result displayed in the picture below.
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Figure 4.4: Trained Multiple Classificaion Models

The method employs PSD values of 1P peak frequency obtained from rotor speed data,

has been trained on 15 separate classification algorithms that have been independently

trained, tweaked, and tested. When the performance of the algorithms is compared, it is

said that extratreesclassifier exceeds all other methods by obtaining 89% accuracy. The

trained model is then evaluated again with SCADA test data from the wind turbine,

and it slightly under performs in the majority of the unseen test samples. It is because

the wind turbine demonstrated at Fraunhofer IWES, Bremerhaven, is less susceptible to

1p vibrations where a maintenance firm that performs maintenance on the onsite wind

turbine already measures and reports these data in a log sheet.As a result, the trained

model may be utilized as a stand-alone model that can forecast mass imbalance with

high accuracy (based on the simulation test accuracy assumption) when tested with new

wind turbine data in the future.
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Input data PSD values of 1p peak frequency

of AD8 wind turbine model, wind

speed ranges from 12m/s to 20m/s

with turbulence intensity of 9.5%.

Best performing model af-

ter hyper-parameter tun-

ing

Extra-trees Classifier

Accuracy Training – 90%, Test- 89%

Limitations Real world testing is still needed be-

cause the available SCADA data is

less prone to vibrations.

Output class labels 0, 2%, 4%, 6%, 8%, 10%, 14% and

18% of mass imbalance.

Table 4.4: Summary of Approach 1

4.3 Approach 2: Blade Root Bending Moments and Wind

Speed

We followed the same procedure as in the prior method, with a few exceptions. We used

data from the blade root sensor to forecast the mass imbalance in the wind turbine.

The blade root sensors, represented by MxBRi, MYBRi, and MzBRi, can measure the

bending moment at the blade root around the local x, y, and z axes. The advantage

of these sensors is that they enable the identification of faults from 10-minute average

quantities, which are easier to manage and process faster than high-resolution instanta-

neous time-series data from the previous approach, which requires a more sophisticated

data management system due to the large volume of data. These sensors provide a

way for obtaining this information directly from the averaged readings, while spectral

analysis employing high resolution time-series can assist in determining the presence of

imbalances. The reason for selecting this characteristic as an input feature is because

anytime a mass imbalance develops in a wind turbine, it causes an extra periodic moment

at the blade root in the edgewise direction. Ultimately, the extreme values and standard

deviation of the edgewise moment increases whereas the blade root’s torsion and flap

wise moments are mostly unaffected. The edgewise bending moment at the blade root

of our AD8 wind turbine is MxBRi, the flapwise bending moment is MyBRi, and the

torsional bending moment is MzBRi. It is not the default axis for all wind turbines,

hence it may vary depending on the turbine.
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Mass Imbalance Fault Sig-

nature

Standard deviation of the rotation

of the blades gets increased

Input Features Blade root bending moments in

edgewise direction, Wind-speed

(m/s) ranges from 4m/s to 20m/s

with turbulence intensity 9.5%.

Sampling Frequency Fs=100Hz of 10 minutes period

Class Labels Mass Imbalance levels – 0, 2%, 4%,

6%, 8%, 10%, 14% and 18%.

Feature Engineering Tech-

nique

Calculated standard deviation of

the blade root bending moments

with 10 minutes interval in edgewise

direction, mean of the correspond-

ing wind speed.

Table 4.5: Input Features, Class Labels, and Feature Engineering Technique for Detect-

ing Mass Imbalance Faults in Wind Turbines

As previously stated, there will be an extra periodic moment in the edgewise direction,

which is indicated by its extreme values and standard deviation; the axis MxBRi should

be examined for our problem to discover the mass imbalance. The block diagram of

approach 2 is shown above. The MxBRi, or the blade root bending moment in the

edgewise direction, was obtained from millions of data samples from the AD8 wind

turbine model and the standard deviation of the bending moments was determined using

10minutes average amounts. The related mean value of wind speed is also determined.

The output class labels are the same as in the previous method, which is a mass imbalance

percentage of 0,2,4,6,8,10,14, and 18. It is obvious that the blade root measurements

(MxBR) will only represent the influence of mass imbalance in the edgewise direction.

