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ABSTRACT 

Decreasing transistor feature size has led to an increase in the number of transistors in 

integrated circuits (IC), allowing for the implementation of more complex logic. However, such 

logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock 

must reach many more gates over larger areas. Thus, timing analysis requires significantly more 

computing power and designer involvement than in the past. For these reasons, IC designers have 

been pushed to nix conventional synchronous (SYNC) architecture and explore novel 

methodologies such as asynchronous, self-timed architecture. 

This dissertation evaluates the nominal active energy, voltage-scaled active energy, and 

leakage power dissipation across two cores of a stream processor: Smoothing Filter (SF) and 

Histogram Equalization (HEQ). Both cores were implemented in Multi-Threshold NULL 

Convention Logic (MTNCL) and clock-gated synchronous methodologies using a gate-level 

netlist to avoid any architectural discrepancies while guaranteeing impartial comparisons. 

MTNCL designs consumed more active energy than their synchronous counterparts due to 

the dual-rail encoding system; however, high-threshold-voltage (High-Vt) transistors used in 

MTNCL threshold gates reduced leakage power dissipation by up to 227%. During voltage-scaling 

simulations, MTNCL circuits showed a high level of robustness as the output results were logically 

valid across all voltage sweeps without any additional circuitry. SYNC circuits, however, needed 

extra logic, such as a DVS controller, to adjust the circuit’s speed when VDD changed. Although 

SYNC circuits still consumed less average energy, MTNCL circuit power gains accelerated when 

switching to lower voltage domains. 
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I. Introduction 

1. Problem Statement 

Historically, digital integrated circuit (IC) design has solely focused on the development 

of synchronous (SYNC) circuits  [1]. In the past few years, the reduction in transistor feature size 

has allowed designers to build complex circuits with smaller area. However, the rampant number 

of devices requires more sophisticated timing analysis to prevent potential clock skew issues. 

Analysis should cover various conditions, such as fluctuating supply voltages, to meet timing 

constraints and deliver correct results. Consequently, additional logic must be developed to handle 

timing as well as verify the design’s output to ensure correct functionality which, in turn, limits 

the scalability of SYNC designs. As an alternative solution, asynchronous design methodologies, 

such as NULL Convention Logic (NCL) [2] and Multi-Threshold NULL Convention Logic 

(MTNCL) [3], are clockless. This allows for more flexible timing requirements, better adaptability 

to a wider range of application environments, and a smoother implementation of large modular 

designs with less scalability overhead. Architecture flexibility and robustness make them great 

candidates to implement stream processors like Graphical Processing Units (GPUs), especially if 

deployed in a power-limited system. Stream processor architecture focuses on bridging the gap 

between arithmetic performance and bandwidth by raising the number of arithmetic units [4] and 

partitioning the storage structures to reduce the bandwidth demands [5]. In contrast, standard 

general-purpose processors devote a small fraction of their die area to arithmetic units. 

Additionally, these processors consolidate all storage into main memories that become bottlenecks, 

limiting the efficacy of parallelism. This architectural difference expands the execution capabilities 

of a streaming processor to reach a range of hundreds of Giga Operations per Second (GOPS), 
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suitable for computationally expensive applications like cybersecurity [6] and image processing 

[7] [8].  

2. Dissertation Statement 

This research develops the first MTNCL stream processor to demonstrate the flexibility 

and minimal overhead that asynchronous methodologies offer over their synchronous counterparts 

when implementing large designs. In addition, maintaining the clock signal in synchronous circuits 

across multiple cores is a significant challenge, especially under harsh conditions. It is important 

to note that NCL and MTNCL asynchronous methodologies use a dual-rail encoding scheme to 

implement the handshaking mechanism, and this scheme does introduce certain drawbacks. Also, 

threshold gates are used as building blocks which have higher transistor counts than traditional 

Boolean gates. For this reason, among others, MTNCL methodology was chosen over NCL 

because MTNCL threshold gates have fewer transistors. This research is a demonstration that 

MTNCL design methodology can achieve a higher level of architectural flexibility while 

maintaining its robustness under various conditions due to the omission of the clock-related logic. 

Along with flexibility and robustness, MTNCL can offer additional benefits such as reducing 

leakage power. These qualities will drive more designers to consider asynchronous design 

methodologies, especially when implementing large designs, thereby revolutionizing IC design 

conventions. 

3. Dissertation Organization 

This dissertation encompasses eight chapters.  Section II  provides background knowledge 

of the asynchronous design methodologies (NCL and MTNCL), stream processors, image 

processing operations, and circuit robustness. Section III presents the design methodology, the 

stream processor’s application, and a proposed high-level architecture. Section IV discusses the 
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design implementation then examines the logic verification of the Smoothing Filter (SF) and the 

Histogram Equalization (HEQ) cores along with a brief comparison between the MTNCL and 

SYNC versions. Section V begins with an overview of setting up simulations for the designs which 

is followed by a general power analysis. It finishes with an analysis of the effect of voltage-scaling 

on power delay and power data. Section VI concludes the dissertation. A few scenarios, where the 

use of MTNCL stream processors would be optimal, are featured in Section VII. Finally, Section 

VIII maps a detailed plan for future research. 
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II. Background 

1. NULL Convention Logic (NCL) 

NCL is a quasi-delay insensitive (QDI) asynchronous design methodology that uses a 

multi-rail encoding scheme [2]. In an NCL dual-rail scheme, a signal is represented by two wires 

(Wire 1, Wire 0). As shown in Table II.1, there are only three valid states: DATA0, DATA1, and 

NULL. DATA0 corresponds to Boolean Logic0, while DATA1 corresponds to Boolean Logic1. 

The NULL state exists when neither of the wires is 

asserted. In a typical NCL operation, DATA waves, 

where signals are either DATA0 or DATA1, are 

separated by a NULL wave, where all signals exhibit 

NULL. The INVALID state, where both wires of a 

signal are asserted, should not occur in normal NCL 

operation. 

NCL is composed of 27 state-holding gates which constitute the set of all Boolean 

functions with 4 inputs or fewer [9]. These gates are called threshold (TH) gates which follow 

THmn naming convention. The n stands for the number of inputs, while m denotes the threshold, 

i.e., the number of inputs that must be asserted for the output to be asserted. Several NCL gates 

have a name that contains a w, such as TH54w32, which signifies that one or more inputs have a 

higher weight than the rest. In this case, the first input has a weight of 3, while the second has a 

weight of 2. 

State Wire 0 Wire 1 

DATA0 1 0 

DATA1 0 1 

NULL 0 0 

INVALID 1 1 

Table II.1. Dual-Rail Signal States [2] 
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As depicted in Figure 1, four different 

transistor networks implement an NCL gate 

[1]. The Set network is responsible for the 

output assertion or de-assertion depending on 

the Boolean equation implemented in NMOS 

transistors. The Reset network is needed to de-

assert the output when all inputs are low. 

Finally, the Hold0 network keeps the output 

de-asserted if the threshold is not met, whereas 

the Hold1 network keeps the output signal asserted if not all inputs are Logic0. This characteristic 

is called Hysteresis. In addition, NCL has the input-completeness quality that maintains the quasi-

delay-insensitivity at the circuit level. It requires the output of an NCL combinational circuit to 

alternate from a NULL wave to a DATA wave only once all inputs present either DATA0 or 

DATA1. Similar to hysteresis, this property requires the output of an NCL combinational circuit 

to change from DATA to NULL only after all inputs return to NULL. Thus, the hysteresis 

characteristic implemented in NCL threshold gates helps apply input-completeness at the circuit 

level. 

