
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

5-2023

Stream Processor Development using Multi-Threshold NULL Stream Processor Development using Multi-Threshold NULL

Convention Logic Asynchronous Design Methodology Convention Logic Asynchronous Design Methodology

Wassim Khalil
University of Arkansas-Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Electrical and Electronics Commons, Power and Energy Commons, and the VLSI and

Circuits, Embedded and Hardware Systems Commons

Citation Citation
Khalil, W. (2023). Stream Processor Development using Multi-Threshold NULL Convention Logic
Asynchronous Design Methodology. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/5039

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uark.edu%2Fetd%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/5039?utm_source=scholarworks.uark.edu%2Fetd%2F5039&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Stream Processor Development using Multi-Threshold NULL Convention Logic Asynchronous

Design Methodology

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Engineering

by

Wassim Khalil

University of Arkansas

Bachelor of Science in Computer Engineering, 2017

May 2023

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Jia Di, Ph.D.

Dissertation Director

__________________________________ ___________________________________

James P. Parkerson, Ph.D. Dale Thompson, Ph.D.

Committee Member Committee Member

Zhong Chen, Ph.D.

Committee Member

ABSTRACT

Decreasing transistor feature size has led to an increase in the number of transistors in

integrated circuits (IC), allowing for the implementation of more complex logic. However, such

logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock

must reach many more gates over larger areas. Thus, timing analysis requires significantly more

computing power and designer involvement than in the past. For these reasons, IC designers have

been pushed to nix conventional synchronous (SYNC) architecture and explore novel

methodologies such as asynchronous, self-timed architecture.

This dissertation evaluates the nominal active energy, voltage-scaled active energy, and

leakage power dissipation across two cores of a stream processor: Smoothing Filter (SF) and

Histogram Equalization (HEQ). Both cores were implemented in Multi-Threshold NULL

Convention Logic (MTNCL) and clock-gated synchronous methodologies using a gate-level

netlist to avoid any architectural discrepancies while guaranteeing impartial comparisons.

MTNCL designs consumed more active energy than their synchronous counterparts due to

the dual-rail encoding system; however, high-threshold-voltage (High-Vt) transistors used in

MTNCL threshold gates reduced leakage power dissipation by up to 227%. During voltage-scaling

simulations, MTNCL circuits showed a high level of robustness as the output results were logically

valid across all voltage sweeps without any additional circuitry. SYNC circuits, however, needed

extra logic, such as a DVS controller, to adjust the circuit’s speed when VDD changed. Although

SYNC circuits still consumed less average energy, MTNCL circuit power gains accelerated when

switching to lower voltage domains.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Di, for giving me the opportunity to join TruLogic

Lab. Many memories were born in Cato Spring Research Center (CSRC). One of the moments I

will miss the most is when my cohorts and I call each other to our cubicles to work together on an

issue or give an explanation about why simulations have turned out a certain way. Hearing different

analysis and solutions helped me develop my own way of tackling problems. Those discussions

were great opportunities for me to connect with my cohorts on a personal level while integrating

into the American culture. As an immigrant, this was very important to me. Along our journey in

TruLogic, everyone discovered their true potential, which I personally did not have the chance to

know before joining. This dissertation is the culmination of knowledge and experience acquired

from working on various research projects with my cohorts and friends: Cole, Richard, Kelby,

Mark, Spencer, Bill, and Pao.

I also would like to thank Samsung for giving me the chance to join the physical

implementation (PI) team at Samsung Austin Research and Development Center (SARC) as an

intern in 2021 and a full-time engineer in 2022. Thanks Jose and Hongda for your trust and letting

me finish my dissertation while working full-time. Thanks to all my mentors for being generous in

sharing your experience, especially Dave, Bob, Chi, Khoa, and Dung.

On a personal level, I would like to thank my family for all the support. I would probably

have a different career path—a totally different life—if Baba did not buy me my first PC back in

the 90s. Thank you Mama for teaching me how to pay attention to little details. Thank you Koukou

for having my back and for all our late-night talks. Finally, I would like to thank all my spiritual

fathers and my church community at St Nicholas in Springdale, AR; St Mary in Sacramento, CA;

and Holy Cross in Austin, TX.

TABLE OF CONTENTS

I. Introduction ... 1

1. Problem Statement... 1

2. Dissertation Statement... 2

3. Dissertation Organization ... 2

II. Background .. 4

1. NULL Convention Logic (NCL) ... 4

2. Multi-Threshold NULL Convention Logic (MTNCL) ... 5

3. Stream Processors .. 8

4. Smoothing Linear Filters .. 10

a. Choosing Suitable Coefficients .. 11

b. Choosing a Suitable Filter Size ... 11

5. Histogram Equalization .. 12

6. Process, Voltage, Temperature (PVT) Corners .. 14

III. Stream Processor Design... 17

1. Design Methodology... 17

2. Define the Stream Processor’s Application ... 17

3. Stream Processor’s Building Blocks... 18

4. Stream Processor High-Level Architecture ... 18

5. Stream Processor Modes of Operation .. 20

6. Design’s Scope .. 22

IV. Implementation and Design Verification .. 24

1. MATLAB Simulations ... 24

2. Smoothing Filter Core (SF Core) ... 25

a. SF Logic ... 25

b. SF Input/Output (I/O) Logic ... 26

3. Histogram Equalization Core (HEQ Core) ... 31

4. From MTNCL to SYNC .. 31

5. Brief Comparison Between SF and HEQ Cores ... 32

V. Results and Analysis .. 33

1. Simulation Setup .. 33

2. Average Active Energy Comparison .. 33

a. Method... 33

b. MTNCL vs. SYNC.. 34

c. SF vs. HEQ .. 35

3. Leakage Power Comparison ... 36

a. Method... 36

b. Analysis ... 36

4. Voltage Scaling Comparison ... 37

a. MTNCL vs. SYNC.. 37

b. Operating Voltage vs. Active Energy ... 38

c. Operating Voltage vs. Leakage Power ... 39

d. Performance vs. Power .. 40

VI. Conclusion .. 43

VII. Recommendations .. 44

VIII. Future Work .. 45

IX. References ... 47

LIST OF TABLES

Table II.1. Dual-Rail Signal States [2] .. 4

Table V.1. Average Energy Results in Voltage Sweeping ... 39

Table V.2. Leakage Power Results in Voltage Sweeping .. 40

Table V.3. Performance vs. Power Results in Voltage Sweeping ... 42

LIST OF FIGURES

Figure 1. NCL TH23 Schematic [1] ... 5

Figure 2. MTNCL TH23 Schematic .. 6

Figure 3. MTNCL Pipelined Architecture.. 7

Figure 4. Node Architecture of a Stream Processor .. 8

Figure 5. Data, Task, and Pipeline Parallelism in Stream Processing 9

Figure 6. Two 3×3 Smoothing-Filter Masks: box filter (a), and weighted average (b) 11

Figure 7. Original image, of size 500×500. (b)-(f) Results of smoothing with square

averaging filter masks of size m = 3, 5, 9, 15, and 35, respectively [10] 12

Figure 8. Four basic image types: dark (a), light (b), low contrast (c), high contrast (d), and

their corresponding histograms [10] ... 13

Figure 9. High-Level Architecture of the Proposed Stream Processor 19

Figure 10. Raw and Processed Images of Sizes: 128×128 (a), 64×64 (b), and 32×32 (c) [10] 24

Figure 11. High-Level Architecture of the SF Logic ... 25

Figure 12. Box Filter to Smooth Pixel #7 .. 26

Figure 13. 5×5 image (a), Padded 5×5 image (b) .. 26

Figure 14. SF Core Configurations: SF (a), and SFP0 and SFP1 configurations (b) 27

Figure 15. High-level Architecture of the SF I/O Logic .. 29

Figure 16. High-Level Architecture of the Address Generator .. 29

Figure 17. High-Level Architecture of the SF Core... 30

Figure 18. High-Level Architecture of the Histogram Equalization Core 31

Figure 19. Average Active Energy Results ... 34

1

I. Introduction

1. Problem Statement

Historically, digital integrated circuit (IC) design has solely focused on the development

of synchronous (SYNC) circuits [1]. In the past few years, the reduction in transistor feature size

has allowed designers to build complex circuits with smaller area. However, the rampant number

of devices requires more sophisticated timing analysis to prevent potential clock skew issues.

Analysis should cover various conditions, such as fluctuating supply voltages, to meet timing

constraints and deliver correct results. Consequently, additional logic must be developed to handle

timing as well as verify the design’s output to ensure correct functionality which, in turn, limits

the scalability of SYNC designs. As an alternative solution, asynchronous design methodologies,

such as NULL Convention Logic (NCL) [2] and Multi-Threshold NULL Convention Logic

(MTNCL) [3], are clockless. This allows for more flexible timing requirements, better adaptability

to a wider range of application environments, and a smoother implementation of large modular

designs with less scalability overhead. Architecture flexibility and robustness make them great

candidates to implement stream processors like Graphical Processing Units (GPUs), especially if

deployed in a power-limited system. Stream processor architecture focuses on bridging the gap

between arithmetic performance and bandwidth by raising the number of arithmetic units [4] and

partitioning the storage structures to reduce the bandwidth demands [5]. In contrast, standard

general-purpose processors devote a small fraction of their die area to arithmetic units.

