TECHNISCHE UNIVERSITAT
CHEMNITZ

Visualization of Crash Channel

Assignments in a Tabular Form

Master Thesis

Submitted in Fulfillment of the
Requirements for the Academic Degree

M.Sc. in Automotive Software Engineering

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Krishna Pooja Parthanarayanasingh
Student ID: 673220
Date: 21.04.2023

Supervising tutors: Prof. Dr. Dr. h. c. Wolfram Hardt, Dr. Ariane Heller
Supervisor from Robert Bosch GmbH: Marcus Lehmann

Acknowledgements

I would like to express my sincere gratitude to the people who have supported me in my
journey of this thesis work. I’d like to thank Prof. Dr. Wolfram Hardt for providing me with
the opportunity to do my master thesis in the Chair of Computer Engineering at Chemnitz
University of Technology. I’d like to thank my supervisor, Dr. Ariane Heller for her support
at all times. She always answered my questions in solving organizational issues at each
milestone, and guided me with her feedback. I’d like to convey my utmost gratitude to my
external supervisor, Mr. Marcus Lehmann for giving me the opportunity to do my thesis at
Robert Bosch GmbH. I°d like to thank him for his trust in my abilities, valuable insights, and
his constant support from the very beginning to the end. Last but not the least, | would like to
express my heart-felt gratitude to my parents who made this path possible for me. I’d like to
thank my brother for his support at all times. A big thank you to my family for their
confidence in me and all the encouragement which has helped me throughout this journey.
Many thanks to each of you for being there at every stage and making all of this possible.

Abstract

Passive safety systems try to lessen the effects of an accident. Airbags are a passive safety
feature. They are designed to protect occupants of a vehicle during a crash. These systems
have to be configured correctly in order to deploy airbags at the right time in case of a
collision. Airbag application tools are used to simulate and interpret crashes. Some factors
influence when an airbag should deploy. Based on different parameters, the logic for firing
airbags is also different. Under every circumstance, an airbag has to be deployed at the right
time in order to prevent injuries and fatalities. During the process of simulation, the data
which is simulated is written to a database. During interpretation, this data is extracted from
the database. Then, the required information can be analyzed and interpreted for further use.
This data contains crash related information. For example, the type of crash, crash code and
crash channel assignments. For every crash present in the airbag project, crash channels are
assigned to the sensors. Each sensor present has a crash channel assigned to it. This is called
the crash channel assignment. An airbag application tool is developed to show the crash
channel assignments. This tool should handle the information extraction, and visualization of
crash channel assignments. The final output should be in a tabular format, which includes user
specific customizations.

Keywords: Passive Safety, Airbags, Application Tools, Crash Channel Assignments

Table of Contents

AADSTIACT. ... bbb 3
Table OF CONTENLS ...ttt 4
LSE OF FIQUIES. ...ttt bbb bbbt b bbb b ene s 6
LISE OF TADIES ...ttt bttt abe e 8
LiSt OF ADDIEVIALIONS ...ttt bbb 9
1 INEFOAUCTION ..ottt b bbb eb e 10
1.1 BACKGIOUNG ..ottt 13
1.1.1 Detailed Overview of AIrDags.........ccociiiiiiiiiiiie e 13
1.1.2 Crash Channel ASSIGNMENTS.......cccoiiiiiiiiieiee e 20

1.2 MIOTIVALION....ciiiiiiee et bbb b ettt ettt 21
1.3 Problem SEateMENT........coiiiiiiiiie e 22
1.4 Organization 0f the REPOITccoviiiii e 22

2 SHALE - OF = ThE = ATt 24
2.1 AITDAGS ..ot 24
2.2 ReCent DeVEIOPMENLSooiiiiiiieieiee e 30
2.3 SUIMMIAIY c.iiieeiiiie et ettt st e et e e e se e et e e e bs e e e te e e e te e e anbeeeenbeeesnbeeesnbeeennbeeennneeans 39

3 Airbag ApPlCation TOOISc..ciiieiie it 40
3.1 GENEIAl OVEIVIBW ...ttt bbbttt et bbb 40
3.2 Existing Methodology to Visualize Crash Channel Assignments............cccccevvenee. 43
3.3 SUMIMANY .t bbbttt e e bbb 46

4 New Methodology to Visualize Crash Channel AsSignments............ccccovvvevieiieeiiiecinnns 47
4.1 DIfferent APPrOACNES........cciiiie ettt et sb e sre e 47
4.2 Overview of the MethodolOogycccooueiiiiiiiiiie e 51

G T O] (01T o) SO RP PR 53

4.3.1 INformation EXTrACtiONccoeiviiiiiiiiiiieiee e 53
4.3.2 INtErMEMIALE STEPS .. .oveiieeieeiieieiert ettt bbb 56
4.3.3 FINAI STEP ..t 61

L TV 1 111 1T LY SO P R PPRI 63

5 IMPIEMENTALIONeiiiiiccie e e e re et enre e e e rs 65
5.1 Overview of the Implementationcccoveiieiiiie i 65
5.2 Stages Of IMPIemMENtAtiONccooiiiiiieiiiiiie e 67
5.2.1 Extracting Assignment INFOrmationccoceviiiiiniiniiieese e 69
5.2.2 Storing the Assignments to a File and Applying Styles ... 72
5.2.3 Conversion of the File to a Tabular FOrmcccoeviiiiiiiiice 78

TG T TV 1 111 T YRR 81

6 Results and EVAIUALIONccoiiiiiiiiieceee s 82
6.1 OVerview 0Of the RESUITS........ccuiiiiiiiiee e 82
6.2 Visualization of Crash Channel Assignments in a Tabular Formc.ccoceveee. 84
6.3 Comparison with the Old SOIUIONociiiiiiiiic 92
0.4 SUIMMIAIY ...eieieiiiie ettt ettt e e et e et e e bb e e e bb e e et e e asbe e e anbe e e nnbe e e snbeeesnbeeennneeans 95

7 Conclusion and FULUIE SCOPEccuviiiieiee ittt ettt enne s 96
LIST OF RETFEIENCES ...ttt e bbbt 98
SelbststANdigKEITSErKIAITUNGocvoiiiiiiiee s 102

List of Figures

Figure 1.1: Evolution of the Airbag SYStem [6]cccooviiiiieiiiie e 13
Figure 1.2: Parts of an AIrbDag [5]....c.ccceiieiiiiie e 14
Figure 1.3: Airbags in @ VENICIE [6]cveieiiiiiiiieeee e 14
Figure 1.4: Different Types of Airbags ina Vehicle [6]ccccooiiiiiiiniiiies 15
Figure 1.5: Airbag Deployment Phases [7]c.covveeiiiiiiieieese et 16
Figure 1.6: AIrbag ECU [6]....ccveiieieiieiice sttt ettt sra et sra e 17
Figure 1.7: Location of Sensors in a Vehicle [6].........ccoeeiiiiniiiiiseeee e 18
Figure 1.8: Overview of Crash Channel ASSIGNMENTSccccoiriiiririnisieee e 21
Figure 2.1: Example of a Seatbelt Airbag [6]........ccccveiiiiiiiieiie e 25
Figure 2.2: Pedestrian Protection Airbag [12].......ccccoeieeiiiieieee e 26
Figure 2.3: Working Principle of the Flexible Venting Airbag [13]......ccccooviiiininiiiiiienns 27
Figure 2.4: Seathelt Pre-TenSioner [6] ..ot 29
Figure 2.5: Method to Test AUTOSAR Software Modules [19]cccoovevieiiiieiiececcceee 32
Figure 2.6: Workflow of the Generation of Test Software [19]........cccccoevvieiiiiieiii i 33
Figure 2.7: Comparison of Memory Usage of the Two Methods [21]........ccccceiviiiiniiinnnnnns 34
Figure 2.8: Multi-ECU Demonstrator Platform — YellowCar [24]ccoovviiinininiiiiens 35
Figure 2.9: Front View of YellowCar with ECUS [23]ccocoiiiiiiiiiicieseece e 36
Figure 2.10: Web Based Control, Apps and 3D Simulation of YellowCar [23]..........cc.c........ 37
Figure 2.11: Crash Algorithm Based on Pre-Crash Information [27]cccooviiiinininiinnnnns 38
Figure 3.1: General Overview of the Airbag Application Toolchain............ccccooveviiiiieinn, 42
Figure 3.2: Existing Approach to Visualize Crash Channel Assignments.............cccccovvevvnenne. 43
Figure 3.3: Steps to get Crash Channel Assignments in a Tabular Form..............cc.ccocninnnns 44
Figure 4.1: Example of an HTML WeDb-Page [30]......ccooeiriiiiiiiiiinineeeee e 50
Figure 4.2: Example of an Excel Spreadsheet............ccccooveiiiiiiii i 51
Figure 4.3: Overview of the Proposed Methodologyccccoiiiriiiiiiienieieee e 52
Figure 4.4: Basic Concept of the AssignmentLister TOOIccccocvevviieniieiie e 53

Figure 4.5: Storing AB SImulation RESUIEScccoiiiiiiiiicree e 53

Figure 4.6: Extraction of Crash Channel Assignment Information............cccccceeeviveiiiicinenne 55
Figure 4.7: Intermediate RESUILS..........ooiiiieiiece e 58
Figure 4.8: Final Step to Visualize Crash Channel ASSIGNMEeNtS...........ccccooeveienencneninennns 63
Figure 5.1: Stages of Implementation of the AssignmentLister TOOlcccoceieiiiniinnnns 68
Figure 5.2: Code Snippet to Steer the AssignmentLister Tool by the Inputs............cccceevenene 70
Figure 5.3: Starting the RSDBnext Tool to get the Result.xml File...........c.ccoooevviiiiicinene 70
Figure 5.4: Hierarchy of Elements in the Input XML File for AssignmentLister................... 71
Figure 5.5: Loading the Result.xml File and Extracting Informationcccccoceocvvininnnnns 71
Figure 5.6: Code Snippet to Add the Required Values to a List Data Structure...................... 73
Figure 5.7: Hierarchy of Elements in the AssignmentLister.xml Fileccccccooveviviiiinenne 75
Figure 5.8: Writing to the AssignmentLister. Xml File ... 75
Figure 5.9: Code Snippet to Add the Color AMIDULEooveiiiiiiiiiiee e 76
Figure 5.10: Example of Styles in StyleSheet.Xsltccccovveiiiiiiiiceec e 76
Figure 5.11: Creating a Worksheet and Table in .XSIt..........c.cccoooiiiiiiiiciccc e 77
Figure 5.12: Code Snippet to Mark a Cell with Background Color in .Xslt.............cc.ccocvvnnne 77
Figure 5.13: Code Snippet for XSLT Transformation in C#.............cccccoevveiiiiic i 78
Figure 5.14: Creating an Excel Application and Loading the Processed.xml File................... 79
Figure 5.15: Screenshot of Code for Formatting and Styling Feature in C#............ccocovvvnnnne 80
Figure 6.1: Overview of the Results from AssignmentLister TOOlccccoovveiiiiincincnns 82
Figure 6.2: Input File Path to Start the Tool in Visual Studio...........c.ccccevvveviiiiieie e, 83
Figure 6.3: Screenshot of the Console Window for AssignmentLister Toolcccc...e. 83
Figure 6.4: Example of Files in the DIreCIONYccccvviiirieiiiiie e 84
Figure 6.5: Screenshot of the ReSUlt.XmI File ... 85
Figure 6.6: Screenshot of the AssignmentLister.Xml File............cccoooveviiiiiiin i, 86
Figure 6.7: Example of Styles Added to the Data in the Processed.xml File...........c...ccoc........ 87
Figure 6.8: Snippet from the AssignmentLister. Xml File...........cccooeviiiiiieiiiie e 88
Figure 6.9: Part of the AssignmentLister.XISX File.........cccvoieiiiiiiiiiii e 89
Figure 6.10: Excel Table Displaying Crash Channel Assignment Information....................... 90

List of Tables

Table 1.1:
Table 1.2:
Table 2.1:
Table 3.1:
Table 4.1:
Table 4.2:
Table 4.3:
Table 5.1:
Table 5.2:
Table 5.3:
Table 6.1:

Types of Vehicle Safety SYSTEmS .ouvviii e 11
Crash Types with their Safety Features ... 17
ECUs and Server with their Functions.........ccoooveoiiiiiiiieeeeeeceeeee 36
Color Depiction of the Airbag Application Toolchain.. 42
Comparison of Various File Formats ... 49
Comparison between CSS and XSLT ..o 60
Comparison between HTML and Excel for Data Visualization............................ 62
Class Names with their Functionalityocooiiiiiiiiieiiiee e 66
Color Depiction of the Stages of Implementation..............c.coeeeiiiiiiiiiiiiieee. 68
Information to be Extracted by the AssignmentLister Tool...............ocoociiiiiinnee. 69
Comparitive Analysis of the Old and New AssignmentLister Tool 94

List of Abbreviations

ACC Active Cruise Control HTML Hyper Text Markup Language

LDW Lane Departure Warning Csv Comma Separated Values

ACU Airbag Control Unit SwWcC Software Component

ECU Electronic Control Unit BSS Block Starting Symbol

AB Airbag LINQ Language Integrated Query

PAS Peripheral Acceleration Sensor CAN Controller Area Network

UFS Up Front Sensor ADAS Advanced Driver Assistance
Systems

PPS Peripheral Pressure Sensor DB Database

PCS Pedestrian Contact Sensor VBA Visual Basic for Application

RCS Rear Crash Sensor TSV Tab Separated Values

MS Microsoft JSON JavaScript Object Notation

Al Artificial Intelligence IDE Integrated Development

Environment

AUTOSAR Automotive Open System XSLT Extensible StyleSheet
Architecture Language Transformations

RTE Run Time Environment XSLT Structured Query Language

BSW Basic Software CSS Cascading Style Sheets

CDD Complex Device Drivers VS Visual Studio

XML Extensible Markup Language

1 Introduction

In this chapter, vehicle safety systems - active and passive safety systems are discussed in
detail. Following that, a detailed overview regarding airbags and crash channel assignments is
discussed in the background section. Furthermore, the motivation of the thesis is discussed in
the next section. Then, the problem statement is explained. The last section of this chapter
consists of the organization of chapters within the thesis, along with a brief overview of the
contents of each chapter.

With the popularity of automobiles, the number of accidents increased. There were several
reasons for this. As a lot of people started driving vehicles, they were not experienced enough
to drive safely. Higher count of automobiles led to traffic. Due to roads which were not
maintained, the number of accidents increased. Safety features were not available during the
early days of popularity of automobiles. Hence, accidents resulted in serious injuries or even
death. Overall, the increase in the use of automobiles led to an increase in the accidents due to
lack of safety features. With the introduction of safety features in automobiles, the numbers of
accidents have decreased. [1]

Vehicle safety systems were invented in order to address the risks associated with
automobiles. There is a rising priority on passenger safety in automobiles. One of the earliest
safety system introduced was seatbelts in the 1950s. Later, other safety features were
developed to improve vehicle safety. For example, airbags, anti-lock braking systems,
electronic stability control, and tire pressure monitoring systems.

These systems are important for several reasons. For example, active safety systems in a
vehicle can improve vehicle stability and alert the driver to dangers on the road. These
systems can help prevent accidents occur. In case of a car crash, vehicle safety systems can
help protect occupants. Airbag systems and seatbelts help lower the risk of injury, and even
prevent death. Passive safety systems can help reduce damage to a vehicle, and protect the
driver and passengers after an accident. For example, fuel cutoff systems prevent fuel from
continuing to flow during a crash, reducing the risk of a fire. [2]

10

1 Introduction

Overall, vehicle safety systems improved the safety of vehicle occupants and in turn reduced
the number of accidents, injuries, and deaths associated. They are essential for protecting
occupants, preventing crashes, and minimizing damage.

Vehicle safety can be categorized into active safety and passive safety [3]. These terms relate
to technologies which are made to avoid or lessen the effects of accidents. Active safety
systems help in preventing an accident from happening. They work to avert collisions.
Passive safety systems are safety measures which reduce the negative impacts of accidents.
These systems in automobiles are for occupant safety.

Active Safety Systems Passive Safety Systems

Anti-lock Braking System Seatbelt

Traction Control System

Crumple Zones

Stability Control System

Airbags

Collision Avoidance System

Occupant Sensing System

Active Cruise Control Headrests

Lane Departure Warning Child Safety Seats

Table 1.1: Types of Vehicle Safety Systems

Some of the active safety systems are anti-lock brakes, traction control systems, stability
control systems, and collision avoidance systems.

Anti-lock brakes don’t allow the wheels to lock, hence allowing the driver to have steering
control. The braking power applied to each wheel is controlled with the use of sensors and
control algorithms in the system.

Traction control systems use sensors to help maintain traction by limiting power to the
wheels. Stability control systems use sensors to maintain and evaluate the stability of a
vehicle. In case the vehicle begins to lose stability, brakes can be applied or power can be
restricted to retain control. If a vehicle turns or enters a curve at high speed, it may skid
sideways. The Electronic Stability Control technology automatically applies brakes on the
individual wheels to prevent the vehicle from skidding. In turn, the vehicle is in control of the
driver.

11

1 Introduction

Collision avoidance systems use sensors like radar, lidar, and cameras. In order to avoid a
collision, these systems identify objects in the path of a vehicle and issue warnings to the
driver. These systems are also capable of taking action in order to mitigate a collision. For the
active cruise control, a radar sensor uses the yaw rate and vehicle speed to determine the safe
distance from the vehicle in the front. ACC automatically calculates the safe distance from the
vehicle in the front. This helps to maintain safe speed, and distance from the vehicle in the
front in some cases, thus providing safety. Sudden or abrupt changing of lanes can cause an
accident. So, LDW systems are developed to give the driver a warning if a vehicle leaves the
dedicated lane. Therefore, this helps to prevent an accident from happening.

Passive safety systems help in deploying safety measures appropriately in an event of a crash.
These systems lower the risk of an injury or death. Hence, they are critical components of the
design of a vehicle. Some of the passive safety systems are seatbelts, crumple zones, and
airbags.

Seatbelts are mainly used to lessen the risk of injury or harm to a passenger in case of an
accident. In order to lower the risk of damage, seatbelts use force limiters and pre-tensioners
to absorb the impact energy upon collision. This helps to lower the risk of injuries to the
passenger. The chance of the occupant being thrown out of the car upon collision is reduced.

Crumple zones are parts of the vehicle which are designed in order to absorb collision energy
by crumpling in a controlled manner. As a result, the collision force which acts on the
occupant is reduced. Crumple zones are generally positioned at the front and rear end of the
car. They are designed in such a manner that the energy of the impact is absorbed, while the
structure of the vehicle is maintained.

Airbags are meant to inflate quickly, providing cushion to occupants in the event of a
collision. Airbags are classified into different types. Depending on the type of crash, the
airbag is deployed. For example, frontal airbags are to be deployed in the event of a collision
in the front, whereas side airbags are to be deployed in the event of a side impact collision. In
case of a rollover or a side impact accident, curtain airbags are to be deployed from the roof in
order to protect the head and upper torso of the occupant [4].

12

1 Introduction

1.1 Background

In this section, the passive safety system - airbag is discussed in detail. This section is divided
into two sub-sections. The first sub-section is about airbags. In this section, the evolution of
the airbag system is discussed along with airbag deployment, and the sensors used in an
airbag system. The next sub-section is regarding crash channel assignments.

1.1.1 Detailed Overview of Airbags

The first idea of an airbag was created by Bosch in the 1950s. In the 1970s, the technology
started to be utilized in cars. The car which was the first with an AB for passengers, was the
1973 Oldsmobile Toronado. It offered a driver side airbag as an addition. In 1980, together
with Daimler-Benz, Bosch introduced the world’s first Airbag Control Unit (ACU) to
production vehicles. It was patented by Robert Bosch GmbH. The airbag technology was
developed and improved upon by Bosch, and by the 1980s, airbags were amongst the
common features in automobiles. The ACU is essential to passive safety in the case of a
collision. It serves as the command center for the activation of various lifesaving systems,
such as airbags. [5][6]

Airbags are now widely used. The different types of airbags are frontal, side, and curtain
airbags, amongst others. They are a crucial safety component of automobiles. Airbags have
proven to be extremely beneficial by lowering injuries and deaths in case of a collision.
Today, they are a standard component in majority of automobiles. More than 90,000 lives
have been saved by the airbag system.

2020

Figure 1.1: Evolution of the Airbag System [6]
13

1 Introduction

The airbag is a passive safety device. It complements the active safety devices. The airbag is
made of a flexible material like nylon. The main components in a classic airbag are
propellant, inflator assembly, crash sensor, and an airbag. The propellant is a mixture of an
oxidizer, along with sodium azide. The inflator assembly consists of a metal canister, filter,
and an igniter. The crash sensor initiates the release of the propellant into the airbag. This
process happens through an inflator assembly, which results in the inflation of an airbag. The
airbag is a soft fabric bag made of woven nylon.

Figure 1.2 shows the parts of an airbag. In (a), an inactive airbag, where the airbag is deflated
can be seen. In (b), an active airbag, where the airbag is inflated can be seen.

‘ Inﬂator‘
o U Crash -

\ Sensor
\/

\
\

Air Bag

Inflator

'+ . Nitrogen

(a) Inactive AB (b) Active AB

Crash
Sensor
\

Figure 1.2: Parts of an Airbag [5]

The purpose of the system is to detect an abrupt change of speed in the vehicle. Because of
this detection, the airbag can be deployed at the right time in case of a collision. The airbag
deploys between the occupant of the vehicle and the interiors. The airbag ECU controls the
airbag system.