2. Multi-Threshold NULL Convention Logic (MTNCL) 

MTNCL is an NCL extension that aims to achieve low-power dual-rail asynchronous 

circuits. Similarly, MTNCL uses the same states: NULL, DATA0, and DATA1 to represent the 

dual-rail signals. However, MTNCL differs from NCL in the way NULL cycles are propagated 

throughout the circuit. MTNCL circuits generate NULL waves instead of providing NULL wave 

input like NCL circuits. The sleep mechanism implemented at the gate level allows some or all 

 
Figure 1. NCL TH23 Schematic [1] 
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sections of the circuit to turn idle at given and controlled times. Thus, MTNCL gates incorporate 

a sleep signal input that controls when the gate switches to the idle state. When the sleep input 

asserts, the output of the gate is de-asserted regardless of the input values. In an MTNCL pipeline 

design, the handshaking signals (ki and ko) act as the sleep control which puts the appropriate 

blocks into sleep mode at desired times. 

Contrary to NCL, MTNCL threshold 

gates do not need hysteresis due to the sleep 

mechanism. Therefore, they are significantly 

smaller than their NCL counterparts due to 

the omission of the Reset and Hold1 transistor 

networks as depicted in Figure 2. In addition, 

low-threshold-voltage (low-VT) and high-

threshold-voltage (high-VT) transistors are 

used to implement MTNCL threshold gates. The former allows faster switching, while the latter 

helps reduce the leakage current. Consequently, MTNCL gates are faster, smaller, and consume 

less power compared to their NCL equivalent gates. 

Figure 2. MTNCL TH23 Schematic 
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As illustrated in Figure 3, the ko signal allows an MTNCL circuit block to communicate 

with the previous stage in the pipeline, indicating whether it is ready for inputs or not. Likewise, 

the ki signal allows the proceeding MTNCL stage to indicate its readiness to accept new output. 

Flowing in the opposite direction, the sleep signals, originating from the ko output of the previous 

block, sleep the registers and combinational logic in the next stage in the pipeline. As mentioned 

previously, this is to emulate the NCL NULL wave and minimize power consumption. To 

illustrate, if all inputs to a stage are NULL, then ko will assert. In this case, there is nothing for the 

combinational logic to process; therefore, it should be idle. This acknowledgment exchange 

scheme permits a higher level of flexibility that is difficult to achieve with synchronous 

methodologies. For example, adding more MTNCL blocks in a sequence should work as long as 

the MTNCL blocks respect the handshaking and switch correctly between the different states. The 

omission of a clock also lets the MTNCL circuits be more robust toward operational variability 

such as a fluctuating supply voltage. On the other hand, synchronous circuit designers need to add 

Data 
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 Figure 3. MTNCL Pipelined Architecture 
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extra logic to support the drive strength and timing of the clock signal when adding new blocks to 

ensure all blocks are synchronized to latch the correct data in normal conditions. The clock logic 

development becomes even more challenging to achieve MTNCL’s level of robustness if the 

designer is required to add circuitry to control the frequency of the clock whenever variations in 

supply voltage or temperature are detected. Moreover, a logic verifier must be attached to the main 

circuit to ensure the output matches the expected result. Since the supplemental logic controls the 

clock signal and analyzes the output bits, its size depends on how large the main circuit is. The 

scalability penalty is a tremendous disadvantage, especially when implementing stream 

processors. This is due to the high number of cores which range from a few hundred to a few 

thousand. Therefore, the logic complexity to meet timing requirements in synchronous circuits and 

the benefit from the architecture flexibility of MTNCL qualify it to implement stream processors 

with minimal overhead. 

3. Stream Processors 

Stream processors are composed 

of two or more processing blocks called 

nodes. As shown in Figure 4, the 

baseline node has a multicore stream 

processor unit coupled with a stream 

unit [7]. It is the only persistent storage 

structure on the node. This includes a 

32KB stream instruction storage for 

application instructions, an 8KB stream 

commands storage for dispatch and output logic programming, and a 64KB memory subsystem 

 

Figure 4. Node Architecture of a Stream Processor 
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for I/O and off-chip stream buffering. The memory structure in the stream unit should not exceed 

the sizes denoted above to avoid higher latencies [5]. The main design goal of stream processors 

is to decentralize as many components as possible to eliminate any bottlenecks that can potentially 

stall the system. 

As illustrated in Figure 5, the architecture of a stream processor allows for data, task, and 

pipeline parallelism. Data parallelism is represented by the bit width of the data processed by the 

processor (e.g., 8 bits or 16 bits). For task parallelism, stream processors should execute two or 

more tasks at the same time. The number of parallel tasks depends on the nature of the instruction. 

Some instructions allow for task parallelism, illustrated as green boxes in Figure 5. The input of 

these instructions can typically be segmented then handed to the cores which can execute the 

respective function [8]. Therefore, the instructions and the number of cores are the primary factors 

in determining the level of task parallelism. Lastly, stream processors manage the data exchange 

Figure 5. Data, Task, and Pipeline Parallelism in Stream Processing 
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between the different pipeline stages to enable pipeline parallelism. For example, it must handle 

the sync core, depicted as the red box in Figure 5, situation where two or more cores provide the 

input data. The processor must merge the output of the feeding cores for the sync core to start 

execution. In a synchronous stream processor, the clock period is set to accommodate the delay of 

the slowest stage to ensure the correct data is always latched. However, that does not apply to 

asynchronous circuits. The asynchronous blocks will receive/output the data when they are ready 

or when the data is available. Regardless of the used architecture, it is necessary to reduce the 

complexity of every core, especially the larger ones, to avoid slowing down the entire processor. 

4. Smoothing Linear Filters 

Smoothing filters are used for blurring and noise reduction [10]. Blurring assists in 

preprocessing tasks, such as the removal of small details from an image before object extraction. 

Also, it can help bridge small gaps in lines or curves. The output of a smoothing-linear filter is 

simply the average of the pixels contained in the neighborhood of the filter mask. These filters are 

called averaging filters. 

The idea behind smoothing is to replace the value of every pixel in an image with the 

average of the intensity levels in the neighborhood defined by the filter mask. This process reduces 

the “sharp” transitions in intensities across all pixels, called noise. The primary challenge with 

noise is its randomness. In addition, there is no one-size-fits-all filter to recover a picture from 

noise degradation. It is essential to choose suitable coefficients and filter sizes when applying a 

filter mask to an image. A good smoothing filter should reduce the noise while preserving as many 

details as possible. 
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a. Choosing Suitable Coefficients  

Figure 6 shows two 3×3 smoothing filters. The first 

filter is used to compute the standard average of the 

pixels under the mask. A spatial averaging filter in which 

all coefficients are equal is called a box filter [10]. The 

second filter denotes a weighted average which indicates 

that pixels are multiplied by different coefficients, thus 

granting a higher rank (weight) to some pixels at the 

expense of others. As illustrated in Figure 6, the pixel at 

the center of the mask is multiplied by a higher value “4” 

than the surrounding pixels. Additionally, these pixels are inversely weighted depending on the 

distance from the center pixel. This strategy is an attempt to reduce blurring in the smoothing filter. 

It is important to note that other weights can accomplish the same general effect; however, the 

power-of-two integers are desirable because they can reduce the overall complexity of the design. 

In this instance, the sum of all coefficients in the mask of Figure 6 is equal to 16. In practice, it is 

difficult to see differences between images smoothed by either mask in Figure 6 (or similar 

arrangements) because the area spanned by these masks at any pixel in an image is small. 

b. Choosing a Suitable Filter Size 

Figure 7 depicts the effects of smoothing as a function of filter size (m×m) [10]. For the 

3×3 filter, a slight blurring is noticeable in the entire image, but details of the same size as the 

Figure 6. Two 3×3 Smoothing-Filter 

Masks: box filter (a), and weighted 

average (b) 
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mask are considerably affected. For example, the black 

squares, the small letter a, and the little grain noise show 

significant blurring in the 3×3 and 5×5 smoothed pictures 

compared to the rest of the objects. In the 9×9, there is 

significantly more blurring. Also, the black circles are no 

longer distinct from the background like the previous three 

images. Finally, the results for 15×15 and 35×35 filters are 

extreme compared to the sizes of the objects in the image. 