Additionally, these processors consolidate all storage into main memories that become bottlenecks,

limiting the efficacy of parallelism. This architectural difference expands the execution capabilities

of a streaming processor to reach a range of hundreds of Giga Operations per Second (GOPS),

2

suitable for computationally expensive applications like cybersecurity [6] and image processing

[7] [8].

2. Dissertation Statement

This research develops the first MTNCL stream processor to demonstrate the flexibility

and minimal overhead that asynchronous methodologies offer over their synchronous counterparts

when implementing large designs. In addition, maintaining the clock signal in synchronous circuits

across multiple cores is a significant challenge, especially under harsh conditions. It is important

to note that NCL and MTNCL asynchronous methodologies use a dual-rail encoding scheme to

implement the handshaking mechanism, and this scheme does introduce certain drawbacks. Also,

threshold gates are used as building blocks which have higher transistor counts than traditional

Boolean gates. For this reason, among others, MTNCL methodology was chosen over NCL

because MTNCL threshold gates have fewer transistors. This research is a demonstration that

MTNCL design methodology can achieve a higher level of architectural flexibility while

maintaining its robustness under various conditions due to the omission of the clock-related logic.

Along with flexibility and robustness, MTNCL can offer additional benefits such as reducing

leakage power. These qualities will drive more designers to consider asynchronous design

methodologies, especially when implementing large designs, thereby revolutionizing IC design

conventions.

3. Dissertation Organization

This dissertation encompasses eight chapters. Section II provides background knowledge

of the asynchronous design methodologies (NCL and MTNCL), stream processors, image

processing operations, and circuit robustness. Section III presents the design methodology, the

stream processor’s application, and a proposed high-level architecture. Section IV discusses the

3

design implementation then examines the logic verification of the Smoothing Filter (SF) and the

Histogram Equalization (HEQ) cores along with a brief comparison between the MTNCL and

SYNC versions. Section V begins with an overview of setting up simulations for the designs which

is followed by a general power analysis. It finishes with an analysis of the effect of voltage-scaling

on power delay and power data. Section VI concludes the dissertation. A few scenarios, where the

use of MTNCL stream processors would be optimal, are featured in Section VII. Finally, Section

VIII maps a detailed plan for future research.

4

II. Background

1. NULL Convention Logic (NCL)

NCL is a quasi-delay insensitive (QDI) asynchronous design methodology that uses a

multi-rail encoding scheme [2]. In an NCL dual-rail scheme, a signal is represented by two wires

(Wire 1, Wire 0). As shown in Table II.1, there are only three valid states: DATA0, DATA1, and

NULL. DATA0 corresponds to Boolean Logic0, while DATA1 corresponds to Boolean Logic1.

The NULL state exists when neither of the wires is

asserted. In a typical NCL operation, DATA waves,

where signals are either DATA0 or DATA1, are

separated by a NULL wave, where all signals exhibit

NULL. The INVALID state, where both wires of a

signal are asserted, should not occur in normal NCL

operation.

NCL is composed of 27 state-holding gates which constitute the set of all Boolean

functions with 4 inputs or fewer [9]. These gates are called threshold (TH) gates which follow

THmn naming convention. The n stands for the number of inputs, while m denotes the threshold,

i.e., the number of inputs that must be asserted for the output to be asserted. Several NCL gates

have a name that contains a w, such as TH54w32, which signifies that one or more inputs have a

higher weight than the rest. In this case, the first input has a weight of 3, while the second has a

weight of 2.

State Wire 0 Wire 1

DATA0 1 0

DATA1 0 1

NULL 0 0

INVALID 1 1

Table II.1. Dual-Rail Signal States [2]

5

As depicted in Figure 1, four different

transistor networks implement an NCL gate

[1]. The Set network is responsible for the

output assertion or de-assertion depending on

the Boolean equation implemented in NMOS

transistors. The Reset network is needed to de-

assert the output when all inputs are low.

Finally, the Hold0 network keeps the output

de-asserted if the threshold is not met, whereas

the Hold1 network keeps the output signal asserted if not all inputs are Logic0. This characteristic

is called Hysteresis. In addition, NCL has the input-completeness quality that maintains the quasi-

delay-insensitivity at the circuit level. It requires the output of an NCL combinational circuit to

alternate from a NULL wave to a DATA wave only once all inputs present either DATA0 or

DATA1. Similar to hysteresis, this property requires the output of an NCL combinational circuit

to change from DATA to NULL only after all inputs return to NULL. Thus, the hysteresis

characteristic implemented in NCL threshold gates helps apply input-completeness at the circuit

level.

2. Multi-Threshold NULL Convention Logic (MTNCL)

MTNCL is an NCL extension that aims to achieve low-power dual-rail asynchronous

circuits. Similarly, MTNCL uses the same states: NULL, DATA0, and DATA1 to represent the

dual-rail signals. However, MTNCL differs from NCL in the way NULL cycles are propagated

throughout the circuit. MTNCL circuits generate NULL waves instead of providing NULL wave

input like NCL circuits. The sleep mechanism implemented at the gate level allows some or all

Figure 1. NCL TH23 Schematic [1]

GND

VDD

ZA

B

C

A

Z C

B B

A Z

C

CB

A

Z

IZ

Z
Reset

Hold0

Set Hold1

6

sections of the circuit to turn idle at given and controlled times. Thus, MTNCL gates incorporate

a sleep signal input that controls when the gate switches to the idle state. When the sleep input

asserts, the output of the gate is de-asserted regardless of the input values. In an MTNCL pipeline

design, the handshaking signals (ki and ko) act as the sleep control which puts the appropriate

blocks into sleep mode at desired times.

Contrary to NCL, MTNCL threshold

gates do not need hysteresis due to the sleep

mechanism. Therefore, they are significantly

smaller than their NCL counterparts due to

the omission of the Reset and Hold1 transistor

networks as depicted in Figure 2. In addition,

low-threshold-voltage (low-VT) and high-

threshold-voltage (high-VT) transistors are

used to implement MTNCL threshold gates. The former allows faster switching, while the latter

helps reduce the leakage current. Consequently, MTNCL gates are faster, smaller, and consume

less power compared to their NCL equivalent gates.

Figure 2. MTNCL TH23 Schematic

GND

VDD

CB

A

A

B C

B

C

B

C

IZ

Z

Hold0

Set

S

S

7

As illustrated in Figure 3, the ko signal allows an MTNCL circuit block to communicate

with the previous stage in the pipeline, indicating whether it is ready for inputs or not. Likewise,

the ki signal allows the proceeding MTNCL stage to indicate its readiness to accept new output.

Flowing in the opposite direction, the sleep signals, originating from the ko output of the previous

block, sleep the registers and combinational logic in the next stage in the pipeline. As mentioned

previously, this is to emulate the NCL NULL wave and minimize power consumption. To

illustrate, if all inputs to a stage are NULL, then ko will assert. In this case, there is nothing for the

combinational logic to process; therefore, it should be idle. This acknowledgment exchange

scheme permits a higher level of flexibility that is difficult to achieve with synchronous

methodologies. For example, adding more MTNCL blocks in a sequence should work as long as

the MTNCL blocks respect the handshaking and switch correctly between the different states. The

omission of a clock also lets the MTNCL circuits be more robust toward operational variability

such as a fluctuating supply voltage. On the other hand, synchronous circuit designers need to add

Data

Input
MTNCL

Register

 sleep

ko
ko ki

Completion

 sleep

Data

Output

ko ki

Completion

 sleep

 ki

 sleepout

MTNCL

Combinational

Logic

MTNCL

Register

 sleep

 Figure 3. MTNCL Pipelined Architecture

8

extra logic to support the drive strength and timing of the clock signal when adding new blocks to

ensure all blocks are synchronized to latch the correct data in normal conditions. The clock logic

development becomes even more challenging to achieve MTNCL’s level of robustness if the

designer is required to add circuitry to control the frequency of the clock whenever variations in

supply voltage or temperature are detected. Moreover, a logic verifier must be attached to the main

circuit to ensure the output matches the expected result. Since the supplemental logic controls the

clock signal and analyzes the output bits, its size depends on how large the main circuit is. The

scalability penalty is a tremendous disadvantage, especially when implementing stream

processors. This is due to the high number of cores which range from a few hundred to a few

thousand. Therefore, the logic complexity to meet timing requirements in synchronous circuits and

the benefit from the architecture flexibility of MTNCL qualify it to implement stream processors

with minimal overhead.

3. Stream Processors

Stream processors are composed

of two or more processing blocks called

nodes. As shown in Figure 4, the

baseline node has a multicore stream

processor unit coupled with a stream

unit [7]. It is the only persistent storage

structure on the node. This includes a

32KB stream instruction storage for

application instructions, an 8KB stream

commands storage for dispatch and output logic programming, and a 64KB memory subsystem

Figure 4. Node Architecture of a Stream Processor

Node
Stream Unit

Off-chip Memory

Interface

Memory Subsystem

Stream Instructions

Stream Commands

Processing Unit

M
e
m

o
r
y
 I

n
te

r
fa

c
e

Stream Dispatch Logic

Streams Output Logic

I/O

9

for I/O and off-chip stream buffering. The memory structure in the stream unit should not exceed

the sizes denoted above to avoid higher latencies [5]. The main design goal of stream processors

is to decentralize as many components as possible to eliminate any bottlenecks that can potentially

stall the system.