Figure 1.3: Airbags in a Vehicle [6]
14

1 Introduction

Airbags are a vital safety component in automobiles and help to keep passengers safe. When
the airbag inflates, it acts as a cushion for the occupants. Airbags are meant to absorb the
shock of a collision and help lower the risk of injuries to passengers. Airbags also help to
protect the human body from sharp objects located within the interior of a car. They are
basically designed to absorb the shock and reduce the chances of serious damage or death. For
the airbags to function properly, seatbelts assist in keeping the occupant in the appropriate
position during an accident. Depending on the type of collision and the car, several airbags
may be deployed in different locations.

Figure 1.4 shows the position of different airbags in a car. For any standard vehicle model, the
front airbag for driver and passenger in the vehicle is common. Depending on other factors
like safety requirement and cost, additional airbags may be equipped. The kinds of airbags
which can be seen in Figure 1.4 are frontal airbag, side airbag, curtain airbag, knee airbag, and
pedestrian airbag.

Active Hood Side Airbag
(Pedestrian) 2)
= g » - Window Airbag
: o 4 S (Curtain)

Frontal Airbag

Knee Airbag

Anti-Submarining Airbag

Figure 1.4: Different Types of Airbags in a Vehicle [6]

The rapid deceleration of a vehicle indicates a collision. When there is a collision, sensors are
used to detect the impact and transmit the signal to the airbag control module. This process
triggers a chemical process which rapidly inflates the airbag. The airbag is then deployed.
There are different stages of airbag deployment. These stages can be seen in Figure 1.5, along
with the time taken for each stage.

15

1 Introduction

(6) Restraint phase 50-130 ms

» (5) Full Inflation 25-50 ms

(4) Complete unfold @ 7-25 ms

(3) Unfolding begins 5-7 ms

—>» (2) Time to first gas ﬂ 3-4 ms
“—— (1) Trigger @ 0 ms

Figure 1.5: Airbag Deployment Phases [7]

The sensors use algorithms to determine when to deploy airbags. This depends on data
received like position of the occupant, vehicle speed and impact angle. Sensors transmit a
signal to the airbag control module. This sensor data is later analyzed to help decide whether
or not to deploy airbags.

The deployment of an airbag is controlled by the airbag control module which is linked to a
network of sensors throughout the vehicle. The airbag ECU, which can be seen in Figure 1.6,
manages the functioning of the vehicles airbag system. The airbag ECU controls the
functioning of airbags and seatbelts. It monitors the numerous sensors and switches needed to
detect a collision, and decides whether or not to deploy airbags depending on this data.

The airbag ECU detects and evaluates crash signals depending on the type and severity of the
crash. The type and severity of a crash is detected with the help of internal and external
sensors. The ECU also detects situations where there can be false alarms. For example, if the
road is bumpy or there are potholes, brakes are applied suddenly. This happens so that the
safety system can be activated only at the right time. The airbag ECU is necessary as it
ensures airbags are only deployed when it is needed.

16

1 Introduction

Figure 1.6: Airbag ECU [6]

The airbag control unit evaluates the data obtained from the sensors to detect the type of
crash. There may be different types of crashes. For example, front impact, side impact or rear
impact. There are various safety features which are included, depending on the type of crash.
Table 1.2 displays the type of safety features activated with respect to the detected crash type.

Front impact - Single and multi-stage front ABs
- Knee AB
- Footwell AB
- Belt pre-tensioner

Side impact - Side and head ABs

- Roll-over bar
- Belt pre-tensioner

Rear impact - Active headrest
- Belt pre-tensioner

Roll-over - Side and head ABs
- Roll-over bar
- Belt pre-tensioner

Table 1.2: Crash Types with their Safety Features

17

1 Introduction

Airbag deployment is dependent on sensors. The information from the sensors is sent to the
ECU. The data collected by sensors is used to make a decision to deploy airbags or not in the
event of a collision.

Airbags are activated by sensors. These sensors monitor and operate a wide range of systems
and operations in automobiles. Hence, they are essential. They are used to monitor various
systems and subsystems.

There are internal and external sensors. Internal sensors are the sensors which are installed
within the vehicle. External sensors are sensors which are placed on the exterior of a vehicle,
and are used to monitor the environment around it.

There are a few common sensors used in an airbag system. Figure 1.7 shows the location of
these sensors in a vehicle. They are Acceleration Sensor, Peripheral Acceleration Sensor
(PAS), Upfront Sensors (UFS), Pressure Sensor, Peripheral Pressure Sensor (PPS), Pedestrian
Contact Sensor (PCS), Rear Crash Sensor (RCS), and Central Sensors [8][9].

o loht &

L L3 &

(ECU and iBolt sensors)

Central

UFS - Upfront Acceleration L

Sensor .
/ .y
¥

" RCS - Rear
Crash
Sensor

PAS - Peripheral
Acceleration Sensor

PCS - Pedestrian PPS - Peripheral
Contact Sensor Pressure Sensor

Figure 1.7: Location of Sensors in a Vehicle [6]

Acceleration Sensors are sensors which assess the vehicles acceleration. They are generally
installed in the front of the vehicle and can detect the severity of an impact. During a
collision, these sensors measure the acceleration of a vehicle. This in turn helps to decide if

18

1 Introduction

airbags should be fired. Acceleration sensors help in detecting side, front and rear-end
crashes. They are used in a number of applications like airbag deployment, stability control,
and traction control.

Peripheral Acceleration Sensor (PAS) is used to detect abrupt changes in the acceleration of a
vehicle. The acceleration of a vehicle is monitored continuously to know if the vehicle is
getting into an accident. During a crash, the PAS measure accelerations and provides
information on the direction and collision impact. There are different versions of the PAS
which can be available. These different versions depend on the location of the sensor in the
vehicle. PAS can also detect rear impacts. With the help of special acceleration sensors, it is
possible to improve the detection of a front impact collision. Upfront Sensors (UFS) is a
special variant of the PAS, which detects a front collision.

Pressure Sensors are used to determine the severity of an impact. This is done by detecting
changes in pressure within the vehicle. These sensors also help to detect the location of
impact. Pressure sensors help in detecting side crashes. Peripheral Pressure Sensor (PPS) is
used to estimate pressure changes in the event of a side crash. It works in combination with
acceleration sensors. PPS is usually installed into the door cavity as it provides the detection
of a side impact collision. This sensor keeps a check on the changes through door deformation
and pressure measurements. The sensor sends signals to the ECU. The decision to distinguish
between a dangerous collision and a harmless impact is done in the Airbag ECU.

Pedestrian Contact Sensor (PCS) is a sensor used to detect pedestrian collisions. It works to
protect pedestrians in case of a collision. These sensors are installed in the front of the vehicle
for detecting pedestrians in front of the vehicle. It helps to detect and protect a pedestrian
during an event of a crash.

Rear Crash Sensor (RCS) helps to detect a rear collision. These sensors are mounted in the
vehicle's rear end. Seatbelt Sensors are used to detect whether a seatbelt is worn or not by an
occupant. Depending on this, the optimum airbag deployment is determined.

Roll Rate Sensors are used to detect the rate of a vehicle roll. This is an indication for a
vehicle rollover. If this is detected, then ABs are deployed to provide protection to the
occupants. Central Sensors are also known as the ECU sensor cluster. These sensors detect
motion in the front, side, rear, and z-direction of a vehicle, including roll rate.

19

1 Introduction

This is a brief overview of the sensors used in airbag systems. Some airbag systems may also
have other types of sensors. For example, sensors which are used to identify the position of
passengers in a vehicle.

1.1.2 Crash Channel Assignments

In airbag control modules, crash channels are used to monitor the sensors which detect
crashes or any impacts. The exact sensors which are assigned to each crash channel in an
airbag control module are referred to as crash channel assignment information. The airbag
control module uses this crash channel assignment information to specify which crash channel
is assigned to the sensor. This is amongst the factors used to decide the deployment of
airbags.

Based on the data from crash channels, within the ECU, the deployment algorithm is used to
decide whether an airbag device should be fired or not. This helps to guarantee that the
airbags are deployed only when it is necessary. This maximizes their effectiveness and lowers
the risk of harm. Other factors like force of the hit, location of the car, and other data may also
be considered.

The particular sensors that are attached to the crash channel are referred to as crash channel
assignments. For example, one crash channel could be assigned to the front impact sensor,
and another to the side impact sensor. The configuration of the airbag system will determine
the crash channel allocations for a certain car. This differs based on the design of the airbag
system and the unique requirements of the vehicle. Based on the number and type of sensors
which are employed, some systems may have more crash channels in comparison to others.
The kind of sensors might include rollover sensors, front impact sensors, and side impact
sensors amongst others.

The airbag application tool used to show these crash channel assignments is called
“AssignmentLister”. The airbag project contains sensors. Each of these sensors requires data
for simulation. Therefore, crash channels are assigned to the sensors. Every sensor present in
the project has a crash channel. Basically, this assignment is done for every crash which can
be seen in Figure 1.8.

20

1 Introduction

For every crash

A 4

Sensor Crash Channel

Figure 1.8: Overview of Crash Channel Assignments

1.2 Motivation

It is important to visualize the crash channel assignments in a tabular form. For this reason, an
airbag application tool should be developed in order to show these assignments.

A concept should be created in order to get the crash channel assignment information. It is
necessary to find a good-fitting file format to handle assignment information in the tool. The
target is to transfer the information to another format, such that the output is in a tabular form.
It should be as per requirements.

The existing solution using Excel Macros is slow and needs many manual steps. For this
reason, the new solution should have a concept in order to visualize crash channel
assignments without the use of macros. It should also have fewer manual steps. The tool
developed should be able to handle the assignment information in an easier manner. The final
output should be generated in a stable way. It is necessary to have a tool which functions in a
fast, easy and stable manner with less manual steps. The new solution should mitigate the
drawbacks of the existing solution.

To summarize this, the main steps needed to be performed are to get rid of Excel Macros and
to have fewer manual steps in comparison to the existing solution. For this reason, a good
fitting file format to handle the assignment information is necessary, and the output should be
in a tabular format with the crash channel assignments.

The primary goal is to get rid of macros in order to visualize crash channel assignments in a
tabular format with the tool. The primary goal is dependent on a few other steps which
involves handling the assignment information and transferring it to a tabular format. All of the

21

1 Introduction

steps must be successfully performed in order to reach the main objective. The tool should
also be integrated into the existing tool chain architecture.

1.3 Problem Statement

The existing solution is quite slow as it is using macros, and writing to Excel directly. The
challenge is to find a good fitting format for handling data in the tool. The existing method to
get the crash channel assignments is quite complex.

The output from the tool is not generated directly using the existing method. To get the final
output, the user must perform many mouse clicks. For the output to be generated following
the mouse clicks, the user should wait for a certain period of time. This method used to
visualize crash channel assignments is cumbersome. It is also time consuming.

While waiting for the output to be generated, the clipboard cannot be used. If the clipboard is
used, the output may not be generated as expected, and the system may even freeze. So, it
may take more time than usual to generate the output or the page does not respond at all.
Other MS Office Products also cannot be used during that time. Therefore, the tool is quite
unstable, and does not work as expected. There are two different use cases available. There is
no common solution for the use cases.

To summarize this, the existing problems are that the solution for the tool uses macros. Due to
this, the tool is slow and unstable. The assignment information is not handled in an easy
manner. Many manual steps are needed to visualize the crash channel assignments. While
generating the output, MS Office Products cannot be used. There is no existing common
solution for the use case scenarios available.

1.4 Organization of the Report

The thesis is structured in seven chapters. The first chapter consisted of a detailed overview of
vehicle safety systems. Then, in the background section, airbags and crash channel
assignments were discussed in detail. Following that, the motivation and problem statement of
the thesis were discussed in separate sections.

In the second chapter, research papers related to the topic are discussed. Research work and
recent technologies related to airbags, airbag deployment, and sensors are discussed.

22

1 Introduction

In the third chapter, an introduction to the airbag application tool is given. Then, the state of
the existing AssignmentLister tool is discussed in the following section. The purpose of this
chapter is to analyze the old solution, and drawbacks of the existing tool.

In the fourth chapter, the concept developed to visualize crash channel assignments in a
tabular form is discussed. The various methods to solving the problem are examined. Then,
the chosen approach is discussed in detail, wherein it is broken down into three different parts.

In the fifth chapter, the implementation of the proposed concept is discussed. Different stages
of implementation are explained in the sections of this chapter. In the fourth and fifth
chapters, the alternative solutions to a particular problem are described, along with the
reasoning behind the chosen approach for the solution.

In the sixth chapter, the results and evaluation are described. The crash channel assignments
in a tabular form are shown and explained, following which the new solution is evaluated
against the old solution.

In the seventh chapter, the conclusion and future scope are described. A summary of the main
points of the thesis from earlier chapters are discussed. The conclusion along with ideas for
future work is presented in this chapter.

23

2 State - of - the - Art

In this chapter, recent and ongoing work, technologies, and methodologies related to the topic
are discussed. This chapter consists of a section about recent development in airbags.
Following that, there is a section about recent and ongoing work in the field. Literature papers
are researched upon, and an overview of the findings is discussed. This chapter ends with the
summary section.

2.1 Airbags

Airbags reduce the risk of injury to occupants during an accident. This field has progressed in
recent years. This has led to improvements in the airbag design and functionality. As a result,
airbags are more effective.

Over the years, the development of airbags has been a gradual process of research and
innovation. The earliest airbags were very simple designs. They deployed with a single-stage
inflation. ABs have evolved into more advanced systems which can adjust the deployment
based on the severity of the collision, size and posture of the occupant, and other factors. The
history of the development of airbags over the years is discussed further.

During the 1960s -1970s, the earliest airbag designs were developed. These airbags used a
single-stage inflation system. The airbag used to inflate quickly, and with a lot of force during
a collision. These airbags were not so effective. They were not widely used because of their
poorly functional airbag systems. High costs were also amongst the factors. In the 1980s, car
manufacturers began to use airbag systems which used sensors to determine the severity of a
collision, and adjust airbag deployment accordingly. In the 1990s, airbag technology
improved significantly. There was introduction of seatbelt airbags, inflatable seatbelts, and
dual-stage inflation technology which allowed for better protection of occupants during an
accident. In the 2000s, pedestrian airbags were developed with the aim to protect pedestrians
during a collision. During the 2010s, the adaptive and delayed deployment technology
became more widespread. This helped to improve occupant safety. In the 2020s, the most
recent development in airbags was introduced. This development was the active venting,
which adds to the protection of passengers. Technologies involving artificial intelligence and
machine learning are also used for airbag deployment, which improves the accuracy of the
AB system.

24

2 State - of - the - Art

From the 1960s, airbag technology has seen various improvements. Airbags are more
advanced now, and they provide higher protection to occupants.

Various kinds of airbags are used in vehicles. For example, frontal airbags, side airbags, and
curtain airbags. There are some advanced airbag technologies. Some of the advancements
over the years are seatbelt airbags, multi-stage airbags, pedestrian airbags, active steering
wheel airbags, and head airbags.

Seatbelt airbags are integrated into the seatbelt system. The seatbelts contain a small airbag as
shown in Figure 2.1. During an accident or collision, there is a lot of force exerted on the
occupant. These airbags inflate in order to help distribute the force of a collision over a larger
area of the body. This aids to lessen injuries, particularly to the chest and torso region during
an accident. [10][11]

Figure 2.1: Example of a Seatbelt Airbag [6]

Multi-stage airbags are airbags which use sensors in order to get to know the severity of a
crash. They adjust the airbag deployment accordingly. Due to this, the risk of injury to
passengers in the event of a minor collision is reduced. Airbags are deployed with less force
in a minor collision. In more severe collisions, airbags are deployed with more force. This
helps to provide maximum protection to passengers.

Pedestrian airbags are located in the front of the vehicle like in Figure 2.2. These airbags
deploy from the base of the windshield when a vehicle clashes with a pedestrian. These
airbags provide a cushioned surface to help reduce the risk of head injuries to the pedestrian.
In the event of a collision, the pedestrian would most probably collide in a particular region

25

2 State - of - the - Art

on the vehicle. This region is protected by airbags. Hence, the severity of injuries is reduced
because of the pedestrian airbag.

Figure 2.2: Pedestrian Protection Airbag [12]

Active steering wheel airbags detect the location of the driver's hands on the wheel of the car
using sensors. The deployment of airbag is adjusted according to this position. These airbags
help to lower the risk of harm to the driver’s hands and arms in the event of a crash. Hence,
the airbag system is more effective. Head airbags deploy from the roof or the seat, and
provide additional cushioning in order to reduce injuries. Non-pyrotechnic airbags use
compressed gas or foam to deploy the airbag instead of explosive pyrotechnic materials. This
lessens the chances of any injury from AB deployment. They also help to reduce the
environmental impact of the airbag system. These are some of the improvements in the type
of airbags used in vehicles for occupant protection.

During a collision, airbags are designed to deploy quickly and with some force to protect
passengers. Advancements have made airbag deployment more controlled and precise. Some
of the notable improvements in airbag deployment are discussed further.

Dual-stage deployment is a technology which deploys the airbag in two stages. The first stage
is the deployment of airbags with a lower force. The following stage is the deployment of
airbags with a higher force if necessary. For example, if a lower force is enough to protect the
occupants during a crash, then the second stage of deployment doesn’t happen. Multi-Stage

airbags are used for this purpose.

26

2 State - of - the - Art

Adaptive deployment is a technology which uses sensors to determine the position and size of
occupants in a vehicle. The airbag deployment is adjusted accordingly. This kind of
deployment helps in distinguishing passengers of different size and hence, their position in a
vehicle. This in turn helps to protect passengers in a better way. For example, if a child is in
the front seat of a vehicle, the airbag may be deployed with less force to protect the child from
injury.

Delayed deployment is a technology which delays airbag deployment during an accident.
After a crash, the airbag is deployed a few milliseconds later. The purpose of this kind of
deployment is to allow the occupant’s body to move into a safer position before the inflation

of the airbag. This in turn helps to minimize the probability of an injury.

Active venting is the most recent technology which uses vents in the airbag. This helps to
control the rate of inflation, and release gas from the airbag quickly. In case of a collision,
there is a forward movement or jerk which the passengers experience. The flexible vent
allows the driver’s forward momentum to push out the air. This working principle of this
process can be seen in Figure 2.3. The risk of injury to passengers from the airbag itself is
reduced. The amount of dust or debris in the vehicle in an accident may also be reduced
because of this technology. This can improve visibility for the driver in the vehicle. As a
result, having flexible venting airbags can protect and save passengers' lives in the scenario of
an accident.

Flexible Vent Cover

Flexible Vent Tether

Single Stage Inflator
Internal Tethers

Figure 2.3: Working Principle of the Flexible Venting Airbag [13]

27

2 State - of - the - Art

Smart airbags use sensors to detect the position of the occupant. Many factors influence
airbag deployment. Smart airbags help minimize the risk of injury to passengers, considering
all these factors. For example, smart airbags can detect whether the passenger is wearing a
seatbelt or not, and then adjust airbag deployment accordingly. The improvements in airbag
deployment control help to make airbags even safer in the event of an accident.

Technologies with artificial intelligence and machine learning enhance airbag deployment.
Information from the sensors is first analyzed. Then, the way in which the airbag can be
deployed is determined. For this purpose, factors like speed of the vehicle, position of
occupants, and the severity of the collision are taken into consideration. Using advanced
technologies like this helps to reduce the risk of injury to passengers, and also unnecessary
airbag deployment.

Advanced materials are used to improve the protection from airbags. Airbag manufacturers
are developing new materials to make airbags smaller, lighter, and more effective. For
example, some manufacturers use graphene, which is a light-weight, flexible and robust
material. They are used to reduce the size and weight of the airbag system, hence making
airbags more effective to protect occupants. Other airbag materials being researched include
carbon nanotubes.

An important trend in the automotive sector has become sustainability. Airbag manufacturers
are working towards reducing the environmental impact of airbag systems. Airbags which use
eco-friendly materials are being developed, along with designing airbags which can be easily
recycled or disposed. The use of renewable energy sources, like solar power to deploy airbags
is also being explored by some manufacturers. The latest trends in airbags and airbag systems
are focused on improving airbag effectiveness. The size, weight, cost, and sustainability
factors are also being considered.

The key component which manages the deployment of airbags and other safety features is the
ECU. Some of the latest trends with airbag system ECUs are discussed further.

Advanced sensors and detectors are used in modern airbag systems to detect a collision and
assess the severity of a crash. This allows the ECU to determine airbag deployment
accordingly to protect passengers. Airbag systems have integrated safety features [14]. One
such safety feature is the seatbelt pre-tensioner. A double pre-tensioner is mainly used in the
seatbelt system. There is some space between the passenger and seatbelt. During a crash, the

28

2 State - of - the - Art

body of the passenger slides rapidly forward. The seatbelt restrains the passenger from
moving further. When this happens, the passenger’s body is compressed against the seatbelt.
A large force is exerted on the passenger.

The seatbelt pre-tensioner helps to reduce the impact on the passenger. Hence, the seatbelt
works more effectively. The tightening and latching process of the seatbelt is controlled
properly, in a timely manner. This ensures that the occupant in the vehicle is seated properly.
It reduces the injury that may be caused to the occupant. A load limiter is used together with
the pre-tensioner. It limits the amount of force which is transmitted through the seatbelt in the
event of an accident. It assists in the controlled release of seatbelt tension. As an outcome, the
risk of injury is lowered further as the energy of the collision is absorbed.

The double pre-tensioner and load limiter are safety features which work together. The
working of this can be seen in Figure 2.4. They help in improving occupant safety, hence
preventing serious injury or even death. These safety features are managed by the ECU. They
provide a more reliable safety system for the vehicle.