This type of aggressive blurring helps blend small details 

into the background. That includes the three small squares, 

two circles, and almost all the noisy rectangles in Figure 

7(f). Additionally, the pronounced black border is a 

consequence of padding the original image with zero (black) 

pixels and then trimming off the padded area after filtering. The black outline blended into all 

filtered images; however, it became noticeable for the images smoothed with the larger filters. 

5. Histogram Equalization 

A histogram is a graphical representation of the tonal distribution in a digital image which 

is the basis for numerous spatial domain processing techniques achieved through histogram 

manipulation. Thus, the image histogram is a powerful tool for image enhancement and provides 

useful image statistics used in other image processing applications, such as image compression 

and segmentation [10]. 

Figure 7. Original image, of size 

500×500. (b)-(f) Results of 

smoothing with square averaging 

filter masks of size m = 3, 5, 9, 15, 

and 35, respectively [10] 
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A histogram of a digital image with 

intensity levels [0, L-1] is a discrete function 

����� � ��, where �� is the kth intensity 

value and �� is the number of pixels in the 

image with intensity ��. As illustrated in 

Figure 8 [10], the horizontal axis of each 

histogram plot corresponds to intensity ��. 

The vertical axis corresponds to values of 

����� � �� 	or 	���� �

�

����	
�����	�	������. In the dark image, 

Figure 8(a), the pixel distribution settles in 

the low (dark) side of the intensity scale. On 

the other hand, the components of the light 

image, Figure 8(b), are shifted towards the 

high (light) side of the intensity scale. The 

picture with low contrast, Figure 8(c), has a 

washed-out gray look due to the narrow 

histogram distribution towards the middle of the scale. Finally, a high-contrast image, Figure 8(d), 

covers a broader range of shades. Thus, a uniform pixel distribution indicates more detail and has 

a high dynamic range. A transformation (mapping) function can achieve this goal using only the 

histogram of the input image. 

As mentioned earlier, a histogram represents the probability of occurrence of intensity level 

�� in a digital image approximated by 	���� � 
�
����	
�����	�	������ where	� = 0, 1, 2, …, L-1. � 

Figure 8. Four basic image types: dark (a), light 

(b), low contrast (c), high contrast (d), and their 

corresponding histograms [10] 
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denotes the number of possible intensity levels in an image with 0 representing black and L-1 

representing white (e.g., 256 for an 8-bit image). Thus, an equalized image is obtained by mapping 

each pixel in the input image with intensity �� into a corresponding pixel with level �� in the output 

image using the following equation: 

�� � ����� � �� − 1�!p#$�%&
�

%'(
� � − 1
�)*+,	�-./0�	)1		230,� 	!n5

�

%'(
 

Equation 1. Transformation Equation of Histogram Equalization 

	
The transformation ����� in this equation is called a histogram equalization or histogram 

linearization transformation. 

6. Process, Voltage, Temperature (PVT) Corners 

In this dissertation, circuits’ robustness is achieved when the circuit operates correctly 

under unideal and highly dynamic circumstances. This leads to a few questions: What are the 

variables that determine the operational conditions? What are the benefits and trade-offs from 

changing one of those variables? How do circuit designers exploit those variables to achieve their 

power and delay goals? 

When considering various aspects of examining operational conditions, there are three 

different sources of variation: Process Variation (P), Supply Voltage (V), and Operating 

Temperature (T) – or PVT. Ideally, circuit designers aim to implement circuits that operate in all 

extreme cases of these variables. Realistically, they tweak one of the variables to achieve their 

design goals. By opting for a smaller process node, the area of a circuit decreases as well as the 

dynamic power through operating at a lower supply voltage. Nevertheless, transistors’ behavior 

varies in lower nodes due to photolithography limitations, deviations in the optics, and doping 
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density inconsistencies. These cause a variation in channel length and threshold voltage, meaning 

that the devices’ speed and power consumption are different from one transistor to another even 

on the same die. Similarly, temperature increase causes the drain current to decrease which slows 

down the circuit’s speed. Since the industry is trending towards smaller process nodes with higher 

transistor density and switching activity, higher average temperatures will result and become a 

larger consideration. 

Lastly, the supply voltage variation is more relevant to this research than the other two 

corners because it is a very powerful tool used in a wide range of applications. All devices are 

typically designed to operate in a range of ±10% around the nominal supply voltage. This slack 

lets the transistors function correctly despite voltage variation that can be caused by certain factors, 

such as IR drop. According to [11], speed is roughly proportional to VDD. This means that the 

circuit is 10% faster when the supply voltage is 10% higher than nominal voltage and 10% slower 

when the supply voltage drops 10% under the nominal voltage. Circuit designers may intentionally 

lower the supply voltage to the minimum to save power. This technique is called Dynamic Voltage 

Scaling (DVS). Furthermore, designers may reduce the clock frequency to the minimum necessary 

to complete a task in schedule then cut down the voltage to the minimum necessary to operate at 

the new frequency. This method is called Dynamic Voltage/Frequency Scaling (DVFS). Both DVS 

and DVFS are used in circuits where power is a top constraint, such as consumer electronics, since 

they achieve high power gains according to the following equation: 

6���� � 	678
���9 +	6�����9 � �6�;��9<�
= +	6�<��	9��9���� 	+ 	6�����9
� �>?@ABBC 1 + >*�9ABBD����1� +	ABBD�����=�	[11] 

Equation 2. Total Power Dissipation 
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It is important to note that the effect of lowering supply voltage and frequency is cubed in 

the PSwitching equation. This means that operating at 50% of the speed and 50% of the nominal 

supply voltage costs only 
G
H of the switching power. To implement either method, a DVS controller 

is required to set the operating frequency, and then it chooses the lowest supply voltage necessary 

for this speed. Furthermore, characterizing a circuit across a continuous range of voltages and 

frequencies is very challenging, therefore timing and power engineers limit the voltage-frequency 

setting to n-discrete levels.  On the other hand, MTNCL circuits do not need a controller since all 

asynchronous blocks adapt to the new supply voltage without any external intervention. In fact, 

MTNCL circuits are theoretically adaptive to all three PVT variations; however, voltage scaling is 

used in this research to prove the robustness of the MTNCL circuits in the case of voltage 

fluctuation. 
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III. Stream Processor Design 

1. Design Methodology 

The goal of this research is to implement a QDI asynchronous stream processor using the 

MTNCL methodology. Furthermore, comparison and analysis are conducted against a 

synchronous version to juxtapose the performance, robustness, and cost. As mentioned in Section 

II, designing a clock tree in a stream processor is challenging given the large number of cores that 

can range from a few hundred to a few thousand. When also taking into consideration Process, 

Voltage, and Temperature (PVT [11]) corners, ensuring all cores are latching the correct data can 

be difficult.  On the other hand, blocks are self-timed in a QDI asynchronous design. That 

guarantees the design will work properly as long as the respective cores and blocks in sequence 

exchange the handshaking signals correctly. It is important to note that one of the main benefits 

from the clock omission is increasing the circuit’s robustness in various conditions while reducing 

the logic complexity that results from additional clock circuitry. However, this will not necessarily 

translate into area reduction because MTNCL uses a dual-rail encoding scheme. After a thorough 

analysis, MTNCL remains the best candidate. 

2. Define the Stream Processor’s Application 

As mentioned in Section II.3, stream processors exhibit three kinds of parallelism: Data, 

Task, and Pipeline. This permits them to accomplish a variety of tasks, especially the ones 

comprised of multiple simple tasks. For this reason, stream processors are great for stream cipher 

and image processing. A stream cryptographic processor is presented in [6] which can implement 

various stream cipher algorithms such as Grain-80 and A5-1 with a throughput of 100 Mbps and 

66.67 Mbps, respectively. Nevertheless, the usage of stream encryption is limited to specific 

applications, according to [12], due to its low diffusion and susceptibility to insertions and 
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modifications. Consequently, this research focuses on image processing over stream cipher. 

