
The applied perspective for seasonal 

cointegration testing 

Andre Luis Rossi de Oliveira* 

Paulo Picchettit 

RESUMO 

Enquanto a literatura sobre cointegra9ao lida exclusivamente com o caso de cointegra9ao no longo prazo, ou 

na freqiiencia zero, entre series em um vetor de variaveis economicas, pode ser que raizes unitarias estejam 

tambem presentes nas freqiiencias sazonais, de forma que o conceito de cointegragao pode ser extendido para 

o caso de cointegra9ao sazonal. Neste artigo, fazemos uma resenha dos procedimentos dispomveis para testar 

e estimar as redoes de cointegra9ao nas freqiiencias sazonais, bem como na freqiiencia zero, quando rafzes 

unitarias sazonais estao presentes. Uma motiva9ao importante para este trabalho e a falta de um tratamento 

sobre cointegra9ao sazonal, mesmo nos livros-texto mais recentes sobre cointegra9ao 
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ABSTRACT 

While the literature on cointegration deals exclusively with the case of cointegration at the long-run or zero 

frequency between series in a vector of economic variables, it may happen that unit-roots are also present at 

the seasonal frequencies, and hence the concept of cointegration can be extended to the case of seasonal 

cointegration. In this paper we survey the available procedures for testing and estimating cointegration rela- 

tionships at the seasonal frequencies, as well as at the zero frequency when seasonal unit-roots are present. A 

strong motivation for this is the lack of treatment of seasonal cointegration, even in the most recent books on 

cointegration. 
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1 Introduction 

The cointegration literature usually assumes that in a vector of economic time series, unit-roots 

are precisely equal to one (so that the series can have a spectral representation with a peak at the 

zero frequency.) However, many economic time series, due to a number of natural and economic 

factors such as, for example, climate changes and time-dependent preferences, exhibit strong 

seasonality characteristics, so that the spectral representation of these series will also have peaks 

at the seasonal frequencies. Two important aspects of seasonality are the fact that seasonal varia- 

tions account for a great part of the variation in many economic series, and the fact that seasonal 

movements are often varying and changing, and in addition interdependent with the non-seasonal 

parts. Therefore, it seems desirable to develop tools for detecting the nature of the seasonal 

component of a series, and to integrate the available information from the data and from economic 

theory in a multivariate structural modelling of all components of the data. This paper provides the 

applied techniques implied in an attempt in this direction, represented by the available tests for 

seasonal cointegration of economic time series, for which a precise definition will be given. Intui- 

tively, a series will be seasonally integrated if it exhibits a varying and changing seasonal pattern, 

and a group of seasonally integrated series will be seasonally cointegrated if they exhibit a parallel 

movement in their seasonal component. In other words, in a seasonally cointegrated vector of 

economic series, an innovation has a permanent effect on the seasonal pattern of each of its 

elements,whereas it has only a temporary effect on a specific linear combination of these elements. 

When a vector of series is seasonally integrated, the Engle-Granger two-step procedure for 

testing for cointegration turns out to be inappropriate, yielding inconsistent results - see Theorem 

in Engle, Granger and Hallman(1990). Therefore, testing for cointegration in the usual sense, i.e. 

testing for the existence of common factors in the long run for nonstationary series, needs a new 

approach when unit-roots at frequencies other than the long run are believed to be present in the 

series, and also we need tests for the existence of common factors at seasonal frequencies,which 

is what the idea of seasonal cointegration conveys. 

Hylleberg, Engle, Granger, and Yoo (1990) - from now on refered to as HEGY (1990) -, and 

Engle, Granger, Hylleberg, and Lee (1993) - from now on refered to as EGHL (1993) develop 

tests for seasonal cointegration which are basically modified versions of the Engle-Granger two- 

step procedure, trying to avoid the inconsistency problems above mentioned. However this re- 

quires prior information on which seasonal unit-roots are present in order to filter out seasonal 

unit-roots components and to test for cointegration with the filtered series, which requires pretest- 

ing for seasonal unit-roots, the consequences of which HEGY (1990) claim not to have been 

investigated, merely conjecturing that it may be appropriate. Although we may try to solve this 

kind of problem by directly using seasonally adjusted series (which should eliminate seasonal unit- 
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roots), the fact that seasonal adjustment might lead to mistaken inference among time series data, 

and the fact that it causes loss of information on important seasonal behavior in economic time 

series when seasonal fluctuations are an important source of variation in the system, are arguments 

in favor of working with seasonally unadjusted data. 