The edgewise moment on the blades is caused by gravity, and the tangential force by the

wind, which rotates the rotor, according to a force analysis of the blades. The influence

of gravity on the edgewise moments reduce as the wind speed increases because the load

due to gravity does not increase with wind speed whereas the tangential force does.

Therefore, it is anticipated that the mass imbalance would be more noticeable at low

wind speeds. The fig 4.5 represents the scatter plot of the standard deviation of bending

moment samples with wind speeds. To obtain better representation, the samples were

averaged by 1min quantities but for training the model we use only 10minute samples.
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Figure 4.5: Standard Deviation of Bending Moments for all Three Blades

The graph illustrates that when wind speed rises, the standard deviation of blade root

bending moment of blade 2 increases while other blades decrease. It is evident that blade

2 has a mass imbalance among the blades, and the procedure is continued based on these

discoveries. As We now know that blade 2 has a mass imbalance, we determined the

difference in standard deviation of blade root bending moment of blade 2 from the other

two blades.The features are

• Mx2-Mx1

• Mx2-Mx3

The numbers are calculated because the machine learning algorithm will find better

patterns for predicting mass imbalances, such as the difference in standard deviation of

bending moment between damaged and unaffected blades.
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Figure 4.6: Correlation Matrix of the Features

The correlation matrix represents the correlation between the features which ranges

from 0 to 1. The correlation value near to 1 means highly correlated and value near

to 0 is less correlated. If any two input features are highly correlated, then dropping

any one feature is feasible since they both shares the same information with the output

class label. Here, the input feature such as blade Mx2 std and wind speed have average

correlation also blade2 blade3 diff and wind speed have the correlation value of 0.45.

If we see the correlation between input feature and output feature, the feature such as

blade2 blade1 diff and mass imbalance have correlation value of 0.64 which means the

input feature blade2 blade1 diff is contributing more to the output class mass imbalance.

Also, it should be noted that there is no straight relation between wind speed and mass

imbalance which is proved here by having correlation value of 0.00099. The input data

is then splitted into train and test using holdout validation by 80-20 rule. The machine

learning algorithm such as tree-based algorithm does not need scaling of the data since

it uses tree to find the patterns by splitting the nodes as deep as possible. Also, it
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supports feature importance which gives the highest score possible to the feature which

contributes to the prediction followed by the least as 0 to highest as 1. The fig 4.7

represents the feature importance of the input data.

Figure 4.7: Feature Importance of the Input Features

The fig 4.7 shows that blade2 blade3 diff feature is having highest importance in

prediction of mass imbalance followed by blade2 blade1 diff. The wind speed feature

is having least importance in predicting the mass imbalance since wind speed is not

directly relates to mass imbalance. It is must to check the balance quality of output

class label before training the model. If the data is imbalanced then balancing technique

or train model which supports class imbalance should be applied. In our data, we have

8 different class label such as simulated mass imbalance percentages, and it should have

near to equal amount of data to have the better prediction. If any one of the classes has

more amount of data, then the machine learning algorithm will assign higher priority to

the majority class and leaves the minority class with lesser priority that leads to biased

prediction, and it should be avoided. The fig 4.8 shows the representation of output

mass imbalance classes with its count. It ensures our input data has no class imbalance.
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Figure 4.8: Class Balancing Nature

The fig 4.8 depicts the output classes balancing nature, and it is discovered that the

data does not have any class imbalance since each output class shares the same number

of input samples. As a result, the data is now ready for training the machine learning

model, as there is no noise in the input data. We employed the same machine learning

classification techniques as in the prior approach because the nature of the issue and

dataset are almost identical. The data was trained on 15 different algorithms, and it was

discovered that the random forest method and extra-trees classifier produce better results

than other models. Then we chose these two models and did hyperparameter adjustment

to get the optimum model for mass imbalance prediction. Because random forest and

extra-trees classifier have the same hyper-parameters, they are frequently referred similar

which is shown in table 4.6. Grid search cross validation is then applied to these hyper-

parameters to find the best possible pairs for the model. The cross validation is applied

to evaluate the model’s performance using the different pairs of hyper-parameters. The

final chosen hyper-parameters using grid search cv is as shown in table 4.7.