As illustrated in Figure 5, the architecture of a stream processor allows for data, task, and

pipeline parallelism. Data parallelism is represented by the bit width of the data processed by the

processor (e.g., 8 bits or 16 bits). For task parallelism, stream processors should execute two or

more tasks at the same time. The number of parallel tasks depends on the nature of the instruction.

Some instructions allow for task parallelism, illustrated as green boxes in Figure 5. The input of

these instructions can typically be segmented then handed to the cores which can execute the

respective function [8]. Therefore, the instructions and the number of cores are the primary factors

in determining the level of task parallelism. Lastly, stream processors manage the data exchange

Figure 5. Data, Task, and Pipeline Parallelism in Stream Processing

Pipeline Parallelism

Data

Parallelism

Task

Parallelism

10

between the different pipeline stages to enable pipeline parallelism. For example, it must handle

the sync core, depicted as the red box in Figure 5, situation where two or more cores provide the

input data. The processor must merge the output of the feeding cores for the sync core to start

execution. In a synchronous stream processor, the clock period is set to accommodate the delay of

the slowest stage to ensure the correct data is always latched. However, that does not apply to

asynchronous circuits. The asynchronous blocks will receive/output the data when they are ready

or when the data is available. Regardless of the used architecture, it is necessary to reduce the

complexity of every core, especially the larger ones, to avoid slowing down the entire processor.

4. Smoothing Linear Filters

Smoothing filters are used for blurring and noise reduction [10]. Blurring assists in

preprocessing tasks, such as the removal of small details from an image before object extraction.

Also, it can help bridge small gaps in lines or curves. The output of a smoothing-linear filter is

simply the average of the pixels contained in the neighborhood of the filter mask. These filters are

called averaging filters.

The idea behind smoothing is to replace the value of every pixel in an image with the

average of the intensity levels in the neighborhood defined by the filter mask. This process reduces

the “sharp” transitions in intensities across all pixels, called noise. The primary challenge with

noise is its randomness. In addition, there is no one-size-fits-all filter to recover a picture from

noise degradation. It is essential to choose suitable coefficients and filter sizes when applying a

filter mask to an image. A good smoothing filter should reduce the noise while preserving as many

details as possible.

11

a. Choosing Suitable Coefficients

Figure 6 shows two 3×3 smoothing filters. The first

filter is used to compute the standard average of the

pixels under the mask. A spatial averaging filter in which

all coefficients are equal is called a box filter [10]. The

second filter denotes a weighted average which indicates

that pixels are multiplied by different coefficients, thus

granting a higher rank (weight) to some pixels at the

expense of others. As illustrated in Figure 6, the pixel at

the center of the mask is multiplied by a higher value “4”

than the surrounding pixels. Additionally, these pixels are inversely weighted depending on the

distance from the center pixel. This strategy is an attempt to reduce blurring in the smoothing filter.

It is important to note that other weights can accomplish the same general effect; however, the

power-of-two integers are desirable because they can reduce the overall complexity of the design.

In this instance, the sum of all coefficients in the mask of Figure 6 is equal to 16. In practice, it is

difficult to see differences between images smoothed by either mask in Figure 6 (or similar

arrangements) because the area spanned by these masks at any pixel in an image is small.

b. Choosing a Suitable Filter Size

Figure 7 depicts the effects of smoothing as a function of filter size (m×m) [10]. For the

3×3 filter, a slight blurring is noticeable in the entire image, but details of the same size as the

Figure 6. Two 3×3 Smoothing-Filter

Masks: box filter (a), and weighted

average (b)

12

mask are considerably affected. For example, the black

squares, the small letter a, and the little grain noise show

significant blurring in the 3×3 and 5×5 smoothed pictures

compared to the rest of the objects. In the 9×9, there is

significantly more blurring. Also, the black circles are no

longer distinct from the background like the previous three

images. Finally, the results for 15×15 and 35×35 filters are

extreme compared to the sizes of the objects in the image.

This type of aggressive blurring helps blend small details

into the background. That includes the three small squares,

two circles, and almost all the noisy rectangles in Figure

7(f). Additionally, the pronounced black border is a

consequence of padding the original image with zero (black)

pixels and then trimming off the padded area after filtering. The black outline blended into all

filtered images; however, it became noticeable for the images smoothed with the larger filters.

5. Histogram Equalization

A histogram is a graphical representation of the tonal distribution in a digital image which

is the basis for numerous spatial domain processing techniques achieved through histogram

manipulation. Thus, the image histogram is a powerful tool for image enhancement and provides

useful image statistics used in other image processing applications, such as image compression

and segmentation [10].

Figure 7. Original image, of size

500×500. (b)-(f) Results of

smoothing with square averaging

filter masks of size m = 3, 5, 9, 15,

and 35, respectively [10]

13

A histogram of a digital image with

intensity levels [0, L-1] is a discrete function

����� � ��, where �� is the kth intensity

value and �� is the number of pixels in the

image with intensity ��. As illustrated in

Figure 8 [10], the horizontal axis of each

histogram plot corresponds to intensity ��.

The vertical axis corresponds to values of

����� � �� 	or 	���� �

�

����	
�����	�	������. In the dark image,

Figure 8(a), the pixel distribution settles in

the low (dark) side of the intensity scale. On

the other hand, the components of the light

image, Figure 8(b), are shifted towards the

high (light) side of the intensity scale. The

picture with low contrast, Figure 8(c), has a

washed-out gray look due to the narrow

histogram distribution towards the middle of the scale. Finally, a high-contrast image, Figure 8(d),

covers a broader range of shades. Thus, a uniform pixel distribution indicates more detail and has

a high dynamic range. A transformation (mapping) function can achieve this goal using only the

histogram of the input image.

As mentioned earlier, a histogram represents the probability of occurrence of intensity level

�� in a digital image approximated by 	���� �
�
����	
�����	�	������ where	� = 0, 1, 2, …, L-1. �

Figure 8. Four basic image types: dark (a), light

(b), low contrast (c), high contrast (d), and their

corresponding histograms [10]

14

denotes the number of possible intensity levels in an image with 0 representing black and L-1

representing white (e.g., 256 for an 8-bit image). Thus, an equalized image is obtained by mapping

each pixel in the input image with intensity �� into a corresponding pixel with level �� in the output

image using the following equation:

�� � ����� � �� − 1�!p#$�%&
�

%'(
� � − 1
�)*+,	�-./0�)1		230,� 	!n5

�

%'(

Equation 1. Transformation Equation of Histogram Equalization

	
The transformation ����� in this equation is called a histogram equalization or histogram

linearization transformation.

6. Process, Voltage, Temperature (PVT) Corners

In this dissertation, circuits’ robustness is achieved when the circuit operates correctly

under unideal and highly dynamic circumstances. This leads to a few questions: What are the

variables that determine the operational conditions? What are the benefits and trade-offs from

changing one of those variables? How do circuit designers exploit those variables to achieve their

power and delay goals?

When considering various aspects of examining operational conditions, there are three

different sources of variation: Process Variation (P), Supply Voltage (V), and Operating

Temperature (T) – or PVT. Ideally, circuit designers aim to implement circuits that operate in all

extreme cases of these variables. Realistically, they tweak one of the variables to achieve their

design goals. By opting for a smaller process node, the area of a circuit decreases as well as the

dynamic power through operating at a lower supply voltage. Nevertheless, transistors’ behavior

varies in lower nodes due to photolithography limitations, deviations in the optics, and doping

15

density inconsistencies. These cause a variation in channel length and threshold voltage, meaning

that the devices’ speed and power consumption are different from one transistor to another even

on the same die. Similarly, temperature increase causes the drain current to decrease which slows

down the circuit’s speed. Since the industry is trending towards smaller process nodes with higher

transistor density and switching activity, higher average temperatures will result and become a

larger consideration.

Lastly, the supply voltage variation is more relevant to this research than the other two

corners because it is a very powerful tool used in a wide range of applications. All devices are

typically designed to operate in a range of ±10% around the nominal supply voltage. This slack

lets the transistors function correctly despite voltage variation that can be caused by certain factors,

such as IR drop. According to [11], speed is roughly proportional to VDD. This means that the

circuit is 10% faster when the supply voltage is 10% higher than nominal voltage and 10% slower

when the supply voltage drops 10% under the nominal voltage. Circuit designers may intentionally

lower the supply voltage to the minimum to save power. This technique is called Dynamic Voltage

Scaling (DVS). Furthermore, designers may reduce the clock frequency to the minimum necessary

to complete a task in schedule then cut down the voltage to the minimum necessary to operate at

the new frequency. This method is called Dynamic Voltage/Frequency Scaling (DVFS). Both DVS

and DVFS are used in circuits where power is a top constraint, such as consumer electronics, since

they achieve high power gains according to the following equation:

6���� � 	678
���9 +	6�����9 � �6�;��9<�
= +	6�<��	9��9���� 	+ 	6�����9
� �>?@ABBC 1 + >*�9ABBD����1� +	ABBD�����=�	[11]

Equation 2. Total Power Dissipation

16

It is important to note that the effect of lowering supply voltage and frequency is cubed in

the PSwitching equation. This means that operating at 50% of the speed and 50% of the nominal

supply voltage costs only
G
H of the switching power. To implement either method, a DVS controller

is required to set the operating frequency, and then it chooses the lowest supply voltage necessary

for this speed. Furthermore, characterizing a circuit across a continuous range of voltages and

frequencies is very challenging, therefore timing and power engineers limit the voltage-frequency

setting to n-discrete levels. On the other hand, MTNCL circuits do not need a controller since all

asynchronous blocks adapt to the new supply voltage without any external intervention. In fact,

MTNCL circuits are theoretically adaptive to all three PVT variations; however, voltage scaling is

used in this research to prove the robustness of the MTNCL circuits in the case of voltage

fluctuation.