Lee (1992) extends the Johansen procedure - see Johansen (1988) - for testing for cointegration 

in the zero frequency to the case of testing for cointegration at the zero as well as at the seasonal 

frequencies. The derived ML estimation of cointegrating vectors and test statistics about cointegrating 

vectors provide a testing procedure that does not require any prior knowledge about the presence of 

seasonal unit-roots, avoiding the above mentioned problems of inconsistency and having to work 

with seasonally adjusted data. In what follows, we give some definitions and review the rationale and 

practical procedures for the above tests. In the end, some applications are mentioned. 

2 Definitions 

Definition 1. xi ~ I0(d) denotes that x is seasonally integrated of order d at frequency 0, which 

means that the spectrum of xi takes the form/(co) = c(co - 0)'2d for co near 0 where c is a constant. 

We can see that, when co = 0 ,/(0) is infinite, what can be graphically depicted by a spike of 

infinite height at the frequency co =0, where consequently the series has infinite variance, what is 

in accordance of our understanding of unit-roots. 

Here, we work with the practically important case where d = 1, and the integrated seasonal 

process for quarterly data is (1-B4) xt =8t. 

We can see that the operator (1 -B4) can be decomposed as 

(1-B4) = (1-B) (1+B) (l+B2) - (1-B)(1+B) (1-iB) (1+iB) 

so that the associated unit-roots with modulus 1 are 1, -1, i and -i, each corresponding to a 

particular frequency: 

1. frequency 0 = 0(co = 0) which can be seen by writing: 

(1-B4)xt = (1-B) S, (B)xt = (1-B)y]t 

where S j (B) = (1 +B-i-B2-i-B3) is a seasonal filter which applied to x produces y]t, a series which 

has a unit-root only at zero frequency (eliminating the unit-roots at seasonal frequencies co = 1/4 

and co= 1/2). 
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2. frequency 9 = 71 (co = 1/2), at two cycles per year, which can be seen by writing: 

(1-B4)x = (1+B) S2(B)xt= (1+ B)y2t 

where S2(B)=( 1 -B+B2-B3) is a seasonal filter which applied to x produces y2t, a series which has a 

unit-root only at frequency co = 1/2 (eliminating the unit-roots at frequencies co = 0 and CO = 1/4). 

K 
3. frequencies 0 = +/- — (co = 1/4), at one cycle per year, which can be seen by writing: 

Jm* 

(1-B4)xt= (1+B2) S3 (B)xt = (1+B2)y3t 

where S3(B) + (1-B2) is a seasonal filter which applied to xt produces y3t, a series which has a 

unit-root only at frequency co = 1/4 eliminating the unit-roots at frequencies co = 0 and co = 1/2). 

Definition 2. Let all the components of xt be I0( 1) Then, the components of xt are said to be 

seasonally cointegrated at frequency 6, denoted x ~ CI0( 1,1), if there exists a vector a (different 

from 0) such that zt = a x is I9(0). 

For a vector of nonstationary series which have unit-roots at some seasonal frequencies as well 

as in the zero frequency, it is possible for a single cointegrating vector to eliminate ail the unit-roots 

in the series, motivating the following definition: 

Definition 3. Let each component of xt be seasonally integrated of order 1 at some frequencies, 

including the zero frequency, not necessarily the same frequencies for all components. Then, the 

components of x( are said to be fully cointegrated, denoted xi-01(1,1), if there exists a vector a 

(different from 0) such that z = a xi is Ie(0), for 6 = 0.1/4, and 1/2. 

3 Characterizations of Seasonal Cointegration 

As in the case of cointegration at the zero frequency, we can characterize seasonal cointegration 

possibilities in terms of moving-average, autoregressive, and error-correction representations. 

Beginning with the moving-average representation, we need the following proposition, due to 

Lagrange, which we state without proof: 

Proposition. Any (possibly infinite or rational) polynomial j (B), finite valued at the distinct non 

zero, possibly complex points ql, .,qp, has the following representation: 
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(p(B) = £ [kk A(B)/ 5k(B)] + A (B) (p** (B) (3.1) 

k=l 

where the Xk are a set of constants, (p**(B) is a (possibly infinite or rational) polynomial, 

5k(B) =1- (l/ek)B , and A(B) = up
k=] 5k(B) 

