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Introduction: Due to demographic changes, falls are increasingly becoming a
focus of health care. It is known that within six months after a fall, two thirds of
fallers will fall again. Therefore, therapeutic procedures to improve balance that
are simple and can be performed in a short time are needed. Stochastic
resonance whole-body vibration (SR-WBV) may be such a procedure.
Method: An electronic search to assess the effectiveness of SR-WBV on balance in
the elderly was conducted using databases that included CINAHL Cochrane,
PEDro, and PubMed. Included studies were assessed using the Collaboration
Risk of Bias Tool by two independent reviewers.
Results: Nine studies showing moderate methodological quality were included.
Treatment parameters were heterogeneous. Vibration frequency ranged from 1
to 12 Hz. Six studies found statistically significant improvements of balance from
baseline to post measurement after SR-WBV interventions. One article found
clinical relevance of the improvement in total time of the “Expanded Time to
Get Up and Go Test”.
Discussion: Physiological adaptations after balance training are specific and may
explain some of the observed heterogeneity. Two out of nine studies assessed
reactive balance and both indicated statistically significant improvements after
SR-WBV. Therefore, SR-WBV represents a reactive balance training.
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Introduction

Ageing is associated with sensorimotor deficits resulting in muscular weakness, mobility

issues, balance disorders and in gait disorders, and this leads to falls and reduced

independence in everyday life (1). The sensorimotor system constantly and unconsciously

regulates its movements and postural control based on perceived information to achieve

postural stability. Numerous research studies have assessed the effect of stochastic

resonance (SR) stimulation to the lower extremity on postural regulation and balance

performance in sub-populations such as healthy adults (mean age: 23.04 years, ±6.33

years) (2), elderly individuals (mean age: 73.00 years) (3), or individuals with comprised

health suffering from Parkinson (4), or multiple sclerosis (5) or stroke (6, 7), SR has been

shown in a variety of physiological systems (8–11), in which the presence of noise below

the sensory threshold could enhance the response of the system to weak signals (12–14).
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Collins et al. (12) postulated that SR could be used to elderly

individuals with elevated sensory thresholds.

Whole body vibration (WBV) with stochastic resonance (SR)

can easily applied. SR-WBV does not lead to exhaustion and

blood pressure and lactate levels are low during vibration

training (15). SR-WBV could be easily personalized to the

individual’s level of fitness (16). For example, elderly with low

baseline fitness who want to start an exercise program should

start with a program that meets their physical capabilities (16).

Older people with frailty or pre-frail condition are advised to

undergo a “skilling-up” phase before undertaking more

traditional forms of training (17). SR-WBV can be used as a

training modality for the “skilling-up” phase (16, 18, 19).

Compared to traditional balance training, there are indications

on how to design a training regime (sets, rest between sets,

session per weeks, etc.) and on the other hand the training

protocols are characterized by a short duration between 1 and

5 min of intermittent or continuous WBV application (20).

There is no need to change clothes or shoes or to shower

afterwards, which might be important in the working world or

for adults who do not want to waste time on intensive training

(2). Eichelberger et al. (21) were able to determine a decrease in

accelerations with increasing distance from the vibrating plate

due to damping properties of the involved body structures.

However, it is known that a prolonged exposure to vibration

(e.g., driving, hammering) may lead to musculoskeletal and

neurological disorders (22, 23). Systematic reviews and meta-

analysis (24–27) have shown that shorter exposure to vibration

have a positive effect on muscle strength and postural control if

the training regime (e.g., amplitude, duration and frequency of

vibration) is correctly dosed.

SR-WBV differs from sinusoidal WBV in that the stimuli are

randomized and amplified using noise (25, 28). This results in a

generation of action potentials by the suprathreshold stimuli

(29). SR-WBV induces an excitatory stimulus to the alpha

motoneuron via mono- and polysynaptic pathways and elicits

muscle activation in response, resulting in body stabilization (30).