Double pretensioner Load-limiter

Figure 2.4: Seatbelt Pre-Tensioner [6]

Artificial intelligence integration is the use of Al to improve the accuracy of the ECUs crash
detection and airbag deployment algorithms [15]. This allows the system to adapt and
improve over a certain period of time, hence providing better protection for vehicle occupants.
These advancements are focused on enhancing the airbag safety feature for vehicles.
Therefore, the risk of injuries to occupants in the vehicle is reduced.

Airbag sensors are important components in airbag systems. They detect a collision and
trigger the deployment of airbags. There have been some advancements and ongoing research

29

2 State - of - the - Art

in the field of airbag sensors. Some of them are multi-axis sensors, inflatable sensors, and
optical sensors. [16][17]

Multi-axis sensors are designed to detect impacts from multiple directions. This helps the
airbag system to detect collisions from any direction. Hence, the system responds more
quickly in the event of an accident, and is more effective. Inflatable sensors use a flexible,
inflatable material which can detect a collision and trigger airbag deployment. They are more
responsive than traditional sensors. Hence, they provide better protection for occupants.
Optical Sensors use light to monitor changes in the vehicle's surroundings. For example,
optical sensors can detect any obstacle ahead of a vehicle. They can help provide more precise
information about the surroundings of a vehicle.

Over the years, airbags and airbag systems have evolved. They have become more advanced
with more features for protection. The latest trends are mainly focused on improving airbag
functionality. These advancements to enhance the airbag system have provided more
protection to occupants in the case of an accident. As a result, the probability of injury or even
death to passengers is minimized.

2.2 Recent Developments

Recent developments and ongoing research in the automotive field has resulted in significant
improvements in various areas. The advancements in the automotive field include the
development of ECUs, implementation of AUTOSAR, and scientific development on airbag
and airbag systems amongst others. Together, these developments have created more
advanced, efficient, and safer vehicles.

In this section, some of the recent and ongoing research conducted by the Professorship for
Computer Engineering at Chemnitz University of Technology is discussed in detail.
Following that, a few research papers from other publications are briefly discussed.

AUTOSAR is a standardized architecture for the development of software. The introduction
of AUTOSAR has made the development of automotive software platform independent. It is
composed of three layers, the Application Software, Run-Time Environment (RTE), and
Basic Software (BSW). [18]

There are numerous components that interact with one another. This complicates the
integration of software on the ECU. There are some errors which can happen while

30

2 State - of - the - Art

integrating AUTOSAR software on an ECU. These errors occur as there are a large number of
modules involved in an automotive ECU. They may also happen due to improper timing.
AUTOSAR has a layered architecture. Because of this, the errors complicate the test and
verification process.

Testing automotive software is challenging. Issues are most likely to happen during the
integration phase. Some of the main challenges to test automotive software are their
complexity, safety concerns, and inter-connectedness.

There are numerous components. These components are interconnected. Hence, it’s difficult
to verify their behavior. Automotive systems also need to function under different
environmental conditions. This further increases their complexity. Errors in the automotive
systems may lead to accidents, or even death. These systems require proper testing to ensure
that the system behaves as expected under all conditions. Hence, safety is a critical issue.
Automotive systems are highly connected amongst each other. Hence, testing is important to
ensure that all components function correctly independently, and in combination with other
components. Integration phase is the phase where all software components are integrated on
the ECU. Testing is required to confirm that the system is functioning properly.

In this research paper [19], a method is proposed in order to check the functionality and
timing of AUTOSAR modules. For this purpose, a semi-automated method is used, where the
test cases are based on interface descriptions. This technique helps to identify the affected
modules in a reliable manner. Hence, the test and verification process is simplified.

An overview of the proposed method can be seen in Figure 2.5. The proposed technique
provides a solution for testing AUTOSAR software modules. Test cases are generated based
on interface descriptions of the application and BSW modules. For an external test program, a
configuration file is generated. It communicates with the test engine, and controls the test
execution on the ECU. This particular method can be implemented using standard
development tools. This proposed approach to test the BSW covers all modules, except the
Complex Device Driver (CDD). This is because of its hardware dependency. In order to test
CDD modules, a virtual integration method is proposed. This uses hardware driver simulation
on a desktop computer. The main focus in this research paper is on the testing of inter-ECU
communication between the application and BSW layers.

31

2 State - of - the - Art

AUTOSAR Project Analysis and Test Case ECU
Generation
h - -
Analysis of Application
Project Data Software
Test Case RTE
Generation > t @
; @,
(9]
Test Software / I' Test &
s
=
m

L. . N Generation Engine
Description Files of Basic (cDD)
Software Modules | ;
External Test
Program s

Figure 2.5: Method to Test AUTOSAR Software Modules [19]

This process is divided into three phases, which are the analysis of project data, test case
generation, and test software generation.

In the first phase, which is the analysis of project data, the necessary data is extracted from the
AUTOSAR project. This project contains the application software. The data extracted consists
of information from the BSW modules, their configurations, and interfaces. This data is
extracted from the configuration files using an XML parser [20]. The data is then processed.
As a result of the processing, the input and output signals necessary for the test cases are
generated.

In the second phase, which is the test case generation, test cases are generated based on the
information got in the first phase. The test cases are designed such that individual and
combined modules can be checked sequentially. This is done so that the functional and timing

properties can be checked correctly.

In the third phase, which is the test software generation, the test engine is generated using pre-
defined templates. These templates are in C code. This is then integrated into the BSW as the
CDD module. The test engine contains a program with the tests to be performed. This needs
to be synchronized with the external test program. The external program controls the test
process and evaluates results. The result can be in these formats — tabular HTML pages or
CSV files. The process of test software generation can be seen in Figure 2.6.

32

2 State - of - the - Art

test cases C-Code templates test object

<
Knnnu:l;dge = Generation test software
T

-----—L------w

Test engine Test configuration

Figure 2.6: Workflow of the Generation of Test Software [19]

This approach is semi-automated. This is because it requires manual effort in extracting the
necessary data and synchronizing the test sequence. Since it is automated to a very good
extent, faster integration and testing of AUTOSAR software on an ECU can be done. It has a
wide range of use-cases from testing BSW modules to integrating software components.
Since the creation of test cases is automated, this tool is valuable for developers working with
AUTOSAR software.

Airbag control systems require accurate timing and reliable functionality. This technique used
for testing and verifying software on an ECU can be relevant for the development and
integration of airbag control systems.

There are several approaches for prototyping. These include Model-in-Loop, Hardware-in-
Loop, and Processor-in-Loop. In this research paper [21], a concept is presented for
automating the process of rapid prototyping of AUTOSAR-based systems. The proposed
method uses AUTOSAR tools to automate the process of generating system architecture, and
modules which are specific to the application provided. Non-AUTOSAR compliant code is
integrated into an AUTOSAR-compliant SWC. This process involves parsing the code in
order to identify its structural and behavioral aspects. Then, it is modified to fit into the
specifications of AUTOSAR.

So, a tool was implemented based on this concept. This tool performed the automated
process. This was then used to generate an AUTOSAR system for a sensors fusion algorithm.
The generated code was checked for errors. Two methods were used for the evaluation, and
memory usage between them was compared. The comparison between these two methods can
be seen in Figure 2.7.

33

2 State - of - the - Art

- Method 1; EEEEEE (Manual implementation by altering and adjusting code)

- Method 2: "1 (Proposed concept using the tool)

1628
. 1564
400 .. | | __
1200 1098
500 I 30000
oo | HEES 44 I s |

BSS SEGMENT DATA SEGMENT (CODE SEGMENT

BYTE

Figure 2.7: Comparison of Memory Usage of the Two Methods [21]

Compared to the manual adaptation of the code, the proposed concept with the automated
method was able to save more space in all the three memory segments - BSS, data, and code
segments. The conclusion from this was that the automated concept saved more space. It also
helped reduce time and effort. This concept enables running a prototype code on a real-world
ECU. Hence, this method is effective for the rapid prototyping of AUTOSAR systems.

AUTOSAR provides a standard framework for software development. This can help develop
software components for airbag systems. The use of automated tools and processes, like the
tool presented in this research paper, can help the development and testing process. With the
use of a standard framework and automated tools, it is possible to ensure that SWCs for
airbag systems follow the specified industry standards and regulations. Hence, the risk of
errors is reduced, and safety is improved. Overall, it can help speed up the process of
development and testing of airbag systems.

This research paper [22] focuses on the significance of storing structured data. This is mainly
to support the development process for AUTOSAR projects. The development of parsers to
extract structured data from various sources is described. This is done in order to fill a
database for the AUTOSAR knowledge base.

Two methods are explained to parse data in this paper. They are tresos insallation parser and
project parser. The tresos parser automatically fills the AUTOSAR knowledge base. The
tresos installation parser extracts structured information from its installation files of existing

34

2 State - of - the - Art

AUTOSAR versions. These existing items are updated, and not overwritten. The project
parser enables the analysis of AUTOSAR projects. The project parser extracts information
from an AUTOSAR project. This project consists of a subset of information from the tresos
installation files.

The implementation details of both the parsers are described. They are written in C# and use
the .NET Framework to parse the data. LINQ to XML is used to parse the configuration XML
files. LINQ to XML is a set of .NET Framework libraries, using which data can be extracted
from the XML files. The parsers enhance the development process for ASTAS (Automotive
Software Test and Analysis Systems) test modules. ASTAS are software tools which are used
to test and analyze automotive software. The parsers provide valuable support for data
analysis for the development of ASTAS test modules. The parsers can be used for analyzing
and testing software in various automotive systems, such as airbag and airbag systems. For
example, the parsers can be used to identify if there are any dependencies between software
modules in an airbag system. Then, this could be analyzed to ensure the system works
correctly.

This research paper [23] discusses the development of a Multi-ECU demonstrator platform. It
is called YellowCar.

Figure 2.8: Multi-ECU Demonstrator Platform — YellowCar [24]

It is based on an automobile model. It consists of a network with three integrated ECUs based
on AUTOSAR standards. The three integrated ECUs are Assistant, Feature, and Processing
ECU. The front view of YellowCar with ECUs can be seen in Figure 2.9. The ECUs have
different functions to perform. The functionality of the ECUs and server is depicted in Table

2.1.
35

2 State - of - the - Art

AssistantECU AGE \

V.7
{ : /
- —~— NNy : V7
/ g N e
% N S L
N N /4
‘\\ } =~ “,\ g
~
N
/ 0 " FeatureECU
sV \
b e / ProcessingECU

L ‘ «r& '7(;//2“’_/ &F

\
"
k

/

Figure 2.9: Front View of YellowCar with ECUs [23]

ECU and Server Functionality

Assistant ECU Engine, Steering

Feature ECU Light Control

Processing ECU Reading Sensor Data
Server Remote Control, Monitoring

Table 2.1: ECUs and Server with their Functions

These ECUs are connected via a CAN communication system. The platform consists of many
sensors, an electric motor, a steering unit, and lights. The sensors include ultrasonic sensors
and cameras. All the sensors are connected to a single ECU. This ECU acts as a sensor ECU
node. This sensor data can be accessed by other ECUs by reading the signals from the
communication bus. This architecture supports sensor data fusion. The YellowCar is a
platform for functional testing, performance evaluation, and optimization of software
architecture.

A server, written in C++ connects to a network via the communication bus. A webpage is
provided by the server. This webpage shows sensor and control data values. The server also
provides data to C# software that simulates the tool in 3D. Based on the delivered CAN
messages, this depicts the behavior of a real car. This system enables remote controlling and
monitoring of the YellowCar in real time. This can be seen in Figure 2.10.

36

2 State - of - the - Art

WEB BASED

Cellphone |

> CAN bus https Android App
Processing ECU
Cellphone
. i iOS App

Database s 3D Simulation } SIMULATION

Figure 2.10: Web Based Control, Apps and 3D Simulation of YellowCar [23]

YellowCar provides a real-world demonstrator for testing and validating applications before
implementing them on actual cars. Many applications have successfully demonstrated the
suitability of the platform. YellowCar has implemented applications for light control, traffic
sign detection, and obstacle detection successfully.

This open concept helps to easily add new functionalities and additional ECUs. It also offers a
secure setting for evaluating automotive applications. The development of the platform, its
architecture, and potential applications in the automotive industry are discussed in this
research paper. On-going research includes evaluating approaches for test case generation,
analysis of AUTOSAR configurations and source code. The platform allows researchers to
experiment with new automotive technologies. YellowCar is an important tool for industry
research in the automotive field.

The YellowCar platform can be used to test and validate airbag systems in the automotive
industry. The effectiveness of various airbag designs can be checked under different
conditions. These conditions may be the type of collision, impact angle or vehicle speed.
YellowCar supports the integration of new ECUs and functionalities. This, along with its
modular design makes it a possible platform for developing and testing airbag systems. Other
safety critical applications in the automotive industry may also be developed and tested.

An extension of YellowCar is BlackPearl. It is an extended automotive multi-ECU
demonstrator platform. This research paper [25] presents the development of the BlackPearl.
It consists of separate boards for sensor units, image processing units, and display modules.
All of these are interconnected by a CAN bus. The platform supports up to three ECUs and
additionally, three image processing units. It is designed to meet ADAS needs, which rely on
image-based sensors for pre-processing, feature detection and recognition.

37

2 State - of - the - Art

The platform has been used to implement image processing applications like High Way
Traffic Analysis successfully. The platform may be used for testing and validating a range of
applications, including airbag systems [26]. It can be equipped with sensors and image
processing units. This can help evaluate the performance of airbag systems under various

scenarios.

This aim of this research paper [27] is to increase the reliability of airbag deployment in
automobiles. There are some problems with airbag deployment. For example, even when
there is no accident, an airbag may deploy due to a strong impact on the sensors in the ACU
or while driving in off-road conditions. This research aims to mitigate these limitations. This
is done by creating an algorithm which predicts a collision in a precise manner. A pre-crash
algorithm is proposed, which estimates the behavior of objects before a collision. This
information is then communicated to the crash algorithm for correct recognition of crash
scenarios. This algorithm consists of information about a collision before it happens, and a
crash algorithm based on crash-related sensors. Simulations using crash test data showed the
pre-crash algorithm to be more dependable than the crash algorithm alone [28]. Figure 2.11
shows the overall crash algorithm, along with the estimation of pre-crash information.

Yaw rate sensor 5 FIS
Host vehicle
Wheel speed sensor
TN .
Steering angle sensor information
Lateral accelerometer estimation l \
Pre-crash
Host vehicle sensor Algorithm 1 \
(ESP) 5 information [[[] interface w
estimation iy
Frontal object existence ACU-X sensor
£ t -
Frontal object distance ui Algorithion Algorithm 4 ACU-Y sensor
Frontal object relative speed l
Frontal object lateral position Algorithm 2 Asrbis
Radar sensor deployment
(ACCQ)
Input part Pre-crash algorithm Interface Crash algorithm

Figure 2.11: Crash Algorithm Based on Pre-Crash Information [27]

An airbag must always deploy at the appropriate time. When an airbag is deployed with
extreme force, the risk of damage increases. If an airbag is not deployed at the right time
during a crash, occupants in the vehicle may suffer critical injuries or even death. Hence, it is
important to detect when the airbag is to be deployed properly. [29]

38

2 State - of - the - Art

The automotive industry is constantly advancing with the latest trends and developments in
vehicle technology. AUTOSAR has improved software development processes. Due to
advancements in the field, ECUs are more efficient. Crash information and pre-crash
information systems have become a focus area for vehicle safety.

2.3 Summary

Airbags are required because they give an extra layer of safety to passengers during
a collision. Airbags and airbag systems have evolved over the years. The latest trends are
focused on improving their effectiveness. Hence, the risk of injuries is reduced, or even death
is prevented. Airbag technology improvements include enhanced airbag deployment systems,
airbag sensors, and new materials for ABs. These advancements were discussed in Section
2.1.

In Section 2.2, various trends in automotive development were discussed. Recent and on-
going research conducted by the Professorship for Computer Engineering at Chemnitz
University of Technology was discussed. Along with that, research papers from other
publications were also discussed. The latest trends in AUTOSAR are improving
communication between ECUs, and providing more efficient and flexible software solutions.
These trends will help the automotive industry meet its growing needs. More efficient ECUs
have improved vehicle performance. Crash algorithms help to mitigate the impact of
collisions. They provide vital information. To prevent the negative effects of wrong airbag
deployment, it is critical that the airbag is deployed at the correct time. Airbag systems are
evolving continuously to provide better protection to occupants and save lives.

Furthermore, continued research and development in airbag technology, as well as automotive
development trends are significant. Overall, this will eventually lead to better systems. The
goal of these systems is to improve vehicle safety, avoid fatalities, and minimize the
frequency of accidents on the road.

39

3 Airbag Application Tools

In this chapter, there are three sections. The first section gives a brief overview of airbag
application tools. In the second section, the existing solution for the AB application tool
which is used to visualize crash channel assignments is discussed. In addition to the concept
of the old solution, the disadvantages are also highlighted. This chapter ends with the
summary section. This section gives an overview of the key points covered in this chapter.

3.1 General Overview

Software tools for airbag application are important in the development, testing, and
deployment of airbag systems in vehicles.

Software tools enable engineers to design and simulate airbag systems. Different designs and
configurations can be tested. This helps to ensure the performance and safety of airbag
systems. There are various software tools which are used to calibrate and test the airbag
system. The system is tested in various scenarios to ensure it deploys correctly and protects
occupants. This also helps to make sure the system meets its safety standards and regulations.
There are different software tools used to analyze data from airbag deployments, based on
varying requirements. This collected information helps to improve the design and
performance of airbag systems, making them safer for passengers.

For example, airbag systems rely on sensors to detect a crash and trigger airbag deployment.
There can be different kinds of data available from the sensors. This data can be extracted by
the AB tool as per requirements. By analyzing the extracted information, it can be checked if
the sensors are working correctly. Hence, the airbag system can be improved.

Overall, airbag application tools are essential. They are used for the development and
deployment of airbag systems. AB tools allow engineers to design, simulate, test, and
improve the airbag system. This helps to ensure the performance of airbag systems, hence
providing occupant safety in the event of an accident.

During a crash, the sensors on a vehicle send a quick response to the ECU. When this
happens, details of the crash are stored. This data which is stored is then converted into
machine-readable format. Then, it can be analyzed with the customers based on their

40

3 Airbag Application Tools

requirements. The whole set of possible outcomes that can cause different airbags to deploy in
varying environments is checked.

A brief overview of the airbag application tool chain can be seen in Figure 3.1. Crash tests are
performed by placing crash test dummies in the vehicle. From these crash tests, the crash
signals are recorded by the customers. Then, customers provide raw crash data to the
company. This data may include different kinds of information, such as the model of the
vehicle, and severity of damage caused to the vehicles. This crash data is basically used to
improve their vehicles, which results in better safety features.

An airbag application tool (Tool 1) is used to edit this data which is provided by the
customers. It is then stored into a database. This database is called the Crash DB. This
database stores all the input data recorded during crash tests. It consists of many single
crashes, which is also referred to as a crash set. In a crash set, every crash has a specific crash
name.

During the calibration phase for airbag projects, there is another application tool (Tool 2) used
for simulation purposes. It is used for the simulation of airbag ECU software on computer
systems. This tool provides a generic simulation platform. It has graphical editors to view and
modify the simulated system. Along with single control units, the tool also simulates systems
of control units. For example, a central control unit with peripheral sensors.

Along with the crash data, some other files are also needed as input for simulation. For
example, a configuration file, a specific algorithm, and a file consisting of different
parameters. Customers have different specifications. Depending on these specifications, there
are different parameters for calibration. These parameters consist of information regarding
different conditions. Based on these conditions, the basic logic for firing devices such as
airbags is different.

There are two phases during a simulation. During the first stage, data is pre-processed. Then,
the actual simulation is run in the next stage. The output from the simulation is particular
result values for each simulation device. This data is written into the Result DB. So, the
simulation tool is used to generate the result database. This is a general overview of some
airbag application tools in the toolchain.

41

3 Airbag Application Tools

> Crash Data > R Crash DB
Customer
Configuration
File
-.___/—-—__ 4
> Simulation
Specific > Tool
Algorithm > (Tool 2)
Parameter File
_.___—-/__
A 4
Result DB
Figure 3.1: General Overview of the Airbag Application Toolchain
Color Depiction

Customers providing raw crash data to the company

Airbag Application Tools in the toolchain
Databases (Crash DB, Result DB)

Input files for simulation

Table 3.1: Color Depiction of the Airbag Application Toolchain

There are many airbag application tools which help in the simulation, calibration, and crash-
data management for the airbag projects. There are a few main tools, as well as many smaller
helpful tools.

Amongst the airbag application tools, “AssignmentLister” is the name of the tool which is
used to visualize crash channel assignments. The airbag project has sensors, where in each of
them needs data for simulation. For this very purpose, crash channels are assigned to the
sensors. Each of the sensors present has a crash channel assigned to it. This assignment is
done for every crash present in the project. These assignments are known as crash channel

42

3 Airbag Application Tools

assignments. The assignments should be shown in a tabular form. This is a requirement as it is
necessary to see if the assignments are correct.

The AssignmentLister tool shows for each crash of a project, the assigned channels for each
sensor in a tabular form. So, basically the tool is developed in order to show the crash channel
assignment information.

A brief overview of the application tools used for airbags was discussed in this section. The
need for these tools was also explained. Following that, some of the airbag tools developed by
Bosch were discussed. This section ends with an explanation about the AssignmentLister tool.
This tool displays crash channel assignments in a tabular form. In the following section, the
existing AssignmentLister tool, along with its drawbacks will be discussed.