Now, let x be an N x 1 vector of zero-mean variables which are all I0( 1) at the zero and all 

seasonal frequencies. Its Wold representation is 

(l-B4)x-C(B)8t (3.2) 

where 8t is a N x 1 vector white-noise process with zero mean and positive definite covariance 

matrix S, and C(B) is an N x N matrix of lag polynomials. We apply decomposition (3.1) to C(B) 

to get 

p 

C(B)=£ [AkA(B)/5k(B)]+C**(B)A(B) (3.3) 

k=l 

where 5k and A(B) are as before and Ak is the vector counterpart to ^k 

We saw that (1-B4) has four unit-roots: 1,-1,/, and -/. The root -/ is indistinguishable from the 

one at i when quarterly data is used. Substituting these roots in (3.3) gives us 

C(B)= 0-l(l+B+B2+B3) + 02(1-B+B2-B3) + (03+04B) (l-B2) + C**(B)(1-B4) (3.4) 

where 0]=C(l)/4, 02=C(-l)/4, 03=Re[C(i)]/2,and 04 = Im[C(i)]/2. 

Multiplying (3.2) by a vector a' gives us 

(l-B4)axt = a'C(B)8t (3.5) 

If there exists a = a, such that a\ C( 1) = 0, then xtis cointegrated at zero frequency with 

cointegrating vector a,. To see why this is true, we look at the following argument: when a] C( 1)=0, 

we get from (3.5) that a \ 0, =0; moreover, a j C(l) = 0 implies that the RHS of (3.5) has a 
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common factor of (1-B).1 Using these twopeces of information. (3.5) reduces to 

(l+B+B2+b3)ai xt= [e2(l+B2) + (03 + e4B)(l+B) + C^(B)(l+B+B2+B3)]et(3.6) 

The RHS of (3.6) is stationary, and therefore a x xthas unit-roots at the seasonal frequencies, 

but not at the zero frequency. It is worth noting that the vector ylt= S, (B)xt is 1(0), while a j y]t is 

stationary whenever ax C( 1) = 0. Hence, ylt is cointegrated in the original sense, as described in 

Engle and Granger (1987). This fact will be useful ahead, when testing for cointegration. 

Similarly, we can see that (1+B)y2t= -C(B)8t, where y2t = -S2(B)xt Thus, y2t has a unit-root at 

-1, and if there exists a vector a2 such that a 2 C(-l) = 0, then «2 02 = 0, and a 2 y2t will not 

have a unit-root at -1 .This enables us to characterize cointegration at frequency 1/2 as follows: 

xt ~CI1/2(1,1) withcointegratingvector a2if a2C(-l)=0. 

Finally, define y3t=-S3(B)xt. By the same reasoning as above, y3t has unit-roots at frequency 

i i 
1/4, but this is not the case with a. y 3t if a 3 c(i)=0. This gives us a characterization of cointegration 

at this frequency. However, this characterization can be made more general, as HEGY (1990) 

point out, by means of using the polynomial cointegrating vector (PCIV) as introduced by Yoo: x 

1 i 
~CI|/4(l,l)withPCIVa3+a4Bif(a3 + a4 i) (03-64i) = 0, which is equivalent to the condition 

a(i)'C(i) = 0. 

This analysis can be generalized for the case where the cointegrating rank r > 1. This is easily 

accomplished by defining A,, A,, A3, and A4 as Nx r,, N x r,, N x r3 and N x r4 matrices and 

C(B) as a polynomial matrix. The cointegrating ranks at the frequencies 0,1/2, and 1/4 are, ^, r , 

and r3 respectively. 

This completes the characterization of seasonal cointegration in terms of the moving-average 

representation. However, both in the development of some tests, as we shall see, and in applied 

work, the autoregressive representation, and specially the error-correction representation, are 

more useful. 

I ' 
I If ^ j C(l) = 0, then we can write ^ 1 C(B) = (1-B) H (B), where H(l) ^ 0. 
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HEGY (1990) provide an error-correction representation by first using the so-called Smith- 

McMillan-Yoo decomposition [(as presented in Engle (1987)], expressing the moving-average 

polynomial C(B) as C(B)=U(B)"1 M(B) VfB)'1 where M(B) is a diagonal matrix whose determinant 

has roots only on the unit circle, and the roots of the determinants of U(B)"1 and V(B)"1 lie outside 

the unit circle. Substituting this decomposition into (3.2) and doing some manipulations they ob- 

tained the autoregressive representation 

V(B)x=et (3.7) 

where \)/(B) = V(B) M (B)U(B) and M (B) is a transformation of M(B). So, \(/(B) contains an 

integrated part and a stationary part. From this representation, HEGY (1990) obtain the error- 

correction model, which can be written as 

A* A4X( = r. A, yI H + Fa, y2,t.,- (F, + r4B) (A3+A4B)y3t_2-i- 8t (3.8) 

where Fj, r2, r3 and r4 aie Nx i^, Nx r2, N x r3and N x r4 matrices containing the weights to 

the cointegrating relations, ylt,y2t, and y3t are the vectors defined above, A* (B) is an N x N 

polynomial matrix with all its roots outside the unit circle, A* (0) = In, and A,, A A and A are 