SR-WBV can be understood as reactive balance training that

simulates a fall situation itself through the application of

unpredictable, random, and multidirectional displacements of the

stance surface (31). Reactive balance training means that a

person has the ability to react to a loss of balance, because

reactive balance is a key factor that ultimately determines

whether an individual will sustain a fall (32). Reactive balance

can be profoundly impaired in older adult populations (32).

In contrast to SR-WBV, sinusoidal WBV are constant. If the

stimulus remains the same, the body adapts very quickly and this

slows down the impact of growth stimulus (27). Three WBV devices

were used in clinical settings: sinusoidal vertical (SV-WBV),

sinusoidal side-alternating (SS-WBV), and stochastic resonance (SR-

WBV). While the sinusoidal WBV devices uses a single plate for

standing, the SR-WBV device uses two plates for standing (24, 33–

36). Due to the different physiological mechanisms of impact and

use of equipment, this paper focuses on SR-WBV.

Furthermore, study results demonstrated that whole-body

vibration training provides more than physiological effects (2,
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37). Animals study showed that daily exposure to WBV over five

weeks significantly improved cognition in young mice compared

to non-vibrated mice (38, 39). Regterschot et al. (37) could

determine that passive WBV could improve executive functions

in healthy young adults. They postulated that WBV has the

potential as a cognition-enhancing therapy. Chan et al. (40)

reported that executive functions are a set of cognitive processes

that regulate, manage and control other cognitive processes in

order to achieve a goal, such as planning, mental flexibility,

multi-tasking etc. Research findings described that cognitive

decline and falls are linked (41–43) and that cognitive training

improve balance and gait (44).
Aim

A systematic literature review on the effects of SR-WBV on

postural control have been conducted previously (27). As the

number of publications on SR-WBV has increased significantly

in recent years, this present systematic literature review aims to

provide an update on the status quo of the efficacy of SR-WBV

on postural control in frail elderly individuals. The research

question was: could SR-WBV positively influence postural

control in individuals with balance disability?
Methods

Study design

This paper is an update of the systematic review by Rogan et al. (27).

In advance, a registration on PROSPERO (CRD420203194) was

conducted and the guideline “Preferred Reporting Items for Systematic

Reviews and Meta-Analyses” (PRISMA) was used for reporting. This

current systematic review used the same methodological approach as

the first study. The inclusion and exclusion criteria were identical. The

same search terms were used on the same databases. The data

collection process was more comprehensive in this study. Besides the

training load, the intervention protocol and the measurement

instrument tools were now included. The risk of bias was assessed with

the same instrument (The Cochrane Collaboration Cochrane Risk of

Bias Tool) as in the first study.

Information sources
Electronic searches were conducted on CINAHL, Cochrane

Central Register of Controlled Trials, Physiotherapy Evidence

Database (PEDro), and PubMed up to August 2022. In addition,

a hand search of the reference lists of included studies, research

institution websites, and Google Scholar was conducted.
Search strategy

The PICO model was used in this study. The PICO acronym

stands for Population (elderly, frail elderly), Intervention (WBV

exercise), Comparator (no treatment, or other balance exercise),
frontiersin.org
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Outcomes (postural control, static, dynamic, functional balance).

Search terms included: (i) “stochastic resonance whole-body

vibration” OR “SR-WBV” OR “stochastic vibration” OR

“stochastic training” AND (ii) “balance” OR “postural control* “

OR “postural stability”.
Eligibility criteria
This study included intervention studies and randomized

controlled pilot studies. German- and English-language articles

with intervention and control groups from the fields of geriatrics

were considered. For studies with frail elderly persons, those aged

65 years and older were eligible. Studies with frail elderly persons

under 65 years of age, studies with elderly persons with “fit”

status, and studies with neurological diseases were excluded.
Data collection process
Two independent studynurses screened and analyzed the title and

abstract for inclusion and exclusion criteria. In the next step, the full

text was read and included in this systematic literature review if

eligible. For each included article, authors, population, intervention

protocol, outcome parameters, results, and training load were

extractedandelectronically recordedby two independent studynurses.
Study risk of bias assessment
The Cochrane Collaboration Cochrane Risk of Bias Tool (RoB)

(45) was used to assess the internal validity of the included articles.