17

III. Stream Processor Design

1. Design Methodology

The goal of this research is to implement a QDI asynchronous stream processor using the

MTNCL methodology. Furthermore, comparison and analysis are conducted against a

synchronous version to juxtapose the performance, robustness, and cost. As mentioned in Section

II, designing a clock tree in a stream processor is challenging given the large number of cores that

can range from a few hundred to a few thousand. When also taking into consideration Process,

Voltage, and Temperature (PVT [11]) corners, ensuring all cores are latching the correct data can

be difficult. On the other hand, blocks are self-timed in a QDI asynchronous design. That

guarantees the design will work properly as long as the respective cores and blocks in sequence

exchange the handshaking signals correctly. It is important to note that one of the main benefits

from the clock omission is increasing the circuit’s robustness in various conditions while reducing

the logic complexity that results from additional clock circuitry. However, this will not necessarily

translate into area reduction because MTNCL uses a dual-rail encoding scheme. After a thorough

analysis, MTNCL remains the best candidate.

2. Define the Stream Processor’s Application

As mentioned in Section II.3, stream processors exhibit three kinds of parallelism: Data,

Task, and Pipeline. This permits them to accomplish a variety of tasks, especially the ones

comprised of multiple simple tasks. For this reason, stream processors are great for stream cipher

and image processing. A stream cryptographic processor is presented in [6] which can implement

various stream cipher algorithms such as Grain-80 and A5-1 with a throughput of 100 Mbps and

66.67 Mbps, respectively. Nevertheless, the usage of stream encryption is limited to specific

applications, according to [12], due to its low diffusion and susceptibility to insertions and

18

modifications. Consequently, this research focuses on image processing over stream cipher.

Stream architectures reduce the bandwidth demands by streaming the image pixels into an array

of processing elements and transferring intermediate data results to the proceeding processing

element instead of storing them back to the memory [8]. Since memory-related operations

contribute significantly to total latency in the conventional general-purpose processors, stream

processors have the potential to be much faster. Combined with efficient exploitation of

parallelism, stream processors are able to reach a range of hundreds of GOPS [7].

3. Stream Processor’s Building Blocks

As noted in Section II.3, every stream processor consists of multiple nodes that have

multiple cores. Since this research is one of the earliest attempts to build an MTNCL stream

processor, the preliminary version should not be complicated when applying the three types of

parallelism. Accordingly, this architecture should have at least three cores. As depicted in Figure

5, task parallelism requires a minimum of two cores to execute a task in parallel. These nodes need

to feed their results to another core or vice versa to implement the pipelining aspect, or a produce-

consumer relationship [7]. Next, a large variety of filters were discussed in [10]. Smoothing filters

and histogram equalization were the most attractive since both can be simple to physically

implement.

4. Stream Processor High-Level Architecture

Figure 9 depicts the high-level architecture of the two-node stream processor. Both nodes

share the same architecture with a total of three cores. Two of the cores implement the smoothing

filter, whereas the third implements the histogram equalization. Since the cores are processing

pixels which represent the amount of gray intensity from 0 to 255, the data buses should each be

8-bit wide. This implements the data parallelism principle, while both smoothing cores function in

19

parallel to achieve the

task parallelism principle.

In most circumstances,

the output of the

Histogram Equalization

(HEQ) core will be fed

into the Smoothing Filter

(SF) cores to establish the

pipelining concept. Task

parallelism is

implemented across

nodes by smoothing an

input image using all four

SF cores. Also, each node

has a local dual-port

SRAM of 32Kb for two

reasons. First, a dual-port

SRAM allows a core to

write its output pixel

while another core fetches its input pixel. Second, the 32Kb storage is enough to let the processor

run on only one node instead of both nodes together which adds a reconfigurability feature to the

processor. The 32Kb SRAM is split into two equal partitions to exploit the task parallelism feature

by storing the output stream of pixels from both SF cores at the same time. Otherwise, the second

Figure 9. High-Level Architecture of the Proposed Stream

Processor

(4096 words of 8 bits) = 32 Kbits

Input Control Signals

Smoothing Filter (SF) Cores

Histogram

Equalization

(HEQ) Core

Node Control

(4096 words of 8 bits) = 32 Kbits

In
p

u
t/

O
u

tp
u

t

C
h

u
n

k
 2

Control

In
p

u
t/

O
u

tp
u

t

Im
a

g
e

Input Pixels

Node Control

In
p

u
t/

O
u

tp
u

t

C
h

u
n

k
 2

In
p

u
t/

O
u

tp
u

t

Im
a

g
e

Input/Output

Chunk 1

Input/Output

Chunk 1

Control

SRAM #1

(2048 words of 8

bits) = 16 Kbits

SRAM #2

(2048 words of 8

bits) = 16 Kbits

SRAM #1

(2048 words of 8

bits) = 16 Kbits

SRAM #2

(2048 words of 8

bits) = 16 Kbits

Node #2

Node #1

Histogram

Equalization

(HEQ) Core

SF Core #1 SF Core #2

Smoothing Filter (SF) Cores

SF Core #1 SF Core #2

20

core would wait for the first core to finish smoothing before it began feeding new pixels to the

SRAM. This partitioning should reduce the delay significantly. Unfortunately, the HEQ core does

not benefit from the partitioned storage since there is only one core providing the data. It is also

important to note that equalization cannot be parallelized because the calculation of the new shades

depends on the occurrence of the shades in the original picture. If the core receives half of the

picture, then the calculation implements a different version of equalization, called Regional

Adaptive [10], which this dissertation work does not cover. According to [10], the smoothing step

cannot be followed by equalization because each pixel is averaged with its neighboring pixels,

thereby diverting the original histogram of the image. The inaccuracy of the smoothed histogram

results in the equalized image having either low or high contrast. On the other hand, equalized

images can be smoothed since the new shades are derived from their original values.

5. Stream Processor Modes of Operation

After featuring the high-level architecture of the stream processor in previous sections, the

protocols that the blocks use to communicate with each other must now be addressed. For

simplicity, all instructions were classified into two main groups: intra-node and inter-node modes

of operation.

In the intra-node mode, the user is smoothing, equalizing, or equalizing-smoothing in only

one node – node #1 or #2. The control logic directs the input pixels to the correct core, either SF

or HEQ. In the case of smoothing, the SF Core #1 smooths the top half of the picture while the

SF Core #2 smooths the bottom half. The control logic also handles the case of the equalizing-

smoothing operation by connecting the output of the HEQ core to the input of the SF. Whenever

the core is ready to output the pixels of the output image, the SRAM I/O logic ensures that the

pixels are stored in the right SRAM core depending on the operation. For the smoothing and

21

equalizing-smoothing instructions, the SRAM stores the pixels from the SF Core #1 in SRAM #1

while the pixels from the SF Core #2 are stored in SRAM #2. In the case of equalizing, the memory

input logic stores the first 2048 pixels (top half of the equalized image) in SRAM #1; however, the

remaining pixels (bottom half of the equalized image) are stored in the second partition. When the

operating node is outputting the results, the SRAM output logic starts at the first pixel in the first

partition. Whenever the counter hits (IJIKL	MNOPQ#	JR	STUQLV
C), the logic starts processing the first pixel

in the second partition.

In the inter-node mode, the user is either smoothing or equalizing-smoothing across two

nodes; or the user is smoothing, equalizing, or equalizing-smoothing two pictures at the same time.

In the first case, smoothing is performed across four cores – two cores for each node – where each

individual core smooths only a quarter of the original picture. To avoid parallelizing the

equalization step in the equalizing-smoothing case, equalization is performed twice in each node,

then the equalized pixels are streamed out to their node’s SF core. Whenever the SF cores are

ready to output pixels, the SRAM input logic stores each quarter of the output image in the

SRAMs. Consequently, SRAM #1 of the first node holds the top quarter of the image, SRAM #2

of the first node and SRAM #1 of the second node hold the two middle quarters, and SRAM #2 of

the second node holds the bottom quarter. In contrast to the intra-node mode, the SRAM output

logic is aware of what part of the image is being processed to ensure a correct sequence of pixels.

Thus, an extra bit, called ID, was assigned to the control bus that identifies the portion each node

is processing. ID == 0 means that the top half of the input image is assigned to this node, whereas

ID == 1 refers to the bottom half. In the former case, the SRAM output logic will load the pixels

from SRAM #1 then switch to SRAM #2 whenever the counter hits (IJIKL	MNOPQ#	JR	STUQLV
W). In the

latter case, the SRAM output logic in the second node starts producing the third quarter’s pixels

22

whenever the main counter in the node hits (IJIKL	MNOPQ#	JR	STUQLV
C). Finally, the SRAM output logic

of the second node switches to the last quarter when its counter reaches (IJIKL	MNOPQ#	JR	STUQLV
W).