N X Tj ,N x r2, N x r3 and N x r4 matrices. The columns in A! and A2 are the cointegrating vectors 

at the frequencies 0 and 1/2, respectively, and r, and r2 are the cointegrating ranks. A(B)=A+A B 

is the cointegrating polynomial matrix, the colums of which are the PCIVs. 

Lee (1992) departs from an autoregressive representation and derives a slightly different form 

for the error-correction model, which will provide the basis for his test for seasonal cointegration. 

Consider a nonstationary VAR process which has unit-roots at seasonal frequencies as well as at 

the zero frequency. The observed data is a N x 1 sequence of vectors x and the process can be 

written as 

x. = V,xt.1 + V|/2xt.2+ + \|/pxt.p+et,t=l, ,T (3,9) 

whereet are n.i.d.(0,S). This is a VAR model oforderp, where the N x N matrices (\)/ ..., \j/ ,S)are 

parameters to be estimated. Let As s 1-BS, where s is the number of observations taken per 

year, and \)/(z)be the matrix polynomial \j/(z) = I -\)/|Z - VjZ2- - X|/zP- 

In the case where A xi is stationary, the determinant l\)/(z)l has unit-roots at the zero frequency 

(CO = 0) and all the seasonal frequencies (co = j/s ;j = 1, , s/2). The general structure for the 

error correction representation of this model is: 
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Asxt= P| Asx,-I+ + Pp-s Asx,-p+,s+ HiS.CBK, + + n S/B)^, + e, 

where P.—I+ \)/]+ + i|/j;i=l, , p-s. 

As in Lee (1992), we simplify the exposition by working with the practically interesting particu- 

lar case of quarterly data, taking s = 4, so that the error correction representation, which can be 

directly derived by using decomposition (3.1), becomes 

A4Xt = P, A4X,-,+ + Pp.4 A4X.-p+4+ n,y,.t-. + 
n2y2.t-l

+ n3y3.I-l
+ ^3., + e, (3-10) 

where y.^j = Sj(B)xt j; j = 1,2, and y3t_] = BS3(B)x j. The parameters Pj, , Pp 4 are unrestricted, 

whereas the parameters Ilr , n4 are restricted to singularity, because of cointegration and 

seasonal cointegration. As all the components of xt are Ie (1), A4xt, P, A4xt,, , pp 4 A4xt p+4 are 

Ie(0) Now, the terms n.y.t, are linear combinations of Ie(l) variables, and they should be 

I0(O), given that A4xt is Ie(0) Therefore, each one of the matrices 11. contains a number of 

cointegrating vectors (each matrix corresponding to a particular frequency, as we shall see), or 

they are null matrices. 

Note, n, = - \|/(l)/4, and the filtered series yj t_] has a unit-root only at the frequency CO = 0. 

n2= \)/(-l)/4, and the filtered series y2t, has a unit-root only at the frequency co = 1/2. 

n3 = Re [\|/(i)]/2, and n3 = -Im [\|/(i)] /2 and the filtered series y3t, y31_] have unit-roots only at 

frequency co= 1/4. 

4 Tests for Seasonal Cointegration 

4.J The HEGY and EGHL Procedures for Testing for Seasonal Cointegration 

In order to keep matters as simple as possible, here we deal with the bivariate case, letting x = 

[ct, ztr, where ct is a consumption series and z is an income series. The first test we have to 

provide is for cointegration at the zero frequency. The natural idea is to follow Engle and Granger 

(1987) and run the static OLS regression 

ct=azt+ut (4.1) 

and test for the existence of a unit-root at the zero frequency in the residuals. However, if c and z 

are cointegrated at both the zero and the seasonal frequencies, with cointegrating vectors say a1 

and a2, a, ^ a2, then we don't know what value of a will be chosen by the static regression' 



Rossi de Oliveira, A. L.; Picchetti, P.: The applied perspective for seasonal cointegration testing 271 

Nevertheless, EGHL (1993) provide us a test which avoids this sort of problem. The test can 

be better understood if we write (3.7) for the bivariate case as 

V* q 

Z 8 A4z + 5] a|2z|t> 
J = 1 j = 1 

'^13 fl4^^C3,t-2 ~ a32Z3,t-2 a4lC3,t-3 " a42Z3,t-3^ (4-2) 

and a similar form for zt. Note that we are defining y. t= [c. t z. t]i = 1,2,3, where y. t is defined 

as in section 3. 