3.2 Existing Methodology to Visualize Crash Channel Assignments

In this section, the old solution used to visualize crash channel assignments is discussed.
Following that, the limitations of the approach are analyzed and explained in detail.

The AssignmentLister tool is running as a macro within the Excel file. The existing
methodology can be seen in Figure 3.2. As a first step, the tool runs a macro within the Excel
file. Then, it reads the input files for the channel assignment information. The crash channel
assignment information, also known as mapping information is got. As a last step, this
information is added to the Excel file. Excel Macros are used for this purpose in the tool.

AssignmentLister
Excel File

Run the Excel Macro Get Mapping
Information

Figure 3.2: Existing Approach to Visualize Crash Channel Assignments

The AssignmentLister tool shows the assigned channels for each sensor in an Excel table. In
this Excel file, the assignments are shown for each crash of a project. All channel assignments
are listed in a tabular format. There is also a list of available channels in the Excel file. The
list of available channels is taken from the Crash DB.

43

3 Airbag Application Tools

When the macro is finished running, the tool directly shows the Excel workbook with some
information about the crash, and the channel assignments. The Excel workbook is then saved
in the same folder as the project file, or outside the project folder.

Some drawbacks are analyzed from the existing tool. The method used is quite complex. The
user has to perform many mouse clicks to get the output in Excel. The output from the tool is
not directly available using the existing method.

The process in which the Excel file with crash channel assignments is created is depicted in
Figure 3.3. The macro is run through an Excel file. First, the macro should be installed
separately. Then, the “Add-ins” button is clicked in the file. Following that, “Macros” button
should be selected. In the options displayed following the mouse click, the tool name,
“AssignmentLister” should be selected. When this step is done, a dialog box appears. There is
a field in the dialog box where the input file location can be entered. After entering this, the
“Start” button should be clicked. After this step, the user has to wait for some time. Then, the
tool writes the crash channel assignment information to Excel. These are the steps which the
user has to perform in order to get the final output from the tool. This procedure is quite
complex and tedious for the user. It also consumes a lot of time to do these steps, and then get
the final output, which is the Excel file.

ASSIGNMENT
| ADD-INS H MACROS H LISTER

DIALOG BOX OPENS

l

SELECT
INPUT FILE
WAITING
‘ TIME

| START

ASSIGNMENTLISTER
EXCEL FILE

Figure 3.3: Steps to get Crash Channel Assignments in a Tabular Form

44

3 Airbag Application Tools

There are a few limitations of using Excel macros to run the tool. Since the AssignmentLister
tool runs as an Excel macro, separate macro installation is necessary. Updating the macro is a
lot of effort. This is because the macro is combined with other macros. Instead of updating a
macro, it is a less tedious process to create a new macro even. In addition, using macros to
generate the Excel file slows down the overall process. Hence, using macros to get the crash
channel assignments in a tabular form consumes a lot of time.

While running the tool, the clipboard cannot be used. If the clipboard is used, the Excel file
with the crash channel assignment information is not generated. The system may even freeze,
leaving the screen black for an extended length of time. The user will just have to wait for the
system to restart. In the meantime, the system also cannot be used when this happens. So, it
may take more time than expected to generate the output. Sometimes, the page doesn’t
respond at all. Other MS Office Products also cannot be used when the tool is run using a
macro. The tool is quite unstable. It does not work as expected.

There are two different use cases possible with the tool. A complete airbag simulation project
is available. The tool runs as a macro within the complete simulation project file. In this use
case, assignments from the complete simulation project are checked. The simulation tool file
or folder path is used as an input parameter by the tool. The files inside the project folder with
the channel assignment information are read. The mapping information is got, and then added
to the Excel file. From the complete project, only the simulation results are available. The tool
runs as a macro within the simulation result file. This use case checks the assignments from
only the simulation results. The simulation must be completed first. Only then the tool can be
run successfully. The result file from the simulations should be available. If this is available,
then the channel assignment information is added to the Excel file. The programming
language is in Excel VBA. There is no common solution for these available use cases in the
tool.

To summarize the drawbacks discussed, the existing solution uses Excel macros. The tool is
slow and unstable because of the use of macros. Assignment information is not handled in a
well manner. Many manual steps are needed to get the final output with the crash channel
assignment information. This process is quite cumbersome. Using macros to generate the
output has negative effects on MS Office Products. There is no common approach for the
different use case scenarios. The aim is to eliminate these limitations. As a consequence, the
AssignmentLister tool's overall performance shall be enhanced.

45

3 Airbag Application Tools

3.3 Summary

Airbag application tools are critical in the development, test, and deployment of airbags in
vehicles. In Section 3.1, an overview of airbag application tools was discussed. The
significance of AB application tools was emphasized. These tools help simulate, calibrate and
manage crash data for airbag projects. Overall, these tools improve the airbag system,
ensuring the correct functionality of airbag systems. This helps to provide better occupant
protection. This section ends with an introduction to the AssignmentLister tool, which is the
application tool used to visualize crash channel assignments in a tabular form.

In Section 3.2, the existing method to display crash channel assignments using the
AssignmentLister tool is explained. Further, the drawbacks of the old method were analyzed.
These limitations reduce the overall performance of the AssignmentLister tool. The aim is to
mitigate these drawbacks in order to have a better performing tool.

46

4 New Methodology to Visualize Crash
Channel Assignments

This chapter is divided into four sections. Each section covers different aspects of the
methodology to display crash channel assignments. In the first section, different approaches
which could be considered for the solution are explored. An overview of the new
methodology to visualize crash channel assignments is given in Section 4.2. In Section 4.3,
this methodology is covered in detail. It is further split into three sections. Each sub-section is
a stage of the concept. For example, the first sub-section is the first stage, and so on. This is
done for easier understanding of the overall concept which is developed. The fourth section
consists of the summary of this chapter.

4.1 Different Approaches

There are various approaches to be evaluated for the solution. The chosen methodology, along
with the reasons for which it is chosen is discussed in the following sections. This section
considers and explains different methodologies.

The airbag application tool, AssignmentLister is important as it is necessary to visualize crash
channel assignments in a tabular form. The assignment information should be handled in the
tool. It is required to find a suitable file format for this purpose. The target is to transfer the
information to another format, such that the output is in a tabular form.

There are some drawbacks with the old solution. Macros are used, which have a lot of
disadvantages on the tool. They make the tool slow, unstable and complex. The drawbacks are
discussed earlier in more detail, in Section 3.2. The different approaches explained will be
evaluated to achieve the aim of developing the new tool, without these drawbacks. The idea is
to have a methodology without the use of macros. For this purpose, a good fitting file format
should be found to handle the assignment information. Therefore, various available file
formats will be discussed. The various methods to have the output in a tabular form shall also
be explored. The objective of this section is to explore different file formats, and methods to
output the assignment information in a tabular form.

47

4 New Methodology to Visualize Crash Channel Assignments

For storing assignment information, different file formats are available. Some of the file
formats which are discussed further are text file, CSV, JSON, and XML.

A text file is a simple format, having the extension of .txt. Text files are good to store data
which is not complex. It is difficult to organize data within text files, as this type of file
format does not have a well-defined structure. Since text files are not structured, it is hard to
extract any specific information needed from the file. There are also no format options, such
as font styles or colors available. To sum it up, text files can be a good choice for storing
simple data. They are incompatible with more complex information requiring a structured
format.

CSV is a file format where data is stored in plain text. This plain text is separated by commas.
This file format has limited support for different data types. Important data may be lost during
conversion as a result of this. Complex data structures like arrays are not well-suited to be
stored using this format. There is no standard format used to store data. This makes
maintaining data consistency complicated. Checking if the data is complete or correct might
be time consuming, and possibly error prone.

TSV is a file format where tabs are used to separate the information. TSV has an added
advantage compared to CSV. Tabs are usually not used in text so often. This makes TSV
easier to parse than CSV. In case the value in the data contains a tab, then it is difficult to
parse the file.

JSON is generally used for web applications. JSON files can be complex, as the syntax is
difficult to understand. JSON files do not have a built-in way for a specific structure. Wrong
data structure is also accepted using this file format. This can result in errors. In some cases,
the data may lose its consistency.

XML can handle complex data structures. Tags and attributes are used in XML. Data is stored
in a hierarchical way. It is easy to organize information using XML. It has a built-in way for a
specific structure. This can be useful in many cases. For example, it is easy to parse the XML
file in order to get any particular information needed from the file. It is widely supported by
numerous apps and platforms. As a result, the XML format is versatile. XML can be more
complex than other file formats. This makes learning it more difficult. Due to the additional
overhead with the tags and attributes used in XML, the file size may become larger in
comparison to other file formats.
48

4 New Methodology to Visualize Crash Channel Assignments

The different file formats available are discussed. Table 4.1 shows a summary of some of the
main points discussed about the different file formats.

File Format Advantages Disadvantages
Text - Suitable to store simple data | - No structure
CSV - Stores data in plain text - Limited support for data types

- Not so easy to parse the file and
get information

TSV - Easier to parse than CSV - Difficult to parse if values have
tabs
JSON - Widely used for web apps - Syntax is difficult to
understand
- No built-in structure
XML - Can handle complex data - File size may be larger in
structures comparison to other formats
- Easy to parse and get
information

Table 4.1: Comparison of Various File Formats

The pros and cons of the file formats discussed are highlighted. These are some of the file
formats which could be used to store crash channel assignment information. The suitable file
format is chosen based on the requirements of the project.

First, the information is stored in a good-fitting file format. Then, it can be converted to a
tabular form. There are different formats available to store the data as a table. Some common
formats which are used for this purpose are HTML and Excel. Examples of these file formats
which are used to visualize data in a tabular form can be seen in Figure 4.1 and Figure 4.2
respectively. These file formats are explained further.

HTML is a markup language used to show data by creating web pages. Figure 4.1 depicts an
example of an HTML web page.

HTML pages are styled using CSS. HTML tables are static. They do not provide dynamic
features. This limits the functionality of the tool used to display the assignment information.
Hence, the formatting possibilities are limited. It is complicated for users to edit the tables.
For example, adding or deleting information from the table is complex or even not possible at

49

4 New Methodology to Visualize Crash Channel Assignments

all. It may be challenging to present the data in an orderly manner. HTML tables may not
appear correctly on some devices and web browsers. This is due to its incompatibility. This
can cause issues with the formatting of the table. These issues in turn make it hard for the
information to be visible clearly for users. Using HTML to display the information can also
be risky. Cross-site scripting attacks are a security threat. These incidents occur when
malicious software is put in a web page. The intruder can then steal sensitive data.

A Fixed Headers - Microsoft Internet Explorer

Fle Edt View Favorites Tools Help "

&) J ﬂ g I\J /V\Search :/ Favorites 6:‘? - ," _fd -

Address ‘{] ascript Samples\Fixed Headers in Tables\Applications\Fixed Headers\Table.htm ¥ | k24 Go Links >

Column3 Column4 ColumnS Column6é Column?
Vvdllle vdlle 4 vdlle vdlle b vdlle

Yalue 3 Value 4 Value 5 Yalue 6 Yalue 7
Value 3 Yalue 4 Value 5 Yalue 6 Value 7
Yalue 3 Value 4 Value 5 Yalue 6 Value 7
Value 3 Value 4 Value 5§ Yalue 6 Value 7
Value 3 Value 4 Value 5 Value 6 Value 7
Value 3 Value 4 Value 5§ Yalue 6 Value 7
Yalue 3 Value 4 Value § Yalue 6 Yalue 7
Value 3 Value 4 Value 5 Yalue 6 Value 7
Yalue 3 Value 4 Value 5 Value 6 Value 7
Yalue 3 Value 4 Value 5 Yalue 6 Value 7
Value 3 Value 4 Value 5 Yalue 6 Yalue 7

Value 3 Value 4 Value 5§ YValue 6 Value 7 v
< >

éj Done i My Computer

Figure 4.1: Example of an HTML Web-Page [30]

Another file format which can be used is the Microsoft Excel. Excel is a spreadsheet program.
The example of an Excel sheet can be seen in Figure 4.2.

Excel stores data in a tabular structure using columns and rows. It provides a simple user
interface. Excel files are not static. They provide dynamic features. It has a variety of
formatting and calculation possibilities. Excel makes data handling and modifications simple.
For example, adding or deleting information from the table is easy. It is simple to customize
the data which is displayed in Excel. There are many options for customizing and formatting
data to improve readability. Excel files might be vulnerable to errors while handling special
characters.

50

4 New Methodology to Visualize Crash Channel Assignments

IR 47 = New Microsoft Excel Worksheet - Excel 7 ®H - x
h HOME INSERT ~ PAGELAYOUT ~ FORMULAS DATA REVEW VIEW Sign in

6 Cut Calibri -l Ay ==E ®- BewaepTet Genera r [Fp T Ex R = Autosum - A

Pag B Cory - BIuUu- #. H-p- === == EMegetiCenter - - % P Cona\ Fogas ca \Ein Lfm F%t - sf:Y& Fﬁ

- ¥ Format Painter == = == == EMagellent Bt mattinge Table- Splese -+ - & Clear~ Filter - Select -

Clipboard ~ Font [Alignment [Number 5 Styles Cells Editing ~
Ra8 f v
A B C D E F G H 1 J K L M N o P Q

T

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

- Sheet1 @ v
READY i} Mo-——+ 120%

Figure 4.2: Example of an Excel Spreadsheet

The choice of file format to store data, and visualize the assignment information in a tabular
form depends on the specific requirements of the project. Other factors also impact this
selection. These factors are the type of data, and the way in which the assignment information
is extracted. Each of the file types considered has benefits, as well as limitations. It is crucial
to choose the right format to store assignment information according to the requirements. The
specific use case and its requirements should be considered when choosing between different
file formats.

4.2 Overview of the Methodology

This section introduces the idea for displaying crash channel assignments. Section 4.3 will
cover the further details about this methodology.

The aim is to develop an airbag application tool in order to show the assignments. The
visualization of crash channel assignments should be possible without the use of macros. The
new solution should lessen the limitations analyzed from the old solution too. For this, it is
required to find a good file format to handle information in the AssignmentLister tool. The
different approaches to store the assignment information are discussed in Section 4.1. The
target is to transfer all the data from this file format to a table. The final result should meet the
specifications. The methods possible to store data in a tabular form are also discussed in
Section 4.1.

51

4 New Methodology to Visualize Crash Channel Assignments

A basic overview of the proposed methodology is depicted in Figure 4.3. The database
consists of the required information, which are the crash channel assignments. This
information is extracted from the database. It is then saved to an appropriate file format. Then,
from this file, the data is transformed to a tabular format. This is the output file from the
AssignmentLister tool. The crash channel assignment information should be available in a
table as the final outcome. The concept to develop the tool is divided into three main stages,
the assignment information extraction, intermediate steps and the final step. Extracting
assignment information from the database is defined as the first step in the developed concept.
Storing this information to a good-fitting file format is the next step. This step is also the
intermediate step in the solution. The conversion to the AssignmentLister output file is
the final step.

- AssignmentLister Tool: L-_—_"_1 (Depicted in Figure 4.3)
Database
I _______________ =
Extract
> Assignment
Information

v

|

|

I

|

|

|

I

|

|

|

| Store to a Suitable
: File Format
|
|
|
|
I
|
|
|
|
|

Transformation

Assignment Lister

Output File

Output File Structure

Figure 4.3: Overview of the Proposed Methodology

52

4 New Methodology to Visualize Crash Channel Assignments

This is a simplified illustration of the new solution for displaying crash channel assignments.
The following section explains the reason for choosing this methodology in detail. The
suitable file formats for the intermediate result requirements and the final result are also
discussed further.

4.3 Concept

In Section 4.2, an overview of the proposed methodology is given. This section discusses the
concept developed to visualize crash channel assignments in detail. In order to achieve this,
the section is split into three sub-sections for better comprehension. Each part in this section is
a stage of the concept. The first sub-section describes the information extraction. The second
sub-section explains the intermediate steps. The third part is the final stage. It describes the
final step of the concept. The AssignmentLister tool handles all these steps. The idea to
develop the tool is using C# programming language with Visual Studio IDE, as shown in
Figure 4.4.

- AssignmentLister Assi entLister
Tool Output File
Input DB (C# with Visual
Studio IDE) \/_

Figure 4.4: Basic Concept of the AssignmentLister Tool

4.3.1 Information Extraction

The information extraction is the first step in the developed concept. To be able to view the
crash channel assignment information in the final step, the assignment information should be
extracted first. The airbag project is simulated using the simulation tool. This simulated data
is stored in the result database.

Simulation Simulated Results R
Tool | Result DB

Figure 4.5: Storing AB Simulation Results

53

4 New Methodology to Visualize Crash Channel Assignments

The simulated results consist of all information from a crash, including the channel
assignments. From this step onwards, there are two possibilities to get the channel
assignments. Both the possibilities will be discussed, and an approach will be chosen from the
two. The possibilities are the following:

a) The first option is to extract the channel assignments directly from the Result DB.

b) There is another airbag application tool called RSDBnext. This tool uses the Result
DB as input. It generates two result files. These result files also consist of the channel
assignment information. Extracting the channel assignment information from this
result file is the second option.

The assignment information is also called the mapping information. In both the possible
options, the assignment information is available for the AssignmentLister tool. Using the first
option, the mapping information should be extracted by the AssignmentLister tool from the
Result DB. This can be done using SQL queries. Using the second option, the mapping
information should be extracted from the result files generated from the RSDBnext tool. This
tool uses the Result DB as input.

Option (a) is using SQL queries to get information from the database. This can be complex.
Databases may have a large amount of data. Hence, extracting information from the database
can consume more time. In this case, the database contains various crash related information.
The queries must be written correctly to extract the right information. If the database is
modified or changed, the SQL queries also need to be updated accordingly. This can get
complex. There are rows, columns, and relationships between them. In order to extract
information from the DB successfully, these relationships have to be understood. For
example, the relation between tables in the database or the hierarchy in which the data is
stored. DBs may also have security restrictions. Additional access permissions may be needed
to get information from the tables. This can add to the complexity of extracting information
from the database. However, extracting information from the DB directly is a feasible
method, but it also has some cons. These should also be considered while choosing the most
effective solution to extract crash channel assignment information.

In the second option (b), result files generated from the RSDBnext tool consists of assignment
information. There are two result files generated from the RSDBnext tool. The format of these
files is Excel and XML respectively. Extracting information from Excel is not such a good

54

4 New Methodology to Visualize Crash Channel Assignments

idea as the approach is not so easy. The formatting and structure of the information may
change when exporting data from Excel to another format. In the XML file available, the
crash channel assignment information is available in a hierarchical structure. It is easy to
parse the data in XML than Excel.

In the first option, the mapping information should be extracted using SQL queries directly
from the database itself. Using this approach is more complex to get the information
compared to the other option available. The aim of developing the AssignmentLister tool is to
be able to handle the assignment information in an easy manner. Therefore, option (b) is more
suitable in this case. Hence, the crash channel assignments are extracted from the result file in
XML format. Though both the options are feasible to do in this case, the first option (a) is
more complex. Hence, the second option (b) is the better one.

Hence, in the AssignmentLister tool, the mapping information is extracted from the result
XML file of the RSDBnext tool. This is shown in Figure 4.6.

RSDBnext
Result DB Tool

Result
Excel File

__/_

Result
XML File

|
|

| |
! Extract [
: Assignment :
| |
! |
' |

Information

Figure 4.6: Extraction of Crash Channel Assignment Information

55

4 New Methodology to Visualize Crash Channel Assignments

The reason this option is chosen amongst the other possibilities is discussed in this section. At
the end of this step, the assignment information is extracted from the Result XML file. This is
the first stage in the concept.

The idea is to extract the assignment information by choosing the less complex and more
feasible option in this case. This will in turn result in a tool which is not complex in the end.
Hence, the handling of assignment information becomes easier for the next steps.

4.3.2 Intermediate Steps

This is the second step in the developed concept. The assignment information is collected.
Now, this information should be handled further in the AssignmentLister tool. After choosing
the suitable option in the first step, the assignment information is extracted from the result file
of the RSDBnext tool.

The assignment information is extracted from the Result XML file of RSDBnext tool. There
are different possibilities for further steps. These possibilities are discussed and the most
suitable method is chosen.

a) There is a possibility of storing the assignment information to a tabular format

directly, and skipping the intermediate steps.

b) Storing the assignment information to a file, and then converting this to a tabular

format.

Option (a), which is converting the assignment information directly, has a few disadvantages.
Directly converting the assignment information may lead to formatting issues. When there are
formatting issues during conversion, there may be information lost in the process. Some
elements may not be interpreted correctly from the input file. This leads to errors in the
output. Directly transferring data to a tabular format also leads to performance issues.

Option (b), which is converting the assignment information to another file, then converting it
to a tabular format provides better organization of the file. It also provides good compatibility
with various software and tools working with the output file. Using an intermediate file
ensures the data is not lost, and necessary formatting specifications are met. Hence, option (b)
is better than option (a) in this case.

56

4 New Methodology to Visualize Crash Channel Assignments

Therefore, it is better to have the intermediate steps for the reasons discussed. The
performance of the overall AssignmentLister tool also increases by this methodology.

In this intermediate step, it is important to put all the assignment information which is
extracted together. This is done by creating an internal data structure which is appropriate
according to the information available. The assignment information should then be stored to a
file. The different type of file formats which may be used to store this information is
discussed in Section 4.1,

The requirements are that the assignment information should be stored in a structured manner.
It should be easily readable. Since the data is transformed to a tabular format later, it should
be easy to read from this file type. The file formats discussed in the earlier section were text
files, CSV, TSV, JSON, and XML. It is important to identify the good-fitting file format
amongst these file types. The requirements of this specific use case should be considered.