Two independent reviewers (SR, JT) assessed the methodological

quality of the eligible studies with “The Cochrane Collaboration’s

tool for assessing risk of bias”. The criteria list comprised six

items and each item were scored with + for yes, with—for no,

and with? if the information was not provided or was unclear. A

study was determined as having a low risk of bias if all criteria

are fulfilled with yes. A study has a moderate risk of bias when

one or more items are scored with unclear, while a study has a

high risk of bias if one or more key domains have been rated

with no. The level of agreement between the independent

reviewers who rated the primary studies was 98%.
1These articles are from the authors of this systematic review.
Results

Study selection

There were 1,206 matches of studies. Of these, 262 duplicates

were removed. A total of 944 titles and abstracts were screened,

and 917 articles were removed due to systematic reviews articles

(n = 8), application of sinusoidal vibration (n = 898), application

of stochastic vibration via the sole of the foot or knee (n = 7),

effects of SR-WBV on postural control or pain (n = 2), pelvic

floor muscle (n = 2). The remaining 27 full texts were read, of

which 9 articles were included in this systematic review

(Figure 1). Three articles originated from Germany (4, 46, 47),

and six from Switzerland1 (16, 19, 30, 36, 48, 49). Six trials were

designed as pilot study (16, 19, 30, 36, 48, 49) and three as

randomized controlled trials (4, 46, 47).
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Balance survey method

A total of six articles examined static balance (16, 19, 30, 47–

49), six studies examined dynamic balance (4, 16, 19, 30, 47, 49)

while five studies observed functional balance (19, 46–49).
Result overview of the studies

Overall, four of nine studies showed statistically significant

balance improvements within the SR-WBV group in the before-

after comparison (4, 19, 46, 48). Table 1 summarizes the

findings of the individual articles.
Training loads

In four of the nine studies, participants received a single

training session with SR-WBV (4, 19, 30, 46). The remaining

five studies determined the effect of SR-WBV after multiple

interventions. The range was 12–36 training sessions (16, 36,

47–49).

In three studies (4, 46, 48), the frequency was increased and the

starting position on the vibration device was progressively adjusted

to the participants. All three studies use 5 sets and 60 s of vibration.

One study did not specify a frequency (47). In three trials,

continuous vibration was performed at a frequency of 5 Hz and

five series with a duration of 60 s and rest of 60 s (19, 36). Four

studies applied a frequency of 6 Hz, with 5–6 series of 60 s

duration and 60 s rests (4, 16, 30, 46, 49).

The control group (CG) received no active intervention in four

out of nine studies (19, 46, 47, 50). In one study, the CG completed

a different intervention (4). Sham intervention was performed in

four other studies. Table 2 gives an overview of the training load.

The evaluation of the methodological quality was classified as

followed (Table 3): one study did not use the method of

allocation concealment (47), seven studies (4, 16, 19, 30, 46, 47,

49) did not report the blinded status of the investigator or

participant, and four studies (4, 19, 46, 49) showed incomplete

outcome data. They presented only change percentage data. They

did not give any information about baseline and intervention

data and no effect size calculation was used. Table 3 provides an

overview of the risk of bias of the included studies.
Discussion

During aging, sensory symptoms such as absent reflexes are

clinically relevant. They are not only debilitating but also

responsible for changes. This systematic literature review

addressed the research question “could SR-WBV positively
frontiersin.org
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FIGURE 1

Flow chart of the search.
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influence postural control in individuals with balance disability?”

using published results.