The terms in (4.2) must be stationary, since we have an 1(0) process in the LHS. So now, 

although y. t and c. t; i = 1,2,3, have asymptotically infinite variance, the following particular linear 

combination will be 1(0) at all frequencies: 

S„= Clt' 
ai2ZU (4-3) 

S2t = C2t " a22Z2t (4-4) 

S3t — C3t " ®32Z3t " ®4lC3,t-l " ®42Z3,l-l (4-5) 

The testing procedure for (4.3) and (4.4) is clear. A least squares regression will give a 

superconsistent estimate of the cointegrating parameters as in the Engle-Granger two-step method. 

Notice that now we don't have the same problem as before when we were running the static OLS 

regression (4.1), because c.t and z.t, i = 1,2 will be 1(1) only at the frequencies zero and 1/2, 

respectively. Moreover, the residuals from (4.3) and (4.4) can be used to test for any remaining 

unit-roots at the particular frequencies zero and 1/2 using the tests for seasonal unit-roots derived 

in HEGY (1990). 

In the case of z3t, the fact that it is 1(0) is not sufficient to identify the parameters to be esti- 

mated. This is so because z?t is a dynamic relation, and we can find another linear combination of 

its elements that is also 1(0). The solution, then, is to eliminate one of the variables, say c3tl, which 

is the procedure suggested by EGHL (1993). 

Now we can describe the testing procedure. Let u, v , and wt be the residuals from regressing 

c on z c on z0 and c. on z , respectively. To test for non-cointegration at the zero frequency ] t 11' 2t 2t .'t At -i j 

we run a regression of Aui on u ,, and test for unit-roots. This regression can include deterministic 

parts and/or be augmented by the necessary lagged values of Au to whiten the errors. The 
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distribution of the t-ratio for the coefficient of u , is not the usual Dickey-Fuller distribution 

because the cointegrating vector is estimated. The fatter-tailed distribution obtained by Engle and 

Granger (1987) should be used. 

To test for noncointegration at the frequency 1/2 we run a regression of Avt on -(vtwhere 

the minus sign is needed in order to use the Engle and Granger distribution mentioned above. 

Finally, the test for non-cointegration at the frequency 1/4 corresponds to testing if both n3 

and 7C4 are zero in the auxiliary regression of the form: 

(wt+ Wt2) = 7i3(-wt2) + 7r4(-wt,) + error. 

The asymptotic distribution of the t-ratios and the F statistics are given in Theorems 1 and 2 in 

EGHL (1993), where we can also find the critical values calculated via a series of Monte Carlo 

experiments. 

One final remark is that the test described can be performed by first filtering the data to get rid 

of "excessive" variance at those frequencies not being tested, what is accomplished by use of the 

filters yit, i = 1,2,3, and then performing the appropriate regressions. 

4.1.1 An Application: The Japanese Consumption Function 

We now review the application of the testing and estimation procedures of section 4.1 to data 

on Japanese consumption and income, which is in logarithmic form, denoted as c and z, as pre- 

sented in EGHL (1993). Starting with a cointegrating vector a = [1,-1], which seems to be a 

sensible candidate, based on the theory of permanent income, and using the distribution given in 

HEGY (1990), they couldn't reject the hypothesis of a unit-root at any of the frequencies 0,1/4,1/ 

2, and 3/4. 

The next step is to run a regression of c j t on z, t. Several different regression were used: (a) with 

an intercept and a trend, (b) with an intercept only; and (c) without any deterministic part. Then, 

the residuals of these regressions were tested for unit-roots at the zero frequency based on the 

ordinary augmented Dickey-Fuller regression. We show the results for regression (a) only: 

coefficient Test for unit-root in resiHnnU 

(coint. vector) R2 t:n. critical value 

0.772 0.998 -0.59 3.17 

(0.015) 
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We can see that the hypothesis of a unit-root cannot be rejected, implying non-cointegration at 

the long-run frequency. Tests based on (b) and (c) had the same results. A test based on the 

residuals from the cointegrating regresssion of c2t on z2t also could not reject the hypothesis of 

non-cointegration at the frequency 1/2, as can be verified below, where we present the results for 

the cointegrating regression that includes an intercept and seasonal dummies. 