Text files cannot store complex data well. They are unstructured. It is important to be able to
find the necessary information easily from the file. This is not possible using text files. A
structured format is required to store the assignment information. Hence, text files are not
suitable for this use case. CSV is difficult to read and understand. This file format does not
support all data types, which may result in data loss. Assignment information should be
displayed correctly without any information being lost. Hence, using this file format is not so
appropriate for this case. TSV format is better than CSV as the data is separated by tabs, and
not commas. It is more readable in comparison to CSV. But overall, it does not provide a
good structure for the channel assignment information. JSON files don’t have a specified
structure. The disadvantage of using JSON is that the wrong data structure is also accepted
using this file format. This can lead to errors, or data inconsistency in some cases. As a result,
using this file type is not suited for this purpose. Therefore, text files, CSV, TSV, and JSON
are not fitting for this usage.

Since tags and attributes are used in XML, it is easier to identify the necessary information
successfully in the later steps. XML data is simple to retrieve and parse. The built-in way for a
specific structure in XML makes the assignment information easy to read. Since the next step
is converting the XML to a tabular format, it is important to be able to parse the XML file,
and get the assignment information easily from it. It is appropriate to store the information in
XML file format for this particular use case. It is more beneficial to maintain information in a

57

4 New Methodology to Visualize Crash Channel Assignments

hierarchical structure for the available data. Hence, XML is the most suitable file format
amongst the others for this use case with handling assignment information.

So, the idea is to extract assignment information as a first step. Next, this information should
be handled in the AssignmentLister tool. Following that, the strategy is to store the
assignment information to an XML file. From this XML file, the assignment information shall
be transformed to another file having a tabular format in the final step.

For this purpose, the XML file is transformed to another XML file with styles. The first XML
file created shall have the crash channel assignment information in a hierarchical structure.
The following XML file which is created will have the assignment information, as well as the
respective styles applied to it in the file. Having the assignment information in XML format
gives a good overview of the stored information. This information is then present with all of
its styles. For example, for each value displayed in the table, the respective style can be seen
in XML format. These steps are depicted in Figure 4.7. The necessity to apply styles to the
XML file, type of StyleSheet used, and the purpose of creating two XML files is discussed
further.

—_———— e —— e — 4

StyleSheet
Output
Create Internal X > StyleSheet
XML File
Data Structure Processor
\/—

Processed XML
File

(XML with Styles)

Figure 4.7: Intermediate Results

58

4 New Methodology to Visualize Crash Channel Assignments

Styles help in defining the structural elements of a file. By adding some styles to a document,
the information is displayed in a structured and clear manner. In addition, styles help in
automating formatting tasks. This helps to save the manual time taken to do it. Furthermore, it
helps in maintaining consistency of the styles throughout the document, for all the
information available. It also makes the file look visually better.

In this case, styles are required to present the assignment information in a tabular format.
Hence, styles are applied to the XML file. XML describes data in a structured format. It does
not have an inherent tabular structure. Hence, data is converted from XML to a tabular
format, where the information available is structured into rows and columns. For example,
styles define the XML elements and their corresponding columns in the tabular format, or
specify formatting like having bold for the text present in some cells in the tabular format. If
some XML elements should be displayed in a specific font or color, styles help to make sure
this format option is applied to those elements throughout the table. This helps to ensure that
the information, along with the styling options is consistent in the entire document. Overall,
styles have a crucial role in ensuring that the assignment information present in the XML file
is represented effectively in a tabular format. Having a clear structure with styles for all the
information in the tabular format makes it easier to visualize the crash channel assignments.

Some of the styles which can be used are table styles, cell styles, character styles and
conditional formatting styles. Table styles are the styles which add formatting to tables. For
example, borders and coloring of the table. Cell styles are the styles which add formatting to
individual cells in the table. For example, font style, background color, and text alignment.
Character styles add formatting to specific characters. Conditional formatting styles are used
to apply formatting to cells depending on certain criteria. For example, highlighting cells with
a certain background color to indicate an error. The type of style needed depends on the
requirements of the final output.

Styles can be applied to the XML file using various StyleSheets. The possible styling ways
considered to display assignment information are CSS and XSLT.

a) Using CSS
b) Using XSLT

CSS and XSLT are used to style and transform XML data. They have different strengths.

59

4 New Methodology to Visualize Crash Channel Assignments

CSS can be used to format documents written in XML. In order to do this, styles are defined
in a separate CSS file. Then, they are applied to the XML file. CSS generally controls the
presentation of a document or web page. It can be used to add formatting to XML documents.
But, CSS has limited features to add styling options. It is not well-suited for complex
transformations. It is easier to do simple transformations using CSS.

XSLT uses its own stylesheet language in order to apply styles to the XML document. It is
used to convert an XML document to the same or a different file format. XSLT is designed
specifically for XML. It provides options to extract, edit, alter and transform data from XML
documents to different output formats. XSLT is capable of performing complex
transformations. It can combine multiple XML documents, filter data, or even apply
conditional formatting styles. Using XSLT, different formatting specifications can be applied
to specific parts of the information in the XML file. Due to this, different customizations are
possible. Some of the cons of XSLT are that it requires a deeper understanding of XML. It
may be more complex than CSS.

Feature CSS XSLT

Styling Limited options More options

Suitability Simple tasks Complex tasks

Strength Styling HTML Styling and transforming XML
documents to an output file

Output Visual display in a browser New document

Table 4.2: Comparison between CSS and XSLT

XSLT is designed particularly to handle XML documents. XSLT is a more powerful tool to
transform XML data to different outputs. Hence, converting the XML document using XSLT
is better [31]. XSLT has more styling and formatting features compared to CSS. The
assignment information in the XML file shall consist of different crash information in a
hierarchical manner. Different styles are to be applied on this information. Also, conditional
formatting options may be needed for some information. For simpler transformations or when
only basic styles are needed in the XML document, CSS may be a better option. However, in
this case, using XSLT is preferable for the previously mentioned reasons. Therefore, Option
(b), which is using XSLT to style XML documents, is more suitable than using CSS in this
case.

60

4 New Methodology to Visualize Crash Channel Assignments

To summarize the intermediate steps in a simpler manner, first, the assignment information is
stored in an internal data structure. This information is then put to an XML file. This XML
file consists of the assignment information. It is depicted as the Output XML File in Figure
4.7. Styles are applied using XSLT. Then, another XML file is created. This XML file
consists of the assignment information with its respective styles. It is depicted as the
Processed XML File in Figure 4.7.

By creating two XML files, the raw assignment information is separated from the styling
information. This separation of data and the styling makes it easier to manage the assignment
information in the next steps. It is helpful to have the second XML file in order to transform
the assignment information to a tabular format. If there is a need to modify styling, it can be
done in the second XML. This does not affect the assignment information stored in the first
XML file. Providing users with the information regarding the styles applied to the data can
also help them get an overview of the styling information. Furthermore, having two separate
XML files makes it easier to integrate the assignment data with other systems which may
require different styling or formatting options. The assignment information stored in the first
XML file created can be reused. If the same information is required, but different styling
options, then the XML file can be reused. The styles applied to this file do not have to be
taken care of in this case, as it is present in a different XML file. This can help in saving time
in developing different output formats with the same data. Hence, this strategy to handle
assignment information in the tool gives more flexibility, reusability, and interoperability.
Therefore, this strategy shall be beneficial to the AssignmentLister tool.

In the intermediate step, there are two XML files which shall be created. The first XML
contains the assignment information. Styles are applied to the XML file using XSLT. The
second XML file stores the assignment information along with the respective styles. This file
can be used by users of the AssignmentLister tool to get an overview of the crash channel
assignments, along with information on the styles applied. The assignment information in the
XML file is to be transformed to an output having a tabular format in the end. The next step,
which is also the final step, is to transform this XML file with styles to a table.

4.3.3 Final Step

This is the third step in the concept. In the first step, assignment information is got. Then, this
information is handled in the tool. As a next step, the crash channel assignment information is
stored in an XML file. Then, styles are applied to this assignment information. Another XML

61

4 New Methodology to Visualize Crash Channel Assignments

file is created which consists of all the assignment information with its styles accordingly.
The last step in the concept is explained in this section. The generated XML file needs to be
translated to a different format. This file format should store the information in a tabular form.

Factor HTML Excel

Data Unstructured Structured

Orderly Presentation Challenging Easy

(in a tabular format)

Formatting Possibilities Limited features Extensive features

Customization Options Limited options More options

Ability to Edit Complicated Easy

Dynamic Features Static Dynamic

User-Friendly Nature Not so user friendly, User friendly interface,
difficult to use easy to use

Compatibility Issues Not compatible on some Generally compatible
devices

Security Risks Vulnerable to attacks Generally secure

Table 4.3: Comparison between HTML and Excel for Data Visualization

In Section 4.1, the different file formats which can be considered to store tabular data were
discussed. The possibilities which are considered as file formats to store data in a tabular form
are HTML and Excel. As explained, the two formats have pros and cons. The use case and its
requirements are considered to be able to choose amongst the two options. The first factor to
be considered is for the file formats to output the crash channel assignment information in a
tabular form. Both HTML and Excel satisfy this point. The next factor is for the user to be
able to format the file as per requirements. It is necessary to be able to style the file as per user
specifications. In HTML, there aren't as many formatting and styling features.

In Excel, there are more options for formatting and styling. Excel can be used to filter data.

The requirement to filter assignment data is necessary. The final result should also be editable

or modifiable by the user. For example, if the user tries to delete a row or add an additional

column, this should be possible. Using HTML, it is not possible to modify the data once the
62

4 New Methodology to Visualize Crash Channel Assignments

final output is available. Using Excel, this is possible. The final output can be modified as
needed. Hence, for the stated reasons, Excel is a more suitable file format to be used for this
use case with crash channel assignments. For showing crash channel assignments, the
requirement is also to have the output file in Excel. Therefore, the final output is in Excel
format.

The Processed XML file consists of the assignment information, along with the styles. This is
available from the intermediate step. In the final step, this file is converted to an Excel file
having a tabular format. To summarize this, the XML file with styles is transformed to an
Excel file in the final step of the developed concept. This is depicted in Figure 4.8.

r-r—--———H—"™>""F""~—""~"""~—""~"7—"——— a
| |
| |
| |
| |
Processed XML File I Open with :
(XML with Styles) !] Excel |
: |
' |
|
From the Previous Step : :
| |
' |
: N |
|
: AssignmentLister l
: Excel File :
| |
| |
| |
| |
|

Figure 4.8: Final Step to Visualize Crash Channel Assignments

The final result, which is the AssignmentLister Excel file, consists of the crash channel
assignment information in a tabular form.

4.4 Summary

This chapter consists of the new methodology to display crash channel assignments. In
Section 4.1, the different approaches for the solution were discussed. The ways in which the
assignment information can be handled in the tool were explored. In Section 4.2, an overview
of the methodology is given. A basic illustration of the methodology is also shown.

63

4 New Methodology to Visualize Crash Channel Assignments

In Section 4.3, the proposed methodology is discussed in detail. This section has sub-sections.
Each sub-section represents a stage in the development of concept for showing crash channel
assignments. In these sub-sections, the different possibilities for the solution are discussed.
Then, the most suitable approach is chosen. The requirements of the AssignmentLister tool is
considered while choosing the approach. As a first step, the assignment information is
extracted from the result file of the RSDBnext tool. This extracted information is stored to an
XML file. Styles are applied using XSLT to this file, hence generating another XML file with
styles. The first XML file consists of the assignment information. The second XML file
consists of the assignment information, along with the styles which are applied accordingly.
The reason for having two XML files in the intermediate step is also discussed. Then, this file
is transformed to an Excel output. The Excel file consists of the crash channel assignments in
the form of a table. The new methodology includes the use of XML, XSLT, and Excel. The
reason for choosing these formats are also discussed in Section 4.3.

In this chapter, the different approaches, and the new methodology to visualize crash channel

assignments are discussed. The following chapter consists of details regarding
implementation of the AssignmentLister tool according to the proposed concept.

64

5 Implementation

This chapter consists of the implementation of the AssignmentLister tool. This tool is
implemented based on the proposed concept. This chapter consists of three sections. The first
section gives a general overview of the implementation, along with details regarding the
programming language used to develop the tool. The second section gives a more detailed
insight into the implementation. Different solutions for a certain problem are discussed.
Following that, the most appropriate approach is chosen based on the requirements of the tool.
The third section consists of a brief summary of the implementation chapter.

5.1 Overview of the Implementation

This section consists of a brief overview regarding the implementation of AssignmentLister
tool. This tool basically shows crash channel assignments in a tabular form. The assignment
information is extracted from the Result XML file of the RSDBnext tool. After extraction of
the information, it is stored to an XML file. Then, styles are applied to this XML file using
StyleSheet. The StyleSheet used for styling contains rules which define the formatting of the
output Excel file. For example, the StyleSheet can be used to set the font, background color,
cell borders, and alignment. For this, XSLT is used. The assignment information and the
styles are then combined to create an XML file. This file is then converted to an Excel file.
The Excel file is the final result from the AssignmentLister tool. This file consists of crash
channel assignments in a tabular form.

The AssignmentLister tool is programmed in C#. There are some benefits of choosing C#
with Visual Studio. Visual Studio has features like code completion, syntax highlighting, and
automatic formatting options. This makes coding in C# fast and efficient. There is a
significant developer group that uses C# with VS. As a result, there are many
resources available. This makes it easier to identify solutions to issues. VS supports cross-
platform development using the .NET Core framework. VS integrates with other development
tools. This makes managing C# apps simple. Developers can add customized features and
functionalities using extensions and plug-ins. The developer can modify the IDE to suit their
specific requirements. [32]

65

5 Implementation

Using C# is also beneficial while developing a tool which processes XML data, and generates
Excel files through XSLT transformations. Along with the already mentioned reasons, the
particular benefits of choosing C# for the development of the AssignmentLister tool are
explained further.

C# provides type safety. This helps to reduce errors in the code. C# has built-in support to
parse XML data. Since the assignment information is extracted by parsing the Result XML
file, this helps to get the information in an easy manner. C# provides built-in support for
XSLT transformations. This is useful while converting XML data to Excel format. The .NET
framework library provides a set of libraries for working with XML data and Excel files. For
example, Microsoft.Office.Interop.Excel namespaces can be used to access functionalities to
work with XML and Excel data respectively. This is useful while working with complex
XML data and StyleSheet (XSLT) transformations. These are some of the benefits of
implementation using C# with VS. Overall, C# is a robust language for developing tools. It is
suitable to use for the AssignmentLister tool as it has built-in support for parsing XML files
and XSLT transformations.

For the development of the AssignmentLister tool in C#, various classes are created. Each
class corresponds to a functionality. Table 5.1 provides an overview of the classes which are
present in C#, as well as the functionality of each class.

Class (.cs) Overview of the Functionality

Program AssignmentLister tool is steered by the inputs

RSDB Program Acts as a main method for the tool with input RSDB (.mdb file)
Start RSDB RSDBnext tool is started, result.xml file is generated

Xml to List Values are copied from the result.xml file to a list data structure
Channels in DB Channels in the local database are got

Write to Xml All the assignment information is written to the XML file
StyleSheet Processor StyleSheet.xslt is opened, and saved to an Excel file

Table 5.1: Class Names with their Functionality

In the following section, details regarding the stages of implementation are discussed in three

different sub-sections.
66

5 Implementation

5.2 Stages of Implementation

The AB project contains sensors, which require data for simulation. Hence, crash channels are
assigned to them. Every sensor in the project has a crash channel. This assignment is done for
every crash present. The AssignmentLister tool shall show these crash channel assignments in
a tabular form. The channel names are mapped to sensor locations. This is basically called the
mapping information. Along with this information, the crash code, assignment comment, and
channels present in the database are also important to be displayed in the final output.

The AssignmentLister tool is developed using C# with Visual Studio IDE. The reason for
choosing C# with VS is discussed in Section 5.1. There are different stages during the
implementation of the tool. This section consists of three sub-sections. These three sub-
sections are divided according to the different stages in implementation. The stages are
extracting assignment information, storing the assignments to a file and applying styles, and
the conversion of the file to a tabular form.

In the first stage, the RSDBnext tool is started with the AssignmentLister tool. This generates
the result files from the tool. The assignment information is then extracted from the result file
of the tool. The second stage is the intermediate step. In this stage, the extracted information
is stored to an internal data structure. Then, this information is written to an XML file. Styles
are applied to this file using XSLT. Then, another XML file is created with information and
styles. All of the necessary data for crash channel assignments is included in this XML file.
The third stage is the last step. In this stage, the XML file is converted to an Excel file. All the
information from the XML file with the styles is transformed to a tabular format. This Excel
file consists of the assignment information as per requirements.

Figure 5.1 depicts these processes in detail. The three stages are marked with different colors
in order to distinguish between them.

67

5 Implementation

Result DB RSDBnext
(.mdb) Tool
Result
XML File (.xml)

Extract AssignmentLister XSLT

Assignment | ————> ¥ny, File (xml) o StyleSheet (xslt)
Information

|

AssignmentLister
Processed XML File
(.xml)

V

Open with
Excel

AssignmentLister
Excel File (.xIsx)

Figure 5.1: Stages of Implementation of the AssignmentLister Tool

Color Depiction

Stage 1 - Extracting Assignment Information

Stage 2 - Storing the Assignments to a File & Applying Styles

Stage 3 - Conversion of the File to a Tabular Form

Table 5.2: Color Depiction of the Stages of Implementation

These are the three stages involved in the implementation of the AssignmentLister tool. Each
stage corresponds to the following sub-sections.

68

5 Implementation

In each sub-section, the colors used for the outlined boxes in the figures are based on Table
5.2. For example, in Section 5.2.1, the first stage is explained. Hence, yellow color is used to
highlight some code parts in the figures. In this way, blue and lilac colors are used to
highlight code parts for the second and third stages, in Sections 5.2.2 and 5.2.3 respectively.

5.2.1 Extracting Assignment Information

This is the first stage of implementation of the AssignmentLister tool. In this stage, the crash
channel assignment information is extracted from the result XML file of RSDBnext tool.

There are some user requirements. According to these requirements, the AssignmentLister
tool is implemented. The main requirement is for the output from the tool to have the
information depicted in Table 5.3. So, the information should be extracted by the
AssignmentLister tool in this stage. Some other formatting and styling options required are
discussed further.

Information Meaning
(for each crash)

Crash ID Unique crash identifier

Assignment Comment Comment regarding the assignment
Sensor Location Placement of a sensor in a vehicle
Channel Name Identification name for a channel

Channels in the Database | All the channels which are present in the local DB

Table 5.3: Information to be Extracted by the AssignmentLister Tool

RSDB is the input for the RSDBnext tool. In order to generate the result files, the tool is
started. For this, the .mdb file is given as input. Doing so generates the result files. Two result
files are generated — result.xlsx and result.xml file. To get the crash channel assignment
information, the result.xml file is used. The assignment information is extracted from this file
in the AssignmentLister tool. For this, in the command line arguments in VS, the .mdb file
path is given as input. The RSDBnext tool is run with this input in order to generate the result
files.

Using the AssignmentLister tool, two different use cases are available. In one of the use cases,
the assignment information is extracted from the complete simulation project. For this,

69

5 Implementation

assignments are got from the simulation project (MDSng). In the other use case, assignments

are extracted from the simulation results. For this, assignments are got from the input, which

is the RSDB (.mdb file).

To have a common solution for both the available use cases, the AssignmentLister tool is

steered by the inputs accordingly, like in Figure 5.2. If the input is from RSDB, then the use

case for input being an .mdb file is run. If the input is not an .mdb file, then it means it is the

other use case. So, assignments are then got from the simulation project (MDSng). The use

case which this thesis deals with is extracting assignment information from RSDB (.mdb file),

to visualize crash channel assignments.

// Two use cases are possible:
// UseCasel - get assignments from .mdb file
// UseCase2 - get assignments from MDSng / MDSngé64 project (mapping.xml files)

// For input from RSDB (.mdb file)
if (args|[@].EndsWith(".mdb™))

{
Console.WriteLine("\nUseCasel - get assignments from .mdb file.\n"});
RSDB_Program.Rsdb_program(args[e]);
// program will exit after finishing

}

// Input is MDSng / MDSng64 project (mapping.xml files)
Console.WriteLine("\nUseCase2 - get assignments from MDSng / MDSngé4 project (mapping.xml files).\n");

Figure 5.2: Code Snippet to Steer the AssignmentLister Tool by the Inputs

So, as a next step, considering the input is an .mdb file, the tool is started. As a result of this,

two files are available in Excel and XML format respectively.

In Figure 5.3, the code snippet from the method to start the tool can be seen. First, the result

file paths are created. Then, the tool is started to get the result.xml file. If the necessary result

file already exists, then the tool is not started again. This step is then skipped.

// Output file path is created using the input path
string outputpath = Path.ChangeExtension(mdbfile, ".x1sx");
string outputxml = Path.ChangeExtension(mdbfile, ".xml");

// If output xml file does not exist
if (!File.Exists(outputxml))
{
try
{
// Start RSDBnext to extract .mdb to get .xml
string arguments = " /input=\"" + mdbfile + "\" /output=\"" + outputpath + "\" /format=result";
Process ExternalProcess = new Process();
ExternalProcess.StartInfo.FileName = "C:\\Tools'\RSDBnext'\RSDBnext.exe";
ExternalProcess.StartInfo.Arguments = arguments;
ExternalProcess.Start();

Figure 5.3: Starting the RSDBnext Tool to get the Result.xml File

70

5 Implementation

The result files from the tool are available at the end of this step. The necessary assignment
data must then be extracted from the result.xml file. The result.xml file consists of various
crash related information in a hierarchical manner. To get the required information for the
AssignmentLister tool, the result.xml file is first loaded. The file is then read in this stage to
obtain the necessary data. For this, the hierarchy of the result.xml file has to be understood.
Figure 5.4 shows the hierarchical structure of elements in the result.xml file.