In summary, the effect of SR-WBV on postural control

presents a mixed picture. The statistically significant results from

four studies were contrasted with five statistically unsound

results. However, the effect size was strengthened by Rogan

et al.’s (49) indication of clinical relevance. They were able to

demonstrate clinical relevance (2.9 s) for the Expanded Timed

Get-up-and-Go (ETGUG) test (51) in frail individuals after SR-

WBV training. The SR-WBV group was a median of 3 s faster

after the intervention period compared with the baseline

measurement (P = 0.043; ES: 0.91). This study result has

immediate consequences in terms of treatment recommendation

for frail individuals with a postural control deficit of dynamic

balance (52). It is known that a normal sensory system is

necessary for successful postural control and movement. The

central nervous system must accurately assess the position of the
Frontiers in Sports and Active Living 04
body in space and the limbs in relation to each other

(proprioception). Postural reflexes must be released efficiently

when external perturbations are detected. Maintaining balance

must be automatic so that it is not impaired by other tasks.

During aging, impairments of the sensorimotor system lead to a

loss of postural control and to falls. The process of postural

control depends on many sensory signals and neurological

pathways and maintaining the quality of these systems at their

optimal level is fundamental. SR-WBV could play an important

role toward addressing postural control, by involving an

interaction of different types of neurophysiological sensors and

the adaptation of afferent and efferent signals, the SR-WBV

likely serves as an exercise for the sensorimotor system. Tan

et al. (53) demonstrated in their systematic review a significant

positive benefit on postural control (SMD = 0.61, 95% CI: 0.12 to

1.09, P = 0.01) and muscle activity in tibialis anterior (SMD =

0.46, 95% CI: 0.04 to 0.88, P = 0.03) and gastrocnemius (SMD =
frontiersin.org
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TABLE 1 Overview of the study characteristics of the included studies.

Study Population Intervention protocol Target parameters Results

Group: SR-WBV;
intervention
group (IG);

control group
(CG),

(n), sex (men (m)/
women (w)),

mean years (±SD)

Biomechanical
measurement

method

Functional
parameter/outcome

Effect within
group (effect

size: ES)

Effect between
groups

Dittrich
et al. (47)

Prospective controlled
study
SR-WBV:
n = 41 (m: 13/ w: 28)
CG: n = 52
(m: 13 / w: 39)
SR-WBV:
m: 69.1(±4.0)
w: 66.4(±5.0)
CG:
m: 68.1 (±6.8)/
w: 70.0 (±7.5)

WBV: Exercises on
ZeptorMed (4 exercises per
training session from a pool
of 15; individual, not listed
which exercises).
IG: activity in everyday life
was not changed

Static & dynamic balance
with Biodex Stability
System

Dynamic, functional
balance with motoric
assessment according
Runge [Chair Rising,
Timed-up-and-Go (TUG),
Tandem walk, etc.]

IG (women) Chair
Rising significantly
decreased by 0.9 s
(p = 0.003; ES = 0.4)
TUG significantly
reduced by 0.4 s
(p = 0.000; ES = 0.4)

Haas et al.
(46)

RCT cross-over
Group A: n = 34
Group B: n = 34
m: 53/w: 15
65.0 years (±7.8)

SR-WBV: Free two leg stand
with shoes, with slightly
bent knees
CG: rest for the same
duration

Static and functional
balance with UPDRS motor
scores und Sit-to-Stand
(STS)

Significant
reduction in
UPDRS motor
score (p < 0.01)
after SR-WBV
Group A: - 16.8%
Group B: - 14.7%

Kessler
et al. (48)

RCT pilot study
SR-WBV: n = 13
(m: 5/w: 8)
CG: n = 11 (m: 3/w: 8)
SR-WBV: 90.7 years
(±7.5)
KG: 83.8 years (±9.3)

SR-WBV: Parallel stance
(increase possible without
holding), tandem stance,
slow dynamic squats
CG: Sham therapy without
increasing 1 Hz

Static and functional
balance with chair rise Test
during Short Physical
Performance Battery test
(SPPB)

Chair rising
significantly
reduced (p = 0.001;
ES r = 0.89)