coefficient R2 Test for unit-root in residuals 

(coint. vector) tn2 critical value 

0.236 0.939 -1.81 3.17 

(0.015) 

For the frequency 1/4 (and 3/4), the results are given below for the regression including sea- 

sonal dummies and an intercept, and where the cointegrating regression of c3t on z3t and z31_1 gives 

us the polynomial cointegrating vector between c3t and z3t 

coefficient 

(coint. vector) 

R2 Test for unit-root in residuals 

tn, tn4 ^4 

0.264 0.109 

(0.067) (0.034) 

-0.974 3.60 -2.17 8.90 

The critical values for the t and F statistics on tc3 and 7r4 are -4.40, -2.14, and 10.12 at a 5 

level of significance, and for the F statistic at a 10 level, 8.66. The critical values are given in Table 

A. 1 in the appendix of HEGY (1990). 

Hence, there seems to be a "weak" evidence of cointegration between c and yi at the seasonal 

frequencies 1/4 and 3/4, where this "weakness" becomes more clear when we know that the 

results for the cointegration regression with no seasonal dummies indicate non-cointegration. 

Summarizing, the tests applied to total consumption and disposable income in Japan from 

1961.1 to 1987 4 indicate that the logs of the income and the consumption series are integrated of 

order 1 at both the long-run frequency and the seasonal frequencies. However, the results of the 

cointegration tests indicate that the seasonally adjusted series are neither cointegrated at the long- 

run frequency nor at the bi-annual frequency (oo = 1/2), while there are some signs that they may 

be cointegrated at the annual frequency (co = 1/4,3/4). 

The interpretation for this cointegration at the annual frequency is that we are dealing with 

slightly impatient, borrowing-constrained, utility-mazimizing consumers that use their end-of-the- 

year bonus payments to replace their worn out clothes, furniture, etc. They spend the bonuses as 
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soon as the payments occur. This bonus system is characteristic of the Japanese economy. 

4.2 The Lee Procedure for Testing for Seasonal Cointegration 

The approach followed by Lee (1992) is an extension of the Johansen procedure (Johansen 

1988) to incorporate the possibility of seasonal cointegration in this system. Recall the error- 

correction representation (3.10): 

A,x = Bl A.x , + + B . A.x ,+ n.y. t. + TLy. . + 4 t " 4 t-1 "p-4 4 t-p+4 l-7 l,t-l 2,l-\ 

+ am 

We need to investigate the properties of the matrices IT, j = 1, . 4 in order to determine 

whether the components of xt are seasonally cointegrated in the presence of unit-roots at other 

frequencies. If the components of x are Ie( 1), but are not CIe( 1,1) then the term TLy. t. would be 

nonstationary and the true IT must be a null matrix, whereas if the elements of xt are CIe(l, 1), the 

the term n.y. t. will be stationary, which means that we can express IT as the product of two n x 

r matrices F. / , where A. is a matrix of cointegrating vectors at frequency 6, where j =1 for 0 = 

0 (co = 0), j = 2 for 0 = 71 (co = 1/2), and j = 3, 4 for 0 = k/2 (co = 1/4). 

4.2.1 Procedure for testing for cointegration at frequency co = 0 

Following the same reasoning as in Johansen (1988), we consider the maximum likelihood 

estimation of the parameters in the unrestricted model (3.10) We need to maximize the likelihood 

function with respect to the parameters (fy, , (34, S) and (ITj, n4). This can be 

practically done by doing the OLS regression of A4xt on A4xt,, A4x p+4 and computing 

the residuals R0t ,and then doing the OLS regression of ykt ] on A4xt on A4xt ], , A4x p+4 

and computing the residuals R^; k = 1,2,3,4. The maximum likelihood estimates of the nk's are 

equivalent to the parameters of the OLS regression of R0t on Rj t, , R4t. From then, we also 

obtain the estimates of the other parameters in the likelihood function, S and $r ,P4by 

appropriate substitution of the estimated fl^s and Rkt's in the formulas given in Lee (1992). 