Stream architectures reduce the bandwidth demands by streaming the image pixels into an array 

of processing elements and transferring intermediate data results to the proceeding processing 

element instead of storing them back to the memory [8]. Since memory-related operations 

contribute significantly to total latency in the conventional general-purpose processors, stream 

processors have the potential to be much faster. Combined with efficient exploitation of 

parallelism, stream processors are able to reach a range of hundreds of GOPS [7]. 

3. Stream Processor’s Building Blocks 

As noted in Section II.3, every stream processor consists of multiple nodes that have 

multiple cores. Since this research is one of the earliest attempts to build an MTNCL stream 

processor, the preliminary version should not be complicated when applying the three types of 

parallelism. Accordingly, this architecture should have at least three cores. As depicted in Figure 

5, task parallelism requires a minimum of two cores to execute a task in parallel. These nodes need 

to feed their results to another core or vice versa to implement the pipelining aspect, or a produce-

consumer relationship [7]. Next, a large variety of filters were discussed in [10]. Smoothing filters 

and histogram equalization were the most attractive since both can be simple to physically 

implement. 

4. Stream Processor High-Level Architecture 

Figure 9 depicts the high-level architecture of the two-node stream processor. Both nodes 

share the same architecture with a total of three cores. Two of the cores implement the smoothing 

filter, whereas the third implements the histogram equalization. Since the cores are processing 

pixels which represent the amount of gray intensity from 0 to 255, the data buses should each be 

8-bit wide. This implements the data parallelism principle, while both smoothing cores function in 
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parallel to achieve the 

task parallelism principle. 

In most circumstances, 

the output of the 

Histogram Equalization 

(HEQ) core will be fed 

into the Smoothing Filter 

(SF) cores to establish the 

pipelining concept. Task 

parallelism is 

implemented across 

nodes by smoothing an 

input image using all four 

SF cores. Also, each node 

has a local dual-port 

SRAM of 32Kb for two 

reasons. First, a dual-port 

SRAM allows a core to 

write its output pixel 

while another core fetches its input pixel. Second, the 32Kb storage is enough to let the processor 

run on only one node instead of both nodes together which adds a reconfigurability feature to the 

processor. The 32Kb SRAM is split into two equal partitions to exploit the task parallelism feature 

by storing the output stream of pixels from both SF cores at the same time. Otherwise, the second 

Figure 9. High-Level Architecture of the Proposed Stream 

Processor 
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core would wait for the first core to finish smoothing before it began feeding new pixels to the 

SRAM. This partitioning should reduce the delay significantly. Unfortunately, the HEQ core does 

not benefit from the partitioned storage since there is only one core providing the data. It is also 

important to note that equalization cannot be parallelized because the calculation of the new shades 

depends on the occurrence of the shades in the original picture. If the core receives half of the 

picture, then the calculation implements a different version of equalization, called Regional 

Adaptive [10], which this dissertation work does not cover. According to [10], the smoothing step 

cannot be followed by equalization because each pixel is averaged with its neighboring pixels, 

thereby diverting the original histogram of the image. The inaccuracy of the smoothed histogram 

results in the equalized image having either low or high contrast. On the other hand, equalized 

images can be smoothed since the new shades are derived from their original values.  

5. Stream Processor Modes of Operation 

After featuring the high-level architecture of the stream processor in previous sections, the 

protocols that the blocks use to communicate with each other must now be addressed. For 

simplicity, all instructions were classified into two main groups: intra-node and inter-node modes 

of operation.  

In the intra-node mode, the user is smoothing, equalizing, or equalizing-smoothing in only 

one node – node #1 or #2. The control logic directs the input pixels to the correct core, either SF 

or HEQ.  In the case of smoothing, the SF Core #1 smooths the top half of the picture while the 

SF Core #2 smooths the bottom half. The control logic also handles the case of the equalizing-

smoothing operation by connecting the output of the HEQ core to the input of the SF. Whenever 

the core is ready to output the pixels of the output image, the SRAM I/O logic ensures that the 

pixels are stored in the right SRAM core depending on the operation. For the smoothing and 



21 
 

equalizing-smoothing instructions, the SRAM stores the pixels from the SF Core #1 in SRAM #1 

while the pixels from the SF Core #2 are stored in SRAM #2. In the case of equalizing, the memory 

input logic stores the first 2048 pixels (top half of the equalized image) in SRAM #1; however, the 

remaining pixels (bottom half of the equalized image) are stored in the second partition. When the 

operating node is outputting the results, the SRAM output logic starts at the first pixel in the first 

partition. Whenever the counter hits (	IJIKL	MNOPQ#	JR	STUQLV
C  ), the logic starts processing the first pixel 

in the second partition. 

In the inter-node mode, the user is either smoothing or equalizing-smoothing across two 

nodes; or the user is smoothing, equalizing, or equalizing-smoothing two pictures at the same time. 

In the first case, smoothing is performed across four cores – two cores for each node – where each 

individual core smooths only a quarter of the original picture. To avoid parallelizing the 

equalization step in the equalizing-smoothing case, equalization is performed twice in each node, 

then the equalized pixels are streamed out to their node’s SF core. Whenever the SF cores are 

ready to output pixels, the SRAM input logic stores each quarter of the output image in the 

SRAMs. Consequently, SRAM #1 of the first node holds the top quarter of the image, SRAM #2 

of the first node and SRAM #1 of the second node hold the two middle quarters, and SRAM #2 of 

the second node holds the bottom quarter. In contrast to the intra-node mode, the SRAM output 

logic is aware of what part of the image is being processed to ensure a correct sequence of pixels. 

Thus, an extra bit, called ID, was assigned to the control bus that identifies the portion each node 

is processing.  ID == 0 means that the top half of the input image is assigned to this node, whereas 

ID == 1 refers to the bottom half.  In the former case, the SRAM output logic will load the pixels 

from SRAM #1 then switch to SRAM #2 whenever the counter hits (	IJIKL	MNOPQ#	JR	STUQLV
W  ). In the 

latter case, the SRAM output logic in the second node starts producing the third quarter’s pixels 
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whenever the main counter in the node hits (	IJIKL	MNOPQ#	JR	STUQLV
C  ). Finally, the SRAM output logic 

of the second node switches to the last quarter when its counter reaches (	IJIKL	MNOPQ#	JR	STUQLV
W  ).  

For the second sub-mode in the intra-node mode, both nodes execute their own instruction 

separately from each other. To step up the reconfigurability capabilities, the user can assign two 

different pictures to each node. In other words, this sub-mode can be portrayed as two intra-node 

instructions concurrently executed by each node.    

6. Design’s Scope 

One of the main challenges with large designs is simulation time. In this project, the input 

picture size is a significant factor that impacts the length of simulations. Therefore, it was essential 

to find the right balance between smaller dimensions, where the processor’s modifications are 

noticeable, and reducing the simulation time as much as possible. As illustrated in Figure 10, 

MATLAB simulations show that a 64×64 image is the optimal size. Another factor in reducing the 

simulation time is the circuit size. For the HEQ core, the image size influences the design size due 

to the division in the transformation equation in Section II.5. Since the total number of pixels is a 

power of two (64×64 = 4096 pixels), there is no need to design a circuit for division. Likewise, the 

SF core architecture depends on the size of the mask and the size of the image. For example, the 

implementation of a 5×5 mask requires 24 adders; however, a 3×3 mask requires only eight adders. 

Since the dimensions of the input image shrank to 64×64, a large smoothing mask will destroy 

most of the features in the input image. In addition, the coefficients of the smoothing-filter mask 

can considerably impact the size of the SF core. The implementation of the box filter, Figure 6(a), 

will add a significant area and complexity cost to the SF core due to the non-power-of-two division. 