The following hyperparameters are then used to train the model to check whether the

model´s performance is increased or not and, in our case, there is a minor improvement in
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Hyper-parameters Values

n estimators 100, 200, 300, 400, 500

max depth 5, 10, 15, 20

min samples split 3, 6, 9

max features Log2, Auto, Sqrt

Table 4.6: Hyper-parameters and their Corresponding Values

Hyper-parameters Values

n estimators 200

max depth 15

min samples split 3

max features Auto

Table 4.7: Hyper-parameters Chosen by Grid Search

the model´s performance which may be crucial in predicting the mass imbalance in real

world. Finally, the model is tested with the test set and achieved the overall accuracy of

90% in random forest and 89% in extratreesclassifier. The fig 4.9 shows the performance

of fifteen different classification algorithms. After the careful consideration, we have

chosen extratreesclassifier over random forest since predictive maintenance strategies

needs to perform as quickly as possible. So, the extratreesclassifier is computationally

efficient than random forest when it is trained on huge datasets. Also, apart from

accuracy other metric such as precision, recall and f1 score also considered while choosing

the best performance model. Further the trained model is tested again with SCADA

data, and it successfully classified the 141 samples as mass imbalance of 8% out of 144

test samples.
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Figure 4.9: Trained Multiple Classification Models

Input data Standard deviation of blade root

bending moment in edgewise direc-

tion, wind speed ranges from 4m/s

to 20m/s with turbulence intensity

of 9.5%.

Best performing model af-

ter hyper-parameter tun-

ing

Random forest / Extra-trees classi-

fier. But preferred extra-tress clas-

sifier due to its efficient computa-

tional resource.

Accuracy Training – 91%, Test- 90%

Predictions on SCADA

Data

Classified with 98% accuracy..

Output class labels 0, 2%, 4%, 6%, 8%, 10%, 14% and

18% of mass imbalance.

Table 4.8: Summary of Approach 2
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Once the final model is trained and tested with its best pairs of hyperparameters, it is

necessary to validate and evaluate the model´s performance. To avoid overfitting and

have better generalization, the model is validated by k-fold cross validation with k=5.

The fig 5.1 represents the cross-validation process of our dataset.

Figure 5.1: Cross Validation plot for MASS Imbalance Model

The fig 5.1 is plotted the input sample size in x axis and number of cross validation

folds in y axis. Since k =5, the training samples of around 700 is undergone cross

validation by splitting as 5folds. The 140 input samples of each fold is used to train the

model and the remaining will be assigned as a test or validation fold.The proces will
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be iteratively performed and each fold´s accuracy is combined and calculated the mean

accuracy which serves as the best possible accuracy the model can obtain. It is very

useful when the input data is less and can obtain better accuracy by train-test split.

The next important step of any machine learning process is to evaluate the model´s
performance by performance metrics. Since our mass imbalance detection is multiclass

problem, the model is evaluated using classification metrics such as accuracy, precision,

recall and f1-Score. Also, one of the important classification metric is confusion matrix

where it describes how much samples are correctly classified the actual class and how

many doesnot. The fig 5.2 represents the confusion matrix of the model.

Figure 5.2: Confusion Matrix of Extratreesclassifier Model

The fig shows that the mass imbalance percentage such as 0,2,4 and 6 of all the samples

are correctly classified and the remaining mass imbalance classes are slighly misclassified.

This is because of not having enough samples to test the data. The misclassification is

due to lesser number of test samples compared to lower mass imbalance level samples.

Also, in real world scenario the above 10% may not be exist in all the cases and it

is only measured and calculated for research purpose. In most of the cases, accuracy
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alone won´t give the better representation of the model so we have to consider other

metrics such as precision, recall and f1-score. Choosing the metrics is very important and

it is done after the understanding of the problem´s objective. In some cases precision

should be important and for other cases, recall is important and maintaining the tradeoff

between these two metrics is very important in any machine learning model. In mass

imbalance detection problem, having better recall score is important because the scenario

like actually having mass imbalance in the wind turbine and the model predicts the wind

turbine has no mass imbalance is the bad scenario which should be avoided. The fig 5.3

represents the classification report of our model which consist of accuracy, precision

score, recall score, f1-score and support. The term support refers to number of test

samples used for prediction.