For the second sub-mode in the intra-node mode, both nodes execute their own instruction

separately from each other. To step up the reconfigurability capabilities, the user can assign two

different pictures to each node. In other words, this sub-mode can be portrayed as two intra-node

instructions concurrently executed by each node.

6. Design’s Scope

One of the main challenges with large designs is simulation time. In this project, the input

picture size is a significant factor that impacts the length of simulations. Therefore, it was essential

to find the right balance between smaller dimensions, where the processor’s modifications are

noticeable, and reducing the simulation time as much as possible. As illustrated in Figure 10,

MATLAB simulations show that a 64×64 image is the optimal size. Another factor in reducing the

simulation time is the circuit size. For the HEQ core, the image size influences the design size due

to the division in the transformation equation in Section II.5. Since the total number of pixels is a

power of two (64×64 = 4096 pixels), there is no need to design a circuit for division. Likewise, the

SF core architecture depends on the size of the mask and the size of the image. For example, the

implementation of a 5×5 mask requires 24 adders; however, a 3×3 mask requires only eight adders.

Since the dimensions of the input image shrank to 64×64, a large smoothing mask will destroy

most of the features in the input image. In addition, the coefficients of the smoothing-filter mask

can considerably impact the size of the SF core. The implementation of the box filter, Figure 6(a),

will add a significant area and complexity cost to the SF core due to the non-power-of-two division.

Thus, changing the coefficients will drastically diminish the area because n-shift-right is equivalent

23

to a 2
 division. It is important to note that both masks will output similar results due to the

different weights, but the delta is almost negligible due to the small mask size. For the sake of

architecture flexibility, the SF core implemented a weighted filter instead of the standard box filter.

24

IV. Implementation and Design Verification

1. MATLAB Simulations

The goal of MATLAB

simulations is to generate a visual

representation of the result from the

image processor. This is essential to

visualize the outcome of each of the

mask candidates to assess the complexity

of the circuit and the smoothing quality.

Accordingly, a MATLAB script was

developed to generate various

dimensions of the input image, apply

histogram equalization, apply the

smoothing filter on each size separately,

and export the raw and processed image of each size. Figure 10 features the exported images.

Next, it was important to export the image in a computer-friendly format to be used in

simulations later. Therefore, a feature was incorporated in the previous MATLAB script that

exports the picture as a two-dimensional matrix of integers stored in a text file. In addition, a

Python script was developed to place each pixel value on a single line because hardware simulation

tools, such as Questa, read a file in a line-by-line manner. The combination of both scripts

generated raw, smoothed, equalized, smoothed-equalized, and equalized-smoothed images as

separate formatted-text files. VHDL and Verilog-A testbenches then used the raw image file to

Figure 10. Raw and Processed Images of Sizes:

128×128 (a), 64×64 (b), and 32×32 (c) [10]

25

feed the pixels to the design. Finally, the testbench compares the design's output pixels against the

MATLAB-generated picture for logical verification.

2. Smoothing Filter Core (SF Core)

a. SF Logic

After deciding on the mask size

and the value of the coefficients, it was

essential to have a preliminary

architecture of the SF Core to design the

building blocks in VHDL. The input

pixels of the SF Core will be stored in

an un-spooling vector unit which was

initially developed in [13] [14] and then

modified to fit this design. The un-

spooling unit receives nine 8-bit values

then outputs all 72 bits at once.

Regarding the weights, the bits

belonging to the pixels with double

weight are shifted left once, while the

middle pixel's bits are shifted left twice. As mentioned in Section IV.1, a 3×3 mask requires eight

ripple-carry adders (RCAs). The tree structure, illustrated in Figure 11, was preferred over the

cascading structure because it reduces the complexity from � − 1 adder levels to YlogC �]. This

reduces the complexity from �9��9�7�
=^������^�����^�77 � _�� + �� to

�����^������^�����^�77 � _�� + lo g���� according to [14]. Lastly, the four least significant bits

Figure 11. High-Level Architecture of the SF Logic

1
1
 b

its

RCA
8

 b
it

s

9
 b

its

8
 b

it
s

8
 b

it
s

RCA RCA RCA

RCA

9
 b

its

9
 b

its

RCA

9
 b

its

RCA

1
0
 b

its

1
0
 b

its

RCA

1
1
 b

its

8
 b

its

8
 b

its

8
 b

its

8
 b

its

1
2
 b

its

8
 b

it
s

Un-spooling Unit

Rounding Checker

8
 b

its

26

(LSBs) are truncated to implement the division by 16. For rounding, a rounding checker unit looks

at the truncated result and the 4th LSB. If the 4th LSB is DATA1 in MTNCL or LOGIC1 in SYNC

(decimal value 0.5), an adder will add one to the new pixel value; otherwise, the output stays the

same.

b. SF Input/Output (I/O) Logic

1. Design Challenges and Solutions

As mentioned in the previous section, the SF Logic

processes nine pixels to calculate a new pixel. Figure 12

illustrates a 5×5 image where the numbers represent the pixels’

ID, and the highlighted cells represent the input pixels required to

smooth pixel #7. As shown in the example, the input pixels

correspond to pixels: 1, 2, 3, 6, 7, 8, 11, 12,

and 13. One major issue, however, is that

the input pixels are not in sequence.

Consequently, the SF I/O logic should feed

the SF logic the three pixels above the target pixel then move down one row and fetch the three

pixels where the center pixel is the target. It should then move down one final row and grab the

three pixels below the target pixel. Additionally, the logic needs to cover edge cases such as

smoothing border pixels. There are multiple ways to handle this scenario; however, I opted to add

a ring of zero (black) pixels around the image, as depicted in Figure 13, where the numbers

represent the shade of a pixel. The I/O Logic needs to provide an additional stream of pixels for

the second SF Logic to implement the node-level parallelism, as described in Figure 9. Also, the

logic is aware if the user opted to split the smoothing step over four (two nodes) or two (one node)

Figure 13. 5×5 image (a), Padded 5×5 image (b)

Figure 12. Box Filter to

Smooth Pixel #7

27

SF cores. As a result, the I/O Logic was programmed to function under three modes. The first

configuration is Smoothing Filter, Parallelism Off (SF) where the image is smoothed in only one

node by splitting the image into two chunks processed by each of the SF logic, respectively. The

second configuration is Smoothing Filter, Parallelism On, ID 0 (SFP0) where the SF core smooths

the upper half of the picture. The third configuration is Smoothing Filter, Parallelism On, ID 1

(SFP1) where the SF core smooths the second half of the picture. Figure 14 shows an example of

an 8×8 input image split across two nodes (four SF cores).

One important feature is that the smoothing logic does not require the whole image to be

loaded to start smoothing. It only needs the target pixel along with the eight surrounding pixels to

start execution. As an example, the SF core receives the 8×8 image depicted in Figure 14. In the

SF configuration, the SF logic starts smoothing whenever it receives the nSF = 42nd pixel for target

pixels 1 and 33 since pixel 42 is the last received pixel that surrounds target pixel 33. In the SFP0

configuration, the SF Logic starts smoothing whenever it receives the nSFP0 = 26th pixel because

target pixels 1 and 17 have all their surrounding pixels received once the 26th pixel arrives. In the

SFP1 configuration, the SF Logic starts smoothing once the nSFP0 = 58th pixel is ready because

both pixels 33 and 49 then have all their surrounding pixels ready. This means that each

configuration will result in different delays. Consequently, the SFP0 is the fastest configuration

Figure 14. SF Core Configurations: SF (a), and SFP0 and SFP1

configurations (b)

28

since the design waits the least number of pixels to start smoothing, while SFP1 is the slowest

given that the design waits for more than 75% of the image to start execution. For the MTNCL

implementation, the SF logic waits on the pixel’s value to switch from NULL to either DATA1 or

DATA0 to smooth the pixel. In contrast, the SYNC SF logic needs an additional FSM to raise a

flag when the needed pixels are ready. This added logic for the SYNC design reduces the gap

between the MTNCL and SYNC circuit sizes and introduces more design complexity. Since the

example in Figure 14 is based on an 8×8 picture, each configuration should be expressed in an

equation to scale it to the 64×64 size.

�`a �
Total	number	of	pixels

2 + �n-./0�)1	6230,�	2�	+	o)p + 2�

Equation 3. SF Logic Kick-off Pixel @ SF Configuration

�`aq(�
Total	number	of	pixels

4 + �n-./0�)1	6230,�	2�	+	o)p + 2�

Equation 4. SF Logic Kick-off Pixel @ SFP0 Configuration

�`aqG �
Total	number	of	pixels ∗ 3

4 + �n-./0�)1	6230,�	2�	+	o)p + 2�

Equation 5. SF Logic Kick-off Pixel @ SFP1 Configuration

29

2. High-level Operation

The pixels first go through an un-spooling unit where the first pixel is stored in the least

significant eight bits and the 4096th pixel is stored in the most significant eight bits. Depending on

the configuration, the input pixels might change. In the SFP0 configuration, one MUX will receive

the stream of pixels representing the first quarter of the input image while the second MUX

receives the second quarter. In

the case of SF, one MUX

receives the top half of the

image while the other receives

the bottom half. Lastly, one of

the MUXes in the SFP1 mode

receives the third quarter of the

image, and the other receives

the fourth quarter.