Thus, changing the coefficients will drastically diminish the area because n-shift-right is equivalent 
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to a 2
 division. It is important to note that both masks will output similar results due to the 

different weights, but the delta is almost negligible due to the small mask size. For the sake of 

architecture flexibility, the SF core implemented a weighted filter instead of the standard box filter. 
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IV. Implementation and Design Verification 

1. MATLAB Simulations 

The goal of MATLAB 

simulations is to generate a visual 

representation of the result from the 

image processor. This is essential to 

visualize the outcome of each of the 

mask candidates to assess the complexity 

of the circuit and the smoothing quality. 

Accordingly, a MATLAB script was 

developed to generate various 

dimensions of the input image, apply 

histogram equalization, apply the 

smoothing filter on each size separately, 

and export the raw and processed image of each size. Figure 10 features the exported images. 

Next, it was important to export the image in a computer-friendly format to be used in 

simulations later. Therefore, a feature was incorporated in the previous MATLAB script that 

exports the picture as a two-dimensional matrix of integers stored in a text file. In addition, a 

Python script was developed to place each pixel value on a single line because hardware simulation 

tools, such as Questa, read a file in a line-by-line manner. The combination of both scripts 

generated raw, smoothed, equalized, smoothed-equalized, and equalized-smoothed images as 

separate formatted-text files. VHDL and Verilog-A testbenches then used the raw image file to 

Figure 10. Raw and Processed Images of Sizes: 

128×128 (a), 64×64 (b), and 32×32 (c) [10] 
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feed the pixels to the design. Finally, the testbench compares the design's output pixels against the 

MATLAB-generated picture for logical verification. 

2. Smoothing Filter Core (SF Core) 

a. SF Logic 

After deciding on the mask size 

and the value of the coefficients, it was 

essential to have a preliminary 

architecture of the SF Core to design the 

building blocks in VHDL. The input 

pixels of the SF Core will be stored in 

an un-spooling vector unit which was 

initially developed in [13] [14] and then 

modified to fit this design. The un-

spooling unit receives nine 8-bit values 

then outputs all 72 bits at once. 

Regarding the weights, the bits 

belonging to the pixels with double 

weight are shifted left once, while the 

middle pixel's bits are shifted left twice. As mentioned in Section IV.1, a 3×3 mask requires eight 

ripple-carry adders (RCAs). The tree structure, illustrated in Figure 11, was preferred over the 

cascading structure because it reduces the complexity from � − 1 adder levels to YlogC �]. This 

reduces the complexity from �9��9�7�
=^������^�����^�77 � _�� + �� to 

�����^������^�����^�77 � _�� + lo g���� according to [14]. Lastly, the four least significant bits 

Figure 11. High-Level Architecture of the SF Logic 
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(LSBs) are truncated to implement the division by 16. For rounding, a rounding checker unit looks 

at the truncated result and the 4th LSB. If the 4th LSB is DATA1 in MTNCL or LOGIC1 in SYNC 

(decimal value 0.5), an adder will add one to the new pixel value; otherwise, the output stays the 

same. 

b. SF Input/Output (I/O) Logic  

1. Design Challenges and Solutions 

As mentioned in the previous section, the SF Logic 

processes nine pixels to calculate a new pixel. Figure 12 

illustrates a 5×5 image where the numbers represent the pixels’ 

ID, and the highlighted cells represent the input pixels required to 

smooth pixel #7. As shown in the example, the input pixels 

correspond to pixels: 1, 2, 3, 6, 7, 8, 11, 12, 

and 13. One major issue, however, is that 

the input pixels are not in sequence. 

Consequently, the SF I/O logic should feed 

the SF logic the three pixels above the target pixel then move down one row and fetch the three 

pixels where the center pixel is the target. It should then move down one final row and grab the 

three pixels below the target pixel. Additionally, the logic needs to cover edge cases such as 

smoothing border pixels. There are multiple ways to handle this scenario; however, I opted to add 

a ring of zero (black) pixels around the image, as depicted in Figure 13, where the numbers 

represent the shade of a pixel. The I/O Logic needs to provide an additional stream of pixels for 

the second SF Logic to implement the node-level parallelism, as described in Figure 9. Also, the 

logic is aware if the user opted to split the smoothing step over four (two nodes) or two (one node) 

Figure 13. 5×5 image (a), Padded 5×5 image (b) 

Figure 12. Box Filter to 

Smooth Pixel #7 
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SF cores. As a result, the I/O Logic was programmed to function under three modes. The first 

configuration is Smoothing Filter, Parallelism Off (SF) where the image is smoothed in only one 

node by splitting the image into two chunks processed by each of the SF logic, respectively. The 

second configuration is Smoothing Filter, Parallelism On, ID 0 (SFP0) where the SF core smooths 

the upper half of the picture. The third configuration is Smoothing Filter, Parallelism On, ID 1 

(SFP1) where the SF core smooths the second half of the picture. Figure 14 shows an example of 

an 8×8 input image split across two nodes (four SF cores).  

One important feature is that the smoothing logic does not require the whole image to be 

loaded to start smoothing. It only needs the target pixel along with the eight surrounding pixels to 

start execution. As an example, the SF core receives the 8×8 image depicted in Figure 14. In the 

SF configuration, the SF logic starts smoothing whenever it receives the nSF = 42nd pixel for target 

pixels 1 and 33 since pixel 42 is the last received pixel that surrounds target pixel 33. In the SFP0 

configuration, the SF Logic starts smoothing whenever it receives the nSFP0 = 26th pixel because 

target pixels 1 and 17 have all their surrounding pixels received once the 26th pixel arrives. In the 

SFP1 configuration, the SF Logic starts smoothing once the nSFP0 = 58th pixel is ready because 

both pixels 33 and 49 then have all their surrounding pixels ready. This means that each 

configuration will result in different delays. Consequently, the SFP0 is the fastest configuration 

Figure 14. SF Core Configurations: SF (a), and SFP0 and SFP1 

configurations (b) 
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since the design waits the least number of pixels to start smoothing, while SFP1 is the slowest 

given that the design waits for more than 75% of the image to start execution. For the MTNCL 

implementation, the SF logic waits on the pixel’s value to switch from NULL to either DATA1 or 

DATA0 to smooth the pixel.  In contrast, the SYNC SF logic needs an additional FSM to raise a 

flag when the needed pixels are ready. This added logic for the SYNC design reduces the gap 

between the MTNCL and SYNC circuit sizes and introduces more design complexity. Since the 

example in Figure 14 is based on an 8×8 picture, each configuration should be expressed in an 

equation to scale it to the 64×64 size. 

 

�`a �
Total	number	of	pixels

2 + �n-./0�	)1	6230,�	2�	+	o)p + 2� 

Equation 3. SF Logic Kick-off Pixel @ SF Configuration 

 

�`aq( �
Total	number	of	pixels

4 + �n-./0�	)1	6230,�	2�	+	o)p + 2� 

Equation 4. SF Logic Kick-off Pixel @ SFP0 Configuration 

 

�`aqG �
Total	number	of	pixels ∗ 3

4 + �n-./0�	)1	6230,�	2�	+	o)p + 2� 

Equation 5. SF Logic Kick-off Pixel @ SFP1 Configuration 
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2. High-level Operation 

The pixels first go through an un-spooling unit where the first pixel is stored in the least 

significant eight bits and the 4096th pixel is stored in the most significant eight bits. Depending on 

the configuration, the input pixels might change. In the SFP0 configuration, one MUX will receive 

the stream of pixels representing the first quarter of the input image while the second MUX 

receives the second quarter. In 

the case of SF, one MUX 

receives the top half of the 

image while the other receives 

the bottom half. Lastly, one of 

the MUXes in the SFP1 mode 

receives the third quarter of the 

image, and the other receives 

the fourth quarter.  