Significantly higher
SPPB score
significantly for SR-
WBV compared to
CG (p = 0.035; ES
r = 0.43)

Rogan et al.
(16)

RCT crossover pilot
study
Group A: n = 10
Group B: n = 10
Group A: 76.8 years
(±7.7)
Group B: 80.7 years
(±5.7)

Parallel stance with shoes
with slightly bent knees

Static balance with Kistler
force plate

Dynamic balance with
functional reach test
FRT; Expanded Timed get
Up and Go Test (ETGUG);
(Single-task / Dual-task)

Rogan et al.
(49)

RCT crossover pilot
study
SR-WBV: n = 9
(m/w: n.i.)
SR-GKV: 88.5 Jahre
(±6)

Parallel stance with shoes
with slightly bent knees

Static, dynamic and
functional balance with
semitandem/tandem stand
& Chair Rise Test (during
SPPB Test), ETGUG

Large ES in SPPB
score after SR-WBV
(p = 0.039)

Large ES for ETGUG
(p = 0.043)

Rogan et al.
(30)

RCT crossover pilot
study
SR-GKV: n = 9
(m:4/w:4)
SR-GKV: 88.5 Jahre
(±5.9)

Parallel stance with shoes
with slightly bent knees

Static, dynamic balance by
ETGUG, chair rising

Large ES for SPPB
(p = 0.121);
ETGUG
(p = 0.011);

Rogan et al.
(19)

RCT crossover pilot
study
SR-WBV: n = 10
(m: 5/w: 5)
CG: n = 10 (m:5/w:5)
SR-WBV: 80.2 years
(±6.8)
CG: 77.4 years (±7.1)

SR-WBV: Parallel stance
with shoes with slightly bent
knees
KG: Sham intervention with
1 Hz; same position as SR-
WBV

Static, dynamic and
functional balance with
semitandem/tandem stand
& Chair Rise Test (during
SPPB Test), ETGUG

(Continued)
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TABLE 1 Continued

Study Population Intervention protocol Target parameters Results

Group: SR-WBV;
intervention
group (IG);

control group
(CG),

(n), sex (men (m)/
women (w)),

mean years (±SD)

Biomechanical
measurement

method

Functional
parameter/outcome

Effect within
group (effect

size: ES)

Effect between
groups

Rogan et al.
(36)

RCT crossover pilot
studie
SR-WBV: n = 10
(m/w: n. i.)
CG: n = 10 (m/w: n.i.)
SR-WBV: 76.8 years
(±7.7)
KG: 80.7 years (±5.7)

SR-WBV: Parallel stance
with shoes with slightly bent
knees
KG: Sham intervention with
1 Hz; same position as
SR-WBV

Functional balance by
chair rising on a Kistler
force plate

Significantly faster
rising (p = 0.09)

Turbanski
et al. (4)

Case-control-study
SR-WBV: n = 26 (m/w:
n.i.)
CG: n = 26 (m/w: n. i.)
n = 52 (m: 38/w: 14)
n = 69.1 years (± 8.9)

SR-WBV: Upright standing
on ZeptorMed
CG: 15 min walk

Dynamic balance by
means of TS and narrow
PS on moving platform

Tandem stance was
significantly longer
after SR-WBV over
20 s (p = 0.04)

Rogan and Taeymans 10.3389/fspor.2023.1083617
0.68, 95% CI: 0.14 to 1.23, P = 0.01) using sinusoidal whole-body

vibration in individuals with a sensorimotor deficit after ankle

injury. They concluded that whole body vibration has the

potential to improve sensorimotor deficits involving balance,

strength, joint position sense, and muscle activity in people with

chronic ankle instability. However, Lesinski et al. (54) formulated

in their systematic review and meta-analysis article a balance

training regime for healthy elderly by a training period of 11–12

weeks, a training frequency of three sessions per week, a total

number of 36–40 training sessions, a duration of 31–45 min of a

single training session, and a total duration of 91–120 min of

balance training per week. Comparing these findings with

findings from young healthy adults, it seems plausible that
TABLE 2 SR-WBV training load as used in the different studies under
investigation.