Figure 5.3: Classification Report
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The classification report shows that extratreesclassifier performs really well on test

data an achieved 88% as precision score, 89% as recall score, 88% as f1-score for the

total test sample size of 173. The recall score is higher than precision which serves the

need of the mass imbalance prediction research. Now, the trained model is further tested

using unseen SCADA test data to predict the mass imbalance.Since SCADA data has

no ground truth, it is difficult to evaluate the model with classification metrics which

compares the actual vs predicted. Once the model is tested using SCADA test data, the

model predicts 141 samples as mass imbalance of 8% out of 144 samples. This result

is further investigated by the site enigneers at Fraunhofer IWES about the authenticity

of the classification results. Also, we have tested the trained model using new unseen

simulated test data and the model was able to classify the mass imbalance classes with

97% accuracy.

Accuracy with test data split using

hold out validation

90%

Accuracy with newly simulated

AD8 test data

97%

Accuracy with SCADA test data

without having ground truth

98% (accuracy is calculated based

on correctly classified vs incorrect

classification) and the authenticity

of the result is evaluated by site en-

gineers.

Table 5.1: Accuracy Measurements for Different Test Datasets

Once the model has been trained and evaluated, it is exported as a pickle file, which

the flask framework uses to build a machine learning application. The same preparation

procedure is repeated inside the flask app by importing the pickle file containing the

extratreesclassifier model. The front end web page is built using HTML/CSS and has

a user-friendly style, allowing the user or maintenance team member to simply input

the SCADA data of the wind turbine in csv file format to obtain the mass imbalance

prediction result. Because of its easy and interactive design, this application is intended

for both technical and non-technical users. The figure 5.4 depicts a mass imbalance

detection application built using the Flask framework and a RESTful API.
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5 Results and discussion

Figure 5.4: Mass Imbalance Detection Application

5.1 Limitations

• While the findings obtained are outstanding, they are restricted to the statistical

features of the training wind turbine data. Furthermore, it can predict reasonably

and this model’s ability to classify when the attributes change is due to Extra-

treesclassifier’s low variance property.

• As a result, in order to enhance accuracy further, the model must be retrained on

new test data.

• The legitimacy of the test accuracy on SCADA data is checked by site engineers

because we do not know the ground truth, which may be subject to human error.
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6 Conclusions

• The study revealed the importance of machine learning algorithms in wind turbine

predictive maintenance applications. The model built in this work outperforms the

state-of-the-art methods on an 8-class multiclassification task, obtaining excellent

accuracy.

• The study revealed the importance of machine learning algorithms in wind turbine

predictive maintenance applications. The model built in this work outperforms the

state-of-the-art methods on an 8-class multiclassification task, obtaining excellent

accuracy.

• It takes fewer computing resources and time than comparable models, making it a

cost-effective predictive maintenance option.

• One of the model’s primary advantages is that no additional sensors are required,

making it simple to integrate into current wind turbine systems.

• The model is also more explainable and interpretable, making it easier for stake-

holders to comprehend and share the results.

• Furthermore, by obtaining excellent accuracy on real-world SCADA test data, the

model has proved its robustness and generalizability.

• Although there are still limits and more research needed to increase the accuracy

and generalised results, the study’s findings have provided useful insights for the

future research, utilizing machine learning algorithms in predictive maintenance

applications.

• Finally, this thesis has proved the use of machine learning techniques in predicting

mass imbalance in wind turbines.

6.1 Future Work

• More number of data should be collected in the future to increase the model’s

accuracy.

• Also, depending on the nature of the input data, investigate different machine

learning approaches to increase the model’s performance on the data. Consider
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6 Conclusions

additional factors that may affect wind turbine performance because of mass im-

balance.

• Retrain the model on a variety of data, including different turbines and operating

circumstances, to generalize the process for unseen turbines.

• This procedure will assist the model in learning the characteristics that are shared

by all other turbines and will increase its capacity to predict the maintenance

requirements in other turbines.
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heiro, “Mass imbalance diagnostics in wind turbines using deep learning with data

augmentation,”ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg,

vol. 9, Jun. 2022.

[27] E. Follower, “Wind energy: An introduction.” https://energyfollower.com/

wind/. [Online; accessed May 11, 2023].

[28] Z. Cao, J. Xu, W. Xiao, Y. Gao, and H. Wu, “A novel method for detection

of wind turbine blade imbalance based on multi-variable spectrum imaging and

convolutional neural network,” Jul. 2019.

[29] J. Niebsch, R. Ramlau, and T. T. Nguyen, “Mass and aerodynamic imbalance

estimates of wind turbines,” Energies, vol. 3, pp. 696–710, Apr. 2010.
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