Next, an address generator controls both MUXes, as shown in Figure 15, to output the 

right sequence of pixels. As an example, the box depicted in Figure 12 may be considered. The 

top counter and all the RCAs in Figure 16 generate the addresses of the pixels in the box while 

the bottom counter determines the sequence of the addresses. Consequently, it counts from 0 to 8 

Figure 15. High-level Architecture of the SF I/O Logic 

Figure 16. High-Level Architecture of the Address Generator 
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where the least significant bit refers to the top-left pixel in the box, and the most significant bit 

refers to the bottom-right pixel. Whenever the second counter reaches eight, it resets and 

increments the initial counter, marking that all nine pixels were fed into the SF Logic. It is 

important to maintain the pixel sequence to ensure that the right pixel receives the correct weight. 

The zero-pixel ring, added around the picture, is a challenge to this method because the extra pixels 

are required to smooth the original border pixels. Nevertheless, the padded pixels do not need to 

be smoothed themselves. Therefore, an option to skip smoothing the extra pixels was implemented 

as an additional feature. Figure 17 shows the high-level architecture of the SF core described in 

this section. 

 

 

Figure 17. High-Level Architecture of the SF Core 
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3. Histogram Equalization Core (HEQ Core) 

As depicted in Figure 18, there are 

three central units in this core: shade 

counter, share calculator, and image 

reconstructor. The shade counter is 

responsible for counting the occurrences of 

each shade in the picture. It contains 257 

counters representing all the greyscale 

shades from 0 to 255 and a general counter 

for the unit to track its iteration through all 

the pixels. Then, the general counter turns 

on the shade calculator unit. This fetches 

the count values of each shade stored in the 

spooling unit for a cumulative addition and 

places every result in the un-spooling unit. 

The image reconstructor unit then goes through every pixel of the original image, stored in the 

SRAM, and maps each pixel’s value with the new calculated intensity loaded in the un-spooling 

unit. Finally, it outputs the pixels of the processed image in order. 

4. From MTNCL to SYNC 

After planning the high-level architecture of both the SF and HEQ cores, the MTNCL 

versions of both cores were implemented then the SYNC versions were designed based on the 

MTNCL architecture. Both MTNCL and SYNC VHDL netlists were developed using Gate-Level 

Logic instead of Register-Transfer Logic (RTL) for several reasons. First, there is no commercial 

Figure 18. High-Level Architecture of the 

Histogram Equalization Core 
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synthesis tool for the MTNCL methodology. Second, using Gate-Level Logic allowed me to 

ensure that the SYNC version has an almost identical architecture to the MTNCL architecture for 

fair comparisons. This is hard to achieve with a synthesis tool. Third, since MTNCL is a low-

power paradigm by nature, the SYNC version had to be designed to achieve low-power usage as 

well by incorporating a clock gating technique to reduce dynamic power. After implementation, 

the impact of the dual-rail encoding was clear on the size of the MTNCL cores. For example, the 

MTNCL HEQ Core has 1,084,964 transistors, while the SYNC HEQ Core has 326,221 transistors. 

The MTNCL SF Core has 4,420,668 transistors, while the SYNC SF Core has 2,982,933 

transistors. 

5. Brief Comparison Between SF and HEQ Cores  

Unlike the SF Core, the HEQ core does not need I/O Logic due to several factors. First, the 

sequence of the pixels is not important because the pixels are only used to decide which counter 

to increment in the shade counter. Second, the image reconstructor requests the image one more 

time from the SRAM to output the new pixels. Consequently, the output pixels follow the correct 

sequence since the input stream of pixels coming from the SRAM is in sequence. Third, the HEQ 

operation cannot be parallelized, as mentioned in Section II.5, because calculating the new shades 

is based on the occurrence of the shades in an image. Thus, all pixels need to be loaded into the 

same HEQ logic. The absence of the I/O logic is a great advantage for the size of the HEQ core. 

The SF core, in contrast, needs an I/O Logic that uses a costly 98% of the total number of transistors 

of the SF logic due to the reasons described in Section IV.2.  
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V. Results and Analysis 

1. Simulation Setup 

After developing the VHDL netlists of both the MTNCL and SYNC versions of the cores 

described in Section IV, logic simulations were performed using Questa Advanced Simulator to 

prove the validity of the logic. Next, the VHDL netlists were flattened using Synopsys Design 

Compiler and imported into Cadence Virtuoso. All designs were implemented in TSMC 65nm 

bulk CMOS process with a nominal supply voltage of 1.0 V. Verilog-A modules were developed 

to control the imported designs in the transistor-level simulations. Due to simulation time 

constraints, transistor-level simulations were limited to the individual cores. Nonetheless, the 

MTNCL SFP1’s results are based on mix-and-match simulations, meaning overall power data was 

derived from simulations run on individual blocks. Likewise, total delay is based on the delay 

values gathered from the individual block simulations then multiplied by the number of operations, 

derived from Equation 5. 

2. Average Active Energy Comparison 

a. Method 

Average energy data collection was split into two steps. The first step is to collect four 

timestamps:  

1. When one of the inputs’ bits reaches 5% of VDD during the assertion of the first 

input data wave; 

2. When one of the outputs’ bits reaches 95% of VDD during the assertion of the 

first output data wave; 
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3. When one of the inputs’ bits falls to 95% of VDD during the deassertion of the 

first input data wave; and 

4. When one of the outputs’ bits falls to 5% of VDD during the deassertion of the 

first output data wave.  

The second step is the integration between the first two timestamps to calculate the rising 

active energy, while the integration between the last two timestamps calculates the falling active 

energy. The multiplication of the average of both values and VDD equals the average active 

energy. 

b. MTNCL vs. SYNC 

As shown in Figure 19, the 

MTNCL versions consume more active 

energy compared to their SYNC 

counterparts due to the dual-rail encoding. 

This encoding scheme also makes the 

MTNCL circuits larger than their SYNC 

circuit counterparts as mentioned 

in Section IV.4. Fortunately, however, 

dual-rail encoding does not translate to 

double the active energy due to different switching (>) patterns across different logics following 

this equation 678
���9 � 6�;��9<�
= +	6�<��	9��9��� � 	>?@ABBC 1 + >*�9ABBD����1	[11]. 

MTNCL HEQ’s average active energy is 45.18nJ, whereas the SYNC HEQ’s average energy is 

Figure 19. Average Active Energy Results 
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25.08nJ. Therefore, the average energy overhead is 80%; whereas, the average active energy 

overhead for MTNCL SFP0, SF, and SFP1 is less than 60%. The smaller overhead is caused by 

the logic added to the SYNC design to implement certain features that are implicitly built into the 

MTNCL design. As described in Section IV.2.b.1, the SYNC SF I/O logic needs an extra 12-bit 

counter to implement the FSM that starts the SF logic when enough � pixels are ready. The extra 

switching resulting from the additional logic reduced the SYNC’s power efficiency. The following 

kick-off pixels were calculated based on equations 3, 4, and 5. For SFP0, the SF logic starts 

consuming pixels whenever the 1090th (�uvw( � W(xy
W 	+ 	64 + 2) pixel is received. While in the 

SF configuration, the SF logic starts after the 2114th (�uv � W(xy
C 	+ 	64 + 2) pixel is received. For 

the SFP1, the SF logic waits until the 3138th (�uvwG � W(xy∗{
W 	+ 	64 + 2) pixel is fetched. As 

expected, the SFP1 accumulated the most switching leading to an average energy of 413.98nJ for 

MTNCL and 260.13nJ for SYNC. MTNCL SF consumed 275.99nJ, while SYNC SFP0 consumed 

only 180.70nJ. Out of all configurations, SFP0 used the least energy: 143.59nJ for MTNCL and 

96.56nJ for SYNC.   

c. SF vs. HEQ 

In general, the HEQ designs use less energy than the SF designs due to two reasons: the 

size and the switching activity. Regarding the size, the MTNCL SF core is four times larger than 

the MTNCL HEQ core (4420668 vs. 1084964 transistors). Similarly, the SYNC SF core is nine 

times larger than SYNC HEQ (2982933 vs. 326221 transistors). In addition, the SF I/O Logic, 

which uses 98% of the total number of transistors, receives the pixels and feeds them to the 

MUXes, as mentioned in Section IV.2.b.2. Therefore, the circuit cannot be idle for any period of 

time which limits the low-power capabilities of the sleep mechanism in MTNCL or clock-gating 
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in SYNC. The Shade Counter has the highest number of transistors in the HEQ design; but only 

this counter, which represents the value of the shade of the input pixel, is turned on while the other 

255 counters are idle. Therefore, the HEQ’s average energy consumption is significantly less than 

the SF’s. 