Study Duration / (sessions
per week)

Frequency Sets, duration,
rest

Dittrich et al.
(47)

12 weeks / (3×) n. i. 3 × 45–60 s, 3 s

Haas et al. (46) 1 day / (1×) 6 Hz (±1 Hz) 5 × 6 s, 6 s

Kessler et al.
(48)

4 weeks / (3×) 3–6 Hz 5 × 6 s, 6 s

Rogan et al.
(16)

2 × 4 weeks / (3×) 5 Hz 5 × 6 s, 6 s

Rogan et al.
(49)

2 × 4 weeks / (3×) 6 Hz 5 × 6 s, 6 s

Rogan et al.
(30)

1 day / (1×) 6 Hz 6 × 6 s, 6 s

Rogan et al.
(19)

1 day / (1×) 5 Hz 5 × 6 s, 6 s

Rogan et al.
(36)

4 weeks / (3×) 5 Hz 5 × 6 s, 6 s

Turbanski et al.
(4)

1 day / (1×) 6 Hz (±1 Hz) 5 × 6 s, n. i.

n. i., no indication; h, hertz; s, seconds.
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almost the same balance protocols are effective in healthy young

and older adults and there seems to be no age effect (54). In this

current article, no of the included articles reported this amount

of training regimes. Fisher et al. were able to illustrate in their

meta-analysis, that long-term WBV (between 4 weeks and 32

weeks) could significantly improve functional balance (Timed-

up-Go test: SMD =−0.18; 95% CI: −0.32, −0.04; 10 min walking

test SMD =−0.28; 95% CI: −0.56, −0.01). However, no

significant changes were found in elderly individuals (tinetti gait

scores: SMD = 0.04; 95% CI: −0.23, 0.31, 6 min walking test:

SMD = 0.37; 95% CI: −0.03, 0.78).
It is known that muscle strength is a potentially important

factor contributing to postural control (61). Large effects of

strength training could be determined for static and dynamic

balance in elderly individuals, but only a small effect was found

for dynamic balance in young adults (62). Son et al. (63) were

able to demonstrate that strength training increase muscle

strength in ankle musculature and improve one-leg-standing

balance compared to control situation. It can be concluded that

the intensity of strength training is fundamental not only for

increasing muscle strength but also for improving postural

balance in elderly participants.

Furthermore, Kingwell described that exercise has the potential

to improve cognitive function (64). Explanatory models address the

fact that WBV stimulate mechanosensory receptors (e.g., tactile

corpuscles). These signals are transmitted to the primary

somatosensory cortex. These areas have connection with region

in the prefrontal cortex that strongly involved in cognitive

processing (37, 65). An indirect pathway involves the limbic

system (e.g., amygdala and hippocampus, important areas of

learning and memory), which can mediate the effects of sensory

correlations on the prefrontal cortex (66). The amygdala has

projections to non-thalamic nuclei (e.g., the cholinergic nuclei of

the basal forebrain) with diffuse connections to several brain
frontiersin.org
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TABLE 3 Risk of bias of the included studies.

Random
sequence
generation

(selection bias)

Allocation
concealment
(selection bias)

Blinding of
participants

(performance bias)

Blinding of
personnel

(detection bias)

Incomplete
outcome data
(attrition bias)

Selective
reporting
(reporting

bias)

Other
bias

Dittrich
et al. (47)

? – – + ? ? –

Haas et al.
(46)

? ? – + – + –

Kessler et al.
(48)

+ + – – + + +

Rogan et al.
(30)

+ + + ? ? – +

Rogan et al.
(16)

+ + + – + + +

Rogan et al.
(49)

+ + – – – – –

Rogan et al.
(19)

+ + – – – – +

Rogan et al.
(36)

+ + – – + + –

Turbanski
et al. (4)