Next, an address generator controls both MUXes, as shown in Figure 15, to output the

right sequence of pixels. As an example, the box depicted in Figure 12 may be considered. The

top counter and all the RCAs in Figure 16 generate the addresses of the pixels in the box while

the bottom counter determines the sequence of the addresses. Consequently, it counts from 0 to 8

Figure 15. High-level Architecture of the SF I/O Logic

Figure 16. High-Level Architecture of the Address Generator

8
 b

it
s

MUX MUXAddress Generator

12 bits 12 bits
8

 b
its

Un-spooling Unit

8
 b

its

2
0
4

8
*

8
 b

it
s

1
1
 b

it
s

1
1
 b

it
s 1

1
 b

its

1
1
 b

its1
1
 b

it
s

1
1
 b

it
s 1

1
 b

its

1
1
 b

its
1

1
 b

it
s

1
1
 b

it
s 1

1
 b

its

1
1
 b

its

RCA

1
1
 b

it
s

1
1
 b

it
s

RCA RCA RCA

MUX

1
1
 b

its

1
1
 b

its

Counter

RCA RCA RCA RCA

3
 b

it
s

Counter 1
1
 b

it
s

30

where the least significant bit refers to the top-left pixel in the box, and the most significant bit

refers to the bottom-right pixel. Whenever the second counter reaches eight, it resets and

increments the initial counter, marking that all nine pixels were fed into the SF Logic. It is

important to maintain the pixel sequence to ensure that the right pixel receives the correct weight.

The zero-pixel ring, added around the picture, is a challenge to this method because the extra pixels

are required to smooth the original border pixels. Nevertheless, the padded pixels do not need to

be smoothed themselves. Therefore, an option to skip smoothing the extra pixels was implemented

as an additional feature. Figure 17 shows the high-level architecture of the SF core described in

this section.

Figure 17. High-Level Architecture of the SF Core

31

3. Histogram Equalization Core (HEQ Core)

As depicted in Figure 18, there are

three central units in this core: shade

counter, share calculator, and image

reconstructor. The shade counter is

responsible for counting the occurrences of

each shade in the picture. It contains 257

counters representing all the greyscale

shades from 0 to 255 and a general counter

for the unit to track its iteration through all

the pixels. Then, the general counter turns

on the shade calculator unit. This fetches

the count values of each shade stored in the

spooling unit for a cumulative addition and

places every result in the un-spooling unit.

The image reconstructor unit then goes through every pixel of the original image, stored in the

SRAM, and maps each pixel’s value with the new calculated intensity loaded in the un-spooling

unit. Finally, it outputs the pixels of the processed image in order.

4. From MTNCL to SYNC

After planning the high-level architecture of both the SF and HEQ cores, the MTNCL

versions of both cores were implemented then the SYNC versions were designed based on the

MTNCL architecture. Both MTNCL and SYNC VHDL netlists were developed using Gate-Level

Logic instead of Register-Transfer Logic (RTL) for several reasons. First, there is no commercial

Figure 18. High-Level Architecture of the

Histogram Equalization Core

Spooling Unit

Shade Counter

8
 b

it
s

256*12 bits

Shade Calculator

8
 b

it
s

Un-spooling Unit

256*8 bits

Image Reconstructor

8
 b

it
s

32

synthesis tool for the MTNCL methodology. Second, using Gate-Level Logic allowed me to

ensure that the SYNC version has an almost identical architecture to the MTNCL architecture for

fair comparisons. This is hard to achieve with a synthesis tool. Third, since MTNCL is a low-

power paradigm by nature, the SYNC version had to be designed to achieve low-power usage as

well by incorporating a clock gating technique to reduce dynamic power. After implementation,

the impact of the dual-rail encoding was clear on the size of the MTNCL cores. For example, the

MTNCL HEQ Core has 1,084,964 transistors, while the SYNC HEQ Core has 326,221 transistors.

The MTNCL SF Core has 4,420,668 transistors, while the SYNC SF Core has 2,982,933

transistors.

5. Brief Comparison Between SF and HEQ Cores

Unlike the SF Core, the HEQ core does not need I/O Logic due to several factors. First, the

sequence of the pixels is not important because the pixels are only used to decide which counter

to increment in the shade counter. Second, the image reconstructor requests the image one more

time from the SRAM to output the new pixels. Consequently, the output pixels follow the correct

sequence since the input stream of pixels coming from the SRAM is in sequence. Third, the HEQ

operation cannot be parallelized, as mentioned in Section II.5, because calculating the new shades

is based on the occurrence of the shades in an image. Thus, all pixels need to be loaded into the

same HEQ logic. The absence of the I/O logic is a great advantage for the size of the HEQ core.

The SF core, in contrast, needs an I/O Logic that uses a costly 98% of the total number of transistors

of the SF logic due to the reasons described in Section IV.2.

33

V. Results and Analysis

1. Simulation Setup

After developing the VHDL netlists of both the MTNCL and SYNC versions of the cores

described in Section IV, logic simulations were performed using Questa Advanced Simulator to

prove the validity of the logic. Next, the VHDL netlists were flattened using Synopsys Design

Compiler and imported into Cadence Virtuoso. All designs were implemented in TSMC 65nm

bulk CMOS process with a nominal supply voltage of 1.0 V. Verilog-A modules were developed

to control the imported designs in the transistor-level simulations. Due to simulation time

constraints, transistor-level simulations were limited to the individual cores. Nonetheless, the

MTNCL SFP1’s results are based on mix-and-match simulations, meaning overall power data was

derived from simulations run on individual blocks. Likewise, total delay is based on the delay

values gathered from the individual block simulations then multiplied by the number of operations,

derived from Equation 5.

2. Average Active Energy Comparison

a. Method

Average energy data collection was split into two steps. The first step is to collect four

timestamps:

1. When one of the inputs’ bits reaches 5% of VDD during the assertion of the first

input data wave;

2. When one of the outputs’ bits reaches 95% of VDD during the assertion of the

first output data wave;

34

3. When one of the inputs’ bits falls to 95% of VDD during the deassertion of the

first input data wave; and

4. When one of the outputs’ bits falls to 5% of VDD during the deassertion of the

first output data wave.

The second step is the integration between the first two timestamps to calculate the rising

active energy, while the integration between the last two timestamps calculates the falling active

energy. The multiplication of the average of both values and VDD equals the average active

energy.

b. MTNCL vs. SYNC

As shown in Figure 19, the

MTNCL versions consume more active

energy compared to their SYNC

counterparts due to the dual-rail encoding.

This encoding scheme also makes the

MTNCL circuits larger than their SYNC

circuit counterparts as mentioned

in Section IV.4. Fortunately, however,

dual-rail encoding does not translate to

double the active energy due to different switching (>) patterns across different logics following

this equation 678
���9 � 6�;��9<�
= +	6�<��	9��9��� � 	>?@ABBC 1 + >*�9ABBD����1	[11].

MTNCL HEQ’s average active energy is 45.18nJ, whereas the SYNC HEQ’s average energy is

Figure 19. Average Active Energy Results

35

25.08nJ. Therefore, the average energy overhead is 80%; whereas, the average active energy

overhead for MTNCL SFP0, SF, and SFP1 is less than 60%. The smaller overhead is caused by

the logic added to the SYNC design to implement certain features that are implicitly built into the

MTNCL design. As described in Section IV.2.b.1, the SYNC SF I/O logic needs an extra 12-bit

counter to implement the FSM that starts the SF logic when enough � pixels are ready. The extra

switching resulting from the additional logic reduced the SYNC’s power efficiency. The following

kick-off pixels were calculated based on equations 3, 4, and 5. For SFP0, the SF logic starts

consuming pixels whenever the 1090th (�uvw(� W(xy
W 	+ 	64 + 2) pixel is received. While in the

SF configuration, the SF logic starts after the 2114th (�uv � W(xy
C 	+ 	64 + 2) pixel is received. For

the SFP1, the SF logic waits until the 3138th (�uvwG � W(xy∗{
W 	+ 	64 + 2) pixel is fetched. As

expected, the SFP1 accumulated the most switching leading to an average energy of 413.98nJ for

MTNCL and 260.13nJ for SYNC. MTNCL SF consumed 275.99nJ, while SYNC SFP0 consumed

only 180.70nJ. Out of all configurations, SFP0 used the least energy: 143.59nJ for MTNCL and

96.56nJ for SYNC.

c. SF vs. HEQ

In general, the HEQ designs use less energy than the SF designs due to two reasons: the

size and the switching activity. Regarding the size, the MTNCL SF core is four times larger than

the MTNCL HEQ core (4420668 vs. 1084964 transistors). Similarly, the SYNC SF core is nine

times larger than SYNC HEQ (2982933 vs. 326221 transistors). In addition, the SF I/O Logic,

which uses 98% of the total number of transistors, receives the pixels and feeds them to the

MUXes, as mentioned in Section IV.2.b.2. Therefore, the circuit cannot be idle for any period of

time which limits the low-power capabilities of the sleep mechanism in MTNCL or clock-gating

36

in SYNC. The Shade Counter has the highest number of transistors in the HEQ design; but only

this counter, which represents the value of the shade of the input pixel, is turned on while the other

255 counters are idle. Therefore, the HEQ’s average energy consumption is significantly less than

the SF’s.