Turning to the model under H,: IT, =ri A,;, a practical procedure for obtaining the constrained 

maximum likelihood function is to do an OLS regression of R0t on R2t, R^, R4tand compute the 

residuals Q0t, then do an OLS regression of R]ton R2t,R3t,R4t and compute the residuals Q , 

T ' 
which allows the computation of Di,j = T"' QicQ it; i. j = 0,1. By the same reasoning as in 

Johansen (1988) the likelihood function is maximized when the quotient I A'D,^! - AjD Dqq1 
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D0] Aj l/l Aj DjjAj I is minimized with respect to all matrices Aj. We can get Al by choosing the 

first r eigenvectors of D01 w.r.tD,, (1, r+1, , 1 

This allows the implementation of the following theorem in Lee (1992): 

Theorem 3.1. The Likelihood Ratio test statistic for the hypothesis H,: flj = Fj Aj (i.e., that there 

are at most r cointgrationg vectors at zero frequency) is -2 In (Q) = -T 2i=r+i ln( 1" 11 j) ^ where 

-A. ^ 
Q is the quotient of the restricted and unrestricted maximized likelihoods, and (A l y+] , > A , n) 

are the N - r smallest partial canonical correlations of R]t with respect to R0t, given R2t, R3t, R4t. 

The LR test statistic has an asymptotic distribution which is a function of an (N - r) dimensional 

Brownian Motion, for which a table with critical values can be found in Lee (1992). 

4.2.2 Procedure for testing for seasonal cointegration at frequency co= 1/2 

When we want to test if the components of xt are seasonally cointegrated at the seasonal 

frequency CO = 1/2 in the presence of unit-roots at the zero and other seasonal frequencies, the 

testing procedure is very similar to the above case where co = 0, except for the fact that the roles 

of R]t and R2t are reversed, when we can implement the following theorem in Lee(1992): 

Theorem 3.2. The LR test statistic for the hypothesis that there are at most r seasonal cointegrating 

vectors at frequency co = 1/2 is -21n (Q)=-T X. ,4.1 hK1" A2iX where(^2r+], ,i2n)arethe 

(N - r) smallest partial canonical correlations of R2t with respect to R0t, given R2t, R3t, R4t. This 

statistic has the same asymptotic distribution as the one above (for co = 0). 

4.2.3 Procedure for testing for seasonal cointegration at frequency co=: 1/4 

In this case, we would like to look simultaneously at the two parameter matrices n3 and n4 

since the cointegrating vectors and the coefficients of the error correction term may be different at 

different lags. Assuming for simplicity, as in Lee( 1992) that cointegration, if any, is contemporaneous, 

the hypothesis of interest can be formulated as a joint test such that Hq. n3= r3 A3 Fl 11= r4 A4 (i.e., 

that there exist at most r seasonal cointegrating vectors at frequency), for which the following 

theorem provides a test: 

Theorem 3.3. The LR test statistic for the hypothesis that there are at most r seasonal cointegrating 

vectors at frequency (0= 1/4 is-21n (Q)=-T zLiln t1" L" L) where (i k.r+i' A kn) 
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are the (N - r) smallest partial canonical correlations of Rkt; (k = 3,4) with respect to R0t. Again, 

the asymptotic distribution and critical values are in Lee (1992). 

4.2.3 Procedure for testing for full cointegration 

As mentioned above, it is possible that one cointegrating vector, say Af, could eliminate unit- 

roots of the series at all frequencies. This will happen in the case where the cointegrating vectors 

Aj ,A9 and Ac] coincide, which, along with the assumption of contemporaneous cointegration, 

allows the error correction model to be written as 

A.x = TLx .+ B, A.x . + + 3 , A.x , + e 4 t t t-4 "I 4 t-1 "p-4 4 t-p+4 t 

Then the testing procedure for the hypothesis Hf. nt. = rf Af is given in the following theorem: 

Theorem 3.5. The LR test statistic for the hypothesis that there are at most r full cointegrating 

vectors is-2 In (Q) =-T 2Wui ln(l- lf i), where (lf i,+|, , 1 fn) are the (N - r) smallest 

partial canonical correlations of R// with respect to R0t, where R^. is the residual from regressing xt 4 

on A4xtj = 1, p-4. The asymptotic distribution for this test statistic is in Lee (1992), along 

with critical values. 

4.2.5 An Application: Canadian immigration and unemployment 

The procedures above are applied in Lee (1992) to test for the existence of cointegration and/ 

or seasonal cointegration between series of Canadian unemployment and immigration data. From 

visual inspection of the plot of these series, we can expect to find long-run and seasonal unit-roots 

in both series, which is confirmed by the tests reported in Table 5 in Lee (1992). So, there exists 

the possibility for testing for cointegration at the zero and seasonal frequencies between the series. 