ELEMENT

Crash Set

ELEMENT

Crash

ELEMENT ATTRIBUTES
Crash Crash Code,
Attribute Assignment Comment
ELEMENT VALUES
Crash Sensor Location,
Channel Line Channel Name

Figure 5.4: Hierarchy of Elements in the Input XML File for AssignmentLister

In Figure 5.5, the “outputxml” refers to the result.xml file, which is the output from the RSDB
tool. This is the input file for the AssignmentLister tool. This file is loaded. Then, the file is
read in order to get the required information.

// Load the xml file (output xml from RSDB)
XElement xmlfile = XElement.Load(outputxml);

// Get the required values from the xml file
IEnumerable<XElement> xelement = xmlfile.Descendants("Crash");

foreach (XElement xEle in xelement.Descendants("CrashAttribute™))

Figure 5.5: Loading the Result.xml File and Extracting Information

As a requirement, for information regarding channels in the database, the channels are got
from the local database.

71

5 Implementation

The steps which are implemented in the AssignmentLister tool to extract assignment
information are summarized. The .mdb file is copied in order to start the RSDBnext tool.
According to the input being used, the use cases are steered accordingly. As the input is an
.mdb file, the RSDBnext tool is run. As a result of this, the result.xml file is available. Then,
this result.xml file is read in order to get the necessary information for the AssignmentLister
tool. For channels in the database information, the channels are got from the local database.

In the following step, the assignment information which is extracted is stored to a file. Then,
styles are applied to it. The implementation of this stage is discussed in the next section.

5.2.2 Storing the Assignments to a File and Applying Styles

This is the second stage of implementation of the AssignmentLister tool. From the first stage,
the assignment information is extracted. The assignment information should be saved to a
data structure in this step. Then, from this data structure, the information is written to an XML
file. Then, styles are applied using XSLT StyleSheet. As a result, another XML file is created.
The way in which these intermediate steps to develop the AssignmentLister tool are
implemented is explained further.

As a first step in this stage, the assignment information is stored in an internal structure. Some
of the structures in which the information can be stored are stacks, queues, arrays and lists.
Each data structure has its own characteristics with advantages and disadvantages. The better
data structure depends on the use case and requirements. The available data structures which
are possible options are briefly discussed. Among these, the most suited data structure is
selected. The data structures are:

a) Stacks, Queues
b) Arrays
c) Lists

Option (a): If a specific order of elements is to be maintained or elements are to be accessed
in a FIFO (First In, First Out) manner, stacks and queues can be suitable.

Option (b): Arrays have a fixed size. The number of elements an array can hold should be
known when it is created. Element addition and deletion are difficult since each element must
be moved. This makes the process complex. Hence, performance of the tool is affected in this
case. In C#, arrays can store elements of a specific data type only.

72

5 Implementation

Option (c): Using list data structure gives flexibility to add or remove elements. Lists can
adjust its internal structure accordingly and have built-in methods to add, remove and sort
elements. This helps to lower the lines of code needed in order to manipulate the list. Lists can
store elements of different data types. They are simple to implement. Also, data in the list can
easily be sorted.

For the stated reasons, lists are more appropriate to use in this case. The number of elements
is not fixed and changes with each project. It is necessary to be able to access the elements
and manipulate them according to the requirements in the next steps. Hence, option (c) is the
data structure which is chosen to store the required information amongst the other two
structures.

The chosen internal structure to do this is a list. The assignment information which is needed
for the final output consists of crash codes, assignment comment, and the crash channel
assignment mapping information. So, different lists are created in order to store this data.
Having different lists for each of the different information needed makes implementation
easier for the next steps. The attribute value of the element is got, and this is added to a list.
For example, the attribute value of all crash codes is got. This is then added to the
“CrashCodes” list. This can be seen in Figure 5.6.

// Get the value of Crashcode -> add to "CrashCodes" list
string x = (string)xEle.Attribute("Crashcode");
CrashCodes.Add(x);

// Get the value of AssignmentComment -> add to "AssignmentComments™ list
string x1 = (string)xEle.Attribute("AssignmentComment™);
AssignmentComments.Add(x1);

Figure 5.6: Code Snippet to Add the Required Values to a List Data Structure

At the end of this step, all the required information is stored in the list data structure. This
information will now be written to an XML file as the following step in this stage. For this,
the structure of the XML file is first defined. The XML structure is kept the same for both the
available use cases of the AssignmentLister tool. Then, all the information in the lists is
written to the XML file in the defined structure.

In order to write to XML, first a path is created for the AssignmentLister.xml file. There are a
few requirements for the way the information appears in the XML file. In order to have the
data in the required form, certain string manipulations are done. In the result.xml file, the

73

5 Implementation

sensor locations and channel names are available as a single string value. This is split into two
different values for sensor location and channel name respectively. This is then added to two
separate lists (one list for sensor locations, the other for channel names). This helps to keep
the information in the required format for later steps.

Zero emulation is when a crash does not have a channel assigned for a specific sensor.
Sometimes, the crash channel may not be mapped to a sensor. In this case, the channel name
iIs marked as “Zero Emulation” in the result.xml file. This indicates that no channels have
been assigned. When this is the case, the requirement is for the zero emulation to be shown as
“---:-”in the AssignmentLister tool. So, the channels with the name “Zero Emulation” are
rewritten to ““---:-”.

These requirements are implemented. Then, the AssignmentLister.xml should be created. For
this, all the information in the lists is written to the .xml file in a structured way. To write to
XML in C#, there are different possibilities. These possibilities are discussed, and a suitable
option is selected. The options to write to XML are:

a) XmlDocument
b) XmlIWriter

Option (a): XmIDocument represents a whole XML document. This option to write to XML
is used to create a new .xml document, or to load to an existing .xml file. XmIDocument
requires many lines of code to write to an XML file. This makes the code more complex.
XmlIDocument uses a lot of memory for large XML files.

Option (b): XmIWriter writes directly to a stream. This method provides an option to easily
set attributes, write elements, and define namespaces. XmIWriter can handle small and large
XML files in an efficient way. XmlIWriter is simpler than the other option. Additionally,
fewer lines of code are needed.

Hence, XmlIWriter, which is option (b), is a better option in this case amongst the possible
methods. XmlIWriter is used to write all the information needed to the AssignmentLister.xml
file. The elements, along with their attributes are written to the .xml file according to the
requirements.

74

5 Implementation

The hierarchy of elements defined in the AssignmentLister.xml file can be seen in Figure 5.7.

ELEMENT

Crash Set

ELEMENT ATTRIBUTES
Crash Code,
Crash .
Assignment Comment

ELEMENT ATTRIBUTES
Sensor Location,
Assignment ?| Channel Name,
Yellow Color (If value = “Yes™)
ELEMENT ATTRIBUTES
Channels in Name,
DB Blue Color (If value = “Yes”)

Figure 5.7: Hierarchy of Elements in the AssignmentLister.xml File

// Create the AssignmentLister.xml
// Using Xmlwriter, elements along with its attributes are written to the xml file
using (XmlWriter xmlwriter = XmlWriter.Create(intermediatexml}))

{

xmlwriter.WriteStartElement("AssignmentLister”);
xmlwriter.WritestarteElement("Crashset”);
xmlwriter.WriteAttributeString("CSName™, "AssignmentListerRSDB");

for (int i = @; 1 < CrashCodes.Count; i++)

I// Element "Crash” has the attributes "CrashCode" and "Assignmentcamment"l
xmlwriter.WriteStartElement("Crash™);

xmlwriter.WriteAttributeString("”CrashCode”, CrashCodes[i].ToString());
xmlwriter.writeAttributestring("AssignmentComment”, AssignmentComments[i].Tostring());

for (int j = @; j < Counter[i]; j++)

{

I// Element "Assignment” has the attributes "SensorlLocation™ and "ChannelName"I
xmlwriter.WriteStartElement("Assignment™);
xmlwriter.WriteAttributesString("SensorLocation”, SensorLocations[count].ToString());
xmlwriter.WriteAttributeString("ChannelName™, ChannelNames[count].ToString());

Figure 5.8: Writing to the AssignmentLister.xml File

A few additional attributes are also added for styling purpose. The requirement is for the
channel names with zero emulation to be marked with yellow background color. So, an
attribute “YellowColor” is added for zero emulation as depicted in Figure 5.9.

75

5 Implementation

// For Zero Emulation, attribute "yvellowColor™ is added
if (ChannelNames[count].Equals("---:-"))

{

xmlwriter.WriteAttributeString("YellowColor™, "Yes™);

}

xmlwriter.WriteEndElement();

Figure 5.9: Code Snippet to Add the Color Attribute

If a crash has a particular channel mapped to a sensor, then this is called a used channel in the
database. The requirement is for these used channels to be marked with blue color. So, an
attribute “BlueColor” is added for the used channels. This is implemented in a similar way
like the yellow background color.

The reason for adding these attributes is to help style the document. This is explained in detail
further. So, at the end of this step, all of this information is written to the
AssignmentLister.xml file. The user requirements are considered and implemented too. The
next step in this stage is to style the document using XSLT StyleSheets.

There are many formatting and styling options which are required in the final tabular form
with the assignment information. For this reason, XSLT StyleSheets are used for the purpose
of styling. Styles are used for various options. Some of the styles used as per requirements are
font names in Arial, alignment of text in the cells to the left (cell styles), yellow background
color for zero emulation, and blue text color for used channels (conditional formatting styles).

An example of the styles in StyleSheet.xslt class is shown in Figure 5.10.

<l--vellow background color (for Zero Emulation)-->
<Style ss:ID="YellowColor">»

<Alignment ss:Horizontal="Left"/>
<Interior ss:Color="#FFFF@@" ss:Pattern="solid"/>
<Borders>
<Border ss:Color="#D3D3D3" ss:Position="Right" ss:LineStyle="Continuous™ ss:Weight="1"/>
<Border ss:Color="#D3D3D3" ss:Position="Left" ss:LineStyle="Continuous™ ss:Weight="1"/>
<Border ss:Color="#D3D3D3" ss:Position="Bottom" ss:lLinestyle="Continuous” ss:Weight="1"/>
</Borders>»
</Style>

Figure 5.10: Example of Styles in StyleSheet.xslt

For the use case with input as .mdb file, there is only one crash set available. This crash set
consists of many crashes. In the other use case for the AssignmentLister tool, there are many
crash sets available. Each crash set consists of many crashes. The number of crashes depends
on the airbag project.

76

5 Implementation

For the StyleSheet to be used for both the use cases, a “for-each” loop is used in the .xslt
class. The number of worksheets in the final Excel file corresponds to the number of crash
sets available for the project. For example, for the use case with .mdb file as input, as there is
only one crash set, there is only one worksheet available in the final Excel output. The
headings and the corresponding values for the cells are written to the .xml file. An example

for this is shown in Figure 5.11.

<l--For every CrashSet available, a worksheet is created

Name of the worksheet is CSName-->

<xsl:for-each select="AssignmentLister/CrashSet">
<Worksheet ss:Name="{@CSName} >

<l-- A table is created-->
<Table ss:DefaultColumnWidth="80">
<Row>
<!--First row, first cell heading is "CrashCode"-->
<Cell ss:StyleID="Headings">
<Data ss:Type="String">CrashCode</Data>

</cell>
<xsl:for-each select="Crash">
<Row>
<!--"CrashCode" value is got for all crashes-->

<Cell ss:StyleID="Values">
<Data ss:Type="String">
<xsl:value-of select="@CrashCode"/>
</Data>
</Cell>

Figure 5.11: Creating a Worksheet and Table in .xslt

If the channel name has the attribute “YellowColor” in the .xml file, then the Style ID for
YellowColor is applied. This is done for channel names having zero emulation. Yellow
background color is applied to the channel name in this case. If there is no zero emulation,
then yellow background color is not applied to the cell in this case. An example of the way

this is implemented using .xslt is shown in Figure 5.12.

<!--"ChannelName" value is got for all crashes
ChannelName with Zero Emulation is marked with yellow background color--»
<xsl:for-each select="Assignment">
<xsl:choose>
<xsl:when test="@YellowColor="Yes'">
<Cell ss:StyleID="YellowColor">
<Data ss:Type="String">
<xsl:value-of select="@ChannelName"/>
</Data>
</Cell>
<fxsl:when>

Figure 5.12: Code Snippet to Mark a Cell with Background Color in .xslt

If the channel name has the attribute “BlueColor” in the .xml file, then the Style ID for
BlueColor is applied. This is done for used channels in the database. If the channel is not
7

5 Implementation

used, then it is not marked with blue color in this case. This is implemented in a similar way
like the yellow background color. In this way, styles are applied using StyleSheet.xslt as per
requirements.

The AssignmentLister.xml consists of the required information. Styles are applied using
StyleSheet.xslt on this file. This creates another XML file, called the Processed.xml. To do
this, the StyleSheet path is got, and the .xslt file is loaded. Then, the Processed.xml file is
created with values from AssignmentLister.xml, and styles from StyleSheet.xslt. The
Processed.xml file consists of the required information along with the styles applied for each
value respectively.

string stylesheet = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) + "\\StyleSheet.xslt";
XslCompiledTransform xslt = new XslCompiledTransform();
|x51t.Load(sty1esheet);|

|xm.nrft&f writer = XmlWriter.Create(processedxml, xslt.OutputSettings);
writer.WriteProcessingInstruction("mso-application™, "progid='Excel.Sheet'");
xslt.Transform(inputxml, writer);

writer.cClose();

Figure 5.13: Code Snippet for XSLT Transformation in C#

The steps which are implemented in the AssignmentLister tool to store assignments to a file
and apply styles are summarized. The extracted assignment information is stored to different
lists. This information is written from the lists to an XML file (AssignmentLister.xml) after
defining the XML structure. The document is styled using XSLT (StyleSheet.xslt). Another
XML file (Processed.xml) is created with the information and styles together.

In the following step, the assignment information with styles (Processed.xml) is converted to
a tabular form. The implementation of this stage is explained in sub-section 5.2.3.

5.2.3 Conversion of the File to a Tabular Form

This is the last stage of implementation of the AssignmentLister tool. From the intermediate
stage, the Processed.xml file is available with the information and styles. In this stage, the
assignment information is converted to an Excel file. The Processed.xml file is read, and
saved as AssignmentLister.xIsx.

78

5 Implementation

As a first step, the Excel application is created using “Microsoft.Office.Interop.Excel”, which
is a namespace in C#. The namespace requires that MS Excel is installed on the machine. It
provides a number of tools for working with Excel files. It gives access to the Excel
application’s properties. Using this, developers can create and manipulate Excel workbooks. A
wide range of operations like transforming files to Excel, and formatting can be done within
C# applications. So, the Excel application is created in a specific order. Following that,
workbooks, workbook and worksheets is created. The processed.xml file is also opened here.
In the next steps, this file is saved as the AssignmentL.ister.xIsx file.

// Excel Application, Workbooks, Workbook is created in a specific order
Excel.application x1App = new .Excel.Application();
x1App.Displayalerts = false;

Excel.uworkbooks xlWbs = x1App.Workbooks;

Excel.uworkbook xlwWb = xlwbs.Open(processedxml);

Excel.Sheets x1Sheets = xlWb.Worksheets;

Figure 5.14: Creating an Excel Application and Loading the Processed.xml File

There are some more formatting and styling features which are to be implemented according
to the requirements. There is an option of implementing these features using XSLT StyleSheet
or C# code. Both the options are considered. Then, the better option for the additional styling
required is selected. The options being considered to implement the additional styles are:

a) In StyleSheet
b) In C# code

Both XSLT and C# have their pros and cons. The selection of the method to be used depends
on various factors. The complexity of the styling requirements is one of the key elements in
this issue.

XSLT is capable of handling complex transformations. It is also used for many of the styling
features for the AssignmentLister tool. Implementing complex styling requirements is
possible using XSLT. Though the styles can be implemented in XSLT, the code will get more
complex using this method. Many lines of code are needed to add the specific styles. This
leads to a complex code. C# is also capable of handling some of the styling requirements.
Implementing the specific styling requirements is not so complex using C#. Using C#, the
implementation for the styles is quite simple, requiring very few lines of code in comparison
to XSLT. C# provides more flexibility to create customized styling features in this case. It is

79

5 Implementation

also easier to apply the desired formatting options to multiple worksheets in Excel
automatically. Hence, it is the better option, considering the styling requirements and their
complexity.

In Figure 5.15, the “foreach” loop is used. This means that these options are available for each
worksheet in Excel. With the use case having .mdb file as input, there is only one worksheet.
For the other use case, there are multiple worksheets available in the Excel output. Using this
loop makes the features available for both the use cases easily. The styling features are
implemented based on the specifications. They are auto-fit columns, header and column
fixation, auto-filter option, and borders.

For the used range of the column in Excel, there is an auto-fit width option implemented. The
size of the column is modified based on the size of the values in it when this option is
selected. Header and column fixation is achieved using the “FreezePanes” option. One row
and two columns should be fixed as per requirements. The remaining information should not
be fixed. An option to apply filters to each column should be available. This is achieved using
the auto-filter option. A border is available around the entire Excel table. The way these
options are implemented can be seen in Figure 5.15.

// For all worksheets in Excel

foreach (Excel.Worksheet oSheet in x1Sheets)

{
// To have AutoFit columns
Excel.Range range = oSheet.UsedRange;
range.Columns.AutoFit();

// Header and column fixation (using FreezePanes)
oSheet.Activate();
oSheet.Application.ActiveWindow.SplitRow = 1;
oSheet.Application.ActiveWindow.SplitColumn = 2;
oSheet.Application.ActiveWindow.FreezePanes = true;

// AutoFilter is applied to all columns
var xlRange = oSheet.UsedRange;
object result = x1Range.AutoFilter(1);

// Border around the used range
x1Range.BorderAround (Excel . xlLinestyle.x1Continuous, Excel.xlBorderWeight.xlMedium, Excel.xlColorIndex.xlColorIndexAutomatic);

Figure 5.15: Screenshot of Code for Formatting and Styling Feature in C#

After this, the processed.xml file, which is read for the assignment information and styles is
saved as an Excel file. The formatting and styling options implemented are also added to the
Excel file. This file, which is the final output, is available in the form of a table. Then, the
Excel objects which are created are released in a specific order.

80

5 Implementation

The steps which are implemented in the AssignmentLister tool to convert the Processed.xml
file to a tabular form are summarized. The Processed.xml file is read to get the assignment
information along with styles. Some formatting and styling options like auto-fit column and
auto-filter are implemented using C# code. The Processed.xml file is saved as an Excel file
(AssignmentLister.xlsx). The AssignmentLister.xlsx consists of crash channel assignment
information in a tabular form as per user requirements.

This is the last step in the AssignmentLister tool's development. The tool is implemented
according to the proposed concept.

5.3 Summary

This chapter consists of details about the implementation of the AssignmentLister tool. It
starts with an overview of the implementation in the first section. The next parts cover the
various stages of the tool's implementation. The stages are described across three sub-
sections. Implementation of the tool to get crash channel assignments is explained in the first
sub-section. In the next sub-section, the way in which assignments are stored to the XML file
is explained. This XML file is called the AssignmentLister.xml. Then, styles are added to this
file using StyleSheet.xslt. The AssignmentLister.xml file in combination with StyleSheet.xslt
creates another XML file. This XML file is the Processed.xml. The final sub-section describes
the way Processed.xml is converted to AssignmentLister.xlsx. In the AssignmentLister.xlsx,
the crash channel assignments are displayed in the form of a table as per requirements. This
Excel file is the final output from the AssignmentLister tool. The next chapter discusses the
results and evaluation of the AssignmentLister tool.

81

6 Results and Evaluation

This chapter discusses the results of the AssignmentLister tool, along with its evaluation. The
chapter is divided into four sections, the first of which provides an overview in general. The
second section discusses the intermediate results from the tool, and the final result. The final
result displays crash channel assignments in a tabular form. The tool is evaluated using
various testing methods. A comparison of the old and new AssignmentLister tool is
presented in the third section. This chapter ends with a summary.

6.1 Overview of the Results

The AssignmentLister tool is implemented to show crash channel assignments. The .mdb file
is the input to the AssignmentLister tool. This input starts the RSDBnext tool, which
generates the Result.xml and Result.xIsx files. The Result.xml file is used as an input file for
the AssignmentLister tool. First, the XML file (AssignmentLister.xml) with all the
assignment information is created. Then, another XML file (Processed.xml) with the
information and styles is created. Following this, the Excel file (AssignmentLister.xIsx) is
created. This Excel file consists of the crash channel assignments which are displayed in a
tabular form.

RSDB RSDBnext
(.mdb File) Result.xml File

Assignment
Lister.xml File

1

Processed.xml
File

1

Assignment
Lister Tool

Assignment
Lister.xIsx File

Figure 6.1: Overview of the Results from AssignmentL.ister Tool
82

6 Results and Evaluation

To start the AssignmentLister tool, the input .mdb file path should be given. This is depicted
in Figure 6.2.