3. Leakage Power Comparison

a. Method

Leakage power data collection was

split into two steps: ground all inputs except

the VDD pin then integrate the current

dissipation between fixed time bounds (0 to

0.5 ns) across all designs.

b. Analysis

Unlike average energy, leakage

power does not differ across the various SF

configurations since they all use the same circuit. As shown in Figure 20, the leakage in the SF

designs is much higher than the HEQ designs due to the larger number of transistors, which

translates to more paths between power and ground. MTNCL SF’s leakage is 2230.44fW, while

MTNCL HEQ’s leakage is 478.79fW. Regarding SYNC designs, HEQ consumes 535.84fW and

SF consumes 7256.12fW. These results lead to a discrepancy where SYNC’s leakage power is

higher than MTNCL’s despite much lower transistor counts. Several factors cause this

discrepancy. First, the clock signal needs large buffers to drive almost every cell in the SYNC

design. Wider transistor channels cause more current to leak. Second, MTNCL uses strategic high-

VT transistors to achieve better leakage performance, as mentioned in Section II.2. Finally, the

Figure 20. Leakage Power Results

37

logic plays an important role in determining the leakage power footprint. For example, SYNC

HEQ consumes 12% more leakage power than MTNCL HEQ, but SYNC SF’s leakage is 225%

higher compared to its MTNCL counterpart.

4. Voltage Scaling Comparison

For voltage scaling, transistor-level simulations were run at 10% decrements of the nominal

voltage: 900mV, 800mV, and 700mV. Different circuit blocks were simulated under these voltage

sweeps before running core-level simulations to ensure the blocks operated as expected. However,

output errors were detected in the spooling units below 700mV, thus the cut-off supply voltage

was set at 700mV. Power data and delay were collected since the output results of all designs were

logically valid across all voltage sweeps.

a. MTNCL vs. SYNC

MTNCL designs adapt to the lower voltage without any external intervention. On the other

hand, a DVS controller must be attached to the SYNC designs to control the frequency in order to

allocate enough time for the gates to assert or de-assert under a different supply voltage. In

addition, SYNC circuits might need a logic verifier to ensure that the output results are correct. In

case of an error, the verification logic must either adjust the frequency to ensure the registers latch

the correct data or correct the output results, assuming the error persists across all outputs.

Consequently, SYNC designs increase in size to accommodate the DVS controller, logic

verification, and output correction circuitries to guarantee the circuit’s behavior maintains validity

during supply voltage fluctuation. In this dissertation work, DVS controllers were not

implemented; however, the MTNCL simulations were run first to determine the delay for a specific

38

circuit then ran the SYNC simulations with

a frequency that produces the same delay to

avoid timing violations. Otherwise,

frequency sweeps would need to be

conducted on each voltage step to

determine the right frequency to achieve

highest speed and lowest error. This is

impractical given the large designs and

long simulation times. Other simulation

methods, such as mix-and-match, can be used as a workaround; but this can impact the accuracy

of the data. Since SYNC designs were timed after MTNCL, both architectures scored the same

delay. Figure 21 shows the performance degradation across the SF and HEQ cores resulting from

lowering the supply voltage. As mentioned in Section II.6, speed is proportional to VDD. At

900mV, all designs slowed down by 16% on average relative to the speed at nominal voltage (1V).

At 800 mV, the performance degradation reached 35% followed by a 65% degradation at 700mV.

b. Operating Voltage vs. Active Energy

Table V.1 highlights the average energy results from the voltage sweeping simulations

using the same method in Section V.2.a. MTNCL designs consume higher energy compared to

their SYNC counterparts due to additional switching activity produced by dual-rail encoding.

Therefore, the “MTNCL Average Energy Overhead” column was added to present the average

energy increase to help quantify the trade-off in opting for MTNCL over SYNC. Interestingly, the

extra switching causes the MTNCL designs to have higher power savings under lower supply

voltages according to Equation 2. Consequently, the MTNCL HEQ benefits more than MTNCL

Figure 21. Impact of Lower Supply Voltage on

MTNCL and SYNC’s Delay

39

SF from voltage scaling due to the HEQ’s higher switching activity. Thus, the average energy

overhead drops from 80% at 1V to 28% at 700mV in HEQ. On the other hand, all switching occurs

in the SF logic which is an insignificant 2% of the total SF core size. Also, the data is captured

after smoothing only one output since average energy is calculated between the first input and first

output. Consequently, the average energy overhead only drops from 54% at 1V to 60% at 700mV

across all SF configurations.

Supply

Voltage (V) Design

MTNCL Average

Energy (nJ)

SYNC Average

Energy (nJ)

MTNCL Average

Energy Overhead (%)

HEQ

1.0 45.18 25.08 80%

0.9 32.19 22.40 44%

0.8 25.16 18.60 35%

0.7 19.83 15.46 28%

SFP0

1.0 143.59 96.56 49%

0.9 113.87 71.86 58%

0.8 88.60 54.43 63%

0.7 67.00 42.91 56%

SF

1.0 275.99 180.70 53%

0.9 218.69 135.59 61%

0.8 170.29 102.79 66%

0.7 128.78 81.41 58%

SFP1

1.0 413.98 260.13 59%

0.9 328.03 194.75 68%

0.8 255.43 148.24 72%

0.7 193.17 117.43 65%

Table V.1. Average Energy Results in Voltage Sweeping

c. Operating Voltage vs. Leakage Power

Table V.2 features the leakage power results from the voltage sweeping simulations using

the same method as Section V.3.a. Unlike average energy, leakage power in the SYNC designs is

40

higher across all simulations. Consequently, the “SYNC Leakage Power Overhead” column was

added to show how much higher SYNC design leakage is compared to MTNCL. In general,

leakage power improves by reducing the supply voltage according to Equation 2. Leakage power

drops by 25% on average in each 10% decrement in supply voltage. MTNCL’s leakage declines

at a faster rate than SYNC in each decrement due to the high-VT transistors used in MTNCL gates.

The logic again determines leakage power outcomes as the HEQ core does not improve at the same

rate while lowering the supply voltage. For example, the SYNC HEQ leakage overhead is 55% at

700mV vs. 12% at 1V. However, the SYNC SF leakage overhead is 267% at 700mV vs. 225% at

1V. There is an improvement, but the savings for the MTNCL HEQ are much more substantial.

This discrepancy is due to the higher amount of switching in the HEQ core, whereas the transistors

in SF core do not switch states as often.

Design

Supply

Voltage (V)

MTNCL Leakage

Power (fW)

SYNC Leakage

Power (fW)

SYNC Leakage

Power Overhead (%)

HEQ

1.0 478.79 535.84 12%

0.9 360.42 516.96 43%

0.8 269.81 402.06 49%

0.7 200.63 311.86 55%

SF

1.0 2230.44 7256.12 225%

0.9 1666.82 5371.54 222%

0.8 1236.76 4240.86 243%

0.7 910.00 3340.84 267%

Table V.2. Leakage Power Results in Voltage Sweeping

d. Performance vs. Power

This chapter started with a brief explanation of the simulation setup process followed by

power analysis at nominal voltage. Next, the impact of supply voltage on average energy and

leakage power was presented separately. This section is a synthesis of all the simulation variables

41

(supply voltage, power, and delay) to grant circuit architects a better perspective when discerning

a design methodology. The delay is equivalent across SYNC and MTNCL because SYNC circuits

were timed to meet MTNCL circuit delays. Additionally, SYNC power data does not account for

a DVS controller or output verifier to guarantee the circuit’s functionality; therefore, the power

data may increase when the extra logic is added. However, all MTNCL data is complete. As shown

in Table V.3, the data gives a clearer picture of both MTNCL and SYNC behavior in various

operational scenarios. For example, if HEQ is deployed in a scenario where supply voltage swings

between 700mV and 1V, then designers should expect a 97% increase in delay in the worst case.

The voltage fluctuation can be due to extreme conditions or intentional. If the supply voltage

swings are due to extreme conditions, then MTNCL should be the better choice because the circuit

operates at the maximum possible speed. For SYNC circuits, DVS controllers do not provide a

continuously adjustable clock, meaning that each supply voltage is tied to a set frequency value in

a discrete fashion. This means that the circuit might operate at a slower frequency than required if

the supply voltage level is between two of the discrete voltage levels specified in the DVS. Also,

the DVS controller and logic verifier become more complex when they cover a wider range of

supply voltages. Therefore, architects may opt for SYNC if the supply voltage for their application

fluctuates only between 85% and 100% of the nominal voltage. Finally, VDD reduction can be

intentional to save power or cool off the circuit. In this case, the additional SYNC logic overhead

will not be as significant since the supply voltage will drop to predetermined levels. This should

guarantee the maximum performance for SYNC circuits at lower voltages.