The LR test statistics, also reported in Table 5 in Lee (1992) do not allow the rejection of the 

hypothesis of no cointegration at frequencies 0 (i.e., H0: rank (flj) = 0) and 1/4 (i.e., H0: rank( fl) 

= rank(n4) = 0). However, the LR test statistic for testing H,. rank(n]) = 0 is 13.567. which 

exceeds the critical value at the 5 significance value in Table 4.c of Lee (1992), leading us to reject 

the hypothesis of no cointegration at frequency 1/2. Therefore, we conclude that the data exhibit 

one seasonal cointegration relationship at CO = 1/2 only. 

The equilibrium error process, given by the seasonal cointegration relation between the two 

series, indicates a negative relationship between unemployment and immigration rates: 
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zt=(l -B + B2-B3) (UN + ll.49IMMt) 

where the estimated seasonal cointegrating vector has been normalized. When the system is put in 

error-correction form, the equation for unemployment shows that the coefficients of the lagged 

values of immigration an the coefficient for the error-correction term are all significant, implying a 

highly significant relationship for immigration causing unemployment, which is not true when we 

look at the other way, i.e., the model does not imply that past values of unemployment affect 

immigration. The existence of a seasonal cointegration relationship between immigration and un- 

employment is therefore interpreted as an important information on the effectiveness of immigra- 

tion policy in Canada, in the sense that it appears to be able to offset the impact of the varying 

pattern of seasonality in immigration on the seasonal pattern of unemployment. 

5 Concluding remarks 

The procedures for estimation and testing of seasonal cointegrating relationships reviewed here 

provide a way for modelling the long-run relationship between seasonal patterns of economic 

variables in a way that can be linked to economic theory. We also saw that these tests allow us to 

circumvent the potential problems involved in the estimation and testing of cointegration relation- 

ships at the zero frequency when unit-roots are present at the seasonal frequencies as well. These 

potential problems could imply that if the seasonal aspects of a vector of economic series are 

overlooked, we could mistakenly infer that long-run relationships between these variables do not 

exist, when in fact they may be present. 

The procedure suggested by Lee (1992) seems to be superior in relation to the ones suggested 

by HEGY (1990) and EGHL (1993) which involve normally undesirable filtering of the series. 

There is one point regarding these tests which should be mentioned. In general, the inclusion of 

seasonal dummies and/or an intercept term in the model has the effect of slightly modifying the 

distributions of the tests statistics. 

A useful application of seasonal cointegration is described in Engle, Granger and Hallman 

(1989), where it is argued that if we want to forecast the behavior of series that are affected by 

short-run and long-run factors, a superior forecasting strategy is to construct an error-correction 

model that incorporates both these aspects. As the construction of the error-correction model is 

based on the consistent estimation of the cointegrating relationship between the series, it is funda- 

mental for the forecasting performance of the model to account for the presence of seasonal unit- 

roots in the series, specially if it is believed that the short-run aspects of the model are subject to 

important seasonal variations. To estimate these relationships accordingly, the procedures re- 

viewed here are available. 



278 ECONOMIA APLICADA, V. 1,N. 2,1997 

Yet another useful application of the seasonal cointegration model is to provide superior repre- 

sentations of economic series subject to seasonal fluctuations, in the sense that modelling the 

seasonality of these series stochastically allows for the information contained in the relationships 

between them not to be wasted. Ermini and Chang (1996), for example, conduct alternative tests 

for the macro rational expectations hypothesis of rationality and money neutrality using Korean 

data on series of money supply, price level, output, and interest rates. When the test is first applied 

to the series desasonalized individually by the standard X-11 method, they reject the rational 

expectations hypothesis. However, when they applied the same test to the series with the seasonal 

factor modelled stochastically, as proposed here, they do not reject the rational expectations 

hypothesis. The seasonal cointegration relation between these series apparently provides impor- 

tant information which is lost when the traditional deseasonalizing procedure transforms filters the 

seasonal factors individually. 

Another alternative extension of the usual cointegrating concept, taking into account periodic 

variations in the time patterns of economic series,is provided by Franses (1993). The model for 

periodic cointegration proposed in this article assumes that the parameters in the cointegrating 

vectors, as well as the ajustment parameters in the error-correction context, can vary over the 

seasons. The two approaches, the seasonal cointegration reviewed here, and the periodic 

cointegration proposed by Franses (1993) produce non-nested models, and Franses (1993) also 

proposes a test procedure for selecting between these models. 
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