3. Leakage Power Comparison 

a. Method 

Leakage power data collection was 

split into two steps: ground all inputs except 

the VDD pin then integrate the current 

dissipation between fixed time bounds (0 to 

0.5 ns) across all designs.  

b. Analysis 

Unlike average energy, leakage 

power does not differ across the various SF 

configurations since they all use the same circuit. As shown in Figure 20, the leakage in the SF 

designs is much higher than the HEQ designs due to the larger number of transistors, which 

translates to more paths between power and ground. MTNCL SF’s leakage is 2230.44fW, while 

MTNCL HEQ’s leakage is 478.79fW.  Regarding SYNC designs, HEQ consumes 535.84fW and 

SF consumes 7256.12fW. These results lead to a discrepancy where SYNC’s leakage power is 

higher than MTNCL’s despite much lower transistor counts. Several factors cause this 

discrepancy. First, the clock signal needs large buffers to drive almost every cell in the SYNC 

design. Wider transistor channels cause more current to leak. Second, MTNCL uses strategic high-

VT transistors to achieve better leakage performance, as mentioned in Section II.2. Finally, the 

Figure 20. Leakage Power Results 



37 
 

logic plays an important role in determining the leakage power footprint. For example, SYNC 

HEQ consumes 12% more leakage power than MTNCL HEQ, but SYNC SF’s leakage is 225% 

higher compared to its MTNCL counterpart.   

4. Voltage Scaling Comparison 

For voltage scaling, transistor-level simulations were run at 10% decrements of the nominal 

voltage: 900mV, 800mV, and 700mV. Different circuit blocks were simulated under these voltage 

sweeps before running core-level simulations to ensure the blocks operated as expected. However, 

output errors were detected in the spooling units below 700mV, thus the cut-off supply voltage 

was set at 700mV. Power data and delay were collected since the output results of all designs were 

logically valid across all voltage sweeps.  

a. MTNCL vs. SYNC 

MTNCL designs adapt to the lower voltage without any external intervention. On the other 

hand, a DVS controller must be attached to the SYNC designs to control the frequency in order to 

allocate enough time for the gates to assert or de-assert under a different supply voltage. In 

addition, SYNC circuits might need a logic verifier to ensure that the output results are correct. In 

case of an error, the verification logic must either adjust the frequency to ensure the registers latch 

the correct data or correct the output results, assuming the error persists across all outputs. 

Consequently, SYNC designs increase in size to accommodate the DVS controller, logic 

verification, and output correction circuitries to guarantee the circuit’s behavior maintains validity 

during supply voltage fluctuation. In this dissertation work, DVS controllers were not 

implemented; however, the MTNCL simulations were run first to determine the delay for a specific 
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circuit then ran the SYNC simulations with 

a frequency that produces the same delay to 

avoid timing violations. Otherwise, 

frequency sweeps would need to be 

conducted on each voltage step to 

determine the right frequency to achieve 

highest speed and lowest error. This is 

impractical given the large designs and 

long simulation times. Other simulation 

methods, such as mix-and-match, can be used as a workaround; but this can impact the accuracy 

of the data. Since SYNC designs were timed after MTNCL, both architectures scored the same 

delay. Figure 21 shows the performance degradation across the SF and HEQ cores resulting from 

lowering the supply voltage. As mentioned in Section II.6, speed is proportional to VDD. At 

900mV, all designs slowed down by 16% on average relative to the speed at nominal voltage (1V). 

At 800 mV, the performance degradation reached 35% followed by a 65% degradation at 700mV.  

b. Operating Voltage vs. Active Energy 

Table V.1 highlights the average energy results from the voltage sweeping simulations 

using the same method in Section V.2.a. MTNCL designs consume higher energy compared to 

their SYNC counterparts due to additional switching activity produced by dual-rail encoding. 

Therefore, the “MTNCL Average Energy Overhead” column was added to present the average 

energy increase to help quantify the trade-off in opting for MTNCL over SYNC. Interestingly, the 

extra switching causes the MTNCL designs to have higher power savings under lower supply 

voltages according to Equation 2. Consequently, the MTNCL HEQ benefits more than MTNCL 

Figure 21. Impact of Lower Supply Voltage on 

MTNCL and SYNC’s Delay 
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SF from voltage scaling due to the HEQ’s higher switching activity. Thus, the average energy 

overhead drops from 80% at 1V to 28% at 700mV in HEQ. On the other hand, all switching occurs 

in the SF logic which is an insignificant 2% of the total SF core size. Also, the data is captured 

after smoothing only one output since average energy is calculated between the first input and first 

output. Consequently, the average energy overhead only drops from 54% at 1V to 60% at 700mV 

across all SF configurations. 

 

Supply  

Voltage (V) Design 

MTNCL Average 

Energy (nJ) 

SYNC Average 

Energy (nJ) 

MTNCL Average 

Energy Overhead (%) 

HEQ 

1.0 45.18 25.08 80% 

0.9 32.19 22.40 44% 

0.8 25.16 18.60 35% 

0.7 19.83 15.46 28% 

SFP0 

1.0 143.59 96.56 49% 

0.9 113.87 71.86 58% 

0.8 88.60 54.43 63% 

0.7 67.00 42.91 56% 

SF 

1.0 275.99 180.70 53% 

0.9 218.69 135.59 61% 

0.8 170.29 102.79 66% 

0.7 128.78 81.41 58% 

SFP1 

1.0 413.98 260.13 59% 

0.9 328.03 194.75 68% 

0.8 255.43 148.24 72% 

0.7 193.17 117.43 65% 

 

Table V.1. Average Energy Results in Voltage Sweeping 

 

c. Operating Voltage vs. Leakage Power 

Table V.2 features the leakage power results from the voltage sweeping simulations using 

the same method as Section V.3.a. Unlike average energy, leakage power in the SYNC designs is 
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higher across all simulations. Consequently, the “SYNC Leakage Power Overhead” column was 

added to show how much higher SYNC design leakage is compared to MTNCL. In general, 

leakage power improves by reducing the supply voltage according to Equation 2. Leakage power 

drops by 25% on average in each 10% decrement in supply voltage. MTNCL’s leakage declines 

at a faster rate than SYNC in each decrement due to the high-VT transistors used in MTNCL gates. 

The logic again determines leakage power outcomes as the HEQ core does not improve at the same 

rate while lowering the supply voltage. For example, the SYNC HEQ leakage overhead is 55% at 

700mV vs. 12% at 1V. However, the SYNC SF leakage overhead is 267% at 700mV vs. 225% at 

1V. There is an improvement, but the savings for the MTNCL HEQ are much more substantial. 

This discrepancy is due to the higher amount of switching in the HEQ core, whereas the transistors 

in SF core do not switch states as often.  