42

Supply

Voltage

(V) Design

MTNCL

Average

Energy (nJ)

SYNC

Average

Energy (nJ)

MTNCL

Leakage

Power (fW)

SYNC

Leakage

Power (fW) Delay (μs)

HEQ

1.0 45.18 25.08 478.79 535.84 9.80

0.9 32.19 22.40 360.42 516.96 11.56

0.8 25.16 18.60 269.81 402.06 14.07

0.7 19.83 15.46 200.63 311.86 19.26

SFP0

1.0 143.59 96.56 2230.44 7256.12 1.56

0.9 113.87 71.86 1666.82 5371.54 1.87

0.8 88.60 54.43 1236.76 4240.86 2.39

0.7 67.00 42.91 910.00 3340.84 3.31

SF

1.0 275.99 180.70 2230.44 7256.12 3.04

0.9 218.69 135.59 1666.82 5371.54 3.64

0.8 170.29 102.79 1236.76 4240.86 4.64

0.7 128.78 81.41 910.00 3340.84 6.43

SFP1

1.0 413.98 260.13 2230.44 7256.12 4.50

0.9 328.03 194.75 1666.82 5371.54 5.40

0.8 255.43 148.24 1236.76 4240.86 6.88

0.7 193.17 117.43 910.00 3340.84 9.54

Table V.3. Performance vs. Power Results in Voltage Sweeping

43

VI. Conclusion

In this research, two stream processor cores, HEQ and SF, were implemented in both

MTNCL and SYNC methodologies. During the early stages of this dissertation work, MTNCL

showed a high-level of architectural flexibility when integrating the different design blocks in their

respective cores during the implementation stage. On the contrary, SYNC designs had to go

through a larger number of simulations to ensure the designs met all timing constraints.

The architectural flexibility comes at a price. Simulations show that MTNCL circuits

consume more average energy than their SYNC counterparts due to dual-rail encoding. The

average energy overhead varies from 28% to 80% depending on the logic; however, MTNCL can

save up to 267% leakage power compared to SYNC. This is due to several reasons. First, MTNCL

gates use high-VT transistors, which are slower than regular transistors, but significantly reduce

leakage power. Second, the absence of the clock signal, which routes to nearly every gate, helps

reduce leakage power due to the elimination of large clock driving cells. Additionally, maintaining

the clock signal to meet timing constraints can become burdensome for larger SYNC circuits due

to the extra logic in the clock tree.

Another important feature is circuit robustness. MTNCL circuits adapt efficiently to their

operational conditions. In this dissertation, performance and power data were collected from

voltage scaling simulations at 700mV, 800mV, 900mV, and 1V. Results indicate that power

consumption in MTNCL circuits scales better at lower supply voltages than SYNC, and average

energy also drops at a faster rate when the supply voltage is lowered. Therefore, MTNCL

methodology is a great design choice in scenarios where supply voltage fluctuates—intentionally

or not. On the other hand, SYNC circuits need additional circuitry, such as a DVS controller and

logic verifier, to acquire equivalent robustness.

44

VII. Recommendations

Based on Section IV and previous work [14], MTNCL circuits proved their architectural

flexibility. This is manifested by skipping the clock tree synthesis step in the physical design flow.

Consequently, MTNCL methodology is recommended to implement large modular designs, such

as GPUs.

MTNCL circuits are also robust in continuously changing operational conditions.

Reducing supply voltage is used as a technique to reduce the speed, if performance is not a priority,

or target heat dissipation to cool off circuits. Phones, for example, can get too hot due to high CPU

utilization or from the surrounding temperature. Therefore, scaling down the supply voltage is

used to save the transistors from permanent damage due to excessive heat dissipation. As described

in Section II.6, this technique can also be used to reduce dynamic power which can preserve the

phone’s battery life in scenarios where power is limited, such as applications deployed to space.

As mentioned in [10], the execution of image processing tasks is handled in space to relieve the

burden on the communication channel between Earth and the spacecraft.

The adaptability to variable supply voltages can be combined with other features offered

by MTNCL such as leakage power saving. Also, MTNCL circuits are more resilient to physical

variations like age and manufacturing variations. In fact, leakage power and manufacturing

variations impose serious challenges to lower process nodes. This makes MTNCL a great

alternative for space applications since space-grade electronic devices are expected to function for

tens of years due to the inconvenience and cost of replacing or maintaining those devices.

45

VIII. Future Work

For future work, taping-out this design is recommended to provide a clearer picture of the

advantages and disadvantages because additional issues might be discovered at the physical design

level. For example, extra buffers might be added to the clock tree to meet timing constraints during

later stages of clock tree synthesis. In contrast, the MTNCL designs should have minimal changes

since they are QDI.

Next, additional simulations are advised to cover the rest of the PVT [4] corners. This

includes simulating during temperature fluctuations to observe how the MTNCL circuits would

react. The logic is expected to adapt to the temperature variations by slowing down when the

temperature increases or speeding up when the temperature decreases. However, SYNC circuits

would still need a frequency controller to adjust the circuit’s speed based on the current

temperature. Furthermore, MTNCL circuits are fault-tolerant as they either output valid results or

NULL, while the SYNC circuits output results in all cases. Therefore, a logic verifier is required

to flag or correct the output results. The implementation and analysis of the SYNC circuits with

logic verifier help find the breakpoint when adding extra logic to a circuit becomes too costly,

making MTNCL a better option.

Another corner in PVT is the process variation. Thus, building the design in lower process

nodes exploits the leakage power gains that MTNCL offers. As featured in Sections V.3.b

and V.4.c, MTNCL designs are expected to perform better than the SYNC designs. Consequently,

designers might opt for MTNCL in lower process nodes since leakage power is a greater concern.

Lastly, implementing additional designs, where MTNCL could have strong advantages, is

recommended. Future researchers should opt for smaller cores to exploit the sleep control

46

mechanism in MTNCL, and they should opt for higher core counts as this will lead to a large clock

tree in the SYNC version.

47

IX. References

[1] K. Haulmark, W. Khalil, W. Bouillon and J. Di, "Comprehensive Comparison of NULL

Convention Logic Threshold Gate Implementations," in 2018 New Generation of CAS

(NGCAS), 2018.

[2] S. C. Smith, Designing asynchronous circuits using NULL convention logic (NCL), San

Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool

Publishers, 2009.

[3] L. Zhou, R. Parameswaran, F. Parsan, S. Smith and J. Di, "Multi-Threshold NULL

Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design

Methodology," Journal of low power electronics and applications, vol. 5, pp. 81-100,

2015.

[4] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, J. D. Owens and B. Towles, "Exploring

the VLSI scalability of stream processors," in NINTH INTERNATIONAL SYMPOSIUM ON

HIGH-PERFORMANCE COMPUTER ARCHITECTURE, PROCEEDINGS, LOS

ALAMITOS, 2003.

[5] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson and J. D. Owens,

"Programmable stream processors," Computer (Long Beach, Calif.), vol. 36, pp. 54-62,

2003.

[6] L. Nan, X. Yang, X. Zeng, W. Li, Y. Du, Z. Dai and L. Chen, "A VLIW architecture

stream cryptographic processor for information security," China communications, vol. 16,

pp. 185-199, 2019.

[7] B. K. Khailany, T. Williams, J. Lin, E. P. Long, M. Rygh, D. W. Tovey and W. J. Dally,

"A Programmable 512 GOPS Stream Processor for Signal, Image, and Video Processing,"

IEEE journal of solid-state circuits, vol. 43, pp. 202-213, 2008.

[8] S. Smets, T. Goedeme, A. Mittal and M. Verhelst, "2.2 A 978GOPS/W Flexible Streaming

Processor for Real-Time Image Processing Applications in 22nm FDSOI," in 2019 IEEE

International Solid- State Circuits Conference - (ISSCC), 2019.

[9] W. Khalil, K. Haulmark, M. Howard and J. Di, "Enhancing Voltage Scalability of

Asynchronous Circuits through Logic Transformation," in 2019 SoutheastCon, 2019.

[10] R. C. Gonzalez, Digital image processing, Reading, Mass: Addison-Wesley, 1992.

[11] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed.,

USA: Addison-Wesley Publishing Company, 2010.

[12] M. A. Bishop, Introduction to computer security, Boston: Addison-Wesley, 2005.

48

[13] S. Nelson, S. Kim, J. Di, Z. Zhou, Z. Yuan and G. Sun, "Reconfigurable ASIC

Implementation of Asynchronous Recurrent Neural Networks," in 27TH IEEE

INTERNATIONAL SYMPOSIUM ON ASYNCHRONOUS CIRCUITS AND SYSTEMS

(ASYNC 2021), LOS ALAMITOS, 2021.

[14] S. Nelson, Low-Power and Reconfigurable Asynchronous ASIC Design Implementing

Recurrent Neural Networks, ScholarWorks@UARK.

[15] A. Suchanek, Z. Chen and J. Di, "Asynchronous Circuit Stacking for Simplified Power

Management," in SoutheastCon 2018, 2018.

[16] A. L. Suchanek, Asynchronous circuit stacking for simplified power management,

Fayetteville, Arkansas: [University of Arkansas, Fayetteville], 2018.

[17] B. Parhami, Computer arithmetic : algorithms and hardware designs, New York: Oxford

University Press, 2000.

	Stream Processor Development using Multi-Threshold NULL Convention Logic Asynchronous Design Methodology
	Citation

	Microsoft Word - 962752_pdfconv_57f1e1a4-8dd4-4e3a-aa9c-9244171cd306.docx