? ? ? ? – + –

Bias rating: (+) = there is a small risk of bias; (–) = there is a risk of bias; (?) = unclear bias because not enough information available.
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regions (65). It can be speculated that mechanosensory receptor

stimulation can increase cognitive function. Furthermore, it has

been assumed that improvement in cognitive function depends on

increased production of neurotrophins [e.g., brain-derived

neurotrophic factor (BDNF)] (67). BDNF is recognized as the

most significant neurotrophic growth factor related to neuronal

plasticity and has a key role in the differentiation and survival of

neurons (68). Studies could demonstrate a close correlation

between increased BDNF levels and WBV (69, 70). However, so

far it is unclear how mechanical vibrations may influence the

expression of BDNF (71).

The loss of balance ability is an important risk factor for falls in

elderly individuals. Reactive balance is a crucial part of avoiding

and adapting to complex environments that threaten postural

stability (72). In German-speaking countries, the balance ability

is considered to be a coordinative ability (73). We describe this

ability as the aggregate understood to maintain and regain

balance, taking into account the necessary personal conditions.

Various types of exercises (e.g., airex pad, tilting board,

swinging platforms) are used in treatment settings and

summarized with the synonym balance training (74–77). The

goal is to optimize balance. It is assumed that balance is a skill,

and that balance training improves several balance tasks at the

same time (29). However, recent studies indicate that only those

balance tasks that are trained can also improve (77, 78). Giboin

et al. (32) showed that the group which trained in a single-leg

stand on the tilting board and the group that trained in a single-

leg stand on the swinging board (Posturomed) improved

statistically significantly only in the area in which they trained.

Recently, there have been attempts to move away from the term

ability towards the definition of skill (73). Taube (78) explained

that balance training does not change the behavior of the spinal

reflex per se. It seems rather to improve the ability of finding the

right reflex settings for specific conditions of postural control.
Frontiers in Sports and Active Living 07
Thus, balance training improves task-specific reflex modulation.

Low et al. (55) postulated, that specific balance exercise could be

the only one likely to improve postural balance. Slackline training

improves postural balance in young and elderly individuals in a

one-leg stance (56, 57). However, the impact of slackline training

is limited or negligible for standard static and dynamic bipedal

stances (58–60). Paillard (79) explains that specific balance

training optimizes postural skills, but it is not known whether

these skills improve motor skills in all types of physical activity.

He further refers to the fact that additional studies are required to

address this question accurately. Grabiner et al. (80) indicates that

task-specific perturbation training is superior to traditional

balance exercise training in improving reactive balance capacity

and thus preventing falls. Kim et al. (72) performed a network

meta-analysis to specify which exercise method is most effective

to improve reactive balance in elderly individuals. They analyzed

data of 39 RCTs including 1,388 elderly individuals receiving

balance training with reactive components (perturbations

training) demonstrated the most amount of improvement in

reactive training, followed by power training and gait training.

SR-WBV is power training. SR-WBV has the potential to improve

race of force development after four weeks SR-WBV training in

elderly individuals (48). In relation to gait, SR-WBV can be used

as skilling up in elderly not able to perform standard gait

training. It is known that SR-WBV could significantly improve

gait in older adults (19, 47, 49). In the case of a reactive balance,

the better the gait, the sooner gait training can be started.
Limitation

The observed heterogeneity in the individual studies’ study

quality and findings impede a clear-cut answer to the research

question. Furthermore, the study design of the pilot study does
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not allow a clear conclusion on efficacy because the primary aim of

the pilot study is not to assess an exact intervention effect size, but

rather to determine the sample sizes and evaluate feasibility of the

study protocol (81–83).
Conclusion

We found a heterogeneous situation on effects for balance

according to SR-WBV. One study showed clinical relevance for

ETGUG. Two studies examined the skill in reactive balance.

Since balance is a skill and SR-WBV trains reactive balance,

future studies should focus on the parameter reactive balance.
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