Assignmentlister + X

Application
PP Configuration: |Active (Debug) ~ Platform: Active (x64) ~
Build
Build Events Start action
Dol @ Start project
Resources
() Start external program:
Services
Settings (O start browser with URL:

Reference Paths

Start options.
Signing
Security Command line arguments: | “C:\temp\AssignmentListerRSDB test
2\0001__Gen_LinStepSize.mdb”
Publish

Code Analysis

Working directory: Browse...

[[] Use remote machine

Authentication mode: Windows Authentication

Debugger engines

Enable native code debugging
[] Enable SQL Server debugging

Figure 6.2: Input File Path to Start the Tool in Visual Studio

When the AssignmentLister tool is run with the .mdb file, a console window appears. Figure
6.3 shows this console window.

AssignmentLister 2.0.0.1331 - O X

Gen_LinStepSize

Copy of values from C:\temp gnmen \ __Gen_LinS ze.xml to internal structure finished.

Accessing the local DB...

AssignmentLister.xml is created in the same directory.

nmentLister.

ssignments in a tabular form is 3 seconds.

Figure 6.3: Screenshot of the Console Window for AssignmentL.ister Tool

The steps which are performed to visualize crash channel assignments are summarized. The
AssignmentLister tool starts the RSDBnext tool. The .mdb file path is the input to start the

83

6 Results and Evaluation

RSDBnext tool. This generates the result.xIsx and result.xml files. If the result.xml file is
already present from the last run, this step is omitted. The values from the result.xml file of
RSDBnext are copied to a list data structure. The local database is accessed to get the
information about channels which are in the database. This is a necessity for the final output.
Then, an XML file (AssignmentLister.xml) is created in the same directory, with all the
required data. Following this step, styles are applied to the AssignmentLister.xml file. This
generates another XML file (Processed.xml) in the same directory. The final step is to create
the AssignmentLister.xlIsx file. This Excel file displays crash channel assignments in a tabular
form. The Excel file is in the same location as the XML files. All the files generated are
present in the same directory. The time taken to generate these files, in order to visualize the
crash channel assignments is 3 seconds (for the example of the airbag project shown in Figure
6.3).

After running the AssignmentLister tool, the output files are available in the same directory.
An example of the files available at the same location can be seen in Figure 6.4. The time of
creation of the files, along with the type and size of the file for the particular airbag project
can also be seen.

B 0001__Gen_LinStepSize.mdb 03.01.2023 13:57 Microsoft Access ... 6.692 KB

Input Files - 0001__Gen_LinStepSizexlsx 30.01.2023 20:12 Microsoft Excel W... 105 KB
L E;,.I 0001__Gen_LinStepSizexml XML File 370 KB
AssignmentLister.xlsx 07.03.2023 23:57 Microsoft Excel W... 14 KB

Output Files |—= [AssignmentLister.xml 07.03.2023 23:57 XML File 33 KB
E;,.’ Processed.xml 07.03.2023 23.57 XML File 49 KB

Figure 6.4: Example of Files in the Directory

The next section shows the intermediate XML results, and the final Excel res ~ in a tabular
form.

6.2 Visualization of Crash Channel Assignments in a Tabular Form

The AssignmentLister tool is run with an airbag project to visualize the crash channel
assignments. The generation of the interim results from the AssignmentLister tool is included
in this section, along with the final outcome. After the extraction of assignment information,
all the data is stored to an XML file. This XML file is called the AssignmentLister.xml. When
styles are applied to this XML file using XSLT Stylesheets, another XML file is created. This

84

6 Results and Evaluation

XML file is called the Processed.xml. These two XML files are shown in this section. The
final Excel output is then displayed and evaluated.

When the RSDBnext tool is started, the result files from the tool are generated. An example
consisting of a part of this file can be seen in Figure 6.5. For a particular “Crash”, there are
“CrashName” and “Calibration” attributes. These attributes have values. For the parent
element “Crash”, the child element is “CrashAttribute”. For this element, there are
attributes like “Crashcode”, “Crashinfo”, and “AssignmentComment”. The
“CrashChannelZeile” is another element, consisting of the channel assignments for a crash.
There are many channel assignments for a crash. In each crash channel line, the first part is
the sensor information. The latter part in the line is the assigned channel for that particular
sensor. For example, for the first channel assignment, “ECU: Acc_HG: P45” is information
about the sensor. It is basically the sensor name, direction, and value, which is separated by
colons. “15TUNNCSMIO0ACXP: X” is the channel name. This format follows for every crash
channel line.

TR9406_FSO3DA" Calibration="0423B6">
“rashcode="ATR9406_FSO3DA" Crashinfo="FSO03DA 27 km/h" AssignmentComment="VP N
ECU: Acc HG: P45: ->: 15TUNNCSMIOOACXP: X</Crash

and nonNAS" Start="0" End="400.05">
nnelZeil

elZeile>

: ECU: Valid: 0: -4gt;: ZERO-Emulation: </Cras
: UFSL: Acc: -X: -4gt;: 12SLMBCSLEOOACXP: X<
: UFSR: Acc: -X: =-4gt;: 12SLMBCSRIOOACXP: X<
: PASFL: Acc: -Y: -4gt;: ZERO-Emulation: </C
: PASFR: Acc: Y: =-4gt;: ZERO-Emulation: </
: PTSL: PTS1: 0: -4gt;: ZERO-Emulation: </
: PTSR: PTS1: 0: -4gt;: ZERO-Emulation: </Cra

Figure 6.5: Screenshot of the Result.xml File

The result.xml file consists of the information required for the AssignmentLister tool. This
information is extracted, and stored in the AssignmentLister.xml file in the required format.
An example consisting of a part of this AssignmentLister.xml file can be seen in Figure 6.6.

A crash set consists of many crashes. Each crash consists of assignment information. For a
particular “Crash”, the attributes are “CrashCode” and “AssignmentComment”. These
attributes have values. For the parent element “Crash”, the child element is “Assignment”.
For this element, there two attributes for “SensorLocation”, “ChannelName”. There are
many channel assignments for a crash. This information is extracted from the result.xml file,
and is stored in a defined structure. This structure is defined based on the requirement for the
next steps. For example, the sensor name, direction, and value, which were separated by
colons in the result.xml file is separated by just a space in the AssignmentLister.xml file. This
structure is the same for every assignment line. Some assignments also have the attribute

85

6 Results and Evaluation

“YellowColor”. This indicates that the channel name for that particular assignment is “---:-”,
which is Zero-Emulation. In this case, the cell color should be marked with yellow. After the
assignment information, an element “ChannelsinDB” can be seen. Channels in the database
is the list of channels extracted from the local database. This element has the atrribute
“Name”. Some channels in db have the attribute “BlueColor”. This shows that the channel is
used. In this case, the text color in the cell should be marked with blue as per requirements.

<KAssignmentLis
<Crashset

nt'">
"AATR9406_FSO3DA" AssignmentComment="VP NAS and nonNAS'>
cation="ECU Acc HG P45" C lame="15TUNNCSMIOOACXP: X" />

|<Assignment S
<Assignment
<Assignment
<Assignment
<Assignment

"PASFR Acc Y"

[<ChannelsinDB 11DOORMIMIOOPROP: 0" BlueColor="Yes" />
<ChannelsinDB 12SLMBCSLERDACXP: X" BlueColor="Yes" />
<ChannelsinDB 12SLMBCSLERDACYP: Y" />

<ChannelsinDB Name="12SLMBCSRIOOACXP: X" BlueColor="Yes" />

</Cras
<Crash
<Crash

tComment="VP NAS">

"ATR9440 FS04" Assignmen
e =nt="VP NAS">

"ATR9446 FLOS" Ass

Figure 6.6: Screenshot of the AssignmentLister.xml File

The AssignmentLister.xml file consists of all the required information defined in a particular
structure for the AssignmentLister tool. Styles are applied to this file using StyleSheet.xslt.
This creates the Processed.xml file. The Processed.xml file consists of the values with the
styles. Figure 6.7 depicts an example of this file.

The Processed.xml file consists of the styles for the Excel table. The row and column styles
are specified for the particular values accordingly. For example, “Headings” is the Style ID in
the first row. This Style ID is defined in the beginning of the StyleSheet.xslt file. It consists of
style settings like alignment, font, borders, and colors. Based on the necessary requirements,
these settings are defined.

The Style ID “Headings” is applied for the heading “CrashCode”. The other headings in the
Excel table appear in the first row itself. They also have the same Style ID. All Style IDs are
defined in the StyleSheet.xslt file. The values which are filled up below the headings in the
rest of the rows have the Style ID “Values”. These values are filled up for each row in the
Excel table one after the other, after the first row.

The tag <Row> depicts the start of a new row in the table. <Cell> stands for the column in
the table. After the <Row> tag, the first <Cell> tag stands for the first column, the next

86

6 Results and Evaluation

<Cell> tag stands for the second column, and so on. Each row stands for a single crash and its
assignment information. For the values which should have yellow background color and blue
text color, the Style ID “YellowColor” and “BlueColor” are assigned respectively. The Style
ID for yellow color has the style to add background color to the cell. The Style ID for blue
color has the style to add blue text color to the cell. These styles are applied based on the tags
present in the AssignmentLister.xml file. For example, if a particular value has the attribute
yellow color to it in the AssignmentLister.xml file, then the Style ID “YellowColor” is
applied to that value. Each value which appears in the table has a style assigned to it in the
Processed.xml file.

="AssignmentListerRSDB">
ltColumnWidth="80">

"Headings">
pe="String">CrashCode</Data>

yleID="Headings">
1t Row; <Data ss:Type="String">Assignment Comment</Data>
— i« P /Cell>
Style D= Headmgs <Cell ss= "Headings">
<Data ="String">ECU Acc HG P45</Data>
/cell>
<Cell ss: D="Headings">
<Data pe="String">ECU Acec HG -M45</Data>
</Cell> -
<Row>
<Cell ss:St
<Data s ">TR9406_FSO3DA</Data>
</Cell>

<Cell ss:StyleID="
< ">VP NAS and nonNAS</Data>

">15TUNNCSMIOOACXP: X</Data>
208 Row:

— @ ®
Style ID = “Values ">15TUNNCSMIOOACYP: Y</Data>

<Cell ss:StylelD="YellowColor">
<Data Type="String">===:=</Data>
/Cell>
<Cell ss:StyleID="BlueColor">
<Data ss:Type="String">11DOORMIMIOOPROP: 0</Data>
</cell>

Figure 6.7: Example of Styles Added to the Data in the Processed.xml File

The Processed.xml file is then transformed to the Excel file. The AssignmentLister.xlIsx is
available in the same directory as the other files. The Processed.xml file can also be opened
with Excel. When this XML file is opened with Excel, the Excel file with crash channel
assignments is available. The AssignmentLister.xlsx file is the final output of the
AssignmentLister tool. It consists of crash channel assignments in a tabular form. All the
formatting and styling requirements are also added to this Excel file.

87

6 Results and Evaluation

An example of the way information is transformed from the AssignmentLister.xml to the
AssignmentLister.xIsx is depicted in Figure 6.8 and Figure 6.9 respectively. The

Processed.xml file is also created for the transformation.

In Figure 6.6, the attributes for crash can be seen (green box). The attributes for assignments
can also be seen (red box). For channel names with zero emulation (“---:-”), the attribute
YellowColor = “Yes”. These XML elements and attributes are defined such that it is easy for
transformation to the Excel file as per requirements.

"PASFL Acc -Y"
"PASFR Acc Y"

12SLMBCSRIOOACXP: X" />
D G v ="Yes" />
lor="Yes" />

"PASMR Acc Y"
"PPSFL PPS3 0"

tion="PTSR PTS1 0" Channell

on="PASML Acc -Y" Channel

"17CPILCSBOOOACYP: Y" />
19CPILCSBOOOACYP: YY" />
"11DOORMIMIOOPROP: 0" />
"13DOORMIMIOOPROP: 0" />
-:=" YellowColor="Yes" />
lor="Yes" />

cHE I H&E =] g x2x BE|I= EO 0P “ e » EEDEEx v x B8 s 4B
i AssignmentListerxmi E3 \g, : }
E <Crash CrashCode="ATR9406 FSO3DA" AssignmentComment="VP NAS and nonNAS"> | ~
<As ensorLocation="ECU Acc_HG P4S" ChannelName="1STUNNCSMIOOACXP: X" />
<As ="ECU Acc_HG -M45" me="15TUNNCSMIOOACYP: ¥" />
<As ="ECU Acc_MG X" me="15TUNNCSMIOOACXP: X" />
<As ="ECU Acc_LG -Y" ame="15TUNNCSMIOOACYP: Y" />
<As n="ECU Acc_LG -2" nnelN STUNNCSMIOOACZP: 2" />
<As ="ECU Angular_Rate X" Char ame="15TUNNCSMIOOAVXP: X" />
<As n="ECU Valid 0" Ct Name="=-==:=" ; ="Yes" />
<As ="UFSL Acc -X" 12SLMBCSLEOOACXP: X" />
<As ="UFSR Acc -X"

Name="11DOORMIMIOOPROP: 0" BlueC

N1 ACTMBACTBAARAVE. Vi D —Vann

Figure 6.8: Snippet from the AssignmentLister.xml File

In Figure 6.9, the same information which is in the XML file is depicted in the required
format in Excel. The first row is the headings. “Crash Code” and “Assignment Comment” are
the first two headings, and their values for the particular crash is below the headings (in the
first two cells of the second row).

The rest of the headings which can be seen in the Excel file are the “SensorLocation” values.
Corresponding to these headings, the “ChannelName” values are present. This mapping of
crash channels to the sensors is called the mapping information, or the assignment
information. The yellow background color is marked for the cell in case of zero emulation.
This is also depicted in the Excel file. This is the method for converting XML data to Excel.
Some more details regarding the final Excel file, and the requirements is provided further.

88

6 Results and Evaluation

Assignmentlisterxlsy ~

Parthanarayanasingh Krishna Pooja (CC-0SS/EPD2-EU) ' PE

File

&
(D,
Paste
“ s [

Clipboard &

Home Insert

Font

Al 57 f
| A B
CrashCode | ~ lAssignment Comm ~
ATRO406 FS03D/ VP NAS and nonNAS
1.‘\TR944U_FSU4 WP NAS
ATRO9446_FLO5 WP NAS
ATR9449_FC14R VP NAS and nonMAS
ATRO425_FS06R VP NAS
ATR9399_FLO7R WP NAS
ATR9422_FLOGL VP NAS and nonMAS
9 |ATR9418_FS11L VP NAS
10 |ATR9412_FL10L VP MNAS and nonNAS
11 |ATR9443_F315 VP NAS and nonNAS
12 |ATRO432_F3518 VP NAS and nonNAS

RN TR STPRY Y

Page Layout

Formulas Data Review

] Alignment

CrashCode

N o]

View

(]

Help

General ~
- % 9
0 .00
%0 <0

Number

[l

Acrobat
ﬁ Conditional Formatting ~
[Format as Table ~
[Cell Styles ~
Styles

P Q

@ Insert -
E Delete ~
[ﬁj Farmat ~

Cells

R

I Comments & Share

NS
O Agaalge

Editing Analysis PN

i T

[+]

PASML Acc -Y ~ PASMR AccY
(1 7CPILCSBODOACYP: Y

~ | PPSFL PPS3 0
19CPILCSBO0DACYP: Y 11D00RMIMIOOPROP: 0 13D00RMIMIOOPROP: 0 —=-

~ | PPSFR PPS3 0

~ | PTSLPTS -

PTSR PTS/ 'jf

17CPILCSBO00ACYP. Y
17CPILCSBOD0ACYP: Y
17CPILCSBO0D0ACYP: Y
17CPILCSBO00DACYP. Y
17CPILCSBODDACYP: Y
17CPILCSBO0D0ACYP: Y
17CPILCSBOD0ACYP: Y

19CPILCSBO00ACYP. Y 11DOORMIMIOOPROP: 0 13DOORMIMIOOPROP. 0 —-
19CPILCSBO00ACYP: Y 11DOORMIMIOOPROP: 0 13000RMIMIDOPROP: 0 —=-
19CPILCSBO0DACYP: Y 11DOORMIMIOOPROP: 0 13DO0ORMIMIOOPROP: 0 —-
19CPILCSBO00ACYP. Y 11DOORMIMIOOPROP: 0 13DOORMIMIOOPROP. 0 —-
19CPILCSBO00OACYP: Y 11DOORMIMIOOPROP: 0 13DOORMIMIDOPROP: 0 —:-
19CPILCSBO0DACYP: Y 11DOORMIMIOOPROP: 0 13DO0ORMIMIOOPROP: 0 —-
19CPILCSBO00ACYP:Y 11DOORMIMIOOPROP: 0 13D00RMIMIDOPROP: 0 —-

17CPILCSBORDACYP: Y 19CPILCSBO00ACYP: Y 11DOORMIMIOOPROP: O 13DOORMIMIOOPROP: 0 —:-
17CPILCSBO00ACYP: Y 19CPILCSBO0DACYP:Y 11DOORMIMIOOPROP: 0 13DOORMIMIOOPROP: 0 —-
17CPILCSBO00ACYP: ¥ _19CPILCSBO00ACYP: Y 11DO0ORMIMIOOPROP: 0 13D00RMIMIOOPROP: 0 —-

&
[+
-+ %

[

C& pisplay Settings

L1
H B M

AssignmentListerRSDB (&)

Figure 6.9: Part of the AssignmentLister.xlIsx File

The example in the figures shows a part of the AssignmentLister.xml file, and the way in

which

information is transformed to the AssignmentLister.xlsx file in the required format.

Another example of the Excel file can be seen in Figure 6.10. This example shows the
complete Excel output with all the headers. The first row in the Excel table consists of the
headings. After that, each row corresponds to a single crash. The headings, along with the

corresponding data in the Excel table are as follows:

a)

b)

c)

Crash Code: It is the first column in the table. It consists of different crash IDs present
in the airbag project.

Assignment Comment is the column after “Crash Code” in the Excel table.

Sensor Information: There are many sensors present in the airbag project. The column
headings after assignment comment are filled with the sensor information. The sensor
name, direction, and value are separated by a space in this information. For example,
“ECU Acc_HG P45”. The number of sensors present depends on the project. Crash
channels are assigned to the sensors. The name of the assigned crash channels is filled
up example,

“I1STUNNCSMIOOACXP: X”. Every sensor present in the project has a crash channel. This

in the columns corresponding to the sensor headings. For

is done for each crash present in the airbag project. This information is basically the
crash channel assignment information.

89

6 Results and Evaluation

d) Channels in the Database: After the sensor information, a blank column is left. This is
done as it is a requirement to have a separation between the channel assignments and
channels from the database. Following the blank column, the heading is channels in
the database. This consists of the channels present in the local database for each crash.

The way in which the assignment information is displayed in the Excel table is according to
the user requirements.

There are also some formatting and styling options which are implemented. Some of the
styling features which can be seen in Figure 6.10 are bold font, filter option, auto-fit width,
colors, and borders.

All the headings in the table are marked with bold font. Filter option is available for the
headings. Using the filters, information in the column can be sorted if required. The columns
in the Excel table are sized to fit the information. The cells with channel names as zero
emulation (“---:--"") have yellow background color. Blue text color is applied to used channels
in the database. If a channel is assigned to a sensor for a particular crash, then it is called as a
used channel. In the Excel table, for the cells filled with the assignment information, a border
is applied around the entire used range of the table. These are the styles applied to the Excel
table.

(@ (b) () (@

- Channels in the Databas -
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0

CrashCode - Assignment Comme: -

ECU Acc_HG P45 ~ ECU Valid -
AAT9406_FSO3DA VP NAS and nonNAS SR

1STUNNCSMIOOACXP: X -
1STUNNCSMIOOACXP: X -

12SLMBCSLERDACYP: Y 12SLMBCSRIO0ACXP: X i
12SLMBCSLERDACYP: Y 12SLMBCSRIO0ACXP: X =i«

AAT9440_FS04 VP NAS
AAT9446_FLOS VP NAS
AAT9449 FC14R VP NAS and nonNAS
AAT9425_FSO06R VP NAS
AAT9399_FLO7R VP NAS
AAT9422 FLOIL VP NAS and nonNAS
AAT9418_FS11L VP NAS
AAT9412_FL10L VP NAS and nonNAS
AAT9443 FS15 VP NAS and nonNAS
AAT9432_FS18 VP NAS and nonNAS

15TUNNCSMIOOACXP: X -
15TUNNCSMIOOACXP: X -
15TUNNCSMIO0ACXP: X ~=i-
1STUNNCSMIO0ACXP: X -~
1STUNNCSMIOOACXP: X ==
1STUNNCSMIOOACXP: X «==i=
1STUNNCSMIOOACXP: X ===~
15TUNNCSMIOOACXP: X «==i=
1STUNNCSMIOOACXP: X «==i«

11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0
11DOORMIMIOOPROP: 0

12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y
12SLMBCSLERDACYP: Y

12SLMBCSRIO0ACXP: X ===
12SLMBCSRIO0ACXP: X -«
12SLMBCSRIO0ACXP: X «eui«
12SLMBCSRIO0ACXP: X «=ei-
12SLMBCSRIO0ACXP: X ~-si-
12SLMBCSRIO0ACXP: X «eei-
12SLMBCSRIO0ACXP: X ==«
12SLMBCSRIO0ACXP: X ===
12SLMBCSRIOOACXP: X ---i-

Figure 6.10:

Excel Table Displaying Crash Channel Assignment Information

Along with the styles discussed, header and column fixation is also applied to the Excel table.
Header and column fixation means that the first row, and the first two columns of the table are
fixed. Rest of the columns in the Excel table are dynamic. This style is indicated by the scroll
bars in Figure 6.9. These are the formatting and styling features which are available. The final
output from the AssignmentLister tool is available in a tabular format in Excel. This table
displays the crash channel assignment information as required.