Design 

Supply  

Voltage (V) 

MTNCL Leakage 

Power (fW) 

SYNC Leakage 

Power (fW) 

SYNC Leakage  

Power Overhead (%) 

HEQ 

1.0 478.79 535.84 12% 

0.9 360.42 516.96 43% 

0.8 269.81 402.06 49% 

0.7 200.63 311.86 55% 

SF 

1.0 2230.44 7256.12 225% 

0.9 1666.82 5371.54 222% 

0.8 1236.76 4240.86 243% 

0.7 910.00 3340.84 267% 

 

Table V.2. Leakage Power Results in Voltage Sweeping 

 

d. Performance vs. Power 

This chapter started with a brief explanation of the simulation setup process followed by 

power analysis at nominal voltage. Next, the impact of supply voltage on average energy and 

leakage power was presented separately. This section is a synthesis of all the simulation variables 
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(supply voltage, power, and delay) to grant circuit architects a better perspective when discerning 

a design methodology. The delay is equivalent across SYNC and MTNCL because SYNC circuits 

were timed to meet MTNCL circuit delays. Additionally, SYNC power data does not account for 

a DVS controller or output verifier to guarantee the circuit’s functionality; therefore, the power 

data may increase when the extra logic is added. However, all MTNCL data is complete. As shown 

in Table V.3, the data gives a clearer picture of both MTNCL and SYNC behavior in various 

operational scenarios. For example, if HEQ is deployed in a scenario where supply voltage swings 

between 700mV and 1V, then designers should expect a 97% increase in delay in the worst case. 

The voltage fluctuation can be due to extreme conditions or intentional. If the supply voltage 

swings are due to extreme conditions, then MTNCL should be the better choice because the circuit 

operates at the maximum possible speed. For SYNC circuits, DVS controllers do not provide a 

continuously adjustable clock, meaning that each supply voltage is tied to a set frequency value in 

a discrete fashion. This means that the circuit might operate at a slower frequency than required if 

the supply voltage level is between two of the discrete voltage levels specified in the DVS. Also, 

the DVS controller and logic verifier become more complex when they cover a wider range of 

supply voltages. Therefore, architects may opt for SYNC if the supply voltage for their application 

fluctuates only between 85% and 100% of the nominal voltage. Finally, VDD reduction can be 

intentional to save power or cool off the circuit. In this case, the additional SYNC logic overhead 

will not be as significant since the supply voltage will drop to predetermined levels. This should 

guarantee the maximum performance for SYNC circuits at lower voltages.  
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Supply  

Voltage 

(V) Design 

MTNCL 

Average 

Energy (nJ) 

SYNC 

Average 

Energy (nJ) 

MTNCL 

Leakage 

Power (fW) 

SYNC 

Leakage 

Power (fW) Delay (μs) 

HEQ 

1.0 45.18 25.08 478.79 535.84 9.80 

0.9 32.19 22.40 360.42 516.96 11.56 

0.8 25.16 18.60 269.81 402.06 14.07 

0.7 19.83 15.46 200.63 311.86 19.26 

SFP0 

1.0 143.59 96.56 2230.44 7256.12 1.56 

0.9 113.87 71.86 1666.82 5371.54 1.87 

0.8 88.60 54.43 1236.76 4240.86 2.39 

0.7 67.00 42.91 910.00 3340.84 3.31 

SF 

1.0 275.99 180.70 2230.44 7256.12 3.04 

0.9 218.69 135.59 1666.82 5371.54 3.64 

0.8 170.29 102.79 1236.76 4240.86 4.64 

0.7 128.78 81.41 910.00 3340.84 6.43 

SFP1 

1.0 413.98 260.13 2230.44 7256.12 4.50 

0.9 328.03 194.75 1666.82 5371.54 5.40 

0.8 255.43 148.24 1236.76 4240.86 6.88 

0.7 193.17 117.43 910.00 3340.84 9.54 

 

Table V.3. Performance vs. Power Results in Voltage Sweeping 
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VI. Conclusion 

In this research, two stream processor cores, HEQ and SF, were implemented in both 

MTNCL and SYNC methodologies. During the early stages of this dissertation work, MTNCL 

showed a high-level of architectural flexibility when integrating the different design blocks in their 

respective cores during the implementation stage. On the contrary, SYNC designs had to go 

through a larger number of simulations to ensure the designs met all timing constraints.  

The architectural flexibility comes at a price. Simulations show that MTNCL circuits 

consume more average energy than their SYNC counterparts due to dual-rail encoding. The 

average energy overhead varies from 28% to 80% depending on the logic; however, MTNCL can 

save up to 267% leakage power compared to SYNC. This is due to several reasons. First, MTNCL 

gates use high-VT transistors, which are slower than regular transistors, but significantly reduce 

leakage power. Second, the absence of the clock signal, which routes to nearly every gate, helps 

reduce leakage power due to the elimination of large clock driving cells. Additionally, maintaining 

the clock signal to meet timing constraints can become burdensome for larger SYNC circuits due 

to the extra logic in the clock tree.  

Another important feature is circuit robustness. MTNCL circuits adapt efficiently to their 

operational conditions. In this dissertation, performance and power data were collected from 

voltage scaling simulations at 700mV, 800mV, 900mV, and 1V. Results indicate that power 

consumption in MTNCL circuits scales better at lower supply voltages than SYNC, and average 

energy also drops at a faster rate when the supply voltage is lowered. Therefore, MTNCL 

methodology is a great design choice in scenarios where supply voltage fluctuates—intentionally 

or not.  On the other hand, SYNC circuits need additional circuitry, such as a DVS controller and 

logic verifier, to acquire equivalent robustness.  



44 
 

VII. Recommendations 

Based on Section IV and previous work [14], MTNCL circuits proved their architectural 

flexibility. This is manifested by skipping the clock tree synthesis step in the physical design flow. 

Consequently, MTNCL methodology is recommended to implement large modular designs, such 

as GPUs.  

MTNCL circuits are also robust in continuously changing operational conditions. 

Reducing supply voltage is used as a technique to reduce the speed, if performance is not a priority, 

or target heat dissipation to cool off circuits. Phones, for example, can get too hot due to high CPU 

utilization or from the surrounding temperature. Therefore, scaling down the supply voltage is 

used to save the transistors from permanent damage due to excessive heat dissipation. As described 

in Section II.6, this technique can also be used to reduce dynamic power which can preserve the 

phone’s battery life in scenarios where power is limited, such as applications deployed to space. 

As mentioned in [10], the execution of image processing tasks is handled in space to relieve the 

burden on the communication channel between Earth and the spacecraft.  

The adaptability to variable supply voltages can be combined with other features offered 

by MTNCL such as leakage power saving. Also, MTNCL circuits are more resilient to physical 

variations like age and manufacturing variations. In fact, leakage power and manufacturing 

variations impose serious challenges to lower process nodes. This makes MTNCL a great 

alternative for space applications since space-grade electronic devices are expected to function for 

tens of years due to the inconvenience and cost of replacing or maintaining those devices. 
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VIII. Future Work 

For future work, taping-out this design is recommended to provide a clearer picture of the 

advantages and disadvantages because additional issues might be discovered at the physical design 

level. For example, extra buffers might be added to the clock tree to meet timing constraints during 

later stages of clock tree synthesis. In contrast, the MTNCL designs should have minimal changes 

since they are QDI.  

Next, additional simulations are advised to cover the rest of the PVT [4] corners. This 

includes simulating during temperature fluctuations to observe how the MTNCL circuits would 

react. The logic is expected to adapt to the temperature variations by slowing down when the 

temperature increases or speeding up when the temperature decreases. However, SYNC circuits 

would still need a frequency controller to adjust the circuit’s speed based on the current 

temperature. Furthermore, MTNCL circuits are fault-tolerant as they either output valid results or 

NULL, while the SYNC circuits output results in all cases. Therefore, a logic verifier is required 

to flag or correct the output results. The implementation and analysis of the SYNC circuits with 

logic verifier help find the breakpoint when adding extra logic to a circuit becomes too costly, 

making MTNCL a better option. 

Another corner in PVT is the process variation. Thus, building the design in lower process 

nodes exploits the leakage power gains that MTNCL offers. As featured in Sections V.3.b 

and V.4.c, MTNCL designs are expected to perform better than the SYNC designs. Consequently, 

designers might opt for MTNCL in lower process nodes since leakage power is a greater concern. 

Lastly, implementing additional designs, where MTNCL could have strong advantages, is 

recommended. Future researchers should opt for smaller cores to exploit the sleep control 
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mechanism in MTNCL, and they should opt for higher core counts as this will lead to a large clock 

tree in the SYNC version.  
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