90

6 Results and Evaluation

The tabular format is important for the users to see if the assignment information is correct. It
can be checked if the mapping is fitting properly or not. User requirements are considered
during the concept and implementation phase. Expected behavior of the AssignmentLister
tool from users is taken into account. Tests are conducted to ensure the tool meets its
requirements.

The type of tests conducted to evaluate the AssignmentLister tool are performance tests, unit
tests, integration tests, functional tests and usability tests [33]. Performance tests is conducted
to evaluate the performance of the tool with different projects. Different airbag projects are
available. There are different cases present with different projects. So, this testing is done to
ensure the tool works according to the requirements in all different scenarios. Unit tests are
conducted to test each unit of code. These tests are performed manually. The aim of unit
testing is to identify errors early in the development process of the tool. This helps to make
sure the tool works as intended. Integration testing tests the working of different units of code
together. Different modules of the software are tested in order to ensure they are functioning
correctly. This testing is done after unit testing. Conducting these tests ensures the code is
functioning correctly, and that different modules of software work together as expected. This
helps to identify any issues early in the development process. Functional tests ensures that the
software is performing the functions which it is supposed to, and is meeting user
requirements. In functional testing, manual testing involves running the software with various
inputs, and checking the resulting outputs. Usability tests are conducted to evaluate the ease
of use of the tool. It helps to identify issues users may face while using the tool. This helps to
ensure the tool meets user expectations.

The aim of testing software is to check if the functionality of the tool is correct, and if user
requirements are met. These tests are conducted during, and after the development of the
AssignmentLister tool. These tests make sure the functionality of the tool is correct, and the
Excel output is as expected. From these tests, it can be seen that the Excel table is according
to the user requirements. The formatting and styling options are also added correctly based on
the specifications of the user. The AssignmentLister tool works correctly for different inputs,
and produces the required output with the crash channel assignment information for both the
use cases. From these Excel tables generated for different inputs, it can be seen that the
AssignmentLister tool satisfies user requirements and expectations.

91

6 Results and Evaluation

The AssignmentLister tool also works correctly with other tools in the toolchain. The existing
toolchain architecture is not disturbed. The tool is integrated into the toolchain as expected, as
the Excel table is created correctly without affecting the functionality of other airbag
application tools present.

6.3 Comparison with the Old Solution

The old solution to get crash channel assignments was complex. Excel Macros were used to
develop the tool. Using macros made the tool slow and unstable. The assignment information
was not handled well. The user had to perform many manual steps in the form of mouse clicks
to get the final output. The number of mouse clicks to be performed manually is 5. There were
also other issues while waiting for the output to be generated. MS Office Products could not
be used while waiting for the output. Sometimes, the page even stopped responding in this
case. For the example shown in Section 6.2, creation of the Excel file took more than 30
seconds. If the file size is larger than the one chosen for the example, then it can take more
than a minute for the Excel file to be generated using macros. There was no common solution
available for the use cases.

The new solution developed for the AssignmentLister tool does not use Excel Macros to
visualize crash channel assignments. C# programming with Visual Studio IDE is used to
develop the tool. XML file format is used to handle the assignment information in the
intermediate steps. Styles are applied to the XML file using XSLT StyleSheet. Then, the file
is converted to Excel format.

The transformation from XML to Excel happens in just a few seconds. The tool handles
assignment information in an easier way compared to the the old solution. The file formats
used to handle the tool make the process of visualizing crash channel assignments easy. The
hierarchical structure of XML helps to transform data, to create the Excel file. The desired
formatting and styling options are applied to the final output with the help of StyleSheet. The
final output is in a tabular form as per user requirements, and is generated in a stable manner.
There are no negative effects of using MS Office Products with the new solution.

The user does not have to wait for a long time, or do multiple mouse clicks to get the output
file. The user has to just enter the input file path to run the tool. The number of mouse clicks
to be performed manually is just 1. The tool handles the remaining steps automatically. For
the example shown in Section 6.2, the Excel file was generated in just 3 seconds. The

92

6 Results and Evaluation

assignment information is extracted from the input.xml file (result.xml), and even the local
database (for channels in db) in this time frame itself.

A common solution is available for the available use cases. The tool is developed considering
the requirements of both the use cases. The tool starts for either of the use cases based on the
input provided. The StyleSheet is implemented such that it is flexible to be used for both the
use cases. Depending on the settings in the StyleSheet, the Excel file is generated for the use
cases. For the use case running with the result file of the simulation (.mdb file), only one
worksheet is required. For the other use case, number of worksheets are required, depending
on the airbag project used. For single or multiple worksheets, the tool runs successfully and
displays crash channel assignments in the required format. Hence, the AssignmentLister tool
works in a stable, easier and faster manner.

Some additional features are also added to the new AssignmentLister tool. In the old tool,
these options were not available. The “Filter” option is added to the final Excel file. The user
can filter the required information in the columns with this option. “Auto-fit width” option is
also added as a new feature to the Excel file. This feature formats the column width to the text
content present automatically. As the channel names are long, this feature helps the user to see
the crash channel assignments in an easy way. “Yellow background color” is added to the
cells having zero emulation. Zero emulation is when there are no channels assigned for a
sensor. The user can check if there are no channels assigned for a sensor. This can be easily
identified in the table because of the coloring option added.

The primary goal to get rid of macros is achieved with the new AssignmentLister tool. The
primary goal of the tool is dependent on a few other steps, like handling the information and
transferring it to a tabular format. The tool handles assignment information well. This is
proven from the stability of the tool while generating the output in a tabular form. The file
format selected for storing and displaying crash channel assignments is good-fitting for the
requirements of the tool.

Using the AssignmentLister tool, the final output file with the crash channel assignments is
available on an average of about 3-6 seconds depending on the size of the airbag project used
to run the tool. With the old tool, it took a few minutes to generate the Excel file using
macros. On an average, depending on the size of the airbag project, the speed of creating the
output in a tabular form increased by a factor of 10 to 12. Hence, the Excel file in a tabular
format is generated about 11 times faster in comparison to the old tool.

93

6 Results and Evaluation

There are no negative effects of using the clipboard or any other MS Office Products while
running the tool with the new solution. The tool functions correctly even with the use of MS
Office Products.

Hence, considering all of the stated points, the output is available in a tabular format with the
crash channel assignments in a stable, easier and faster way. Table 6.1 depicts the comparison
of the old tool with the new tool based on various factors.

Features

0ld Tool
(Run with Excel Macros)

New Tool
(C# with Visual Studio IDE)

Use of Excel Macros

Yes

No

Data Handling

Complex

(using macros)

Simple
(using XML format)

Speed to Create the Excel
File

Slow,
Seconds to a few minutes

(for the example, > 30 seconds)

Faster,
Just a few seconds

(for the example, 3 seconds)

Stability Unstable Stable
Clipboard usage during Not possible Possible
Excel file generation

Compatibility with MS Incompatible Compatible
Office Products

Common Solution for Use | No Available
Cases

User Interface Complex, Simple,

Multiple manual steps (5)

Minimal manual steps (1)

Formatting and Styling

Features

Limited options

More features

Table 6.1: Comparative Analysis of the Old and New AssignmentL.ister Tool

The new tool is evaluated against the old tool. Existing gaps present in the old tool is
addressed by the new AssignmentLister tool. Various tests are conducted to ensure the
working of the tool. The AssignmentLister tool is tested with various inputs, and the resulting
outputs. Some compare tools are used to compare the results in the end. System tests ensure
the results are as expected, and not corrupted. There is no specific hard requirement for the

94

6 Results and Evaluation

speed of the tool. The strategy without the use of macros increases the speed of the tool. The
speed of creating the AssignmentLister.xIsx file is faster than the old tool. The user does not
have to do multiple manual steps to generate the output file. The tool is stable to use. As a
result, the new tool is easier to use than the old one.

The output generated meets the requirements, and expectations of the tool. The new features
added enhance the visualization of crash channel assignments in a tabular form. The
formatting and styling options can also be customized easily if needed by simple updates in
the StyleSheet. Therefore, the overall performance of the AssignmentLister tool is better
compared to the old solution for the stated reasons. The visualization of crash channel
assignments in a tabular form is achieved with the developed AssignmentLister tool.

6.4 Summary

The results and evaluation chapter discusses the results of the AssignmentLister tool, along
with its evaluation. This chapter starts with an overview of the results, along with the inputs
required to produce the final output. Then, the way the intermediate XML and final Excel
files are formatted as per user requirements can be seen. The details regarding the
intermediate files, as well as the final Excel file are discussed with examples. The tests
which are run to ensure the tool works properly are described. The evaluation of the
AssignmentLister tool is discussed at the end of this section. For this, a comparative analysis
of the old and new AssignmentLister tool is done. The new tool is evaluated against the old
tool, and the findings are discussed. The following chapter outlines the conclusion of the
thesis topic.

95

7 Conclusion and Future Scope

Automobile safety systems are measures meant to prevent accidents and reduce their
consequences. Airbags are passive safety devices which protect passengers in the event of an
accident. They lower the likelihood of serious harm or death in case of a collision. Airbag
application tools are critical because they enable engineers to simulate, evaluate, and in
turn improve the airbag system.

The airbag project consists of sensors. These sensors need data for simulation. For this reason,
crash channels are assigned to sensors. These assignments are present for every crash in the
project. They are known as crash channel assignments. The “AssignmentLister” is an airbag
application tool which is used to visualize crash channel assignments in a tabular form. The
old method for obtaining crash channel assignments had a few limitations. The tool was
created using Excel Macros. The assignment information was poorly handled. The tool
became slow and unstable because of the use of macros. The new AssignmentLister tool is
developed using C# with Visual Studio. As a first step in the development of the tool, the
crash channel assignment information is extracted. This information is stored to an XML file.
XML is selected as the good-fitting file format for the necessary requirements of the tool.
Styles are applied to this file using StyleSheet (XSLT). Then, the XML file produced is
transformed to an Excel table. Depending on the specific requirements, the output format
selected for the output file is in Excel format, due to its multiple benefits. This table displays
crash channel assignments, with the styling options required.

As a future point, a graph could be generated from the final Excel result. The final output
from the AssignmentLister tool, which is the Excel table, consists of a part with channels in
the database. Amongst these channels, the channels which are assigned to sensors are called
used channels. The other channels are the unused channels. This graph may contain the
representation of the number of used channels in the database. This can provide an even better
display of the information. Based on the requirements, this can be an option provided for the
user to view the information. For this, some tools like Power Bl can be used with Excel.
Power Bl can also be used with Excel to analyze the data present, in order to get a deeper
insight through data visualization. Power Bl visuals such as graphs and charts can directly be
embedded into Excel to enhance data analysis of the assignment information present.

96

7 Conclusion and Future Scope

The AssignmentLister tool is developed considering future safety of the code. There will be
new versions of Visual Studio, and other airbag application tools in the toolchain. As a result,

it is important to update the code on a regular basis to maintain the performance of the
AssignmentLister tool.

97

List of References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Raith, Andreas, Kathrin Sattler, Rudolf Ertlmeier, and Thomas Brandmeier,
"Networking and integration of active and passive safety systems." inIEEE
Proceedings of the ninth international workshop on intelligent solutions in embedded
systems, 2011, pp. 75-80.

Schoeneburg, Rodolfo, and Thomas Breitling, "Enhancement of active and passive
safety by future PRE-SAFE® systems," in Proceedings of the 19th ESV Conference,
Washington, DC, USA, 2005.

Ertimeier, Rudolf, and Paul Spannaus, "Expanding design process of the Airbag
Control Unit ACU-Connection of Active and Passive Safety by using vehicles
dynamics for rollover and side crash detection," in IEEE International Workshop on
Intelligent Solutions in Embedded Systems, 2008, pp. 1-9.

Hussain, Aini, M. A. Hannan, Azah Mohamed, Hilmi Sanusi, and A. K. Ariffin,
"Vehicle crash analysis for airbag deployment decision,” in International journal of
automotive technology, 2006, pp. 179-185.

S. Shameem, G. R. K. Prasad, V. T. Ch, K. Bharath Kumar, M. Yaswanth and M. Ch,
“Design Simulation and Analysis of Crash Sensor for Air Bag System,” in IEEE 3rd
International Conference on Inventive Computation Technologies (ICICT), 2018, pp.
718-723.

M. Lehmann. (2023). Student Page, Chassis Control - Occupant Safety Systems in
the Bosch Docupedia Page (internal-bosch.com) [Online]. Available: https://inside-
docupedia.bosch.com/confluence/aeos/core-assets/system-and-application/students-

page

Shirur, Naveen, Christian Birkner, Roman Henze, Thomas M. Deserno, and
Darshankumar Dudhat, “Effect of airbag deployment phases on tactile occupant
detection sensor,” in IEEE 2020 XII International Science-Technical Conference
AUTOMOTIVE SAFETY, 2020, pp. 1-5.

D. Li, “Design and simulation of airbag flexible pressure sensor,” in IEEE Conference
on Telecommunications, Optics and Computer Science (TOCS), 2021, pp. 810-812.

98

https://inside-docupedia.bosch.com/confluence/aeos/core-assets/system-and-application/students-page
https://inside-docupedia.bosch.com/confluence/aeos/core-assets/system-and-application/students-page
https://inside-docupedia.bosch.com/confluence/aeos/core-assets/system-and-application/students-page

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Adsul, Rahul, and S. Joshi, “Performance Modeling of Automotive Sensors and
Sensor Interface Systems using Simulink,” in International Journal of Science and
Research (1JSR), 2013, pp. 233- 243.

Hu, J., N. Orton, K. Boyle, N. Ashok, J. Klima, C. Staniak, R. Scherer, and M. Reed,
"Seatbelt-Mounted Airbag Design For Occupant Protection In Tactical Vehicles
During Frontal Crashes,” in Proceedings of the Ground Vehicle Systems Engineering
and Technology Symposium, 2019, pp. 13-15.

Trivedi, Mohan M., Shinko Yuanhsien Cheng, Edwin MC Childers, and Stephen J.
Krotosky, "Occupant posture analysis with stereo and thermal infrared video:
Algorithms and experimental evaluation,” in IEEE transactions on vehicular
technology 53, 2004, pp. 1698-1712.

G. Gabriel. (2015, Jan. 27). Pedestrian Airbags, A First for Land Rover [Online].
Available: https://mobile.guideautoweb.com/en/articles/28126/pedestrian-airbags-a-
first-for-land-rover/

General Motors. (2012, Dec. 18). Cruze debuts industry-first flexible venting driver air
bag [Online]. Available: https://phys.org/news/2012-12-cruze-debuts-industry-first-
flexible-venting.html

Hannan, Mahammad A., Aini Hussain, and Salina A. Samad, "System interface for an
integrated intelligent safety system (ISS) for vehicle applications,” in Sensors 10, no.
2, 2010, pp. 1141-1153.

Amin, Md Syedul, Salwa Sheikh Nasir, Mamun Bin Ibne Reaz, Mohd Alauddin Mohd
Ali, and Tae-Gyu Chang, "Preference and placement of vehicle crash sensors," in
Technical Gazette 21, no. 4, 2014, pp. 889-896.

J. Koci¢, N. Jovic¢i¢ and V. Drndarevi¢, “Sensors and Sensor Fusion in Autonomous
Vehicles,” in 26th Telecommunications Forum (TELFOR), 2018, pp. 420-425.

R. Lugner et al., “Evaluation of Sensor Tolerances and Inevitability for Pre-Crash
Safety Systems in Real Case Scenarios,” in IEEE 3rd Connected and Automated
Vehicles Symposium (CAVS), 2020, pp. 1-6.

99

https://mobile.guideautoweb.com/en/articles/28126/pedestrian-airbags-a-first-for-land-rover/
https://mobile.guideautoweb.com/en/articles/28126/pedestrian-airbags-a-first-for-land-rover/
https://phys.org/news/2012-12-cruze-debuts-industry-first-flexible-venting.html
https://phys.org/news/2012-12-cruze-debuts-industry-first-flexible-venting.html

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

N. Englisch, R. Bergelt and W. Hardt, “An Educational Platform for Automotive
Software Development and Test,” in IEEE 32nd Conference on Software Engineering
Education and Training (CSEE&T), 2020, pp. 1-4.

N. Englisch, F. Hanchen, F. Ullmann, A. Masrur, and W. Hardt, “Application-Driven
Evaluation of AUTOSAR Basic Software on Modern ECUs,” in IEEE 13th
International Conference on Embedded and Ubiquitous Computing, 2015, pp. 60-67.

Vodel, Matthias, Rene Bergelt, and Wolfram Hardt, “Grease framework-generic
reconfigurable evaluation and aggregation of sensor data,” in Proceedings of the 2nd
International Conference on Smart Grids, Green Communications and IT Energy-
aware Technologies (ENERGY/InfoSys), 2012.

Khan, Owes, Norbert Englisch and Wolfram Hardt, “Rapid Prototyping in AUTOSAR
Based Systems,” in Gl-Jahrestagung, 2017.

Gaitzsch, Lucas, Norbert Englisch, and Wolfram Hardt, “Computer-Aided Population
of Knowledge Base for Automotive Software Engineering,” in IBS International
Symposium on Computer Science, Computer Engineering and Educational
Technology, 2019.

Englisch, Norbert, Owes Khan, Roland Mittag, Felix Hanchen, Ariane Heller, and
Wolfram Hardt, “YellowCar,” in INFORMATIK, 2017.

M. Fejes, Photo: N. Englisch. (2017, Mar. 14). Chemnitz University of Technology,
University News, From Ecomobile to Driver Assistance Systems [Online]. Available:
https://www.tu-chemnitz.de/tu/pressestelle/aktuell/7868/en

Lippmann, Mirko, Batbayar Battseren, Ariane Heller, and Wolfram Hardt,
“BlackPearl: Extended Automotive Multi-ECU Demonstrator Platform,” in
International Summer School on Computer Science, COMPUTER ENGINEERING
AND EDUCATION TECHNOLOGY, 2018.

Kingsbury, Patrick, André Windisch, and Wolfram HARDT, “Modeling of Agile
Avionics Software Development Processes through the Application of an Executable
Process Framework,” in International Conference on Design and Modeling in Science,
Education, and Technology, 2011.

100

https://www.tu-chemnitz.de/tu/pressestelle/aktuell/7868/en

[27]

[28]

[29]

[30]

[31]

[32]

[33]

K. Cho, S. B. Choi, and H. Lee, “Design of an Airbag Deployment Algorithm Based
on Precrash Information,” in IEEE Transactions on Vehicular Technology, May 2011,
pp. 1438-1452.

Bohmlander, Dennis, Vitor Yano, Thomas Brandmeier, Alessandro Zimmer, Lee Luan
Ling, Chi-Biu Wong, and Tobias Dirndorfer, "A novel approach for intelligent pre-
crash threat assessment systems," in 17th International IEEE Conference on
Intelligent Transportation Systems (ITSC), 2014, pp. 954-961.

Chan, Ching-Yao, "Trends in crash detection and occupant restraint technology," in
Proceedings of the IEEE 95, no. 2, 2007, pp. 388-396.

K. Huber. (2006, Jun. 24). Fixed headers in large HTML tables [Online]. Available:
https://www.codeproject.com/Articles/14563/Fixed-headers-in-large-HTML-tables

M. Gudemann, M. Lipaczewski and F. Ortmeier, “Tool Supported Model-Based
Safety Analysis and Optimization,” in IEEE 17th Pacific Rim International
Symposium on Dependable Computing, 2011, pp. 294-295.

A. Y. Bahar, S. M. Shorman, M. A. Khder, A. M. Quadir, and S. A. Almosawi,
“Survey on Features and Comparisons of Programming Languages (PYTHON, JAVA,
AND C#),” in ASU International Conference in Emerging Technologies for
Sustainability and Intelligent Systems (ICETSIS), 2022, pp. 154-163.

K. Sneha and G. M. Malle, “Research on Software Testing Techniques and Software
Automation Testing Tools,” in International Conference on Energy, Communication,
Data Analytics and Soft Computing (ICECDS), 2017, pp. 77-81.

101

https://www.codeproject.com/Articles/14563/Fixed-headers-in-large-HTML-tables

Selbststandigkeitserklarung

e Zentrales Priifungsamt
e —— Selbststandigkeitserklarung
TECHNISCHE UNIVERSITAT
CHEMNITZ

Bitte beachten:

Name: Parthanarayanasingh
1. Bitte binden Sie dieses Blatt am Ende Ihrer Arbeit ein.

Vorname: Krishna Pooja

geb.am: 14.08.1998

Matr-Nr.. 673220

Selbststandigkeitserklarung*

Ich erklare gegentiber der Technischen Universitat Chemnitz, dass ich die vorliegende Masterarbeit
selbststandig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausfiihrungen, die wortlich oder inhaltlich aus anderen Schriften entnommen
sind, habe ich als solche kenntlich gemacht.

Diese Arbeit wurde in gleicher oder dhnlicher Form noch nicht als Priifungsleistung eingereicht und ist auch noch nicht
veroffentlicht.

o
o
as?\w%- o

26.04.2023 UNErSChrifl: s s s i

Datum:

* Statement of Authorship

I hereby certify to the Technische Universitat Chemnitz that this thesis is all my own work and uses no external material other
than that acknowledged in the text.

This work contains no plagiarism and all sentences or passages directly quoted from other people’s work or including content
derived from such work have been specifically credited to the authors and sources.

This paper has neither been submitted in the same or a similar form to any other examiner nor for the award of any other
degree, nor has it previously been published.

102

